

Noora Rintamäki

IDENTIFYING REQUIREMENTS IN
MICROSERVICE ARCHITECTURAL

SYSTEMS

Faculty of Information Technology and Communication Sciences
M. Sc. Thesis

December 2022

ABSTRACT
Noora Rintamäki: Identifying Requirements in Microservice Architectural Systems
M.Sc. Thesis
Tampere University
Master’s Degree Programme in Software Development
December 2022

Microservices and microservice architecture has grown popularity and interest steadily since

2014 but many challenges are still faced in a software project when trying to adopt the concept.

This work gathers challenges, possible solutions, and requirements related to the use of micro-

service architecture and therefore support the work of different stakeholders in a software project

using microservice architecture, while also providing more information to the research as well.

The study was conducted using systematic literature review (SLR). Overall, 63 scientific publica-

tions from four different scientific databases were selected and analysed. As a result, rapid evo-

lution, life cycle management, complexity, performance, and a large number of integrations were

identified as the most common challenges of microservice architecture. Solutions such as service

orchestration, fog computing, decentralized data, and use of patterns were proposed to tackle

these challenges. Regarding requirements, scalability, efficiency, flexibility, loose coupling, per-

formance, and security appeared most frequently in the literature. The key finding of this work

was the importance of data. How data acts as a base for functionalities and when inaccurate can

cause complex challenges and make functionalities worthless. Based on this, we have a better

understanding on what challenges may occur and what to focus on while working with micro-

service architecture in software development.

Keywords: microservices, microservice architecture, software requirements, challenges, solu-

tions, data, software development.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

Contents

1 Introduction ... 1

1.1 Research questions 1

1.2 Structure of the Thesis 2

2 Microservice architecture ... 3

2.1 Microservice Structure 3

2.2 Architectural layers 3

2.3 Integrations in microservice architecture 5

2.4 Advantages of microservice architecture 5

2.5 Disadvantages of microservice architecture 5

2.6 Challenges in microservice architecture 5

3 Requirements in software development .. 7

3.1 Requirements and quality 7

3.2 Requirements engineering 7

3.3 Stakeholders 8

3.4 Different levels of requirements 8

3.5 Requirements Classification 9

4 Related work .. 10

5 Research methodology .. 21

5.1 Types of literature reviews 21

5.2 Process of a systematic literature review 22

5.3 Formulating the problem 23

5.4 Develop and validate the review protocol 23

5.5 Search for literature 24
5.5.1 Keywords for the search 24
5.5.2 Sampling strategies 24
5.5.3 Refining search results 25
5.5.4 Stopping rule 25

5.6 Screening for inclusion 26

5.7 Assessing quality 26

5.8 Extracting data 27

5.9 Analysing and synthesizing data 27

5.10 Reporting findings 28

5.11 Good practices 28

6 Research methodology execution ... 30

6.1 Formulating the research problem 30

6.2 Developing and validating the review protocol 32

6.3 Searching the literature 32
6.3.1 Keywords for the search 32
6.3.2 Sampling strategies 33
6.3.3 Refining search results 33
6.3.4 Stopping rule 33

6.4 Screening for inclusion 34

6.5 Assessing quality 36

6.6 Extracting data 36

6.7 Analysing and synthesizing data 37

6.8 Reporting the findings 40

7 Results ... 41

7.1 Search results 41

7.2 Requirements identified 41

7.3 Identified challenges and solutions 49

7.4 Research questions 51
7.4.1 RQ1: What are common challenges in microservice architecture projects? 51
7.4.2 RQ2: How are common challenges in microservice architecture addressed? 51
7.4.3 RQ3: What requirements should be set to a microservice project? 52

8 Discussion ... 53

8.1 Reliability of the data 53

8.2 Keywords for the search 53

8.3 Screening for inclusion 54

8.4 Analysing the data 54

8.5 Analysing the results 54
8.5.1 Challenges in microservice architecture 55
8.5.2 Solutions for identified challenges 55
8.5.3 Requirements for microservice project 56

8.6 Comparing the results of this study to results of related work 56

8.7 Threats to validity and limitations 58

9 Conclusion .. 59

References .. 61

Appendix .. 65

Source literature 65

Data extraction table 74

-1-

1 Introduction
The work of software project begins with the requirements, defining what is actually
needed by the system. Requirements can be functional or non-functional requirements,
features or attributes how the application should work or be. It is important to have as
realistic guidelines and requirements as possible early on that guide the project into the
right direction right from the start.

The purpose of this work is to support researchers and practitioners, in this case
developers and stakeholders, working with microservice architecture, to know about com-
mon challenges in microservice approach, possible solutions to those challenges, and re-
quirements for a microservice architecture. This work maps and analyses the current
knowledge and research in microservice architecture and provides information on funda-
mental requirements and possible obstacles in microservice architecture so that they are
known and can be prepared for from the beginning of the project.

This study gained a comprehensive understanding on challenges and possible solu-
tions offered by the literature. In addition to that, 101 requirements were identified, or-
dered, and categorized based on their frequency in the literature and out of those 12 high-
lighted as the most appearing ones. Study provides an understanding on what challenges
microservice projects are most likely to encounter, what solutions research has identified
to solve them, and what requirements are the most relevant ones when operating with
microservice architecture.

1.1 Research questions
Research questions were defined with an iterative nature. Research aims to answers to the
following questions:

RQ1: What are common challenges in microservice architecture?
This question aims to gather what kind of obstacles are identified through various studies
on microservice architecture. What challenges come from implementing this specific ar-
chitecture and what kind of context may not be functional with microservice architecture.

RQ2: How are common challenges in microservice architecture addressed?
As a follow up question for the RQ1, what possible solution were identified to the chal-
lenges by those studies. Were they able to resolve the challenges?

-2-

RQ3: What requirements should be set to a microservice project?
Finally, after identifying possible obstacles, challenges, solution options for microservice
architecture, what more general information can be drawn in a form of requirements. Re-
quirements that guide software project through not only by avoiding possible obstacles
but highlighting the important features and aspects in a software.

1.2 Structure of the Thesis
In this work we identified common requirements regarding the microservice architecture
and listed different challenges and solution that appeared in the wide range of studies.
This research is conducted by using systematic literature review (SLR). This research
approach provides a comprehensive overview on where we are on this research area.

Structure of the work is following. Chapter 2 considers microservice architecture,
its’ structure, layers, advantages, and disadvantages. Chapter 3 focuses on requirements,
quality, requirements engineering, stakeholders, and different levels and classification of
the requirements. Chapter 4 summarises related work and Chapter 5 introduces theoretic
background of systematic literature review that is used in this study. Chapter 6 examines
the research method in practice. Chapters 7 and 8 continue with the results and discussion,
Chapters 9 states the possible limitations and threats to validity and finally, Chapter 10
combines the conclusions.

-3-

2 Microservice architecture

Microservice architecture (MSA) is based on three ideas [Wolff, 2016]:

• A service should fulfil only one task and do it well.
• Services should be able to work together.
• Service should use a universal interface.

These characteristics aim to support modularization and design for reusable components.
Microservice architecture also emphasizes isolation. One of the key things is that each
service operates on its own and makes independent deploying, updating, and modifying
possible. Each process and user interaction also aims to operate within a scope of a par-
ticular service. The primary goal of microservice approach is to enable independent ser-
vice deployment and evolution across entire system. [Cerny et al., 2017]

2.1 Microservice Structure
The idea behind microservice architecture is to have small-scale services that are inde-
pendently distributed and loosely coupled and aims to overcome the limitations of mon-
olithic architecture [Li et al., 2021]. Goal is to provide autonomous services that can be
deployed, operated, and developed independently time and to some extend also technol-
ogy-wise. Each microservice is ideally structured around certain business logic.
[Söylemez et al. 2022]. According to O’Connor et al. [2017] microservice architecture
consists of building blocks such as main business services, discovery mechanisms, com-
munication infrastructure, and infrastructural services. Each block is isolated from each
other, and they communicate using a lightweight communication protocol. This isolation
also enables evolvability over time when business or technology needs may change
[O’Connor et al. 2017]. While considering microservice architecture in a project, it is
good to know that by all means it is not the most affordable approach. Microservice ar-
chitecture should be used when its benefits are greater than its’ costs.

2.2 Architectural layers
Regarding architectural layers in microservice architecture, this study follows Fowlers
[2016] definition where architecture can be divided into four different layers: micro-
service, application platform, communication, and hardware.

Hardware layer consist of the actual machines that runs everything. Those can be
machines from owned datacentre or virtual machines run by a cloud provider. In addition
to machines, databases whether they are dedicated or shared ones, operating systems,
configuration management tools, and host level monitoring and logging are also part of
the hardware layer. Host level logging and monitoring refers to logging and monitoring
that happens on the machines in the hardware layer.

-4-

Communication layer holds everything related to communication between systems,
services, and applications. It can be networks, DNS, remote procedure calls (RPCs), mes-
saging between microservices, or API endpoints. Also, communication protocols such as
HTTP, data formats (e.g., JSON), and traffic routing and distribution are part of this layer.
Overall communication layer works together with every other layer between other layers
to take care of everything communication related.

Application layer is for internal tools, services, systems, and platforms that micro-
services run on live. Things that are centralized, system-wide tools and services for de-
velopers to use. Standardized development process containing a good version control sys-
tem, collaboration tool, and stable development environment as well as deployment pipe-
line, test, build, package, and release tooling are also part of this layer.

Microservice layer is the highest of layers and contains all the microservices and
information specific to certain microservice such as configurations. Almost all the devel-
opment work happens on this layer. In this work, layers are defined based on Fowlers’
article [2016] which is summarized as following:

Layer 1: The Hardware Layer

• Configuration management tools
• Databases
• Servers
• Host-level logging and monitoring
• Operating Systems
• Resource isolation
• Resource abstraction

Layer 2: The Communication Layer

• DNS
• Endpoints
• Load balancing
• Messaging
• Network
• Remote procedure calls
• Service discovery
• Service registry

Layer 3: The Application Platform

• Deployment pipeline
• Development environment
• Microservice-level logging and monitoring
• Self-service internal development tools
• Test, package, build, and release tools

-5-

Layer 4: The Microservice Layer

• All microservice-specific configurations
• The microservices

2.3 Integrations in microservice architecture
In microservice context, light and heterogeneous protocols are possible to take into use
for service interaction. Each service only knows its own data and maintains context for
it. Because of this, duplicate data and functionalities are possible across services. In mi-
croservice architecture, there is no general context or centralized governance over all ser-
vices. This means that deployment dependencies are also service specific and on a much
lower scale than if they would be on a general level. [Cerny et al., 2017]

2.4 Advantages of microservice architecture
Compared to monolith type of architecture, where there is a one large system that contains
all the functionalities and information system needs to operate, microservices and their
distributed nature are more efficient in scalability, elasticity, and in automated and con-
tinuous deployment. [Kratzke & Quint, 2017] These abilities enable fast demand re-
sponse, fault tolerance since service failure do not automatically mean system failure and
make it more cloud-friendly [Balalaie et al., 2016]. Microservice architecture is also
closely linked with DevOps practices, especially continuous delivery [Bass et al., 2015].

2.5 Disadvantages of microservice architecture
The price of this kind of flexibility is that data definitions, and in some cases even busi-
ness rules need to be restated and redefined across services. This can lead to duplicates in
databases, and lack of centralized view on how the overall system processing, its rules
and constrains, work. [Cerny et al., 2017]

In microservice architecture, services are connected through point-to-point integra-
tions. There is no integration component that would take responsibility for service orches-
tration and the business logic is embedded in services. On the one hand, therefore making
changes to existing business logic pose a challenge with microservice architecture. On
the other hand, since every service is responsible for its own integrations, there is a lot of
flexibility to do modifications to single integrations.

2.6 Challenges in microservice architecture
Based on existing studies, data management and consistency, performance prediction,
measurement, and optimization, decomposition, service orchestration and discovery,
communication and integration, testing and security, monitoring, tracing, and logging
were mentioned as identified challenges in microservice architecture by Söylemez et al.
[2022].

-6-

Soldani et al. [2018] on the other hand divide identified challenges into three cate-
gory: design, development, and operation. Design ones are Architecture and Security de-
sign. Architecture design includes Communication heterogeneity, API Versioning, Ser-
vice contracts, Service dimensioning, and Size/complexity. Security design focuses on
aspects such as Access control, Centralised support, CI/CD, Endpoint proliferation, Hu-
man errors, and Size/complexity. For development, Soldani et al. [2018] name Micro-
service development, Storage development, and Testing development. Microservice de-
velopment encounters challenges with Microservice separation and overhead, Storage
battles with Data consistency, Distributed transactions, Heterogeneity, and Query com-
plexity. Testing sub-category brings up Integration testing, Performance testing, and
Size/complexity.

Third and last category from Soldani et al. [2018] study is operation. This refers to
Management, Monitoring, and Resource consumption operations. For Management, this
means Operational complexity, Cascading failures, Service coordination, and Service lo-
cation, for Problem location, Monitoring, Logging, and Size/complexity, and for Re-
source consumption Compute, and Network resource consumption.

-7-

3 Requirements in software development
Requirements are attributes that define a collection of needs and how software should
perform in order to achieve the end goal and fulfil the original need for the software. That
need is identified by a customer, end-user, customer representative, or other stakeholder.
Requirements are also one of the key contributors when it comes to the success of a soft-
ware project. [Aurum & Wohlin, 2005]

IEEE-STD 610.12-1990 standard [1990] definition for requirement is following:

(1) A condition or capability needed by a user to solve a problem or achieve an objec-
tive.

(2) A condition or capability that must be met or possessed by a system or system com-
ponent to satisfy a contract, standard, specification, or other formally imposed docu-
ments.

(3) A documented representation of a condition or capability as in (1) or (2).

3.1 Requirements and quality
Requirements are a critical determinant of the quality of the software and defining them
is a crucial stage in software design and development. While some studies show that er-
rors related to requirements are the most common ones in the software life-cycle, they are
also the most time-consuming and expensive ones to correct. [Aurum & Wohlin, 2005]

3.2 Requirements engineering
There are two perspectives and three levels each in which requirements can be viewed;
first one is from technical, and other one from management perspective. Some of the
requirements in these two categories may distinct or overlap. Requirements at the tech-
nical perspective can be at the project, product, or at organizational level. From the man-
agement perspective, requirements can be seen to belong at the operational, tactical, or
strategic level. [Aurum & Wohlin, 2005]

Requirements engineering (RE) refers to all life-cycle activities related to require-
ments. It is the process in which the requirements for the software are gathered, analysed,
documented, and managed throughout software’s lifecycle. It may contain interpretation,
structuring, verification, negotiation, validation, and tracing of the requirements. [Aurum
& Wohlin, 2005]

Purpose of requirements engineering is to identify the goals for a system, transform-
ing those goals into features and constraints, and further on, allocating those resulting
requirements to propriate targets. That target can be a human, device, or software. Re-
quirements can change and evolve during software life-cycle, in the development phase
and after publishing. This brings out a need for change management over time. To support

-8-

the evolution, monitoring requirements and managing the project scope, cost and sched-
ule is essential. [Aurum & Wohlin, 2005]

Requirements are specified using System requirements analysis (SRA). SRA is a sys-
tematic approach and structured methodology used to identify ways to fulfil a system
need and the essential characteristics (requirements) for those solutions [Grady, 2014]. It
is a critical task in a software project, and the development team must investigate and
study the problem domain in order to better understand the goals, expectations and needs
of the projects’ stakeholders. [Aurum & Wohlin, 2005]

3.3 Stakeholders
Stakeholders are a primary source of requirements. They can be an individual, group, or
even organization and have diverse backgrounds, different needs, goals, expectations, and
priorities. Reconciling these requirements from various stakeholders, at the same time as
software project is growing to be more and more complex, is a challenge in requirements
engineering. Understanding stakeholders needs and describing them as accurately as pos-
sible is where quality management begins in software development. [Aurum & Wohlin,
2005]

The purpose of requirements engineering is to perfect stakeholders potentially incom-
plete, inconsistent, or conflicting requirements into a form that they are unambiguous,
high quality, and align with each other. [Aurum & Wohlin, 2005] Stakeholders are an
important part of the development process. They represent the original need for the sys-
tem, product, or project. Stakeholders are the ones that are somehow influences by the
system, by its’ use or development, directly or indirectly [Pouloudi & Whitley, 1997].

3.4 Different levels of requirements
This study presents two perspectives and three levels each in which requirements can be
viewed; first one is from technical, and other one from management perspective. Some
of the requirements in these two categories may distinct or overlap. Requirements at the
technical perspective can be at the project, product, or at organizational level. From the
management perspective, requirements can be seen to belong at the operational, tactical,
or strategic level. [Aurum & Wohlin, 2005]

In general, it is important for software project to stay in budget, be ready in time,
achieve proper performance and functionalities, and make sure that software require-
ments and business goals match. In order to succeed in it is essential to have the specifi-
cations for requirements properly structured and controlled. A good specification for a
requirement is consistent, understandable and comprehensive. [Aurum & Wohlin, 2005]

-9-

3.5 Requirements Classification
Requirements can be classified into different categories that disclose what is the require-
ment related to. A fundamental division is into functional and non-functional require-
ments. Functional requirements describe what the system will do. Non-functional require-
ments are less exact requirement that form a constraints that can be led into more specific,
functional requirements. Examples of non-functional requirements are performance, se-
curity, and accuracy. [Aurum & Wohlin, 2005]

Requirements can also be classified into primary and derived requirements. Primary
requirements come from stakeholders and derived ones are derived from primary require-
ments. Other classification ways can be division into product and process requirements,
or requirements based on role such as customer requirements, security requirements, user
requirements, system requirements, or IT requirements. [Aurum & Wohlin, 2005]

Monitoring and documenting the progress of fulfilling requirements is also important.
If the project team is not able to maintain traceability and verification hooks, it is chal-
lenging to try to determine whether or not the requirements are fulfilled by the system at
the end [Grady, 1994].

-10-

4 Related work
This chapter evaluates and provides an overview of the existing work of SLRs on micro-
service architecture. Table 1 compares eight systematic literature reviews related to mi-
croservice architecture, their time span of search, amount of selected primary studies,
research questions, and findings. Studies are presented in the order they were found from
Google Scholar search made to browse for related work.

Many studies related to microservice architecture focus on common patterns and
practices that are used in microservice architecture. Studies also consider architectural
applications and principles of architectural patterns in microservice migration practices.
[Li et al., 2021]

Study Time

span
Sample
size

Research questions Finding

Li et al.,
2021.

