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This work investigates the closed-loop operation of microelectromechanical oscillators in the pres-

ence of both cubic (Duffing) nonlinearities and parametric amplification. We present a theoretical

model for this system that enables us to predict oscillation amplitude and instability and experimen-

tally verify it using a silicon disk resonator with a quality factor (Q) of 85 000 and a natural fre-

quency of 251 kHz. We determine that, contrary to previous understanding gained from analyzing

the open-loop system, the presence of cubic nonlinearities does not limit the maximum stable oscil-

lation amplitude if the resonator is operated in a closed loop. In addition, the stability and ampli-

tude behavior predicted by our theoretical model are independent of the presence or severity of

cubic nonlinearities, or on drive amplitude. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922533]

Micromechanical resonators are widely used in many

applications, such as oscillators for timekeeping1 and gyro-

scopes,2–6 where large oscillation amplitude is desirable as it

increases the signal level, improving signal to noise ratio in

gyroscopes and reducing phase noise in oscillators.

However, at large amplitudes, these micro- and nano-scale

resonators begin to exhibit nonlinearities such as the Duffing

oscillator behavior that arises from cubic stiffness nonlinear-

ity. Because the nonlinear threshold scales with resonator

size, this has long been viewed as a limitation on the ultimate

size of such resonators, since nonlinear behavior has been

associated with degraded performance in open loop devices.7

However, closed-loop devices exhibit different dynamics,

and it has been shown that Duffing behavior does not pose a

problem for stable closed-loop operation of micromechanical

oscillators8 and gyroscopes,9 and there is growing interest in

exploiting this and other nonlinearities10–15 to improve de-

vice performance. Parametric resonance is one such nonlin-

ear amplification method. Recently, parametric resonance

was observed to arise from nonlinear mechanical stiffness

coupling between the degenerate vibration modes of a high

quality-factor silicon disk resonator used as a gyroscope.16

The device’s exceptionally high quality factor (Q¼ 85 000)

was shown to result in a high degree of sensitivity to small

mechanical nonlinearities resulting from stress concentra-

tions, ultimately causing the device to exhibit both the classi-

cal Duffing oscillator behavior as well as the newly observed

parametric resonance. This combination of Duffing and para-

metric nonlinearities can also occur when parametric ampli-

fication is used to actuate the drive or sense axis of a

gyroscope3–5,17–19 and has implications for timing

applications1 as well. For devices such as these gyroscopes

and oscillators, which, either due to high Q or due to small

resonator size, exhibit nonlinearity at small displacements, a

theoretical model of closed-loop operation in the presence of

these nonlinearities is needed to enable operation at large

amplitudes and to inform decisions regarding the design and

operation of these resonators. While the established approach

is to design the resonator structure and control loop to avoid

nonlinear operation, better understanding of the benefits and

penalties of nonlinear operation could vastly improve device

performance through either increased signal levels (through

larger amplitude oscillation) or reduced device size.

Open-loop, parametrically amplified Duffing oscillators

have been studied,20–26 and their corresponding stability lim-

its are well-understood. In Ref. 27, Rhoads and Shaw use the

method of averaging to compute theoretical steady-state

responses for a parametrically amplified Duffing oscillator

operating in open loop and present the resulting amplitude-

frequency and phase-frequency curves. They conclude that

stable open-loop operation is possible, but only at the cost of

decreased performance or bistable behavior. Here, in addi-

tion to the analysis presented by Rhoads and Shaw, we

examine the closed-loop behavior of this system. We extend

their analysis, using the same steady-state solution, but

examining the amplitude-phase relationship of the steady-

state solutions, a technique which is useful for predicting the

closed-loop behavior of nonlinear oscillators.8,9,28,29 We

show that for closed-loop oscillators, stable, parametrically

amplified operation in the presence of cubic nonlinearities is

possible without suffering from jump instabilities, hysteresis,

or degraded performance. The resulting analysis is shown to

predict the experimentally observed behavior of the high-Q
silicon disk resonator.

