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Abstract—We address the problem of 3D scene rendering on
projection-based light field displays and optimizing the input dis-
play images to obtain the best possible visual output. We discuss
a display model comprising a set of projectors, an anisotropic
diffuser and a viewing manifold. Based on this model, we render
an initial set of projector images to be further optimized for the
best perception at a specified set of viewing positions. We propose
a least squares method, which minimizes the channel-wise color
difference between the generated images for different viewer
positions, and their ground-true counterparts. We formulate a
constrained optimization problem and solve it iteratively by the
descent method.

Index Terms—light field, optimization, 3d display.

I. INTRODUCTION

Passive Light Field (LF) 3D display is a device that allows
users to see a dynamically changed content relative to their
current position in space, without the need of wearing special
glasses or enabling eye tracking. Such displays maintain
continuous parallax and to some extend generate focus visual
cues. This is achieved mainly by generating a dense set of
multi-perspective rays. In recent years, a variety of passive
LF 3D displays has been introduced [1], [2]. There are two
types of such displays which are of particular interest: first
is integral imaging (InIm) display [3]; second is projection-
based display [4], [5], [6]. This classification is not strict, since
there are devices that utilize both technologies [7], or can be
configured to represent either first or second class [8].

The basic configuration of projection-based display is des-
cribed in [4]. It consists of a set of projectors placed along a
horizontal row, and transparent anisotropic diffuser in front of
them (see Figure 1). The role of the diffuser is to merge the
output of all projectors with different weighting coefficients
that depend on the viewing direction. Compared to an InIm
setting, this configuration provides significantly wider field of
view, better spatial-angular resolution, and scalability for a
higher computational cost and data usage. An inter-projector
cross-talk during the visualization might also occur. The basic
display model described in [4] can be easily extended for other
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(a) Side-view. (b) Top-view.

Fig. 1. Display model.

(a) Microcylinder level. (b) Scattering cone.

Fig. 2. Optical model of diffuser.

cases, including multi-row projector system [5], reflective
diffuser surface, or 360 spinning mirror display [6].

In this paper, we discuss the problem of optimal generation
of the set of projector images for the case of single-row
projection-based display model [4]. For this display model,
only rasterization-based [4] and raytracing-based [9] rendering
techniques have been previously introduced. Similar rendering
approach has been utilized in [6] for the case of 360 spinning
mirror display with reflective diffuser. Another problem of
optimal projector arrangement has been discussed in [5] for a
particular case of multi-row 300-projector system.

This paper is structured as follows. In Section II, we
review the projection-based display model. In Section III, we
formulate the optimization problem and solve it by using
a least squares method. Then, we propose a cost-efficient
iterative procedure which can be applied in real-life system.
We summarize the results of our simulations in Section IV.



II. PROJECTION-BASED DISPLAY MODEL

In our model, we assume that all projectors are placed
uniformly within an interval on a horizontal line (projector
line) behind the screen surface. The screen surface is assumed
to be flat and parallel to the projector line. In front of the screen
surface, there is an imaginary observer line which corresponds
to the expected viewer positions (see Figure 1).

A. Diffuser model

The screen surface is represented by an anisotropic diffuser,
which scatters the incoming light differently in different di-
rections. The exact diffusion model depends on a particular
manufacturer, and it is often kept confidential. However, a
viable typical diffuser model has been utilized in [6] for the
case of 360 spinning mirror display with reflective diffuser.
The model consists of a three-layers structure, similar to
[10]: an upper layer corresponds to the local curvature of
the screen surface visible by a naked eye, a middle layer
represents the internal optical structure modeled by aligned
glass microcylinders (see Figure 2), and a lower level accounts
for the internal irregularities of a particular microcylinder.
According to [11], the microcylinder layer scatters the light
in a conical pattern, where the cone main axis corresponds to
the microcylinder direction (a.k.a. diffuser axis of anisotropy),
the cone vertex is the intersection point of light ray with the
diffuser surface, and the cone radius is determined by the rule
that the incoming light ray should lie on the cone surface.

