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Abstract—This paper proposes a long-horizon direct model
predictive control (MPC) with reference tracking for medium-
voltage (MV) drives that achieves favorable steady-state and
transient behavior. However, as MPC is a model-based method,
it is susceptible to parameter mismatches and variations of
the machine. Moreover, even though a long prediction horizon
significantly improves the steady-state behavior of the drive,
it significantly increases the computational complexity of the
direct MPC problem, rendering its real-time implementation a
challenging—if not impossible—task. Motivated by these short-
comings of long-horizon direct MPC, this paper also aims to
address them by enhancing the robustness of the developed
control strategy, while keeping its computational complexity
modest. To achieve the former, a prediction model suitable
for MV drive systems is adopted that facilitates the effective
estimation of the total leakage inductance of the machine. For the
latter, the objective function of the MPC problem is formulated
such that, even though the drive behavior is computed over a
long prediction interval, only a few changes in the candidate
switch positions are considered. The effectiveness of the proposed
modeling, control, and estimation approaches is validated with
hardware-in-the-loop (HIL) tests for an MV drive consisting
of a three-level neutral point clamped (NPC) inverter and an
induction machine (IM).

Index Terms—AC drives, medium-voltage (MV) drives,
model predictive control (MPC), direct control, robust control,
hardware-in-the-loop (HIL) simulations.

I. INTRODUCTION

Over the last years, the advanced processing capabilities

of modern microprocessors have facilitated the development

of high-performance rapid control prototyping platforms for

power electronics [2]. Such a technological advancement,

combined with a growing demand for high-efficiency variable

speed drive (VSD) systems—including medium-voltage (MV)

VSDs—have stimulated the increasing interest of the power

electronics community in model predictive control (MPC).

This is reflected, e.g., in the exponential growth of publications

in the said research area since the early 2000s [3]. Even

though several derivatives of MPC have been introduced

over the years, the most widely adopted strategy—at least

in academia—is direct MPC with reference tracking, also

referred to as finite control set MPC (FCS-MPC) [3].
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Despite the fact that FCS-MPC appears as an attractive

alternative to established control methods [4], it has intrinsic

drawbacks. One of them stems from the fact that the compu-

tational burden of the optimization problem underlying FCS-

MPC increases exponentially with the length of the prediction

horizon and the number of the output voltage levels of the

power converter. As a result, one-step horizon is typically

used, but, alas, at the expense of improved performance and

guaranteed stability that long horizons can offer [3], [5].

To address this issue, and thus facilitate the real-time im-

plementation of long-horizon FCS-MPC, some methods have

been proposed that aim to reduce the computational complex-

ity of the associated optimization problem, such as dedicated

branch-and-bound techniques [6], or prediction horizons of

nontrivial form [7]. In this direction, and as far as long-horizon

FCS-MPC for three-level power converters is concerned, the

branch-and-bound strategy called sphere decoder was imple-

mented in real time in [8]–[10]. It is worth noting that the

control platform used in [8] was a dSPACE, whereas works [9]

and [10] implemented the long-horizon FCS-MPC algorithm

on a field-programmable gate array (FPGA). Nevertheless,

regardless of the control platform, the sphere decoder is

executed in a sequential manner, implying that the ability of an

FPGA to perform intensive calculations in a highly pipelined

and/or parallelized manner was not exploited [11]. On the

other hand, [12] implemented FCS-MPC with a nontrivial

horizon on an FPGA by effectively pipelining the optimization

procedure. However, as a “certificate of optimality” is not

provided at the end of the optimization process, optimality is

not ensured at all operating points. Hence, it can be concluded

that the design of long horizon FCS-MPC remains a nontrivial

and challenging task.

Another drawback of FCS-MPC is that its performance

is dependent on the accuracy of the prediction model. The

latter, even though typically accurate when power electronic

applications are of interest, is subject to model variations and

mismatches that can adversely affect the system performance,

especially when long horizons are employed [11]. For ex-

ample, when induction motor (IM) drives are of interest, the

values of the machine inductances and resistances may change

in time due to, e.g., changes in the temperature or saturation

of the magnetic material. Such modeling mismatches may

lead to prediction errors that accumulate as the horizon length
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increases, thus resulting in suboptimal control actions. Hence,

FCS-MPC needs to be equipped with tools that can enhance

its robustness to such uncertainties and variations. To this

end, FCS-MPC for IM drives can be augmented with an

element of integrating nature [13], or an external disturbance

observer [14]–[16]. Such methods, however, can increase the

complexity of the closed-loop controller design, or even the

computational complexity as they can be computationally

intensive.

An alternative is to employ system identification algorithms.

Such methods are either white-box model-based approaches,

since they assume full knowledge of the system [17]–[20], or

they do not depend on the model at all, i.e., they are black-box

methods [21], [22]. The former techniques, however, cannot

simultaneously estimate all the system parameters, meaning

that combinations of different sources of uncertainties/model

mismatches are usually not considered. As a result, the per-

formance of such methods is not the most desired for a wide

range of operating conditions. For example, the fidelity of the

model reference adaptive system (MRAS) approach adopted

in [20] to estimate the mutual inductance degrades linearly

with the increasing IM load torque. Moreover, as the MRAS

adaptive model depends, among others, on the rotor resistance,

a reactive power MRAS (Q-MRAS) scheme is implemented

in parallel to improve the estimation accuracy of the machine

parameters. This, however, adds a significant computational

overhead.

As for the black-box methods, which have been mostly

implemented for two-level inverters, their accuracy relies

on measurements of the input (e.g., applied voltage) and

output (e.g., load current), and intrinsic look-up tables [23].

