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Abstract—In this paper, we propose an intelligent analog
beam selection strategy in a terahertz (THz) band beamspace
multiple-input multiple-output (MIMO) system. First inspired
by transfer learning, we fine-tune the pre-trained off-the-shelf
GoogleNet classifier to learn analog beam selection as a multi-
class mapping problem. Simulation results show 83% accuracy
for the analog beam selection, which subsequently results in 12%
spectral efficiency (SE) gain over the existing counterparts. For
a more accurate classifier, we replace the conventional rectified
linear unit (ReLU) activation function of the GoogleNet with the
recently proposed Swish and retrain the fine-tuned GoogleNet
to learn analog beam selection. It is numerically indicated that
the fine-tuned Swish-driven GoogleNet achieves 86% accuracy,
as well as 18% improvement in achievable SE, over the similar
schemes. Eventually, a strong ensembled classifier is developed
to learn analog beam selection by sequentially training multiple
fine-tuned Swish-driven GoogleNet classifiers. According to the
simulations, the strong ensembled model is 90% accurate and
yields 27% gain in achievable SE in comparison with prior
methods.

Index Terms—Terahertz (THz) band, beamspace, multiple-
input multiple-output, analog beam selection, GoogleNet, Swish,
ensembled classifier.

I. INTRODUCTION

Over the recent years, beamspace technology [1] has at-
tracted much attention in high-frequency bands, as an alterna-
tive to the conventional massive multiple-input-multiple-output
(MIMO) architecture. In the latter case, each antenna element
requires a specific radio frequency (RF) chain1, which makes
this architecture inefficient in practice, owing to a massive
number of required RF chains. In beamspace technology
though, the scattered signals of divergent paths (beams) can
be concentrated on a limited number of dominant beams and
the spatial domain channel is thereby transformed into the
beamspace domain channel. For this reason, from a massive
number of beams, merely a limited number is adopted, which
in turn necessitates fewer RF chains for reliable beam steering.

Hybrid analog-digital beamspace MIMO is consequently a
reasonable system in terms of energy, cost, and complexity,
provided that analog beam selection is efficiently performed.
However, this sets out new challenges due to the massive num-
ber of beams. While on the one hand, the prior optimization-
based analog beam selection efforts such as those in [2]

1RF chains are known as dominant modules in energy consumption,
hardware cost, and complexity order of conventional massive MIMO systems.

impose expensive computational burden on the transceivers,
the low-complexity machine/deep learning approaches like
[3] and [4] on the other hand, suffer from accuracy loss
in this regard. According to the statistics in [5], trained on
environmental samples (e.g., the line-of-sight (LoS) and non-
line-of-sight (NLoS) beams), two well-known classifiers i.e.,
the linear SVM [3] and the decision tree [4] are only 33% and
55% accurate, respectively, which in turn brings about a non-
negligible performance loss for the beamspace architecture.

The main contribution of this paper is to mitigate the
precision drop in prior learning-aided works on analog beam
selection by proposing a fine-tuned deep learning technique,
along with an ensemble learning technique as follows.

• First, we consider the analog beam selection problem as a
multi-class classification task. To this aim, we retrain the
pre-trained off-the-shelf GoogleNet classifier [6] based
on the concept of transfer learning [7], so as to learn
the analog beam selection. Simulation results verify that
the retrained GoogleNet exhibits some 83% accuracy for
the analog beam selection and offers up to 12% gain in
achievable spectral efficiency (SE) over the counterparts,
if the signal-to-noise-ratio (SNR) is 30dB.

• We fine-tune the GoogleNet classifier for further preci-
sion by replacing its conventional activation function i.e.,
the rectified linear unit (ReLU) with the Swish activation
function [8]. It is numerically shown that retraining the
fine-tuned GoogleNet achieves some 86% accuracy, as
well as 18% achievable SE gain over the counterparts, at
SNR = 30dB.

• In addition, the performance of the proposed analog beam
selection scheme is further enhanced by sequentially
incorporating a set of fine-tuned GoogleNets (each one
is known as a weak learner) into an ensembled model
(known as a strong learner) [9]. The designed strong
learner according to the simulations exceeds the achiev-
able SE of the prior counterparts by up to 27%, while
yielding 90% accuracy, at SNR = 30dB.

