
Relocation-aware Floorplanning for

Partially-Reconfigurable FPGA-based Systems

Marco Rabozzi1, Riccardo Cattaneo1, Tobias Becker2, Wayne Luk2, Marco D. Santambrogio1

1Politecnico di Milano, Milan, Italy
2Imperial College, London, UK

marco.rabozzi@mail.polimi.it, riccardo.cattaneo@polimi.it, marco.santambrogio@polimi.it,

tbecker@doc.ic.ac.uk, w.luk@imperial.ac.uk

Abstract—Within this paper we present a floorplanner for
partially-reconfigurable FPGAs that allow the designer to con-
sider bitstream relocation constraints during the design of the sys-
tem. The presented approach is an extension of our previous work
on floorplanning based on a Mixed-Integer Linear Programming
(MILP) formulation, thus allowing the designer to optimize a set
of different metrics within a user defined objective function while
considering preferences related directly to relocation capabilities.
Experimental results show that the presented approach is able
to reserve multiple free areas for a reconfigurable region with
a small impact on the solution cost in terms of wire length and
size of the configuration data.

I. INTRODUCTION

Within the context of floorplanning for partially-

reconfigurable FPGAs [1], bitstream relocation is the

capability of moving a task from an area of the FPGA to

another one simply by moving the configuration data from

the initial location to the corresponding target location. In

practice, to perform the relocation of a task it is necessary

to change the addresses contained in the partial bitstream

and recompute the Cyclic Redundancy Check (CRC) before

sending the bitstream to the configuration memory interface

of the device [2].

The main benefit of bitstream relocation is to enable design

re-use: instead of developing different instances of the same

design to meet the constraints at different locations, a single

relocation-aware design is able to meet such constraints. More-

over, as FPGA gets larger, it takes longer to reconfigure the

entire chip; partial reconfiguration allows fast reconfiguration,

since only part of the device would be reconfigured. This

capability is exploited by bitstream relocation to deliver rapid

changes to a design at run time, while reducing design effort

by supporting design re-use at compile time.

There are various techniques available for bitstream re-

location in the literature. Within [2] and [3] the authors

present techniques for 1D relocation on Xilinx Virtex-2 and

Virtex-2 Pro FPGAs. These works provide a communication

infrastructure that allow multiple locations for a task on the

horizontal direction without compromising the functionality of

the system. In order to effectively perform the relocation, the

approaches consider identical areas having the same footprint

in terms of heterogeneous resources. In this fashion efficient

hardware filters can be used to update the configuration data

without having to generate different bitstreams for different

locations of the same module.

Other important works in this direction are [4] and its

enhancement [5] that introduce the BiRF filter. The authors

provide both a hardware and a software implementation for the

filter and within [5] BiRF is extended to handle also 2D-partial

reconfiguration allowing relocation on the vertical direction.

The latter approach has been validated on the more recent

Xilinx Virtex-4 and Virtex-5 device families.

The work proposed in [6] relaxes the identical areas require-

ment and gives the possibility to perform relocation among

areas that do not necessarily have the same distribution of

resources. Given a set of areas involved in the relocation of

a module, the main idea is to instruct the placement program

to prevent configuration of mismatching resources among the

areas. Afterwords the relocation process is performed by a

software filter updating the frame addresses and changing the

configuration frames of the mismatching logic. This manip-

ulation of the bitstream does not affect the functionality of

the module as soon as the configuration data of the routing

resources are kept consistent among the areas involved in the

relocation.

The floorplaning extension presented here is complementary

with respect to the filters aforementioned. Exploiting our

methodology the designer can identify areas suitable for task

relocation while a bitstream filter such as [5] and [6] or a

different technique can be used to effectively perform the

migration of the bitstream among the identified areas. In this

work we consider a practical scenario in which the areas used

for relocation must have the same footprint of heterogeneous

resources as in [3] and [5]. This is done to avoid wastage of

non usable mismatching resources on one side and to reduce

the size of the solution space on the other.

Recently several floorplanner able to consider both a non

uniform distribution of heterogeneous resources and the guide-

lines and constraints for Partial Reconfiguration (PR) [7] have

been devised in the literature [8]–[10].