- 2021 72 RQ1: What are the
most concerned QAs
for MSA?
RQ2: What tactics
have been proposed or
discussed to improve
the most concerned
QAs of MSA?

RQ1: Scalability and performance being
two most concerned QAs, availability,
monitorability, security, and testability
gaining the least concern. Out of the iden-
tified QAs, a correlation was recognizing
between performance and scalability and
monitorability and scalability.
RQ2: Out of the six QAs mentioned by
RQ1, 19 tactics were mentioned. Two of
them were scalability tactics, four for per-
formance, four for availability, four for
monitorability, three for security, and two
were tactics for testability.

Aksakalli
et al.,
2021.

2014 -
2019

38 RQ1: What are the cur-
rently adopted deploy-
ment approaches for
microservices?
RQ2: What are the cur-
rently adopted commu-
nication patterns for
microservices?
RQ3: What are the
identified issues and
obstacles related to the
communication and de-
ployment of micro-
services?
RQ4: What are the
identified research di-
rections concerning

RQ1: Serverless deployment, Service in-
stance per VM, and Service instance per
container.
RQ2: Synchronous communication, Pub-
lish/subscribe communication, combina-
tion of HTTP and Message queue, commu-
nication using message-oriented middle-
ware, Asynchronous communication,
Point-to-point communication, and com-
munication using binary protocols.
RQ3: Deployment challenges: architec-
tural complexity, independently failed mi-
croservices (fault tolerance), deployment
coordination, distributed logs, deployment
cost, container image vulnerability, re-
quired specific configurations, and Contin-
uous Integration/Continuous Delivery
(CI/CD).

-11-

communication and de-
ployment of micro-
services?

Communication challenges: discovery of
services, replicated service instances, load-
balancing, replicating data, remote calls,
and the relation between tables.
RQ4: Complexity control, monitoring, ser-
vices resilience, efficient logging, perfor-
mance improvement, minimizing service
dependencies, fault tolerance, enabling se-
curity, and automated deployment system.

Razzaq,
2020.

2014 -
2019

141 RQ1.1: What is the fre-
quency of the publica-
tion in software archi-
tecture and IoT soft-
ware over the years?
RQ1.2: How many
publications per year
are found in the re-
search area of software
architecture for IoT
software?
RQ1.3: Which are the
foremost venues of the
research area for publi-
cations?
RQ2.1: What are the
current challenges re-
ported in the literature
of IoT software?
RQ2.2: What software
architectural solutions
have been proposed for
IoT software?
RQ2.3: What type of
MSA based software
architecture and design
patterns are available
for IoT software?
RQ3: What are the pri-
mary inspirations to
adopt the MSA for IoT
software in the Ocean?

RQ1.1: Between 2005 and 2020, the most
critical launches are in 2017 and 2019.
Most of the publications are conference pa-
pers. The trend has been rising since 2005
and during the last five years 88% of the
studies related to software architecture and
IoT in the context of software architecture
process were published.
RQ1.2: From 2005 to 2011 and 2020, one
per year. 2012 and 2013 two per year. 2014
got seven, 2015 eleven, and 2016 sixteen.
2017 and 2019 twenty-six, the peak year
been 2018 with 42 publication.
RQ1.3: Publication venues for publications
published between 2005 and 2020, 76% of
them were conferences, 19% journals, and
5% workshops.
RQ2.1: Data integration and scalability are
the most highlighted ones in the primary
studies. Overall, twenty-three challenges
were identified.
RQ2.2: Thirty-three architectural solutions
were identified that help to mitigate identi-
fied challenges.
RQ2.3: Architectural and design patterns
for MSA for IoT identified are listed at Ta-
ble 2.
RQ3: Result for this research question is
not stated in the study.

Cam-
peanu,
2018.

2015 -
2018

364 RQ1: How many publi-
cations per year are
found in the research
area usage of micro-
service architectures by

RQ1: 2015 there were 33 publications,
2016 123 publications, 2017 197 publica-
tions, and by the January 2018 11 publica-
tions. This indicates an increasing interest
towards the research topic.

-12-

IoT and cloud compu-
ting solutions?
RQ2: Which are the
main venues for the
publications of the re-
search area?
RQ3: Which are the
main publication types
in the research
area?

RQ2: 5 main publication venues were
identifies being SOSE (conference),
CLOUD (conference), CCGRID (confer-
ence), UCC (conference), and CloudCom
(conference).
RQ3: A clear majority of publications were
published in conferences (349 out of 264)
and rest of them (15) in journals.

Söylemez
et al.,
2022.

2014 -
2022

85 RQ1: What are the
identified challenges of
microservice architec-
tures?
RQ2: What are the pro-
posed solution direc-
tions?

RQ1: (1) Service discovery, (2) data man-
agement and consistency, (3) testing, (4)
performance prediction, measurement, and
optimization, (5) communication and inte-
gration, (6) service orchestration, (7) secu-
rity, (8) monitoring, tracing, and logging,
and (9) decomposition.
RQ2: (1) Using information-centric net-
working (ICN), (2) multi-agent-based
framework to coordinate distributed trans-
actions of the system, (3) automated
method of regression tests, (4) adaptive
performance simulation approach, (5)
event-driven lightweight platform for mi-
croservice orchestration, (6) Elasticsearch
to solve auto-scalability issues, (7) access
control optimization model that is based on
role-based access control (RBAC), (8)
graph-based microservice analysis and
testing (GMAT), and (9) domain-driven
design principles.

Guo &
Wu, 2021.

2002 -
2021

560 RQ1: What kind of
smells related to cloud
applications and Mi-
croservices are de-
scribed and detected in
scientific literature?
RQ2: Are the impact
and refactoring ap-
proach of such smells
discussed in litera-
tures?
RQ3: What would the
future development of
cloud- and service-re-
lated smell research be
like?

RQ1: Infrastructure and Configuration
Smell (IaC) results in increasing size and
complexity of the associated code, Micro-
service Smell create a need for multi-direc-
tional communication protocol, technical
implementation problems, and high-level
structural problems in architecture and
endpoints, and automatic refactoring of
Code Smells results in increased resource
usage.
RQ2: Yes, literature works generally con-
sist of smell detection, impact analysis, and
smell refactoring.

-13-

RQ3: There’s no clear answer to this. From
the smell point of view IaC and micro-
service smell detection, and different de-
tection approaches.

Santana et
al., 2018.

2015 -
2018

18 RQ1: What are the
studies published by
the scientific commu-
nity on the adoption of
Microservices in the
development of IoT ap-
plications?
RQ2: What are the
main contributions of
the identified studies?
RQ3: What are the per-
spectives and trends of
research in the area of
Microservices in the
context of IoT?

RQ1: 18 published studies on that topic are
listed in the original work.
RQ2: Those published studies show that
design is predominant phase when archi-
tecting microservices for IoT or applying
data solutions in cloud computing and fog
computing. Regarding gradual maturity,
more work is needed to investigate com-
plexity in implementation, maintenance,
evaluation, and operation phases. Contri-
butions and problems of each study are
also presented.
RQ3: In time, research fields associated
with microservices, such as machine learn-
ing, fog computing, CI/CD, containers, re-
active systems, and formal methods for
specification of microservices will be ex-
plored.

Soldani et
al., 2018.

2014 -
2017

51 RQ1: How much evi-
dence of microservices
experimentation from
industry is available
online?
RQ2: What are the
technical and opera-
tional “pains” of mi-
croservices?
RQ3: What are the
technical and opera-
tional “gains” of mi-
croservices?

RQ1: Microservices are gaining attention
steadily over the time period since 2014
thanks to James Lewis and Martin Fowler.
Contributions mainly focus on the pros and
cons of microservices, and the best prac-
tices and patterns to better leverage micro-
services. IT companies are also increas-
ingly focusing on their consultancy portfo-
lio on microservices.
RQ2: Architecture design (API Version-
ing, Communication heterogeneity, Ser-
vice contracts, Service dimensioning,
Size/complexity), Security design (Access
control, Centralised support, CI/CD, End-
point proliferation, Human errors,
Size/complexity), Microservices develop-
ment (Microservice separation, Overhead),
Storage development (Data consistency,
Distributed transactions, Heterogeneity,
Query complexity), Testing development
(Integration testing, Performance testing,
Size/complexity), Management operation
(Cascading failures, Operational complex-
ity, Service coordination, Service loca-
tion), Monitoring operation (Logging,

-14-

Problem location, Size/complexity), Re-
source consumption operation (Compute,
Network).
RQ3: Architecture design (Bounded con-
texts, Cloud native, Decentralised govern-
ance, Fault tolerance, Flexibility), Design
patterns (API gateway, Circuit breaker,
Database per service, Message broker, Ser-
vice discovery), Security design (Automa-
tion, Fine-grained policies, Firewalling,
Isolation, Layering), Microservices devel-
opment (CI/CD, Loose coupling, Reusabil-
ity, Service size, Technology freedom),
Storage development (Data persistence,
Data isolation, Microservice-orientation),
Testing development (Automation, Roll-
back, Unit testing, Updates), Deployment
operation (Containerisation, Independ-
ency, Reliability, Speed), Management op-
eration (Fault isolation, Scalability, Up-
dateability).

Table 1: Comparison of eight systematic mapping studies related to microservice archi-
tecture.

Li et al. [2021] focused on identifying the most concerned Quality Attributes (QAs) for
microservice architecture, and tactics proposed to deal with the most concerned quality
attributes of microservice architecture. The results listed scalability, performance, avail-
ability, monitorability, security, and testability as the quality attributes and linked tactics
regarding each identified attribute. The study also mentions that while being one of the
most commonly mentioned benefits of microservice architecture, it is also a necessary
concern regarding QAs of microservice architecture. Also, maintainability is highlighted
as a QA that would need more research attention for evaluation and effective improve-
ment in the future.

Aksakalli et al. [2021] review deployment and communication in microservice ar-
chitecture. Different approaches and patterns, issues and obstacles, and possible research
direction related to those. The study identifies serverless deployment, service instance per
container, and service instance per VM to be the most common deployment approaches
for microservices. Regarding communication, synchronous or asynchronous communi-
cation, communication using message-oriented middleware or binary protocols, point-to-
point or publish/subscribe communication, or combination of HTTP and Message queue
are used as communication methods in the microservice context.

-15-

Obstacles and challenges related to communication and deployment are the most
interesting findings when considering relation to our work. Aksakalli et al. [2021] con-
siders these obstacles and challenges in two category: Deployment challenges and com-
munication challenges. Deployment results highlighted architectural complexity, fault
tolerance, deployment coordination, distributed logs, deployment cost, container image
vulnerability, required specific configurations, and Continuous Integration/Continuous
Delivery (CI/CD). Communication category on the other hand mentioned remote calls,
discovery of services, replicating data, replicated service instances, load-balancing, and
the relation between tables.

Future research directions needed for deployment and communication in micro-
service architecture are according to Aksakalli et al. [2021] complexity control, monitor-
ing, services resilience, minimizing service dependencies, performance improvement, ef-
ficient logging, enabling security, fault tolerance, and automated deployment system.
These research directions were mentioned to be ones that could help to resolve know
challenges and obstacles related to communication and deployment of microservices.

Razzaq [2020] is a comprehensive systematic literature review focusing on publi-
cations on microservice architecture for IoT software. Study investigates the frequency
of the publications over the years and in which venues are they published, current chal-
lenges of IoT software and the solution that have been proposed to those challenges, and
microservice architecture based software architecture and design patterns that are availa-
ble for IoT software. From 2017 to 2019 was identified as the peak season of these scien-
tific publications and during 2015 to 2020, 88% of all studies between 2005 to 2020 were
published. The most popular publication venues are conferences (76%) followed by jour-
nals (19%) and workshops (5%). Data integrity and scalability were highlighted as the
most common challenges related to IoT software along with twenty-one other challenges.
Thirty-three architectural solutions were presented as possible solutions to those chal-
lenges. Architectural and design patterns that traditionally help to mitigate these identified
challenges are presented at Table 2.

-16-

Pattern type Pattern name
Decomposition Decomposing application
 Decompose by subdomain
 Self-contained services
Deployment Service deployment platform
Communication style Remote Procedure Invocation
 Messaging
 Communication pattern
External API API gateway
 REST design pattern
Service discovery Client-side discovery
 Service registry

Table 2: MSA architectural and design patterns for IoT [Razzaq, 2020].

Campeanu [2018] also maps the number of yearly publications in the usage of micro-
service architectures by IoT and cloud computing solutions, and the main venues and
publication types of these studies. The study lists that 2015 there were 33 publications,
2016 123 publications, 2017 197 publications, and by the January 2018 11 publications
of the usage of microservice architectures by IoT and cloud computing solutions. This
indicates an increasing interest towards the research topic. Top five venues were also
named and categorized as conferences. When it comes to publication types, a clear ma-
jority of publications were published in conferences (349 out of 264) and rest of them
(15) in journals.

Söylemez et al. [2022] gets closer to our interest in this study as well. They view
challenges and possible solution directions of microservice architectures. Service discov-
ery, data consistency and management, performance prediction, testing, measurement and
optimization, communication and integration, service orchestration, security, monitoring,
tracing and logging, and decomposition were identified as challenges in microservice ar-
chitecture. Following that, each challenges was paired with a possible solution direction.
For service discovery it was using information-centric networking (ICN). Solution of-
fered to coordinate systems distributed transactions, data management and consistency
problems was multi-agent-based framework. In the microservice context, testing could
benefit from automated method of regression tests. Adaptive performance simulation ap-
proach was there to help with the performance predictions. Event-driven lightweight plat-
form for microservice service orchestration challenges and Elasticsearch to solve auto-
scalability issues. Security could be enhanced with access control optimization model that
is based on role-based access control (RBAC) and graph-based microservice analysis and
testing (GMAT) contributes to monitoring, tracing, and logging. Domain-driven design
principles were mentioned to tackle decomposition challenges in microservice architec-
ture.

-17-

Guo & Wu [2021] studies what kind of smells are related to cloud applications and
microservices, and how are those described and detected in scientific literature? What is
the impact and refactoring approach for those smells that is identified in the literature and
what the future brings when talking about cloud- and service-related smells? Size and
complexity were highlighted regarding infrastructure and configuration smells (IaC), the
use of microservice architecture creates a need for multi-directional communication pro-
tocol, technical implementation problems, and high-level structural problems in architec-
ture and endpoints. Automatic refactoring on the other hand increases resource usage.
When talking about cloud and microservice smells, literature considers detection, impact
analysis, and refactoring of the identified smells, but do not provide a clear answer to
what is the future development of service- and cloud-related smell research. [Guo & Wu,
2021]

Santana et al. [2018] processes adoption of microservices in the IoT application
development. What kind of studies have been published on the topic, what are the main
contributions of those studies, and what are the trends and perspectives of that research
area? This work listed 18 studies which showed that design is a predominant phase when
architecting microservices for IoT or while applying data solutions in cloud or fog com-
puting. More work research is needed regarding complexity in different phases of the
development. Santana et al. [2018] lists machine learning, fog computing, CI/CD, con-
tainers, reactive systems, and formal methods for specification of microservices as a re-
search are that will be explored in the future.

As the last one of these eight related studies, Soldani et al. [2018] talks about ex-
perimentation of microservices, what technical “pains” and “gains” do they have. Results
show that microservices have steadily grown more popular over the years, one of major
contributions being a blog post written by James Lewis and Martin Fowler [Soldani et al.,
2018]. Pains (Table 3) and gains (Table 4) are categorized by design, development, and
operation of microservices.

-18-

Category Area Technology
Design Architecture API versioning

Communication heteroge-
neity
Service contracts
Service dimensioning
Size/complexity

Security Access control
Centralized support
CI/CD
Endpoint proliferation
Human errors
Size/complexity

Development Microservices Microservice separation
Overhead

Storage Data consistency
Distributed transactions
Heterogeneity
Query complexity

Testing Integration testing
Performance testing
Size/complexity

Operations Management Cascading failures
Operational complexity
Service coordination
Service location

Monitoring Logging
Problem location
Size/complexity

Resource consumption Compute
Network

Table 3: Technical pains of microservice architecture [Soldani et al., 2018].

-19-

Category Area Technology
Design Architecture Bounded contexts

Cloud native
Decentralised governance
Fault tolerance
Flexibility

Design patterns API gateway
Circuit breaker
Database per service
Message broker
Service discovery

Security Automation
Fine-grained policies
Firewalling
Isolation
Layering

Development Microservices CI/CD
Loose coupling
Reusability
Service size
Technology freedom

Storage Data persistence
Data isolation
Microservice-orientation

Testing Automation
Rollback
Unit testing
Updates

Operation Deployment Containerisation
Independency
Reliability
Speed

Management Fault isolation
Scalability
Updateability

Table 4: Technical gains of microservice architecture [Soldani et al., 2018].

-20-

Out of these eight SLRs, Razzaq [2020] focuses on MSA in software architecture and IoT
software, Campeanu [2018] talks about the usage of microservice architectures in IoT and
cloud computing solutions. Aksakalli et al. [2021] explore currently adopted deployment
and communication approaches for microservices, Li et.al. [2021] while been closes to
our study, is about the most concerned quality attributes of microservice architecture and
how to improve them, Guo & Wu [2021] lists smells related to microservices and cloud
applications, and Santana et al. [2018] talk about using microservices in IoT applications.
Out of the related studies mentioned in this chapter, Soldani et al. [2018] and Söylemez
et al. [2022] were closes ones to our study. When Soldani et al. [2018] talked about the
pains and gains of microservice architecture, we are interested if the pains mentioned
match with our findings. Söylemez et al. [2022] identified challenges and solutions of
microservice architectures. It is interesting to compare solutions from these similar stud-
ies, are there result that our work can underline, have a conflict with or provide supporting
information for?

-21-

5 Research methodology
This research is conducted as a systematic literature review (SLR). Methodology was
selected to understand the depth and breadth of the existing knowledge, to identify pos-
sible gaps, and new possible research paths related to the challenges and requirements in
microservice architecture.

Source material plays a key role in research. In terms of quality, research can at best
be as good as the material enables. Quality of the reference research and writers’ level of
understanding of that research and its findings create a solid base for further research.
There are three characteristics that systematic literature review should hold; it should be
valid, reliable, and repeatable. [Xiao & Watson, 2017]

Systematic literature review can be used to achieve various outcomes. It can test a
new theory or develop one, test an existing hypothesis, evaluate quality and validity of
some existing work or try to find inconsistencies, weaknesses, or contradictions from
those [Paré et al., 2015]. It can also describe how certain theory has evolved through time
[Salminen, 2011] and summarize prior work or extend existing theories [Okoli & Scha-
bram, 2010]. This work aims to summarize prior work and knowledge to help developers
and stakeholders to plan and execute microservice projects successfully.

