
Interoperability of OPC UA PubSub with Existing
Message Broker Integration Architectures

David Hästbacka, Petri Kannisto, Antti Kätkytniemi
Tampere University
Tampere, Finland

{david.hastbacka, petri.kannisto, antti.katkytniemi}@tuni.fi

Abstract—Interoperable communication technologies are of
key importance in production systems with increasing needs for
data in their adoption of data-driven methodologies and new,
emerging applications. OPC UA PubSub defines an alternative
to the traditional client-server communication with a publish-
subscribe model for data to cater to scalability and data-driven
cloud application needs. In this paper, the OPC UA PubSub
model is compared to some other message broker and commu-
nication technologies and integrated with an existing message
based integration model for evaluating the interoperability. A
case example is presented where data payloads and information
security practices are integrated using an adapter approach.

Index Terms—OPC UA PubSub, Interoperability, Industry4.0

I. INTRODUCTION

Industrial production systems are dependent on communi-
cation, and the need for data is increasing with data-driven
operations and the adoption of artificial intelligence (AI)
methods, e.g. to optimize operation and minimize use of
resources. The need is evident within Industry 4.0 integrations
and the implementation of cyber-physical systems (CPS) using
Internet of Things (IoT), cloud computing and AI [1]–[3].

Communication technologies are of key importance in these
systems of systems when both the amount of data and the
number of data sources are on the rise. Ultimately, one would
want plug and play of components [4] regarding both hardware
and software. Integration from device to device and from edge
to cloud is required when digitalizing operations. Doing this
efficiently for software systems requires interoperability. Inter-
operability has multiple definitions, but this paper considers it
the ability of entities to both communicate and act together,
realizing loosely coupled integration [5]. Depending on the
definition, interoperability can occur in multiple levels, such
as technical and semantic (the focus of this paper) as well as
organizational and legal [6]. For interoperability and Industry
4.0, the development and adoption of standardized data models
and services as well as adoption of industrial communication
standards are seen as high-priority challenges and actions [3].

Industrial process monitoring and control systems may
have a lifetime of decades, and modernization often involves
communicating with legacy systems as well. Development and
standardization within Open Platform Communications (OPC)

This work received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 723661 as well
as from Academy of Finland under grant id 322676 ”Distributed Management
of Electricity System” (DisMa).

has been one of the most significant efforts in advancing com-
munication practices to integrate the control systems, devices
and monitoring applications of various vendors. The Unified
Architecture (UA) standard specifies platform-independent
communication protocols, information models and security
practices in order to have interoperable communication be-
tween the systems and components of various manufacturers
[7]. One of its newer additions, the PubSub specification of
Part 14 [8], defines an alternative to the traditional client-server
model with a publish-subscribe (PubSub) model to cater for
better scalability in data-driven applications.

Outside of industrial and high-dependability applications,
these message-oriented communication models, decoupling
the producers and consumers, e.g., using a publish-subscribe
model and/or a message broker, have been used for long.
The typical use cases include IoT applications as well as
Internet and cloud-based systems composed of multiple com-
ponents, such as microservices processing data. The exam-
ples of broker-based technologies include Advanced Message
Queueing Protocol (AMQP) and Message Queuing Telemetry
Transport (MQTT), for which OPC UA PubSub also defines
support. Despite a similar base communication technology,
the integration of existing applications with the new OPC UA
PubSub communication is not as straightforward as one might
think.

In this paper, we discuss how OPC UA PubSub opens
up OPC UA to a broader set of application integrations and
consider the integration with existing broker-based communi-
cation architectures. A case study example is presented where
an integration in both ways is implemented between OPC UA
PubSub and an existing AMQP message broker architecture
for a plant-wide process control application. The research
questions can be summarised as follows:

• How does OPC UA PubSub stack up against other
message-broker-based integration models?

• Can OPC UA PubSub be adopted for and integrated
with an existing message based integration architecture
to further enhance its interoperability?

