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ABSTRACT The progress in computational offloading is heavily pushing the development of the modern
Information and Communications Technology domain. The growth in resource-constrained Internet of
Things devices demands the development of new computational offloading strategies to be sustainably
integrated in beyond 5G networks. One of the solutions to said demand is enabling Mobile Edge Computing
(MEC) powered by advanced methods of Machine Learning (ML). This paper proposes the application of
ML-powered computational offloading strategy in a wireless cellular network by applying the traditional
fundamental Travelling Salesman Problem (TSP) on computational offloading location selection. The main
specificity of the proposed approach is the use of imagery data. Thus, the paper executes a literature review
to identify existing strategies. It further proposes a novel method utilizing the location-like imagery data to
identify the most suitable computational location by executing the search for an identified route between
locations using the proposed Deep Learning (DL) model. The model was evaluated and achieved MAE –
1,575, MSE – 10 119 205, R2 – 0.98 on the testing dataset, which outperforms or is comparable with other
well-known architectures. Moreover, the training time is proven to be 2-10 times faster. Interestingly, the
MAE values are relatively low compared to the target values that should be predicted (despite rather high
MSE results), which is confirmed by the almost perfect R2 value. It is concluded that the proposed neural
network can predict the target values, and this solution can be applied to real-world tasks.

INDEX TERMS Computational offloading, Machine Learning, Mobile Edge Computing, Optimization

I. INTRODUCTION

At the active stage of introducing (beyond) 5G technology, it
is necessary to understand exactly how the computational of-
floading processes would be arranged in the next generation
networks [1]. Proper use of computational and communica-
tion resources should become one of the main principles in
designing new network architecture. Simultaneously, these
principles should not contradict the existing ones: energy
efficiency, flexibility, high speed of information transfer,
integration with the Internet of Things (IoT), etc. [2].

One of the ways to provide support for said dynamics and
handle the growing demands while decreasing the overall
system complexity is to move the network resources closer to
the devices, e.g., to apply MEC for computational offloading
and/or caching, depending on the task [3], [4]. In MEC,

this proximity is usually measured in round-trip latency, so
MEC locations are often ten milliseconds or less from the
data source compared to public Cloud data centers, which
can be more than one hundred milliseconds away [5]. Here,
the main advantage of MEC is the emergence of additional
opportunities for personalization, reducing latency, improv-
ing the user-experienced throughput, and ensuring higher
energy efficiency of the end nodes for a very broad range of
applications [6].

Especially important, the MEC-enabled topology is ex-
pected to be heavily dynamic [7]. The fact that each user,
through their device or the set of smart devices forming
wearable networks [8], will further dynamically connect to
the infrastructure network, which, in turn, aims at providing
the best Quality of Service (QoS), and is expected to funda-
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mentally change the observed network operation in terms of
computational offloading. Various other IoT devices, namely,
autonomous vehicles, drones, etc., are also expected to utilize
computational offloading for their tasks’ execution [9]. The
need to correctly model the resulting network dynamics will
inevitably lead to the need for new complex analytical models
for the data management [10], which may become scalably-
problematic as the amounts of traffic and uses grow [11].

By their very nature, the State-of-the-Art (SOTA) data
processing approaches applied on MEC sometimes fail to
capture the patterns found in the real system. Simultaneously,
using human resources to process/control information should
be, in principle, excluded as an option due to the large
number of factors leading to gross errors, which are natu-
rally related to routing or offloading location selection. For
example, the tasks from the discrete optimization field (e.g.,
TSP) could be solved with heuristics since the quality of the
solution is greatly reduced with an increase in the number of
discrete values [12]. Statistical approaches, in this example,
will work only while the data distribution remains stable.
Therefore, ML and Artificial Intelligence (AI) could be suit-
able solutions to this scalability problem.

Today, the field of AI/ML is one of the most attractive
technological developments in the Information and Commu-
nications Technology (ICT) domain mainly due to the growth
in computational capacity and introduction of new mathe-
matical methods [13]. BBC estimated the global ML market
was worth $1.4 billion in 2017 and is estimated to reach $8.8
billion by the end of 2022, growing at a Compound Annual
Growth Rate of 43.6% between 2017 and 2022 [14]. The
cornerstone of this growth is mathematical algorithms that
allow extracting useful information from a large amount of
data is a root of ML.