Because systematic literature reviews are contributions of scholarly knowledge, they
should follow similar level of quality and discipline in study design as other literature
[Templier & Paré, 2015]. This work uses Xiao & Watson [2017] description of systematic
literature review as a guideline when designing the study.

At first, systematic literature review is presented as a method. This theoretical base-
line guides us at the process. Next chapter gathers how this study was conducted in prac-
tice.

5.1 Types of literature reviews
Literature reviews fall into one of three categories: traditional, meta-analysis, and sys-
tematic [Salminen, 2011].

Traditional review gives a general, comprehensive background understanding of the
literature and source material and research questions are broader than in other review
types [Salminen, 2011]. It is used to identify new research possibilities or possible gaps
or inconsistencies, refining and shaping research questions or develop theoretical and
conceptual frameworks [Coughlan et al., 2007].

Meta-analysis approach can be divided into qualitative and quantitative review. It
uses statistical methods to summarize the results of different studies and therefore can
bring objectivity in evaluating research findings. [Salminen, 2011]

Systematic literature review, the one used in this study, summarizes relevant content
of studies on certain topic. It maps the conversation and screens studies based on inter-
esting and important scientific results [Petticrew, 2006]. Bearfield & Eller [2008] instruct

-22-

to read a majority of material in a summarized format and put discoveries in context in
relation to the research field. This way, it is easier to justify why certain source material
is selected and included. Petticrew [2001] recommends systematic approach as a good
way to test out hypothesis, present search results in a summarized way, and evaluate the
consistency of those results. It is important to form a clear answer to the question at hand,
reduce unclarity regarding the study selection, evaluate the quality of those included stud-
ies, and referencing objectively to the source material. One of the cornerstones in system-
atic approach is a decision making based on evidence [Metsämuuronen, 2005]. Being
systematic creates criteria that brings scientific creditability to the review [Dixon-Woods
et al., 2005].

5.2 Process of a systematic literature review
There are three phases in systematic literature review: planning, conducting, and report-
ing [Kitchenham & Charters, 2007; Breretona et al., 2007]. The planning phase includes
identifying the need for review, specifying the research question, and developing protocol
that describes how the review is conducted (Figure 1).

Review is conducted using eight steps:
1. Formulating the research problem
2. Developing and validating the review protocol
3. Searching the literature
4. Screening for inclusion
5. Assessing quality
6. Extracting data
7. Analysing and synthesizing data
8. Reporting the findings

-23-

Figure 1: Process of systematic literature review [Xiao & Watson, 2017].

5.3 Formulating the problem
First step is to formulate the problem. Whole literature review works together and align
with the research question [Kitchenham & Charters 2007]. That research question acts as
a guideline to the first round of literature search. It is possible for research questions to
evolve over the process but getting as well-formed research question at the beginning can
save some trouble.

5.4 Develop and validate the review protocol
Second step is developing and validating the review protocol. Producing a review proto-
col is the first thing that needs to be done. It is a critical part of a strict systematic review
process [Okoli & Schabram, 2010; Breretona et al., 2007] in terms of achieving quality
since its’ role is to minimize the effect of researchers own opinions when selecting and
analysing data [Kitchenham & Charters, 2007]. Gates [2002] describes review protocol
and its’ content as following:

“The review protocol should describe all the elements of the review, including the pur-
pose of the study, research questions, inclusion criteria, search strategies, quality assess-
ment criteria and screening procedures, strategies for data extraction, synthesis, and re-
porting.”

-24-

Evaluation of the review protocol gives the study more quality and creditability. One op-
tion is to get an external review for the protocol [Xiao & Watson, 2017].

5.5 Search for literature
The third step is the search for literature. Quality literature is in the key role in systematic
literature review. Extracted results can only be as good as the source material. Therefore,
systematic review can only be systematic if the search for literature is systematic [Xiao
& Watson, 2017]. According to Xiao & Watson [2017] the literature search consists of
five distinct steps:
1. Channels for literature search
2. Keywords used for the search
3. Sampling strategy
4. Refining results with additional restrictions
5. Stopping rule

5.5.1 Keywords for the search

Essential keywords come from the words in research question [Kitchenham & Charters,
2007] or synonyms or alternatives to those words [Rowley & Slack, 2004; Kitchenham
& Charters, 2007]. Cultural differences and context also play a role when thinking about
terminology. Another culture may have a different word for a same thing in another cul-
ture. [Bayliss & Beyer, 2015] To optimize the search even more, operators such as com-
binators, word options, and sub-search (new search from the results of the first search)
can be used [Fink, 2005]

5.5.2 Sampling strategies

Different kind of sampling logics and search strategies can be used with literature reviews
[Suri & Clarke, 2009]. Search for source material can be comprehensive and exhaustive
or representative and selective [Bayliss & Beyer, 2015; Paré et al., 2015; Suri & Clarke,
2009]. Different strategies work in different use cases, search styles, approaches, and pur-
poses for the review: in scoping review purpose is to map the entire domain, testing re-
view aims to produce generalizable findings, and some has a goal to extend the existing
body of work [Kitchenham & Charters, 2007; Xiao & Watson, 2017].

Scoping review requires comprehensive and an exhaustive search of literature and
grey literature (conference proceedings, theses, reports) are included. For example, meta-
analysis reviews require a comprehensive search and are more selective in terms of qual-
ity than scoping reviews so grey literature might not be included. Experimental reviews
can be more selective and purposeful with their source selection. [Kitchenham & Char-
ters, 2007; Xiao & Watson, 2017].

-25-

5.5.3 Refining search results

Additional restriction may be added to the filtering of search results. These restrictions
are for example based on publications language, publishing date, or source of financial
support. [Kitchenham & Charters, 2007; Okoli & Schabram, 2010] As a good rule, only
include publications that are written in a language reader can understand, delimit certain
publication periods like too old ones, and consider the source of funding and if that might
bring some biases to the research [Fink, 2005].

5.5.4 Stopping rule

Stopping rule is that search for additional sources should stop when search results are
giving no new results [Levy & Ellis, 2006]. When continuing would not provide any
additional information.

There are three approaches used to find additional source material based on selected
articles from the database search: a backward search (backward snowballing), a forward
search (forward snowballing), or a hybrid of backward and forward search.

In backward search, reference studies of the articles selected from the database search
are gathered and evaluated based on the inclusion and exclusion criteria as it was done to
the database search results. Included articles continue with included articles from the da-
tabase search to the next phase. The purpose of this is to identify relevant work that pub-
lications and articles are using as their base work either directly or indirectly.

In forward search, instead of taking the reference list of already selected articles, we
take articles that reference to those selected articles. Forward search results go through
the same operation as did database and backward search results; they are compared
against the inclusion and exclusion criteria and included ones continue to the next phase
together with other selected studies. The idea is to find authors that have made major
contributions on the research field and are the source of the latest or most important dis-
coveries. By going through results of different searches we can find authors that contrib-
ute majorly to the research and are the experts in this field. Existing systematic literature
reviews are also a good starting point for future reviews. [Kitchenham & Charters, 2007]

According to Mourão et al. [2020], hybrid search strategies provide better perfor-
mance and the most appropriate balance between precision and recall when acquiring
sources for systematic literature review compare with database search or snowballing
alone. It also mitigates the risk of missing relevant papers due to a poor selection of search
terms. The source also concluded that applying database searches in several digital librar-
ies and following it by an iterative backward and forward snowballing, results in im-
proved changes of identifying relevant studies even though with the risk of adding more
effort to the review process.

-26-

5.6 Screening for inclusion
Fourth step in the process is to go through search results gathered in an earlier step and
screen through what kind of material was acquired. Generally, a good approach is to first
go through the material with a rough filtering based on articles abstract and follow that
with a more precise one based on full text. At this point, the purpose is to filter out as
much unnecessary articles as possible [Okoli & Schabram, 2010]. At the same time, when
in doubt whether or not to include a study, it is usually better to include it [Xiao & Watson,
2017].

Filtering criteria, for inclusion/exclusion, should be based on the research question
[Kitchenham & Charters, 2007; Okoli & Schabram, 2010]. Table 5 provides guidelines
on what inclusion or exclusion criteria can be based on. A list of excluded articles should
be created for reproducibility, crosschecking, and record keeping [Kitchenham & Char-
ters, 2007]. Same goes for including duplicate search results into the final documentation
[Mourão et al., 2020].

Criteria Example

Data sources primary vs. secondary data

Duration long-term vs. short term impacts

Geographic areas developed vs. developing countries

Measurement subjective vs. objective

Research design quantitative vs. qualitative

Sampling methodology random sample vs. convenience sample

Type of event hurricanes vs. earthquakes

Type of policy Euclidean zoning vs. form-based codes

Unit of analyses individual household vs. the entire community

Table 5: Criteria examples for inclusion and exclusion of research [Xiao & Watson,
2017].

5.7 Assessing quality
In step five, quality of the selected articles is inspected more closely. According to
Ludvigsen et al., [2016] purpose of the quality assessment is to understand the chosen
articles before continuing to the next step of comparing and integrating findings. There is
debate on whether studies should be similar enough in methodological point of view.

-27-

Some suggest that studies should be similar enough compared to each other to be able to
draw meaningful conclusions later in review methods [Okoli & Schabram, 2010; Gates,
2002]. Others raise a point that excluding a large number of articles just based on poor
methodological quality might lead to selection bias and this way diminish the generaliza-
bility of review findings [Suri & Clarke, 2009; Pawson et al., 2005].

Quality assessment often refers to reviewing internal validity of the study. Study is
internally valid if it has none of the main methodological biases. One approach is to cat-
egorize studies qualitatively on high, medium, and low categories. Major arguments and
research synthesis should base on high-quality studies before using medium-quality
sources. Low-quality sources can be used as a supplement but not in a foundation. [Pet-
ticrew & Roberts, 2006]

5.8 Extracting data
In step six, ways to synthesize data are presented. Different literature review typologies
and types being synthesized guides researcher towards proper synthesizing method. This
includes reporting the knowledge so far, showing there is a need for the research, explain-
ing what is found, and describing the quality of the research. [Fink, 2005] Method in turn,
guides towards the data extraction process.

Coding is often involved in a data extraction process. It is important to define if the
coding will be based on the data or pre-existing concepts [Suri & Clarke, 2009]. The way
the review is coded has a straight impact on the end conclusions. For example, in extend-
ing reviews where work focuses on finding new perspective and synthesising a large col-
lection of data instead of collecting new one, conclusions and generalizations are made
based on concepts and themes that are coded. If this coding is failed by doing it incorrectly
or inconsistently, the review has less validity and reliability. Stock et al. [1996] state that
if item is not coded, it cannot be analysed. They also recommend using codebook and
having well-designed forms. Well-designed forms increase efficiency and lower the num-
ber of judgements that individual reviewer needs to make, and that way reduce possible
errors. [Stock et al., 1996] It is important that the researcher evaluates the whole research
paper and not just results or main conclusions. It is the only way to provide context to the
findings and avoid misunderstandings. [Onwuegbuzie et al., 2012]

5.9 Analysing and synthesizing data
Once the necessary data is extracted, it is time to start organizing it. Organizing is done
based on the choosing criteria, the reason why study was originally included. With qual-
itative studies, analysing is done by finding descriptive themes and filtering them into
analytical themes. With quantitative studies, findings are combined based on meta-anal-
yses. [Xiao & Watson, 2017] Contingent designs defining feature is how the research
synthesis studies together and combined are able to answer to the raised questions from

-28-

previous syntheses. Not the grouping of studies or methods as quantitative or qualitative.
[Sandelowski et al., 2006] This is a part that people fail most often by synthesizing being
too shallow [Baumeister & Leary, 1997].

5.10 Reporting findings
Detailed reporting contributes to reliability and repeatability. To make sure that literature
review is independently repeatable and reliable, the process must be reported in sufficient
detail. [Okoli & Schabram, 2010] So, by following the same steps anyone should end up
into same conclusion. Especially the inclusion and exclusion criteria should be specified
in detail and reasoning for each criteria should be explained in the report [Peters et al.,
2015; Templier & Paré, 2015]. There should be information about the findings from lit-
erature search, screening, and quality assessment [Noordzij et al., 2009]. The literature
review should have a clear structure that combines studies together into key themes, sub-
groups or characteristics [Rowley & Slack, 2004]. All in all, instead of focusing on how
strict or loose criteria is used, more important aspect is the transparency of the process,
and that conclusions are supported by the data.

It is important to be aware of the risks of adding subjectivity and making assumptions
from the data accordingly based on the purpose of the review. All new findings and un-
expected results should also be broad up [Okoli & Schabram, 2010] in addition to the
opportunities and possible directions for future research [Okoli & Schabram, 2010; Row-
ley & Slack, 2004].

5.11 Good practices
There are some good practises to follow when conducting a literature review. First, start
with a research questions. The entire process (literature search, data extraction, analysis,
and reporting) is based and reflected on that questions [Kitchenham & Charters, 2007].
Second, clarify what you want to achieve by this review and choose a review type that
serves that purpose. After choosing the purpose, researchers can select a typology to fol-
low and that way the appropriate review methodology. Thirdly, plan before doing. De-
veloping a review protocol is a crucial starting phase for strict systematic reviews [Brere-
tona et al., 2007; Okoli & Schabram, 2010]. The protocol reduces possibility for biases
in data selection and analysis [Kitchenham & Charters, 2007] and enables repeatability,
cross-checking, and verification later on and that way increases the reliability of the re-
view. As a fourth step, aim to have a comprehensive literature search and mind the quality
of literature. The search should be comprehensive and sources up to date, so using multi-
ple databases, backward and forward searches, and expert consultation in the field is ad-
vised. It is also important to understand the findings of individual study before comparing
and integrating findings together [Ludvigsen et al., 2016]. Fifth is to be cautious, flexible,

-29-

and open-minded to new concepts and ideas that might appear. Because of reviews’ pos-
sibly iterative nature, the review can first be piloted, and additional specifications added
before making the final decisions concerning the process design. Sixth, document made
decisions during the review process. To make review reliable and repeatable, it is required
that the process is documented and made transparent. [Xiao & Watson, 2017] Seventh,
teamwork is recommended during the review process with a minimum of two reviewers
for the literature inclusion [Kitchenham & Charters, 2007]. This way it is not just one
person’s view on which studies to include, what are the best practices for the review pro-
cess, and is the quality of the review held according to the set standards. Lastly, software
such as RefWorks can provide assistance in a review process. It can be used to manage
references, citations, and bibliographies. [Xiao & Watson, 2017]

-30-

6 Research methodology execution
As stated in Chapter 5, this study follows the theory of systematic literature review de-
scribed earlier in this study. This chapter states how the methodology was followed in
practise. Figure 2 provides an overview of the process and number of studies filtered,
screened, or read in full in each state of the process.

Figure 2: An overview of the research methodology in practise.

Number of studies from the database search was 654. After removing the duplicate article,
the number was cut down to 394. Each article was screened for inclusion/exclusion. Stud-
ies included for the screening were read in full and eventually 53 studies were included
from the original database search. Based on those selected articles, backward and forward
searches were conducted in order to find additional sources. Results of backward and
forward searches went through the same screening and reading process as the database
search studies and at the end, 11 of them were selected. After having a set of 63 selected
studies, related work was searched and that resulted in 8 related studies using systematic
literature review or systematic mapping.

6.1 Formulating the research problem
Research methodology chapter describes the process of systematic literature review. Re-
search question has a crucial role in that process. Quality and clarity of the research ques-
tion can have an effect on every step following in the process. From the review protocol
to synthesizing results and to the quality of analysis.

-31-

1. Clarify the research objectives and identify the research questions,
2. define the search string,
3. pilot the search for articles in a database like Scopus to search, and
4. consider the inclusion/exclusion criteria.

The goal of the research is to recognize system integration requirements in a microservice
architecture. To achieve the goal, we may think questions such as:

• What type of systems are reported to adopt a microservice architecture?
• What are the different types of the microservice architecture?
• What are the integration challenges or obstacles of microservices?
• What methods or techniques have been discussed or proposed to tackle the chal-
lenges?

Like Figure 1 showed, process can have an iterative nature. If something is realised or
learned or problems identified while conducting review, we can go back to planning phase
and adjust the process according to the new information. These adjustments can concern
some part of the protocol or even change the research question. One of the situations
where research question would require changing is when realised that the question is too
broad which leads to having too much data and that data being unmanageable [Cronin et
al., 2008]. One way to deal with too broad research question is to identify subtopics inside
question after the first literature search, count the number of studies in each subtopic and
based on that information decide whether or not to narrow down the research question
[Breretona et al., 2007].
This study experienced evolution regarding the research questions but search scope

remained the same. After the first database search, search results did not provide adequate
results, and research questions were delimited. Original questions were:

• What are integration mechanisms for microservice projects?
• What are common integration challenges in microservice architecture?
• How are common integration challenges in microservice architecture addressed?
• What requirements should be set to a microservice integration project?

Challenges and requirements related to integration in microservice context proved to be
too restrictive combination, so parameters were iteratively redefined to consider chal-
lenges and requirements related to microservices in general. Final research questions are:

RQ1: What are common challenges in microservice architecture?
RQ2: How are common challenges in microservice architecture addressed?
RQ3: What requirements should be set to a microservice project?

-32-

The search scope for this study is microservice, microservice architecture, requirements,
and challenges.

6.2 Developing and validating the review protocol
Final review protocol used for this work was validated by the Thesis instructor. Develop-
ing a review protocol got an iterative nature, but it is important to keep in mind that not
everything can be predicted beforehand. More important is to assess and re-evaluate the
protocol throughout the process. Protocol selected for this study will be presented in the
following chapters.

6.3 Searching the literature
Four scientific databases were eventually used to act as the channels for high quality pub-
lications. Scopus was selected to act as the first database. This was based on results pub-
lished in Mourão et al., [2020] where Scopus delivered the highest overall precision and
recall compared to IEEE Xplore, ACM Digital Library, Springer , Web of Science, Sci-
enceDirect, Compendex, Google Scholar, and Wiley online library. Additionally, ACM
Digital Library and Web of Science were mentioned to provide good result, although less
consistently. Selected databases for this work are Scopus, ACM Digital Library, IEEE
Xplore, and Web of Science.

6.3.1 Keywords for the search
Following search string used for the search in the databases:

microservice* AND integrat* AND (requirement* OR constraint* OR obstacle*
OR challenge* OR barrier* OR aspect*)

It is constructed following the instructions mentioned above. Essential keywords such as
microservice, integration, requirement, and challenge come from the research questions.
Synonyms and alternatives to the word ‘challenge’ such as ‘constraint’, ‘obstacle’, and
‘barrier’ are used to widen the range of results. This was also reason for using Asterix (*)
to include variations of certain keyword into the search. AND-combinators are used to
maximize the percentage of search results being relevant.