Section II presents related work and background to the need
for new integrations. Following is an introduction to OPC UA
PubSub in Section III and a comparison with message-oriented
communication models, including AMQP, MQTT and User
Datagram Protocol (UDP) in Section IV. Section V presents

kannistp
Typewriter
D. Hästbacka, P. Kannisto, and A. Kätkyniemi, "Interoperability of OPC UA PubSub with Existing Message Broker Integration Architectures", in 48th Annual Conference of the IEEE Industrial Electronics Society, 2022, accepted for publication.

Copyright © IEEE
IECON 2022, Brussels, Belgium - https://iecon2022.org



our example case and implementation with OPC UA PubSub
and AMQP communication. The results and discussion from
our comparison and example case are provided in Section VI
before concluding the paper in Section VII.

II. DATA INTEGRATION IN PROCESS INDUSTRY AND
RELATED RESEARCH

Industrial processes may contain multiple sub-processes and
chained entities along a supply chain. Linked processes may
cause bottlenecks, and it may be necessary to coordinate
distributed production. For example, some local optimization
might affect a later stage of processing, e.g. use of raw
materials or resources, and impact the global optimum in terms
of used resources or environmental impact.

To improve interoperability, the communicated data should
adhere to information models based on open standards.
Industry-accepted standards are among the key factors of
successfully implementing Industry 4.0 [3], [9]. A proposed
conceptual framework for data-driven smart manufacturing
implies the exploitation of Internet and cloud technologies
as data is collected and processed [10]. In today’s globally
networked processes, Internet connectivity is often mandatory,
even for components on lower levels typically not exposed to
the Internet. This sets requirements on information security but
also on cyber security [11] associated with a physical risk.

There are only a few related studies involving the new OPC
UA PubSub. In previous research, an OPC-UA-PubSub- and
MQTT-based configuration tool and a PubSub implementation
that can be integrated into other OPC UA applications have
been developed [12]. The OPC UA MQTT tool introduced
enables the flexible configuration of publishers and subscribers
[13]. An interesting development is the OPC UA synergy plat-
form [14] that includes a PubSub server and is developed with
the ISO/IEC 30131 IoT reference architecture in mind. In their
work they consider HTTP, AMQP and UDP communication
for interoperability with different needs. The applicability of
OPC UA PubSub on factory automation use cases has been
evaluated by [15] outlining different combinations of OPC UA
communication to assess applicability.

OPC UA PubSub also targets to real-time capabilities with
Time-Sensitive Networking (TSN). In [16], an approach is
proposed to combine non-real-time OPC UA servers with real-
time OPC UA PubSub without the loss of real-time guarantees
for the publisher, and an open source implementation is pre-
sented. For field level communication requiring hard real-time
interaction, a simulation model based on TSN and OPC UA
PubSub has been proposed by [17]. [18] vision a skill-based,
vendor-independent plug-and-produce architecture based on
OPC PubSub over TSN.

For traditional OPC UA, [19] propose a mechanism for the
auto-configuration of OPC UA systems. They claim that the
method allows the automatic configuration and deployment
of an OPC UA server only from the information provided by
industrial devices giving OPC UA servers the ability to become
first-class plug and play systems thus improving flexibility,
adaptability, and scalability.

Middleware solutions for industrial environments have been
studied with the aim to develop a common reference archi-
tecture for agile manufacturing control systems [20], [21].
Another interesting approach for interoperable systems of
systems is Arrowhead Framework [22]. The Arrowhead ap-
proach provides primarily the service infrastructure including
discovery, orchestration, and authorization but does not specify
how information should be conveyed between application
systems. In comparison, OPC UA has a strong information
modeling aspect to it in addition to well-defined interfaces,
which also applies to a large extent to the PubSub part.