Generally, ML methods in the MEC application do-
main may be divided into Supervised Learning (SL) and
Unsupervised Learning (UL) [15]. The principle of building
any traditional SL model is related to the empirical data
accumulated over a certain period. In its simplest form, such
a dataset is divided into training and testing sets. In the
first stage, the model attempts to find and learn the patterns
in the data using the training set. In the second stage, the
performance of the trained model is evaluated on a testing
set using different metrics. For example, the classification
methods, one of the most widely used ones, are SL for
modeling or predicting discrete values.

In contrast, UL is applied when it is impossible or ex-
tremely difficult to obtain labeled samples [16]. The goal is
to model the latent or underlying structure of the distribution
in the data, e.g., by Clustering. The Clustering problem can
be formulated as organizing objects into groups according to
the rules the algorithm generates from the data. An example
of such a task could be the Clustering of Base Stations
(BSs) in several locations according to various characteristics
or to create distributed MEC clusters within the operator
infrastructure.

To contribute to the body of knowledge, this work looks
deeper into the ML algorithms applied to the offloading
location selection within MEC. By these means, we attempt
to understand how the predictive ability of various network
characteristics could be increased, allowing the managed
resources to potentially be utilized more flexibly in future
networks. The sole use of mathematical methods embedded
in predictive models only partially improves the system op-
eration significantly, while embedding those into the hyper-
visor of the MEC system may provide slightly better results.

Specifically, this work focuses on studying and developing
DL methods, which can be applied in managing resources
and deployed to MEC systems. This work aims to find a
(sub-)optimal desired parameter in the given network, es-
pecially when the information about links/deployment is of
low quality, e.g., during network planning in developing
countries. Instead of processing 1D data, for example, vectors
of different parameters, 2D data are utilized (graphical map).
The proposed solution is based on the Convolutional Neural
Network (CNN), which predicts the optimal length from
given 2D data.

The main contributions of this paper are:

• We transfer the problem of prediction of desired
parameters for MEC onto the processing of location-
related 2D data;
• We propose a CNN capable of solving the men-
tioned regression problem;
• We prove that the proposed model is less time
consuming but can outperform the well-known archi-
tectures;
• We prove that imaging-based TSP could be ap-
plied to the MEC problem and define the architecture
that could utilize this approach.

To the best of the authors’ knowledge, the literature lacks
work that applies a DL model over 2D data for MEC opti-
mization. This paper shows the results of the ML application
experiment over imagery data to predict the optimal target
value. Considering that there are no datasets for MEC or
communication networks with 2D data, we have utilized the
publicly available dataset for "Traveling Salesman Computer
Vision" [17]. The approach could be further used in any
network where the network planning information is available
in GEO-like data.

The rest of the paper is organized as follows. Section II
provides general information on the use of ML for solving
network-related optimization problems. Section III extends
the background information with a specific focus on imagery
data. Next, Section IV proposes an ML model to solve the
offloading location selection problem. Further, Section V out-
lines selected numerical results. Potential future integration
aspects of a practical infrastructure-based system are given
in Section VI. The last section concludes the paper.
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II. BACKGROUND ON TRAFFIC OPTIMIZATION WITH ML
FOR MEC
The introduction of MEC and the joint use of ML algo-
rithms is hampered by two main factors: resource limita-
tions and network dynamics. Network resources (e.g., wire-
less band/bandwidth) and the computational budget of Edge
nodes (e.g., computational capabilities and energy depen-
dency). Edge nodes can be cellular BSs, WiFi Access Points
(APs), or mobile energy-independent nodes located in dif-
ferent geographic locations (not necessarily on the BSs in
contrast to the conventional Edge computing model). They
may dynamically join or leave the system, and the wireless
connections and their state may change for various reasons.
Hence, the network topology may frequently change during
the model training, which may be a significant limitation for
traditional analytical models. The following set of literature
highlights existing works executed closer to this domain,
while the next section specifically focuses on the imagery-
related specifics.

In [18], the authors primarily optimize the network topol-
ogy through decentralized Peer-to-Peer (P2P) communica-
tions. Given a set of MEC nodes, they seek to build a
topology by choosing wireless channels to ensure the con-
vergence of the model’s learning with their custom algorithm
under resource constraints. The work describes the proposed
Reinforcement Learning (RL) algorithm, which is evaluated
on Fashion-MNIST and CIFAR-10 datasets using the follow-
ing metrics: accuracy, loss, the cost of communication, and
the training time of the models. The work highlights that the
highest quality (in terms of all indicators) provides PSGD and
L2PL algorithms; the L2PL algorithm learns a little slower
than D-PSGD by about 12.5%; The convergence of the L2PL
and PSDG algorithms is statistically the same.