The approaches presented in [8] and [9] focus on two

different types of optimization during the exploration of the

solution space. The former, by means of a method called

Columnar Kernel Tessellation, meanly focuses on reducing the

overall amount of wasted resources to minimize the bitstream

size, while the latter, exploits simulated annealing to reduce

the overall wire length. On the other hand, the two algorithms

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.52

97

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.52

97

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55258904?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

presented in [10], based on a MILP formulation, allow to

improve the quality of the solutions achieved by [9] and [8]

at the cost of a generally higher execution time. The first

approach called HO (Heuristic Optimal), extracts the sequence

pair representation of a first feasible solution and uses it as an

additional constraint to reduce the size of the search space

so that the initial solution can be locally improved in a small

amount of time. The second approach, named O (Optimal),

is able to explore the full solution space but, in general, it

requires a larger amount of time.

Within this work, we propose an extension of our previous

approach [10] adding support for bitstream relocation for both

HO and O algorithm. We first propose a revised FPGA parti-

tioning procedure that eases the extension of the model, then,

the MILP model at the core of [10] is enhanced to address

both constraints and metrics related to bitstream relocation.

The remainder of the paper is organized as follows: Sec-

tion II gives a description of the problem and the proposed

approach, Section III describes the device model and the

revised partitioning procedure, Section IV and Section V

discusses how we extended the MILP formulation to take

into account relocation as a design constraint and metrics

respectively, Section VI evaluates the impact of bitstream

relocation constraints on a case study and, finally, Section VII

presents final observations and remarks.

II. PROBLEM DESCRIPTION AND PROPOSED APPROACH

In order to extend the MILP formulation to take into account

bitstream relocation, we need a description of the FPGA that

models all the relevant aspects. The basic block considered

in the floorplanner of [10] is a tile, that is the minimal area

considered for reconfiguration. A tile is described in terms

of the resources that it contains, but we do not have any

information about how the resources are located within the

tile and which is the mapping between these resources and

the configuration memory where the bitstream is loaded. For

this reason, we need to strengthen the definition of tile type

to address bitstream relocation:

Definition .1. Two tiles are of the same type if they have the

same number and types of resources and if the configuration

data needed to configure the resources is the same across the

two tiles.

Notice that since we have redefined the notion of tile type,

also the FPGA partitioning into portion can produce a different

result and more portions could be needed to describe the FPGA

structure. We recall, that a portion is a fixed rectangular area

on the FPGA containing tiles of the same type.

With the new definition of tile type we are now able

to define when bitstream relocation is possible. A bitstream

can be relocated from one area to another one if the two

areas are compatible. Two areas are compatible if they have

the same shape, size and relative positioning of tiles of the

same type. In this scenario, ideally, a functionality could be

relocated from an area to a compatible one simply by changing

the frame addresses. Notice however that the communication

infrastructure is not considered here and should be carefully

Tiles

A

B

C

Fig. 1: Example of compatible and non-compatible areas

planned by the designer so that bitstream relocation could be

effectively performed. To clarify the concept of compatible

areas, we show in Figure 1 an example of compatible and non

compatible areas.

In Figure 1 the color of a tile identifies its type, tiles of

the same color are of the same type. Areas A and B are

compatible because they have the same shape, size and their

tiles are in the same relative positions (blue and green tiles in

the same positions). On the other hand areas A and C are not

compatible, indeed, even if they have the same shape, size and

cover the same amount of resources, the relative positioning

of tiles is not the same (the first column of tiles occupied by

region A is blue, while the first column of tiles covered by

area C is green). Another important aspect to take into account

when bitstream relocation is performed, is that the target area

for relocation must not overlap with areas occupied by other

tasks to avoid malfunctions. Within this context we introduce

the following useful definition:

Definition .2. An area A is said to be free-compatible with

respect to another area B, if A and B are compatible and A

does not overlap with another free-compatible area or with an

area assigned to a reconfigurable region.

Considering Definition .2, that takes also into account areas

occupied by other tasks, a bitstream can be relocated from an

area to another one if the target area is free-compatible with

respect to the source area.