III. OPC UA PUBSUB SPANNING BEYOND INDUSTRIAL
CONTROL SYSTEMS

OPC UA [7] is a platform-independent standard for systems
and devices to communicate. OPC UA specifies both protocols
and information model with data semantics. A traditional OPC
UA application consists of a server with an address space
for the client to browse programmatically. The address space
is made up of a hierarchy of nodes with references between
each other. When the nodes and the references make use of a
standard OPC UA information model, e.g. OPC UA for De-
vices [23] or OPC UA for Asset Administration Shell (AAS)
[24], integration into different systems is straightforward. OPC
UA also embeds models for information security including
certificate-based authentication and authorization as well as
the possibility to sign and encrypt the exchange.

The PubSub specification [8] changes the communication
model as there is no longer any client or server role. In fact,
any application can be a PubSub participant without being
an OPC UA client or a server. Instead, participants are either
publishers or subscribers without knowledge of who, if any,
are interested in the messages being produced.

There are currently two models to implement OPC UA
PubSub: brokerless and broker-based mode. The first uses
UA Datagram Protocol (UADP) for frequent transmission in
a one-to-one or one-to-many configuration directly between
the participants. This brokerless model is based on multicast
and relies on network infrastructure devices. The second model
uses a broker, which is the focus of this study. When the broker
receives the data from the publisher, it conveys it to interested
subscribers. Subscribers interact with the broker indicating
what data they are interested in without necessarily knowing
who will send it. The specification includes definitions for
AMQP 1.0 and MQTT 3.1.1 brokers.

In the broker mode, it is a broker’s responsibility to make
sure the information gets transferred, thus reducing the load of
an individual producer. This helps in situations where multiple
systems request data from e.g. a resource-constrained device.
The broker model is also expected to open up new possibilities
to ease utilization of OPC UA data as no OPC UA specific
technology is required for the integrations. For a subscriber,
this seems like regular MQTT or AMQP interaction although
the payload has its typical OPC UA PubSub characteristic. It is
worth noting that the PubSub specification excludes message
routing which means it only standardises the data link.



TABLE I
THE FEATURES OF MESSAGING PROTOCOLS COMPARED FROM THE VIEWPOINT OF PLANT-WIDE COMMUNICATIONS.

AMQP 0-9-1 [25] AMQP 1.0 [27] MQTT 3.1.1 [28] MQTT 5.0 [29] UDP [30]
Release time 2008 2012 2015 2019 1980

Mapping from OPC UA PubSub - X X - X
Topic-based routing X - X X -

Multicast routing X - - - X
Brokerless communication - X - - X

Explicit request-response support X ? - X -
Connection-oriented X X X X -

Security in OPC UA PubSub concerns the transport secu-
rity as well as integrity and confidentiality of the messages
transferred. In the broker model, the transport can be ensured
by securing transport between publishers and the broker as
well as between consumers and the broker but this is transport
protocol specific.

For message security, there are three levels: 1) no security;
2) signing but no encryption; 3) signing and encryption.
Message security is end-to-end and implemented using Se-
curityGroups to manage cryptographic keys on both sides. A
standard framework for this and the Security Key Services are
defined in the OPC UA PubSub specification. [8]

IV. PROTOCOL COMPARISON

This section reviews the protocols included in OPC UA
PubSub as well as related versions of the same protocols. First,
an overview is provided about each, followed by a comparison.

A. Overview

The origin of AMQP 0-9-1 [25] is in the financial industry
that used to deploy proprietary middleware for a high message
volume, reaching hundreds of thousands of events per second
[26]. AMQP would both be effective and enable interoperabil-
ity for message routing.

AMQP 1.0 [27] is a later implementation that specifies a
subset of the 0-9-1, namely a ‘peer-to-peer’ protocol and a
message format. There is no compatibility with 0-9-1.

MQTT 3.1.1 [28] originates from Internet of Things (IoT)
environments with a limited computational capacity compared
to conventional servers. The specification was originally pro-
prietary but later opened.