From the MEC perspective, the devices could be divided
into clusters based on their computational budget [19]. The
work states that a particular model is better suited for a
specific type of device momentarily on a lower level or by
branching. Then, the data from underlying models could
be transferred to the general model, employing Federated
Learning (FL), where the final clustering decision could be
made. At the same time, each of the underlying models can
exchange information with each other, thereby improving
the overall system performance. The idea is similar to the
hierarchical clustering algorithm, where clusters are formed
in a tree or hierarchy. Each node in the tree represents a
different cluster, and the clusters in the hierarchy are known
as dendrograms.

Similarly, the authors of [20] give a specific example
of using FL to optimize work with Edge devices without
reproducing the concept of Distributed Learning. Instead,
they consider the homogeneity of the common server where
the model is trained. In the FL process, the global model is
shared with a server that is not heterogeneous. Each client
creates a local model by examining their data and the global
model and sends an updated version back to the central server
for merging.

Due to the heterogeneous nature of the system, this di-
versity can create several challenges for resource-constrained
nodes while timely executing ML tasks and, thus, can cause
a delay in overall learning progress. To address this issue,
an approach considering multiple global and local models
based on available client resources is proposed in [20]. It
aims at minimizing the global model’s convergence time
by collecting the nodes’ computational power updates for
building a more reliable system, i.e., low-power devices have
a higher learning delay than high-power devices that have
already learned. In addition, it optimizes the learning process
and the process of application of algorithms to new data.

Traditionally, training an AI model requires considerable
computing resources and can only be supported on powerful
Cloud servers [21] or, potentially, on emerging MEC nodes
clustered under the Fog umbrella [22]. From the model
retraining perspective, it is a rather computationally-intensive
process as it is necessary to allocate considerable computing
power to train a new model, as well as to collect enough
labeled data with the new scenarios is essential, which can
also be time-consuming.

The solution to this problem may be a self-learning model
architecture based on a Generative Adversarial Network
(GAN) [21]. Multiple generators are trained to produce syn-
thetic data that can capture the traffic data distribution gen-
erated by multiple services at different locations within the
network coverage area. The authors introduce the so-called
Rand index to assess the quality of the work of a self-learning
architecture, adapting to dynamic vehicular scenarios. For
comparison, the simplest k-means algorithm was used to
demonstrate that the quality of the GAN model, depending
on the sample size, is better, on average, by 24%.

Liu et al. [23] also attempted to solve the network offload-
ing problem to optimize the overall network load distribution.
First, the authors demonstrated the architectural scheme,
which includes a set of Edge macro BS, micro BS, Remote
Radio Node (RRN), Roadside Unit (RSU), etc., and one ded-
icated Edge server connected to a hub by a high-bandwidth
backhaul link or is located directly to the hub. The model is
a relatively simple feedforward neural network architecture,
and the dataset is split into three parts for validation reasons –
training (80% of data), validation for selecting model hyper-
parameters (15% of data), and testing for evaluating results
(5% of data). The simulations showed that the computational
efficiency increased from 93% to 96%.

Similarly, the authors of [24] developed a cost-effective
coordination strategy to maximize the average learning utility
with limited resources mapped to the budget-limited multi-
armed bandit problem by searching for optimal hand se-
quences. The specific goal was to maximize the average
reward per hand while keeping the total cost of the hand
below-given budget. This statistical approach utilized fairly
fast ML algorithms: k-means and Support Vector Machine
(SVM), thus, maintaining resource use efficiency while in-
creasing the accuracy of predictions by 12%, compared with
existing solutions.
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To summarize, the methods for working with computa-
tional offloading of significant data volumes are fundamental
in forming the future architecture of MEC-powered net-
works. It is primarily due to the amount of data constantly
increasing as the number of new devices generating this
data also grows. In addition, the more recent generations
of networks are becoming more user-centric. Therefore, ML
becomes more actual in this technology field. However, the
outlook of using ML from an imagery perspective in MEC
scenarios remains an open task.

III. PROBLEM FORMULATION SCOPE
As a separate subdomain, image processing has already
been applied in different ICT-related research directions,
e.g., classification, object detection, segmentation, etc., as
well as in the communication network research field. For
example, the authors of [25] proposed an image-based signal
strength prediction method utilizing environmental images as
the input to their DL method.