Earlier iterations of the search string included multiple synonyms for ‘microservice’
that were later replaced with an Asterix. Search result including ‘μService’ were experi-
mented in Scopus but did not result in any additional search results, so the term was ex-
cluded from the final search string. Also, the emphasis on term ‘requirement’ was sof-
tened. Different iterations of the search string are presented below.

-33-

Version 1:
system integration AND requirements AND (microservices OR microservice-based ap-
plication OR microservice architecture OR μService) AND (obstacle OR challenge OR
barrier OR critical aspect)

Version 2:
integration AND requirements AND (microservices OR microservice-based application
OR microservice architecture OR μService) AND (obstacle OR challenge OR barrier OR
critical aspect)

Version 3:
integration AND requirement AND (microservices OR microservice-based application
OR microservice architecture OR μService) AND (obstacle OR challenge OR barrier OR
critical aspect)

6.3.2 Sampling strategies

Purpose of this study is to identify recurring aspects from different sources and form gen-
eralizable findings based on those recurring results. In this case it means finding recurring
challenges that projects phase, possible solution to those challenges, and identify require-
ments that selecting microservice architecture brings to the project.

6.3.3 Refining search results

Since microservice is relatively new as a concept [Lewis & Fowler, 2014], publication
date was not limited. Language selection for publications is English and based on title
and abstract, they need to be related to the topic. Source of financial support was not
considered.

6.3.4 Stopping rule

In practise, search for additional sources ended according to the original plan. Digital
library search was conducted to the four selected scientific databases. Out of the search
results, essential articles were selected based on defined inclusion (IC) and exclusion cri-
teria (EC). Following that, backward and forward snowballing is conducted to the se-
lected articles to ensure best possible coverage.

Database search resulted in 654 studies (Table 6) and most of them are from Scopus.
After screening the results for inclusion and reading the selected one in full, backward
and forward snowballing was performed for 53 studies selected from the database search.
Backward snowballing provided 1153 search result (Table 7) and forward snowballing
306 search results (Table 8) that were screened for inclusion and selected ones read in
full.

-34-

Database search Number of search results
Scopus 338
IEEE 109
Web of Science 171
ACM 36
Total 654

Table 6: Number of search results from each scientific database.

Backward snowballing Number of search results
Scopus 941
IEEE 60
Web of Science 65
ACM 87
Total 1153

Table 7: Number of search results from backward snowballing in scientific databases.

Forward snowballing Number of search results
Scopus 267
Web of Science 20
ACM 19
Total 306

Table 8: Number of search results from forward snowballing in scientific databases.

6.4 Screening for inclusion
In this study, articles resulted in the database search were filtered for duplicates, screened
for inclusion/exclusion based on title and abstract. Articles resulted from snowballing
were also filtered for duplicates, then screened for inclusion/exclusion first based on title,
included ones screened again based on abstract, and after that read in full.

Inclusion criteria (Table 9) states that publication should investigate the relevant
topic. In addition to that, publications reporting application implementation using micro-
service design and development, presents specific application implementation, or paper
that are using microservice-based architecture and focuses on designing the application
and in the context of microservice architecture.

Exclusion criteria (Table 9) states that papers that are not written in English, focuses
on process integration, inter-application integrations, and integrations non-microservice
context. Study is not interested in research plans, roadmaps, nor vision papers. Duplicates,
non-peer reviewed and out of topic articles, systematic literature reviews, and ones focus-
ing on service oriented architecture (SOA) are also excluded.

-35-

Criteria type (Inclusion/Exclusion) Description
Inclusion criteria (IC) investigating intra-application mechanisms in mi-

croservice architecture
investigates intra-application integration chal-
lenges in microservice architecture
investigating intra-application integrations in mi-
croservice architecture
investigating intra-application integration re-
quirements in microservice architecture
reporting application implementation using mi-
croservice design and development
presenting specific application implementation
paper that are using microservice-based architec-
ture and focuses on designing the application

Exclusion criteria (EC) not written in English
focuses on process integration
focuses on inter-application integration
focuses on integration in other than microservice
context
duplicate papers
research plans, roadmaps, vision papers
out of topic and using the terms for other purposes
non peer-reviewed papers
focuses on service oriented architecture (SOA)
systematic literature review

Table 9: Inclusion criteria (IC) and exclusion criteria (EC).

Overall, 386 unique results came from database searches. Search was conducted to four
different scientific databases. In addition to that, backward search resulted in 1076 results
and forward search in 283 results. Out of all those searches combined 1745 unique search
results were found and 63 were selected for this work.

Table 10 show that Scopus provided a great number of results compared to the other
databases, but since Scopus was the first database where the search was done, duplicate
values that were found from Scopus are removed from other database results. Backward
snowballing (Table 11) provided 10 selected results but quality-wise one of the key stud-
ies was found from there. Forward snowballing (Table 12) did not provide a significant
advantage in this study by providing only one selected study.

-36-

Database search Number of selected results
Scopus 44
IEEE 3
Web of Science 3
ACM 3
Total 53

Table 10: Number of selected studies from each scientific database.

Backward snowballing overall results unique results selected
Scopus 941 890 7
IEEE 60 52 2
Web of Science 65 60 0
ACM 87 74 0
Total 1153 1076 9

Table 11: Number of search results, unique search results, and selected articles from
backward snowballing in scientific databases.

Forward snowballing overall results unique results selected
Scopus 267 249 0
Web of Science 20 18 0
ACM 19 16 1
Total 306 283 1

Table 12: Number of search results, unique search results, and selected articles from
forward snowballing in scientific databases.

6.5 Assessing quality
In this study, publications are not categorized based on quality or excluded based on sim-
ilarity or lack of it. This is especially because of the lack of publications and data on the
subject. Many of the selected articles are case studies or experiments that consider spe-
cific case, and amount of data that it contributed to this study is limited and not general-
izable. When it comes to methodology and methodological biases, they can be considered
minimal. No studies were excluded because of methodological reasons.

6.6 Extracting data
Now that we have literature that satisfies the set criteria and quality requirements, it is
time to read the whole text on those selected publications and begin the data collection
process. Coding of data extracting is based on research questions and has been iterated
according to the research question changes. Data extraction form is used to extract data

-37-

and facilitate the management of that data [Aksakalli et al., 2021]. Original data extraction
coding included questions:

• Goal of the paper
• Method of the paper
• Resource type
• Type of microservice architecture
• Integration mechanism
• Identified challenges/constraints/problems
• How these challenges effect to the overall application
• Solutions to identified challenges
• Integration requirements for microservice integrations
• Deployment method
• Requirements for microservice application

Since research questions were adjusted, so was data extraction coding. Based on the first
round of data extraction, we noticed that there are some questions that could not be an-
swered based on the source material. This later on lead to the iteration of research ques-
tions as well.

Goal of
the paper

Method
of the
paper

Resource
type

Architec-
tural layer

Identified
challenges

Solutions to
identified
challenges

Require-
ment for
micro-
service

Table 13: Data extraction coding.

Requirements required additional synthesizing during the process. They were extracted
from the literature to the data extraction table (Table 13), simplified, and compared with
each other. If synonyms were found, they were changed to use the same adjective. After
synthesizing the synonyms, frequency evaluation was performed to each requirement
(Figures 6 and 7). After having the knowledge on the found requirements, they were cat-
egorized to gain better readability and understanding on the areas they are highlighting.
Categories were selected based on requirements found in data. More on the categories
later on in Section 7.2.

6.7 Analysing and synthesizing data
First, few things about the overall data. Database searches and backward and forward
snowballing in combined resulted in 2114 publications. After filtering out the duplicates,

-38-

total number of results was 1668. Out of those, based on inclusion/exclusion criteria (pre-
sented earlier in this study) either from title and abstract or also based on content, 67
publications were selected. Those 67 articles were read in full and used to answer the data
extraction questions. Based on extracted data, four more articles were excluded from the
selected ones. Data presented in this study is from those 63 selected publications. Out of
those 63 publications 37 were conference paper, 19 articles, and rest of them book chap-
ters (Figure 3).

Figure 3: Division of resource types of selected publications.

Some of these publications could not be categorized unambiguously by method and 6 of
them were added into two categories. Most of those two category cases were a combina-
tion of experiment and case study. Out of the 63 publications, based on method used in
the study, there were 37 case studies and 21 experiments (Figure 4). Like often in the
software development industry, it is hard to find two completely identical projects. Each
project have some differentiating factor such as business context, technology choices,
skill level of the developer etc. In addition to case studies and experiments, there were
five surveys, four interviews, one observation, and one comparison study which is clear
minority.

19

7

37

0 5 10 15 20 25 30 35 40

article

book chapter

conference paper

Resource type

-39-

Figure 4: Method of the paper.

An architectural layer that each study covered was also documented. Data (Figure 5)
shows that focus is mainly on microservice (44) and communication layers (50). Appli-
cation layer is studied in 28 papers and hardware layer in 25. Layers are defined based on
Fowlers’ article [2016].

Figure 5: An architectural layer.

37

1

21

4

1

5

0 5 10 15 20 25 30 35 40

case study

comparison study

experiment

interview

observation

survey

Method of the paper

25

50

28

44

0

10

20

30

40

50

60

hardware layer communication layer application layer microservice layer

Architectural layer

-40-

6.8 Reporting the findings
Results of this study are presented in Chapter 7. The chapter covers statistic from the
scientific database search and presents selected articles, combines requirements for mi-
croservice architecture, and presents challenges and possible solutions from the literature.

-41-

7 Results
Results conducted from the searches to scientific databases and from the selected studies
are gathered and presented in this chapter.

7.1 Search results
Overall, 386 unique results came from database searches. Search was conducted to four
different scientific databases. In addition to that, backward search resulted in 1076 results
and forward search in 283 results. Out of all those searches combined 1745 unique search
results were found and 63 were selected for this work.

Selected studies (appendix, Source literature) for the data in this study is searched
from established scientific databases. These high quality publications consist of confer-
ence paper, articles, books, and book chapters. Data sources (in this case selected studies)
are suitable for the situation and results measured as objectively as possible. When pos-
sible, quantitative research was conducted but mainly subject of the study and amount of
existing knowledge on the matter made more since to focus on getting qualitative results.
Regarding microservice architecture in the selected studies, implementations in different
studies were not comparable and most of the studies did not describe the architecture in
enough detail. When unsure about the inclusion/exclusion of certain publication, the The-
sis instructor was consulted.

7.2 Requirements identified
Requirements results that were got from data extraction acts as a base for identifying and
categorizing possible requirements. After original data extraction round, data was refined
for couple of rounds and that resulted in collection of requirements options. Based on
those requirements, few categories were identified and named to describe the attributes it
holds; flexibility, independency, efficiency, stability, maintainability, communication,
and security. The ones that did not form a category were added to the Others. Categories
were created by finding similarities between requirements found in the literature and did
not follow any pre-defined classification.

Flexibility category highlights on of the microservices key characteristics. Its’ agility
and ability to change. Characteristics that enable scalability, evolvability, adaptability,
and features that are crucial throughout the systems life cycle.

Independency of services is typical in microservice architecture. Loose coupling, iso-
lation, autonomy, and decentralization are all requirements that enable flexibility require-
ments in the system. That changes can be made in one service without having to change
all the other services as well. Independency category list requirements that contribute to
the service independency.

-42-

Efficiency category focuses on requirements related to performance. That infor-
mation is available in real-time, one operation do not block all the others, and system is
not consuming unreasonable amount of resources.

Stability category presents requirements that contribute to the reliability of the soft-
ware. That it doesn’t crash and provides reliable information and functionalities.

Maintainability category focuses on requirements related to software life cycles man-
agement. Monitoring, traceability, and testability

Communication and interaction between microservices is also highly critical part of
the microservice architecture. Communication category gathers requirement related to
that interaction between services.

Security category, as its’ name implies, gathers security related requirements such as
security, privacy, and safety under one category. Encrypted communication could also
belong under communication but in this study, it is categorized under security.

Other category combines all the requirements that did not belong to any of the cate-
gories mentioned above and did not have enough similarities with other requirements to
be combined into their own category. Tables 14-21 presents categorized requirements
identified from the selected studies.

-43-

Flexibility

accessibility PS25, PS37
adaptability PS14, PS19, PS25, PS45, PS55
agility PS16, PS40, PS48, PS60, PS62
availability PS1, PS4, PS27, PS33, PS36, PS37, PS38, PS40,

PS43, PS44, PS47, PS53, PS59
broken object avoidance PS57
changeability PS11, PS50
compatibility PS11, PS51, PS59
composability PS16, PS37, PS57
configurability PS40, PS44
connectivity PS38
continuous deployment PS2, PS4, PS57, PS62
continuous integration PS31
distributed communication
mechanism

PS18, PS23, PS26

dynamic development PS57
easy implementation PS14, PS20
evolvability PS2, PS7, PS51, PS53, PS60
extensibility PS23, PS25, PS32, PS34, PS38, PS51, PS56
fast delivery PS22, PS28
fast deployment PS21, PS29
fast integration PS27, SP31, PS35, PS44
flexibility PS3, PS9, PS14, PS20, PS23, PS25, PS29, PS35,

PS37, PS38, PS39, PS43, PS48, PS49, PS53, PS55,
PS60

global information sharing PS15
integrability PS2, PS10, PS22, PS23
invokability PS37
mobility PS38
multicomponent integration PS3
portability PS48
reconfigurability PS24
refactorability PS45, PS51, PS61
relocatable PS61
scalability PS4, PS8, PS9, PS11, PS14, PS20, PS21, PS22,

PS23, PS25, PS26, PS27, PS28, PS29, PS32, PS33,
PS34, PS35, PS37, PS38, PS40, PS43, PS44, PS46,
PS48, PS49, PS50, PS53, PS54, PS56, PS57, PS59,
PS60, PS61, PS62

Software Defined Network
(SDN)

PS42

Table 14: Flexibility related requirement identified.

-44-

Independency

autonomy PS28, PS55, PS59, PS60
container management PS42
containerized integration envi-
ronment

PS3

composability PS16, PS37, PS58
decentralization PS3, PS9, PS11, PS40, PS55, PS57, PS60
distributed architecture PS18, PS20
independent deployability PS9, PS24, PS56, PS63
independent development PS24
independent scalability PS45, PS63
isolation PS10, PS11, PS14, PS54, PS58, PS60, PS63
loose coupling PS9, PS18, PS19, PS26, PS28, PS35, PS37, PS49,

PS50, PS51, PS53, PS57, PS58, PS59, PS61, PS62,
PS63

modularity PS9, PS11, PS14, PS23, PS45, PS53, PS57
platform-independency PS37
self-contained PS37
single task oriented services PS57
technological independency PS23, PS24, PS39

Table 15: Independency related requirements identified.

Efficiency

concurrency PS40
continuous optimization PS13, PS18
efficiency PS14, PS18, PS37, PS38, PS48
load balancing PS5, PS6, PS33, PS42, PS47, PS57
performance PS2, PS8, PS11, PS13, PS14, PS17, PS18, PS20,

PS27, PS28, PS35, PS37, PS38, PS46, PS47, PS53,
PS56, PS58

real-time processing PS11, PS14, PS15, PS21, PS28, PS34, PS38
remote capabilities PS50
remote intelligent operation PS15
resource efficiency PS2, PS4, PS12, PS13, PS17, PS34, PS47, PS49,

PS58, PS62
response time PS4, PS47, PS58
reusability PS43, PS46

Table 16: Efficiency related requirements identified.

-45-

Stability

cohesion PS9, PS19, PS53, PS58
data accuracy PS1
end-to-end connectivity PS5
fault tolerance PS6, PS14, PS27, PS33, PS34, PS36, PS38, PS39,

PS44, PS58, PS61
Quality of Services (QoS) PS4, PS16, PS30, PS33, PS37, PS47
reliability PS1, PS13, PS17, PS19, PS23, PS33, PS36, PS38,

PS39, PS40, PS45, PS47, PS48, PS53, PS58
resiliency PS23, PS29, PS58
robustness PS14, PS23, PS25, PS27, PS37
semantic coherence of the data
flow

PS16

stability PS6, PS51
statelessness PS59

Table 17: Stability related requirements identified.

Maintainability

accountability PS55
anomality detection PS33
auditability PS55
facilitability PS16
fast maintenance PS14
maintainability PS1, PS24, PS25, PS26, PS44, PS46, PS49, PS51,

PS53, PS59, PS60, PS62
manageability PS1, PS35, PS42, PS44, PS49
monitorability PS2, PS37, PS42
observability PS44
performance monitoring PS18
real-time monitoring PS18
sensing/actuation capabilities PS47
testability PS53
traceability PS55
transparency PS11

Table 18: Maintainability related requirements identified.

Communication

discoverability PS19, PS37, PS39
interoperability PS20, PS26, PS27, PS29, PS37, PS46, PS56, PS57,

PS59
lightweight communication
mechanism

PS10, PS60, PS62

Table 19: Communication related requirements identified.

-46-

Security

encrypted communication PS5
privacy PS4, PS5, PS17, PS30, PS37, PS39, PS47, PS56
safety PS38
security PS1, PS5, PS20, PS23, PS26, PS30, PS33, PS37,

PS38, PS39, PS43, PS44, PS46, PS47, PS53, PS56,
PS58

Table 20: Security related requirements identified.

Others

context awareness PS33, PS47
cost efficiency PS1, PS4, PS13, PS21, PS22, PS23, PS31, PS38,

PS44, PS55
heterogeneity PS23, PS26, PS39, PS40, PS46
proximity PS33, PS47
simplicity PS8, PS16, PS23, PS24, PS40, PS57, PS62
small services PS10
usability PS8
versatility PS40
virtualization PS57

Table 21: Uncategorized requirements identified.

When analyzing the occurrence of each requirement (Figures 6 and 7), scalability (38) is
without a doubt most often mentioned requirement in the selected studies. Efficiency (16),
flexibility (17), loose coupling (17), performance (19), and security (17) also gained lot
of attention. Following that, availability (13), fault tolerance (11), interoperability (10),
maintainability (13), reliability (15), and resource efficiency (10) appeared relatively of-
ten. Having a large variety of different kinds of studies and context, the things that re-
search highlights also varies a lot. All in all, 101 requirements were extracted from the
studies. Many of those requirements had only one occurrence and that is why it is not
justified to draw any defined conclusion from those.

-47-

Figure 6: Requirements A-L and their frequency in the data.