In order to determine the closed-loop behavior of a para-

metrically amplified Duffing oscillator, the modified

Mathieu equation
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must be analyzed. Here, x is the displacement, m is the modal

mass,30 x is the resonant frequency, Q is the quality factor, k
is the stiffness, Dk

k ¼ k is the parametric pump input (normal-

ized stiffness change of the resonator occurring at frequency

2x), k3 is the cubic nonlinearity, and F cosðxtþ /Þ is the

harmonic drive force applied at x. If k3 ¼ 0, Eq. (1)

describes a degenerate parametric amplifier and the motion

resulting from F is either amplified or suppressed, depending

on the phase, /, of the applied 2x pump relative to F. The

total force-to-displacement gain at resonance is Gð/ÞQ=k,

where the phase-dependent parametric gain is given by31
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This function has a singularity at kc ¼ 2=Q, which results in

autoparametric oscillation at frequency 1x for k > kc. Once

cubic nonlinearity is included (k3 6¼ 0Þ, Eq. (1) has no closed-

form solution; however, Rhoads and Shaw compute the sys-

tem response by nondimensionalizing Eq. (1) and applying

perturbation methods, specifically, by the method of averag-

ing.27 Although this approximate solution is closed-form, it is

non-trivial. This method was used to solve for the response of

a highly nonlinear system (k3

k ¼ �2� 1010) operated close to

the autoparametric limit ðk=kc ¼ 0:95Þ with a pump phase of

/ ¼ 90�. The magnitude and phase frequency responses, Fig.

1(a), are multivalued at large amplitude and are strongly de-

pendent on the value of the cubic term, k3, consistent with

Rhoads’ and Shaw’s result. Here, k3 is negative, but for posi-

tive values of k3 the amplitude-frequency response will bend

instead to the right. However, the amplitude-phase plot of the

same model, Fig. 1(b), is single valued and the same plot is

obtained regardless of the value or sign of k3, making this a

useful tool for subsequent analysis. Note that in Fig. 1, the am-

plitude of the response is normalized to the linear response

that would be obtained in the absence of parametric amplifica-

tion and cubic nonlinearity, and the frequency is presented in

non-dimensionalized form, r ¼ xt=Q. For a closed-loop sys-

tem h, the phase shift across the resonator can be experimen-

tally varied by using a phase-locked loop (PLL), so that the

closed-loop oscillation is forced to take place at a given phase,

rather than a given frequency, as will be discussed in detail

below.

The amplitude-phase plots of parametrically amplified

Duffing oscillators are shown for varying pump phase, /,

and pump amplitude, k, in Fig. 2. In this investigation, we

use the numerical values for the system parameters shown in

Table I, which correspond to the parameters of the resonator

used in experiments described below. At pump amplitudes

above kc, the solution becomes unstable for a range of

phases, as indicated by the dashed lines, and autoparametric

excitation ensues.5,31 In practice, the maximum amplitude of

the system will be limited by other nonlinearities32 or me-

chanical contact between the resonator and its surroundings.

In order to experimentally verify these results, we used

a high-Q single-crystal silicon disk resonator originally pre-

sented in Refs. 33 and 34. This 600 lm diameter device is

encapsulated at a low pressure (1 Pa) by an epitaxial silicon

layer in order to achieve high Q (85 000). The epi-seal

encapsulation process was proposed by researchers at the

Robert Bosch Research and Technology Center in Palo Alto

and then demonstrated in a close collaboration with Stanford

University. This collaboration is continuing to develop

improvements and extensions to this process for many appli-

cations, while the baseline process has been brought into

commercial production by SiTime, Inc. The disk resonator

used here, shown in Fig. 3, supports two degenerate elliptical

modes at 251 kHz, as well as higher-order modes both in-

plane and out-of-plane. Because the two degenerate elliptical

modes are flexurally coupled, stress concentrations resulting

from the displacement of one mode can modulate the stiff-

ness of the orthogonal mode, resulting in parametric amplifi-

cation.16 Here, we use one of the two degenerate elliptical

modes and electrostatically tune the second mode to a differ-

ent resonant frequency to prevent modal coupling from per-

turbing the results. Higher order modes are not integer

multiples of the elliptical mode’s resonant frequency and

hence are not of concern. The system parameters are pre-

sented in Table I.

FIG. 1. Steady-state response of a highly nonlinear system (k3

k ¼ �2� 1010Þ
with a large-amplitude parametric pump (k=kc ¼ 0:95Þ operated with a

pump phase / ¼ 90�. Dashed lines indicate solutions which are unstable in

the open loop. (a) Normalized amplitude and phase versus non-

dimensionalized frequency (r¼xt/Q). The frequency response is multi-

valued. (b) Response of the same system plotted as normalized amplitude

versus phase. The amplitude-phase response is single-valued and is used to

predict closed-loop behavior.
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A block diagram of the test system is shown in Fig. 4.

