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ABSTRACT

The history of landslide susceptibility maps goes back about 50 years. Hazard and risk maps later 
followed these maps. Inventory maps provide the source of all these. There are different parameters 
selected specially for each field in the literature as well as parameters selected because they are 
easy to produce and obtain data. This study tried to research the effect of elevation on landslides 
by reviewing the literature in detail. The used class ranges and elevation values were reviewed and 
applied to map sections selected from Turkey. By analyzing the results, the goal was to determine at 
which elevation ranges landslides occurred. The study tried to investigate the effect of the parameter 
of elevation using data from the literature. It works to compare the elevation values for map sections 
selected to compare with the literature. The study comprises two stages. The first step tried to acquire 
statistical data by researching the data from the literature. The data were investigated in the second 
stage. For this purpose, close to 1.500 studies prepared between 1967 and 2019 were reviewed. 
According to the literature, the parameter of was used in analyses because it is easy to produce and 
is morphologically effective.
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1. Introduction

“Elevation is one of the most essential key factors 
that determine the stress distribution of slopes” 
(Althuwaynee et al., 2016; Hong et al., 2017a, b; 
Chen et al., 2018, 2019). There is strong evidence that 
elevation is an indicator for susceptibility to landslides. 
Elevation is also one of the simplest features of slopes 
(Kornejady et al., 2017a, b). For this reason, it is 
frequently preferred as a parameter in the preparation 
of landslides susceptibility maps. It is also a parameter 
chosen for danger maps. Many researchers around 
the world accept the importance of elevation in the 
formation of landslides (Juang et al., 1992; Pachauri 
and Pant 1992; Dai and Lee, 2001, 2003; Ercanoğlu 
and Gökceoğlu, 2002, 2004; Lee et al., 2002; Çevik and 
Topal, 2003; Gomez and Kavzoğlu, 2005; Gökçeoğlu 
et al., 2005; Mazman, 2005; Creighton, 2006; Duman 

et al., 2006; Lee and Pradhan, 2007; Chen and Wang, 
2007; Dağ, 2007; Caniani et al., 2008; Ercanoğlu et 
al., 2008; Kamp et al., 2008; Yao et al., 2008; Özdemir, 
2009; Akıncı et al., 2010; Balteanu et al., 2010; Bai 
et al., 2010; Park et al., 2010; Yılmaz, 2010; Oh and 
Pradhan, 2011; Rozos et al., 2011; Sezer et al., 2011; 
Yalçın et al., 2011; Dağ and Bulut, 2012; Kavzoğlu et 
al., 2012; 2014, Mashari et al., 2012; Pourghasemi et 
al., 2012a, b, c, d, e; Schicker and Moon, 2012; Xu 
and Xu XW, 2012; Yılmaz et al., 2012; Sabatakakis 
et al., 2013; Chen et al., 2013, 2015, 2016a,b, 2017, 
2018, 2019;  Devkota et al., 2013; Liu et al., 2013; 
Özdemir and Altural, 2013; Özşahin and Kaymaz, 
2013; Akıncı et al., 2014; Avcı and Günek, 2014; 
Chalkias et al., 2014; Conforti et al., 2014; Jaafari et 
al., 2014; Jebur et al., 2015; Moradi and Rezaei, 2014; 
Nourani et al., 2014; Sujatha et al., 2014; Tazik et al., 
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2014; Umar et al., 2014; Youssef et al., 2014a, b, c; 
Zhu et al., 2014; Akıncı and Kılıçoğlu, 2015; Dehnavi 
et al., 2015; Dragicevi et al., 2015; Goetz et al., 2015; 
Özşahin, 2015; Pradhan and Kim, 2015; Youssef, 
2015; Youssef et al., 2015; Aghdam et al., 2016; Avcı, 
2016a, b, c; Balamurugan et al., 2016; Demir, 2016; 
Liu and Wu, 2016; Myronidis et al., 2016; Wang et 
al., 2016, 2017; Wu and Ke, 2016; Wu et al., 2016; 
Zhang et al., 2016a, b; Dou et al., 2017; Kornejady 
et al., 2017a, b; Pawluszek and Borkowski, 2017; 
Raja et al., 2017). Zhang et al. (2017), connected 
the use of elevation in the preparation of generally 
landslide-susceptible maps to different elevations 
being correlated to different environmental factors. 
Some researchers found that landslide activity in a 
certain basin materialized at certain elevations (Dai 
et al., 2001; Çevik and Topal, 2003; Yılmaz et al., 
2012). The effects of different elevations on landslide 
susceptibility is different (Çellek, 2013). Jimenez-
Peralvarez et al. (2009) in their study reported that 
elevation wasn’t the most commonly used determinant 
parameter according to the literature (Fernandez et 
al., 2008) and that the effect of the parameter was 
determinant for mountainous areas with different 
elevation values like their own working areas. 
Elevation affecting landslide susceptibility at different 
ranges obfuscates the relationship between landslide 
activity and elevation (Dai and Lee, 2002; Kavzoğlu 
and Çölkesen, 2010; Kavzoğlu et al., 2012; Tazik et 
al., 2014). Because determining the elevations of the 
landslides that have occured in any region can only be 
considered as preliminary data (Özşahin, 2015). 