In remainder of the paper, Sections II and III describe
the system setup and the solution approach, whereas the
simulation results and conclusions are presented in Sections
IV and V, respectively.



Fig. 1: Hybrid analog-digital beamspace MIMO architecture at the transmitter.

II. SYSTEM SETUP

A. Hybrid Analog-Digital Architecture

Consider the downlink THz communication, where the
transmitter employs Nt (NRF

t ) transmit antennas (transmit RF
chains) for serving a receiver equipped with Nr (NRF

r ) receive
antennas (receive RF chains). The power-normalized transmit
symbols are denoted by s ∈ CNs×1, where E

[
ssH

]
= INs .

The transceivers employ a hybrid analog-digital beamspace
architecture to preserve the system flexibility, as well as
the efficiency in hardware cost, and energy consumption
[1]. As demonstrated, in Fig. 1, a baseband digital matrix
FBB ∈ CNRFt ×Ns is leveraged at the transmitter, followed by
an analog beam selection network denoted by St ∈ RNt×NRFt

in matrix form for mapping NRF
t transmit RF chains onto a

subset of Nt transmit antennas/beams. Further, a lens antenna
array is deployed at the transmitter, including an energy-
focusing electromagnetic lens, where its focal surface is
equipped with a large-scale antenna array.

At the receiver side, once the lens antenna array receives
the signals, a mapping is performed between the predominant
receive antennas/beams and the receive RF chains through the
receive analog beam selection network Sr ∈ RNr×NRFr , where
a baseband digital combining matrix WBB ∈ CNRFr ×Ns is
embedded afterwards to obtain the transmit symbols. Hence,
the discrete-time received baseband complex signal is given
by y = WH

BBS
H
r Hbx+WH

BBS
H
r n, wherein n ∼ N(0, σ2INr)

is the additive white Gaussian noise (AWGN) with the noise
power σ2 and Hb denotes the THz beamspace channel.

B. Spatial Domain THz Channel

According to the well-known Saleh-Valenzuela geometric
model [11], a ray-based clustered THz channel is assumed
to have Ncl cluster of scatterers, each contributing Nray
propagation rays. Further, a limited angle-of-departure/arrival
(AoD/AoA) spread is supposed for a typical cluster l,
denoted by ψlt and ψlr , respectively. For a typical clus-
ter/ray l/u, the complex-valued gain is denoted by αl,u,
while the physical AoD and AoA for the transmitter and
the receiver are respectively denoted by θl,ut ∈ ψlt , and
θl,ur ∈ ψlr . Let us denote the antenna element spacing

by d, the speed of light by c, the wavelength by λ =
c/fc, and the carrier frequency by fc. Then, the spatial
AoD/AoA can be represented by φl,ut = (d/λ) sin θl,ut and
φl,ur = (d/λ) sin θl,ur , respectively. Accordingly, the narrow-
band discrete-time spatial domain THz channel H ∈ CNr×Nt

is expressed as H = γ
∑Ncl
l=1

∑Nray
u=1 αl,uar

(
φl,ur

)
aH

t

(
φl,ut

)
,

with the normalization factor γ =
√
NrNt/NclNray.

For the uniform linear array (ULA), the antenna array
responses at the transmitter/receiver, are represented by

at

(
φl,ut

)
= 1√

Nt

[
1, ej2πφ

l,u
t , ..., ej2π(Nt−1)φl,ut

]H
∈ CNt×1

and ar

(
φl,ur

)
= 1√

Nr

[
1, ej2πφ

l,u
r , ..., ej2π(Nr−1)φl,ur

]H
∈

CNr×1, respectively. It is important to note that the THz
channel H in the spatial domain is effectively transformed into
the equivalent channel in the beamspace domain Hb, based on
the DFT operations in lens antenna array (see [10] for details).

C. Problem Statement

In the considered hybrid analog-digital beamspace massive
MIMO system, we focus on achieving analog beam selection
for the transmitter and the receiver St and Sr, under the as-
sumption of known precoding/combining matrices and known
beamspace channel. This problem can be formally stated as
[12]

min
St,Sr

||Hb − SrWBBF
H
BBS

H
t ||2 (1)

s.t.

