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Stresses and orientational order in shearing flows of granular liquid crystals
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We perform discrete element simulations of homogeneous shearing of frictionless cylinders and show that
the particles are characterized by orientational order and form a granular liquid crystal. For elongated and flat
cylinders, the alignment is in the plane of shearing, while cylinders having an aspect ratio equal to 1 and 0.8
show no orientational order. We show that the particle pressure is insensitive to the cylinder aspect ratio and well
predicted by the kinetic theory of granular gases, with a singularity in the radial distribution function at contact
different from that for frictionless spheres. The numerical results quantitatively agree with physical experiments
on different geometries. The particle shear stress is affected by orientational anisotropy. We postulate that, for
frictionless cylinders, the viscosity is roughly due to the motion of the orientationally disordered fraction of the
particles, and show that it is proportional, through the order parameter, to the expression of kinetic theory. Finally,
we suggest that the orientational order is the result of the competing effects of the shear rate, which induces
alignment, and the granular temperature, which ramdomizes.
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I. INTRODUCTION

The behavior of liquid crystals composed of elongated
molecules is rather well understood, and continuum theory,
able to predict the alignment of the molecules and its conse-
quence on the transport properties of the material, is available
[1,2]. On the other hand, the flow of nonspherical, macroscopic
particles—of interest in many geophysical and industrial
applications—has been less investigated, and a continuum
theory is still lacking. Intuitively, and experimentally verified
[3], shearing flows of macroscopic nonspherical particles
can develop orientational order, while maintaining positional
disorder, even if no external field is applied. The particles
form a granular liquid crystal, an intermediate state between
a granular gas (positionally and orientationally disordered)
and a granular solid crystal (positionally and orientationally
ordered).

Kinetic theory [4,5] was originally intended for predicting
dilute to moderately dense flows of granular gases composed
of inelastic hard spheres. Building a theory based on first
principles for flows of more realistic particles has proved a
difficult task. Hence, ad hoc, but physically sound, modifi-
cations of classic kinetic theory have been proposed to take
into account velocity correlation among the particles at large
solid volume fractions [6–12], particle surface friction [13,14],
and finite stiffness [15]. Recently [16,17], discrete element
simulations on simple shear flows of cylinders at different
solid volume fractions have been performed to study the
influence of length-to-diameter (aspect) ratio, coefficient of
collisional restitution, surface friction, and stiffness on the
stresses, highlighting differences and similarities with the
predictions of the kinetic theory for spheres.

Here, we focus on simple shearing of cylinders in the
absence of gravity and aim to describe in detail how order and
alignment of the particles depend on the solid volume fraction
and aspect ratio, and how this information can be incorporated
into a continuum model based on kinetic theory to describe
stresses in flows of granular liquid crystals.

II. SIMULATIONS AND THEORY

We have performed numerical simulations of flows of
frictionless cylinders of mass density ρp, length L, and
diameter d using the discrete element model described in
Refs. [16,18,19]. Snapshots of the simple shear flows at solid
volume fraction ν = 0.4 and three different aspect ratios L/d,
together with the adopted frame of reference, are depicted
in Figs. 1(a)–1(c). The only component of the mean particle
velocity is in the x direction and is linearly distributed
along y, being γ̇ the shear rate. In all the simulations, we
kept constant the normal coefficient of collisional restitution
(negative ratio of post- to precollisional relative velocity
between two colliding particles) e = 0.95, the dimensionless
Young’s modulus E/(ρpγ̇ 2d2

v ) = 1.5 × 109, where dv is the
diameter of the equivalent sphere, and the Poisson’s ratio equal
to 0.3 in the Hertzian contact model.

The orientation of a cylinder is described using the
inclination angle α and the azimuthal angle β [Fig. 2(a)],
both limited, for symmetry reasons, to the range ±90◦. As
for molecular liquid crystals, we use the order parameter S

to describe the degree of order in the particle alignment [21].
Granular gases and crystal solids are characterized by S = 0
and S = 1, respectively. Intermediate values indicate that we
are in the presence of granular liquid crystals. Figure 2(b)
shows that the order parameter usually increases with the solid
volume fraction and the maximum between L/d and d/L, as
previously noticed [3,17]. Cylinders with aspect ratios equal
to 0.8 and 1 are in the granular gas state for the entire range
of solid volume fraction [Fig. 1(b)]. This is due to the fact
that the particle projected area on the plane perpendicular to
the flow is essentially independent of the particle alignment,
so that there is no preferential orientation of the particles
to minimize the particle contacts [17]. For the other aspect
ratios, the flow is in the granular liquid crystal state. The cases
L/d = 0.25, L/d = 0.5, and L/d = 6 present a maximum
in the order parameter at a given value of the solid volume
fraction. This might be due to differences in the dependence on
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FIG. 1. Snapshots of the shear flows of cylinders at ν = 0.4 for (a) L/d = 0.25, (b) L/d = 0.8, and (c) L/d = 4. x, y, and z are the flow,
velocity gradient, and vorticity directions, respectively. Periodic boundary conditions along the x and z directions, and Lees-Edwards [20]
boundary conditions along the y direction have been employed.