Moreover, some approaches for path loss prediction were
proposed in other works [26], [27]. 2D data was also applied
in traffic control, as presented in work [28]. The authors pro-
posed the DL model based on CNN for intelligent network
traffic control. The main motivation is that existing traffic
control methods could have been more effective since those
lack a closed loop, i.e., do not learn from their previous
experiences and abnormalities.

One of the fundamental networking problems currently
solved with imagery ML is related to TSP, which has many
variations that are directly used to solve real problems in
abstract networks. The authors of [29] were studying it from
Dubins Vehicle perspective, which is similar to the classical
TSP and, in particular, to the Euclidean TSP (ETSP), where
the shortest path between any two target locations is a straight
line. The practical motivation for learning ETSP naturally
arises in robotic and drone applications.

Overall, genetic algorithms can also be used to solve the
TSP problem. With this respect, the work [30] investigates
the application of genetic algorithms to TSP by examining
combinations of different algorithms for binary and unary
operators to obtain better solutions and minimize the search
space. Three binary and two unary operations were tested in
this work.

Boffa et al. [31] also demonstrated a similar approach
with Graph Neural Network (GNN). The key idea is to
use the GNN architecture to solve the Power and Channel
Allocation Problem (PCAP), which is of practical importance
for the allocation of radio resources in wireless networks.
Experimental results show that existing architectures are still
unable to capture the structural features of a graph and are not
suitable for tasks where actions on a graph directly impact the
attributes of the graph itself. Although the authors’ results
do not exceed the existing solutions in terms of metrics, it
is important to note that this approach is very promising.
In essence, the TSP data is presented as dependencies, and
applying ML algorithms directly related to finding a structure

in graphs appears logical. Using this architecture, the authors
showed the effectiveness of the distance coding method for
the multipurpose optimization of model parameters, which
also served as our motivation to apply it to the MEC domain.

In summary, ML plays a significant role in optimizing
MEC operation in cellular networks and can be further uti-
lized for different tasks than the ones listed above. Notably,
FL and Reinforced FL are some of the most frequently used
methods of ML in this field of research. Another gap in this
field is a lack of datasets for ML, which would allow to
experiment with different models and compare results with
other approaches, which is a reason why some works utilize
similar, yet imagery-based, datasets to solve this task [18],
[20], [32], [33]. Therefore, pushing our research one step
closer to more efficient MEC operation.

IV. METHODOLOGY
In this section, we propose solving the NP-hard problem us-
ing DL by considering its connection with MEC and mobile
networks. This section covers the problem definition, data
processing, and description of the proposed neural network.

A. THE PROBLEM DEFINITION
The aim of this experiment is to propose a DL model for the
prediction of the defined value, in our case, an optimal length
of the path in the given depicted network. All stages of the
model development are presented below (see Figure 1).

The problem is solved on the "Traveling Salesman Com-
puter Vision" dataset [17] and has a rather straightforward
analogy with the task of optimizing Edge Computing. We can
draw a parallel between cities and the distances between them
in the form of the Edge BS and the same distance between
them, for example, latency.

Formulating the problem in terms of ML, we arrive at:
• Features (input to DL model) – map images with MEC

Nodes and routes between them (2D data);
• Target (output of DL model) – the optimal distance

between MEC Nodes (1 numeric value);
• Metrics – Mean Absolute Error (MAE), Mean Squared

Error (MSE), and R2.
The model development process consists of a common set

of steps for most ML tasks: data preparation, data analysis,
model development, training process, and evaluation.

B. DATA DESCRIPTION
The dataset was taken from the open resource Kaggle "Trav-
eling Salesman Computer Vision" [17]. Note, it is worth
clarifying that this particular task does not aim to find
the shortest route between cities but to find the length of
the best (in terms of minimum distance) route marked on
the map. Although this is not a TSP task in its purest form,
reducing it to its classic version is straightforward if needed.

The imagery data in the dataset is a randomly generated
set of graphical maps with various attributes: size, number of
nodes, and optimal connections. Figure 2 shows a map with
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FIGURE 1. The algorithm of model development.

several cities and one best route. However, some maps are
larger and contain multiple routes, e.g., in Figure 3.

FIGURE 2. Example of a small map from a dataset.

FIGURE 3. Example of a large map from a dataset.

In addition to images, there are tabular data (see Table 1),
which describe the maps – the number of nodes, distance, and
the size of the image.

Image processing in DL is a computationally expensive
process. In this regard, the training of the model occurs
iteratively. At each iteration (step in epoch), a defined number
of images are fed into the model using tensors (batch).