We apply the aforementioned conical light scattering model
to the case of transparent anisotropic diffuser. For horizontal-
parallax display, the diffuser axis of anisotropy must be strictly
horizontal. Consider a particular light ray intersecting the
diffuser, and assume the local coordinate system with origin
at the intersection point, and x, y, and z axes aligned with
horizontal and vertical directions, and the direction towards
the observer line correspondingly (see Figure 2b). In such
parameterization, the scattering cone equation takes the form

x2 = ρ2 · (y2 + z2), (1)

where ρ is the inverse cone radius (can be negative). An
incoming ray direction (x, y, z) can be uniquely identified by
values ρ and η as follows:

ρ := x/
√
y2 + z2, (2a)

η := y/z. (2b)

Note that ρ and η can be understood as the tangent values of
the horizontal and vertical scattering angles respectively.

For real-life diffusers, the incoming light ray with ρ = ρ0
and η = η0 is refracted in all possible directions. The refracted
directions (ρ, η) will have the strongest light intensity at
(ρ, η) = (ρ0, η0). This intensity attenuates rapidly for the
increase of the absolute value of ∆ρ := ρ−ρ0, and slowly for
∆η := η−η0. The attenuation model depends on the particular

diffuser. Here, we model it by a Gaussian depending on the
angular difference:

I(∆ρ,∆η) = exp
[
− atan(∆ρ)2

σ2
ρ

− atan(∆η)2

σ2
η

]
, (3)

where atan is the inverse tangent function, σ2
ρ and σ2

η are
horizontal and vertical scattering powers respectively. It is
naturally assumed that σ2

ρ >> σ2
η .

B. Projector image

We adapt the raytracing-based method from [9] that allows
us to render the set of projector images for a given synthetic
scene. In this method, a particular pixel on the virtual image
plane of a projector image corresponds to a unique light ray
coming from the projector center through this pixel. Once
this ray hits the screen, it is being scattered by the conical
law described in Section II-A. Then, we need to find the
intersection between the scattering cone and observer line.
Finally, we spawn the camera ray from the found intersection
towards the corresponding screen position.

C. Perceived image

Let us consider a point on the screen surface. This point
takes the contribution ci from each projector in the system,
i = 1, ..,M , where M is the total number of projectors. The
color of this point varies depending on the viewer position X
on the observer line. It can be calculated as the channel-wise
total sum of all projector contributions:

v(X) :=

M∑
i=1

wi(X) · ci, (4)

where ci is the light intensity from i-th projector, wi(X) is
the weighting coefficient calculated as α · I(∆ρ,∆η), where
I(∆ρ,∆η) is defined in (3), and α is a normalization multi-
plier, defined pixel-wise as the reciprocal sum of I(∆ρ,∆η)
for all projectors. Equation (4) can be expressed in a vector-
form:

v(X) := w(X)τ c, (5)

where c := (ci) ∈ RM is the set of all same-channel projector
image values for the given screen position, w(X) := (wi(X))
is a vector-function from X to RM , and X is the set of all
valid observer positions (observer space).

III. OPTIMIZATION PROBLEM

Let us assume that we know the channel-wise ground-true
value vgt(X) of the user-perceived image for all possible
positions X from the observer space X. Then, we formalize the
problem of finding the optimal set of projector contributions
c ∈ RM as a least squares minimization problem:

L(c) :=

∫
X

[
w(X)τ c− vgt(X)

]2
dX → min, (6)

where the term w(X)τ c represents the expected user-perceived
value from position X , according to (5).



Under some generic mathematical assumptions, the Lagran-
gian L in the minimization problem (6) can be rewritten as

L(c) = cτBc− 2βτ c+ v̄2gt → min, (7)

where B is M-by-M matrix, β is M-dimensional vector, and
v̄2gt is a scalar defined as

B :=

∫
X

w(X)w(X)τdX, (8a)

β :=

∫
X

w(X)vgt(X)dX, (8b)

v̄2gt :=

∫
X

vgt(X)2dX. (8c)

A. Unconstrained solution

Note that L(c) in (7) is in fact a quadratic form. Matrix B in
this form is symmetric and positive semi-definite. Therefore,
L(c) reaches the global minimum at some point c∗, for which
L′c(c∗) = 0, or, equivalently, Bc∗ = β. If the matrix B is
non-singular, then there is a unique solution c∗ = B−1β. If B
is singular, there are multiple solutions, and one of them can
be expressed as c∗ = B+β, where B+ is the Moore-Penrouse
pseudoinverse matrix to B.

