
Implementing Stable-Unstable Semantics
with ASPTOOLS and Clingo

Tomi Janhunen[0000−0002−2029−7708]

Tampere University, Tampere, Finland
Tomi.Janhunen@tuni.fi

Abstract. Normal logic programs subject to stable model semantics
cover reasoning problems from the first level of polynomial time hierar-
chy (PH) in a natural way. Disjunctive programs reach one level beyond
this, but the access to the underlying NP oracle(s) is somewhat im-
plicit and available for the programmer using the so-called saturation
technique. To address this shortcoming, stable-unstable semantics was
proposed, making oracles explicit as subprograms having no stable mod-
els. If this idea is applied recursively, any level of PH can be reached
with normal programs only, in analogy to quantified Boolean formulas
(QBFs). However, for the moment, no native implementations of stable-
unstable semantics have emerged except via translations toward QBFs.
In this work, we alleviate this situation with a translation of (effectively)
normal programs that combines a main program with any fixed number
of oracles subject to stable-unstable semantics. The result is a disjunc-
tive program that can be fed as input for answer set solvers supporting
disjunctive programs. The idea is to hide saturation from the program-
mer altogether, although it is exploited by the translation internally. The
translation of oracles is performed using translators and linkers from the
ASPTOOLS collection while Clingo is used as the back-end solver.

1 Introduction

The semantics of answer set programming paradigm (see, e.g., [6, 22] for an
overview) rests on the notion of stable models first proposed for normal logic pro-
grams (NLPs) [15] and later generalized for disjunctive logic programs (DLPs)
[16]. The known complexity results [9, 30] indicate that NLPs subject to stable
model semantics cover reasoning problems from the first level of polynomial time
hierarchy (PH) in a natural way while DLPs reach one level beyond. In the latter
case, however, the access to underlying NP oracle(s) is somewhat implicit and
best understood via the so-called saturation technique from the original com-
plexity result [9]. When using saturation, the programmer is confronted with
the fact that an oracle must be essentially expressed as a Boolean satisfiability
problem, which differs from NLPs with respect to both syntax and semantics
(cf. Section 5). In spite of this mismatch, saturation has been successfully ap-
plied when expressing properties pertaining to the second-level of PH [10, 13],
e.g., when using meta-programming techniques together with saturation.

2 Tomi Janhunen

The stable-unstable semantics [3] was proposed as a remedy to the problems
identified above. The main ideas are (i) to use NLPs when encoding problems,
(ii) to make a subprogram acting as an oracle explicit, and (iii) to change the
mode of reasoning from stability to instability for the oracle.1 If this idea is
applied in a nested fashion by merging NLPs recursively as combined programs,
any level of PH can be reached with NLPs only, in analogy to quantified Boolean
formulas (QBFs). In a nutshell, according to the stable-unstable semantics, we
seek a stable model M for the main NLP P such that the NLP Q acting as the
oracle has no stable model N that agrees with M about the truth values of atoms
shared by P andQ. In contrast with QBFs, this leaves the quantification of atoms
implicit, i.e., the atoms of P are existentially quantified while the local atoms
of Q are effectively universal. There are follow-up approaches [1, 11] that make
the quantification of atoms explicit. Regardless of this objective, the semantics
of quantified programs is still aligned with the stable-unstable semantics, see
[1, Theorem 7] and [11, Appendix B] for details. For the purposes of this work,
however, implicit quantification is very natural, since the quantification of atoms
can be controlled in terms of #show-statements directly supported by Clingo.

For the moment, no native implementations of stable-unstable semantics have
emerged except via translations toward QBFs [3, 11]. The goal of this work is
to alleviate this situation with a translation of (effectively) normal programs
that combines a main program P with any fixed number of oracle programs
P1 , . . . , Pn subject to stable-unstable semantics. In this way, we facilitate the
incorporation of several oracles although, in principle, they could be merged into
a single oracle first. The result of the translation is a DLP that can be fed as
input for answer set solvers supporting DLPs. Thus we are mainly concentrating
on search problems that reside on the second level of polynomial hierarchy.

One central idea behind our approach is to hide saturation from the pro-
grammer altogether, even though it is exploited by the translation internally.
The reason behind this is that encoding saturation is error-prone when using
non-ground rules with first-order variables. To this end, consider positive rules

u | p1(X1) | . . . | pk(Xk)← pk+1(Xk+1) , . . . , pk+m(Xk+m),
d1(Y 1) , . . . , dn(Y n).

(1)

used to encode an oracle where the special atom u denotes unsatisfiability, pi:s
are application predicates subject to saturation, and dj :s are domain predicates.
In general, their argument lists Xi:s and Y j :s consist of first-order terms and
the domain predicates in the rule body restrict the possible values of variables
occurring in the rule. Modern grounders are also able to infer part of this domain
information based on the occurrences of predicates elsewhere in a program. Now,
the saturating rules pi(t)← u should be generated for every ground (non-input)
atom pi(t) appearing in the ground rules of the oracle (see Definition 8 for
details). Overseeing this objective presumes an understanding of which ground
rules are actually produced for the oracle and, therefore, it becomes inherently
difficult to find non-ground counterparts for the saturating rules for individual

1 In terms of QBFs, this amounts to treating a QBF ∃X∀Y φ as ∃X¬∃Y ¬φ.

Implementing Stable-Unstable Semantics 3

predicates pi(X). In the worst case, the only option is to accompany each rule (1)
of the oracle with saturating rules of the forms pi(Xi)← u, d1(Y 1) , . . . , dn(Y n)
for every 1 ≤ i ≤ k + m. The number of such rules may get high and it is an
extra burden for the programmer to keep these rules in synchrony with (1) when
the rules encoding the oracle are further elaborated.

Our implementation is based on translators and linkers available under the
ASPTOOLS2 collection. Moreover, we expect that the grounding component of
Clingo, namely Gringo, is used for instantiation. Thus we can use any Clingo
program as the main program, exploiting extended rule types, proper disjunc-
tive rules, and optimization as needed. As regards oracles, the translation-based
approach of [21] sets the limits for their support in contrast with main programs.
Due to existing normalization tools [4, 5], aggregates can be used. However, the
use of disjunction in rule heads is restricted, i.e., only head-cycle-free disjunc-
tions can be tolerated, as they can be translated away. Finally, optimization does
not make sense in the context of oracles — supposed to have no stable models.