TABLE 1. Example preprocessed tabular data.

id key filename distance height width nodes

12641 971x292-281-6677.jpg 12641.jpg 6677 971 292 281
7294 923x353-104-6808.jpg 7294.jpg 6808 923 353 104
15600 786x429-395-10261.jpg 15600.jpg 10261 786 429 395
9390 425x599-130-36703.jpg 9390.jpg 36703 425 599 130
10051 692x889-29-3623.jpg 10051.jpg 3623 692 889 29

As described previously, the entire data set should be
divided into several phases for a correct assessment of the
quality of the model: training, validation, and testing. In this
dataset, a testing one is provided separately. Data selection
for validation occurs randomly from the training set in a
percentage ratio of 35 to 65. The size of the resulting number
of samples in each set is as follows: Training set – 10, 411
images; Validation set – 5, 607 images; Testing set – 4, 005
images.

The sizes of the images fed to the input of the model were
studied for all samples, see Figure 4 and 5. The distribution
of the target variable is shown in Figure 6.

The statistics obtained on the training, validation, and
testing sets regards to the route length are represented in
Table 2.

TABLE 2. The statistics over training, validation, and testing sets.

Training Validation Testing

Median 9,512 9,519 9,603
Average 17,684 17,931 17,856
Dispersion 25,147 26,165 25,381
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FIGURE 4. Statistics over image width.
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FIGURE 5. Statistics over image height.

C. BASELINE
Since there is no approach to solving this problem for the
imagery dataset (described in subsection IV-B), several well-
known SOTA architectures of neural networks were used
for comparison with the proposed method. For this purpose,
the following architectures were selected: DenseNet121 [34],
ResNet34 [35], and VGG16 [36] as architectures that are
frequently used in computer vision tasks and there is an
opportunity to use pretrained models.

In this experiment, the mentioned models were utilized as
the backbone, meaning that the existing pretrained model was
used. Application of the backbone allows to extract features
from the input and to prepare it for the oncoming processing
and the target value prediction. After feature extraction, the
fully connected network is added to predict the target value.
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FIGURE 6. Distribution of the target value on different samples.

This part is represented with a flattened layer and 3 linear
with ReLU activation function (a more detailed description
of these layers is introduced in subsection IV-D). The training
parameters are: a loss function is MSE, an optimizer is Adam
with a learning rate 0.001, and a number of epochs is 10.

D. PROPOSED DEEP LEARNING MODEL
To find the best route’s length, a CNN was developed consist-
ing of two convolutional layers, five layers with ReLU acti-
vation functions, two max-pooling layers, one flatten layer,
and four linear layers. The complete network architecture is
shown in Figure 7. The programming language is Python, and
Pytorch was chosen as the main library for building a neural
network model.

Description of each layer of the neural network (the repro-
duced from PyTorch documentation1) is as follows:

• Convolutional layer applies 2D convolution to an input
signal that consists of multiple input planes. Mathemat-
ically, this operation is illustrated by

out(Ni, Coutj ) = bias(Coutj )+

+

Cin−1∑
k=0

weight(Coutj , k) ⋆ input(Ni, k),
(1)

where ⋆ – 2D cross-correlation operator, N – batch size,
C – number of channels, H – height of input, W – width
of input.

• ReLU layer applies a rectified linear unit function ele-
ment by element

ReLU(x) = (x)+ = max(0, x), (2)

where x – input to the function.

1See "PyTorch: From research to production": https://pytorch.org/docs/s
table/nn.html
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• Max pooling layer selects the largest value in each
pooling region. In this layer, the resolution of feature
maps is reduced. Thus, the important information is
preserved [37].

• Flatten layer flattens the input matrix into a one-
dimensional tensor;

• Linear layer applies a linear transformation to the input
data as

y = xAT + b, (3)

where y – output data, x – input data, A – weights, b –
bias.

As depicted in Figure 7, the model consists of 3 blocks.
The first one has a convolutional layer with a kernel size of
3 and 6 feature maps. ReLU activation function and Max
pooling layer with a kernel size of 2 and stride of 2. The
second block also consists of the convolutional layer with
a kernel size of 3 and 16 feature maps, ReLU activation
function, and Max pooling layer with a kernel size of 2 and
stride of 2. These blocks perform feature extraction. The third
block is aimed at predicting the expected value. It consists of
Flatten layer, 3 ReLU activation functions and 4 linear layers
with 128, 64, 32, and 1 neuron.