Moreover, the acquired data are processed by computationally

demanding identification techniques, such as data fitting meth-

ods, which further increase the computational requirements

of MPC. Hence, as can be understood, it is desired that

the aforementioned auxiliary tools should come with low

computational complexity not to further tax the already high

computational load of long-horizon FCS-MPC.

Motivated by the above, this paper proposes a long-horizon

FCS-MPC for MV IM VSD systems that achieves favorable

steady-state and transient behavior while addressing the two

main drawbacks of FCS-MPC. More specifically, the proposed

algorithm (a) has modest computational complexity, and (b)

shows a high degree of robustness.1 To achieve the former, the

MPC problem is formulated by taking advantage of the fact

that MV drives need to operate at low switching frequencies

of a few hundred hertz, meaning that the control action

changes only a few times within the fundamental period.

In doing so, two different horizons are defined in the MPC

problem, namely the control and prediction horizons, that

can be manipulated to keep the computational complexity

at bay while still achieving a superior drive performance.

1This paper is an extension of [1]. Herein, as compared with [1], a
deeper theoretical analysis of the proposed method is presented along with
its verification with real-time tests performed in a hardware-in-the-loop (HIL)
environment.
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Fig. 1: Three-level NPC voltage-source inverter (VSI) driving an IM.

TABLE I: MV VSD rated values and parameters.

Parameter Value

Rated voltage VR 3300 V

Rated current IR 356 A

Real power PR 1.646MW

Apparent power SR 2.035MVA

Angular stator frequency ωsR 2π50 rad/s

Rotational speed ωmR 596 rpm

Stator resistance Rs 57.61mΩ

Rotor resistance Rr 48.89mΩ

Stator leakage inductance Lls 2.544 mH

Rotor leakage inductance Llr 1.881 mH

Main inductance Lm 40.01 mH

Dc-link voltage Vdc 5.2 kV

The latter is accomplished by deriving a prediction model

of the drive system that allows for the adoption of a simple,

yet effective, estimation algorithm. The presented real-time

hardware-in-the-loop (HIL) simulations based on an MV VSD

system demonstrate the performance benefits of the proposed

approach.

The remainder of this paper is organized as follows. Sec-

tion II presents the adopted model of the MV VSD system.

Following, the proposed FCS-MPC algorithm is presented in

Section III along with the controller design choices. Section IV

provides the robustness analysis of the developed control

strategy and identifies which system parameter variations

mostly affect its performance. Subsequently, the design of

the proposed estimation technique is provided in Section V,

while its performance based on real-time HIL simulations is

presented in Section VI. Finally, conclusions are drawn in

Section VII.

II. MODELING

Consider the MV VSD system in Fig. 1 consisting of three-

level neutral point clamped (NPC) inverter and an IM with the

rated values and parameters provided in Table I. The aim is to

develop an FCS-MPC algorithm to control the drive system.

Since such a control method requires an accurate model of the

plant, the differential equations that fully describe the system

dynamics are derived in this section. To do so, the per unit

(p.u.) system and the αβ-reference frame are adopted in this

work. Moreover, for simplicity, the neutral point potential vn
is assumed to be zero and the dc-link voltage constant and

equal to Vdc.
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Based on the above, the inverter output voltage vinv (which

is equal to the stator voltage vs) is2

vinv = vs =
Vdc

2
K [ua ub uc]

T , (1)

where K is the reduced Clarke transformation matrix

K =
2

3

[

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

]

, (2)

and uabc = [ua ub uc]
T is the three-phase switch position,

with ux ∈ U = {−1, 0, 1}, x ∈ {a, b, c}, being the single-

phase switch position.

Most of the FCS-MPC methods typically employ the T-

equivalent model of an IM, see Fig. 2(a), where Rs and

Rr stand for the stator and rotor resistances, respectively,

while Xls, Xlr, and Xm are the stator leakage, rotor leakage,

and mutual reactances, respectively [24]. However, this model

is overparametrized, while observability and identifiability of

the machine parameters are not achieved [25]. These issues,

nonetheless, can be tackled when using the so-called inverse-Γ
model, shown in Fig. 2(b). Note that the two representations of

the IM are equivalent and no loss of information or accuracy

is entailed [26].

The derivation of the inverse-Γ model is based on provid-

ing the same input impedance as the T-model. Hence, the

stator voltage vs, current is, and flux ψs are the same in

both IM representations. Moreover, the rotor current and flux

are defined with the help of the transformation coefficient

γ = Xm/Xr as īr = ir/γ and ψ̄r = γψr, where the overline

denotes variables in the inverse-Γ model, and Xr = Xlr+Xm

is the rotor self-reactance. Based on the above definitions, the

equivalent circuit representation in Fig. 2(b) is obtained with

the following parameters

X̄m = γXm , (3a)

R̄r = γ2Rr , (3b)

Xσ = Xs −X
2
m/Xr , (3c)

where Xσ is the total leakage reactance, and Xs = Xls+Xm

is the stator self-reactance.

A closer comparison between Figs. 2(a) and 2(b) shows the

advantage of adopting the inverse-Γ IM model. Specifically,

as can be deduced from (3c), the impact of the rotor Xlr

and stator Xls leakage reactances in the T-equivalent model

is mostly captured by the total leakage reactance Xσ in the

inverse-Γ model. This will be utilized when designing the

estimation algorithm, see Section V.

Given the equivalent circuit in Fig. 2(b), the state-space

model of the MV drive system can be derived. Specifically,

by defining the three-phase switch position uabc ∈ U = U3

as the input of the system, the stator current and flux as state

variables, i.e., x = [iTs ψT
s ]

T ∈ R
4, and the stator current

as the system output, i.e., y = is ∈ R
2, the continuous-time

2To simplify the notation, the subscript for variables in the αβ-plane
is omitted. Variables in the abc-plane are indicated by the corresponding
subscript.