MQTT 5.0 [29] was released in 2019, adding new features
to MQTT 3.1.1. The new features include, e.g., a built-in
header called ‘response topic’ for request-response communi-
cation, payload format indicator, and more flexibility regarding
authorization and authentication schemes.

Compared to others, UDP is a simplistic alternative, as
it omits the message broker [30]. UDP is a basic Internet
protocol and widely supported in networking libraries. UDP
either sends messages directly or delivers these as multicast
to the entire physical sub-network.

B. Comparison

Table I compares the protocols for the following aspects.

a) Release time: At the time of writing, only MQTT has
recently evolved, the newest version being from 2019. UDP
is a basic Internet protocol and therefore unlikely to develop
considerably. The AMQP family received its latest update 10
years from the time of writing.

b) Mapping from OPC UA PubSub: Only AMQP 1.0,
MQTT 3.1.1, and UDP have a mapping from PubSub.

c) Topic-based routing: AMQP 0-9-1 and MQTT sup-
port topic-based message routing. This is a requirement in
networks that span over geographically large areas or the
cloud, exploiting Internet communication. In UDP, this is out
of scope, whereas AMQP 1.0 leaves it as a future item.

d) Multicast routing: AMQP 0-9-1 and UDP support
multicast routing. This enables a type of loose coupling,
because the data source directly points to no recipient. The
feature is missing from MQTT as well as AMQP 1.0.

e) Brokerless communication: Routerless communica-
tion reduces overhead, as the nodes can create a direct
communication link. This simplicity is advantageous when
computational resources are limited. Still, the lack of bro-
ker would cause needless data traffic in cases with a need
for selective message routing, hindering scalability especially
when the number of nodes grows. AMQP 1.0 and UDP enable
brokerless communication, whereas the others require a broker.

f) Explicit request-response support: AMQP 0-9-1 spec-
ifies a header to indicate which queue to reply to [25, p. 17].
However, AMQP 1.0 specification is vague, as there is a
‘reply-to’ field but no indication about the scope. Respectively,
MQTT 5.0 specifies a response topic field. In contrast, MQTT
3.1.1 and UDP lack any explicit request-response reference.

g) Connection-oriented: All but UDP are based on
Transmission Control Protocol (TCP) and therefore connec-
tion oriented, assuming a retry if data is lost. This enables
reliability features but causes overhead.

C. Comparisons in bibliography

Earlier studies have compared AMQP and MQTT as well.
[31] concluded that AMQP excels at security, whereas MQTT
is more efficient. Respectively, [32] state that AMQP is
better in security and features but MQTT requires less of
computational power. There are performance studies as well,
but these are problematic due to the influence of the protocol
implementations. Besides, many studies lack an indication of
the AMQP version being evaluated.



Fig. 1. In the COCOP plant-wide process monitoring and control architecture,
systems for monitoring, optimisation and control are connected using a
message bus architecture. The messaging layer acts as a unifying integration
level between heterogeneous control applications and legacy control systems.

D. Summary

The initial motivation of each protocol can be summarized
as high volume for AMQP, IoT for MQTT and simplicity for
UDP. Still, especially AMQP 0-9-1 and MQTT are competitors
to each other with similar features, and the final performance
likely depends on the implementation. AMQP 1.0 lacks rout-
ing features, whereas UDP has its use case in low overhead
and situations that require no message routing. Among the
brokered protocols, MQTT seems more actively developed and
therefore tempting for long-term system designs.

For plant-wide communication, the most promising selec-
tion is MQTT 3.1.1 with its message routing support and map-
ping from OPC UA PubSub. For the future, there are hopes
of including MQTT 5.0 in the official PubSub protocols.

V. CASE STUDY EXAMPLE

This section presents an example where OPC UA PubSub
is integrated with an existing message broker approach. Using
the example, we analyze the compatibility of OPC UA PubSub
with the existing approach and if OPC UA PubSub can be used
as an extension of similar existing integration models.

