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Abstract

In this work we model the noise properties of a computed radiography (CR) mammog-
raphy system by adding an extra degree of freedom to a well-established noise model, and
derive a variance-stabilizing transformation (VST) to convert the signal-dependent noise
into approximately signal-independent. The proposed model relies on a quadratic variance
function, which considers fixed-pattern (structural), quantum and electronic noise. It also
accounts for the spatial-dependency of the noise by assuming a space-variant quantum
coefficient. The proposed noise model was compared against two alternative models com-
monly found in the literature. The first alternative model ignores the spatial-variability
of the quantum noise, and the second model assumes negligible structural noise. We also
derive a variance-stabilizing transformation (VST) to convert noisy observations contam-
inated by the proposed noise model into observations with approximately Gaussian noise
and constant variance equal to one. Finally, we estimated a look-up table that can be
used as an inverse transformation in denoising applications. A phantom study was con-
ducted to validate the noise model, VST and inverse VST. The results show that the
space-variant signal-dependent quadratic noise model is appropriate to describe noise in
this CR mammography system (errors<2.0% in terms of SNR). The two alternative noise
models were outperformed by the proposed model (errors as high as 14.7% and 9.4%).
The designed VST was able to stabilize the noise so that it has variance approximately
equal to one (errors<4.1%), while the two alternative models achieved errors as high as
26.9% and 18.0%, respectively. Finally, the proposed inverse transformation was capable
of returning the signal to the original signal range with virtually no bias.

Keywords: noise model, computed radiography, mammography, quantum noise, struc-
tural noise, electronic noise
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1 Introduction
X-ray mammography remains as the gold standard for breast cancer screening and diagnosis
around the world [1]. Even though developments in the field of breast imaging enabled the
clinical use of digital radiography (DR) [2, 3] and digital breast tomosynthesis (DBT) [4, 5],
many countries still rely on computed radiography (CR) for breast imaging. [6–8].

In CR systems, an image plate (IP) is exposed to an X-ray beam transmitted by an object
of interest (breast), positioned above the plate. After being attenuated by the object, the X-ray
energy is stored in the phosphor layer of the IP, and later read by an appropriate scanner [9].

There are a number of advantages of CR systems over the previous screen-film technology,
including faster image development, reusable IPs, data readiness for storage and transmission,
among others. However, a number of concerns have been raised about the low image quality
[10–12] and excessive radiation dose [7, 13] in CR mammography. This scenario highlights the
importance of radiation dose versus image quality optimization.

In general, high dose levels are adopted in clinical practice to overcome noise. Higher dose
implies higher signal-to-noise ratio due to the quantum nature of the noise. However, higher
radiation dose also implies higher risks of induced cancer [14, 15]. One possible approach to
reduce radiation dose and maintain acceptable image quality is to post-process the acquired
images with noise suppression algorithms.

The successful removal of noise is highly dependent on the accuracy of the adopted noise
model. One model commonly used in X-ray imaging relies on a quadratic variance function,
which describes the structural, quantum and electronic noise sources [16, 17]. A second com-
monly used model assumes negligible structural noise, with an affine variance function describ-
ing the quantum and electronic noise sources [18–20].

In previous works [20, 21], our group reported the spatial-variability of the quantum noise
in raw DBT and DR images. The spatial-dependency is mainly caused by the flat-fielding
calibration applied to compensate non-uniformities caused by physical phenomena such as the
heel effect. A modification of the affine-variance model was designed to accommodate the
spatial-dependency of the quantum noise, improving the fidelity of the noise model and thus
enhancing the results obtained by noise-suppression algorithms in DBT and DM images [20,21].
However, to the best of our knowledge there are no studies investigating the spatial-variability
of the quantum noise in CR mammography systems.

Another important challenge of noise suppression in X-ray images arises from the signal-
dependency of the noise, as most ‘off-the-shelf’ denoising algorithms are designed to treat
signal-independent Gaussian noise. One approach to overcome this issue is to stabilize the
noise variance prior to denoising using a variance stabilizing transformation (VST) [21–24].
The VST converts the signal-dependent noise into approximately Gaussian noise with a fixed
variance equal to one. Even though the literature presents VSTs dedicated to specific noise
models [22,25–29], to the best of our knowledge there are no VSTs available for the stabilization
of variables with the quadratic-variance noise present in CR systems.