A. On how to consider bitstream relocation

The designer willing to relocate the bitstreams of the tasks

assigned to a reconfigurable region needs to identify a free-

compatible area into which the configuration data can be

moved. There are two ways in which the process of identifying

free-compatible areas can be automated by the floorplanner:

Relocation as a constraint: The designer specifies for which

reconfigurable regions he/she needs one or more free-

compatible areas where the bitstreams of the regions

can be relocated. In this context a solution is feasible

9898

only if the algorithm can find a placement for all the

regions and the corresponding free-compatible areas;

Relocation as a metrics: The designer specifies for each

region the maximum number of free-compatible areas

he/she wishes to identify. The number of successfully

identified free-compatible areas is considered as a

metrics within the objective function and it affects

the desirability of a solution. This approach is more

flexible than the previous one, but does not guarantee

the identification of free-compatible areas within a

feasible solution.

The two approaches presented above can also be considered

together. As an example, the designer may decide to obtain a

certain number of free-compatible areas as a constraint, while

if extra free-compatible areas are identified, the desirability of

the solution increases. In the following sections we are going

to provide a description on how to integrate both relocation as

a constraint and as a metrics in the floorplanner proposed in

[10]. The extension presented can be adopted for both O and

HO. The only remark is that when relocation as a constraint is

considered in HO, the input heuristic solution should contain,

other than the regions placement, also the free-compatible

areas positions. In this fashion the sequence-pair is naturally

extended to consider also the free-compatible areas, so that the

non-overlapping constraints are guaranteed for all the areas.

III. DEVICE MODEL DESCRIPTION

Before going on in the details of the MILP model, it is con-

venient to recall from [10] the sets, parameters and variables

that are also referred in this context. Sets and parameters:

P := set of portions in which the FPGA has been parti-

tioned;

R := set of rows of the FPGA numbered from 1 to |R|;

N := set of reconfigurable regions to place;

T := set of resource types considered (CLB, BRAM, etc.);

cn,t := resources of type t required by reconfigurable region

n;

maxW := maximum value on the x axis.

Variables:

xn := integer positive variable (≥ 1) representing the left-

most position of region n;

wn := integer positive variable (≥ 1) representing the width

of region n;

hn := real non negative variable (≥ 0) denoting the height

of region n;

ln,p,r := real non negative variable (≥ 0) defining the amount

of intersection, in terms of tiles, between region n on

portion p and row r;

kn,p := binary variable set to 0 if the projections on the x axis

of a region n and a portion p do not intersect (i.e.,

the region is to the right or to the left with respect to

the portion).

A. Model simplification

In order to introduce bitstream relocation within our

methodology, we need to add additional variables and new

constraints to the MILP model. Even though this is possible

for an arbitrary resource distribution of the FPGA, the problem

that is obtained in the general case is quite hard to be solved

in the context of [10] MILP formulation. The need to consider

both the x and y axes to identify free-compatible areas greatly

increases the number of constraints within the formulation, as

a result the execution time of the solver increases when the

linear programming relaxations are solved during the branch

and cut procedure.

To simplify the problem we get rid of one of the two

dimensions by addressing FPGAs that can be described in

terms of portions extending for the entire FPGA height. This

simplification is not practical in cases in which hard processors

placed in the middle of the device break the contiguity of a

column (e.g. the PowerPC in Virtex-5 FX70T). For this reason,

we also allow to define forbidden areas that cannot be crossed

by reconfigurable regions and free-compatible areas. The set

of the portions, also called columnar portions, is identified by

P while the set of forbidden areas is denoted by A. The set

F defined in [10] is discarded together with all the constraints

related to it. This is done to avoid confusion between the

two formulations, indeed A and F are defined in a quite

different way. While in [10] the set F is a subset of the

set of portion P , here the sets A and P are disjoint. This

is done to preserve the FPGA partitioning of set P in which

no two portions overlap and all the portions in the set cover

the FPGA area entirely. Here the forbidden areas in A overlap

with the portions in P . This is an important difference with

respect to the FPGA partitioning presented in [10] and we

need to define the parameters, variables and constraints of the

forbidden areas differently from the ones of the portions. The

parameters related to the new forbidden areas are as follows:

A := set of forbidden areas;

raa,r := 1 if forbidden area a lies on row r, 0 otherwise;

xa1a := leftmost position of a tile in forbidden area a;

xa2a := rightmost position of a tile in forbidden area a.