A. Case Requirements and the COCOP integration model

The example case is an information exchange and com-
munication architecture for the plant-wide monitoring and
control of industrial processes, i.e. coordinating control and
optimisation together with the local control systems of sub-
processes [33]. The original approach follows a data-driven
model with loose coupling using a message broker [34].
Fig. 1 illustrates the coupling of different systems. To facilitate
interoperability, various information models, e.g. Observations
and Measurements (O&M) and TimeseriesML from Open
Geospatial Consortium (OGC), have been selected for con-
veying various data between decentralized operations [35].

In the COCOP model, the message broker and agreed
information models act as the unifying interoperability layer
between local control systems and any other applications
requiring data. The broker and the information model each

     AMQP message broker

OPC UA Pub/Sub
Publisher 

 
COCOP to
OPC UA
Pub/Sub

OPC UA Pub/Sub
Subscriber 

COCOP
Subscriber

COCOP
Publisher 

OPC UA
Pub/Sub to

COCOP 
 

OPC UA Pub/Sub message COCOP message

Fig. 2. Interoperability between OPC UA PubSub and the existing COCOP
messaging architecture is implemented using translation components follow-
ing the loosely coupled broker based implementation philosophy. In the model
no changes are required to the system components being integrated.

form a sub-layer independent of the other. Therefore, one sub-
layer can be extended or even replaced without side effects.

B. Data model translations between OPC UA PubSub and
existing COCOP message broker system (AMQP)

The most convenient way to implement COCOP-compliant
messaging is using an SDK called COCOP Toolkit1. To
connect with the broker in the protocol level, the software
clients would use any generic client libraries available for the
message bus. For the information model, there are COCOP-
specific software libraries to facilitate development. These
have been published as a part of COCOP Toolkit, implemented
in C#.NET and Java [36].

Still, there is no necessity to utilize COCOP Toolkit as seen
in this example case. Any software platform is possible as long
as the required protocol is applied and the information models
match the standards in COCOP. This example case builds upon
the JavaScript implementation NodeJs, which has no support
in COCOP Toolkit but has a client library for AMQP.

The example case demonstrates a situation where COCOP
communicates with OPC UA PubSub nodes (see Fig. 2).
The case necessitates translators to enable cross-technology
communication from PubSub publisher to COCOP subscriber
or COCOP publisher to PubSub subscriber. It is notable that
as long as the message bus remains the same for COCOP and
PubSub, this protocol layer requires no translation. COCOP
uses AMQP 0-9-1, which has no mapping from PubSub, but
this protocol is conceptually similar to MQTT and AMQP 1.0.
Furthermore, some message bus products, at least RabbitMQ,
support multiple protocols and also enable protocol translation.

Fig. 3 visualizes the mapping from a COCOP-compliant
XML data record to the OPC UA information model (JSON).
The example shows the composition of a matte sample taken
from the flash smelting furnace (FSF) of a copper smelter.
The percentage of each substance (copper, iron, nickel, and
sulphur; the rest omitted), has an entry in the payload. Still,
some metadata lacks a direct mapping as PubSub delivers

1https://kannisto.github.io/Cocop-Toolkit/



Fig. 3. Visualized mapping of the XML-based OGC O&M data model (simplified) and a JSON model developed for OPC UA PubSub for process data
mesurements. The PubSub message omits some of the metadata, as this would be delivered in separate messages in a complete PubSub setup. Furthermore,
the PubSub data model used here is exemplary and not fully compliant.

separate DataSetMetadata messages that are omitted in this
demo. It is notable that the JSON format is an exemplary
subset of PubSub and therefore not fully compliant.

The mapping appeared straightforward due to the modern
data formats (XML and JSON) and their support in standard
libraries of modern software tools. This suggests that OPC
UA PubSub can wrap any legacy or otherwise incompatible
systems and therefore reach interoperability with OPC UA.