The rest of this article is organized as follows. In Section 2, we recall the syn-
tax and the semantics of logic programs, including stable-unstable semantics. An
account of the modularity properties of stable models is given in Section 3. Then,
we concentrate on translations required in the subsequent treatment of oracles,
i.e., the translation of NLPs into propositional clauses in Section 4 and the satu-
ration technique in Section 5. Then we are ready to present our saturation-based
technique for linking a main program with oracle programs in Section 6. The
details of the implementation, including a saturating translator unsat2lp, are
presented in Section 7. Moreover, we illustrate practical modeling with stable-
unstable semantics in terms of the point of no return problem [2] involving a
non-trivial oracle which is challenging to encode in ASP directly. The paper is
concluded by Section 8 including a plan for future work.

2 Preliminaries

In this section, we review the syntax and semantics of logic programs and, in
particular, the fragments of normal and disjunctive programs in the propositional
case. Thus, as regards syntax, a logic program is a set of rules of form3

a1 | . . . | ak ← b1 , . . . , bn,not c1 , . . . ,not cm. (2)

where a1 , . . . , ak, b1 , . . . , bn, and c1 , . . . , cm, are (propositional) atoms and “not”
denotes negation by default. Literals are either atoms “a” or their negations
“not a”, also called positive and negative literals, respectively. Using shorthands
A, B, and C for the sets of atoms involved in (2), the rule can be abbreviated as
A ← B, not C where “not C” stands for the set of negative conditions {not c |
c ∈ C}. The intuition behind a rule is that some atom from the head A of the

2 https://github.com/asptools
3 The syntax of logic programs has been generalized, e.g., with choice, cardinality, and

weight rules in [32], but such extensions can be translated back to normal rules [4].

4 Tomi Janhunen

rule can be inferred true whenever the body of the rule is satisfied, i.e., when all
atoms of B are true and no atom of C is true by any other rules in the program.

A rule (2) is proper disjunctive, if k > 1, normal, if k = 1, and a constraint
if k = 0. A rule (2) is a fact, if k > 0, n = 0, and m = 0 and then ← is typically
omitted. A normal (logic) program (NLP) consists of normal rules only whereas
a disjunctive (logic) program (DLP) allows for any number of head atoms in its
rules. Additionally, a program is called positive if m = 0 for all of its rules (2).

2.1 Minimal and Stable Models

Turning our attention to semantics, let At(P) denote the signature of a program
P , i.e., A∪B ∪C ⊆ At(P) for every rule A← B, not C of P .4 The semantics of
a positive DLP P is determined as follows. An interpretation I of P is simply
any subset of At(P) considered to be true under I. A (positive) rule A ← B of
P is satisfied in an interpretation I ⊆ At(P) of P , if B ⊆ I implies A∩ I 6= ∅. A
model of P is an interpretation M ⊆ At(P) satisfying all rules of P . A model M
of P is a (subset) minimal model of P if there is no other model M ′ of P such
that M ′ ⊂M . The set of minimal models of P is denoted by MM(P).

By the definitions above, a positive DLP may have no minimal models (P1 =
{a.← a.}), a unique minimal model (P2 = {a← a.}), or several minimal models
(P3 = {a | b.}). A widely agreed semantics of NLPs and DLPs is given by their
stable models [15, 16] based on the Gelfond-Lifschitz reduct of a logic program
P with respect to a model candidate M . The reduced program is

PM = {(A← B) | (A← B, not C) ∈ P , A 6= ∅, B ⊆M , and C ∩M = ∅}. (3)

Definition 1 (Gelfond and Lifschitz [15, 16]). A model M of a program P
is stable if and only if M ∈ MM(PM).

We let SM(P) denote the set of stable models of P . It should be noted that
Definition 1 covers constraints (2) with k = 0 by the requirement that M is a
model of P , i.e., for every rule A ← B, not C of P , B ⊆ M and C ∩M = ∅
imply A ∩M 6= ∅, thus treating default negation in rule bodies classically.

2.2 Stable-Unstable Semantics

The original definition of stable-unstable semantics adds one subprogram as an
oracle to the main program. To cater for more flexible use cases, we formulate
a generalized definition with any fixed number n ≥ 0 of oracles. While there is
no real reason to restrict the main program P , it is assumed that oracles Pi are
effectively NLPs containing no rule a ← B, not C such that a ∈ At(P). Thus
oracles may not define any concepts for the main program, they simply receive
some facts as input, relating to the stable models of the main program.

4 Typically, At(P) is selected to be minimal in this respect, i.e., it only contains atoms
that actually appear in P . But larger sets might be used, e.g., if P resulted from
rewriting and certain atoms were removed, but the semantics of P is unaffected.

Implementing Stable-Unstable Semantics 5

Definition 2. A model M of a program P is stable-unstable with respect to
oracle programs P1 , . . . , Pn if and only if M ∈ SM(P) and for every oracle Pi
with 1 ≤ i ≤ n, SM(Pi ∪ {a. | a ∈M ∩At(Pi)}) = ∅.

Note that if there is an (input) atom a ∈ At(P) ∩ At(Pi) such that a 6∈ M ,
then a will remain false by default in the context of the oracle Pi whose rules
may not have a as the head. Moreover, when n = 0, we obtain the standard
stable semantics (cf. Definition 1) as a special case of Definition 2.

3 Modularity

In this section, we adopt the Gaifman-Shapiro-style module architechture of
DLPs from [24]. The respective modularity properties of stable models enable
the modular (de)composition of DLPs. Programs are encapsulated as follows.

Definition 3. A program module Π is a quadruple 〈P, I,O,H〉 where

1. P is a logic program,
2. I, O, and H are pairwise disjoint sets of input, output, and hidden atoms;
3. At(P) ⊆ At(Π) = I ∪O ∪H; and
4. if A 6= ∅ for some rule A← B, not C of P , then A ∩ (O ∪H) 6= ∅.

The program interface of a module Π splits the signature At(Π) in three
disjoint parts that serve the following purposes. The visible part Atv(Π) =
I ∪ O of At(Π) can be accessed by other modules to supply input for Π or
to utilize its output. The input signature I and the output signature O of Π
are also denoted by Ati(Π) and Ato(Π), respectively. The hidden atoms in the
difference Ath(Π) = At(Π)\Atv(Π) = H can be used to formalize some internal
(auxiliary) concepts of Π. The fourth requirement of Definition 3 ensures that
every rule with a non-empty head must mention at least one non-input atom
from O ∪H. This is a particular relaxation for disjunctive rules—note that the
head of a normal rule cannot be an input atom by this requirement, but the
heads of disjunctive rules may refer to input atoms as well. Thus, every rule in
a module Π must contribute to the definition of at least one atom in O ∪H.