Sr ∈ Sr,

St ∈ St,

where St and Sr are the analog beam selection candidate sets
at the transmitter and the receiver, respectively. The optimal
solution for acquiring the analog beam selection variables Sr
and St can be obtained by exhaustive search method, which
is computationally expensive and practically infeasible for a
beamspace massive MIMO system.

III. SOLUTION APPROACH

In this section, the training sample set acquisition, the
Swish-driven GoogleNet, the transfer learning and the en-
semble learning are subsequently elaborated as our solution
approach to (1).

A. Sample Set Acquisition

We consider the network parameters of path gain, transmit
power, AoA, and AoD constituting 4Ncl ×Nray + 2 random
real-valued features with one feature for the transmit power
of the transmitter, one feature for the path gain, 2Ncl ×Nray
features for the AoDs/AoAs of the transmitter/receiver, and
also 2Ncl × Nray features for the real and imaginary parts
of the complex-valued gain to form a data sample. In the
following, we conduct a normalization process, a Gaussian
mixture model (GMM) fitting, and a labeling operation over
the samples.



Fig. 2: Architecture of GoogleNet, modifications performed on training samples to fit into the input layer, replacing ReLU with Swish, and setting the number
of linear layer classes from 1000 to NRF

t +1 (or NRF
r +1).

1) Normalization: Due to the diversity in sample ranges
(e.g., the transmit power is based on dB, while the AoDs
are within [0,2π]), a normalization pre-processing needs to
be accomplished for each feature of samples as āmf =

[
amf −

Mean(amf )
]
×
[
amax
f − amin

f

]−1
, where amf indicates the value

of the f th feature in the mth sample and Mean(amf ) is the
mean of all amf . In addition, amax

f and amin
f denote the maxi-

mum and the minimum values of the f th feature among the en-
tire samples, respectively. Hence, the mth sample as a feature
row vector can be characterized as zm ∈ C1×(4Ncl×Nray+2)
with 4Ncl ×Nray + 2 normalized features.

2) GMM Fitting: Since the beamspace channel
features φt, φr, and α follow a Gaussian distribution
[13], we adopt a GMM for appropriately fitting the
beamspace channel. In doing so, we have H̃b =

A×
(∑K

k=1 wkexp
(
− (φr−µφrk )2

2σ2
φrk

− (φt−µφtk )2

2σ2
φtk

− (φr−µαk )2

2σ2
αk

))
,

with the GMM-fitted beamspace channel H̃b, the GMM
amplitude A, and K Gaussian components, where
wk ∈ [0, 1] is the weight of the Gaussian component
k and

∑K
k=1 wk = 1. Note that in H̃b, the central

coordinates are (µφrk
, µφtk

, µαk ), whereas σφrk
, σφtk

, and
σαk indicate their corresponding standard deviation. In vector
representation, the Gaussian component k can be expressed as
qk = [wk, µφrk

, µφtk
, µαk , σφrk

, σφtk
, σαk ]. Equivalently, the

spatial features of the samples based on all of the Gaussian
components can be given by q = [A; q1; q2; ...; qK ]T =
[A,µφr1

, µφt1
, µα1

, σφr1
, σφt1

, σα1
, µφr2

, µφt2
, µα2

, σφr2
, σφt2

,
σα2

, ..., µφrK
, µφtK

, µαK , σφrK
, σφtK

, σαK ]T . Finally, the
optimal vector q, which is used to model the beamspace
channel distribution can be determined according to [14].

3) Labeling: The cost function for evaluating the analog
beam selection decisions (i.e., labeling) is the objective in
(1), which equivalently optimizes the achievable SE [12]. The
labeling phase is a multi-class mapping operation that deter-
mines the optimum beam and its corresponding RF candidates
obtained from [15], wherein each RF chain is a class label
which analog beams are assigned to.