In this work we investigate the application of a space-variant quadratic-variance noise model
to describe the noise in a CR mammography system. The spatial-variability of the quantum
noise was added to the model to improve the fidelity of the noise description, and thus enhance
the performance of algorithms that rely on the accuracy of the noise model, such as noise
suppression methods. Furthermore, a new VST dedicated to the stabilization of variables
with the quadratic-variance noise model was derived. The designed VST enables the noise
suppression in CR images using denoising techniques originally designed to treat Gaussian
signal-independent noise.
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2 Theoretical Background
Through this work we consider the signal after storage by the IP and after scanning by the
CR console. Thus, the noise model already includes components such as extra electronic and
readout noise that could be generated by the storage and scanning procedures.

2.1 Noise model

X-ray images are often degraded by a number of noise sources, such as structural, quantum
and electronic noise. The individual noise sources may be modeled by different statistical dis-
tributions, e.g., quantum noise is typically modeled by a Poisson variable. However, the energy
ranges at which most X-ray systems operate allow the assumption of Gaussian-distributed noise,
thanks to the central limit theorem (CLT) [30].

Even though the CLT supports the assumption of Gaussian-distributed noise, it is important
to emphasize that it does not imply that the noise is independent and identically distributed
(IID). In fact, most of the X-ray imaging systems require a noise model more elaborate than
the IID Gaussian.

Let us consider z`(i) a linearized pixel of a raw CR image at spatial position i ∈ Z2. We
model the linearized pixel as [17]

z`(i) = y`(i) + σ(i) η(i) (1)

where y` is the expected linearized signal response, i.e. E{z`(i) |y`(i)}=y`(i); σ is the standard
deviation of the noise conditioned upon the signal expectation y`, i.e. σ(i) = std{z`(i) |y`(i)};
and η is Gaussian noise with zero mean and unity variance, i.e. η(i) ∼ N{0, 1}. Details on the
linearization of the pixel response are given in Section 5.

The model presented in (1), shows the standard deviation as the function σ. Depending on
the noise model being adopted, σ may contain parameters that account for noise sources such as
quantum and electronic. In CR mammography, due to the non-uniformity in the response of the
phosphor layer of the IP, fixed-pattern noise represents a relevant part of the noise degradation
and must be accounted for [16]. Moreover, the uniformity calibration periodically performed
by the system to compensate issues such as the heel effect generates spatial-variability of the
noise parameters [20]. Thus, here we propose the use of a space-variant signal-dependent model
to describe the noise in a CR mammography system. The model is built upon the quadratic
noise variance function

var{z`(i) |y`(i)} = σ2
VSQ(i) = ξsy

2
` (i) + ξq(i) y`(i) + ξe, (2)

where σ2
VSQ is the total noise variance, ξs, ξq and ξe are nonnegative coefficients determining

the relative strength of the fixed-pattern (structural), quantum and electronic noise sources,
respectively, excluding quantization effects. Note that ξs and ξe are assumed constant, while
ξq changes with spatial position. Throughout this paper we will adopt the initials VSQ (space-
Variant Signal-dependent Quadratic) to identify this noise model.

To set a benchmark, we compare our results against those obtained using two noise models
commonly found in the literature. The first one features a similar quadratic variance function,
with a space-invariant ξq [16, 17],

var{z`(i) |y`(i)} = σ2
ISQ(i) = ζsy

2
` (i) + ζqy`(i) + ζe, (3)

where σ2
ISQ is the total noise variance, ζs = ξs determines the relative strength of the structural

noise, ζe = ξe determines the relative strength of the electronic noise and ζq is the spatially-
invariant (as opposed to ξq) coefficient that determines the relative strength of the quantum
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noise. We will refer to this model using the initials ISQ (space-Invariant Signal-dependent
Quadratic).

The second alternative model relies on the affine variance function

var{z`(i) |y`(i)} = σ2
VSA(i) = α(i) y`(i) + β (4)

where σ2
VSA is the total noise variance, α and β are the slope and intercept of the affine function,

often related to quantum and electronic noise sources, respectively. This model is adopted in a
variety of imaging modalities, including digital mammography and digital breast tomosynthesis,
where the structural noise is negligible compared to the quantum and electronic noise sources
[18–20]. Because the structural noise plays an important role in CR systems, we anticipate that
this model will perform poorly for this system. We refer to this model using the initials VSA
(space-Variant Signal-dependent Affine).