Example 1. Consider a module Π having only one rule a | b ← not c such that
I = {b, c}, O = {a}, and H = ∅. Therefore, the overall signature At(Π) =
{a, b, c}. The requirements of Definition 3 are met. The fourth one is satisfied
because the head a | b mentions the output atom a besides the input atom b. �

A module Π corresponds to a conventional logic program when Ati(Π) =
∅ = Ath(Π) and then the semantics of the module Π = 〈P, ∅, O, ∅〉 is given
by SM(P) ⊆ 2Ato(Π) = 2O directly. Hidden atoms become only relevant, when
we compare programs or modules with each other, e.g., using the notion of
visible equivalence [17]. Then, the idea is that each stable model M is reduced
to M \ H = M ∩ (I ∪ O), i.e., hidden atoms are neglected in comparisons but
they do not affect stability by any means. However, to cover input atoms, the
definition of stable models must be generalized, e.g., according to [24].

6 Tomi Janhunen

Definition 4. Given a program module Π = 〈P, I,O,H〉, the reduct of P with
respect to a set M ⊆ At(Π) and the input signature I, denoted by PM,I , contains
a positive disjunctive rule (A \ I) ← (B \ I) if and only if there is a rule A ←
B, not C of P such that A 6= ∅, A ∩ I ∩M = ∅, B ∩ I ⊆M , and M ∩ C = ∅.

In analogy to (3), the reduct PM,I evaluates all negative literals in rule bodies
of P and, in addition, all input atoms appearing elsewhere in P . Intuitively, if the
satisfaction of a rule A ← B, not C under M depends on the remaining atoms
in the rule, the respective reduced rule (A \ I) ← (B \ I) is included in PM,I .
The head A \ I of any such rule is necessarily non-empty when A 6= ∅ by Item 4
in Definition 3 and PM,I is guaranteed to possess (minimal) classical models.
Potential constraints of P with A = ∅ are covered in analogy to Definition 1.

Definition 5. A model M ⊆ At(Π) of a program module Π = 〈P, I,O,H〉, is
stable if and only if M \ I ∈ MM(PM,I).

As for programs, we let SM(Π) denote the set of stable models of Π.

Example 2. The module Π from Example 1 has four stable models in total, i.e.,
SM(Π) equals to {{a}, {b}, {c}, {b, c}}. To verify that M = {a} is indeed stable,
we note that PM,I = {a.} with a minimal model {a} and {a} \ {b, c} = {a}. �

Inputs to modules can also be taken into account by other means: an input
M ∩ I defined by an interpretation M ⊆ At(Π) could be added to Π as a set
of facts [25]. The other option is to amend modules with input generators [31]
that can be used to capture stable models of modules using Definition 1 and the
standard reduct (3). Unfortunately, stable models of program modules do not
provide a fully compositional semantics for logic programs: taking simple unions
of modules does not guarantee that the stable models of the union could be
obtained as straightforward combinations of the stable models for the modules
involved. Towards this goal, two modules Π1 and Π2 are eligible for composition
only if their output signatures are disjoint and they respect each other’s hidden
atoms, i.e., Ath(Π1) ∩At(Π2) = ∅ and Ath(Π2) ∩At(Π1) = ∅.

Definition 6 (Composition [24]). The composition of logic program modules
Π1 = 〈P1, I1, O1, H1〉 and Π2 = 〈P2, I2, O2, H2〉, denoted by Π1 ⊕Π2, is

〈P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2, H1 ∪H2〉 (4)

if O1 ∩O2 = ∅ and Π1 and Π2 respect each other’s hidden atoms.

As demonstrated in [24], the conditions of Definition 6 do not yet imply
the desired relationship of stable models in general. The conditions can be suit-
ably tightened using the positive dependency graph of the composition Π1⊕Π2.
Generally speaking, the positive dependency graph DG+(Π) associated with a
program module Π = 〈P, I,O,H〉 is the pair 〈O ∪H,≤〉 where b ≤ a holds for
any atoms a and b of O∪H if there is a rule A← B, not C of P such that a ∈ A
and b ∈ B. A strongly connected component (SCC) S of DG+(P) is a maximal set

Implementing Stable-Unstable Semantics 7

S ⊆ At(P) such that b ≤∗ a holds for every a, b ∈ S, i.e., all atoms of S depend
positively on each other. If the composition Π1 ⊕ Π2 is defined, the members
of the composition are mutually dependent if and only if DG+(Π1 ⊕Π2) has an
SCC S such that S∩Ato(Π1) 6= ∅ and S∩Ato(Π2) 6= ∅, i.e., the SCC in question
is effectively shared by Π1 and Π2. Then, following [24], the join Π1 tΠ2 of Π1

and Π2 is defined as Π1 ⊕Π2, provided Π1 ⊕Π2 is defined and Π1 and Π2 are
mutually independent. The key observation from the viewpoint of compositional
semantics is that stable models do not tolerate positive recursion across module
boundaries. Thus, independence leads to a natural relationship5 between the sets
of stable models SM(Π1 tΠ2), SM(Π1), and SM(Π2) as detailed below.

Theorem 1 (Module Theorem [24]). If Π1 and Π2 are program modules
such that Π1 tΠ2 is defined, then SM(Π1 tΠ2) = SM(Π1) on SM(Π2).

In Theorem 1, the operation on denotes a natural join of compatible stable
models, i.e., M1∪M2 belongs to SM(Π1) on SM(Π2) if and only if M1 ∈ SM(Π1),
M2 ∈ SM(Π1), and M1 ∩ Atv(Π2) = M2 ∩ Atv(Π1). Theorem 1 is easily gener-
alized for finite joins of modules: if Π1 t · · · tΠn =

⊔n
i=1Πi is defined, then

SM(
⊔n
i=1Πi) = ./ni=1SM(Πi). (5)

Example 3. Let us consider modules Π1 = 〈{a← not b.}, {b}, {a}, ∅〉, Π2 =
〈{b← not c.}, {c}, {b}, ∅〉, and Π3 = 〈{c← not a.}, {a}, {c}, ∅〉. The respective
sets of stable models are SM(Π1) = {{a}, {b}}, SM(Π2) = {{b}, {c}}, and
SM(Π3) = {{c}, {a}}. The joins between the three modules are well-defined,
since the output signatures are disjoint, no atoms are hidden, and no positive
recursion is involved. Thus, we obtain by Theorem 1 that

SM(Π1 tΠ2) = SM(Π1) on SM(Π2) = {{a}, {b}} on {{b}, {c}} = {{a, c}, {b}}

where the compatibility of stable models depends on Ati(Π1) = {b} = Ato(Π2).
When incorporating SM(Π3) = {{a}, {c}}, we observe no models compatible

with the ones listed above, i.e., SM(
⊔3
i=1Πi) = ./3

i=1SM(Πi) = ∅. �

Finally, it is worth noting that oracles Pi, as detailed in Definition 2, can
be viewed as modules Πi = 〈Pi, Ii, ∅, Hi〉 that can be composed/joined with
the main module Π = 〈P, ∅, O, ∅〉. By hiding all non-input atoms in the oracle
modules, they cannot interfere with the atoms of Π in any well-defined composi-
tions. However, since the visible parts M ∩ Ii of stable models M ∈ SM(Πi) are
essentially witnesses for rejecting particular stable models of the main module,
the relationship behind stable-unstable semantics cannot be expressed with on
directly. This goes back to insisting on instability (cf. Theorem 4 in Section 6).