B. Constrained solution

In real life, the color values in projector images are limited
within a certain range:

cmin ≤ ci ≤ cmax, i = 1, ..,M, (9)

and the problem (7) has to be solved under the constrains
(9). The standard way to do it is to apply the Lagrange
multipliers method with Karush-Kuhn-Tucker conditions. In
case of constrains (9), this will increase the dimensionality of
the linear equations system from M to 3M .

Such approach is hardly suitable for practical needs, since
the number of projectors M in real-life display systems may
count up to few hundreds [4], [5]. This introduces several
numerical errors while solving the system of 3M linear equa-
tions for each independent position on the screen. Therefore,
we further introduce an iterative approach.

C. Iterative solution

We solve the problem (7) under constrains (9) iteratively:

c(t+1) := c(t) − λ(t)ϕ(t), (10)

where c(t) ∈ RM is the t-th iteration of the solution, ϕ(t) ∈
RM is the descent direction, and λ(t) ∈ R is the step size.

Descent direction ϕ(t) is calculated as the element-wise
solution of one-dimensional optimization problem:

ϕ
(t)
i :=


0 , if ϕ̃(t)

i > 0 and c(t)i ≤ cmin,
0 , if ϕ̃(t)

i < 0 and c(t)i ≥ cmax,
ϕ̃
(t)
i , otherwise,

(11)

where ϕ̃
(t)
i is the descent direction for the unconstrained

problem:

ϕ̃
(t)
i :=

{(
[Bc(t)]i − βi

)
/Bii , if Bii > 0,

0 , otherwise.
(12)

The step size λ(t) is chosen as the solution of one-
dimensional minimization problem L

(
c(t) − λϕ(t)

)
→ min

over λ ∈ R:

λ(t) :=
[ϕ(t)]τg(t)

[ϕ(t)]τBϕ(t)
, (13)

where g(t) is the gradient value for the t-th iteration:

g(t) := Bc(t) − β. (14)

We prove the mathematical correctness of our approach with
the following statement.

Statement 1. The following statements hold true:
(i) ϕ̃(t)

i in (12) gives solution for one-dimensional uncon-
strained optimization problem L(c)→ min over ci ∈ R.
(ii) λ(t) in (13) gives solution of one-dimensional minimization
problem L

(
c(t) − λϕ(t)

)
→ min over λ ∈ R.

(iii) Iterations c(t) in (10) converge to the solution of problem
(7) under constrains (9).

Proof. (i) The problem L(c) → min over ci ∈ R has
Lagrangian derivative L′i(c) = 2([Bc]i − βi). From equation
L′i(c) = 0 we get solution c∗i =

(
βi −

∑
j 6=iBijcj

)
/Bii,

which is equivalent to c∗i = ci − λϕi for λ = 1 and
ϕi =

(
[Bc]i − βi)/Bii.

(ii) For an arbitrary ϕ ∈ RM , the problem L(c−λϕ)→ min
over λ ∈ R has Lagrangian derivative L′λ := −ϕτL′(c−λϕ).
Equation L′λ = 0 can be expanded as ϕτg − λϕτBϕ = 0,
where g := Bc − β. Solution of this equation is obtained at
λ∗ := (ϕτg)/(ϕτBϕ).

(iii) Let us consider the unconstrained case. Proof for
constrained case is similar, since (9) defines a convex subset
of RM . First, the sequence L(c(t)) is monotone: L(c(t+1)) ≤
L(c(t)) for all t ≥ 0. This follows from (ii). Second, since
L(c) ≥ 0 for all possible c ∈ RM , we conclude that there is a
limit value of L(c(t)) for t→∞. Third, by the construction of
c(t), we get L′(c(t))→ 0 for t→∞. Since L(c) is a quadratic
form with semi-positive matrix B, there is only one point of
its extremum, which is obtained at c∗ such that L′(c∗) = 0.
In case of non-singular B, such c∗ is unique, and c(t) → c∗

for t→∞.