B. GoogleNet Architecture
As an off-the-shelf pre-trained network, GoogleNet has been

trained by the well-known datasets (e.g., ImageNet) before-
hand, while its weights, biases, and other training parameters
have already been set. According to Fig. 4, the network
has 22 layers with an input layer of size 224×224×3 for
receiving a two-dimensional (2D) image of width and length
224 and 3 channels of RGB (i.e., red, green, and blue).
The main parts in GoogleNet architecture are its inception
modules that incorporate multiple convolutions, kernels, and
max-pooling layers, simultaneously within a single layer. The
main activation function in GoogleNet is ReLU, which is
computationally cheap and embedded into a filter concate-
nation layer within the inception module (see Fig. 4) for
improved training performance. By going deeper in GoogleNet
architecture as observed in Fig. 4, the linear layer of size 1000
is followed by a dropout layer with 40% ratio of dropped
outputs and connected to a Softmax activation function with
1000 classes.

C. Swish-driven GoogleNet
Despite its accurate classification capability, the perfor-

mance of GoogleNet can still be improved by minor architec-
tural modifications. For instance, the authors in [16] proposed
to substitute the ReLU activation functions in GoogleNet with
the Leaky-ReLU (an extension of the conventional ReLU)
for faster convergence. In [17], the large convolutional filters
in GoogleNet were factorized into smaller ones, and this
modification benefited for the middle layers of GoogleNet.
In this paper, we modify the ReLU activation functions in the
filter concatenation layer of the inception modules (see Fig. 4)
in the GoogleNet architecture by the Swish [8]. The latter is
a self-gated, smooth, and non-monotonic activation function
recently proposed by the Google Brain Team. By definition,
the Swish activation function for an any input x can be given
by fSwish(x) = x.fSigmoid(x) = x

1+e−x . The numerical results
in [8] indicate that the Swish is more accurate than the ReLU
(and its alternative extensions, such as Leaky-ReLU) with a



similar level of computational complexity, especially in deeper
architectures.

D. Transfer Learning

To fit the size of the samples into the input layer of
the fine-tuned Swish-driven GoogleNet, certain modifications
need to be accomplished in accordance with Fig. 4. First,
we extend the dimensionality of a typical sample zm of size
(4Ncl×Nray+2) into a matrix form of size (4Ncl×Nray+2)×
(4Ncl×Nray+2) as a 2D image. Then, we perform an image
resizing through the interpolation technique to transform each
sample onto the size of 224×224. Specifically, we use bicubic
interpolation that can preserve the quality of the primary
image by extracting the most determinant properties (which
correspondingly are related to the most dominant features of
the sample in our case). The 224×224 resized 2D image of zm
is eventually extended into a three dimensional (3D) image by
using zero-valued rescaling. To do so, the RGB color triplet
for each pixel is set to zero, thus leading to a 3D RGB image
of size 224×224×3 to feed the input layer of the GoogleNet.

We further fine-tune the final linear layer of the GoogleNet
by setting NRF

t +1 classes for the transmitter (or NRF
r +1 for

the receiver), which trains the GoogleNet to map any sample
(beam) onto the correct class (RF chain). During the training
process, the beamspace channel feature space is processed
through the layers of the GoogleNet, while its main features
(energy-focused features of the beam) are extracted. The Soft-
max classifier eventually learns a multi-class mapping based
on the labeled samples obtained from [15]. The probability of
the ith RF chain being selected by the Softmax function is

δ(NRF
t )i =

[
e

(
NRFt

)
i

]
×
[∑|NRFt |

i=1 e

(
NRFt

)
i

]−1
.

Finally, as observed in Fig. 4, a modified version of the
GoogleNet is trained by fine-tuning its linear layer and acti-
vation functions. This approach is known as transfer learning,
whereby the main layers of a pre-trained network are directly
imported into the new application, while other layers remain
unchanged. By doing so, the fine-tuned GoogleNet learns ana-
log beam selection at the transceivers based on the beamspace
channel feature space, while its internal weights, biases, and
other parameters are mostly fixed.

E. Enhancing Accuracy via Ensemble Learning

We further improve the accuracy of the proposed procedure
for analog beam selection through the ensemble learning
technique. By doing so, we train a strong ensembled model
that combines the predictions made by distinct weak learners
(e.g., the Swish-driven GoogleNet modules in this paper) to
achieve a more precise model. To do so, a gradient boosting
(gradBoost) mechanism [9] is adopted, wherein we sequen-
tially train the weak learners.