Rs Xls Xlr Rr

vsα Xm
−ωrψrβ

isα irα

Rs Xls Xlr Rr

vsβ Xm ωrψrα

isβ irβ

(a) T-model

Rs Xσ R̄r

vsα X̄m
−ωrψ̄rβ

isα īrα

Rs Xσ R̄r

vsβ X̄m ωrψ̄rα

isβ īrβ

(b) Inverse-Γ model

Fig. 2: Equivalent models of an IM.

state-space model can be derived by applying circuit analysis

to the inverse-Γ model in Fig. 2(b), i.e.,

dx(t)

dt
= Fx(t) + Guabc(t) (4a)

y(t) = Cx(t), (4b)

where F ∈ R
4×4 is the dynamics matrix

F =













− 1
τs,Γ

−ωr
R̄r

XσX̄m

ωr

Xσ

ωr − 1
τs,Γ

− ωr

Xσ

R̄r

XσX̄m

−Rs 0 0 0

0 −Rs 0 0













,

with ωr being the rotor angular speed, and τs,Γ the transient

stator time constant given by

1

τs,Γ
=

R̄r

X̄m

+
R̄r +Rs

Xσ

.

Moreover, the input G ∈ R
4×3 and output C ∈ R

2×4 matrices

are

G =
Vdc

2Xσ

[

I2 02×2

]T

K, C =
[

I2 02×2

]

,

where I and 0 are the identity and zero matrices, respectively,

the dimensions of which are indicated by the corresponding

subscripts.
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Note that the state x in (4) does not explicitly depend on the

leakage rotor reactance Xlr incorporated in the γ coefficient

since, as mentioned, the stator current and flux are the same in

both models. This greatly benefits the design of the parameter

estimation algorithm in Section V, since knowledge of Xlr

is not required. Finally, to derive the prediction model for

the FCS-MPC algorithm, (4) is discretized with the sampling

interval Ts. To this end, the forward Euler discretization is

used, yielding

x(k + 1) = Ax(k) + Buabc(k) (5a)

y(k) = Cx(k) , (5b)

where A = I4 + FTs, and B = GTs [11].

III. CONTROLLER DESIGN

In this section the formulation of the optimization problem

underlying FCS-MPC is presented. Moreover, the effectiveness

of the proposed objective function is assessed in terms of

the product of the produced stator current distortions and the

switching frequency.

A. Optimization Problem

The first aim of the controller is to track the stator

current reference is,ref, i.e., to minimize the tracking error

is,err = is,ref − is. The second control objective relates to the

minimization of the switching frequency, i.e., of the control

effort ∆uabc(ℓ) = uabc(ℓ)−uabc(ℓ−1). The former objective

relates to the current distortions, which have to be kept low

for reduced thermal losses and electromagnetic torque ripple,

while the latter to the switching power losses, which for an

MV drive have to be as low as possible. These objectives are

captured in the following objective function

J =

k+Np−1
∑

ℓ=k

‖is,err(ℓ+ 1)‖22 + λu

k+Nc−1
∑

ℓ=k

‖∆uabc(ℓ)‖
2
2 , (6)

where λu > 0 sets the trade-off between the two terms of (6),

i.e., the current distortions and the switching frequency. More-

over, Np denotes the prediction horizon, i.e., the time window

within which the future current trajectories are computed, and

Nc is the control horizon, i.e., the time window within which

the possible future control actions are evaluated.

An important advantage of the proposed formulation of the

objective function (6) is that the ℓ2-norm is used, i.e., (6) is a

quadratic function. Considering that the drive system in ques-

tion can be represented as a linear system with integer inputs

(see (5)), the adopted design ensures closed-loop (practical)

asymptotic stability of the proposed direct MPC algorithm

regardless of the value of λu [27], [28].3

The controller utilizes the recursive exhaustive search in

Algorithm 1 to find the optimal sequence of control actions

U∗(k) =
[

u∗T
abc(k) u

∗T
abc(k+1) . . . u∗T

abc(k +Nc − 1)
]T

3For more information on practical stability of quadratic MPC with integer
input, the reader is referred to [29] and references therein.

Algorithm 1 [J∗, U∗] = EXSCH( i, uabc, x, is,ref )

find the feasible set for the (k+ i)th prediction step U(k+
i− 1)
for all uabc ∈ U(k + i− 1) do

predict x(k + i) (5) and compute J(k + i) (6)

if i < Np then

repeat EXSCH for the next prediction step i+ 1:

[J(k + i+ 1), U(k + i)] =

EXSCH( i+1, uabc(k+i−1), x(k+i), is,ref(k+i+1) )

add up the cost from the next prediction step:

J(k + i) = J(k + i) + J(k + i+ 1)
end if

find the minimum cost J(k+ i) and store the switching

sequence U(k+ i− 1) = [uT
abc(k+ i− 1) UT (k+ i)]T

end for

J∗ = J(k + i), U∗ = U(k + i − 1)

by solving the following optimization problem

minimize
U(k)∈U

J(k) (7a)

subject to x(j + 1) = Ax(j) + Buabc(j) (7b)

y(j + 1) = Cx(j + 1), ∀j = k, ... , k+Np−1 (7c)