The resonator is locked into closed-loop oscillation with con-

stant amplitude using a digital PLL. While in a conventional

oscillator, Barkhausen’s criterion states that oscillation

occurs at the frequency where the phase shift around the

loop h is equal to zero; the PLL allows the phase shift to be

adjusted to an arbitrary value. A second electrostatic input at

twice the forcing frequency (2x) is then used to modulate

the stiffness of the structure. Details on electrostatic stiffness

modulation can be found in Refs. 30 and 35. A phase shift,

/, is introduced between the 1x and 2x signals to study the

phase-dependent parametric gain.

The experimental amplitude-phase curves are collected

for /¼ 0�, 45�, and 90�, and for k=kc ¼ 0, 0.34, and 0.64.

The results are then normalized to the peak amplitude

obtained when k=kc ¼ 0, and superposed with the theoretical

prediction, as shown in Fig. 5. The experimental results

agree very well with theory. Notice that, in comparison to a

classical linear oscillator, where maximum amplitude occurs

at 0� phase shift around the loop and the amplitude-phase

plot is symmetric about this point, in the parametric oscilla-

tor, the phase shift resulting in maximum amplitude is de-

pendent on the phase of the applied parametric pump, /, and

the amplitude-phase curve is not symmetrical for some val-

ues of /. Below the threshold for parametric instability,

k=kc ¼ 1, the amplitude-phase curve is finite, with the maxi-

mum amplitude occurring at a phase h that depends on the

phase shift, /, between the 1x excitation and 2x parametric

pump. System behavior is dependent on whether the system

is operated at resonance (h ¼ 0) or at a frequency (and there-

fore a phase) offset. When / ¼ 0� (Figures 2 and 5(a)), oper-

ation at h ¼ 0 results in suppressed output for increasing

FIG. 2. Amplitude-phase plots for an oscillator following the nonlinear Mathieu equation presented in Eq. (1) above. System parameters are given in Table I.

The result varies depending on the phase shift, /, between the 1 x excitation and the 2x pump, and the results are plotted for (a) / ¼ 0�, (b) / ¼ 45�, and (c)

/ ¼ 90�. Above the threshold for autoparametric excitation, the solution becomes unstable, as indicated by dashed lines.

TABLE I. Resonator parameters.

Parameter Value

fn ¼ x=2p 251 kHz

Q 85 000

m 3.9 lg

k 9970 N/m

k3 �1.99 � 1013 N/m3

FIG. 3. Scanning electron microscope (SEM) image showing the disk reso-

nator. The device is encapsulated at a low pressure (1 Pa) resulting in high Q
and supports two elliptical modes at 251 kHz, as well as higher-order modes

both in plane and out of plane.

FIG. 4. Block diagram of the closed-loop oscillator control system.

Excitation at 1x is produced by the PLL which enables the phase shift

around the loop, h, to be varied arbitrarily while a secondary 2x pump input

is used to parametrically amplify this excitation. The relative phase, /,

between the 1x PLL output and 2 x pump can be varied.
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pump amplitudes; however, off-resonant excitation can

result in amplification. When / ¼ 45� (Figures 2 and 5(b)),

no amplification is present for h ¼ 0, and phase offsets in

each direction result in either amplification or suppression of

input signals, dependent on the direction of the offset. For

/ ¼ 90� (Figures 2 and 5(c)), operation at h ¼ 0 results in fi-

nite amplification, provided k < kc. Above kc, autoparamet-

ric excitation is possible regardless of /; however, the phase

shift required to produce an unstable (autoparametric)

response varies with the relative phase of the pump input. It

would be possible, for instance, to achieve autoparametric

excitation with a pump phase of / ¼ 0�, an angle ordinarily

associated with suppression, if the oscillator loop locks to

h ¼ 6 90� (off-resonance).

From the above analysis, we can conclude that stable

closed-loop parametric amplification in the presence of

Duffing nonlinearities is possible, and we can predict that the

behavior of the system as the phase shift around the loop and

relative phase of the pump input are varied. In particular, the

amplitude-phase dependence presented in Fig. 2 can be used

to predict the behavior of parametrically amplified systems

operating in a closed loop with arbitrary cubic nonlinearity

k3. In addition, we note that the closed-loop oscillation am-

plitude is independent of k3 and scales linearly with drive

force for any given pump phase shift and amplitude, pro-

vided k < kc. Thus, the oscillation amplitude is not inher-

ently limited by nonlinearity k3, as was previously

understood. We also experimentally verify the theoretical

results presented in Fig. 2 and demonstrate that the model

can be used to predict the stable closed-loop oscillation am-

plitude of a parametrically amplified Duffing oscillator for a

variety of pump amplitudes and phase shifts.