ν for ordering in the planes of shear and vorticity. Figure 2(b)
also indicates that there is no apparent first-order transition
from an isotropic to a nematic state, i.e., a discontinuity
in the order parameter, for shearing flows of cylinders,
unlike the case of uniformly compressed hard nonspherical
particles [22].

We have also measured the average alignment angle θ

with respect to the flow direction [23]. Elongated cylinders
(L/d larger than 1) align, on average, in the plane of shear
[Fig. 1(c)] and the average alignment angle is less than 45◦ and
monotonically decreases with the order parameter [Fig. 2(c)].
The results of our simulations are in agreement with physical
experiments on flows of glass cylinders and wooden pegs,
characterized by L/d in the range 3.3–5, in a split bottom shear
cell [3]. As already shown [17], flat cylinders (L/d equal to
or less than 0.5) align again in the plane of shear [Fig. 2(a)],
but the alignment angle is always larger than 45◦ and increases
with the order parameter [Fig. 2(c)].

The kinetic theory of granular gases provides an expression,
in the case of randomly colliding spheres, for the particle

pressure p, which has the form [5]

p

ρpT
= 4ν2g0

(
1

4νg0
+ 1 + e

2

)
, (1)

where g0 is the radial distribution function at contact—
only a function of the solid volume fraction—and T is the
granular temperature, mean square of the particle velocity
fluctuations. Figure 3(a) depicts the dimensionless particle
pressure obtained from the present simulations as a function
of the solid volume fraction. The data collapse onto a single
curve, irrespectively of the particle aspect ratio and, therefore,
the orientational order. This may be understood given that
both the pressure and the granular temperature are isotropic
quantities, and hence insensitive to the anisotropy induced
by the particle alignment. It indicates that kinetic theory is a
good candidate as a continuum theory also for nonspherical
particles. Experiments performed on gravity-driven collisional
suspensions of plastic cylinders, of aspect ratio equal to 0.8,
in water [24,25] show the same collapse, and are in good
agreement with the present numerical simulations [Fig. 3(b)]
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FIG. 2. (a) Cylinder orientation in terms of the two angles α and β. (b) Order parameter as a function of the solid volume fraction for
L/d = 0.17 (solid lower triangles), L/d = 0.25 (solid upper triangles), L/d = 0.5 (solid squares), L/d = 0.8 (diamonds), L/d = 1 (circles),
L/d = 2 (hollow squares), L/d = 4 (hollow upper triangles), and L/d = 6 (hollow lower triangles). (c) Average alignment angle as a function
of the order parameter [same symbols as in Fig. 2(b)]. Also shown are the experimental values for glass cylinders and wooden pegs [3] (crosses).
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FIG. 3. Dimensionless pressure versus solid volume fraction
obtained from the present numerical simulations [same symbols as
in Fig. 2(b)] and experiments (crosses) on collisional suspensions of
plastic cylinders in water. The solid line represents Eq. (1).

[26]. The experimental and numerical data can be satisfactorily
reproduced with Eq. (1), if we use, as suggested by Vescovi
et al. [12] and valid for frictionless spheres with e less than
or equal to 0.95, the radial distribution function at contact of
Carnahan and Starling [27]:

g0 = 2 − ν

2(1 − ν)3
, (2)

if ν � 0.4; and

g0 =
[

1 −
(

ν − 0.4

νc − 0.4

)2] 2 − ν

2(1 − ν)3
+

(
ν − 0.4

νc − 0.4

)2 2

νc − ν
,

(3)

if ν > 0.4. In Eq. (3), νc represents the critical value of the
solid volume fraction at which g0 is singular, which is only a
function of the surface friction for spheres [14]. In the case of
frictionless cylinders, νc = 0.67 allows good agreement with
the data (Fig. 3).