A new set of variables, similar to the one defined for the

reconfigurable regions in O, is introduced for both O and HO

formulations to ensure non overlapping with forbidden areas:

qn,a := binary variable forced to 1 if region n is not to the

left of forbidden area a;

The semantics of variables qn,a is guaranteed by means of

the following constraint:

∀n ∈ N, a ∈ A :

xn + wn ≤ xa1a + qn,a ·maxW
(1)

While these are the constraints that ensure non overlapping

between reconfigurable regions and forbidden areas:

∀n ∈ N, a ∈ A, r ∈ R | raa,r = 1 :

xn ≥ xa2a + 1− (2− qn,a − an,r) ·maxW
(2)

9999

Tiles

(a) Original FPGA (b) Forbidden areas tiles replacement

1

2

3

4 5

6

(c) Columnar portions identification

1

2

3

4 5

6

f1

f2

(d) Forbidden areas identification

Fig. 2: Columnar partitioning example

B. Revised FPGA partitioning procedure

Thanks to the previous model simplification we are now

able to define the steps of the revised partitioning procedure

called columnar partitioning:

1) Each tile belonging to a forbidden area is replaced by a

tile that lies on the same column and does not belong to

any forbidden area;

2) The FPGA is scanned top to bottom, left to right and

the first tile that is still not part of any portion (free tile)

is selected, thus a new portion is created containing that

tile;

3) The portion is extended to the right side until free tiles

of the same type are encountered;

4) The portion is extended to the bottom side until all the

tiles on the row below the portion are free and of the

same type. If the portion cannot be extended completely

to the bottom of the FPGA, then the FPGA cannot be

columnar partitioned;

5) If there are still free tiles, the process is repeated from

step number 2 until all the tiles are part of one and only

one portion;

6) At the end, each forbidden area is identified by its

position and size.

To clarify how the columnar partitioning is performed, we

show an example in Figure 2, representing the initial FPGA

with hard processors shown in gray (Figure 2a) and the actions

taken during step 1 (Figure 2b), steps 2-5 (Figure 2c) and step

6 (Figure 2d).

As we can see from Figure 2d we obtain the following sets

of portions and forbidden areas:

P = {1, 2, 3, 4, 5, 6}, A = {f1, f2} (3)

Even though columnar partitioning cannot be applied in

the general case, most of the commercially available FPGAs,

including Xilinx devices of Virtex-7 family, are compliant with

this simplified columnar description. A columnar partitioning

enjoys two important properties that directly derive from the

partitioning construction:

Property .3. Two adjacent columnar portions always have

tiles of different types.

Property .4. The columnar portions can be orderly numbered

from left to right.

Properties .3 and .4 are exploited in the following sections

to introduce the needed constraints for the identification of

free-compatible areas.

IV. RELOCATION AS A CONSTRAINT

In this subsection we show how to introduce bitstream

relocation as a constraint considering an FPGA that has

been successfully partitioned using the columnar partitioning

procedure presented in Section III. The designer has to specify,

as additional input information, how many free-compatible

areas should be identified and for each area which are the

regions for which compatibility has to be ensured. Within the

following subsections we define the new parameters, variables

and constraints that have to be added to the MILP model.

A. Constants definition

Exploiting Property .4 of the columnar partitioning, we

enumerate the columnar portions from 1 to |P | starting from

the left side of the FPGA. The additional parameters and set

needed for the new specifications are the following:

FC := set of free-compatible areas that have to be placed;

sc,n := binary parameter set to 1 if area c has to be free-

compatible with respect to reconfigurable region n;

nTypes := the number of different tile types present within

the FPGA;

tidp := integer number in the range [1, nTypes] identifying

the type of tiles present in portion p.