‖∆u(ℓ)‖∞ ≤ 1, ∀ℓ = k, ... , k+Nc−1, (7d)

where U = U × · · · × U is the 3Nc-times Cartesian product

of the set U , and represents the feasible input set. Note that

the initial values of the arguments in Algorithm 1 are i← 1,

uabc ← uabc(k − 1), x← x(k), and is,ref ← is,ref(k + 1).
Problem (7) is typically solved by evaluating all possible

solutions, i.e., 33Nc , to conclude to the one that results in

the minimum value of (6), i.e., the minimum current error

and switching effort. Doing this, however, in real time within

a few microseconds can be computationally intractable. To

keep the computational complexity low, we propose to use

two different horizons, i.e., Nc < Np. This approach is in

contrast to FCS-MPC implementations where Np = Nc,

see [3] and references therein, and it is tailored to the needs

of MV drive systems. Specifically, due to the targeted low

switching frequencies, only a few changes in the control

action are anticipated within the prediction horizon. Thus, for

operating at low fsw the calculation of possible changes in

the control action along the whole prediction horizon Np can

be redundant. In addition, by considering that the first steps

of the horizon are of more interest since—according to the

receding horizon policy [24]—only u∗
abc(k) is applied to the

inverter, keeping the same control action for the last Np−Nc

steps of the prediction horizon will not adversely affect the

system performance. The latter, however, has to be ensured by

carefully choosing the prediction window Np · Ts; this point

is further elucidated and examined in Section III-B.

Hence, by successfully addressing the aforementioned re-

marks, the proposed approach can still achieve a favorable

performance of the drive (since the prediction horizon Np

remains sufficiently long). Moreover, the complexity of the
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optimization problem underlying long-horizon FCS-MPC re-

mains reasonable (since the control horizonNc can be kept rel-

atively short), rendering its real-time implementation feasible.

Finally, it is worth mentioning that if a further reduction of the

computational burden of the MPC problem is required, more

sophisticated solving methods, e.g., the sphere decoder [6],

[30], can be employed.

B. Assessment of the Objective Function

To evaluate the performance of the proposed objective func-

tion (6) with the drive system shown in Fig. 1 and parameters

provided in Table I,4 a set of steady-state simulations was

run for different values of λu, such that different switching

frequencies fsw resulted. Each simulation has a duration of

20 fundamental periods, while the sampling interval used is

Ts = 30µs. For each test (i.e., switching frequency fsw), the

current total harmonic distortion (THD) ITHD is recorded. In

doing so, the product of ITHD and fsw is computed to serve as

a performance metric, i.e.,

cf = ITHD · fsw . (8)

This metric quantifies the quality of the proposed FCS-MPC

method as it (approximately) defines a hyperbolic trade-off

between ITHD and fsw. This implies that a lower value of

cf indicates a favorable steady-state performance. In the

following figures the trends of cf over a range of switching

frequencies are approximated using polynomials for a clear

representation of the results.

Given the above framework, the performance metric cf is

shown in Fig. 3 for FCS-MPC with seven different horizon

combinations N = {Np, Nc} and nominal parameters in

the prediction model. Based on the presented results some

noteworthy observations can be made. First, it is evident that,

as also reported in [3] and [5], a long horizon improves the

drive performance, even if in some cases this seems to be

marginal. The reason for this is that the drive system is in

essence a first-order system with simple dynamics. Hence, as

reported in [3, Section VI-A], very long horizons offer mostly

modest performance benefits over a limited range of operating

points and switching frequencies, implying that a horizon of a

few steps typically suffices to achieve superior performance.

On the other hand, it can be observed that combinations

of a very long prediction horizon Np with a short control

horizon Nc can compromise the performance as the switching

frequency increases, see, e.g., the trend for N = {10, 4}
and N = {10, 2} for fsw > 300Hz in Fig. 3(b). Hence,

the proposed approach—according to which prediction and

control horizons of different length can be used—cannot be

directly employed for high fsw.

However, Fig. 3(a) shows that for shorter prediction hori-

zons Np the critical switching frequency f crit
sw , where the

performance starts to deteriorate, is relatively high, e.g.,

f crit
sw ≈ 500Hz for the combination N = {5, 1}. The higher

4Note that based on the parameters in Table I the total leakage reactance
of the machine is Xσ = 0.2548 p.u.

(a) Full range of studied fsw for N = {1, 1}, {5, 5}, {5, 2}, and
{5, 1}.

(b) Full range of studied fsw for N = {1, 1}, {10, 10}, {10, 4},
and {10, 2}.

Fig. 3: Performance metric cf as a function of the switching frequency fsw for
horizon combinations N = {1, 1}, {5, 5}, {5, 2}, {5, 1}, {10, 10}, {10, 4}
and {10, 2}.

f crit
sw is explained by the shorter prediction horizon Np and,

consequently, lower number of anticipated changes in the

control action within Np, as mentioned in Section III-A.

An important remark is that FCS-MPC with the horizon

combination N = {5, 1} achieves the exact same steady-

state performance—in terms of cf—with N = {5, 5} for

up to fsw = 500Hz. Hence, it can be deduced that long-

horizon FCS-MPC with the proposed objective function (6)

fully utilizes the advantages associated with long horizons,

see [3, Section VI]. Finally, it is important to point out that

for the relevant range of switching frequencies for MV VSD

systems, i.e., fsw < 500Hz, it can be seen that FCS-MPC with

Np = 5 achieves similar—and occasionally even better (e.g.,

for fsw > 400Hz)—values of cf compared with FCS-MPC

with Np = 10 and short control horizons Nc. Thus, it can be

concluded that for the switching frequency range of interest

the horizon combination N = {5, 1} is a favorable one to

achieve the desired performance benefits without increasing

the computational complexity of the problem.

Besides the examined simulation results, the choice of N
can be verified by the calculation of the critical switching

frequency f crit
sw . Since for the chosen N the drive operates

within the desired range of switching frequencies when only

one switching transition occurs in the prediction window

Np ·Ts, a boundary condition for the prediction horizon steps

is

Np · Ts = (12f crit
sw )−1 , (9)

where a three-level converter with 12 semiconductor devices
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Fig. 4: Performance metric cf as a function of the switching frequency fsw

for horizon combinations N = {1, 1} and {5, 1} with different sampling
intervals Ts.