5 The respective property of propositional formulas φ1 and φ2 is formalized by CM(φ1∧
φ2) = CM(φ1) on CM(φ2) where CM(φ) ⊆ 2At(φ) gives the classical models of φ.

8 Tomi Janhunen

4 Translating NLPs into SAT

In the forthcoming translations, we need to express normal logic programs as
sets of propositional clauses as an intermediary step. The goal of this section is
to recollect some results in this respect. A clause is an expression of the form

a1 ∨ . . .∨ am ∨ ¬b1 ∨ . . .∨¬bn (6)

where a1 , . . . , am and b1 , . . . , bn are (propositional) atoms. Given a set of clauses
S, we write At(S) for the signature of S in analogy to the signature of a logic
program (cf. Section 2). In the same way, an interpretation I for S is any subset of
At(S) so that an atom a ∈ At(S) is considered true if a ∈ I and false, otherwise.
A clause C of form (6) is satisfied by I, denoted by I |= C, if and only if some
ai ∈ I or some bj 6∈ I. An interpretation M ⊆ At(S) is a (classical) model of
S, denoted by M |= S, if and only if M |= C for every clause C of S. Then, let
CM(S) = {M ⊆ At(S) | M |= S}. The signature At(S) can be partitioned into
Ati(S), Ato(S), and Ath(S), if we wish to treat S as a module 〈S, I,O,H〉 [19]
in analogy to Section 3, keeping the semantics CM(S) intact.

Due to the greater expressive power of NLPs—relating to both default nega-
tion and recursive definitions—the translations from NLPs to SAT incur at least
some blow-up. If no auxiliary atoms are introduced, the translation based on
loop formulas [28, 29] is deemed worst-case exponential [26]. However, if new
atoms are allowed, polynomial transformations become feasible, e.g., quadratic
[27] and even sub-quadratic [17]. We adopt loop formulas for a brief illustration
but exploit the most compact translation in the actual implementation. But,
in contrast with [29], we use bd as a new name for a rule body B, not C. This
amounts to a Tseitin transformation [33] of rule bodies. These new atoms enable
a linear translation for the first part of the translation (Items 1 and 2 below)
that captures Clark’s completion [7] for the program. The last item is based on
loops L ⊆ At(P) which are strongly connected in the same way as SCCs but not
necessarily maximal as sets. Thus, an SCC S may induce several loops.

Definition 7 ([29]). Given an NLP P , the translation TrSAT(P) contains for
every a ∈ At(P) and the defining rules a← Bi,not Ci of a in P with 1 ≤ i ≤ k,

1. clauses a ∨ ¬bd1 , . . . , a ∨ ¬bdk and a clause ¬a ∨ bd1 ∨ . . .∨ bdk,
2. for each body indexed by 1 ≤ i ≤ k, a clause bdi ∨ ¬B ∨ C,6

clauses {¬bdi ∨ b | b ∈ Bi}, and clauses {¬bdi ∨ ¬c | c ∈ Ci};

and for every loop ∅ ⊂ L ⊆ At(P) and the related externally supporting rules
a← Bi,not Ci of P with a head a ∈ L, positive body Bi ∩L = ∅, and 1 ≤ i ≤ k,

3. clauses {bd1 ∨ . . .∨ bdk ∨ ¬a | a ∈ L}.

Intuitively, the clauses of the first item express a ↔ bd1 ∨ . . .∨ bdk for each
atom a while the second item establishes equivalences bdi ↔ Bi ∧ ¬Ci for each

6 A set of literals is understood disjunctively as part of a disjunction.

Implementing Stable-Unstable Semantics 9

rule body indexed by 1 ≤ i ≤ k. If k = 1 for an atom a, then we can forget
about bd1 and encode a↔ Bi∧¬Ci directly with the respective clauses. Last, the
clauses in the third item essentially express a loop formula ¬bd1 ∧ . . .∧¬bdk →
¬L falsifying all atoms of the loop L in case they lack external support altogether.

Theorem 2 ([29]). Let P be an NLP and TrSAT(P) its translation into SAT.

1. If M ∈ SM(P), then N |= TrSAT(P) for a unique truth assignment N = M∪
{bd | (a← B, not C) ∈ P , B ⊆M , C ∩M = ∅, and bd names (B, not C)}.

2. If N |= TrSAT(P), then M = N ∩At(P) ∈ SM(P).

The translation is also applicable to modules Π = 〈P, I,O,H〉 by neglecting
input atoms having no defining rules in program P . The resulting SAT-module
〈TrSAT(P), I, O,H ′〉 extends H to H ′ with new names bd introduced by TrSAT(·).

Example 4. Consider a program module Π = 〈P, {c}, {a, b}, ∅〉 based on:

a← b,not c. b← a. a← c.

The module has two stable models {} and {a, b, c}. The translation into SAT is:

a ∨ ¬bd1, a ∨ ¬bd2, ¬a ∨ bd1 ∨ bd2, [a↔ bd1 ∨ bd2]
bd1 ∨ ¬b ∨ c, ¬bd1 ∨ b, ¬bd1 ∨ ¬c, [bd1 ↔ b ∧ ¬c]
bd2 ∨ ¬c, ¬bd2 ∨ c, [bd2 ↔ c]
b ∨ ¬a, ¬b ∨ a, [b↔ a]
bd2 ∨ ¬a, bd2 ∨ ¬b. [¬bd2 → ¬a ∧ ¬b]

Since c is an input atom, it is only treated as a condition in rule bodies. The
only non-trivial loop of Π is {a, b} that gives rise to the last two clauses of the
translation. The resulting SAT-module 〈TrSAT(P), {c}, {a, b}, {bd1, bd2}〉 has two
satisfying assignments {} and {a, b, c, bd2} that capture the stable models of Π.
It is important to note that the last two clauses exclude the truth assignment
{a, b, bd1} which would suggest an extra (incorrect) stable model {a, b} for Π. �

5 Saturation

Saturation was introduced in [9] when showing that the main decision problems
related to DLPs are complete on the second level of PH. It offers a central prim-
itive for changing the mode of reasoning from unsatisfiability to the existence
of a stable model. Typically, saturation is used as an integral part of the main
program, but the goal of this section is to extract respective subprograms as
independent program modules with input interfaces. Therefore, it is assumed
below that a SAT-module 〈S, I,O,H〉 is provided as input. Given an interpre-
tation N ⊆ Ati(S), we write S|N for a partial evaluation of S obtained by (i)
removing C ∈ S if N |= l for some literal l ∈ C and (ii) removing from C ∈ S any
literal l ∈ C such that N 6|= l. The translation aims to capture truth assignments
N over the set of input atoms I that render S|N inconsistent.