C. Information security considerations

The COCOP model relies on securing the communication
of publishers and consumers with the AMQP broker, including
the access control regarding publishing and consuming the
data. RabbitMQ, used in the COCOP implementation, supports
authentication using username/password and certificates, and
enables setting authorizations for the exchanges and queues.

The OPC PubSub model supports different levels of in-
formation security, as explained in section III. To enable the
integration in the example, the adapters needed a permission to
the message broker and the exchanges. From the outlined dif-
ferences, it can be seen that the translator component becomes
the critical part in the integration and must be part of the OPC
UA PubSub Security Group if more advanced PubSub message
security means are used. It is notable that the two security
models do not match and, therefore, more of integration effort
is necessary, including encryption/decryption.

VI. RESULTS AND DISCUSSION

Our simple example shows that although OPC UA PubSub
and existing AMQP (0.9.1) communications seem similar they
are not interoperable as such. Using an adapter approach, we
were successful in integrating data payloads from proprietary
data models to those used by OPC UA PubSub.

The adapter pattern can also be used for information se-
curity, which is essential in Internet-wide communications.
Our existing AMQP system uses encryption and security in
the broker implementation, which means that the adapter

component needs to transform the security model as well. OPC
UA PubSub message security is specified outside of the actual
communication protocol, which makes this a necessity for any
existing broker-based integration.

More generally, the use of message-oriented integration
approaches, such as message brokers, implies a shift in how
application systems are developed compared to the typical
request-response pattern usually involving client and server
applications. In a publish-subscribe model, the system com-
ponents react upon new data instead of being invoked. This
can be seen to increase scalability and prospects of using data
in new, previously unknown applications.

OPC UA PubSub extends the widely used OPC UA commu-
nication model towards this direction. However, it is notable
that not all traditional OPC UA features are available as such
and there are separate mechanisms for metadata and discovery.

UA PubSub can improve integration prospects in industrial
systems. Unlike traditional OPC UA, PubSub does not require
the systems to be UA servers or clients in the traditional sense.
Thus, PubSub can unify practices, especially how information
security is managed across various communication media.

Regarding future directions, PubSub is essential as OPC UA
enters Operational Technology (or OT) through the initiative
Field Level Communications (FLC) [37]. Conventionally, this
area has been dominated by heterogeneous fieldbus technolo-
gies, but FLC aims to enable flexible communications with
interoperability, security, and determinism.

VII. CONCLUSION

In this paper, we compared OPC UA PubSub with other
message-broker-based integration models. We also studied, us-
ing an example for plant-wide process monitoring and control,
how OPC UA PubSub can be integrated with an existing
AMQP message broker integration approach that uses other
than OPC UA based information models. We showed that an
adapter approach is required for translating the data payloads
as well as transforming the information security practices.



PubSub defines many features outside of the transport
protocol, which means that they need to be implemented sepa-
rately for the different transport protocol mappings supported.
This should unify how PubSub systems are implemented and
thus increase interoperability that is currently not available
between, e.g., existing AMQP or MQTT solutions.

The transition from traditional OPC UA to UA PubSub
implies a shift in the operation model and system design
philosophy but allows an easier integration compared to tradi-
tional OPC UA, e.g. to other data applications, as the systems
are more decoupled by nature. In our case example we also
showed that integration is straightforward and the support for
OPC PubSub structures can improve the interoperability of ex-
isting message-broker-based approaches with minor changes.

REFERENCES

[1] A. W. Colombo, S. Karnouskos, O. Kaynak, Y. Shi, and S. Yin,
“Industrial cyberphysical systems: A backbone of the fourth industrial
revolution,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp.
6–16, March 2017.