2. Elevation (Relative Elevation-Topographic 
Elevation)

The maximum and minimum elevations in the 
working area are determined with this parameter 
(Ramesh and Anbazhagan, 2015). Elevation can be 
defined as the height of a point from sea level or from a 
local reference point. Elevation in susceptibility maps is 
considered as either “topographic elevation” based on 
altitude values from sea level or as “relative elevation” 
based on elevation differences of topographic elements 
in the study area. Relative elevation is commonly used 
and is considered by some researchers (Ercanoğlu, 
2003; Görüm, 2006). The general tendency among 
researchers is to use topographic elevation (Dağ, 2007; 
Dağ and Bulut 2012; Kavzoğlu et al., 2012; Çellek, 

2013; Akıncı and Kılıçoğlu, 2015). The parameter was 
used as topographic elevation in 51 studies reviewed 
by Hasekioğulları (2011) and as relative elevation 
in seven studies. Süzen and Kaya (2011) stated that 
elevation was used as an input parameter in 34.27% 
of researchers in the studies they reviewed. Relative 
and topographical elevation being used together leads 
to repetition and causes the consideration of the same 
parameter twice. Only one of the topographic and 
relative elevation parameters is therefore used, or 
the analysis results are compared, used separately in 
the evaluation of landslide susceptibility (Ercanoğlu, 
2003; Ayalew and Yamagishi 2005; Görüm, 2006; 
Yüksel, 2007).

Relative Elevation: It is the elevation based on the 
height differences of the topographical elements in the 
study area or it defines the height difference between 
a point and another point taken as a reference (Carrara 
et al., 1991; Anbalagan, 1992; Pachauri and Pant, 
1992; Anbalagan and Singh, 1996; Nagarajan et al., 
2000; Ercanoğlu, 2003, Görüm, 2006; Yüksel, 2007; 
Nefeslioğlu et al., 2008; Chauhan et al., 2010; Çellek, 
2013; Raja et al., 2017). In other words, relative 
elevation describes the range of elevations between 
the lowest and highest points in a region. Generally, 
there are three ways to define the difference in relative 
elevation. The differences lie in the definition of base 
elevation. In the first, the smallest absolute elevation 
of the entire field is used as the base elevation; in the 
second, elevation is applied as the smallest elevation 
in each negative sub basin; and the third is based on a 
convolution process (Zhang et al., 2012).

Topographical Elevation: Topographical elevation 
is defined as the elevation from sea level or a local 
reference point (Moore et al., 1991; Ercanoğlu, 2003; 
Tangestani, 2003; Ercanoğlu and Gökçeoğlu, 2004; 
Lan et al., 2004; Süzen and Doyuran, 2004a, b; Ayalew 
and Yamagishi, 2005; Gomez and Kavzoğlu, 2005; 
Görüm, 2006; Dağ, 2007; Yüksel, 2007; Caniani et 
al., 2008; Gattinoni, 2009; Hasekioğulları, 2011; Dağ 
and Bulut, 2012; Kavzoğlu et al., 2012; Çellek, 2013; 
Nourani et al., 2014; Akıncı and Kılıçoğlu, 2015).

3. The Effect of Elevation on Other Parameters 
and Landslides

If we are to assess previously conducted research, 
the parameter of elevation is a widely used parameter 
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Anthropogenic Activity: It is known that elevation 
affects anthropogenic activity and anthropogenic 
activity triggers landslides. Many high-altitude areas 
in their study area are desolate (devoid of human 
activity), the ground is covered in glaciers and snow 
and, thus, is rarely affected by human activities. 
There are fewer landslides and low susceptibility 
for this reason. Exactly the opposite, settlements, 
transportation, and consequently human activity is 
greater at altitudes (Vivas, 1992; Dai and Lee, 2002; 
Ayalew et al., 2005; Hasekioğulları, 2011; Kavzoğlu et 
al, 2014; Kouli et al., 2014; Yang et al., 2015; Aghdam 
et al., 2016; Meng et al., 2016; Wang et al., 2017).

Erosion - Disintegration - Degradation - Soil: 
Elevation can be evaluated as a parameter that controls 
the processes of erosion-disintegration-degradation 
and the type and degree of erosion in the formation 
of landslides (Zolotraev, 1976; Pachauri and Pant, 
1992; Vivas, 1992; Dai and Lee, 2002; Lan et al., 
2004; Ayelew et al., 2005; Yüksel, 2007; Rozos et al., 
2008; 2010; 2011; Hasekioğulları, 2011; Jaafari et al., 
2015a, b; Youssef et al., 2015; Aghdam et al., 2016; 
Ilia and Tsangaratos, 2016; Pham et al., 2016; Pham 
et al., 2017). He et al., (2011) and Erener and Lacasse 
(2007) connected the occurrence of landslides at low 
elevations in their study areas to erosion and flowing 
water corrosion. Hasekioğulları (2011) reported in a 
study that low topographical elevations in areas with 
landslides are composed of soil materials that are 
the mostly the products of degradation. The slopes 
steepening with erosion leads to increased elevation 
above the threshold value that is then followed 
by landslides (Raja et al., 2017). Typically, higher 
mountain elevations receive greater rainfall than areas 
at lower elevations (Coe et al., 2004a, b). This increases 
soil moisture in higher mountain elevations and can 
lead to the decrease of soil strength and the increase 
of stress in the soil matrix (Ray and Jacobs, 2007). 
Furthermore, slopes are inclined toward landslides 
due to a fine colluvium cover because erosion 
generally is seen in connection with accumulation in 
these regions. However, the frequency of landslides 
is low in low elevations because the terrain itself is 
soft and covered in thick colluvium and/or residual 
soil, and a higher settled water table will be necessary 
to instigate a landslide (Dai and Lee, 2002; Opiso et 
al., 2016). Elevation is a parameter that regulates soil 
depth and development along with physical erosion 
and chemical disintegration (Opiso et al., 2016). 