10 Tomi Janhunen

Definition 8. Given a SAT-module 〈S, I,O,H〉 encapsulating a set of clauses
S, the saturation translation TrUNSAT(S) contains

1. for every clause (6), a positive disjunctive rule u | a1 | . . . | am ← b1 , . . . , bn;
2. for every atom a ∈ Ath(S) ∪Ato(S), the saturating rule a← u; and
3. the rule u← not u

where u 6∈ At(S) is a new atom. Moreover, we set Ati(TrUNSAT(S)) = Ati(S),
Ato(TrUNSAT(S)) = ∅, Ath(TrUNSAT(S)) = Ato(S) ∪Ath(S).

All atoms except input atoms are hidden in TrUNSAT(S) because their values
are uninteresting (all true) under any stable model of the translation. The intu-
itive idea of TrUNSAT(S) is that if S|N is satisfiable for an input interpretation
N ⊆ Ati(S), then the positive rules in TrUNSAT(S) have a ⊆-minimal (classical)
model M extending N with u 6∈M . Then, the rule u← not u prevents stability.

Example 5. Consider the following set S of clauses:

a ∨ b, ¬a ∨ b, ¬a ∨ ¬b.

Assuming that b is the only input atom of S, we observe that S|∅ = {a,¬a} is
unsatisfiable while S|{b} = {¬a} is satisfiable. The translation TrUNSAT(S):

u | a | b. u | b← a. u← a, b.
a← u. u← not u.

where b is treated as an input atom. The translation has a stable model {a, u}
indicating that S|∅ is unsatisfiable. Note how this stable model would be excluded
if b← u were added in the translation. However, if b is added as a fact, there is
no way to derive a nor u being false by default. Then, the translation augmented
by the fact b has no stable models, indicating that S|{b} is satisfiable. �

Theorem 3. Given a SAT-module 〈S, I,O,H〉 and its translation as a program
module Π = 〈P, I, ∅, O ∪H〉 with P = TrUNSAT(S):

1. If S|N is unsatisfiable for an input interpretation N ⊆ I, then N ∪O ∪H ∪
{u} ∈ SM(Π).

2. If M ∈ SM(Π) and N = M ∩ I, then M = N ∪ O ∪ H ∪ {u} and S|N is
unsatisfiable.

Proof. (1.) Let S|N be unsatisfiable for some N ⊆ I and let M = N∪O∪H∪{u}.
To show M ∈ SM(TrUNSAT(S)), we should establish that M \ I ∈ MM(PM,I).

(i) Since u ∈ M , the rule u ← not u does not contribute to the reduct, but
a← u is included for every a ∈ O∪H. The rule is satisfied by M\I = O∪H∪{u}.
Moreover, the reduct contains u | (A \ I)← (B \ I) for every clause A∨¬B ∈ S
such that A ∩N = ∅ and B ∩ I ⊆ N , i.e., A ∨ ¬B ∈ S|N . This rule is trivially
satisfied by M\I containing u. Thus M\I |= PM,I . (ii) Suppose that M ′ |= PM,I

for some M ′ ⊂M \ I. If u 6∈M ′, then M ′ |= S|N , a contradiction. Thus u ∈M ′
and since a← u is in PM,I for every a ∈ O∪H and M ′ |= a← u, it follows that
M ′ = M \ I, a contradiction. Thus, M \ I ∈ MM(PM,I).

Implementing Stable-Unstable Semantics 11

(2.) Let M ∈ SM(Π) and N = M ∩ I. Due to u ← not u in P , u ∈ M is
necessarily the case. Since a← u is contained in PM,I for every a ∈ O ∪H and
M |= PM,I it follows that O ∪H ⊆M and M = N ∪O ∪H ∪ {u}. Calculating
as above, the reduct contains u | (A \ I) ← (B \ I) for every A ∨ ¬B ∈ S|N .
Assuming that S|N is satisfiable, gives us M ′ |= S|N such that u 6∈M ′. It follows
that M ′ ⊂M and M ′ |= PM,I , a contradiction. Thus S|N is unsatisfiable. ut

6 Capturing Stable-Unstable Semantics

The goal of this section is to define a translation TrST-UNST(Π,Π1 , . . . ,Πn) that
captures the stable-unstable semantics of a main program module Π combined
with oracle modules Π1 , . . . ,Πn. The translation exploits the preceding transla-
tions devised in Sections 4 and 5 as well as modularity properties from Section 3.
Therefore, we formulate the result for modules with proper interface definitions.

Definition 9. Given a main program module Π = 〈P, I,O,H〉 and oracle mod-
ules Π1 , . . . ,Πn encapsulating NLPs P1 , . . . , Pn, the stable-unstable translation

TrST-UNST(Π,Π1 , . . . ,Πn) = Π t
n⊔
i=1

TrUNSAT(TrSAT(Πi)). (7)

Due to pairwise input-output relationships there are no mutual positive de-
pendencies between the translation TrUNSAT(TrSAT(Πi)) of each oracle module
Πi and the main module Π. The same can be stated about the translations of
any pair of oracles Πi and Πj with i < j, because only input atoms are made vis-
ible and we may assume without loss of generality that Ath(Πi)∩Ath(Πj) = ∅,
since hidden atoms can always be renamed apart. Moreover, the new atoms (u)
introduced by the translation TrUNSAT(·) can be assumed distinct for the oracles
Π1 , . . . ,Πn, say atoms u1 , . . . , un. Thus the joins in (7) are well-formed and the
resulting signatures of the translation Π ′ = TrST-UNST(Π,Π1 , . . . ,Πn) are

1. Ati(Π
′) = Ati(Π),

2. Ato(Π ′) = Ato(Π), and
3. Ath(Π ′) = Ath(Π) ∪ (

⋃n
i=0 At(TrUNSAT(TrSAT(Πi))) \Ati(Πi)).

Theorem 4. For a main program module Π, the NLP oracle program modules
Π1 , . . . ,Πn of Π, and their stable-unstable translation:

1. If TrST-UNST(Π,Π1 , . . . ,Πn) has a stable model N , then M = N ∩ At(Π)
is stable-unstable model of Π with respect to oracles Π1 , . . . ,Πn.

2. If Π has a stable-unstable model M with respect to oracles Π1 , . . . ,Πn, then
TrST-UNST(Π,Π1 , . . . ,Πn) has a stable model N such that M = N ∩At(Π).