Kinetic theory [5] predicts also that the ratio of the particle
shear stress to the shear rate, i.e., the viscosity η, in a granular
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FIG. 4. (a) Dimensionless viscosity versus solid volume fraction
obtained from the present numerical simulations [same symbols as in
Fig. 2(b)]. (b) Same as in Fig. 4(a), but the dimensionless viscosity is
scaled with 1 − S. The solid line represents Eq. (5).

gas is given by

η

ρpdvT 1/2
= 8J

5π1/2
ν2g0, (4)

where J is a known function of the coefficient of restitution
and the solid volume fraction [28]. Figure 4(a) shows the
dimensionless viscosity as a function of the solid volume frac-
tion obtained from our numerical simulations. As previously
noticed [3,16,17], the particle alignment in the plane of shear
causes the viscosity to be greatly reduced with respect to the
isotropic case, L/d = 1. Unlike the pressure, the shear stress
is sensitive to the flow anisotropy, so that the numerical data
do not collapse onto a single curve and Eq. (4) of kinetic
theory does not hold. We now imagine that the viscosity of
a granular liquid crystal has two components, associated with
the orientationally random and ordered motion of the particles,
whose relative importance is naturally measured through the
order parameter, by 1 − S and S, respectively. Frictionless
cylinders, perfectly aligned with their axes along the flow
direction, can slide over each other without any resistance.
Hence, as a first approximation, we assume that only the
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FIG. 5. Order parameter as a function of the ratio of the shear
rate to the square root of the granular temperature [same symbols
as in Fig. 2(b)]. The solid line is a tentative fitting using the logistic
function S = 1/[1 + exp(6 − 4γ̇ dv/T 1/2)].

orientationally random motion of the cylinders contributes to
the viscosity. If the component of the viscosity associated with
the orientationally random motion is given by kinetic theory,
we obtain

η

ρpdvT 1/2
� (1 − S)

8J

5π1/2
ν2g0. (5)

When the dimensionless viscosity, divided by 1 − S, is plotted
against the solid volume fraction, we obtain a collapse of
the data from the present numerical simulations [Fig. 4(b)].
Equation (5), with g0 once again given by Eqs. (2) and (3) and
νc = 0.67, is in excellent agreement with the measurements
when L/d = 1 and 0.8 (no orientational order), while it
slightly underestimates the viscosity for the other aspect ratios
when ν exceeds 0.2, due to the imperfect alignment of the
particles along the flow direction. When ν is less than 0.1,
there is no orientational order [Fig. 2(b)]: there, the lack of
agreement of the simulations with the kinetic theory of Garzó
and Dufty [5] is probably due to anisotropy in the particle
velocity distribution function [29].

The order parameter is a key quantity in the expression of
the viscosity and, therefore, the particle shear stress. Hence,
it must be determined from a suitable balance equation
in the framework of a continuum theory for predicting

the flow of granular liquid crystals. Following a heuris-
tic argument—originally applied to the velocity correlation
between the particles at solid volume fraction larger than
the freezing value [7,11,30]—we assume that the order
parameter results from a competition between the alignment
induced by the shear rate and randomization due to the
velocity fluctuations, i.e., the granular temperature. Hence,
at equilibrium, the order parameter should be an increasing
function of the dimensionless quantity γ̇ dv/T 1/2. Figure 5
shows the satisfactory collapse of the measurements obtained
from the present numerical simulations. It is evident that
there is no orientational order if the ratio γ̇ dv/T 1/2 is less
than 1. When γ̇ dv/T 1/2 exceeds 1, the order parameter
progressively increases and would eventually approximate
1 for large enough shear rate and/or low enough granular
temperature.

III. CONCLUSIONS

In this work, we have shown that cylindrical particles in
shearing flows are, generally, in the granular liquid crystalline
state, whose orientational order usually increases with the solid
volume fraction, with no apparent first-order phase transition.
Elongated and flat cylinders align themselves in the plane
of shear, and form an angle with the flow direction which
is less and greater than 45◦, respectively. Cylinders having
aspect ratios equal to 0.8 and 1 show no orientational order.
We have demonstrated that the particle pressure scales with
the granular temperature and can be predicted using the
kinetic theory of granular gases, if the singularity in the
radial distribution function at contact is taken to be 0.67.
We have suggested that the viscosity has one component
associated with the orientationally random motion of the
particles, given by the expression of kinetic theory multiplied
by 1 − S, and a second component associated with the
orientationally ordered motion of the particles. We have finally
suggested that the order parameter is a consequence of the
competition between the ordering of the shear rate and the
disordering of the velocity fluctuations. Although the present
numerical simulations have been performed on the almost
ideal case of homogeneous shearing of frictionless cylin-
ders, the quantitative agreement with physical experiments
carried out in more complicated geometries, even in the
presence of an interstitial fluid, supports the generality of our
findings.
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