[2] R. F. Babiceanu and R. Seker, “Big data and virtualization for
manufacturing cyber-physical systems: A survey of the current status
and future outlook,” Computers in Industry, vol. 81, pp. 128–137,
2016, emerging ICT concepts for smart, safe and sustainable industrial
systems. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0166361516300471

[3] P. Leitão, F. Pires, S. Karnouskos, and A. W. Colombo, “Quo vadis
Industry 4.0? Position, trends, and challenges,” IEEE Open J. Ind.
Electron. Soc., vol. 1, pp. 298–310, 2020.

[4] V. Jirkovský, M. Obitko, P. Kadera, and V. Mařı́k, “Toward plug play
cyber-physical system components,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 6, pp. 2803–2811, 2018.

[5] F. B. Vernadat, “Technical, semantic and organizational issues of en-
terprise interoperability and networking,” Annu. Rev. Control, vol. 34,
no. 1, pp. 139–144, 2010.

[6] “New European interoperability framework,” European Commission,
2017, URL http://doi.org/10.2799/78681 [Retrieved 29 Oct 2021].

[7] “OPC unified architecture specification part 1, overview and concepts,
release 1.04,” OPC Foundation, 2017.

[8] “OPC unified architecture specification part 14, PubSub, release 1.04,”
OPC Foundation, 2018.

[9] A. A. Nazarenko, J. Sarraipa, L. M. Camarinha-Matos, C. Grunewald,
M. Dorchain, and R. Jardim-Goncalves, “Analysis of relevant standards
for industrial systems to support zero defects manufacturing process,”
J. Ind. Inf. Integr., p. 100214, 2021, in press.

[10] F. Tao, Q. Qi, A. Liu, and A. Kusiak, “Data-driven smart manufacturing,”
J. Manuf. Syst., vol. 48, pp. 157–169, 2018.

[11] N. Benias and A. P. Markopoulos, “A review on the readiness level and
cyber-security challenges in industry 4.0,” in 2017 South Eastern Euro-
pean Design Automation, Computer Engineering, Computer Networks
and Social Media Conference (SEEDA-CECNSM), 2017, pp. 1–5.

[12] Z. Liu and P. Bellot, “OPC UA PubSub implementation and configura-
tion,” in 2019 6th International Conference on Systems and Informatics
(ICSAI), 2019, pp. 1063–1068.

[13] ——, “A configuration tool for MQTT based OPC UA PubSub,” in
2020 RIVF International Conference on Computing and Communication
Technologies (RIVF), 2020, pp. 1–6.

[14] C. Lee, N. Kim, and S. Hong, “Toward industrial IoT: Integrated
architecture of an OPC UA synergy platform,” IEEE Access, vol. 9,
pp. 164 720–164 731, 2021.

[15] A. Eckhardt, S. Müller, and L. Leurs, “An evaluation of the applicability
of OPC UA publish subscribe on factory automation use cases,” in
2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2018, pp. 1071–1074.

[16] J. Pfrommer, A. Ebner, S. Ravikumar, and B. Karunakaran, “Open source
OPC UA PubSub over TSN for realtime industrial communication,” in
2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2018, pp. 1087–1090.

[17] S. K. Panda, M. Majumder, L. Wisniewski, and J. Jasperneite, “Real-time
industrial communication by using OPC UA field level communication,”
in 2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2020, pp. 1143–1146.

[18] P. Zimmermann, E. Axmann, B. Brandenbourger, K. Dorofeev,
A. Mankowski, and P. Zanini, “Skill-based engineering and control
on field-device-level with OPC UA,” in 2019 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA),
2019, pp. 1101–1108.

[19] J. M. Gutierrez-Guerrero and J. A. Holgado-Terriza, “Automatic
configuration of OPC UA for industrial internet of things environments,”
Electronics, vol. 8, no. 6, 2019. [Online]. Available: https://www.mdpi.
com/2079-9292/8/6/600

[20] F. Gosewehr, J. Wermann, W. Borsych, and A. W. Colombo, “Specifi-
cation and design of an industrial manufacturing middleware,” in 2017
IEEE 15th International Conference on Industrial Informatics (INDIN),
2017, pp. 1160–1166.

