
Heaven Test Stand: towards comparative
research on RSP engines

Riccardo Tommasini, Emanuele Della Valle, Marco Balduini, Daniele Dell’Aglio

DEIB, Politecnico of Milano, Milano, Italy
riccado.tommasini@polimi.it, emanuele.dellavalle@polimi.it,

marco.balduini@polimi.it, daniele.dellaglio@polimi.it

Abstract. The benchmarking of window-based RDF Stream Process-
ing (RSP) engines has recently attracted the attention of the Stream
Reasoning community. Solutions like LSBench, SRBench and CSRBench
tried to fulfill the need of shared practices for RSP engine evaluations.
However, an infrastructure for the systematic comparison of existing
systems is still missing. In this paper, we propose the requirements and
an architecture for Heaven Test Stand, a facility to foster Systematic
Comparative Research Approach (SCRA) for window-based RSP engine.
Heaven allows to design and systematically execute repeatable, repro-
ducible and comparable experiments. As further contribution a working
implementation of Heaven Test Stand is released as open source.

1 Introduction

A Systematic Comparative Research Approach [4] (SCRA) is commonly used in
those research fields where formulating hypothesis to test is extremely hard, due
to the complexity of the research subjects. SCRA main advantage consists into re-
ducing cross-case studies complexity by representing the subjects as combinations
of known properties and highlight differences and similarities.

Social sciences, like sociology or economy, are extremely relevant fields [14]
where comparative analysis is exploited to understand the subjects, bringing
together the strengths of qualitative approaches and quantitative ones (e.g, in
situation X, the Y% of population A grows the Z% faster than the rest).

Due to the multiple technology concepts involved, Stream Reasoning (SR) [6]
- a research field that couples Information Flow Processing approaches [5] with
reasoning techniques - clearly demands for SCRA. SR feasibility is already
proven; many RDF Stream Processing (RSP) engines - systems able to cope with
semantically annotated data flows - populate the state-of-the-art [12].

The relevant challenge for the entire community1 is now the RSP engine
evaluation. To the RSP benchmarking extent are currently available RDF Streams,
Ontologies and Continuous queries [7, 11, 16]. The performance measure sets
comprise query language expressiveness [11, 16], scalability [11], throughput [11],
query results’ mismatch [11] and correctness [7]. [7, 11] provide also a preliminary
1 http://www.w3.org/community/rsp/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55259196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 R. Tommasini, E. Della Valle, M. Balduini, D. Dell’Aglio

testing facility, but an infrastructure for systematically compare the RSP engine
execution under controlled conditions is still missing.

In related research areas like databases, the results of the evaluation is
know given a schema of the data , the data, and a query. Therefore, there
is no need to study the systems dynamics at once. Unfortunately, this is not
valid for RSP engines where the execution semantic is different from system to
system [2]. In [7] problem of modeling the system execution semantics was faced
for window-based, in memory RSP engines; it depends on the relation between
RDF Streams [9]; continuous extensions of SPARQL [3] and streaming-adapted
reasoning techniques [9]. However, even when the model is completely available,
the intrinsic complexity of the RSP engine is still high and it requires to analyze
the dynamics at once. An SCRA is preferable and, thus, our research question is
How to enable a systematic comparative research approach for RSP engines?

In this paper we answer such research question presenting Heaven Test Stand
an infrastructure to enable experiment design and execution for RSP engines.

Outline: Section 2 and 3 present respectively Heaven Test Stand requirements
and architecture. Section 4 provides an example of experiment design an some
details regarding an open source implementation of the Heaven Test Stand2.
Finally, Section 5 comes to conclusion and presents the future works.

2 Heaven Requirements

Our aim is studying the RSP engine dynamics, that requires on-line analysis
of the engine behavior. SCRA fosters cross-case analysis and, thus, we need
to guarantee the experimental conditions to be repeatable, reproducible, and
comparable and also to describe the variables involved in the evaluation.

From the aerospace engineering we borrow the notion of engine test stand, a
facility for to design and systematically execute experiments over engines. With
a test stand, it will be possible to collect performance measurements during the
engine execution and enable post-hoc evaluations. In the following we state the
requirements for an RSP engine Test Stand, namely Heaven Test Stand (HTS).

Experiments Reproducibility requires HTS to guarantee: (i) engine compatibil-
ity (R.1), to allow the comparison of experiment results; (ii) data independence
(R.2), to allow the system users to choose any relevant ontologies (R.2a) and to
describe how the input data stream is defined (R.2b) (e.g. dataset/API, data
model like RDF Stream etc.); (iii) query independence (R.3), to allow the system
users to define and register a set of relevant queries from their domain of interest.