-48-

Figure 7: Requirements M-V and their frequency in the data.

-49-

7.3 Identified challenges and solutions
In this study we wanted to get a better understanding on what are the common obstacles
developer face while developing systems and what solution are already recognised re-
garding those obstacles. Appendix Data extraction table presents challenges and possible
solutions that were identified in the selected studies. Range of challenges and solutions is
quite broad and combining those results into numerical format is not reasonable. There-
fore, word clouds (Figures 8 and 9) were used to analyse the text formatted data extracted
from the selected studies and highlight the most common words appearing in it. Word
cloud generator analyses the text, identifies component words from it, and presents the
ones that appear most often in the text provided to it. The larger words appear more often
in the text than the smaller ones. Generator includes filters automatically non-component
words such as and, or, is that do not provide any informative value but appear so often
that they would distort the results. In addition to automatically filtered words, words con-
taining microservice or service were manually excluded from the data. This decision was
made after analysing the context were these words appeared which was more related to
the context of this study and not the actual challenges or solutions.

Word clouds are divided so that Figure 8 is formed out of the challenges data and
words in Figure 9 are from the proposed solutions data. In both figures, data is by far the
largest and the most often appearing one. Figure 8 focusing on challenges also highlights
security, complexity, integration, distributed, performance, API, management, and com-
munication as reoccurring words. For solutions in Figure 9, these are architecture, com-
munication, integration, components, framework, and patterns. Since values are not exact,
there’s room for different interpretation.

Figure 8: Challenges word cloud.

-50-

Figure 9: Solutions word cloud.

As challenging as it is to combine and categorize something out of the challenges and
solutions data, here are few reoccurring themes that keep coming up throughout the an-
swers. One of the most common reasons to adopt microservice architecture is the number
of integrations needed which brings a large number of data and data processing without
forgetting real-time processing, low latency, reliability, and security of the system. Solu-
tions suggested to this are service orchestration and use of fog computing where data
processing can happen in different parts of the method chain or layer. To avoid blockers
that can form around e.g., a message broker, decentralizing data helps to avoid bottlenecks
and improve performance. Also, use of microservice architecture together with cloud
computing solutions was presented as a good combination since they both aim to provide
scalability, agility, and flexibility to the system.

When considering lifecycle, systems are experiencing rapid evolution, and refactor-
ing. The importance of lifecycle management keeps increasing. In terms of integration
API management and challenges arising from it are crucial. Ways presented in the litera-
ture to solve these possible evolution challenges are use of patterns, traceability models,
and versioning strategies. Use of patterns was a reoccurring theme in multiple provided
solutions. The use of design patterns, architectural patterns, and different communication
patterns and protocols was highly advised. Examples of other challenges mentioned in
the literature are complexity, data management, performance, security threats and en-
larged attack surface, and monitoring.

-51-

7.4 Research questions
Based on result extracted from the literature and presented in Sections 7.2 and 7.3, the
research questions for this study are answered.

7.4.1 RQ1: What are common challenges in microservice architecture projects?

Many challenges are reported by the literature and one explaining factor may be that many
studies have a unique context that brings its’ own challenges. It is also difficult to draw
the line between challenges that are characteristic for microservice architecture projects
and challenges that appear in the described scenario.

Common challenges identified by the literature are a large number of integrations
needed and therefore a large number of data and data processing. Also as shown in Figure
8, data was highlighted as a central factor of many appearing challenges. When combined
with the context, it refers to the accurate and secure handling and processing of the data,
the large amount of it, data flows and referencing, and integrity, distribution, and quality
of the data. Real-time processing, low latency, reliability, and security of the system are
also reoccurring themes mentioned in the literature. Performance blockers e.g., a message
broker are also mentioned.

As a part of agile practises, principles of continuous integration and continuous de-
ployment highlight a need for rapid evolution and refactoring in software development.
Lifecycle management as a whole is an important factor but not an easy task to succeed
in. Since integrations are central in microservice architecture, API evolution were brought
up as a separate thing. Other challenges mentioned often in the literature are reliability,
and security, complexity, data management, performance, security threats, and monitor-
ing.

7.4.2 RQ2: How are common challenges in microservice architecture addressed?

For challenges such as a large number of integrations needed, data and data processing,
real-time processing, and low latency, literature suggested service orchestration and use
of fog computing where data processing can happen in different parts of the method chain
or layers. To provide performance and avoid bottleneck services such as Message broker
can be, decentralized data is offered as a recommendation to solve these type of chal-
lenges. Figure 9 also shows that solutions around data are the most proposed ones.

Agile practises highlight a need for lifecycle management, rapid evolution, and refac-
toring in software development. With microservice architecture where integrations and
communication between services are present, practical API management stands out. The
use of patterns, traceability models, and versioning strategies is recommended to solve
system evolution challenges. Use of patterns (design, architectural, communication) was
overall a reoccurring theme in multiple provided solutions.

-52-

7.4.3 RQ3: What requirements should be set to a microservice project?

Requirements that appeared most often in the literature are scalability (38), performance
(19), flexibility (17), efficiency (16), loose coupling (17), and security (17). Following
that, reliability (15), availability (13), maintainability (13), fault tolerance (11), interop-
erability (10), and resource efficiency (10) also appeared relatively often. Even though
many more were mentioned, this study presents ones mentioned above as the recom-
mended ones based on data gathered in this study.

-53-

8 Discussion
This chapter is about discussing the result of this work, what conclusions can be drawn
from them, and what is the information that could, in the light of the result, interest us,
support or challenge the results or provide explanation to the results. What could be done
differently regarding the topic, possible limitations, is there something more we would
like to know that cannot be known based on results, and evaluation of the creditability
and reliability regarding the topic and results without forgetting methodological results
and limitations.

8.1 Reliability of the data
Like mentioned in Section 4.9, most of the publications were case studies and experiments
with their own differentiating factors. This could have an impact on the comparability of
the data since each case is a little bit different and so results can be explained by those
differences. Unfortunately, this is something we cannot conclude from the study.

It would have been beneficial to get more systematic literature reviews on the topic
that could have provided more theoretically stable starting point for our study and helped
to understand the scope more universally. Studies did not always explicitly mention the
method so there is room for human error when analysing the method of the studies used
in this work.

Human error is present when doing evaluations that are not explicitly measurable. In
this research, that applies to the inclusion/exclusion of the studies (although minimized
by the criteria) and categorization of the requirements. Categories were created by finding
similarities between requirements found in the literature and did not follow any pre-de-
fined classification. Some requirements, such as encrypted communication, could belong
under multiple categories. In those cases, it was arbitrarily decided under which category
that requirement belongs to.

8.2 Keywords for the search
Identifying terms to formulate an appropriate search string is one of the challenges in the
database search [Mourão et al., 2020] and one that was faced in this study. It resulted in
irrelevant search results and additional effort. Term ‘microservice architecture’ appeared
to be a trending word and that was used in many different contexts. Presented architecture
might be resemble microservice approach, follow some practices of it, or even have its’
own vision on what counts as a microservice architecture. So even though inclusion/ex-
clusion criteria were fulfilled, and title or abstract contained required keywords, study
might still end up being out of scope. Similar happened with the term ‘integration’ since
it can refer to integration in the technical or project practices. Since this study focused on
technical aspects of microservices, integration of practices was not in the desired scope.

-54-

Additional improvement for search term would have been adding ‘communication’
to the search term as a synonym for ‘integration’. After reading the articles, that appeared
to be a common term to use when talking about interaction between microservices.
Nonoptimal selection of keywords and/or search term also effected the snowballing phase
resulting in irrelevant articles among the search results. Articles that are used as a seed
for snowballing largely determine the quality and relevance of the results [Mourão et al.,
2020]. The database search did not result in many articles that would be deal with the
exact research topic, so the snowballing results consisted largely of irrelevant topics.
Luckily, snowballing also resulted in few articles that could be considered core articles
in this work.

8.3 Screening for inclusion
When analysing the quality of the results, inclusion for papers found in the database
search might have been too loose. Xiao & Watson [2017] instruct that at the early stages
of the filtering and when in doubt, it is better to be too loose with the inclusion. It is not
yet known what kind of results and relevant data will be found.

8.4 Analysing the data
On Section 6.7 Figure 5 shows us that main focus on architectural level was on commu-
nication layer and microservice layer. Could this be because granularity and communica-
tion are such critical and characteristic functionalities in microservice architecture? Also,
could categorizing studies based on domain (cloud, IoT, traditional context) or excluding
edge and fog computing provide us with more information and inside on the results?

Since much of the data handing and formatting is done manually, it increases the risk
for errors. On the other hand, it helps to identify logic errors and edge cases such as one
word containing another word and therefore conflicting the results.

Selected publications were categorized by publication type, used method, and by the
architectural level that was consider in the study. The data extracted from those publica-
tions were about challenges and obstacles in microservice architecture, possible solutions
to the identified challenges, and requirements for microservice architecture. While for-
matting the data, an error in the method identified. When counting for requirement inci-
dence for ‘usability’ or ‘connectivity’, additional results such as ‘reusability’ and ‘end-
to-end connectivity’ were included. This was quickly fixed so that incidence results are
correct.

8.5 Analysing the results
Analysing and finding reoccurring challenges and solutions from the extracted data was
not an easy nor unambiguous task. Challenges and solutions were identified from the data
in two ways, by analysing the results manually and by using a word cloud. Even though

-55-

these approaches do not provide direct answers, they can highlight certain themes and
perspectives to help analyse the data.

8.5.1 Challenges in microservice architecture

Identified challenges were a large number of integrations needed that leads to a large
number of data and data processing. Real-time processing, low latency, reliability, and
security of the system are also reoccurring themes mentioned in the literature. Perfor-
mance blockers e.g., a message broker are also mentioned.

Agile practices highlight a need for rapid evolution and refactoring in software de-
velopment together with lifecycle management. Closely linked with integrations is API
evolution that was brought up as a separate thing. Other challenges mentioned often in
the literature were reliability, and security, complexity, data management, performance,
security threats, and monitoring.

Figure 8 directs analyses towards data that seems to be central factor in challenges.
Common challenges identified by the literature are a large number of integrations needed
and therefore a large number of data and data processing, accurate and secure handling
and processing of the data, the large amount of it, data flows and referencing, and integ-
rity, distribution, and quality of the data. This seems reasonable considering that the
amount of data gathered, processed, and stored has grown enormously over the recent
years both by companies and users. Figure 8 also highlights security, complexity, inte-
gration, distributed, performance, API, management, and communication as reoccurring
words which aligns with results from manual analysis.

8.5.2 Solutions for identified challenges

As mentioned in the previous subsection, data was identified as one of the central factors
when considering challenges in microservice architecture. Thereby it is only logical that
data is considered as a key factor when identifying solutions as well. Data acts as a base
for many of the systems functionalities and without accurate quality data, many of the
complex functionalities are worthless.

For challenges such as a large number of integrations needed, data and data pro-
cessing, real-time processing, and low latency, literature suggested service orchestration
and use of fog computing where data processing can happen in different parts of the
method chain or layers. To provide performance and avoid bottleneck services such as
Message broker can be, decentralized data is offered as a recommendation to solve these
type of challenges.

Also need for lifecycle management, rapid evolution, and refactoring in software
development is highlighted. With microservice architecture where integrations and com-
munication between services are present, practical API management stands out. The use
of patterns, traceability models, and versioning strategies is recommended to solve system

-56-

evolution challenges. Use of patterns was overall mentioned in multiple provided solu-
tions. This is also supported by the word cloud for solution (Figure 9) that brought up
data, architecture, communication, integration, components, framework, and patterns as
the most common keyword of proposed solutions extracted from the selected studies.

8.5.3 Requirements for microservice project

Requirements appearing most frequently in the results are scalability, performance, flex-
ibility, efficiency, loose coupling, and security followed by reliability, availability, main-
tainability, fault tolerance, interoperability, and resource efficiency. These requirements
are high level, non-functional requirements that cover a lot of things in practise. Never-
theless, these are important requirements that guide system towards working and future
proof solution.

8.6 Comparing the results of this study to results of related work
The results of this study are compared to the results of related work introduced in Chapter
2. This to see if the results are aligned with each other and if there are conclusions or
discussion that can be invoked by those possible differences.

Quality attributes (QAs) identified by Li et al. [2021] are scalability, availability,
monitorability, performance, security, and testability. Compared to the requirements
identified in this study, there’s a clear consistency with the results since scalability (38)
was by far the most often mentioned requirement appeared for microservice architecture
and performance (19) being one of the most common ones as well. Monitorability got
three results, security 17, and testability one.

Since there are no one set of terms for requirements, results may not contain exactly
the same adjectives. This is the case with availability. Availability can be seen similar or
part of accessibility, connectivity, discoverability, or integrability that are mentioned in
the results.

Aksakalli et al. [2021] analysed deployment and communication approaches for mi-
croservices, possible issues related to those, and where future research might be heading
regarding those two. For deployment, study mentioned serverless deployment, service
instance per container, and service instance per virtual machine -principles. For commu-
nication study lists useful communication protocols. Container based solution and single
task oriented services are solutions and requirements also identified in this work.

Challenges regarding deployment are identified from architectural complexity, fault
tolerance, deployment coordination, distributed logs, deployment cost, container image
vulnerability, required specific configurations, and Continuous Integration/Continuous
Delivery (CI/CD) [Aksakalli et al., 2021]. Out of the ones mentioned, complexity, fault
tolerance, monitoring, cost effectiveness, and CI/CD also appeared in the results of this
study.

-57-

Razzaq [2020] mapped appearance of studies related to combination of software ar-
chitecture and IoT software, on which platform, challenges and solution related to IoT
software, what kind of microservice based software architecture and design patterns are
available for IoT software, and why microservice architecture would work well with IoT
software. Data integration and scalability were highlighted as the challenges and a list of
architectural patterns and design patterns was provided. Data integration can be equated
to integrability or connectivity, and scalability is mentioned as the most appeared one in
our study.

Campeanu [2018] is about the amount of interest towards the usage of microservice
architectures by IoT and cloud computing solutions. Study shows that the interest has
increased over the years and the main source for publications are conferences. This study,
however, do not relate to our work.

Söylemez et al. [2022] was the most similar one out of the related work listed in
Chapter 2. The study presents service discovery, data management and consistency, test-
ing, performance prediction, measurement, and optimization, service orchestration, inte-
gration and communication, security, tracing, logging and monitoring, and decomposition
as the challenges of microservice architecture. This aligns very well with the challenges
identified by our research.

As solutions, Söylemez et al. [2022] mentioned using information-centric network-
ing (ICN), multi-agent-based framework to coordinate distributed transactions of the sys-
tem, automated method of regression tests, adaptive performance simulation approach,
event-driven lightweight platform for microservice orchestration, Elasticsearch to solve
auto-scalability issues, access control optimization model that is based on role-based ac-
cess control (RBAC), graph-based microservice analysis and testing (GMAT), and do-
main-driven design principles. On the solutions side, there are less similarities than with
challenges but multi-agent-based framework, automated testing, event-driven lightweight
platform for service orchestration, role-based access control, and domain-driven design
principles are mentioned in both studies.

Guo & Wu [2021] studied smells in cloud and microservice applications and if the
related work talks about the impact of those smells and future research related to them.
The study identified following ones: Infrastructure and Configuration Smell (IaC) that
results in increasing complexity and size of the associated code, Microservice Smell that
creates a need for multi-directional communication protocol, technical implementation
problems, and high-level structural problems in architecture and endpoints. Study also
pointed out that automatic refactoring of Code Smells most likely results in increased
resource usage. Themes that were brought up in this study align with challenges that rose
from our research.

-58-

Santana et al. [2018] discussed on the adoption of microservices in the IoT applica-
tion development, knowledge on the matter, and on potential future research trends. The
study concludes that design is predominant phase when architecting microservices for
IoT or applying data solutions in cloud and fog computing. Study also listed contributions
and problems identified by each of its’ source literature. Challenges and solutions match
well with the ones identified by our work. Challenges mentioned are orchestration, de-
velopment and deployment, self-containment, scalability, versioning, security, monitor-
ing, reuse, development of middleware, connectivity and network overlays, scalability in
maintenance, interoperability, and development, collaboration of distributed modules,
heterogeneity, data management, and modelling. Mentioned solutions on the other are
patterns and best practices, architecture, methodology, middleware, performance and
performance metrics, platform, context-based applications, prototype platform, manage-
ment services, framework, and service modelling.

Soldani et al. [2018] was also contained similar research to our work and talked about
the “pains” and “gains” of microservices. Both of them were categorized by following:
architecture design, security design, microservices development, storage development,
testing development, management operations, monitoring operations, and resource con-
sumption operations. All of the mentioned ones are categories that appear on the results
of this study. Architectural design was talked about e.g., in the form of patterns, security
and related requirements were represented in the requirements table, microservice devel-
opment related attributes such as loose coupling, isolation, modularity, scalability, and
many more can be found from the requirements results. Gains on the other are not in the
scope of this study.

8.7 Threats to validity and limitations
Regarding the selection of source articles, source of funding was not considered in the
inclusion/exclusion criteria. It is not known if that had an effect to the used data and final
result.

Like all studies, this work has its’ limitations. Modifications made iteratively during
the process may have effect the work and its’ end results. This paper is unable to proclaim
that the results and findings of this study are universal and apply in all circumstances.
Rather it gathers identified challenges and possible solutions presented in the literature
regarding the implementation and adaptation of microservice architecture and list require-
ments that are recognised as relevant ones. Also, the frequency of different challenges
and solutions was not exact when gathering the results. This may leave room for subjec-
tivity when analysing the results. More generalizable results can be investigated in the
future research.

-59-

9 Conclusion
Popularity and interest towards microservices and microservice architecture, has grown
steadily since 2014 when the concept of microservices was first introduced [Campeanu,
2018; Soldani et al., 2018]. Microservice architecture can be utilized together with cloud
computing or IoT applications, on its’ own, or in the form of edge or fog computing.

The objective of this work was to gather challenges, possible solutions, and based on
those, requirements related to the use of microservice architecture and therefore support
the work of different stakeholders in a software project using microservice architecture,
but also provide information researchers as well. Study followed systematic literature fol-
lowing guidelines presented by Xiao & Watson [2017] and 63 scientific articles were
selected.

The study gathered multiple different challenges and possible solutions from 63 sci-
entific publications on microservice architecture. Many of the scenarios discussed in the
literature had a very specific context and drawing generalizable conclusions from those
would not be right. Rather we highlight which challenges repeatedly appeared in the lit-
erature. Challenges identified by the literature are a large number of integrations needed
and therefore a large number of data and data processing. Also, real-time processing, low
latency, reliability, security of the system, and performance blockers e.g., a message bro-
ker are also mentioned.