A free-compatible area is conceptually similar to a recon-

figurable region: it is rectangular because it must have the

same shape of a region to which it is compatible and it

cannot overlap with other regions, free-compatible areas and

forbidden areas. For this reason, the easiest way to introduce a

free-compatible area is to consider it as special reconfigurable

region for which additional constraints are added to ensure

compatibility, more formally we have FC ⊂ N . By consid-

ering free-compatible areas as reconfigurable regions, we get

for free all the necessary non overlapping constraints together

with the constraints defining the amount of intersection be-

tween areas and portions defined in [10]. However, unlike a

reconfigurable region, a free-compatible area does not require

a certain amount of resources by itself, but the number and

types of resources covered must be equal to the ones occupied

by the region for which the compatibility is required. The

latter constraint is addressed in the next subsections, while for

100100

a given free-compatible area n the parameters cn,t and the

corresponding constraints in which the parameters are used

are discarded from the MILP formulation.

B. Variables identification and semantic constraints

Since the portions that can be covered by the reconfigurable

regions are columnar, the variable kn,p can be used to check

whether the reconfigurable region n intersect the columnar

portion p or not. In order to properly state the compatibility

constraints we need a set of support variables that defines for

a reconfigurable region, or a free-compatible area, the offset

of the first columnar portion covered:

on,p := real non negative variable (≥ 0) set to 1 when p is

the first columnar portion (from left to right) covered

by reconfigurable region or free-compatible area n, 0

otherwise.

As done also for other variables in the MILP model, such as

hn and ln,p,r, the variable on,p is declared as real even though

the values that it can assume are integer. The reason for this is

to reduce the problem complexity since a MILP solver can deal

much easier with real variables rather than integer ones. What

follows are the constraints needed to ensure the semantics and

integrity of the variable on,p representing the offset of a region

or a free-compatible area.

Offset uniqueness:

∀n ∈ N :∑
p∈P

on,p = 1 (4)

Offset assignment deriving from covered portions:

∀n ∈ N :

on,1 = kn,1

∀n ∈ N, p ∈ P | p > 1 :

on,p ≥ −kn,p−1 + kn,p

(5)

Since the meaning of these new offset variables may be

unclear to the reader, we show in Figure 3 an example of

a reconfigurable region placed within a columnar partitioned

FPGA together with the values assumed by the variables on,p
and kn,p for the specific placement represented.

C. Bitstream relocation constraints

At this point we are ready to introduce the constraints

that ensure the compatibility between a free-compatible area

and the corresponding regions. If we consider a columnar

partitioned FPGA such as the one in Figure 3, we can see

that a region, such as the one represented, intersects a set of

adjacent portions. From Property .3 we know that at the edge

between two different portions covered by a region the tile

type changes. In the case of the represented region, 3 portions

are covered and from left to right the tile types follow the

sequence blue-green-blue. If we need to find a compatible area

with respect to a region, we need an area that cover exactly

the same number of portions in the same sequence in terms

of tile types. The other constraint is that the height of the

Region n

1 2 3 4 5

kn,1=0 kn,2=1 kn,3=1 kn,4=1 kn,5=0

on,1=0 on,2=1 on,3=0 on,4=0 on,5=0

Fig. 3: Columnar portions offset example

region and the free-compatible area must be the same and the

amount of tiles covered in each corresponding portion is also

the same. Notice that having fixed the height and the number

of tiles covered within a portion, the width of the intersection

to that portion is automatically fixed. Overall we need four

different set of constraints to ensure the compatibility between

a reconfigurable region and a free-compatible area:

1) The height of the reconfigurable region and the free-

compatible area must be the same;

2) The number of portions covered by the reconfigurable

region and the free-compatible area must be the same;

3) Portions intersected in the same relative positions must

have tiles of the same type;

4) The number of tiles intersected with portions covered in

the same relative positions must be the same.