Proof. Since the joins in Definition 9 are well-formed, we may apply Theorem 1:

SM(TrST-UNST(Π,Π1 , . . . ,Πn)) =

SM(Π) on (./ni=1SM(TrUNSAT(TrSAT(Πi)))). (8)

12 Tomi Janhunen

For brevity, let Π ′ stand for the entire translation TrST-UNST(Π,Π1 , . . . ,Πn)
and Π ′i for the translation TrUNSAT(TrSAT(Πi)) of each oracle Πi with 1 ≤ i ≤ n.

By the model correspondence (8) established above, N is a stable model of
Π ′ if and only if M = N ∩ At(Π) ∈ SM(Π) and Ni = N ∩ At(Π ′i) ∈ SM(Π ′i)
for each 1 ≤ i ≤ n. By Theorem 3, this holds if and only if M ∈ SM(Π)
and TrSAT(Πi)|Mi

is unsatisfiable for each 1 ≤ i ≤ n and the respective input
Mi = Ni ∩ Ati(Πi). By Theorem 2, this is equivalent to M ∈ SM(Π) and each
oracle Πi with 1 ≤ i ≤ n having no stable models given the input Mi, i.e., M is
a stable-unstable model of Π with respect to Π1 , . . . ,Πn. ut

Definition 9 and Theorem 4 characterize our method for computing stable-
unstable models in the propositional case. Therefore, let us discuss how non-
ground programs fit into this scenario. Given a set of non-ground rules P , we
write Gnd(P) for the resulting ground program produced by a grounder such
as Gringo in the Clingo system. Since Gnd(P) depends on the grounder, we
leave its exact definition open and assume that the semantics of a non-ground
program P is determined by SM(Gnd(P)) where Gnd(P) is understood as a
propositional program. The signature of Gnd(P) is also determined during the
grounding phase, based on directives supplied by the programmer. Thus, for a
non-ground main program P and each non-ground oracle Pi with 1 ≤ i ≤ n,
we effectively obtain the ground module Π = 〈Gnd(P), I, O,H〉 and the ground
oracle modules Πi = 〈Gnd(Pi), Ii, ∅, Hi〉 where 1 ≤ i ≤ n. Then, stable-unstable
models can be computed using the translation TrST-UNST(Π,Π1 , . . . ,Πn) in (7).

7 Implementation and Practical Modeling

In what follows, we describe how our method for computing stable-unstable
semantics can be realized in practice using tools available in the ASPTOOLS
collection and Clasp as the the back-end solver. Finally, we illustrate practical
modeling in terms of an application problem that is challenging to formalize if
the goal is to represent the entire problem as a single DLP in Section 7.1. The
performance of Clingo on the resulting stable-unstable encoding of the problem
is screened in Section 7.2. Reflecting Definition 9, our implementation involves
the following three steps for the ground modules Π and Π1 , . . . ,Πn:

1. translating each oracle module Πi into SAT, i.e., the SAT module TrSAT(Πi),
2. translating each TrSAT(Πi) into a DLP module TrUNSAT(TrSAT(Πi)), and
3. linking the parts of the translation (7) together.

Translating Oracles into SAT. The translation of oracles is based on translators
in the lp2sat family. These translators implement the more compact transfor-
mation described in [17], the one described in Section 4 is compatible up to
forming the completion of the program. In addition, we deploy other tools in
order to extend the applicability of our approach somewhat beyond the class of
NLPs. In general, it is recommended to use a tool pipeline similar to those used
in the latest ASP competitions. Brief descriptions of the tools follow. (i) Remove

Implementing Stable-Unstable Semantics 13

invisible facts produced by the grounder using lpstrip. (ii) Make the symbol
table of the program contiguous with lpcat as described below. (iii) Unwind
head-cycle-free (HCF) disjunctions by shifting [8] as implemented by lpshift.
(iv) Translate away aggregates [32] using lp2normal2 [5]. (v) Instrument SCCs
with additional rules that guarantee the acyclicity of support within components
[12] by calling lp2acyc. (vi) Produce the respective CNF using lp2sat and its
command-line option -b for a translation in line with [17].

Saturation Transformation. The compiler for the saturation transformation,
called unsat2lp, is available in the ASPTOOLS collection [21]. The input of
the compiler consists of a DIMACS file extended by the definitions of symbols in
comments. The translators described in the preceding step produce these defini-
tions automatically and they are crucial information for the linking phase. The
compiler unsat2lp is directly based on Definition 8. The output is a DLP in
the smodels format [18], supported by Clingo for backward compatibility.

Linking. Definition 6 provides the specification for a link editor called lpcat
[20]. Given ground program modules Π1 , . . . ,Πn as input, assuming that the
join Π1 t . . .tΠn is defined, the tool can be used to safely compute their com-
position. In the output, every atom will have a unique number (i.e., index in the
atom table) and atoms are numbered from 1 to n where n gives the number of
atoms in the program. The stable models of the resulting ground program are
then governed by (5) and they can be computed by invoking Clasp. Other dis-
junctive solvers can be potentially used, if the final ground program is translated
back into symbolic form (e.g., using the program listing tool lplist from the
ASPTOOLS collection) and parsed again.

7.1 Practical Modeling

Having described the steps of translation involved in our implementation, let us
introduce one concrete encoding to demonstrate the use of tools in practice. In
the sequel, we use the problem point of no return [2] for illustration. The problem
was specifically designed to reside on the second level of PH and it requires the
representation of an oracle which is non-trivial to encode via saturation directly,
due to interlinked reachability and satisfiability conditions. Below we recall the
problem, but by using clauses rather than formulas as labels for a digraph.

Definition 10 (Point of No Return). Given a digraph G = 〈N,A〉 where
A ⊆ N2, a start node s ∈ N , and a labeling function cl(·) that maps each arc
〈n1, n2〉 ∈ A to a clause cl(n1, n2), a point of no return is a node n ∈ N so that

1. there is a directed path s = n1, n2, ..., nk = n in G,

2. the set of clauses S(s, n) = {cl(n1, n2) , . . . , cl(nk−1, nk)} is satisfiable, and

3. there is no directed return path n = m1,m2, ...,ml = s in G such that the
set of clauses S(s, n) ∪ {cl(m1,m2) , . . . , cl(ml−1,ml)} is satisfiable.

14 Tomi Janhunen

Listing 1. Point of No Return: A Minimal Instance

% Assign clauses to arcs % Arcs

lit(1,2,a). lit(1,2,b). % 1 == a|b ==> 2

lit(2,3,n(a)). lit(2,3,n(b)). % 2 == -a|-b ==> 3

lit(3,4,a). lit(3,4,n(b)). % 3 == a|-b ==> 4

lit(3,1,n(a)). lit(3,1,c). % 3 == -a|c ==> 1

lit(4,1,n(a)). lit(4,1,b). % 4 == -a|b ==> 1

Listing 2. Point of No Return: Domain Declarations

% Identify atoms and literals

literal(L) :- lit(_,_,L).

negative(n(A)) :- literal(n(A)).

atom(L) :- literal(L), not negative(L).