2.2 Variance-Stabilizing Transformation

Variance stabilizing transformations are mathematical tools used to convert signal-dependent
noise into approximately signal-independent noise. Even though VSTs can be used for non-
conventional applications such as noise simulation [31,32], they are most commonly used prior
to denoising. Most denoising filters are designed to treat general signal-independent Gaussian
noise, thus VSTs facilitate the application of ‘off-the-shelf’ denoising techniques [21–24]. One
widely known VST is the Anscombe Transformation [29]

A(x) = 2

√
x+

3

8
, (5)

which converts a Poisson-distributed random variable x, with signal-dependent variance into
approximately Gaussian-distributed data with signal-independent variance equal to one.

Another well-known VST is a modification of (5), namely the Generalized Anscombe Trans-
formation (GAT) [22]

G(x)=

{
2
α

√
αx+α2 3

8
+β−αµ, if x>−3

8
α− β

α
+µ

0 if x≤−3
8
α− β

α
+µ

(6)

where α is the scaling of the Poisson noise, β is the variance of the Gaussian noise and µ is the
mean of the Gaussian noise. This VST is dedicated to noise models such as the VSA shown in
(4), with µ = 0.

Extensive work has been published on the variance stabilization of variables with noise model
proportional to the signal squared (y2) [25–28]. In general, these works adopt an observation
model of the the form

z= (1 + ν)y, (7)

where ν is zero-mean Gaussian noise that accounts for fluctuations on the gain of each detector
element (fixed-pattern noise). For data corrupted exclusively by fixed-pattern (multiplicative)
noise, such as presented above, a variance stabilization operator (namely the natural logarithm
ln) is readily available

g= ln ((1 + ν)y) = ln (1 + ν) + ln (y) , (8)

where g is the variable with stabilized noise. However, to the best of our knowledge, there are
no VSTs available in the literature to stabilize signals corrupted specifically by the VSQ noise
model described in (2), where the variance is not only proportional to y2, but also includes affine
scaling by y. Thus, following the mathematical approach adopted by [25–28], we derive here
a VST dedicated to the VSQ noise model and explore its application to a CR mammography
system.
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3 Methods & Materials

3.1 Proposed VST for the VSQ noise model

Let us consider a linearized raw pixel value z`, with variance given by (2) and expectation
y`. We seek a univariate transformation h : R → R such that var{h(z`) |y`} is independent of
E{h(z`)|y`} and equal to one. By means of the “delta-method” [25–28], following a first-order
Taylor expansion of h in a neighborhood of E{z`|y`} = y`, h(z`) ≈ h(y`) + h′(y`) (z` − y`), the
variance var{h(z`) |y`} of the transformed z` can be described as

var{h(z`) |y`} ≈ (h′(y`))
2 var{z`|y`} , (9)

where h′ denotes the first derivative of h. As our goal is to obtain var{h(z`) |y`} = 1, we want
h to satisfy

h′(y`) =
1

std{z`|y`}
, (10)

which is solved by having h to be the primitive function of the reciprocal of std{z`|y`}.
We know from (2) that std{z`|y`} =

√
ξsy2` + ξqy` + ξe and thus, after tedious computations,

we obtain

h (z`) =
ln
(∣∣2√ξs√ξsz2` + ξqz` + ξe + 2ξsz` + ξq

∣∣)
√
ξs

. (11)

Note that through (9)–(11) the spatial coordinate i was omitted to improve clarity. As
mentioned above, a simple first-order approximation was adopted. This assumption will impact
the accuracy of the stabilized variance, especially at low counts. Details are discussed later in
Section 6.

3.2 Inverse Transformation

One of the important aspects of using VSTs is to choose the appropriate inverse transformation.
Because the VSTs are generally non-linear transformations, modifications on the signal in the
VST range may cause bias in the signal if the inverse transformation is not designed properly.
This issue has been studied in depth in previous works [33,34].

Let us consider F as the forward variance-stabilizing transformation. We seek an inverse
transformation I such that

I : E{F (z`) |y`} 7−→ E{z`|y`}. (12)

Different approaches may be adopted to compute the inverse I. To that end, both E{z`|y`}
and E{F (z`) |y`} must be first computed. Trivially, E{z`|y`} = y`, and E{F (z`) |y`} can be
computed using, e.g., numerical integration such as in [34], or using Monte-Carlo sampling.