This project was funded by DARPA under Contract

Nos. W31P4Q-12-1-0001 and N66001-12-1-4260. The

device was fabricated at the Stanford Nanofabrication

Facility. Valentina Zega thanks STMicroelectronics for her

Ph.D. grant, and Professor D. Horsley and the whole group

of BSAC at UCD for kind hospitality.

1L. G. Villanueva, R. B. Karabalin, M. H. Matheny, E. Kenig, M. C. Cross,

and M. L. Roukes, Nano Lett. 11(11), 5054 (2011).
2C. Ahn, S. Nitzan, E. Ng, V. Hong, Y. Yang, T. Kimbrell, D. A. Horsley,

and T. Kenny, Appl. Phys. Lett. 105, 243504 (2014).
3M. Sharma, E. H. Sarraf, R. Baskaran, and E. Cretu, Sens. Actuators, A

177, 79 (2012).
4B. J. Gallacher and J. S. Burdess, Proc. Inst. Mech. Eng., Part C 220(9),

1463 (2006).
5B. J. Gallacher, J. S. Burdess, and K. M. Harish, J. Micromech. Microeng.

16(2), 320 (2006).
6W. Zhang, R. Baskaran, and K. Turner, Appl. Phys. Lett. 82(1), 130 (2003).
7V. Kaajakari, T. Mattila, A. Oja, and H. Seppa, J. Microelectromech. Syst.

13(5), 715 (2004).
8L. Hyung Kyu, R. Melamud, S. Chandorkar, J. Salvia, S. Yoneoka, and T.

W. Kenny, J. Microelectromech. Syst. 20(6), 1228 (2011).
9S. Nitzan, T. H. Su, C. Ahn, E. Ng, V. Hong, Y. Yang, T. Kenny, and D.

A. Horsley, paper presented at the IEEE 27th International Conference on

Micro Electro Mechanical Systems (MEMS), 2014.
10R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, Appl. Phys. Lett.

88(21), 213509 (2006).
11L. G. Villanueva, E. Kenig, R. B. Karabalin, M. H. Matheny, R. Lifshitz,

M. C. Cross, and M. L. Roukes, Phys. Rev. Lett. 110(17), 177208 (2013).
12D. S. Greywall, B. Yurke, P. A. Busch, A. N. Pargellis, and R. L. Willett,

Phys. Rev. Lett. 72(19), 2992 (1994).
13B. Yurke, D. Greywall, A. Pargellis, and P. Busch, Phys. Rev. A 51(5),

4211 (1995).
14Y. Yang, E. Ng, V. Hong, C. Ahn, Y. Chen, E. Ahadi, M. Dykman, and T.

Kenny, “Measurement of the Nonlinearity of Doped Bulk-Mode MEMS

Resonators,” presented at the Solid-State Sensors, Actuators, and

Microsystems Workshop, Hilton Head Island, SC, USA, 8–12 June 2014,

pp. 285–288.
15J. Nichol, E. Hemesath, L. J. Lauhon, and R. Budakian, Appl. Phys. Lett.

95, 123116 (2009).
16S. Nitzan, V. Zega, M. Li, C. H. Ahn, A. Corigliano, and D. A. Horsley,

Sci. Rep. 5, 9036 (2015).
17M. Sharma, E. H. Sarraf, and E. Cretu, paper presented at the IEEE 24th

International Conference on Micro Electro Mechanical Systems (MEMS),

2011.
18L. A. Oropeza-Ramos, C. B. Burgner, and K. L. Turner, Sens. Actuators,

A 152(1), 80 (2009).
19N. J. Miller, S. W. Shaw, L. A. Oropeza-Ramos, and K. L. Turner, in

ASME 2008 9th Biennial Conference on Engineering Systems and
Analysis, Haifa, Israel (2008), Vol. 2, p. 793.

20W. Zhang, R. Baskaran, and K. L. Turner, Sens. Actuators, A 102(1–2),

139 (2002).
21M. V. Requa and K. L. Turner, Appl. Phys. Lett. 88(26), 263508 (2006).
22Z. Wenhua, R. Baskaran, and K. L. Turner, paper presented at the IEEE

16th Annual International Conference on Micro Electro Mechanical

Systems, MEMS-03, Kyoto, 2003.