in the preparation of susceptibility maps, and the 
relationship between the formation of landslides 
(toppling, rock falls, rock slides, etc.) and the parameter 
is complex due to its effect over many parameters that 
cause the occurrence of landslides (morphology, soil 
type, tectonics, soil thickness, erosion-weathering, 
land cover, precipitation, etc.). As a result, elevation 
is evaluated as a parameter that has an indirect effect 
together with the variances of the other parameter and 
affects the entire system (Zolotraev, 1976; Dai and 
Lee 2002, 2003; Yüksel, 2007; Rozos et al., 2008; 
Park, 2010; Yılmaz, 2010; Hasekioğulları, 2011; 
Yalçın et al., 2011; Çellek, 2013; Pourghasemi, et al., 
2013a, b; Moradi and Rezaei, 2014; Nourani et al., 
2014; Kouli, et al., 2014; Umar et al., 2014; Youssef 
et al., 2015; Pradhan and Kim, 2017). Gritzner et al. 
(2001) emphasized that elevation could be considered 
as a guide for other variables that are directly related 
to elevation. Jimenez-Peralvarez et al., (2009) stated 
that elevation has a range that is wide enough to 
cause significant changes in climatic conditions, like 
precipitation and temperature also represents variable 
vegetation units. Aniya (1985), however, stated that 
different elevations being exposed to different climate 
and weather conditions would lead to the formation 
of different types of plants and soil (Pourghasemi et 
al., 2014). Dai and Lee (2001) reported that the rocks 
at much higher elevations disintegrated with the 
freezing-thawing effect, while rocks at much lower 
elevations were inclined to accumulate thick alluvion 
(Pourghasemi et al., 2014).

Gravity: Relative elevation demonstrates the 
potential gravitational energy for each unit (Zhang 
et al., 2012). The elevation difference is a measure 
of the potential energy of landslides. Generally, an 
increasing difference in elevation corresponds to the 
possibility of an increasing failure tied to an increase 
in sliding force (Fernandez et al., 2003). 

Biological Elements: According to the literature 
biological elements, biophysical parameters, and 
natural-artificial factors have an effect on landslides 
triggered by elevation. Landslides (Dai and Lee, 
2002; Kavzoğlu et al., 2012; Akıncı and Kılıçoğlu, 
2015). It is therefore stated that the factor of elevation 
has effects that can lead to slope stability and slope 
breakup (Vivas, 1992; Dai and Lee, 2002; Ayelew et 
al., 2005; Hasekioğulları, 2011; Kavzoğlu et al., 2012, 
2014; Akıncı et al., 2015). 
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Ochoa (1978) stated that elevation was related to the 
effect over the properties of the physical-chemical soil 
at Cordillera de Me’rida (Opiso, et al., 2016). Aniya, 
(1985) reported that weather and climate conditions 
vary greatly at different elevations and that this reflects 
on soil differences (Dou et al., 2017).

Precipitation: Elevation is used as a factor for 
frequent climatization for landslide susceptibility 
analyses (Wu et al., 2016). If we are to speak generally, 
they affect elevation, precipitation/snow (Koukis and 
Ziourkas, 1991; Nagarajan, 2000; Gökçeoğlu and 
Ercanoğlu, 2001; Görcelioğlu, 2003; Tangestani, 
2004; Görüm, 2006; Rozos et al., 2008;2011; Yüksel, 
2007; Hasekioğulları, 2011; Tazik et al., 2014; Yang et 
al., 2015; Dölek and Avcı, 2016a, b, c; Balamurugan 
et al., 2016; Chen et al., 2017). Climate conditions, 
however, do have potential influence over slope 
stability (Kavzoğlu et al., 2014; Meng et al., 2015; 
Wang et al., 2016). Yang et al. (2015) reported that 
numerous high-altitude regions are covered in glaciers 
and snow in their study area, that these areas are scant 
affected by earthquakes and human activities and 
therefore encounter fewer landslides and have low 
susceptibility. Elevation is greatly important in terms 
of affecting accumulated amounts of precipitation 
(Görcelioğlu, 2003; Yüksel, 2007; Avcı and Günek, 
2014). Indeed, Yılmaz and Keskin (2009) reported 
that precipitation accumulated at the bottom of the 
slope due to the incline along with the decrease in 
elevation and, consequently, created a higher vacuum 
pressure and could lead to a greater risk of landslide 
at low elevations (on valley floors). Clerici et al. 
(2006) connected the observation of the loss of slope 
in their study area at different elevations between 
401-600 m and 801-1000 m to the snow precipitation 
and the freeze-thaw cycle. Koukis and Ziourkas 
(1991) observed in their study landslides in areas with 
elevation values of at most 600-1000 m. Researchers 
have correlated this situation with the high sections in 
mountainous regions receiving greater precipitation. 
The literature features researchers who state that in 
their study areas heavy rainfall falls mostly on low 
elevations in causes an inverse relationship between 
landslides and elevation in this (Carrara, 1983; Gallart 
and Clotet, 1988; Baeza and Corominas, 2001; Wang 
and Li, 2017; Chen et al, 2017). “Gruber and Haeberli, 
(2007) noted that the hard precipitation rate increased 
with the decrease in elevation and that temperature 
dropped and contributed to the cooling of the slopes” 

(Chen et al., 2017). The relationship of these with 
landslides should be revealed with precipitation 
analyses to define relative elevation in detail. 
Landslide distribution based on morphology can be 
shown by not evaluating the factor of precipitation 
in situations where there are not enough precipitation 
stations in the study area, and the graphic of the 
density of landslides can be drawn based on the class 
of elevation. Elevation information isn’t used most 
of the time in superficial flow conjectures in classic 
hydrological methods because the procurement of 
elevation data is an inconvenient process (Dölek and 
Avcı, 2016). 