Fig. 5: Trade-off between current THD ITHD and switching frequency fsw

for FCS-MPC with horizon combinations N = {1, 1} and {5, 1} for Ts =
30µs, and for FOC with SVM.

is considered. The right-hand side of (9) indicates the aver-

age time between two consecutive switching transitions [12].

Solving (9) for f crit
sw with Np = 5 and Ts = 30µs yields

f crit
sw = 555Hz. This value of f crit

sw can also be devised

from the results presented in Fig. 3(a). Thus, for a given

system with a specific Ts and operating range of fsw the

maximum Np can be calculated using (9) and then verified

by simulations. Nevertheless, it should be mentioned that this

approach is tailored to applications where a low switching

frequency is desired, e.g., MV drives. For other applications,

such as low-voltage systems that typically operate at much

higher switching frequencies fsw, setting Np = Nc is a more

reasonable choice as (9) yields a very small value for Np.

To further assess the objective function and the relevant

design choices, the effect of the sampling interval Ts is

examined. To this aim, the performance metric cf is studied

for different sampling intervals. Fig. 4 demonstrates the perfor-

mance metric for two horizon combinations and four different

values of the sampling interval. As can be seen, cf increases

with an increasing sampling interval, indicating a performance

deterioration. It is noteworthy, that such an adverse effect is

more prominent when the combination N = {5, 1} is used.

This implies that a short sampling interval is preferable, as

it better realizes the performance advantages of long-horizon

FCS-MPC. However, as can be observed, the difference in cf
between Ts = 20µs and Ts = 30µs is marginal for the given

range of fsw.

The presented observations are in line with the guidelines

regarding the granularity of switching for FCS-MPC methods.

As highlighted in [3, Section V], the desired sampling-to-

switching frequency ratio should be close to 100 so that

a favorable steady-state operation is achieved. This trend is

indeed demonstrated in Figs. 3 and 4, where the performance

deteriorates as the switching frequency increases due to the

decreasing granularity of switching.

Given the above analysis, and since the target switching

frequency range is below 500Hz, only horizon combinations

N = {5, 1} andN = {1, 1}with sampling interval Ts = 30µs

are analyzed and compared in the following sections. Fig. 5

shows the trade-off curve between ITHD and fsw for the

proposed approach with the chosen design parameters. As

can be seen, the proposed FCS-MPC scheme can improve

the current THD by around 10% at low switching frequencies

compared to one-step FCS-MPC. Notably, this improvement

comes at a minor computational cost, since the size of the

five-step FCS-MPC optimization problem is very small as the

number of candidate solutions is the same to that of one-step

FCS-MPC.

Finally, for comparison purposes, the standard industrial so-

lution for MV drives, namely field oriented control (FOC) with

space vector modulation (SVM), is used for benchmarking

purposes. The associated trade-off curve between ITHD and

fsw is also shown in Fig. 5. As can be seen, both FCS-

MPC formulations outperform FOC/SVM at low switching

frequencies, i.e., at the relevant range of fsw for MV drives.

Such a favorable behavior can be attributed to the beneficial

formulation of the MPC problem [3].

IV. ROBUSTNESS ANALYSIS

Depending on the motor operating point, its parameters can

vary considerably, e.g., as a function of the motor temperature

for resistances, or under the effect of magnetic saturation

for reactances. To identify the most important parameters for

an estimation algorithm design, the effect of the parameter
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(a) A +50% (up) and −50% (down) variation in
the stator leakage reactance Xls

(b) A +50% (up) and −50% (down) variation in
the rotor leakage reactance Xlr

(c) A +50% (up) and −50% (down) variation in
the mutual reactance Xm

(d) A +50% (up) and −50% (down) variation in
the stator resistance Rs

(e) A +50% (up) and −50% (down) variation in
the rotor resistance Rr

Fig. 6: Performance metric cf as a function of the switching frequency fsw for horizon combinations N={1, 1} and {5, 1}.

mismatches in the prediction model on the performance metric

cf of the proposed FCS-MPC is examined. To this aim, ±50%
variations in Xls, Xlr, Xm, Rs, and Rr are studied for the

chosen horizon combinations and the same values of λu used

in Section III. Note that for all simulations operation of the

IM at the rated speed and torque is assumed.

The results in Figs. 6(a), 6(b) and 6(c) show that, re-

gardless of the horizon combination, variations in Xls and

Xlr clearly detract from the controller performance metric,

whereas mismatches in Xm change it only slightly. Moreover,

it is seen that underestimated reactances lead to more substan-

tial performance deviations from the nominal behavior. On

the other hand, as shown in Figs. 6(d) and 6(e), variations

in the stator and rotor resistances have a negligible effect on

the performance metric cf , mainly due to their typically very

small value in MV drives.

The presented results are reasonable since an IM can be

considered as a load with essentially inductive behavior, where

the reactances can be modeled by the total leakage reactance

Xσ, see (3c). Note that the latter is mainly sensitive to

deviations in the stator and rotor leakage reactances, see [31].

Hence, it can be concluded that the mutual reactance as

well as the stator and rotor resistances can be excluded from

consideration when designing the estimation algorithm. On

the other hand, the FCS-MPC robustness can be significantly

improved by correctly estimating Xlr and Xls, and updating

the prediction model accordingly. However, as mentioned in

Section II, owing to the adopted inverse-Γ model, only the

total leakage reactance Xσ needs to be accurately estimated

to address the adverse effects of mismatches in Xls and Xlr.