% Determine arcs , nodes , and the start node

arc(X,Y) :- lit(X,Y,_).

node(X) :- arc(X,_). node(Y) :- arc(_,Y).

start(N) :- node(N), N2 >= N: node(N2).

Our ASP encoding of this problem is given as four Clingo code snippets: (i)
an example of a problem instance, (ii) some joint domain definitions, (iii) the
main program, and (iv) the oracle. In Listing 1, we describe a minimal problem
instance using a predicate lit/3 which associates for an arc 〈n1, n2〉 one literal
l involved in the labeling clause cl(n1, n2) at a time. The function symbol n/1
is used to express negative literals. Assuming that 1 is the start node, then the
node 4 is a point of no return: the set of clauses {a∨b,¬a∨¬b, a∨¬b} is satisfiable
while adding the final clause ¬a ∨ b will make it necessarily unsatisfiable. The
other nodes are not points of no return due to the short-cutting arc from 3 to
1 enforcing the clause ¬a ∨ c. The rules in Listing 2 define some joint domains
involved in the problem. The names of predicates literal/1, atom/1, arc/2,
and node/1 should be self-explanatory in this respect. Moreover, the predicate
start/1 picks the smallest node as the start node for the whole input graph.

The main program, as given by Listing 3, deploys choice rules [32] with
bounds on cardinality for the sake of conciseness. The path/2 predicate captures
the path from the start node to a node acting as a candidate point of no return
and eventually pointed out by predicate ponr/1. The recursive selection of the
path is guided by the predicate reach/1 formalizing reachability from the start
node along the path. Finally, predicate true/1 chooses a subset of atoms to be
true and the satisfaction of the clauses along the chosen path is enforced by the
constraint in the end. The encoding for the required oracle is quite similar as can
be seen from Listing 4. At first, the input predicates are declared using choice
rules. Only them are made visible for translators. The choice of return path is

Implementing Stable-Unstable Semantics 15

Listing 3. Point of No Return: Main Program

% Choose path and the point of no return

{ path(X,Y): arc(X,Y), not start(Y) } = 1 :- start(X).

{ path(X,Y): arc(X,Y), not start(Y) } <= 1 :- reach(X).

% The point of no return is the final node reached

reach(Y) :- path(X,Y).

ponr(X) :- reach(X), not path(X,Y): arc(X,Y).

:- not ponr(X): node(X).

% Check satisfiability along the chosen path

{ true(A) } :- atom(A).

true(n(A)) :- negative(n(A)), not true(A).

:- arc(X,Y), path(X,Y), not true(L): lit(X,Y,L).

analogous but formalized backwards from the start node toward the anticipated
point of no return. The predicate reach/1 can be reused here since it will not
be visible to the main program. The final satisfiability check is quite the same
except that the clauses along both chosen paths ought to be satisfied. Assuming
that the portions of code from Listings 1–4 are stored in files literals.lp,
graph.lp, main.lp, and oracle.lp, respectively, we may invoke the following
shell commands to solve the problem with Gringo and Clasp:

$ gringo --output smodels literals.lp graph.lp main.lp > main.sm

$ gringo --output smodels literals.lp graph.lp oracle.lp \

| lp2normal2 | lp2acyc | lp2sat -b | unsat2lp > oracle.sm

$ lpcat main.sm oracle.sm | clasp

For backward compatibility, we use Gringo’s option --output smodels. No-
tice how the instance and domain declarations are used when grounding the
main program and the oracle in separation. Finally, they are linked together
with lpcat and fed as input for Clasp which accepts Smodels format as such.

7.2 Performance Analysis

To get an idea of the performance of our approach to implementing stable-
unstable semantics, we carried out some preliminary experiments using the en-
codings from Listings 1–4. We used Gringo (v. 5.2.2) as the grounder and Clasp
(v. 3.3.4) as the solver. All runs were executed on an Intel(R) Core i7-8750H
CPU with a 2.20GHz clock rate under Linux operating system.

Since the existence of Hamiltonian paths in planar graphs has been previously
investigated, we decided to generate such graphs using the planar tool from the
ASPTOOLS collection. The tool outputs a random planar graph with a given
number of nodes. The graphs are directed and symmetric, i.e., arcs are provided
in both directions. First, we check the performance of Clasp on unsatisfiable

16 Tomi Janhunen

Listing 4. Point of No Return: Oracle

% Input

{ path(X,Y) } :- arc(X,Y), not start(Y).

{ ponr(X) } :- node(X), not start(X).

#show path /2.

#show ponr /1.

% Choose return path

{ return(X,Y): arc(X,Y), not start(X) } = 1 :- reach(Y).

:- return(X,Y), path(X,Y).

% Check that the point of no return is reached

reach(X) :- start(X).

reach(X) :- return(X,Y), not ponr(X).

:- ponr(X), not return(X,Y): arc(X,Y).

% Check satisfiability along both paths

{ true(A) } :- atom(A).

true(n(A)) :- negative(n(A)), not true(A).

:- arc(X,Y), path(X,Y), not true(L): lit(X,Y,L).

:- arc(X,Y), return(X,Y), not true(L): lit(X,Y,L).

instances obtained from planar graphs with n = 9 . . . 18 nodes and roughly from
40 to 85 arcs. By mapping arcs to a fixed atom a, all paths are consistent and
no points of no return are feasible. The runtimes vary from 0.70s to 16 000s and
the growth is clearly exponential in n that we verified using a logarithmic plot.

Based on the preliminary screening, we pick n = 15, for which a runtime
of 390 seconds is initially obtained, for further study. Next, we map the arcs of
the planar graphs to random literals based on v different atoms. Both the atom
and its polarity are selected uniformly. As a result, arcs labeled with opposite
literals become mutually exclusive. On the one hand, this is a significant source
of complexity (see [22] for an analogous restriction) but, on the other hand,
makes points of no return existent. When the number of atoms v is increased, the
resulting instances are expected to become more demanding. To see the effect, we
generate ten instances for each v = 1 . . . 40. The runtime behavior is illustrated
by the graph in Fig. 1 (left). The number of unsatisfiable instances starts to
grow from v = 31, i.e., roughly 45% of the number of arcs when n = 15, and
therefore, runtimes approach and settle around 400s as observed for unsatisfiable
instances earlier. Next, we select v = n as the criterion for our final experiment
and let n vary from 5 to 40 nodes. The runtimes are illustrated by the graph
in Fig. 1 (right). By the logarithmic scale, runtimes tend to grow exponentially
in n. The resulting instances are mostly satisfiable except for small values for n
when finding a (satisfiable) path may become an obstacle (cf. Definition 10).