Temperature: Generally speaking, the increase of 
elevation affects all systems (Rozos et al., 2008; Rozos, 
et. al., 2010). Namely, elevation affects temperature 
(Tazik et al., 2014; Meng et al., 2016). Atmospheric 
heat decreases 0.5 C° every 100 m (Sancar, 2000; 
Yılmaz, 2009a, b; Kavzoğlu et al., 2012; Avcı and 
Günek, 2014; Avcı, 2016a, b, c). The rate of hard 
precipitation increases at increasing elevations and 
temperature drops. This leads to the cooling of rocks, 
the growth of different species of flora, and landslides 
(Zolotarev, 1976; Vivas, 1992; Nagarajan et al., 2000; 
Gruber and Haeberli, 2007; Kavzoğlu et al., 2014; 
Tazik et al., 2014; Meng et al., 2015; Balamurugan et 
al., 2016; Wang et al., 2016; Chen et al., 2017; Wang 
and Li, 2017; Dou et al., 2017).

Land Cover: Elevation has a significant effect over 
the topographic properties that explain the spatial 
variability of different landscaping processes like the 
distribution of flora. Thus, it creates an indirect effect 
in the ocurrence of landslides (Aniya, 1985; Moore et 
al, 1991; Vivas, 1992; Dai and Lee 2003; Tangestani, 
2003; Ercanoğlu and Gökçeoğlu, 2004; Lan et al., 
2004; Süzen and Doyuran, 2004a, b; Ayalew and 
Yamagishi, 2005; Goméz and Kavzoğlu, 2005; 
Gruber and Haeberli, 2007; Yüksel, 2007; Kamp et 
al., 2008; Park, 2010; Yılmaz, 2010; Oh and Pradhan, 
2011; Yalçın, et al., 2011; Mohammady et al., 2012; 
Pourghasemi et al., 2012a, b, c; Kavzoğlu et. al., 2012; 
Kavzoğlu et al., 2014; Jaafari et al., 2015a, b; Meng 
et al., 2015, 2016; Wang et al., 2016; Chen et al., 
2017; Ding et al., 2017; Dou et al., 2017). Decreases 
are seen in temperature and precipitation as elevation 
increases, and different vegetation zones form at the 
changing stages of elevation. Thus, variable elevation 
conditions in topography are influential over biological 
and natural elements (Vivas, 1992; Kavzoğlu et al., 



201

Bull. Min. Res. Exp. (2020) 162: 197-224

2012). Researchers think that, although there is no 
clear relationship between landslides and elevation, 
there is an effect related to forest density. Elevation 
has significant influence over the surface of the 
Earth and topographical properties. These properties 
demonstrate the spatial variability of different 
landscaping processes like flora distribution generally 
affected by topographical influences (Saadatkhah et 
al., 2014; Ding et al., 2017).

Lineament: Elevation does not directly contribute 
to the formation of a landslide but can cause landslides 
with other parameters like tectonic, and this affects 
the entire system (Zolotarev, 1976; Koukis and 
Ziourkas, 1991; Nagarajan et al., 2000; Görüm, 2006; 
Rozos et al., 2008;  2010; 2011; Yang et al., 2015; 
Dölek and Avcı, 2016a, b, c; Ilia and Tsangaratos, 
2016). Researchers have reported that a relationship 
of relative elevation with landslides must emerge by 
considering its detailed study and definition and the 
seismic effects of these (Vivas, 1992; Nagarajan, 
2000; Gökçeoğlu and Ercanoğlu, 2001; Görüm, 
2006; Özdemir, 2009; Jaafari et al., 2015a, b; Avcı, 
2016a, b, c; Dölek and Avcı, 2016). “Elevations 
in their working area extended along the Yinxiu - 
Beichuan Lineament line and, when the direction of 
incline is guided parallel to the Lineament, has an 
increasing susceptibility to landslides” (Zhang et al., 
2012). Because the horizontal components of seismic 
acceleration in vertical sections for high segments 
in seismically active mountainous regions have a 
greater impact, these segments are more sensitive to 
landslides. The correlation of seismic analysis with 
landslides should be conducted in these areas. There 
was a requirement for this for seismographic stations 
(Gökçeoğlu and Ercanoğlu, 2001). It was reported 
that because the horizontal component of seismic 
acceleration in the vertical segments of mountainous 
areas have an effect that is 1.2 to 1.5 times greater than 
that of valleys, these areas were more susceptible to 
landslides (Zolotarev, 1976; Nagarajan et al., 2000; 
Görüm, 2006; Gökçeoğlu and Ercanoğlu, 2001; 
Avcı, 2016a, b, c). Bai et al. (2013) stated that most 
landslides in their study area (more than 84%) were 
triggered by earthquakes at elevations below 2100 m. 
Bai et al. (2014) reported in their study that most of 
all landslides triggered with earthquakes (more than 
84.09%) took place at altitudes below 1900 m. Tanoli 
et al. (2017) reported that 86% of landslides occurred 
at elevations of 1000 to 3000 m before earthquakes in 

their study area and that 90% of earthquakes occurred 
at elevations of 1500 to 3500 m after earthquakes. They 
reported in this that there was proof that coseismic 
landslides occurred at higher altitudes compared with 
landslides before earthquakes.