Compatibility with the RSP benchmarking state-of-the-art is crucial for HTS
relevance, thus, Heaven design must be extensible at software level (R.4), i.e.
theoretically each module can be replaced with one having the same interface,
but different behavior, without affecting architecture stability. Due to (R.1),
HTS must adopt an event-based architecture (R.5) as normally done by RSP
engines and it must exploit a simple to parse RDF serialization for events (R.6)
to minimize the cost of putting an existing RSP engine on the test stand.
2 https://github.com/streamreasoning/heaven

Heaven Test Stand: towards comparative research on RSP engines 3

A minimal measurements set for a relevant RSP engine evaluation is defined
in [15, 7]. HTS must include it, i.e (R.7a) Latency – the delay between the
event injection into the RSP engine and the system response; (R.7b) Memory
Usage – the difference between total system memory and free memory; (R.7c)
Completeness & Soundness of query-answering results w.r.t the system entailment
regime [7]. To allow further development, the performance measurement set that
HTS can collect must be also extensible (R.8).

The RSP engines input-output relationship is non-trivial [7], due to their I/O
asynchronous nature. Indeed, experiments Repeatability requires HTS to control
the experiment execution without affecting the RSP engine evaluation. To this
extent, HTS must not be running concurrently with the RSP engine (R.9) and
HTS must have a reduced (and possibly constant) memory footprint (R.10) to
do not affect the reasoning performances.

Finally, experiments Comparability requires HTS to support the collection of
the performance measurements for post-hoc analysis (R.11).

3 Heaven Architecture & Workflow

Disk

1

 ResultCollector Streamer
RSPEngine

Experiment

Start
 MB

Stop

5

4

Experiment1

2 Stimulus

Heaven Response4
5 Data

TestStand

3

 MB

2

Engine Response3

Fig. 1: Heaven modules and workflow

In this section we describe HTS architecture and also indicate which requirements
are satisfied at architectural level.

The tuple < E ,D, T ,Q > describes the top-level input of HTS: an Experi-
ment. E is the evaluated RSP engine (satisfying R.1); D is the description of the
incoming data flow (satisfying R.2a); T is the ontology (satisfying R.2b); Q the
continuous queries set registered into E (satisfying R.3).

In Step (1) HTS receives such an Experiment and it independently initializes
each module: the engine E needs to be initialized by registering into the ontology
T and all the queries in Q; the Streamer, which is the actual data stream
source, uses the description D to build the incoming information flow (e.g. an
RDF Streams) to push into E ; the Result Collector starts listening for the
results of E , that it will persist for post-hoc analysis (satisfying R.11).

4 R. Tommasini, E. Della Valle, M. Balduini, D. Dell’Aglio

During experiment execution, HTS loops through the steps from (2) to (5)
until the ending condition is reached (e.g the end of the dataset). It exchanges
three kinds of events: (i) Stimulus (S) a portion of the input information flows
in which all triples have the same timestamps; (ii) Engine Response (ER) the
event format that E is required to output. It contains the answer to one of the
query in the query-set Q registered in E given the ontology T and the active
window in the RSP engine; (iii) Heaven Response (HR) which encapsulates
the ER content adding the performance measurements collected by HTS.

In step (2), the Streamer builds and pushes to E an event S. Before starting
step (3), HTS starts a timer to measure latency (satisfying R.4a) and it measures
the memory load (satisfying R.4b).

In step (3), HTS invokes the engine E and then it waits until E completes its
processing. We can be sure that HTS and the engine are concurrently executing,
because HTS is a finite state machine. HTS stops the timer and measures again
the memory load as soon as E returns it the control.

In step (4), HTS creates a HR adding to the produced ER the collected
performance measurements. HTS pushes the HR to the Result Collector.

In step (5), the Result Collector persists HR content (satisfying R.11).

4 Experiment Design

In this section we explain how to design each element of the tuple < E ,D, T ,Q >
according to the current HTS implementation. We also motivate the development
choices we did, by the means of the proposed requirements (Section 2).

The E specification is realized by the means of a facade pattern [8, pp. 243].
An abstract RSP engine class allows to associate any RSP engines ensuring
engine independence (satisfying R.1), it intercepts the S and taking care of the
ER creation.

To simplify the initial usage of HTS, the current implementation contains
four naïve RSP engine implementations with external time-control, that we be
natively used as E . Some results about their performances, evaluated using HTS
current implementation are already available3.

D comprises all the details of the incoming input flows: (i) the actual data
to stream (e.g. a dataset); (ii) the number of the incoming data streams, (iii)
their data model (e.g. RDF Stream); (iv) their flow rate profile (e.g. Gaussian,
Poisson) and an ending condition for the experiment (e.g. max number of events).
The Streamer interface allows to describe all these details according with the
user needs. The current HTS release comprises the RDF2RDFStream, that
adapts any RDF dataset to a streaming scenario (RDF Stream) by adding to a
Stimulus the required number of triples to build such an event. Different flow
profiles can be realized by the means of the FlowRateProfiler. In our testing
experiments, we adapted one generation of LUBM(1000, 0)4 to our purpose.
3 http://streamreasoning.org/TR/2015/Heaven/iswc2015-appendix.pdf
4 LUBM(N, S) indicates the dataset with N universities generated using a seed S.

Heaven Test Stand: towards comparative research on RSP engines 5

Moreover, RDF triples in S and ER are encoded in the N-Triple format5, an
easy-to-parse RDF serialization used by the majority of exiting RSP engines
(satisfying R.6).