3.3 Image Dataset

All images in this study were acquired at the Clinics Hospital of the Ribeirão Preto Medical
School (Brazil), using a clinical setup featuring the Mammomat 3000 Nova (Siemens), manu-
factured in 2009, the DirectView CR scanner (Carestream), manufactured in 2010, and a CR
mammography cassette with an EHR-MS3 screen (Carestream), manufactured in 2017. The
cassete was randomly selected and has a pixel size of 48.5µm.

A 3.5cm thick uniform polymethyl methacrylate (PMMA) phantom was used in the exper-
iments. The uniform PMMA block is commonly used for the periodic flat-fielding calibration
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as it allows an easy estimation of the signal and noise properties. The phantom was posi-
tioned directly over the detector plate and covered the entire detector field. Only raw data was
analyzed.

The system was first set to automatic mode (AEC) with selected tube voltage of 28 kVp, and
Mo/Rh target/filter combination. The resulting current-time product was 86 mAs. Next, the
system was set to manual mode, with 28 kVp, Mo/Rh target/filter combination and current-
time products of 22, 45, 63, 90, 110 and 200 mAs. Two realizations were acquired at each mAs
selected manually. The different mAs were adopted to represent a range of dose levels, and
thus a range of SNR regimes.

4 Experiments

4.1 Estimation of local expectation and local variance

Throughout this work, the local signal expectation and local noise variance were estimated
in several occasions. To estimate the expectation and variance maps, we started by cropping
approximately 20mm from the top and bottom and approximately 10mm from the left and
right borders of the raw images. This was done to remove annotations and dead pixels from
the borders.

The local expected signal, at a spatial coordinate i, was estimated using the average over
a 1.7mm × 1.7mm sliding window centered at i. Before estimating the noise variance, the
realization was detrended by subtracting the estimated signal expectation from the observed
signal. The local variance at a spatial coordinate i was then estimated as the square of the
sample standard deviation over a 1.7mm × 1.7mm sliding window centered at i.

As we have access to two realizations of each imaging configuration, we conducted the proce-
dures described above on both realizations. To investigate the repeatability of the measurements
we reported in the results section the average variability between the two acquisitions. The
final results were reported as the average among the two measurements.

4.2 Estimation of space-invariant noise coefficients

To estimate the space-invariant noise coefficients ξs, ξe, ζs, ζq, ζe and β, a 20 mm × 20 mm
ROI was taken from the center of each realization at each dose. A small ROI was chosen to
minimize possible variations of ξq and β.

The local signal expectation and local noise variance were estimated from each ROI using
the procedure described in 4.1. The relationship between the average expectation vs. the
average variance over the ROI was fitted using a second order polynomial regression, in the the
case of ξs, ξe, ζs, ζq and ζe, and a first order polynomial regression in the case of β.

4.3 Estimation of space-variant noise coefficients

The coefficients ξq(i) were estimated using the space-invariant ξs and ξe, estimated through the
procedure described in Subsection 4.2; the local signal y` and local variance σ2

VSQ, estimated
through the procedure described in Subsection 4.1; and the relation derived from (2)

ξq(i) =
σ2

VSQ(i)− ξs y2(i)− ξe
y`(i)

. (13)

A second-order polynomial surface was fitted to the estimated ξq to minimize variations due
to the limited number of realizations. A similar procedure was used to estimate α(i). Details
on the estimation of α(i) are given in [20].
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4.4 Theoretical Signal-to-noise Ratio

The accuracies of the noise models were investigated using the local signal-to-noise ratio (SNR).
The SNR was estimated and compared against the theoretical SNR dictated by the noise models
(2)–(4)

SNRVSQ(i) =
y`(i)√

ξsy2` (i) + ξq(i) y`(i) + ξe
, (14)

SNRISQ(i) =
y`(i)√

ζsy2` (i) + ζqy`(i) + ζe
, (15)

SNRVSA(i) =
y`(i)√

α(i) y`(i) + β
, (16)

where SNRVSQ, SNRISQ and SNRVSA are the local SNR maps predicted by the VSQ, ISQ and
VSA noise models, respectively. The experimental SNR was estimated as the ratio between
the expectation and standard deviation of the signal, both estimated following the procedures
presented in Section 4.1.