Geology: Elevation is accepted as one of the 
significant parameters in the formation of landslides 
because it is controlled by various geological 
processes (Dai and Lee, 2001, 2002; Ayalew and 
Yamagishi 2005; Gorsevski et al., 2012; Pradhan 
and Kim, 2014; Jaafari et al., 2014). Landslide 
susceptibility increases as elevation increases but is 
different in increases at different geological levels 
(Dai and Lee, 2001; Zhu et al., 2014; Raja et al., 
2017). Some researchers reported that the units at 
much higher elevations comprised rock-type materials 
and were less susceptible to landslides because they 
have greater durability compared with the materials 
at lower elevations (Caniani et al., 2008; Avcı, 2016). 
Ercanoğlu (2005) said that durable rocks belonging to 
the Ulus Formation have at high elevations an incline 
greater than 45 degrees and at low elevations a mild 
slope (0-20°). Liu et al. (2013) reported that landslides 
occurred in their study area in the middle section of 
hilly and mountainous areas and that few landslides 
occurred in peaks or the peaks of mountains because 
most rocks on peaks were worn and hard. Pachauri 
and Pant (1992) stated that their study area comprised 
resistant lithological units (Limestone) at high 
elevations, despite having reported that high areas 
were more sensitive to landslides. Kouli et al. (2014) 
reported that elevation indirectly caused landslides in 
their study area, that landslides that occurred at high 
elevations were composed of adhesive units, and 
that the unit was affected by poor climate conditions 
such as precipitation. They gave the highest score in 
their study area to vertical morphological areas that 
occurred from flysch and phyllite-quartzites between 
700 and 1000 m. Çevik and Topal (2003) reported 
that landslides between 10-150 m in their study 
area occurred mostly (63.1%) due to the lithological 
character and structural control of the units. Rozos et 
al. (2010) reported that the density of landslides in their 
working area was not directly correlated to elevation 
but that Plio-Pleistosen sediments were influential in 
landslides that occurred between 250 and 500 m.

Geomorphology: Tangestani (2003) showed the 
elevation between geomorphic or terrain-based risk 
factors that increase susceptibility to landslides.
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Drainage: The change in elevation for each region 
is one of the influential factors in the ocurrence of 
mass movement. This factor controls the direction 
of flow and the rate of drainage intensity (Abedini et 
al., 2017). Erener and Lacasse (2007) reported that 
landslides in the working area demonstrating high 
correlation at low elevations from 0 to 15 m originates 
from inclination into rivers and from erosion. On the 
contrary, He et al. (2011) reported that landslides that 
occurred at low elevations in their study area occurred 
because they were defenseless against corrosion and 
erosion by flowing water. 

4. Elevation Classes

The literature contains research suggesting that 
landslides increase with the increase in elevation. In 
other words, it is shown that landslides tend to appear 
more in places of high altitude (Koukis and Ziourkas, 
1991; Pachauri and Pant, 1992; Pachauri et al., 1998; 
Gökçeoğlu and Ercanoğlu, 2001; Gritzner et al., 2001; 
Ercanoğlu et al., 2004; Gökçeoğlu et al., 2005; Görüm, 
2006; Lee and Pradhan, 2007; Caniani et al., 2008; 
Akıncı et al., 2010; 2011; Özdemir, 2009; Özşahin 
and Kaymaz, 2013; Pradhan and Kim, 2014, 2015; 
Özşahin, 2015; Avcı, 2016 b; Dölek and Avcı, 2016; 
Wu and Ke, 2016). On the contrary, there are studies 
in which landslide intensity decreases as elevation 
increases and in which landslides occur at low and 
medium elevations (Yüksel, 2007).

High Elevations: The literature contains 
research that asserts that landslides aren’t frequently 
encountered at high elevations. Researchers connect 
this to units at very high elevations forming from 
rock-type materials and having high cutting resistance 
compared with disintegrated rocks at lower elevations 
(Dai and Lee, 2001; Ercanoğlu, 2003; Görüm, 2006; 
Dağ, 2007; Yüksel, 2007; Caniani et al., 2008; 
Dragicevic et al., 2015; Avcı, 2016a, b, c; Abedini et 
al., 2017; Pradhan and Kim, 2017). To the contrary, the 
literature contains views that assert that high elevations 
cause landslides together with other parameters. This 
view has two fundamental causes. The first is that high 
segments get much more precipitation (Nagarajan, 
2000; Görüm, 2006). Typically, higher mountain 
elevations receive greater rainfall than areas at lower 
elevations (Coe et al., 2004a, b). This increases soil 
moisture in higher mountain elevations and can lead to 
the decrease of soil strength and the increase of stress 