Rapid evolution and refactoring, and lifecycle management are needed in software
development to be able to follow agile principles, such as continuous integration and de-
ployment. Since integrations are central in microservice architecture, API evolution were
brought up as a separate thing. Other challenges mentioned are reliability, security, mon-
itoring, complexity, data management, and performance.

For challenges such as a large number of integrations, data and data processing, real-
time processing, and low latency, use of fog computing and service orchestration is rec-
ommended. Decentralized data on the other hand is suggested to solve challenges related
to performance and avoiding bottleneck services.

In addition to the ones mentioned above, use of patterns was one of the most recom-
mended approach withing the suggested solution. Agile practises highlight a need for
lifecycle management, rapid evolution, and refactoring in software development and in-
tegrations and communication between services are constantly present at a microservice
architecture. This emphasizes practical API management. The use of patterns, traceability
models, and versioning strategies is recommended to solve system evolution challenges.

Overall, data was identified as a central factor when considering both challenges and
solutions in microservice architecture. Data was mentioned in the context of accurate and
secure handling and processing of the data, the large amount of it, data flows and refer-

-60-

encing, and integrity, distribution, and quality of the data. Based on this, data can be con-
sidered as the base and enabler of all functionalities and when inaccurate, a major chal-
lenge and a blocker of functionalities.

Regarding requirements, results show that scalability, efficiency, flexibility, loose
coupling, performance, and security are requirements that appear most often in the studies
our research found when talking about microservice architecture and its’ requirements.
Following that, availability, fault tolerance, interoperability, maintainability, reliability,
and resource efficiency also appeared relatively often. Based on the results, these are the
requirements that should be considered in a microservice project.

Researchers and practitioners can both benefit from this study. Nevertheless, more
research is needed to better understand what are the most suitable ways to implement
microservices and microservice architecture, and where to use them. Future work should
consider investigating how facing those challenges in different parts of the development
lifecycle effects the amount of work required to solve the problem and how to optimize
benefits of using microservice architecture together with cloud computing.

-61-

References

Aksakalli, I. K., Çelik, T., Can, A. B., Tekinerdoğan, B. (2021). Deployment and com-
munication patterns in microservice architectures: A systematic literature re-
view. The Journal of systems and software, 180, 111014.

Aurum A., Wohlin C. (2005). Engineering and managing software requirements. Ed.
Aybüke. Aurum and Claes. Wohlin. 1st ed. 2005. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005. Web.

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Migrating to Cloud-Native Archi-
tectures Using Microservices: An Experience Report. Advances in Service-ori-
ented and Cloud Computing (ESOCC 2015), 567, 201-215.

Bass, L., Weber, I., and Zhu, L. (2015). DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 1st edition, 2015.

Bayliss, H. R., & Beyer, F. R. (2015). Information Retrieval for Ecological Syntheses.
Research Synthesis Methods, 6(2), 136–48.

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons
from Applying the Systematic Literature Review Process within the Software
Engineering Domain. Journal of Systems and Software, 80(4), 571–83.

Campeanu, G. (2018). A mapping study on microservice architectures of Internet of
Things and cloud computing. 2018 7th Mediterranean Conference on Embedded
Computing (MECO), 2018, 1-4.

Cerny, T., Donahoo, M. J., & Trnka, M. (2017). Contextual understanding of micro-
service architecture: current and future directions. ACM SIGAPP Applied Com-
puting Review, 17(4), 29–45.

Cronin, P., Ryan, F., & Coughlan, M. (2008). Undertaking a Literature Review: A Step-
by-Step Approach. British Journal of Nursing, 17(1), 38–43.

Dixon-Woods, M., Agarwal, S., Jones, D., Young, B., & Sutton, A. (2005). Synthesis-
ing Qualitative and Quantitative Evidence: A Review of Possible Methods. Jour-
nal of Health Services Research & Policy, 10(1), 45–53.

Fink, A. (2005). Conducting Research Literature Reviews: From the Internet to Paper,
2nd ed. Thousand Oaks, CA: Sage.

Fowler, S. (2016). The Four Layers Of Microservice Architecture. https://www.su-
sanjfowler.com/blog/2016/12/18/the-four-layers-of-microservice-architecture.

Gates, S. (2002). Review of Methodology of Quantitative Reviews Using Meta-analysis
in Ecology. Journal of Animal Ecology, 71(4), 547–57.

Grady, Jeffrey O. (1994). System Integration. Boca Raton: CRC Press. Print.

Grady, Jeffrey O. (2014). System Requirements Analysis. 2nd ed. Boston, MA: Else-
vier.

-62-

Guo, D. & Wu, H. (2021). A Review of Bad Smells in Cloud-based Applications and
Microservices. 2021 International Conference on Intelligent Computing, Auto-
mation and Systems (ICICAS), 2021, 255-259.

IEEE-STD 610.12-1990, Standard Glossary of Software Engineering Terminology,
1990, Institute of Electrical and Electronics Engineers.

Kitchenham, B., & Charters, S. (2007). Guidelines for Performing Systematic Literature
Reviews in Software Engineering. In EBSE Technical Report, Software Engi-
neering Group, School of Computer Science and Mathematics, Keele University,
Department of Computer Science, University of Durham.

Kratzke, N., & Quint, P.-C. (2017). Understanding cloud-native applications after 10
years of cloud computing - a systematic mapping study. Journal of Systems and
Software, 126, 1–16.

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., Babar, M. A. (2021).
Understanding and addressing quality attributes of microservices architecture: A
Systematic literature review. Information and Software Technology, 2021, 131,
106449.

Lewis, J., & Fowler, M. (2014). Microservices: A Definition of this New Architectural
Term. MartinFowler.com, 2014. https: //www.martinfowler.com/articles/micro-
services.html.

Levy, Y., & Ellis, T. J. (2006). A Systems Approach to Conduct an Effective Literature
Review in Support of Information Systems Research. Informing Science Journal
9, 182–212.

Ludvigsen, M. S., Hall, E. O. C., Meyer, G., Fegran, L., Aagaard, H., & Uhrenfeldt, L.
(2016). Using Sandelowski and Barroso’s Meta-Synthesis Method in Advancing
Qualitative Evidence. Qualitative Health Research, 26(3), 320–329.

Mourão, E., Pimentel, J. F., Murta, L., Kalinowski, M., Mendes, E., Wohlin, C. (2020).
On the Performance of Hybrid Search Strategies for Systematic Literature Re-
views in Software Engineering. Information and software technology, 2020, 123,
106294.

Noordzij, M., Hooft, L., Dekker, F. W., Zoccali, C., & Jager, K. J. (2009). Systematic
Reviews and Meta-analyses: When They Are Useful and When to Be Careful.
Kidney International, 76(11), 1130–36.

O’Connor, R.V., Elger, P., & Clarke, P.M. (2017). Continuous Software Engineering -
A Microservices Architecture Perspective. Journal of software : evolution and
process, 2017, 29(11), 1866.

Okoli, C., & Schabram, K. (2010). A Guide to Conducting a Systematic Literature Re-
view of Information Systems Research. Sprouts: Working Papers on Information
Systems, 10(26).

Onwuegbuzie, A. J., Leech, N. L., & Collins, K. M. T. (2012). Qualitative Analysis
Techniques for the Review of the Literature. Qualitative Report, 2012, 17(28), 1.

-63-

Paré, G., Trudel, M., Jaana, M., & Kitsiou, S. (2015). Synthesizing Information Systems
Knowledge: A Typology of Literature Reviews. Information & Management,
52, 183–99.

Pawson, R., Greenhalgh, T., Harvey, G., & Walshe, K. (2005). Realist Review: A New
Method of Systematic Review Designed for Complex Policy Interventions. Jour-
nal of Health Services Research and Policy, 70(1), 21–34.

Peters, M. D. J., Godfrey, C. M., Khalil, H., McInerney, P., Parker, D., & Soares, C. B.
(2015). Guidance for Conducting Systematic Scoping Reviews. International
Journal of Evidence-Based Healthcare, 13(3), 141–46.

Petticrew, M., & Roberts, H. (2006). Systematic Reviews in the Social Sciences: A
Practical Guide. Oxford: Blackwell.

Pouloudi, A. & Whitley, E. A. (1997). Stakeholder identification in inter-organizational
systems: Gaining insights for drug use management systems. European journal
of information systems, 1997, 6(1), 1-14.

Razzaq, A. (2020). A Systematic Review on Software Architectures for IoT Systems
and Future Direction to the Adoption of Microservices Architecture. SN com-
puter science, 2020, 1(6).

Rowley, J., & Slack, F. (2004). Conducting a Literature Review. Management Research
News, 27(6), 31–39.

Salminen, A. (2011). Mikä kirjallisuuskatsaus? Johdatus kirjallisuuskatsauksen tyyppei-
hin ja hallintotieteellisiin sovelluksiin. Teaching publication, Department of Ad-
ministrative Sciences, Public Management, University of Vaasa. Retrieved from
https://www.uwasa.fi/materiaali/pdf/isbn_978-952-476-349-3.pdf. Access date:
Jan 27, 2022.

Sandelowski, M., Voils, C. I., & Barroso, J. (2006). Defining and Designing Mixed Re-
search Synthesis Studies. Research in the Schools, 13(1), 29–40.

Santana, C., Alencar, B., & Prazeres, C. (2018). Microservices: A Mapping Study for
Internet of Things Solutions. 2018 IEEE 17th International Symposium on Net-
work Computing and Applications (NCA), 2018, 1-4.

Soldani, J., Tamburri, D. A., Van Den Heuvel, W-J. (2018). The pains and gains of mi-
croservices: A Systematic grey literature review. The Journal of systems and
software, 2018, 146, 215-232.

Stock, W. A., Benito, J. G., & Lasa, N. B. (1996). Research Synthesis: Coding and Con-
jectures. Evaluation and the Health Professions, 19(1), 104–117.

Söylemez, M., Tekinerdogan, B., & Tarhan, A. K. (2022). Challenges and Solution Di-
rections of Microservice Architectures : A Systematic Literature Review. Ap-
plied sciences, 2022, 12(11), 5507.

Templier, M., & Paré, G. (2015). A Framework for Guiding and Evaluating Literature
Reviews. Communications of the Association for Information Systems, 2015,
37, 112-137.

-64-

Wolff, E. (2016). Microservices: Flexible Software Architectures. CreateSpace Inde-
pendent Publishing Platform.

Xiao, Y., & Watson, M. (2017). Guidance on Conducting a Systematic Literature Re-
view. Journal of planning education and research, 2019, 39(1), 93-112.
https://journals.sagepub.com/doi/pdf/10.1177/0739456X17723971. Access date:
Dec 6, 2021.

-65-

Appendix

Source literature

Paper
number

Authors Year Title Source title

PS1 Popović I., Ra-
dovanovic I., Vajs
I., Drajic D., Gli-
gorić N.

2022 Building low-cost sensing in-
frastructure for air quality mon-
itoring in urban areas based on
Fog Computing

Sensors

PS2 Cortellessa V., Di
Pompeo D., Eramo
R., Tucci M.

2022 A model-driven approach for
continuous performance engi-
neering in microservice-based
systems

Journal of Systems and
Software

PS3 Kondrashev V.A.,
Denisov S.A.

2021 System interface of scientific
services of a digital platform
for multiscale modeling

Russian Microelec-
tronics

PS4 Štefanič P.,
Kochovski P., Rana
O.F., Stankovski V.

2021 Quality of Service-aware
matchmaking for adaptive mi-
croservice-based applications

Concurrency and Com-
putation: Practice and
Experience

PS5 Safran V., Hari D.,
Arioz U., Mlakar I.

2021 Persist sensing network: A
multimodal sensing network ar-
chitecture for collection of pa-
tient-generated health data in
the clinical workflow

International Confer-
ence on Electrical,
Computer, Communi-
cations and Mecha-
tronics Engineering,
ICECCME 2021

PS6 Cilic I., Zarko I.P.,
Kusek M.

2021 Towards service orchestration
for the cloud-to-thing contin-
uum

2021 6th International
Conference on Smart
and Sustainable Tech-
nologies, SpliTech
2021

PS7 Bogner J., Fritzsch
J., Wagner S., Zim-
mermann A.

2021 Industry practices and chal-
lenges for the evolvability as-
surance of microservices: An
interview study and systematic
grey literature review

Empirical Software
Engineering

-66-

PS8 Strljic M.M., Pro-
kop E., Saueressig
S., Riedel O.

2021 Resulting artifacts and applica-
tion scenarios of the communi-
cation intermediate layer SFCS
with a focus on usability for the
automation industry

4th IEEE International
Conference on
Knowledge Innovation
and Invention 2021,
ICKII 2021

PS9 Hasselbring W.,
Wojcieszak M.,
Dustdar S.

2021 Control flow versus Data flow
in distributed systems integra-
tion: Revival of flow-based
programming for the industrial
Internet of Things

IEEE Internet Compu-
ting

PS10 Lesniak A., Laigner
R., Zhou Y.

2021 Enforcing consistency in mi-
croservice architectures
through event-based con-
straints

DEBS 2021 - Proceed-
ings of the 15th ACM
International Confer-
ence on Distributed
and Event-Based Sys-
tems

PS11 Serrano-Magaña
H., González-Potes
A., Ibarra-Junquera
V., Balbastre P.,
Martínez-Castro D.,
Simó J.

2021 Software components for smart
industry based on micro-
services: A case study in pH
control process for the bever-
age industry

Electronics (Switzer-
land)

PS12 Sun J., Jin M.,
Wang Y.

2021 A Microservice-based Ap-
proach to Facilitate Multi-Ser-
vices in Smart Space

Proceedings - 2021 7th
International Confer-
ence on Big Data and
Information Analytics,
BigDIA 2021

PS13 Deng J., Li B.,
Wang J., Zhao Y.

2021 Microservice pre-deployment
based on mobility prediction
and service composition in
Edge

Proceedings - 2021
IEEE International
Conference on Web
Services, ICWS 2021

PS14 Ibarra-Junquera V.,
Gonzalez-Potes A.,
Paredes C.M., Mar-
tinez-Castro D.,
Nunez-Vizcaino
R.A.

2021 Component-based micro-
services for flexible and scala-
ble automation of industrial bi-
oprocesses

IEEE Access

-67-

PS15 Ji H., Sun S., Xie
Y., Liu H., Jiang T.

2020 Research and application of in-
ternet of things edge autonomy
technology based on Micro-
service in Power Pipe Gallary

Proceedings - 2020 7th
International Confer-
ence on Information
Science and Control
Engineering, ICISCE
2020

PS16 Zouad S., Boufaida
M.

2020 Using multi-agent micro-
services for a better dynamic
composition of Semantic Web
services

ACM International
Conference Proceeding
Series

PS17 Nakamura K., Man-
zoni P., Zennaro M.,
Cano J.-C., Calafate
C.T., Cecilia J.M.

2020 Fudge: A frugal edge node for
advanced IoT solutions in con-
texts with limited resources

FRUGALTHINGS
2020 - Proceedings of
the 2020 1st Workshop
on Experiences with
the Design and Imple-
mentation of Frugal
Smart Objects

PS18 Wang Z., Xia Y.,
Sun C., Cheng L.

2020 Research on microservice ap-
plication performance monitor-
ing framework and elastic scal-
ing mode

Journal of Physics:
Conference Series

PS19 Zimmermann O.,
Pautasso C., Lübke
D., Zdun U.,
Stocker M.

2020 Data-Oriented Interface Re-
sponsibility Patterns: Types of
information holder resources

ACM International
Conference Proceeding
Series

PS20 Pontarolli R.P.,
Bigheti J.A., Fer-
nandes M.M.,
Domingues F.O.,
Risso S.L., Godoy
E.P.

2020 Microservice orchestration for
process control in Industry 4.0

2020 IEEE Interna-
tional Workshop on
Metrology for Industry
4.0 and IoT, MetroInd
4.0 and IoT 2020 - Pro-
ceedings

PS21 Kaneko Y., Yoko-
yama Y., Monma
N., Terashima Y.,
Teramoto K., Kishi-
moto T., Saito T.

2020 A microservice-based indus-
trial control system architecture
using cloud and MEC

Lecture Notes in Com-
puter Science (includ-
ing subseries Lecture
Notes in Artificial In-
telligence and Lecture
Notes in Bioinformat-
ics)

-68-

PS22 Grogan J., Mul-
ready C., McDer-
mott J., Urbanav-
icius M., Yilmaz
M., Abgaz Y.,
McCarren A., Mac-
Mahon S.T., Ga-
rousi V., Elger P.,
Clarke P.

2020 A multivocal literature review
of Function-as-a-Service
(FaaS) infrastructures and im-
plications for software develop-
ers

Communications in
Computer and Infor-
mation Science

PS23 Gaggero M., Buso-
nera G., Pireddu L.,
Zanetti G.

2020 TDM Edge Gateway: A flexi-
ble microservice-based Edge
Gateway architecture for heter-
ogeneous sensors

Lecture Notes in Com-
puter Science (includ-
ing subseries Lecture
Notes in Artificial In-
telligence and Lecture
Notes in Bioinformat-
ics)

PS24 Sun C.-A., Wang J.,
Guo J., Wang Z.,
Duan L.

2020 A reconfigurable microservice-
based migration technique for
IoT systems

Lecture Notes in Com-
puter Science (includ-
ing subseries Lecture
Notes in Artificial In-
telligence and Lecture
Notes in Bioinformat-
ics)

PS25 Ianculescu M.,
Alexandru A.,
Neagu G., Pop F.

2019 Microservice-based approach
to enforce an IoHT oriented ar-
chitecture

2019 7th E-Health and
Bioengineering Con-
ference, EHB 2019

PS26 Benayache A.,
Bilami A., Barkat
S., Lorenz P., Taleb
H.

2019 MsM: A microservice middle-
ware for smart WSN-based IoT
application

Journal of Network and
Computer Applications

-69-

PS27 Emami Khoonsari
P., Moreno P.,
Bergmann S., Bur-
man J., Capuccini
M., Carone M., Cas-
cante M., De Atauri
P., Foguet C., Gon-
zalez-Beltran A.N.,
Hankemeier T.,
Haug K., He S.,
Herman S., Johnson
D., Kale N., Larsson
A., Neumann S., Pe-
ters K., Pireddu L.,
Rocca-Serra P.,
Roger P., Rueedi R.,
Ruttkies C., Sadawi
N., Salek R.M.,
Sansone S.-A.,
Schober D., Se-
livanov V., Thé-
venot E.A., Van
Vliet M., Zanetti G.,
Steinbeck C., Kul-
tima K., Spjuth O.