The first two constraints can be easily stated as follows:

∀n ∈ N, c ∈ FC | sc,n = 1 :

hc = hn

(6)

∀n ∈ N, c ∈ FC | sc,n = 1 :∑
p∈P

kc,p =
∑
p∈P

kn,p (7)

For the remaining constraints we exploit the offset variables

defined in the previous subsection together with Property .4

that allows an ordering of the columnar portions from left to

right numbered from 1 to |P |. In the following inequalities pc

and pn are meant to identify the first portion intersected by

the free-compatible area c and region n respectively, while i

is an index used to iterate over the set of portions. The latter

two set of inequalities are as follows:

∀n ∈ N, c ∈ FC, pc, pn ∈ P, i ∈ {−|P |+ 1, . . . |P | − 1} |

sc,n = 1 ∧ 1 ≤ pc+ i, pn+ i ≤ |P | :

tidpc+i ≤ tidpn+i + nTypes · (3− oc,pc − on,pn − kn,pn+i)

tidpc+i ≥ tidpn+i − nTypes · (3− oc,pc − on,pn − kn,pn+i)

(8)

101101

∀n ∈ N, c ∈ FC, pc, pn ∈ P, i ∈ {−|P |+ 1, . . . |P | − 1} |

sc,n = 1 ∧ 1 ≤ pc+ i, pn+ i ≤ |P | :∑
r∈R

lc,pc+i,r ≤
∑
r∈R

ln,pn+i,r+

+maxW · |R| · (3− oc,pc − on,pn − kn,pn+i)∑
r∈R

lc,pc+i,r ≥
∑
r∈R

ln,pn+i,r+

−maxW · |R| · (3− oc,pc − on,pn − kn,pn+i)
(9)

Notice that the constraints are active only when pc and pn

effectively represent the first occupied portions and when i is

iterating over a portion that is covered. When the ”big M”

constants at the right hand sides are cancelled, each couple of

inequalities ensure that the remaining terms coincide.

By looking at Equation 8 we can notice that tidpc+i and

tidpn+i are known parameters denoting the tile type of two

columnar portions, while the only variables involved in the

formulas are oc,pc, on,pn and kn,pn+i. If the tile types of

the two portions are the same, then nothing is implied over

the variables. On the other hand, if the tile types differ, the

variables cannot be all equal to 1 at same time. More formally

Equation 8 can be tightened and rewritten as:

∀n ∈ N, c ∈ FC, pc, pn ∈ P, i ∈ {−|P |+ 1, . . . |P | − 1} |

sc,n = 1 ∧ 1 ≤ pc+ i, pn+ i ≤ |P | ∧ tidpc+i �= tidpn+i :

oc,pc + on,pn + kn,pn+i ≤ 2
(10)

V. RELOCATION AS A METRICS

The idea behind considering bitstream relocation as a met-

rics is quite simple: all the constraints defined in the previous

section, together with the non overlapping constraints for the

free-compatible areas are translated in soft constraints. By soft

constraints we mean a relaxed constraint that can be always

satisfied, but depending on how the constraint is satisfied the

value of the objective function varies. To measure the level of

satisfaction of the constraints related to free-compatible areas

we introduce the following set of variables:

vc := binary variable set to 1 if almost one of the constraints

regarding the free-compatible area c is violated.

The variable vc must be introduced in all the constraints

related to the free-compatible area c that can compromise

the feasibility of the final solution if violated. It is enough

to introduce vc in Equation 9 and Equation 10 of the previous

section and within the non overlapping constraints of [10] for

the purpose of maintaining the solution feasibility even when

the free-compatible area c cannot be identified. This is the

modified Equation 9:

∀n ∈ N, c ∈ FC, pc, pn ∈ P, i ∈ {−|P |+ 1, . . . , |P | − 1} |

sc,n = 1 ∧ 1 ≤ pc+ i, pn+ i ≤ |P | :∑
r∈R

lc,pc+i,r ≤
∑
r∈R

ln,pn+i,r+

+maxW · |R| · (3− oc,pc − on,pn − kn,pn+i + vc)∑
r∈R

lc,pc+i,r ≥
∑
r∈R

ln,pn+i,r+

−maxW · |R| · (3− oc,pc − on,pn − kn,pn+i + vc)
(11)

While this is the modified Equation 10:

∀n ∈ N, c ∈ FC, pc, pn ∈ P, i ∈ {−|P |+ 1, . . . |P | − 1} |

sc,n = 1 ∧ 1 ≤ pc+ i, pn+ i ≤ |P | ∧ tidpc+i �= tidpn+i :

oc,pc + on,pn + kn,pn+i ≤ 2 + vc
(12)

The non overlapping constraints for O and HO described in

[10] are modified in a similar fashion by adding or subtracting

an appropriate ”big M” term multiplied by the variable vc.