The estimation algorithm developed in Section V exploits this

fact.

V. ESTIMATOR DESIGN

Motivated by the robustness analysis results, a simple es-

timation method is introduced in the following. By assuming
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(a) Simplified equivalent model of an IM
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(b) Representation of the back-EMF

Fig. 7: Principle of the proposed estimation algorithm.

that the stator Rs and rotor Rr resistances are approximately

zero—which is a valid assumption for MV machines [24]—the

inverse-Γ-equivalent model in Fig. 2(b) can be represented as

in Fig. 7(a), where vemf is the back electromotive force (back-

EMF). The differential equation that describes the dynamics

of the stator current is

X̂σ

dis(t)

dt
= vs(t)− vemf(t), (10)

where X̂σ denotes the total leakage reactance value to be

estimated and used in the prediction model (5).

The estimation algorithm is based on the assumption that

the back-EMF is sinusoidal and its amplitude remains constant

during the sampling interval Ts, see Fig. 7(b). Given this, the

total leakage reactance X̂σ can be devised from

‖vemf(k)‖
2
2 − ‖vemf(k − 1)‖22 =

v2emf,α(k) + v2emf,β(k)− v
2
emf,α(k − 1)− v2emf,β(k − 1) = 0 .

(11)

Each term in (11) can be found by discretizing (10) with the

forward Euler method, i.e.,

v2emf,z(ℓ) = (X̂σ∆Az(ℓ+ 1) + vsz(ℓ))
2 , (12)

where

∆Az(ℓ+1) = −
isz(ℓ + 1)− isz(ℓ)

Ts
, (13)

Algorithm 2 Update Xpred
σ

if B = 0 or 4CA/B2 > 1 then

X
pred
σ ← X

pred
σ (k − 1)

return

end if

calculate X̂σ1,2 from (17) and |ϕσ,l − ϕ| with (19)

∆ϕ =∞
for l ∈ {1, 2, 3} do

if |ϕσ,l − ϕ| < ∆ϕ then

∆ϕ = |ϕσ,l − ϕ|
i← l

end if

end for

Xpred
σ ← X̂σ,i

with z ∈ {α, β}, and ℓ ∈ {k, k − 1}. For example, for z = α
and ℓ = k − 1, vemf,α(k−1) is calculated as

v2emf,α(k − 1) =
(

−X̂σ ·
isα(k)− isα(k − 1)

Ts
+ vsα(k − 1)

)2

.
(14)

With the help of (12) and (13), (11) can be written in the

form of the following quadratic equation [32]

X̂2
σA+ X̂σB + C = 0 , (15)

where

A = ∆A2
α(k + 1) + ∆A2

β(k + 1)−∆A2
α(k)

−∆A2
β(k) , (16a)

B = 2
(

∆Aα(k + 1)vsα(k) + ∆Aβ(k + 1)vsβ(k)

−∆Aα(k)vsα(k − 1)−∆Aβ(k)vsβ(k − 1)
)

, (16b)

C = v2sα(k) + v2sβ(k)− v
2
sα(k − 1)− v2sβ(k − 1) . (16c)

After substituting (16) into (15), the total leakage reactance is

calculated with

X̂σ1,2 =
B

2A

[

−1±

√

1−
4CA

B2

]

, (17)

where the meaningful root is kept. The criterion for the latter

is based on the assumption that the back-EMF vector vemf

rotates counterclockwise by the angle corresponding to one

sampling interval when the correct value of X̂σ is used, i.e.,

ϕ = ωsTs , (18)

with ωs being the stator angular speed.

To implement the root-choosing criterion for (17), the

three possible angles between the back-EMF vectors at two

consecutive sampling intervals—vemf(k−1) and vemf(k)—are

calculated with

ϕσ,l = arccos

(

vemf,l(k)
Tvemf,l(k − 1)

‖vemf,l(k)‖2‖vemf,l(k − 1)‖2

)

, (19)
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Fig. 8: Direct model predictive control with reference tracking and total
leakage reactance estimator for MV VSD systems.

where l ∈ {1, 2, 3}. Note that in (19), the values of the back-

EMF vectors are computed by substituting the two possible

values of X̂σ, i.e., X̂σ1,2, from (17) into (12). Additionally,

the third value in (19), i.e., when l = 3, corresponds to the

total leakage reactance computed at the previous time step,

i.e., X̂σ(k− 1); this value is substituted into (12) in the same

manner. Note that, in theory, (18) and (19) should result in

the same angle when the correct value of X̂σ is used. As,

however, in practice small deviations may exist, the difference

|ϕσ,l − ϕ| is computed and the X̂σ that leads to the smallest

one is chosen. The block diagram of the proposed robust FCS-

MPC approach is shown in Fig. 8.

Further analysis of (17) reveals supplementary conditions

which have to be addressed in order to guarantee feasibility

of the estimation algorithm results. Specifically, when a switch

position does not change between two consecutive sampling

intervals, i.e., uabc(k) = uabc(k − 1), (16b) is often equal

to zero, thus leading to an incorrect calculation. Additionally,

cases where the root in (17) is negative are excluded from

consideration in the estimation algorithm.

Altogether, the above-mentioned conditions are summarized

in Algorithm 2. In the end, these special considerations force

the estimator to be idle, i.e., to use the value of the total

leakage reactance from the previous step Xpred
σ (k − 1) in

the prediction model, for the biggest part of the fundamental

period, namely around 90% of the time for the chosen value

of Ts. To visualize this point, the time intervals during which

the estimator is not executed are shaded in Fig. 9. Moreover,

a simple moving average technique with a time window of ten

sampling intervals is employed to improve the accuracy of the

estimation and mitigate the measurement noise. In doing so,

the averaged value Xσ of the estimated reactance is computed.