2019 Interoperable and scalable data
analysis with microservices:
Applications in metabolomics

Bioinformatics

PS28 Smid A., Wang R.,
Cerny T.

2019 Case Study on data communi-
cation in microservice architec-
ture

Proceedings of the
2019 Research in
Adaptive and Conver-
gent Systems, RACS
2019

PS29 Chapman M.,
Curcin V.

2019 A Microservice Architecture
for the Design of Computer-In-
terpretable Guideline Pro-
cessing Tools

EUROCON 2019 -
18th International Con-
ference on Smart Tech-
nologies

PS30 Kochovski P., Bajec
M., Sakellariou R.,
Stankovski V.

2019 A smart and safe construction
application design for fog com-
puting

Proceedings - 2019
IEEE World Congress
on Services, SER-
VICES 2019

-70-

PS31 Guo S., Xu C., Chen
S., Xue X., Feng Z.,
Chen S.

2019 Crossover service fusion ap-
proach based on microservice
architecture

Proceedings - 2019
IEEE International
Conference on Web
Services, ICWS 2019 -
Part of the 2019 IEEE
World Congress on
Services

PS32 Zhou J., Li L., Zhou
N.

2019 Research and application of
battery production data man-
agement system based on mi-
croservice

ICEIEC 2019 - Pro-
ceedings of 2019 IEEE
9th International Con-
ference on Electronics
Information and Emer-
gency Communication

PS33 Buzachis A., Gal-
letta A., Celesti A.,
Carnevale L., Vil-
lari M.

2019 Towards Osmotic computing:
A blue-green strategy for the
fast re-deployment of micro-
services

Proceedings - IEEE
Symposium on Com-
puters and Communi-
cations

PS34 Henning S., Has-
selbring W., Mo-
bius A.

2019 A scalable architecture for
power consumption monitoring
in industrial production envi-
ronments

Proceedings - 2019
IEEE International
Conference on Fog
Computing, ICFC
2019

PS35 Kwon J., Kim N.L.,
Kang M., Wonkim
J.

2019 Design and prototyping of con-
tainer-enabled cluster for high
performance data analytics

International Confer-
ence on Information
Networking

PS36 Aquino G., Queiroz
R., Merrett G., Al-
Hashimi B.

2019 The circuit breaker pattern tar-
geted to future IoT applications

Lecture Notes in Com-
puter Science (includ-
ing subseries Lecture
Notes in Artificial In-
telligence and Lecture
Notes in Bioinformat-
ics)

PS37 Ahmed A.I.A., Gani
A., Hamid S.H.A.,
Abdelmaboud A.,
Syed H.J., Habeeb
Mohamed R.A.A.,
Ali I.

2019 Service management for IoT:
Requirements, taxonomy, re-
cent advances and open re-
search challenges

IEEE Access

-71-

PS38 Dobaj J., Krisper
M., Iber J., Kreiner
C.

2018 A microservice architecture for
the industrial Internet-of-
Things

ACM International
Conference Proceeding
Series

PS39 Schmidt M., Ober-
maisser R.

2018 Adaptive and technology-inde-
pendent architecture for fault-
tolerant distributed AAL solu-
tions

Computers in Biology
and Medicine

PS40 Munari S., Valle S.,
Vardanega T.

2018 Microservice-based agile archi-
tectures: An opportunity for
specialized niche technologies

Lecture Notes in Com-
puter Science (includ-
ing subseries Lecture
Notes in Artificial In-
telligence and Lecture
Notes in Bioinformat-
ics)

PS41 Petrasch R. 2017 Model-based engineering for
microservice architectures us-
ing Enterprise integration pat-
terns for inter-service commu-
nication

Proceedings of the
2017 14th International
Joint Conference on
Computer Science and
Software Engineering,
JCSSE 2017

PS42 Peinl R.,
Holzschuher F.,
Pfitzer F.

2016 Docker cluster management for
the cloud - Survey results and
own solution

Journal of Grid Com-
puting

PS43 Tchoubraev D.,
Wiczynski D.

2015 Swiss TSO integrated opera-
tional planning, optimization
and ancillary services system

2015 IEEE Eindhoven
PowerTech, Power-
Tech 2015

PS44 Batista, C., Proen,
B., Cavalcante, E.
Batista, T., Morais,
F. & Medeiros, H.

2022 Towards a multi-tenant micro-
service architecture: An indus-
trial experience

2022 IEEE 46TH AN-
NUAL COMPUTERS,
SOFTWARE, AND
APPLICATIONS
CONFERENCE
(COMPSAC 2022)

PS45 Ma, M., Lin, W.,
Pan, D. & Wang, P.

2022 Self-adaptive root cause diag-
nosis for large-scale micro-
service architecture

IEEE transactions on
services computing

PS46 Nisansala, S.,
Chandrasiri, G. L.,

2022 Microservice based edge com-
puting architecture for Internet
of Things

2022 2nd International
Conference on Ad-
vanced Research

-72-

Prasadika, S. & Jay-
asinghe, U.

in Compu-
ting (ICARC)

PS47 Villari, M., Fazio,
M., Dustdar, S.,
Rana, O., Chen, L.
& Ranjan, R.

2017 Software defined membrane:
Policy-driven edge and Internet
of Things security

IEEE cloud computing

PS48 Yang, HB., Ong,
SK., Nee, AYC.,
Jiang, GD. & Mei,
XS.

2022 Microservices-based cloud-
edge collaborative condition
monitoring platform for smart
manufacturing systems

International journal of
production research

PS49 Zeng, RQ., Zhao,
Y., Su, H. & Guo,
XY.

2020 A novel construction technol-
ogy of enterprise business de-
ployment architecture based on
containerized microservices

2020 5TH Interna-
tional Conference On
Communication, Im-
age, And Signal Pro-
cessing (CCISP 2020)

PS50 Zimmermann, O.,
Lübke, D., Zdun U.,
Pautasso, C. &
Stocker, M.

2020 Interface responsibility pat-
terns: Processing resources and
operation responsibilities

ACM International
Conference Proceeding
Series

PS51 Lübke, D., Zimmer-
mann, O., Pautasso,
C., Zdun, U. &
Stocker, M.

2019 Interface evolution patterns:
Balancing compatibility and
extensibility across service life
cycles

ACM International
Conference Proceeding
Series

PS52 Tsoutsa, P. Fitsilis,
P. & Ragos, O.

2017 Role modeling of IoT services
in industry domains

ACM International
Conference Proceeding
Series

PS53 Dragoni N., Giallo-
renzo S., Lafuente
A.L., Mazzara M.,
Montesi F., Mus-
tafin R., Safina L.

2017 Microservices: Yesterday, to-
day, and tomorrow

Present and Ulterior
Software Engineering

PS54 Namiot D., Sneps-
Sneppe M.

2014 On micro-services architecture International Journal of
Open Information
Technologies

PS55 Hassan S., Bahsoon
R.

2016 Microservices and their design
trade-offs: A self-adaptive
roadmap

2016 IEEE Interna-
tional Conference on

-73-

Services Computing
(SCC)

PS56 Vresk T., Cavrak I. 2016 Architecture of an interopera-
ble IoT platform based on mi-
croservices

2016 39th International
Convention on Infor-
mation and Communi-
cation Technology,
Electronics and Micro-
electronics (MIPRO)

PS57 Jarwar M.A., Ali S.,
Kibria M.G., Kumar
S., Chong I.

2017 Exploiting interoperable micro-
services in web objects enabled
Internet of Things

2017 Ninth Interna-
tional Conference On
Ubiquitous And Future
Networks (ICUFN
2017)

PS58 Ghofrani J., Lübke
D.

2018 Challenges of microservices ar-
chitecture: A survey on the
state of the practice

CEUR Workshop Pro-
ceedings

PS59 Pautasso C., Zim-
mermann O.,
Amundsen M., Le-
wis J., Josuttis N.

2017 Microservices in practice, part
2: Service integration and sus-
tainability

IEEE software

PS60 Baškarada S., Ngu-
yen V., Koronios A.

2020 Architecting microservices:
Practical opportunities and
challenges

The Journal of com-
puter information sys-
tems

PS61 Kalske M., Mäki-
talo N., Mikkonen
T.

2017 Challenges when moving from
monolith to microservice archi-
tecture

Current Trends in Web
Engineering

PS62 Esposito, Christian
and Castiglione,
Aniello and Choo,
Kim-Kwang Ray-
mond

2016 Challenges in delivering soft-
ware in the cloud as micro-
services

IEEE cloud computing

PS63 Singjai A., Zdun U. 2022 Conformance assessment of ar-
chitectural design decisions on
API endpoint designs derived
from domain models

2022 IEEE 19TH Inter-
national Conference
On Software Architec-
ture Companion
(ICSA-C 2022)

-74-

Data extraction table

Source
ID

Identified challenges, constraints, or
problems

Solutions to the identified challenges

PS1 integrating large number of sensors, in-
formation processing, data communica-
tion, security, availability, reliability,
serviceability, openness, manageability

fog computing

PS2 rapid evolution, continuous deployment,
performance, software complexity, effi-
cient integration, power consumption,
memory footprint, monitoring and
measuring system execution and perfor-
mance

Model-Driven Engineering (MDE), log-
ging, monitoring, more efficient integra-
tion, use of traceability models

PS3 point-to-point integrations, integration
bus integrations, modern information
services operating with the paradigm of
microservices

Organization of the interaction of ser-
vices registered on the platform, syn-
chronization of the processes of provid-
ing services, interaction interface based
on the approaches of flexible integra-
tion, cloud technologies, and virtualiza-
tion. Synchronization of the processes of
providing services, ensuring the transfer
of data between services, and obtaining
the final result are also ensured through
the implementation of control processes
of the digital platform.

PS4 varying and unpredictable data genera-
tion rates, performance bottleneck for
data processing, latency, computational
overhead, Quality of Service (QoS)
aware adaptation

P-Match algorithm (i) enabling resource
matchmaking of multiple application
components on fog and cloud infrastruc-
ture; (ii) retrieving the results in less ex-
ecution time; (iii) requiring fewer itera-
tions to converge, and (iv) choice of op-
timal deployment options based on QoS
constraints.

PS5 privacy, integration, data processing,
data sinks, inflexibility, interoperability

HTTPS REST protocol (for synchro-
nous connections), MQTT protocol (for
asynchronous connections), JWT token
(security), Microservice architecture

PS6 large amount of heterogeneous device
integrations, large amount of generated
data, real-time processing, latency, reli-
ability, security

fog computing, service orchestration

PS7 service cutting, no system-centric view,
mastering technologies, technological
heterogeneity, missing/outdated docu-
mentation, inter-service dependen-
cies/ripples, architectural/technical
complexity, unhealthy metric usage, in-

balance between decentralization and
standardization, guidelines to ensure a
base consistency for evolvability such as
architectural principles, specialized test
automation, source code quality with
tools and metrics, architectural or ser-
vice-oriented tools and metrics, patterns

-75-

tegrating legacy code, inadequate test-
ing, communicating the importance of
assurance, microservice integration,
slow or manual deployment process,
tool selection, breaking API changes,
code duplication, distributed code repos-
itories, high issues resolve time, slow
adding of new functionality, suitable
service granularity without harmful de-
pendencies, ripple effects, chatty inter-
service communication to fulfil basic
operations

such as Event-driven Messaging, API
Gateway, Consumer-Driven Contracts,
Service Registry, CQRS, Event Sourc-
ing, Backends for Frontends, Strangler,
Service Facade, and Service Mesh

PS8 scalability, simplified deployment,
broader programming platform support,
simplified development, usability

quality assurance process, distributed,
deployment management system, IDE
integration for configuration and moni-
toring

PS9 interactions and flows among micro-
services, the order of operations exe-
cuted, data flow and control flow, inde-
pendent scalability, central control via
orchestration and independent evolution
of microservices

runtime monitoring, having data flow-
oriented system design and data-flow
oriented modelling and flow-based pro-
gramming having control-flow as a sec-
ondary

PS10 expressing event-based constraints, such
as causal consistency and event pro-
cessing order. 1. Microservice architec-
ture rely on message brokers pushing
events to other microservices to use cap-
ture/subscribe communication. Events
may be delayed, duplicated, or lost. This
is a challenge when it comes to distinct
events that present a causal dependency.
2. When two distinct events, with no ex-
plicit dependencies, arrive at the same
time in a microservice and end up being
processed concurrently. If those inter-
leaving leads to opposite outcomes in
the application state, the order on which
the two events are processed may impact
on application safety.

Pursuing a model where data is decen-
tralized, each microservice encapsulates
its own private state and exposes such
internal state via well-defined applica-
tion programming interfaces (APIs). Mi-
croservices communicate and exchange
data via message passing mechanisms,
such as asynchronous event-based com-
munication. 1. Causal Constraints + Ter-
minal Constraints 2. Window Con-
straints + System Design

PS11 high costs associated with automation
and production processes, coordination
between distributed industrial devices,
gap between generic architectures and
physical realizations, flexibility, scala-
bility, agility, robust framework to cope
with disruptions and to be able to react
more quickly to continuous market
changes, operational efficiency, meet
the demand for growth

processing new data subsequently at dif-
ferent levels of the hierarchy of automa-
tion processes, development and imple-
mentation of processing plants (high
costs)
plug-and-play software components (co-
ordination between distributed industrial
devices)
container technologies, the concept of
microservices, the decoupling of each
microservice with a middleware based

-76-

on the publish/subscribe pattern (gap be-
tween generic architectures and physical
realizations)
solution based on software components,
container technology, microservices and
the publish/subscribe paradigm (flexi-
ble, scalable, and robust framework)"

PS12 different resource requirements and
goals between services, the resource
contentions and variable service require-
ments while promoting the multiple ser-
vice processes, to provide an intelligent,
autonomous and convenient environ-
ment for collaborating device resources
and services, to validate the feasibility
and effectiveness of the framework in
terms of function and performance

a model and operating mechanism based
on user behaviours and scene resources
whereby a corresponding microservice-
based scheduling architecture is de-
signed, a prototype system to validate
the feasibility and effectiveness of the
framework, a model/framework for 1.
data entity and data storage and micro-
service layers (resource management
service components, process manage-
ment service components, log service
components, resource scheduling ser-
vice components, process evolution ser-
vice components) 2. communication
methods and protocols 3. API gateway
and access terminal (unified access to all
API calls, forwarding all client requests
to the back-end server, support the cache
storage) 4. workflow (service process
and effective device resources)

PS13 resource constraint, coverage constraint,
user-mobility, service-composition, mi-
croservice-selection, success rate, cost-
effectiveness, multi-optimization-objec-
tive, multi-constraints

predict future trajectories through mo-
bility prediction, multiple edge servers,
consider coverage constraint and re-
sources constraint of edge servers when
pre-deploying microservices

PS14 ability to react quickly and constantly to
market changes, ability to offer more
specialized, customized products with
high operational efficiency, demand
products to be customizable, modular,
flexible, and scalable without losing ro-
bustness

framework based on software compo-
nents, container technology, micro-
service concepts, and the publish/sub-
scribe paradigm 1. decentralized deci-
sions 2) interoperability 3) technical as-
sistance (humans support) 4) infor-
mation transparency

PS15 insufficient perception, low level of in-
telligence, no information sharing, no
end-to-end online interaction are ex-
posed in the original technical architec-
ture, processing capacity is limited and
the business connection between the
main station and substation is isolated,
multiple systems cannot be intercon-
nected and information cannot be shared

change of enabling format to achieve
communication interoperability, model
interoperability, and business interoper-
ability. MQTT (Message Queuing Te-
lemetry Transport) (a lightweight com-
munication protocol based on pub-
lish/subscribe mode, which provides
real-time and reliable message services
for connecting remote devices)

-77-

PS16 interoperability, service composition,
discovery and composition of services
requires human intervention

Enterprise modelling, Agent-based ar-
chitectures, Microservice architecture,
Ontologies. We define three types of
agents to deliver composite semantic
web services:
• The interface agent (Microservice 1):
Its role is to semantically rewrite the
user request based on ontologies of busi-
ness processes.
• The selector agent (Microservice 2): Its
role is to assign a task (semantic descrip-
tion of the composition process) to the
composer agent based on the ontologies
of the business processes.
• The composer agent (Microservice 3):
its role is to dynamically compose and
coordinate Semantic Web services."

PS17 latency, reliability, power consumption,
resource usage, privacy, low-latency
constraints

edge/fog and microservice architecture,
MQTT (publish/subscribe messaging
protocol), "aggregator" (a process that
coordinates the data flow between the
services on the edge nodes with those in
the cloud)

PS18 monitoring analysis and quality assur-
ance of system performance

performance monitoring framework

PS19 how many services should be exposed,
which service cuts let services and their
clients deliver user value jointly but cou-
ple them loosely, how often do services
and their clients interact to exchange
data, how much and which data should
be exchanged, conflicting non-func-
tional requirements for service design,
exposing API data entities so that API
client can access and/or modify these en-
tities concurrently without compromis-
ing data integrity and quality, API sup-
port to clients that want to CRUD in-
stances of domain entities that are short-
lived, change often and have many out-
going relations, CRUD operations to
long-living, quite unchangeable data
that is referenced by other data, refer-
encing to data that is referenced in many
places, lives long, and is immutable for
clients be treated in API contracts, data
exchange between communication par-
ticipants that do not know each other and
are not available at the same time, mes-
sage representation referation to API

responsibility patterns to cover two dis-
tinct main architectural roles for API
endpoints: Processing Resources and In-
formation Holder Resources (Opera-
tional Data Holder, Master Data Holder,
Reference Data Holder, Data Transfer
Resource, Link Lookup Resource)

-78-

endpoints and operations without bind-
ing the message recipient to the actual
addresses of the endpoints

PS20 promote integration between technolo-
gies, equipment and automation systems
allocated in different hierarchical levels
of industrial systems, optimizing the ef-
ficiency of the production chain

The Molecular framework for micro-
services was chosen for the development
of the MOA architecture, a cloud infra-
structure shared by equipment and sys-
tems

PS21 unpredictable network latency to get
real-time processing, high cost

latency-cost algorithm, fog computing,
Multi-access Edge Computing (MEC),
having Asset management service, De-
mand forecast service, Trading service,
Control service, and Service manage-
ment service

PS22 faster software delivery with less impact
on operational systems, and at a reduced
hardware provisioning cost

Function-as-a-Service (FaaS), adoption
of a distributed high-decoupled service-
based architecture (such as micro-
services)

PS23 effective handling of heterogeneous and
distributed data sources, data collecting
infrastructure from the point of view of
security, reliability, device heterogene-
ity

TDM Edge Gateway architecture

PS24 a large number of integrations to distrib-
uted and heterogenous components,
continuously running system in a dy-
namic environment which frequently
suffers environmental changes (e.g.,
traffic situations) or requirement
changes (e.g. preferred paths), a large
number of hardware and software mod-
ules, which are expected to be easily re-
placed or reconfigured, connectivity be-
tween the decomposed microservices,
resulting in poor reconfigurability of the
resulting system

a microservice-based migration frame-
work for IoT systems, a supporting tool
to enable and automate as much as pos-
sible of the proposed technique, decom-
position principles: Doman analysis,
Static analysis, Hierarchy-aware, and
Embedded features-aware

PS25 amount and variety of available data,
complex with distributed systems in-
volving multiple entities that generate
and consume data, adaptability, accessi-
bility

combination of cloud computing and
microservices, integration of real-time
and accurate IoT data, RO-Smart Age-
ing architecture structured on layers:
Data Acquisition Layer, Communica-
tion Layer, Edge/Fog Layer, Cloud
Layer, Visualisation and Action Layer

PS26 Integrating wireless sensor networks us-
ing different middleware, with chal-
lenges such as heterogeneity and in-
teroperability. Excessive use of IoT
leads to challenges in device capabili-
ties, user needs, and application require-
ments.