In order to form an ensembled model as in Fig. 3, we
adopt M1 random subsets Zm(m ∈ M1) of the entire
training sample set Z , where the weak learners are trained
over different subsets. For any sample zm ∈ Zm of size
C1×(4Ncl×Nray+2), the weak learner performs a classification
and assigns a specific class from ωm ∈ Ω = {0, ..., NRF

t/r }.

Fig. 3: Ensemble learning schematic.

The goal in each step is boosting the training accuracy of the
current weak learner through focusing on the misclassified
observations made by the previous ones. The misclassified
samples are injected forward to train the next weak learner
more efficiently. The strong ensembled learner then adopts
a majority voting mechanism based on a weighted summa-
tion of M1 weak learners. To this aim, a voting counter
Ψ(ω) ∈ N1×Ω indicates the number of classifiers, which
adopted the RF chain class ω. The weighted summation is
given by ΦensM1

=
∑M1

m=1 cmΨm(ω), where cm denotes the
weight (impact) of the mth Swish-driven GoogleNet. Indeed,
the more accurate a weak learner is, the more it contributes to
the strong ensembled model. The strong ensembled learner is
therefore generally less biased than the weak learners, since
the misclassified observations are efficiently propagated and
learned along the ensembling chain. The challenge here is to
select the optimal order of the classifiers to be trained within
the ensembling chain, i.e., obtaining the optimal order of ΦensM1

is complicated, especially for a long ensembling chain.
Instead of optimizing the said order globally, we are

seeking for the best possible pairs of (cm,Ψm(ω)) to be
built locally and added iteratively in a sub-optimal approach.
The strong ensembled model can be recurrently formu-
lated as Φensm = Φensm−1 − cm∇Φensm−1

E(Φensm−1), whereby
the best possible pair (cm,Ψm(ω)) can be obtained as
(cm,Ψm(ω)) = arg minc,Ψ(ω)E(Φensm−1 + cΨ(ω)), with E(.)
denoting the strong ensembled learner fitting error. Finally,
the RF chain class ω, which maximizes the voting counter
Ψm(ω) by contributing M1 weak learners and their im-
pacts, is adopted by the strong ensembled learner as ω∗ =
arg maxω∈Ω

1
M1

∑M1

m=1 cmΨm(ω).

IV. SIMULATION RESULTS

We consider a clustered THz channel with Ncl = 4 clusters
and Nray = 2 propagation rays in each cluster. The signal
wavelength is λ = 1.36, the AoAs and the AoDs are uniformly
distributed within [− 1

2 ,
1
2 ], while the complex-valued gain

follows CN (0, 1). Simulations are performed for a lens-
aided MIMO system equipped with Nr = 64, Nt = 256, and
NRF

r = NRF
t = 4. For the simulations related to the GoogleNet
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Fig. 4: Convergence and performance of fine-tuned GoogleNet for analog beam selection.

TABLE I:
GoogleNet configuration

Parameter Value
TrainingSize 70%
ValidationSize 30%
MiniBatchSize 128
MaxEpochs 6
Shuffle every epoch
InitialLearnRate 1e-3
ValidationFrequency 3

as indicated in Table I, we used 70% of the sampling data
for the training and the rest were utilized for the validation.
Moreover, the “MiniBatchSize” shows the number of images
used at each iteration of training/validation. The maximum
number of training epochs is indicated by “MaxEpochs” and
the “Shuffle” field is added every epoch, which randomly
initiates a new datastore with the same training/validation
data. The initial learning rate “InitialLearnRate” slows down
the learning process in the transferred layers owing to its
adopted small value and the “ValidationFrequency” field
specifies that the validation is performed every three iterations
during training. The achievable SE of a hybrid analog-digital
beamspace system can be expressed as SE = log2

∣∣INs +
ρ

σ2Ns
R−1
n (WBB)H(Sr)

HHbStFBB(FBB)H(St)
H(Hb)

HSrWBB
∣∣,

where ρ indicates the average received power and
Rn = (WBB)H(Sr)

HSrWBB is the noise covariance matrix
after combining.