[21] G. Angione, J. Barbosa, F. Gosewehr, P. Leitão, D. Massa, J. Matos,
R. S. Peres, A. D. Rocha, and J. Wermann, “Integration and deployment
of a distributed and pluggable industrial architecture for the PERFoRM
project,” Procedia Manuf, vol. 11, pp. 896–904, 2017.

[22] P. Varga, F. Blomstedt, L. L. Ferreira, J. Eliasson, M. Johansson,
J. Delsing, and I. M. de Soria, “Making system of systems interoperable
– the core components of the Arrowhead framework,” J. Netw. Comput.
Appl., vol. 81, pp. 85–95, 2017.

[23] “OPC UA part 100: Devices, release 1.02,” OPC Foundation, 2019.
[24] “OPC UA for asset administration shell (AAS), release 1.00,” OPC

Foundation, 2021.
[25] “AMQP: Advanced message queueing protocol version 0-9-1,” AMQP

Working Group 0-9-1, 2008, URL http://www.amqp.org/specification/
0-9-1/amqp-org-download [Retrieved 27 May 2020].

[26] J. O’Hara, “Toward a commodity enterprise middleware,” Queue, vol. 5,
no. 4, p. 48–55, May 2007.

[27] “OASIS advanced message queuing protocol (AMQP) version
1.0,” OASIS, 2012, URL http://docs.oasis-open.org/amqp/core/v1.0/os/
amqp-core-complete-v1.0-os.pdf [Retrieved 27 May 2020].

[28] “MQTT version 3.1.1,” OASIS, 2015, URL http://docs.oasis-open.
org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-v3.1.1-errata01-os-complete.html
[Retrieved 8 Jul 2020].

[29] “MQTT version 5.0,” OASIS, 2019, URL https://docs.oasis-open.org/
mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html [Retrieved 27 May 2020].

[30] “RFC 768: User datagram protocol,” ISI, 1980, URL https://tools.ietf.
org/html/rfc768 [Retrieved 18 May 2020].

[31] N. Naik, “Choice of effective messaging protocols for iot systems:
MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE International Systems
Engineering Symposium (ISSE), 2017, pp. 1–7.

[32] N. Q. Uy and V. H. Nam, “A comparison of AMQP and MQTT
protocols for internet of things,” in 2019 6th NAFOSTED Conference
on Information and Computer Science (NICS), 2019, pp. 292–297.

[33] P. Kannisto, D. Hästbacka, T. Gutiérrez, O. Suominen, M. Vilkko,
and P. Craamer, “Plant-wide interoperability and decoupled, data-driven
process control with message bus communication,” Journal of Industrial
Information Integration, vol. 26, p. 100253, 2022.

[34] D. Hästbacka, P. Kannisto, and M. Vilkko, “Data-driven and event-driven
integration architecture for plant-wide industrial process monitoring
and control,” in IECON 2018 - 44th Annual Conference of the IEEE
Industrial Electronics Society, Oct 2018, pp. 2979–2985.

[35] ——, “Information models and information exchange in plant-wide
monitoring and control of industrial processes,” in Proc. of the 10th
Int. Joint Conf. on Knowledge Discovery, Knowledge Engineering and
Knowledge Management - Volume 3: KMIS, 2018, pp. 216–222.

[36] P. Kannisto, A. Kätkytniemi, M. Vilkko, and D. Hästbacka, “Software
toolkit for development of interoperable communications in data-driven
systems,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 845–850, 2021.

[37] “OPC UA for field level communications – a theory of operation,
version 1,” OPC Foundation, 2020, URL https://opcfoundation.org/
wp-content/uploads/2020/11/OPCF-FLC-Technical-Paper-C2C.pdf
[Retrieved 7 Sep 2021].