Exploiting the variables vc we can introduce a cost term

in the objective function that measures how many of the

requested free-compatible areas have not been identified. To

increase the flexibility of this approach, we let the designer

decide the weight or importance for each free-compatible area:

cwc := weight associated with free-compatible area c.

Considering also the weights, the cost function for bitstream

relocation becomes:

RLcost =
∑
c∈FC

cwc · vc (13)

The resulting objective function integrated with the one

proposed in [10] becomes:

min

{
q1 ·

WLcost

WLmax

+ q2 ·
Pcost

Pmax

+ q3 ·
Rcost

Rmax

+ q4 ·
RLcost

RLmax

}

(14)

where RLmax is used to normalize the relocation cost term

and can be computed as:

RLmax =
∑
c∈FC

cwc (15)

VI. EXPERIMENTAL EVALUATION

In this section we analyze the impact of bitstream relocation

on the software defined radio (SDR) design proposed in [8].

The SDR design consists of the following five modules:

matched filter, carrier recovery, demodulator, signal decoder

and video decoder. For each module different modes requiring

different resources are configured one at a time. The modes

are mutually exclusive implementations of the module with the

same set of inputs and outputs. All the modules are connected

in sequential order with a 64 bit wide bus, moreover, the

102102

modes of a module are assumed to be all assigned to a specific

region. Hence, there are 5 reconfigurable regions (one for each

module).

The target device is a Virtex-5 FX70T that contains three

different type of tiles: CLB tile, BRAM tile and DSP tile

consisting of 36, 30 and 28 configurable frames respectively.

Table I reports the number and type of resources required by

each reconfigurable region expressed in terms of tiles.

TABLE I: Resource requirements for the SDR design

Region CLB tiles BRAM tiles DSP tiles # Frames

Matched Filter 25 0 5 1040
Carrier Recovery 7 0 1 280
Demodulator 5 2 0 240
Signal Decoder 12 1 0 462
Video Decoder 55 2 5 2180

Total 104 5 11 4202

As we can see from table I the resource requirements are

heterogeneous and vary across the regions. The last column of

the table shows also the least amount of configurable frames

that each region needs to cover.

As a first analysis, we performed a feasibility test in which

we checked the possibility to find at least a free-compatible

area for each reconfigurable region at a time. The solver

determined that no solution exists for the SDR design in which

we require a free-compatible area for the matched filter or

the video decoder region. Indeed, even if the amount of DSP,

BRAM and CLB within the FPGA would suffice to accom-

modate one of the two areas, the rectangular geometry of the

regions does not allow to exploit the resources completely.

On the other hand, the solver was able to find a placement

for each of the free-compatible areas related to the carrier

recovery, demodulator and signal decoder region. From now

one we refer to these regions as relocatable regions.

In light of the feasibility analysis, we defined two new

problem instances derived from the SDR design in which we

considered the same objective function as [8] and [10] in which

the objective was to first optimize the wasted area and, without

increasing the area cost, minimizing the overall wire length.

Within the first instance, named SDR2, we required to find

2 free-compatible areas for each relocatable region, while,

in the second instance, called SDR3, we requested 3 free-

compatible areas for each relocatable region. The resources

wasted by the extra free-compatible areas are not considered

here as an additional cost, indeed these areas are needed only

to reserve free spaces for the relocation of the bitstreams of

the reconfigurable regions. Since the number of regions in the

designs is manageable, we used O to solve the problems.

Table II compares the results achieved by our floorplanning

extension (named PA) on SDR2 and SDR3 designs against the

solutions obtained by [8] and [10] on the original SDR design.

Notice that the proposed floorplanner extension is equivalent

to our previous work [10] if relocation requirements are not

considered. Thus, in Table II we only report the solution

achieved by [10] with respect to the original SDR design.