The overall performance of the models was estimated using the pointwise relative error
between the SNR values predicted by the theoretical models (14)–(16) and the values measured
from clinical data. The error map between two quantities a and â was estimated as the relative
difference εa,â(i)= |a(i)−â(i)|/a(i). Boxplots of the error maps were reported, as they allow the
visualization of the error’s median, minimum, maximum, 25th percentile and 75th percentile.

5 Results
As most CR systems, the equipment used in this work reports logarithmic response to X-ray
exposure. Thus, the first step in all experiments was to linearize the detector response. This
was achieved by fitting an exponential function fl such that z` = fl(z) = γ, where γ is the
current-time product, in mAs, at which the uniform image was acquired [35], z is the observed
pixel and z` is the linearized observed pixel.

Figure 1 shows the pixel values before and after linearization, as a function of the current-
time product (mAs). Because the signal before and after linearization belong to different ranges,
Figure 1 reports two y-axis scales – the left one shows the range before linearization, and on
the right is the signal range after linearization.

Figure 1: Detector response before and after the linearization process. The scale on the left
axis represents the pixel range before linearization, and the right axis after linearization.
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(a) (b) (c) (d)

Figure 2: Coefficient estimation. (a) Variance versus expectation plot for the estimation of
spatial-invariant coefficients. (b) Fitting errors of the quadratic and affine fits. (c) and (d)
Maps illustrating the spatial-variant parameters ξq and α, respectively.

5.1 Noise Coefficients

Figure 2 shows the results of the coefficient estimation. In Figure 2 (a), the variance versus
expectation relationship was fitted using a first and a second order polynomial. Figure 2 (b)
shows the relative errors between measured and fitted variances, calculated as the percentage
difference. Figures 2 (c) and (d) show the estimated ξq and α maps, respectively.

5.2 Signal-to-noise Ratio

The estimated local signal expectation and local noise variance were used to calculate the local
SNR at each dose level. To minimize variations due to the low number of acquisitions, second
order polynomial surfaces were fitted to each estimated variance map.

Using the estimated signal expectation, estimated noise coefficients and equations (14)–(16),
we also calculated the theoretical SNR maps predicted by each noise model. Figure 3 shows
examples of the theoretical and measured SNR maps at 22 and 200 mAs. Figure 4 (top) shows
the SNR measured at each mAs. From the boxplots, it is possible to appreciate the median,
maximum, minimum, 25th and 75th percentiles of the theoretical SNRs. The horizontal dotted
lines represents the median of the experimental SNR at each mAs, estimated using the phantom
data. Figure 4 (bottom) shows the errors between measured and calculated SNR maps.

The average SNR variability among two realizations at the same dose was 0.5%, with stan-
dard deviation of 0.7%.

5.3 Variance Stabilization

The transformation proposed in (11) was applied to the linearized images, considering the
proposed VSQ and ISQ noise models, and the respective estimated noise coefficientes. The
GAT, described in (6), was also applied considering the VSA model and the respective estimated
noise coefficients.

To evaluate the performance of each VST, the local noise variance was estimated. Figure 5
shows examples of the variance maps before and after stabilization at 22 and 200 mAs. Figure
6 (top) shows the boxplots of the local stabilized variance from each mAs and noise model.
Figure 6 (bottom) shows the error in the stabilized variance for each model.

The average variance variability among two realizations at the same dose was 1.7%, with
standard deviation of 2.2%.
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(a) Exp. (b) VSQ (c) ISQ (d) VSA

(e) Exp. (f) VSQ (g) ISQ (h) VSA

Figure 3: Experimental versus predicted
SNR maps at two dose levels. Top row:
22 mAs, bottom row: 200 mAs. Columns
from the left: experimental data, VSQ
(14), ISQ (15) and VSA (16) noise models.

Figure 4: SNR evaluation. Top: SNR mea-
surements. Bottom: Average pointwise rel-
ative error between experimental and the-
oretical SNR. The boxplots report the me-
dian, 25th, 75th percentiles, the maximum
and minimum values, excluding outliers [36].
Red lines represent the measured values.

(a) Before (b) VSQ (c) ISQ (d) VSA

(e) Before (f) VSQ (g) ISQ (h) VSA

Figure 5: Variance maps. Top: 22 mAs,
bottom: 200 mAs. First column to the
left: variance before VST. Remaining
columns: variance after VST considering
the VSQ (2), ISQ (3) and VSA (4) noise
models, respectively.