in the soil matrix (Ray and Jacobs, 2007; Opiso et al., 
2016). The second is that these have a 1.2 to 1.5 times 
greater impact for vertical components of seismic 
acceleration in the segments that are relatively more 
horizontal than valleys (Nagarajan, 2000; Görüm, 
2006). Pradhan and Kim (2017) reported that the 
possibility of landslide formation is greater for high-
altitude areas because of the existence of remaining 
soil cover on rocks. Kavzoğlu et al. (2012) in their 
study connected the landslides that occurred in the 
600-1000 m field to these segments receiving greater 
precipitation compared to the literature review they 
conducted while some studies correlated the landslides 
to densely forested areas as the reason for the for their 
occurrence at >600 m. Clerici et al. (2006) connected 
the observation of the landslides in the study area 
in areas with much higher elevations to there being 
greater rain and snow precipitation in this area and the 
freezing-thawing cycle. Bai et al. (2013) reported in 
their study area that only 7.06% of all landslides occur 
at elevations greater than 2400 m. Bai et al. (2014) 
reported in their study that only 3.04% of all landslides 
triggered by earthquakes occurred at elevations above 
2500 m. On the other hand, Bai et al. (2013) reported 
in their working area that most landslides (more than 
84%) occurred at elevations below 2100 m, while Bai 
et al. (2014) reported in their study that most of all 
landslides (more than 84.09%) occurred at elevations 
below 1900 m. Tanoli et al. (2017) reported that 90% 
of coseismic landslides occurred at elevations of 1500 
to 3500 m. 

Medium Elevations: Fields at medium elevations 
are assessed as more susceptible to landslides because 
of the ground cover that forms due to accumulating 
of materials, weathering, and erosion coming from 
higher fields (Dai and Lee, 2001; 2002; Ercanoğlu, 
2003; Lan et al., 2004; Ayalew and Yamagishi, 2005; 
Görüm, 2006; Dağ, 2007; Yüksel, 2007; Gorsevski 
and Jankowski, 2008; Hasekioğulları, 2011; Kavzoğlu 
et al., 2012; Çellek, 2013; Elkadiri et al., 2014; Wang 
et al., 2015; Dragicevic et al., 2015; Avcı, 2016a, b, 
c; Opiso et al., 2016; Abedini et al., 2017; Pradhan 
and Kim, 2017). Yüksel (2007) determined in a study 
that medium-elevation areas are more susceptible to 
landslides compared with lower or higher sections. 
On the contrary, Liu et al. (2013) reported in their 
study that landslides occurred in the middle section 
of hilly and mountainous areas and that few landslides 
occurred in the upper elevations of peaks or mountains 
because most rocks on peaks were worn and hard. 
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Low Elevations: Low elevations generally are 
considered as less susceptible to landslides because 
slope incline includes less and thicker cover material. 
Because the terrain itself is soft, low elevations have 
low inclines. It is thus covered with thick alluvion or 
residual soil, and the possibility of landslide is lower 
as long as the water table doesn’t rise up to instigate 
a landslide (Dai and Lee, 2001; 2002; Ercanoğlu and 
Gökçeoğlu, 2002; Çevik and Topal, 2003; Ercanoğlu, 
2003; Ayalew and Yamagishi, 2005; Chau and Chan, 
2005; Görüm, 2006; Dağ, 2007; Caniani et al., 2008; 
Kavzoğlu et al., 2012; Çellek, 2013; Dragicevic et al., 
2015; Avcı, 2016a, b, c; Opiso et al., 2016; Abedini et 
al., 2017). Ercanoğlu and Gökçeoğlu (2002) explained 
the occurrence of landslides in lower topographic 
elevations in their study area with the high regions 
in the working area being composed of stable units 
and these regions being covered by dense vegetation, 
Çevik and Topal (2003) connected this situation to 
the lithologic character and structural control of the 
units that constitute the study area. Chau and Chan 
(2005) and Ayalew and Yamagishi (2005), however, 
connected it to there being large sections of road cuts 
in these regions because the population is greater at 
these elevations (Hasekioğulları, 2011). Erener and 
Lacasse (2007) reported that landslides in the study 
area demonstrated high correlation at low elevations 
from 0 to 15 m because of proximity to rivers and 
erosion. Zhuang et al. (2015) separated their study area 
into three regions. They reported that a vast majority 
of landslides occurred on Qin Mountain at 50-90m 
(45.18%), on Li Mountain at 10-70m (87.30%), 
and in Loess Tableland at 10-30m (44.90%). They 
also revealed that landslide frequencies increased 
proportionally to the difference of elevation in the 
Qin and Li Mountains but that the frequency started 
to fall in the altittude otherwise that defeat 60 m. 
They showed that the reason for this is that terrain 
with elevation differences that exceed this value is 
generally used for terrace harvesting.

5. Class Interval Ranges

The class ranges selected in the study areas vary. 
Most studies used literature-based classification, and 
it was reported that very few studies selected unique 
class ranges. Özşahin (2015) prepared the elevation 
values that affect landslide susceptibility in the study 
area by considering the class ranges made in the 
literature. Myronidis et al. (2016) adapted class ranges 

in their study based on Chen and Wang (2007) and 
Sabatakakis et al. (2013). Pourghasemi and Kerle 
(2016) utilized the literature in their study (Lee and 
Pradhan, 2007; Pourtaghi et al., 2014) and used equal 
class ranges. Pourghasemi and Rossi (2017) selected 
equal class ranges in their study, using the literature 
(Pourtaghi et al., 2014; Pourghasemi and Beheshtirad 
2015). The class range numbers selected for the 
evaluation were determined by reviewing 90 selected 
studies (Figure 1).

Figure 1- Class range numbers % distribution for 90 studies.