The optimal solution for SDR2 was found by our approach

in approximately 1160 seconds, however about 5 hours were

needed to prove its optimality. For this problem, the quality of

TABLE II: Comparison of different floorplan solutions

Algorithm Design Free-compatible areas Wasted frames

[8] SDR 0 466
[10] SDR 0 306
PA SDR2 6 306
PA SDR3 9 346

Fig. 4: SDR2 floorplan (6 free-compatible areas)

the result, in terms of the objective function, was equal to the

one achieved by [10] on the SDR design without relocation

requirements. The SDR3 instance is more complex than SDR2

due to the additional free-compatible areas requested, indeed,

even if we let the solver run for 6 hours the best solution

found was not proven to be optimal. For this problem, the

free-compatible areas constraints affected the quality of the

result and the final solution achieved 346 wasted frames: 40

more frames than SDR2 but still 120 frames less than the ones

required for the solution presented in [8] without relocation

constraints.

The floorplans resulting from solving SDR2 and SDR3 are

shown in figures 4 and 5 respectively. The names of the free-

compatible areas are composed using the name of the region to

which they are compatible followed by a number (e.g. Signal

Decoder 2).

VII. CONCLUSIONS

Within this work we presented an extension of a floorplan-

ning algorithm able to deal with bitstream relocation. The

approach allows the designer to specify constraints on the

number of compatible areas required by each reconfigurable

region, or to introduce the relocability of a region as a metrics

within the objective function to be optimized. Moreover, a

revised FPGA partitioning technique compatible with most of

103103

Fig. 5: SDR3 floorplan (9 free-compatible areas)

the current devices has been devised to simplify the description

of the problem.

ACKNOWLEDGMENTS

This work was partially funded by the European Commis-

sion in the context of the FP7 FASTER project [11](#287804).

REFERENCES

[1] L. Cheng and M. Wong, “Floorplan Design for Multimillion Gate
FPGAs,” IEEE Trans. on Computer-Aided Design of Integrated Circuits

and Systems, vol. 25, no. 12, pp. 2795–2805, 2006.
[2] H. Kalte, G. Lee, M. Porrmann, and U. Rückert, “REPLICA: A bitstream

manipulation filter for module relocation in partial reconfigurable sys-
tems,” in Proc. IPDPS Workshops, 2005.

[3] H. Kalte and M. Porrmann, “REPLICA2Pro: task relocation by bitstream
manipulation in virtex-II/Pro FPGAs,” in Proc. Conf. on Computing

Frontiers, 2006, pp. 403–412.
[4] F. Ferrandi, M. Morandi, M. Novati, M. D. Santambrogio, and D. Sciuto,

“Dynamic reconfiguration: Core relocation via partial bitstreams filtering
with minimal overhead,” in Proc. Intl. Symp. on System-on-Chip (SOC),
2006, pp. 1–4.

[5] S. Corbetta, M. Morandi, M. Novati, M. D. Santambrogio, D. Sciuto,
and P. Spoletini, “Internal and external bitstream relocation for partial
dynamic reconfiguration,” IEEE Trans. on VLSI Systems, vol. 17, no. 11,
pp. 1650–1654, 2009.

[6] T. Becker, W. Luk, and P. Y. Cheung, “Enhancing relocatability of partial
bitstreams for run-time reconfiguration,” in Field-Programmable Custom

Computing Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium

on. IEEE, 2007, pp. 35–44.
[7] Xilinx Inc, “Vivado Design Suite User Guide: Partial Reconfiguration,”

2014.
[8] K. Vipin and S. A. Fahmy, “Architecture-aware reconfiguration-centric

floorplanning for partial reconfiguration,” in Proc. Intl. Conf. on Recon-

figurable Computing: architectures, tools and applications (ARC), 2012,
pp. 13–25.

[9] C. Bolchini, A. Miele, and C. Sandionigi, “Automated Resource-Aware
Floorplanning of Reconfigurable Areas in Partially-Reconfigurable
FPGA Systems,” in Proc. Intl. Conf. on Field Programmable Logic and

Applications (FPL), 2011, pp. 532–538.
[10] M. Rabozzi, J. Lillis, and M. D. Santambrogio, “Floorplanning for

Partially-Reconfigurable FPGA Systems via Mixed-Integer Linear Pro-
gramming,” in Proc. Intl. Symp. on Field-Programmable Custom Com-

puting Machines (FCCM), 2014, pp. 186–193.
[11] Faster website. [Online]. Available: http://www.fp7-faster.eu/

104104