Figure 6: Evaluating the accuracy and pre-
cision in the stabilization of variance under
different models. Top: Variance measure-
ments. Bottom: Average pointwise relative
error between estabilized variance and target
variance (1). The boxplots report the me-
dian, 25th, 75th percentiles, the maximum
and minimum values, excluding outliers [36].
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5.4 Inverse Transformation

To obtain an approximation of the inverse transformation, we conducted a Monte Carlo nu-
merical simulation, with 103 equally spaced y` values taken from 20 to 200, and 103 equally
spaced ξq ranging from 0.0113 to 0.0150, simulating the values obtained in our clinical dataset.
Observations z` were simulated by adding noise to y` using the model described in (2). The
experiment used 104 realizations of z`.

The VST was applied to the noisy simulated data, and an estimation of E{F(z) |y`} was
obtained by numerical integration among the realizations. A look-up table was then created
using the signal in the VST domain and the coefficient ξq as input, and the ground-truth signal
y` at the spatial range as the output. Although there are other possible ways to design the
inverse VST, such as defining a closed-form analytical approximation, we opted to use a look-up
table due to the precision achieved by this method, and the readiness of the resulting data -
since the values are already pre-computed and saved, it is enough to simply load the data and
use it. Intermediate values not present in the table can be estimated using a first-order 2D
interpolation. Figure 7 shows examples of I at three different ξq values.

Figure 7: Examples of the inverse transformation I for three values of ξq.

6 Discussion
In this work we investigated the noise characteristics of a CR mammography system, and pro-
posed a variance stabilizing transformation as well as its corresponding inverse transformation.

First, noise coefficients were estimated considering three scenarios: a space-variant quadratic
variance model, described in (2); a space-invariant quadratic variance model, described in (3);
and a space-variant affine variance model, described in (4). The estimated coefficients were
reported in Figure 2. Even though ξs is in the order of 10−6, this coefficient is related to the
signal squared, and thus its contribution is relevant to the noise modeling, as made evident
later in the SNR analysis shown in Figures 3 and 4.

In Figures 3 (c) and (g), the SNR maps show that, even though the range of SNR values
predicted by the ISQ model is close to the measured, the spatial distribution of the SNR is
considerably different from the measurements shown in Figures 3 (a) and (e). This behavior is
explained by the lack of spatial-variability of the quantum noise coefficient.

Figures 3 (d) and (h) show that, even though the VSA model was able to reproduce the
measured SNR with high fidelity at 200 mAs, the predicted SNR is considerably higher than the
expected at 22mAs. In this case, assuming negligible structural noise caused errors in different
doses, but the spatial-variability is preserved thanks to the spatially-dependent variable α(i).

Figure 4 shows that the proposed noise model achieved errors smaller than 2.0%, while the
ISQ and VSA models reported errors up to 14.7% and 9.4%, respectively.

Figures 5 and 6 show that the proposed variance stabilizing transformation, used in con-
junction with the proposed noise model, was able to stabilize the noise variance to one. Carefull

10



analysis of the boxplot presented in Figure 6 (bottom) shows that the highest error achieved
by the VSQ model was 4.1% at 200mAs, while the ISQ and VSA model used in conjunction
with the proposed VST and GAT, respectively, reported considerably larger errors (26.9% and
18.0%, respectively).

The proposed VST relies on a simple first order approximation. Even though the proposed
function is able to stabilize the variance at the pixel range considered in this work, errors may
arise as the pixel values decrease. For a better approximation of the transformation, a careful
analysis of the Taylor expansion of this function is required.

Examples taken from the look-up table are shown in Figure 7. It is important to highlight
that the look-up table was designed to perform the inverse transformation within the range of
coefficients and pixel values at which this system operates. If applied to signals outside these
ranges the behaviour of the inverse transformation is difficult to predict and may cause large
signal bias.

The validation presented in this work was performed using a single imaging plate. However,
some variability is expected in the noise parameters among different IPs or as the IP ages.
Thus, a more detailed study is required for any claims about the extrapolation of the estimated
parameters to other IPs of the same model or to the same IP at different time points.

Even though in this work we focused on mammography CR, the VST derived here is appli-
cable to other imaging modalities and other CR imaging systems that share similar quadratic
variance noise model.

7 Conclusion
The space-variant quadratic model was sufficient to accurately describe the noise variance of
the CR mammography system. The proposed variance stabilizing transformation was able to
stabilize the variance of the noise model found in this CR mammography system.
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