Implementing Stable-Unstable Semantics 17

 1

 10

 100

 5 10 15 20 25 30 35 40

Average Runtime in Seconds

Clasp

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40

Average Runtime in Seconds

Clasp

Fig. 1. Point of No Return: Runtime Scaling for Instances Based on Planar Graphs

8 Discussion and Conclusion

In this work, we propose an alternative way to implement stable-unstable se-
mantics of (normal) logic programs. In contrast with related approaches based
on meta-programming [10, 13] and translations toward QBFs [2, 11], we encode
oracles as stand-alone (effectively normal) programs, ground and translate them
separately, and finally link them with the ground main program for solving.
This makes our approach highly modular and enables the separation of con-
cerns in case of multiple oracles, thus generalizing stable-unstable semantics in
the first place. We anticipate that the saturation step is less error-prone when
outsourced for a translator, relieving the programmer from a potentially intri-
cate task and enabling the testing of oracles in separation. Moreover, in contrast
with [1, 11] our approach counts on implicit quantification as put forth in orig-
inal stable-unstable semantics. When modeling with stable-unstable semantics,
we essentially seek solutions to problems whose particular subproblems have no
solutions. Finally, our preliminary performance analysis suggests that computing
points of no return will provide a challenging benchmark for answer set solvers.

As regards future work, we note that it is possible to change the transla-
tion TrSAT(S) from NLPs to SAT very easily, e.g., for improving performance.
Although our approach enables more comprehensive modeling based on stable-
unstable semantics, we still call for native implementations that support stable-
unstable semantics directly rather than through the stable semantics of DLPs.
Such implementations are expected to mimic the design of GnT [23] with in-
teracting solvers, but use conflict-driven nogood learning (CDNL) [14] instead
of traditional branch-and-bound search. Moreover, if solvers are integrated with
each other recursively, following the original idea of combined programs from [3],
the levels beyond the second one in polynomial hierarchy can also be covered.

Acknowledgments. The author wishes to thank the anonymous referees for com-
ments and suggestions for improvement. The author has been partially supported
by the Academy of Finland projects ETAIROS (327352) and AI-ROT (335718).

18 Tomi Janhunen

References

1. Amendola, G., Ricca, F., Truszczynski, M.: Beyond NP: Quantifying over answer
sets. Theory Pract. Log. Program. 19(5-6), 705–721 (2019)

2. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Declarative solver development: Case
studies. In: KR 2016. pp. 74–83. AAAI Press (2016)

3. Bogaerts, B., Janhunen, T., Tasharrofi, S.: Stable-unstable semantics: Beyond NP
with normal logic programs. Theory Pract. Log. Program. 16(5-6), 570–586 (2016)

4. Bomanson, J., Gebser, M., Janhunen, T.: Improving the normalization of weight
rules in answer set programs. In: Proceedings of JELIA 2014. pp. 166–180. Springer
(2014)

5. Bomanson, J., Janhunen, T., Niemelä, I.: Applying visible strong equivalence in
answer-set program transformations. ACM Trans. Comput. Log. 21(4), 33:1–33:41
(2020)

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

7. Clark, K.: Negation as failure. In: Logic and Data Bases, pp. 293–322. Plenum
Press (1978)

8. Dix, J., Gottlob, G., Marek, V.W.: Reducing disjunctive to non-disjunctive seman-
tics by shift-operations. Fundam. Informaticae 28(1-2), 87–100 (1996)

9. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15(3–4), 289–
323 (1995)

10. Eiter, T., Polleres, A.: Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory Pract.
Log. Program. 6(1-2), 23–60 (2006)

11. Fandinno, J., Laferrière, F., Romero, J., Schaub, T., Son, T.C.: Planning with
incomplete information in quantified answer set programming. Theory Pract. Log.
Program. 21(5), 663–679 (2021)

12. Gebser, M., Janhunen, T., Rintanen, J.: Answer set programming as SAT modulo
acyclicity. In: Proceedings of ECAI 2014. pp. 351–356. IOS Press (2014)

13. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set pro-
gramming. Theory Pract. Log. Program. 11(4-5), 821–839 (2011)

14. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187, 52–89 (2012)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP. pp. 1070–1080. MIT Press (1988)

16. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991)

17. Janhunen, T.: Some (in)translatability results for normal logic programs and
propositional theories. J. Appl. Non Class. Logics 16(1-2), 35–86 (2006)

18. Janhunen, T.: Intermediate languages of ASP systems and tools. In: Proceedings of
SEA 2007, the 1st International Workshop on Software Engineering for Answer Set
Programming. pp. 12–25. University of Bath, Department of Computer Science,
Report CSBU-2007-05 (2007)

19. Janhunen, T.: Modular equivalence in general. In: Proceedings of ECAI 2008. pp.
75–79 (2008)

20. Janhunen, T.: Modular construction of ground logic programs using lpcat. In:
The 3rd International Workshop on Logic and Search (LaSh’10) (2010)

Implementing Stable-Unstable Semantics 19

21. Janhunen, T.: Cross-translating answer set programs using the ASPTOOLS col-
lection. Künstliche Intell. 32(2-3), 183–184 (2018)

22. Janhunen, T., Niemelä, I.: The answer set programming paradigm. AI Mag. 37(3),
13–24 (2016)

23. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.: Unfolding partiality
and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37
(2006)

24. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of dis-
junctive stable models. J. Artif. Intell. Res. 35, 813–857 (2009)

25. Lierler, Y., Truszczynski, M.: On abstract modular inference systems and solvers.
Artif. Intell. 236, 65–89 (2016)

26. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans.
Comput. Log. 7(2), 261–268 (2006)

27. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal
logic programs to propositional logic. In: Proceedings of IJCAI 2003. pp. 853–858
(2003)

28. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Proceedings of AAAI 2002. pp. 112–118 (2002)

29. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT
solvers. Artif. Intell. 157(1-2), 115–137 (2004)

30. Marek, V., Truszczyński, M.: Autoepistemic logic. J. ACM 38(3), 588–619 (1991)
31. Oikarinen, E., Janhunen, T.: A translation-based approach to the verification of

modular equivalence. J. Log. Comput. 19(4), 591–613 (2009)
32. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model

semantics. Artificial Intelligence 138(1-2), 181–234 (2002)
33. Tseitin, G.: On the complexity of derivation in the propositional calculus. Zapiski

Nauchnykh Seminarov LOMI 8, 234–259 (1968)