It is important to point out that such a moving average may

introduce a small delay in the computation of the total leakage

Fig. 9: Instantaneous estimated value X̂σ and its value based on the moving
average, i.e., Xσ , while applying a mismatch (up) and a zoomed-in view
(down). A variation of −50% is simultaneously introduced in both Xls and

Xlr at 0.2 s, resulting in the wrong value of X
pred
σ = 0.13 p.u., whereas the

actual machine reactance is Xmach
σ = 0.2548 p.u.. The FCS-MPC uses the

wrong value of X
pred
σ up until 1.4 s, i.e., the estimator is bypassed. At 1.4 s

the estimator is utilized and the correct value is provided to the controller,

i.e., X
pred
σ = Xσ .

Fig. 10: The normalized histogram and the posterior predictive probability dis-

tribution of the X̂σ values recorded over a span of 10 s. The 95% confidence
interval for the next estimation is CI95 = [0.247, 0.262] which is within the
range of ±3% from the nominal machine reactance Xmach

σ = 0.2548 p.u.

reactance. This small delay, however, is acceptable considering

the very small sampling interval Ts and the fact that the total

leakage reactance changes slowly over a few Ts. This means

that the reactance value used in the prediction model X
pred
σ

does not need to be updated at every iteration of the MPC

algorithm, and the estimation algorithm can be executed at a

slower rate, if needed.

VI. ESTIMATOR PERFORMANCE EVALUATION

MV drives with power and voltage ratings as those pre-

sented in Table I are not readily available for testing the

control software. Hence, to facilitate the development of new

control algorithms, while providing a risk-free environment, it

is common practice to assess the controller performance in a

HIL environment, where the presence of the physical system is

not required. Such an approach allows for testing the MV VSD

system under both nominal and transient operating conditions.

Given the above, the effectiveness of the proposed control

and estimation scheme is demonstrated by the time- and
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(a) Three-phase stator current is,abc (solid lines)
and their references (dash-dotted lines).

(b) Stator current harmonic spectrum. (c) Three-phase switch position uabc.

Fig. 11: HIL results at steady-state operation with the proposed FCS-MPC for N = {5, 1}. Top row: nominal parameters. Bottom row: a simultaneous −50%
variation in both Xls and Xlr is introduced while the estimation algorithm is active, resulting in effectively the same performance.

(a) Without (left) and with (right) the estimation algorithm. (b) Without (left) and with (right) the estimation algorithm.

Fig. 12: HIL results for the performance metric cf as a function of the switching frequency fsw for horizon combinations N = {1, 1} and {5, 1}. A
simultaneous +50% variation in both Xls and Xlr is introduced in Fig. 12(a), whereas a simultaneous −50% variation is introduced in Fig. 12(b) for the
same reactances. Each individual HIL test—indicated by a dot—corresponds to a real-time simulation of 2 s.

frequency-domain results from the tests conducted on the HIL

setup. The HIL system is based on a PLECS RT-Box 1 real-

time system that employs a Xilinx Z-7030 system-on-chip

technology with an FPGA and two embedded CPU cores. The

MV VSD system is simulated at a sampling interval of 2.5µs

on the processor of the PLECS RT-Box 1, while the FPGA is

used for the data acquisition (DAQ) to ensure high fidelity of

the real-time simulation. The measurements acquired from the

VSD system are fed to the control platform described below

via an analog interface, while the switch positions are received

by the inverter via digital inputs. For more details on the HIL

setup, the reader is referred to [33].

The proposed controller and estimation schemes are im-

plemented on the dSPACE SCALEXIO system, which has

a 2.8GHz Intel i7-6820EQ processor and a Xilinx Kintex-7

FPGA. Both the control and estimation loops are implemented

on the processor, while the FPGA performs the DAQ. The tests

performed relate to the VSD system shown in Fig. 1, with the

parameters in Table I, while N = {5, 1} and Ts = 30µs are

chosen. All results in this section are shown in the p.u. system.

By simultaneously varying both leakage reactances, Xls and

Xlr by ±50%, variations of approximately ±50% in the total

leakage reactance Xσ are introduced [31].

A. Steady-State Operation

Fig. 9 shows that in the presence of the mentioned mis-

matches, the proposed estimation scheme manages to esti-

mate the correct value of Xσ, update the prediction model

accordingly, and, thus, ensure that the FCS-MPC will remain

robust to variations in the leakage reactances. Notably, the

instantaneous value X̂σ (see the yellow dash-dotted line)

exhibits occasional spikes. These are due to the fact that

the estimation scheme relies on the stator current derivatives

(see (10)). As a result, the instantaneous estimations can be

adversely affected by noise. Nevertheless, as mentioned in

Section V, the adopted moving average strategy tackles this

issue and provides the averaged value Xσ which is very close

to the actual value of Xσ .
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(a) Steps in the electromagnetic torque. (b) Three-phase stator current iabc. (c) Three-phase switch position uabc.

Fig. 13: HIL results during torque reference step changes with the proposed FCS-MPC for N = {5, 1}. A simultaneous −50% variation in both Xls and
Xlr is introduced while the estimation algorithm is active. The average switching frequency is fsw ≈ 250 Hz.

(a) Steps in the electromagnetic torque. (b) Three-phase stator current iabc. (c) Three-phase switch position uabc.

Fig. 14: HIL results during torque reference step changes with the proposed FCS-MPC for N = {5, 1}. A simultaneous −50% variation in both Xls and
Xlr is introduced while the estimation algorithm is inactive. The average switching frequency is fsw ≈ 545Hz.

The estimation accuracy can be evaluated from Fig. 10.