Importantly, each transformation is a differentiable opera-
tion. Therefore, gradient methods may be applied to optimize
the weights of our model. The model is trained on GPU
Nvidia GForce RTX 2080 Ti [38]. The applied loss function
is MSE. The number of epochs for training is 10. The
optimizer used is Adam, with a learning rate of 0.001.

The reasons for using this optimizer are [39]:
• Computational efficiency;
• Hyperparameters have a visual interpretation and usu-

ally do not require much tuning;
• Small memory requirements;
• Invariant to diagonal scaling of gradients;
• Suitable for problems with very noisy or sparse gradi-

ents (in our case, the distance measure has a fairly high
variance, in which noise is not excluded).

The model parameters optimization occurs using the error-
back propagation method, where the gradient calculation
occurs backward through the network, with the gradient of
the last weight layer computed first and the gradient of the
first weight layer computed last. Partial gradient calculations
for one layer are reused when calculating the gradient for
the previous layer. Such backward flow of error information
makes it possible to efficiently compute the gradient on each
layer compared to the naive approach of calculating the
gradient of each layer separately [40].

V. EVALUATION AND NUMERICAL RESULTS
This section elaborates on the main metrics of interest,
provides selected numerical results and related discussion
toward the integration with the infrastructure-based network.

A. METRICS FOR EVALUATION
The metrics that reflect the quality of the trained model are:

• Mean Absolute Error:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (4)

• Mean Square Error:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (5)

• Coefficient of determination:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳi)2
, (6)

where n is the number of objects in the sample; yi –
real value of the target variable; ŷi – the predicted value
of the target variable; ȳi – the mean value of the target
variable.

B. NUMERICAL RESULTS
Training time of proposed model was 23 minutes and 31
seconds (+/- 20 seconds variation was also observed).

Graphs showing the variation of the loss function and
metrics on the training and validation sets during training
are provided in Figures 8, 9, and 10. The model code is
also available in Open Access on the GitHub platform for
reproducibility [41].

Based on the obtained results, it takes on average 2 minutes
30 seconds for one iteration of model training, which allows,
if necessary, to retrain it with updated data in a time-efficient
manner. Naturally, the neural network allows for better pre-
dictions on training and validation sets over each iteration.

Note, the results in the last epoch seem to be getting
worse, however, it could be due to the following. During the
training, the intermediate results can change either positively
or negatively. It is a part of the training process, and these
changes can be insignificant on the larger number of epochs.
Looking at the training process’s general trend is much more
important.

Moreover, the difference between training and validation
results during the training process is relatively small. There-
fore, the model is not overfitted. However, it is essential to
note that the training and validation sets are statistically very
similar, so the overfitting of the model should be evaluated
carefully with the standard deviation in the data of more
than 26, 165.

The results for all tested models are presented in Table 3.
The methods are evaluated with metrics: MAE, MSE, R2,
where the best results, which can be achieved, for MAE
and MSE is 0, and R2 is 1. Here, the proposed model
achieved results on the validation set: MAE – 1, 200, MSE –
4, 762, 818 and R2 – 0.99, and on the testing set: MAE –
1, 575, MSE – 10, 119, 205 and R2 – 0.98. The results
achieved are promising. It seems that MSE values are too
large. However, it is important to note that this value is
a squared error; thus, large values may appear, especially
when the distance values are relatively large (see Figure 11).
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FIGURE 7. The architecture of proposed CNN.
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FIGURE 8. The value of the MAE metric during model training.

However, the absolute error MAE is much smaller, which is
a good result.

According to Figure 11, the distribution of the target and
predicted values on the testing set are almost similar. Thus,
it could be concluded that the model could learn patterns for
the correct distance prediction. This fact is supported by the
result of R2, which is almost ideal (0.98).

On the other hand, the baseline models perform worse
than the proposed one. All of them have MAE in the range
of 1, 548 – 2, 182 on the validation set, and 1, 482 – 2, 278
on the testing set, MSE is in the range of 8, 394, 001 –
15, 004, 180 on the validation set and 10, 220, 651 –
15, 369, 350 on the testing set, R2 is in range of 0.98 –
0.99 on the validation set, 0.98 on the testing set. MAE and
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FIGURE 9. The value of the MSE metric during model training.

MSE achieved relatively large values in comparison with the
proposed CNN. However, the VGG16 model achieved better
results on the validation set for metric MAE. Despite that, the
proposed model still has better results with other metrics over
the validation and testing sets. One of the possible reasons for
the worse results of models from baseline is the complexity
of the architectures. This dataset doesn’t require complex
architecture for feature extraction, which is why the designed
model of the neural network is more suitable in this case.