The number of class ranges selected in the studies 
was at most 21 and at least 3. Five class ranges in 19 
studies, six class ranges in 16 studies, seven class 
ranges in 14 studies, and 10 class ranges in 13 studies 
were selected. Although not being selected as much as 
the others, the class ranges of 8, 4, and 9, respectively, 
were selected as well. The class ranges selected the 
least were 12, 11, and 3. While 21 class ranges were 
selected in only one publication, 13 class ranges 
weren’t selected by any researcher.

Based on this, there was variance in the 
classifications selected in the studies. Table 1 provides 
the class ranges in 58 evaluated studies. The variable 
class ranges are notable when reviewing the table. 
While most researchers chose equal class ranges 
(Balamurugan et al., 2016; Chen et al., 2016a, b; 2017; 
Demir, 2016; Leonardi et al., 2016; Peng et al., 2014; 
Pradhan and Kim 2017; Pradhan et al., 2014; Rozos 
et al., 2010; Shrestha et al., 2017; Umar et al., 2014; 
Wang et al., 2015; Wu and Ke, 2016; Zhang et al., 
2016a, b). While most researchers chose equal class 
ranges (Aghdam et al., 2016; Acharya and Pathak, 
2017; Akıncı and Kılıçoğlu, 2015; Amirahmadi et 
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al., 2017; Ataol and Yeşilyurt, 2014; Avcı, 2016a, b, 
c; Chen et al., 2016; 2017; Çellek et al., 2015; Dağ 
and Bulut, 2012; Dou et al., 2017; Eker et al., 2012; 
Fenghuan et al., 2010; Hasekioğulları, 2011; Ilia and 
Tsangaratos, 2016; Kornejady et al., 2014; Lee and 
Pradhan 2007; Liu and Wu, 2016; Moradi and Rezaei, 
2014; Pourtaghi et al., 2015; Raja et al., 2017; Sadr 
et al., 2014; Tazik et al., 2014; Tsangaratos and Ilia, 
2016; Wang et al., 2016; 2017; Wu et al., 2016; Xu 

et al., 2013;  2016a, b; Zare et al., 2014; Zhao et al., 
2014 ).

The class range selection distribution was 
determined when 42 publications that used equal class 
range were examined (Figure 2). The most preferred 
interval values based on this are 200 m (29%) and 500 
m (24%). The least preferred were 100 m (12%), 150 
m, 250 m (7%), 50 m, 300 m, and 400 m (5%). The 

Table 1- Class intervals (meters) used by some researchers in the literature.

Researcher (s) /Year Sınıf (metre) Gaps
Aghdam et al., 2016 <200, 200–400, 400–600, 600–800, 800–1000, 1000–1200, 1200–1400, 1400–1600, 1600–1800, 

1800-2000, 2000–2200, 2200–2400, 2400–2600, 2600–2800, 2800–3000, 3000–3200, 3200–3400, 
3400–3600, 3600–3800, 3800–4000, >4000 

200

Acharya and Pathak, 2017 <800, 800-1200, 1200-1600, 1600-2000, 2000-2400, 2400-2800, >2800 200
Akıncı et al., 2014 180-250, 250-500, 500-750, 750-1000, 1000-1278 250
Akıncı and Kılıçoğlu, 2015 0-100, 100-200, 200-300, 300-400, 400-500, 500-600, 600-700, 700-800, 800-900, 900-1300 100
Amirahmadi et al., 2017 0-559,7, 559,7-1000, 1000-1500, 1500-2000, 2000-2500, 2500-3000, 3000-3500, 3500-4000, 4000-

4500, 4500-5597 
500

Ataol and Yeşilyurt, 2014 <800, 800-1000, 1000-1200, 1200-1400, >1400 200
Avcı, 2016a 1140-1300, 1300-1500, 1500-1700, 1700-1900, 1900-2100, 2100-2300, >2300 200
Avcı, 2016b 1150-1200, 1200-1400, 1400-1600, 1600-1800, 1800-2000, 2000-2200, 2200-2400, 2400-2600, 

>2600
200

Balamurugan et al., 2016 819-1086, 1086-1340, 1340-1630, 1630-1953, 1953-2452 yok
Chen et al., 2016a 80–330, 330–620, 620–1000, 1000-2000 yok
Chen et al., 2017 561–800, 800–1050, 1050–1300, 1300–1550, 1550–1800, 1800–2074 250
Chen et al., 2018 632-1284, 1284-1773, 1773-2206, 2206-2680, 2680-3940 yok
Chen et al., 2016b 720–850, 850–1000, 1000–1150, 1150–1300, 1300–1560 150
Çellek et al., 2015 0-100, 100-200, 200-300, 300-400, 400-500, 500-600, 600-700, 700-800, 800-900, 900-1000, 1000-