Microservice middleware (MsM) to al-
low interactions between devices with-
out big changes in the system architec-
ture. The proposed microservice model
uses the ANN (Artificial Neural Net-
work) concept to achieve a lightweight
and intelligent microservice network.

-79-

Use of specialized and adapted tools to
permit an efficient exploitation and per-
fect device integration with the internet,
that lead to the emergence of other prob-
lems like heterogeneity, interoperability,
security, etc.

PS27 rapidly generating datasets of massive
volume and complexity, large scale data
analytics, need for integrations and con-
stant need for change, scalability of the
system

a Virtual Research Environment (VRE)
which facilitates rapid integration of
new tools and developing scalable and
interoperable workflows for performing
metabolomics data analysis. Cloud com-
puting offers possibility to instantiate
and configure on-demand resources
such as virtual computers, networks and
storage, together with operating systems
and software tools.
The study provides a framework for
rapid and efficient integration of new
tools and developing scalable, and in-
teroperable workflows, supporting mul-
tiple workflow engines

PS28 data communication management, mi-
grating legacy monolith applications to
microservices, managing data commu-
nication from the original monolith to
the new microservices and between the
distinct microservices themselves, per-
formance, implementation of features
that need data in the database of a sepa-
rate module, synchronizing data replicas
when data changes in the master data-
base

automated data streaming system be-
tween databases, distributed cache, bal-
ance between the performance and cou-
pling, microservice architecture with
separate databases, a good design for
data communication of microservices,
Architecture to improve data communi-
cation performance of microservices: 1)
data synchronization between the legacy
monolithic system’s database and the
microservices’ databases. The architec-
ture proposed here uses message queue
and streaming platforms to automati-
cally capture and synchronize database
changes. 2) improving data communica-
tion performance between microservice
instances by applying the cache and
message broker Redis. Separated the
management system from the monolith
application as a microservice based on
the functional distinction. A database for
the microservice distinct from the mon-
olith database. Use a data streaming
platform to synchronize master data
changes. multiple instances of the same
server (high availability). Two architec-
tures: 1) data synchronization between
different databases of distinct micro-
services or between microservice and

-80-

monolith by building a data stream sys-
tem with technologies. 2) a ’semi micro-
service’ technique by introducing a dis-
tributed cache instead of splitting the
data model into multiple bounded con-
texts.

PS29 support for external interoperability, in-
creased adoption of CIGs in different
parts of the system leads to an integra-
tion overhead, system redundancy, and a
lack of flexibility in how these tools can
be combined

a blueprint architecture to be used in the
design of guideline processing tools,
based on the conceptualisation of key
components as RESTful microservices.
Define the types of data endpoints that
each component should expose, for both
the communication between internal
components and communication with
external components that exist as a part
of a DSS. Centres around three types of
RESTful microservices, each with a set
of well-defined endpoints

PS30 high Quality of Service (QoS) operation,
achieving privacy and security, func-
tional orchestration of various micro-
services during its operation

fog computing through the design of
multi-tier, container-based applications

PS31 semantic inconsistencies in business and
interface make crossover service fusion
difficult and time-consuming, no uni-
form development standards

A five-part crossover service fusion
framework:
1. identifies key components
2. acquires Service Fusion Require-
ments
3. Business Matching Between Domain
Services
4. Interface Matching Between Domain
Services
3.-4. these can detect and resolve seman-
tic inconsistencies.
5. Service Fusion Implementation (to
help achieve rapid integration of crosso-
ver service)

focuses on detecting and resolving se-
mantic inconsistencies on business and
data during the service integration, thus
achieving smooth integration."

PS32 customizability, deployment, data inte-
gration, data management, data analysis,
data processing, flexibility, central de-
velopment

Microservice architecture to complete
the supplementary extension for battery
MES. A scheme is proposed for unified
data platform including application
layer, service layer and data layer.

PS33 management of microservices, the IoT
proliferation, the rapid development of
new technologies in Cloud environ-
ments

Microservice architecture

-81-

PS34 fault tolerance, extensibility, real-time
data processing, resource efficiency

Microservice architectural pattern, fog
computing paradigm

PS35 Technical constraints around bottle-
necked inter-connections for overlay
networking and storage access. Process
and analyse large-amount of data gener-
ated from diversified data-centric appli-
cations and performance.

usage of high-performance parallel file
system inside the worker nodes

PS36 dependability of the integration and col-
laboration between IoT systems, resili-
ence of distributed services, preventing
the failure propagation to dependent ser-
vices

Circuit Breaking pattern

PS37 lack of interoperability, flexibility,
scalability, security, identity manage-
ment, authentication, authorization, vul-
nerability, availability, data accuracy,
real-time analytics, data visualization,
heterogeneity of hardware and software,
multiple network technologies with dif-
ferent communication protocols, differ-
ent software platforms, service provi-
sioning, service orchestration, service
composition, service adaption

Service management, Web of Things
(WoT), RESTful API, Middleware, re-
quirements

PS38 deployment, scalability, integration, in-
teroperability, mobility, performance,
maintenance development, collabora-
tion of distributed modules, heterogene-
ity, discovery, integration, different pro-
gramming languages, continuous de-
ployment, each service running in its
own process and communicating with
lightweight mechanisms, Self-Contain-
ment, Monitoring, Orchestration, Ver-
sioning Secure, reuse, Development of
IoT middleware Connectivity and Net-
work Overlays

Middleware, Platform, Context-based
applications, Prototype platform, Man-
agement Service, Architecture, Frame-
work

PS39 interoperability, interconnected and dis-
tributed automation systems, communi-
cation, dependability, scalability, per-
formance, real time operation, predicta-
bility, data consistency, flexibility, ex-
tensibility

"Design patterns. Architecture that com-
bines the IoT world, industrial automa-
tion systems, modern information tech-
nology (IT) and cloud architectures. Is
lightweight and flexible design, along
with the support of state-of-the-art de-
velopment approaches (containeriza-
tion, continuous integration (CI), contin-
uous deployment (CD)) make the archi-
tecture equally suitable for the deploy-
ment on cloud, fog and edge devices."

-82-

PS40 flawless sensor integration and time syn-
chronization, distributed application
scenario management, fault-tolerance,
service discovery and registration, heter-
ogeneity of the underlying technologies,
multiple integration levels, open-world
assumption, communication models,
data security, privacy

fault-tolerance concept, a fault-hypothe-
sis for software, partitioning manage-
ment OS (Hypervisor)

PS41 a downtime in their infrastructure re-
garding costs and criticality, the massive
growth in code base size, distribution,
deployment, liveness

architectural principles: agility, versatil-
ity, scalability, simplicity
technology requirements: high-level ab-
stractions, modern testing framework,
beware dependencies, economy matters
patterns: layering, pipe, filter configura-
tion management and automation, con-
tainer-based solutions

PS42 API interfaces, security, exception han-
dling, using a message broker, calling
other services synchronously or asyn-
chronously, selection of a self-optimiz-
ing and resilient run-time environment

microservice architecture patterns (mi-
croservice chassis, database per ser-
vice), communication style (messaging,
domain-specific protocol, remote proce-
dure invocation (RPI)), Enterprise Inte-
gration Patterns (EIP), message-oriented
middleware (MoM), Domain modelling,
bounded contexts, determination of mi-
croservice candidates, formalization and
modelling of microservices, UML pro-
files, specified messaging for micro-
services, “database-per-service” pattern,
event-driven architecture, publish-sub-
scriber-channel

PS43 gateway got too much logic, different
client types

SCSs, API gateway, plugin approach,
UI monolith, BFF pattern, dividing into
gateway into multiple gateways, each UI
service or client type gets its own gate-
way, backend is closely linked to the
corresponding frontend

PS44 A full guest OS image for each VM,
high RAM and disk storage require-
ments, slow startup

Containers

PS45 API evolution, data values, data struc-
ture representation, data input validation
and constraint, business rules, context-
awareness, providing data structure sep-
arately requires meta programming or
use of map data structure that leads to
loose type safety and lack of consistency

providing data structure info through
separate information channel, providing
context awareness, context-awareness
security, Data Transfer Object (DTO)
and map structure, following service-ex-
pected data structure, Generative Pro-
gramming (GP), design proposition (tra-
ditional base and connector), Model-
Driven Development (MDD), code-in-
spection tool

-83-

PS46 network latency, reliability, dependabil-
ity, complexity in orchestrating micro-
services, data consistency, transaction
management, load balancing, central-
ized configuration management

PS47 reliability operation, maintenance, iden-
tifying the root cause of anomaly in
large-scale microservice architecture

MS-Rank (a multi-metric and self-adap-
tive root cause diagnosis framework for
microservice architecture)

PS48 delivering real-time IoT services, con-
current and real-time application execu-
tion, platform-independent deployment

a novel three-layer architecture (ROOF,
Fog, Cloud) that facilitates the service
requirements. Then a novel platform and
relevant modules are developed with in-
tegrated AI processing and edge com-
puter paradigms considering issues re-
lated to scalability, heterogeneity, secu-
rity, and interoperability of IoT services.
Further, each component is designed to
handle the control signals, data flows,
microservice orchestration, and resource
composition to match with the IoT ap-
plication requirements.

PS49 amount of IoT devices, volume of gen-
erated data and computing/storage, se-
curity, privacy, implementing many new
features without considering security,
considering security heterogeneity (dif-
ferent types, data formats, and firmware)
of devices, Device-centric attacks, Net-
work-centric attacks

IoT applications and services deployed
in an OSMOSIS system can be viewed
as a graph of MicroElements (MELs),
where a MEL can be composed of two
types of software components: 1) Micro-
services, that implement specific func-
tionalities and which can be deployed
and migrated across different virtualized
infrastructures, and 2) MicroData, that
represents a piece of information flow-
ing from and to IoT sensor and actuator
devices, and which may occur in a vari-
ety of domain-specific data formats. The
integration of security strategy to enable
optimal migration of microservices and
their data (MELs), between Edge and
Cloud resources. MELs is based on mi-
croservice architecture, and that data
processing and handling is done at the
edge so that compromising a micro-
service would have as little effect as pos-
sible. It uses isolated networks among
MELs, based on communication tunnels
and can improve overall IoT application
performance and reduce core network
load. The SDMem is configured based
on a security policy informed by an “at-
tacker model" (evaluate security risk
based on possible attack types).

-84-

PS50 computing and storage capabilities of
the cloud layer, the real-time nature of
the edge layer, the lack of a systematic
and comprehensive microservices-based
condition monitoring (CM) framework,
the lack of cloud-edge collaborative
mechanism, there are few microservice-
based architectures involved in indus-
trial scenarios

Cloud-edge collaborative computing
that encapsulates distributed resources
into manufacturing services, cloud-edge
collaboration mechanism

PS51 low-coupling, scalability, module inde-
pendency, data adaptation, security,
monitoring, authentication, authoriza-
tion, performance, configuration man-
agement, high concurrency

PS52 role of API endpoint, responsibility of
each API operation, service granularity,
coupling, learnability, manageability,
semantic interoperability, response time,
API security, request/response data pri-
vacy, compatibility, evolvability, allow-
ing remote client to trigger API actions,
client invoking side-effect-free remote
processing on the provider side to have
a result be calculated from its input, API
provider allowing a client to report that
something new has happened that is
worth capturing for later processing, in-
formation owned be retrieved to satisfy
an information need of an end user or to
allow further client-side processing, cli-
ent initiating a processing action that
causes the server-side application state
to advance, API clients and API provid-
ers sharing responsibilities required to
perform and control the execution of
business processes and their activities

The Microservice API Patterns (MAP),
endpoint role patterns (Processing Re-
source, Information Holder Resource),
four operation responsibility patterns
(Computation Function, State Creation
Operation, Retrieval Operation, State
Transition Operation), read-access-only
operation

PS53 need for semantic approach to model
services to enable automated collabora-
tion between microservices, services to
interact with other services in an auton-
omous way, services to easily crawl
their domain to discover trusted relevant
services, services to delegate their as-
signments to other, similar trustworthy
services, services to advertise their of-
fered services in their domain

the role modelling approach/theory (in-
stead of having a static plan of interac-
tions for services, we model them to play
a role, where roles can have a set of be-
haviours defined in a way that will make
them capable to react differently under
the circumstances hold at the specific
state)

PS54 programming distributed systems is
harder than monoliths, managing
changes to a service that may have side

-85-

effects on other services that it com-
municates with, preventing attacks that
exploit network communications, de-
pendability (regarding interfaces, be-
havioural specifications and choreogra-
phies), trust and security (greater surface
attack area, network complexity, trust,
heterogeneity)

PS55 additional complexity as a distributed
system, testing of distributed system,
need for inter-service communication
mechanism, need for distributed transac-
tions, increasing deployment complex-
ity, deciding how to split the system into
microservices, interface changes in an
individual service, Remote Procedure
Calls are more expensive than in-pro-
cess calls

Dividing systems based on responsibili-
ties Single Responsible Principle (SRP)
pattern, Remote Procedure Calls (RPCs)
for communication, using appropriate
communication patterns (Direct calls, A
gateway, Message bus)

PS56 intrinsic complexity, development time,
operation time, architecture, security,
storage, testing, monitoring, resource
consumption, management, architec-
tural pains (size/complexity, granularity,
service dimensioning, API versioning ,
service contracts, communication heter-
ogeneity), security related pains (access
control, endpoint proliferation,
size/complexity, centralized support,
CI/CD, human errors), storage pains
(data consistency, distributed transac-
tions, query complexity, heterogeneity),
testing pains (performance testing,
size/complexity, integration testing),
management pains (operational com-
plexity, service location, cascading fail-
ures, service coordination), monitoring
pains (size/complexity, logging, prob-
lem location, resource consumption
(network, compute), need for methodol-
ogies and techniques easing the dimen-
sioning and versioning of microservices,
and simplifying the execution of trans-
actions/queries on distributed and heter-
ogeneous data stores

architectural modelling technique
MAPE-K loop (Monitoring, Analysis,
Planning, Execution, Knowledge)

PS57 need for different technologies, fast im-
plementations and fast improvement and
replacement, considering the communi-
cation of billions of objects from differ-
ent domains and handling the complexi-
ties of semantic cooperation among

The Web of Objects (WoO), virtualiza-
tion of objects in a decentralized manner
and by using semantic ontology, using
concepts and patterns of microservices

-86-

them, understanding the data and infor-
mation of connected objects, supporting
functionalities of every connected ob-
ject, rapidly implemented in best fit and
lightweight technologies and deployed
independently, and less centralized man-
agement in order to rapid scalability, re-
covery, and resiliency

PS58 security, response time, performance,
resilience, reliability, fault tolerance,
memory usage

consider security, licence, memory us-
age, last release date and last release
when using third-party artifacts in mi-
croservice architecture

PS59 service composition, microservice
lifecycle management, identifying
thresholds for alerts to let developers
know that something is wrong

considering following things in certain
categories: communication (caching,
asynchronous messaging between com-
ponents, base info comes in one round
trip and additional info asynchronously),
End-to-end data integrity (data should
have a single master, a single source of
truth for that data, often third-party data,
make each component validate the data
it receives and returns on the basis of
that component’s own local models, Do-
main-Driven Design (DDD), con-
sistency is a key approach in large dis-
tributed systems, investing in con-
sistency result in sacrificing availabil-
ity), sustainable service evolution (ver-
sioning, backward compatibility, se-
mantic interface versioning), organiza-
tional scaling strategies (organization is
part of any system you design, team size,
team got capability to produce end-to-
end functionality), success factors (con-
tinuous delivery, ability to create infra-
structure on demand, understand the na-
ture of distributed systems, only con-
stant is change)

PS60 distributed system complexity, decom-
posing of the data layer, lack of relevant
development skills, reliance on Software
as a Service (SaaS) and commercial off
the self (COTS) applications limits on
the potential uptake of microservice ar-
chitecture, governance, organizational
structure, master data management, or-
chestration, choreography, testing, per-
formance, communication/integration,
service discovery, fault tolerance, secu-
rity, tracing and logging, application

continuous delivery, continuous moni-
toring, systems of differentiation, sys-
tems of innovation-experimental system
developed, no microservice for large
corporate systems of record (ERP,
CRM), skilled cross-functional imple-
mentation teams, distributed coordina-
tion responsibilities

-87-

performance monitoring, deployment
operations, development/deployment
agility, operational scalability, the falla-
cies of distributed computing

PS61 the size of the codebase, automatic test-
ing coverage, decomposition of ser-
vices, performance overhead, integra-
tion between different microservices,
logging and monitoring, managing mul-
tiple different databases

microservice architecture, having simi-
lar architecture as the organization is,
not tying integration to a specific tech-
nology, having simple to use and back-
wards compatible interface, to have
tools to automatically to deploy, scale
and manage services, Circuit breaker
pattern, agree on eventual consistency of
data between microservice transactions

PS62 enlarged attack surface, the challenge of
debugging, monitoring and auditing the
application, the use of off the-shelf
(OTS) components represent a security
threat, trustworthiness, data sharing se-
curity threats

using microservice architecture, using
Virtual Machine (VM), partitioning
monolithic applications into small
pieces of computation that allows for the
segmentation of application data

PS63 API evolution, microservice model evo-
lution, architecture conformance assess-
ment

a traceable mapping, automated assess-
ment of architectural conformance
checking, modelling framework and
traceability support, using ground truth
and detector results