The next aspect worth noting is training time. ResNet34
needs 5.1 min to train, DenseNet121 – 7.5 min, VGG16 –
11.5 min. Compared with the training time of the pro-
posed model (2.5 min), the baseline models are more time-
consuming. Consequently, it leads to the necessity of more
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TABLE 3. Comparison of results on validation and testing sets with SOTA approaches.

Metric MAE MSE R2 Time per epoch,
Type of set Validation Testing Validation Testing Validation Testing mins

ResNet34 2,182 2,278 8,394,001 10,220,651 0.99 0.98 5.1
DenseNet121 1,644 1,635 15,004,180 15,369,350 0.98 0.98 7.5

VGG16 1,548 1,482 14,526,834 13,261,871 0.98 0.98 11.5
Proposed 1,200 1,575 4,762,818 10,119,205 0.99 0.98 2.5

0 1 2 3 4 5 6 7 8
Epoch number
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2
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FIGURE 10. Coefficient of determination during model training.

time for retraining, which can have a bad impact on dynamic
systems. At the same time, this model gives better results
according to the objective metrics. It can be concluded that
the proposed model is more efficient in contrary to other
compared models.

Despite the represented results, there are possible options
for improvement:

• Modification of model by adding additional layers;
• Application of other architectures of neural networks,

such as RL, stacking with simpler algorithms, genera-
tive adversarial networks, neural graph networks, etc.;

• Weight regularization can help to reduce overfitting and
improve the generalization of the model, which is useful
in the real-world application;

• Use some additional information (features), but not only
the pictures themselves, for example, additional knowl-
edge about objects – about locations, through which the
length of the optimal route is calculated;

• Additional experiments with different optimizers, loss
functions, etc.;

• Application of cross-validation to reduce overfitting.

Finally, the initial preprocessing of images is worth men-
tioning as those had different sizes, and the model at the input
requires a picture of the same size. In this regard, all images
were scaled down to uniform resolution. It is a good first

0 25000 50000 75000 100000 125000 150000 175000
Distance

0

50

100

150

200

250

300

350

400

N
um

be
r

Predicted distance in testing set
Target distance in testing set

FIGURE 11. Distance values distribution in testing set and the predicted values.

approximation, however, with such a transformation, some
information may be lost in larger images, and noise is added
in small ones, degrading the quality of the model.

In addition, the data has the following noted issues:
• Some paths could overlap, causing the ratio of total

pixels to total length to be misleading;
• The resulting color becomes brighter as the paths over-

lap with other path segments and nodes.
In the current ML implementation, some information may

need to be recovered due to image compression to a smaller
size. This can be fixed, for example, by using so-called
padding, i.e., when iterating over the data, the maximum
possible size is taken from all the images, and all others
are padded with constant pixel values. During training, an
additional task of the model may be to determine the padded
parts of the picture.

VI. POTENTIAL INTEGRATION WITH CELLULAR
NETWORKS
The potential architecture combining all the technologies
described above may solve some emerging problems, i.e.,
on the one hand, lack of capacity in data centers and, on
the other hand, low computational capabilities of the end
devices, as well as heterogeneity of the environment. In
particular, using the proposed model would allow selecting
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the offloading location not with NP-time depending on the
number of available Edge nodes but flexibly and adaptively.
Notably, the aim of this work is not to give the answer where
the decisions about performing the offloading should be
made but rather to highlight the importance of ML-powered
decision making, which may allow to effective select the
offloading location taking into consideration the target budget
(being it computational needs, latency, energy efficiency,
incentive or any other target value).
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FIGURE 12. Architectural aspects of ML-powered offloading scenario.

Figure 12 shows an example case of the cellular network
with a set of MEC-powered nodes. As those nodes are
expected to be a part (or somewhat connected) of the cellular
infrastructure, a natural hypervisor of the cellular network
core is introduced. For simplicity, it could also be given the
role of the MEC orchestrator (to be potentially integrated as
the core module similarly to the authors’ previous work [42]),
which would get the ability to control the processing of a
large amount of information due to its high computing capa-
bilities. Naturally, the decision could be made in a centralized
manner, however, this approach is not scalable and, thus,
some decisions could also be made closer to the end-users,
therefore, localized and/or distributed in a Fog/Cloud-like
manner [43] on towards the eNodeB side [44]. Thus, there
may be an impact of the (semi-)distributed Cloud on the
actual offloading nodes’ operation. It should also be noted
that the more centralized the decision-making is, the more
likely it is to be integrated with existing cellular operator
infrastructure.