The ontology T is chosen according with the background knowledge required
for the reasoning. During the execution of an experiment, T is considered to be
static. Indeed is a good practice to reduce the reasoning complexity by executing
its materialization at setup-time. In the current implementation we used the
RDFS version of the LUBM ontology as T .

The query set Q must be register directly to E , because HTS does not offer
API yet. For our evaluation, we used a single query for each engine for each
experiment. They were variants of the full the materialization under ρDF [13]
entailment regime6. The query results are appended to an open file in order to
minimize the memory usage (satisfying R.10).

Notably, HTS is currently implemented as a single thread application (sat-
isfying R.9). Completeness and Soundness (C&S) of the query results and the
HTS ability to know exactly what was sent into E are evaluated post-hoc (R.7c)
by using the content of the persisted HR events. Real time verification of C&S is
also possible for those engines which allow external time control, because HTS
satisfies (R.9), but it may violate requirement (R.10), due to the large memory
footprint of reasoning procedures.

5 Conclusions

In this paper we presented the requirements and the architecture of Heaven Test
Stand, an infrastructure to enable a Systematic Comparative Research Approach
for RSP engines, by the means of experiment design and execution. A further
contribution is a working implementation of HTS, already available on GitHub7.

Enabling SCRA is a crucial step towards an efficient and effective stream
reasoning, but, as first future work, we have to prove HTS usability and effec-
tiveness of the proposed implementation. Solving the former requires us to go
step by step to the experiment design and execution; the latter, instead, requires
to provide experimental proofs that HTS influences the engine performance in a
controlled and predictable way only and it does not affect the query results.

Another future work consists into better comprehend the state-of-the-art
solution space, that means benchmarking mature solutions like the C-SPARQL [1]
engine or CQELS [10].

We want to make available the performance analysis, together with the exper-
iments setting we use for their evaluation (i.e. the < E ,D, T ,Q > configuration).
This is clearly necessary, because we want HTS to be adopted by the entire SR
5 http://www.w3.org/2001/sw/RDFCore/ntriples/
6 All the queries have the same sliding parameter β = 100 ms and they differ for the
duration ω. In particular, we use time-based sliding windows in which ω is an integer
multiple of the slide parameter β, i.e., it holds that ω = β ∗ S where S is a positive
integer.

7 https://github.com/streamreasoning/heaven

6 R. Tommasini, E. Della Valle, M. Balduini, D. Dell’Aglio

community. Thus, another pioneering step consists into developing a methodology
for the result analysis. Such methodology should exploits statistical techniques
to interpret the obtained results and allows us to finally answer questions like
Qualitatively, which is the best solution? or Quantitatively, what distinguish a
solution from other ones? or again Why solution A performs better than B under
a certain experimental condition?

Acknowledgments. This work has been partially funded by the IBM faculty
award 2013 granted to prof. Emanuele Della Valle and by the IBM PhD fellowship
award granted to Daniele Dell’Aglio.

References

1. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL:
A continuous query language for RDF data streams. IJSC 4(1), 3–25 (2010)

2. Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R.J., Tatbul, N.: Secret: A
model for analysis of the execution semantics of stream processing systems. PVLDB
3(1), 232–243 (2010)

3. Calbimonte, J.P., Corcho, O., Gray, A.J.G.: Enabling ontology-based access to
streaming data sources. In: ISWC. pp. 96–111 (2010)

4. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. Sage Publications Ltd., 3 edn. (2008)

5. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (Jun 2012)

6. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Systems 24(6),
83–89 (2009)

7. Dell’Aglio, D., Calbimonte, J., Balduini, M., Corcho, Ó., Della Valle, E.: On
correctness in RDF stream processor benchmarking. In: ISWC. pp. 326–342 (2013)

8. Freeman, E., Freeman, E., Bates, B., Sierra, K.: Head First Design Patterns. O’
Reilly & Associates, Inc. (2004)

9. Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern
matching over RDF data streams. In: DEBS. pp. 58–68 (2012)

10. Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and
adaptive approach for unified processing of linked streams and linked data. In:
ISWC. pp. 370–388 (2011)

11. Le-Phuoc, D., Dao-Tran, M., Pham, M.D., Boncz, P., Eiter, T., Fink, M.: Linked
stream data processing engines: Facts and figures. In: ISWC. pp. 300–312 (2012)

12. Margara, A., Urbani, J., van Harmelen, F., Bal, H.E.: Streaming the web: Reasoning
over dynamic data. J. Web Sem. 25, 24–44 (2014)

13. Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for RDF. In: ESWC.
pp. 53–67 (2007)

14. Rihoux, B., Ragin, C.C.: Configurational comparative methods: Qualitative com-
parative analysis (QCA) and related techniques. Sage (2009)

15. Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven
commandments for benchmarking semantic flow processing systems. In: ESWC. pp.
305–319 (2013)

16. Zhang, Y., Duc, P., Corcho, O., Calbimonte, J.P.: SRBench: A Streaming RDF/S-
PARQL Benchmark. In: ISWC. pp. 641–657 (2012)