IV. RESULTS

We implemented the proposed approach in a virtual envi-
ronment, following the display model as described in Section
II. All numbers hereafter are given in world units. Screen
size: 400-by-300, distance to projector line: 800, distance
to observer line: 400. The number of projectors M is 41,
and they are uniformly placed on the projector line interval
[−1000, 1000], with inter-projector distance of 50 units. The
observer space X is discrete, with 101 specified viewer posi-
tions in total, which are uniformly placed over the observer



line interval [−500, 500] with step 10. Each of them has the
same weight in X such that

∫
X

1dX = 1.
We extended the PBRT-v3 renderer [12] in order to obtain

all necessary source images. To get repeatable results, we used
Whitted integrator and Halton sampler with 8 samples per
pixel.

The test scene consists of three kangaroo models of red,
green, and blue colors (see Figure 3). Each model is placed
on different depth relative to the screen surface: the green one
is at zero depth, the red one is at 200 units towards projectors,
and the blue one is at 200 units towards the viewer. Images
from the recentered pinhole cameras at discrete positions from
X are used as the ground-true ones (see “Ground-true” row in
Figure 3). Initial projector images are obtained as described in
Section II-B. After this, they were visualized by our simulation
according to Section II-C (see “Iteration 0” row of Figure
3). Next, we applied the constrained iterative approach from
Section III-C, and visualized the result as well (see rows
“Iteration N”, N = 1, 10, 100 in Figure 3).

Finally, we measured channel-wise MSE and SSIM metrics
for all pairs of visualized vs ground-true images. The obtained
values were then averaged for all 101 views. Table I shows
the result for iterations 0, 1, 2, 3, 5, 10, 20, 50, 100.

TABLE I
AVERAGE VALUES OF MSE×103 (LEFT) AND SSIM×102 (RIGHT).

Red Green Blue Red Green Blue
Iter 0 3.77 4.56 6.16 92.42 92.02 92.10
Iter 1 3.08 3.72 5.13 92.75 92.38 92.50
Iter 2 2.86 3.46 4.80 92.95 92.58 92.70
Iter 3 2.76 3.36 4.66 93.03 92.67 92.79
Iter 5 2.66 3.25 4.51 93.13 92.77 92.89
Iter 10 2.55 3.12 4.35 93.25 92.91 93.02
Iter 20 2.47 3.03 4.24 93.36 93.01 93.12
Iter 50 2.41 2.96 4.17 93.45 93.11 93.19

Iter 100 2.39 2.94 4.15 93.49 93.14 93.22

Both Table I and Figure 3 show the gradual increase of
perceived image quality during the iterative procedure. The
MSE values of 100-th iteration are around 1.5 times lower than
the values of the initial projector image set, which effectively
means 50% improvement rate. Notably, the very first iteration
already gives 20% of them. The SSIM values also show a
monotone improving during the iterations. Thus we conclude
that the proposed iterative procedure is able to yield up to 50%
of visual improvement in terms of L2-norm, if compared to
the straightforward ray tracing method from [9].

If we compare visually the expected output from the it-
erative procedure (see Figure 3) to the ground-true images
(the upper row) and a straightforward ray tracing (“Iteration
0”), we can conclude that the proposed method significantly
reduces projector cross-talk. Such effect, however, may be less
significant for the real-life devices, where projector placement
and calibration is done more optimally. However, even our
simplistic simulation shows that there is a room for improve-
ment of the conventional projector image generation methods.
For example, one can improve the ray tracing for projector

images by modifying the initial ray distribution, which should
take into account the influence of adjacent projectors. We leave
this idea for the future work.

V. CONCLUSION

The proposed method significantly reduces the cross-talk
effect on a projection-based 3D display. The experiments show
fast convergence rate of the iterative procedure (results after
iteration 10 and 100 are almost indistinguishable), even if the
initial pixel value is not correct. Additionally, the proposed
method can be used to optimize the set of projector images for
the desired probability distribution of the viewer position on
the observer line. It can be easily extended for the cases of non-
planar screen, multi-row, 360-degrees, and other variations
of projection-based 3D displays. The source code of our
simulation is publicly available at GitHub repository [13].
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Fig. 3. Rendered images at three viewing positions.