By introducing the orchestration rules, the execution of the
ML process may be considered one of the most promising

approaches for location selection [45]. The orchestration
can be organized at a lower level through DL algorithms
in conjunction with other ML models. For example, if a
given computational offloading demand (target value) of a
specific resource-constrained device is given to a trained ML
network, it may provide the orchestrator (or the device itself,
depending on the scenario) with a set of potential computa-
tional offloading locations that fulfill the demand/budget on
the fly.

Indeed, defining and having access to the SOTA informa-
tion of the network operation is critical from many perspec-
tives [46]. The BSs are physical devices with fixed locations,
and thus, traditional MEC operation may be ensured. Fog
nodes could be considered weakly floating virtual spaces
whose task is quickly identifying important dataflow from
BSs while acting as a part of the orchestrator knowledge.
End devices are still mobile and highly resource-constrained,
but this aspect cannot be omitted in the dynamics of modern
networks.

Nonetheless, there would be a need to obtain ad-
ditional information concerning the wireless channels’
load/quality/delays/etc., thus, have more knowledge of the
system operation. It should be chosen optimally for each task.
Still, it sounds unrealistic if the computational environment is
separated from the cellular network infrastructure. However,
it could be modeled with, e.g., probabilistic approaches [47].
Looking closely, the connections between the end devices
and the Edge nodes are reminiscent of the images on which
we trained the neural network in the previous sections, e.g.,
by finding the length of the optimal path. The interesting
point is that (sub)-optimality can be understood in terms of
distance and information transfer time.

Finally, the life cycle of an ML model is essential to
be analyzed, keeping in mind that each stage of designing
is an important part of the development. Without this con-
sideration, it may be difficult to demonstrate a qualitative
improvement from the introduction of ML in operation. The
previous section showed that specific solutions to the TSP
problem from the combinatorial optimization section are still
relevant. An open-source dataset allows one to apply an ML
algorithm to find the optimal path length by extrapolation,
thus, choosing the optimal path or, for example, a data trans-
mission channel between the BS and the remote Cloud node
(or group of Fog nodes), optimizing the route calculation.

VII. CONCLUSIONS
Summarising, this paper outlines the analysis of scientific
literature and formulates the main points that should be taken
into account in future research or the design of a system
that includes Edge Computing and ML by the analogy of
finding an optimal route in imagery-based TSP. As a result, a
general scheme of a mobile network was formed using Edge
computing and CNN.

The training process of the proposed model is depicted
in the graphs, and the results are represented in tables and
discussed. In particular, we showed that the proposed model
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outperforms the well-known architectures in almost all cases
on the testing set: MAE result is 1, 575, MSE is 4, 762, 818,
R2 is 0.98. Despite some large metrics results such as MSE
and MAE, this model is still competitive since the compara-
ble models achieved the same or worse results. Since the pro-
posed model is light, it works faster than other architectures
from baseline, which is an advantage over other methods in
an applied problem. Additionally, possible improvements and
future work are also introduced. The code is published on the
GitHub platform under the MIT license [41].

In future work, we plan to continue the study of existing
approaches, focusing on the functionality of Edge devices
and architectural solutions in future-generation networks and
a deeper dive into the TSP and its varieties from the point
of view of mobile networks. Moreover, we plan to conduct
experiments to improve the developed model, compare it
with other approaches and apply it to the architectural scheme
identified earlier. In addition, models will be trained for
linking the Cloud-cellular and separately for the data center.
After that, the entire system will be tested at a specially
organized test stand. If such a concept is successful, imple-
mentation will be implemented, which involves application
on real data, subsequent rapid scaling, and high-quality de-
velopment.
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ACRONYMS
AI Artificial Intelligence
AP Access Points
BS Base Station
CNN Convolutional Neural Network
DL Deep Learning
FL Federated Learning
GAN Generative Adversarial Network
GNN Graph Neural Network
ICT Information and Communications Technology
IoT Internet of Things
MAE Mean Absolute Error
MEC Mobile Edge Computing
ML Machine Learning
MSE Mean Squared Error
P2P Peer-to-Peer
PCAP Power and Channel Allocation Problem
QoS Quality of Service
RL Reinforcement Learning
RRN Remote Radio Node
RSU Roadside Unit
SL Supervised Learning
SOTA State-of-the-Art
SVM Support Vector Machine
TSP Travelling Salesman Problem
UL Unsupervised Learning
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