Therein, it can be seen that in 95% of the cases the estimated

value X̂σ is within a range of ±3% from the nominal value of

Xσ , i.e., the estimation accuracy is very high. The time- and

frequency-domain results in Fig. 11 provide further insight into

the efficacy of the proposed estimation scheme. Specifically,

this figure clearly shows that when the estimator is active, such

that the estimated value X̂σ is used in the prediction model,

the same performance with fsw ≈ 245Hz and ITHD ≈ 6%
is achieved regardless of whether there are significant mis-

matches in the system parameters or not.

As a last test, the advantages of the proposed approach are

also highlighted in Fig. 12, which shows how the mismatches

detract from the system performance achieved when nominal

parameters are considered. It is worth noting that the HIL

results in Fig. 12 are similar to the ones obtained from the

simulations in Fig. 6. On the other hand, the FCS-MPC scheme

performance seems immune to any parameter mismatches

when the estimation algorithm is activated regardless of the

degree of the said mismatches, see Fig. 12. This figure clearly

demonstrates the effectiveness of the proposed estimation

algorithm, which, in conjunction with the designed FCS-MPC

algorithm, result in a favorable drive behavior. Namely, in line

with the simulation results, it can be observed that the long

horizon FCS-MPC delivers lower values for the cf metric,

even in the presence of severe parameter mismatches. This

is clearly shown in the right-hand side figures of Figs. 12(a)

and 12(b), where the dashed orange line overlaps with the red

one.

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2022.3219042

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TABLE II: Total average and maximum turnaround time tta of the proposed
direct MPC scheme (with and without the estimator) for different horizon
combinations N = {Np, Nc}.

N = {1, 1} N = {5, 1} N = {5, 1} w/estimator

Average tta 15.5µs 19.1µs 19.3µs

Maximum tta 18.8µs 24.1µs 24.6µs

B. Operation During Transients

To verify that the proposed estimation algorithm remains

effective during transient operating conditions, its performance

is tested when torque reference step changes are applied.

Specifically, the transient behavior in the presence of mis-

matches is shown in Fig. 13, where the electromagnetic torque

Tel is changed from 0 to 1 p.u. (upper row) and vice versa

(lower row) at t = 5ms. It is seen that the stator currents—and

consequently the electromagnetic torque—successfully track

their reference values. Additionally, the torque does not exhibit

any overshoots during the step changes, while the settling

times for the step-up and step-down tests are 3.3ms and

0.6ms, respectively.

These results clearly show that the dynamic performance

of the FCS-MPC is excellent as it is only limited by the

available voltage, as it is typical with direct control methods.

Moreover, the fact that the estimation scheme can provide the

correct value of Xσ in the prediction model guarantees that the

controller behavior does not deteriorate. Finally, it is important

to mention that the estimation scheme, and subsequently the

FCS-MPC algorithm, do not need to know which leakage

reactance is changed and by how much, since, thanks to the

adopted modeling, only knowledge of Xσ is required. It can

be concluded that this provides the proposed controller with a

high degree of robustness.

Finally, to study the effect of parameter uncertainties on the

dynamic behavior of the system, the same transient scenarios

are tested while the estimator is inactive, see Fig. 14. The

presented results demonstrate that although the settling times

remain unchanged the tracking performance degrades. More-

over, as the controller uses the wrong total leakage reactance,

it tends to react faster and more aggressively to the tracking

errors. As a result, the average switching frequency increases

to about 545Hz, see Fig. 14(c).

C. Computational Burden

To assess the computational burden of the presented algo-

rithm, Table II summarizes the total turnaround time tta on

the dSPACE platform for the proposed MPC scheme with

the two studied horizon combinations, i.e., N = {1, 1} and

N = {5, 1}. As can be seen, owing to the proposed formula-

tion of the direct MPC problem, the maximum turnaround

time—which is the most relevant metric from a real-time

implementation point of view—of the 5-step MPC is greater

by only 5.3µs than that of the traditional one-step FCS-MPC.

Moreover, for reasons of completeness, Table II shows the

turnaround time when the estimator is activated to demonstrate

its small computational requirements. It is worth noting that

the computational load of the estimator is independent of the

MPC formulation, thus it can be considered as an overhead

to the total computational burden of the implemented control

scheme.

VII. CONCLUSIONS

This paper proposed a long-horizon FCS-MPC strategy for

IM MV drives that achieves superior steady-state performance

compared with the traditional one-step FCS-MPC and the

standard industrial control solution, i.e., FOC with SVM.

Moreover, thanks to its direct control nature, very short

settling times during transients are achieved. In addition to

the performance benefits of the proposed control scheme,

the two main drawbacks of long-horizon FCS-MPC are also

addressed, namely (a) the pronounced computational com-

plexity, and (b) the sensitivity to parameter variations and

mismatches. To tackle the first shortcoming, the optimization

problem underlying long-horizon FCS-MPC is tailored to the

needs of the chosen case study by introducing the concept

of separate prediction and control horizons. In doing so, a

long prediction horizon can be implemented—and thus the

associated performance benefits fully harvested—with only a

small computational overhead compared with one-step FCS-

MPC. As for the robustness of the proposed long-horizon

FCS-MPC, this is improved by implementing an effective

and computationally light estimation algorithm tailored to

MV drives. The accuracy of the estimation scheme is further

enhanced by the adopted modeling of the MV drive, i.e., the

so-called inverse-Γ model. The presented HIL results based

on a three-level NPC inverter driving an MV IM demonstrate

the effectiveness of the proposed control and estimation ap-

proaches. As shown, a superior drive performance is achieved

and maintained, even in the presence of significant variations

in the system parameters in comparison to traditional one-step

FCS-MPC.
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