The analog beam selection baseline strategies MLP, k-NN,
and SVM with the same internal configurations as in [3], the
conventional ReLU-driven GoogleNet, the modified Swish-

driven GoogleNet, and the ensemble learning schemes are
investigated for comparison in terms of the achievable SE.
Additionally, the fully digital zero-forcing (ZF) strategy by
using all of the beams at the transceivers is the optimal
benchmark baseline.

First, we assess the convergence accuracy and loss ratios
for the training/validation process of the proposed Swish-
driven GoogleNet scheme in Figs. 4(b) and 4(d), respectively.
Clearly, the training/validation process is inaccurate over the
first iterations. That is because the weights and biases of the
input layer and the linear layer are not well fine-tuned with
the sampling data. Gradually, as the iterations progress, the
training/validation accuracy improves (tends to 100%), while
the training/validation loss declines (tends to 0).

Further, we analyze the performance of our proposed
schemes in a comparative fashion. The benchmark fully-digital
ZF strategy with NRF

t = 256 and NRF
r = 16 RF chains

apparently has the largest achievable SE in Fig. 4(a) and
Fig. 4(c) at the expense of severe system complexity, energy
consumption, and hardware cost. Fig. 4(a) with varying SNR
in 0dB∼30dB and NRF

t = NRF
r = Ns, where Ns = 4, indi-

cates that by increasing the SNR the achievable SE improves
for all the baselines. According to Fig. 4(c) with varying Ns
in 4∼10, where NRF

t = NRF
r = Ns and SNR = 10dB, the

achievable SE improves for a higher number of simultaneous
data streams. Our proposed ensemble learning scheme is the
most superior over the other baselines and is the closest
scheme to the benchmark due to its better accuracy. This
scheme according to Fig. 4(a) improves the achievable SE of
the MLP scheme [3] at SNR = 30dB by up to 27%. Similarly,
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TABLE II:
GoogleNet-based analog beam selection accuracy comparison.

Architecture/Function RMSPROP ADAM SGDM
GoogleNet-ReLU 83.4% 81.37% 82.22%
GoogleNet-Swish 86.21% 85.27% 86.93%

at SNR = 30dB, the proposed Swish-enabled GoogleNet and
the conventional ReLU-driven GoogleNet schemes achieve
better performance than other strategies MLP, SVM, and k-
NN, by exhibiting 18% and 12% achievable SE gain compared
to the MLP scheme [3], respectively.

In Fig. 5, under the same configurations in Fig. 4(c) with
Ns = 4, the ensemble learning strategy, the Swish-driven
GoogleNet and the conventional ReLU-driven GoogleNet with
90%, 86% and 83% accuracy average accuracy are the most
accurate schemes. The reason is that retraining/modifying the
pre-trained networks such as GoogleNet based on transfer
learning for the classification tasks (e.g., analog beam selec-
tion) is more accurate than training a deep network such as
MLP [3] from scratch. Using the transfer learning method,
the parameters in a pre-trained deep structure are mostly
kept unchanged, while a few certain parameters are fine-tuned
based on samples. We further examine the accuracy of the
conventional ReLU-driven GoogleNet as well as the fine-
tuned Swish-driven GoogleNet schemes by applying different
training schemes e.g., root mean square propagation (RM-
SPROP), adaptive moment estimation (ADAM), and stochastic
gradient descent method (SGDM), as demonstrated in Table
II. One can observe that the Swish-driven GoogleNet scheme
trained by the SGDM can achieve the best analog beam
selection accuracy. Note that unlike the training accuracy (in
the presence of labeled samples) or the validation accuracy
(with limited number of non-labeled samples) in Fig. 4(b) that
both approach 100%, the accuracy in Fig. 5 is obviously lesser
owing to operating on large non-labeled analog beam selection
samples.

V. CONCLUSIONS

In this paper, we proposed a novel deep learning technique
to address the analog beam selection problem in a THz
beamspace MIMO system. Specifically, we retrained the pre-
trained off-the-shelf GoogleNet for learning the analog beam

selection based on the concept of transfer learning. Then, we
fine-tuned the GoogleNet by enabling the Swish activation
function for better analog beam selection precision. Finally, an
ensemble learning technique employed for boosting the pre-
cision beyond that of the conventional fine-tuned GoogleNet.
Simulations revealed a remarkable enhancement in accuracy
as well as in the achievable SE.
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