FIG. 5. Experimentally measured amplitude-phase plots, with the 2 x pump applied at three values of relative phase, /. The amplitude is normalized to the

k¼ 0 (linear oscillator) case. Theoretical predictions (superposed) are in close agreement with experimental results.

233111-4 Zega et al. Appl. Phys. Lett. 106, 233111 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  131.175.12.9 On: Sun, 08 May 2016

07:43:54

http://dx.doi.org/10.1021/nl2031162
http://dx.doi.org/10.1063/1.4904468
http://dx.doi.org/10.1016/j.sna.2011.08.009
http://dx.doi.org/10.1243/09544062JMES196
http://dx.doi.org/10.1088/0960-1317/16/2/017
http://dx.doi.org/10.1063/1.1534615
http://dx.doi.org/10.1109/JMEMS.2004.835771
http://dx.doi.org/10.1109/JMEMS.2011.2170821
http://dx.doi.org/10.1063/1.2207490
http://dx.doi.org/10.1103/PhysRevLett.110.177208
http://dx.doi.org/10.1103/PhysRevLett.72.2992
http://dx.doi.org/10.1103/PhysRevA.51.4211
http://dx.doi.org/10.1063/1.3232232
http://dx.doi.org/10.1038/srep09036
http://dx.doi.org/10.1016/j.sna.2009.03.010
http://dx.doi.org/10.1016/j.sna.2009.03.010
http://dx.doi.org/10.1016/S0924-4247(02)00299-6
http://dx.doi.org/10.1063/1.2216033


23Z. Wen-Ming and M. Guang, IEEE Sens. J. 7(3), 370 (2007).
24J. F. Rhoads, S. W. Shaw, K. L. Turner, J. Moehlis, B. E. DeMartini, and

W. Zhang, J. Sound Vib. 296(4–5), 797 (2006).
25W. Zhang and K. L. Turner, Sens. Actuators, A 122(1), 23 (2005).
26R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, Phys. Rev. Lett. 98(7),

078103 (2007).
27J. F. Rhoads and S. W. Shaw, Appl. Phys. Lett. 96(23), 234101 (2010).
28J. Juillard, A. Bonnoit, E. Avignon, S. Hentz, N. Kacem, and E. Colinet,

paper presented at the IEEE Sensors, 2008.
29C. Guo and G. K. Fedder, Appl. Phys. Lett. 103(18), 183512 (2013).
30S. Tsanh-Hung, S. H. Nitzan, P. Taheri-Tehrani, M. H. Kline, B. E. Boser,

and D. A. Horsley, IEEE Sens. J. 14(10), 3426 (2014).

31D. Rugar and P. Gr€utter, Phys. Rev. Lett. 67(6), 699 (1991).
32C. van der Avoort, R. van der Hout, J. J. M. Bontemps, P. G. Steeneken,

K. Le Phan, R. H. B. Fey, J. Hulshof, and J. T. M. van Beek,

J. Micromech. Microeng. 20(10), 105012 (2010).
33S. Nitzan, C. H. Ahn, T. H. Su, M. Li, E. J. Ng, S. Wang, Z. M. Yang, G.

O’Brien, B. E. Boser, T. W. Kenny, and D. A. Horsley, paper presented at

the IEEE 26th International Conference on Micro Electro Mechanical

Systems (MEMS), 2013.
34C. H. Ahn, E. J. Ng, V. A. Hong, Y. Yang, B. J. Lee, I. Flader, and T. W.

Kenny, J. Micromech. Syst. 24(2), 343 (2015).
35B. J. Gallacher, J. Hedley, J. S. Burdess, A. J. Harris, A. Rickard, and D.

O. King, J. Microelectromech. Syst. 14(2), 221 (2005).

233111-5 Zega et al. Appl. Phys. Lett. 106, 233111 (2015)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  131.175.12.9 On: Sun, 08 May 2016

07:43:54

http://dx.doi.org/10.1109/JSEN.2006.890158
http://dx.doi.org/10.1016/j.jsv.2006.03.009
http://dx.doi.org/10.1016/j.sna.2004.12.033
http://dx.doi.org/10.1103/PhysRevLett.98.078103
http://dx.doi.org/10.1063/1.3446851
http://dx.doi.org/10.1063/1.4828564
http://dx.doi.org/10.1109/JSEN.2014.2335735
http://dx.doi.org/10.1103/PhysRevLett.67.699
http://dx.doi.org/10.1088/0960-1317/20/10/105012
http://dx.doi.org/10.1109/JMEMS.2014.2330590
http://dx.doi.org/10.1109/JMEMS.2004.839325