1100
100

Dağ and Bulut, 2012 0-100, 100-200, 200-300, 300-400, >400 100
Demir, 2016 500-750, 750-950, 950-1200, 1200-1450, 1450-1700 yok
Duo et al., 2017  <1000, 1000-1500, 1500-2000, 2000-2500, 2500-3000, > 3000m 500
Eker et al., 2012 <300, 300-600, 600-900, 900-1200, >1200 300
Fenghuan et al., 2010 500- 1000, 1000-1500, 1500-2000, 2000-2500, 2500-3000, 3000-3500, 3500-4000, >4000 500
Hasekioğulları, 2011 0-250, 250-500, 500-750, 750- 1000, 1000-1250, 1250-1500, 1500-1750 250
Ilia and Tsangaratos, 2016 <220, 221-440, 441-660, 661–880, 881–1100,> 1101 220
Kornejady et al., 2014 <1000, 1000-1200, 1200-1400, 1400-1614 200
Lee and Pradhan, 2015 <100, 100–500, 500-1000, 1000–1500, 1500–2000, 2000–2500, 2500–3000, >3000 500
Leonardi et al., 2016 0-150, 151-300, 301-600, >601 yok
Liu and Wu, 2016 > 2400, 2200-2400, 2000-2200, 1800-2000, 1600-1800, 1400-1600, <1400 200
Moradi and Rezaei, 2014 <1400, 1400-1600, 1600-1800, 1800-2000, 2000-2500, 2500-3000, >3000 200
Nourani et al., 2014 <1,300, 1,300–1,700, 1,700–2,100, 2,100, 2,500, 2,500–2,900 400
Padrones et al., 2017 0-176, 176-352, 352-528, 528-704, 704-880, 880-1056, 1056-1232, 1232-1408, 1408-1584, 1584-

1760
176

Peng et al., 2014 80-330, 330-620, 620-1000, 1000-2000 yok
Pham et al., 2015  0 - 600, 600 - 750, 750 - 900, 900 - 1050, 1050 - 1200, 1200 - 1350, 1350 - 1500, 1500 - 1650, 

1650 – 1800, > 1800 
150

Pham et al., 2016 <600, 600–750, 750–900, 900–1050, 1050– 1200, 1200–1350, 1350–1500, 1500–1650, 1650–1800, 
>1800 

150
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Pham et al., 2017 0-700, 700–900, 900–1100, 1100–1300, 1300–1500, 1500–1700, 1700–1900, > 1900 m 200
Pourghasemi and Kerle, 
2016 <100, 100–500, 500-1000, 1000–1500, 1500–2000, 2000–2500, 2500–3000, >3000 

500

Pourghasemi and Rossi, 
2017 <500, 500–1000, 1000–1500, 1500–2000, >2000 

500

Pourghasemi et al., 2014  <1,500, 1,500–2,000, 2,000–2,500, 2,500–3,000, 3,000–3,500,  >3,500  500
Pourtaghi et al., 2014 <100, 100–500, 500-1000, 1000–1500, 1500–2000, 2000–2500, 2500–3000, 3000 m 500
Pradhan and Kim, 2017 <75, 75–100, 100-150, 150–200, 200-250,  >250 yok
Pradhan et al., 2014  0–20, 20–25, 25–35, 35–65, 65–115, 115–252, 252–465, 465–705, 705–950,  950–2,000 yok
Raja et al., 2017 <50, 50–100, 100-150, 150–200, >200 50
Rozos et al., 2010 <250, 250–500, 501–800, 801–1200, >1200 yok
Saadatkhah et al., 2014 0-50, 50–100, 100–200, 200–300, >300 yok
Sadr et al., 2014 0-100, 100-200, 200-300, 300-425 100

Shrestha et al., 2017
<1281, 1281–1755, 1755-2254, 2254–3302, 3302–3850, 3850–4424, 4424– 4973, 4973-5621, 5621-
6968> 6968

yok

Simon et al., 2017 <30, 30-60, 60-90, >90 30
Tazik et al., 2014 500-1000, 1000-1500, 1500-2000, >2000 500
Tsangaratos and Ilia, 2016 <400, 401–600, 601–800, >801 200

Umar et al., 2014
0-9.01, 9.01-18.02, 18.02-45.07, 45.07-90.14, 90.14-135,21, 135.21-198.31, 198.31-297.45, 297.46-
458.73, 468.73-748.18, 748.18-2298.62

yok

Wang et al., 2015 20–850, 850–1000, 1000–1150, 1150–1300, 1300–1560 yok
Wang and Li, 2017. <900, 900–1300, 1300–1700, 1700–2100, 2100–2500 ve> 2500 400
Wang et al., 2016  <150, 150–200, 200–250, 250–300, 300–350, 350–400, 400–450, 450–500, 500–550, >550 50
Wu et al., 2016 <1400, 1400–1600, 1600–1800, 1800-2000, 2000-2200, 2200–2400, > 2400 200
Wu and Ke, 2016 720-850, 851-1000, 1001–1150, 1151–1300 and 1301-1560 yok

Xu  et al., 2013
<1000, 1000–1500, 1500–2000, 2000–2500, 2500–3000, 3000–3500, 3500–4000, 4000–4500, 
4500–5000, 5000–5500, >5500  

500

Xu et al., 2016a 2207-2300, 2300-2400, 2400-2500, 2500-2600, 2600-2700, 2700-2800, 2800-2900, 2900-3000, 
3000-3100, 3100-3200, 3200-3340

100

Zare et al., 2014
<300, 300-600, 600-900, 900-1200, 1200-1500, 1500-1800, 2100-2400, 2400-2700, 3000- 3300, 
>3300

300

Zhang et al., 2016a 0-50, 50–200, 200–350, 350–500, >500 m yok
Zhang et al., 2016b <1000, 1000–1600, 1600-2200, 2200-2880 and >2800 yok
Zhao et al., 2014 60–80, 800–1000, 1000–1200, 1200– 1400, 1400–1600 m, 1600–1800, 1800– 2060 200

Table 1- continue.

least preferred interval values were 30 m, 176 m, and 
220 m (2%). Intermediate values such as 350 m and 
450 m weren’t chosen.

6. Materials and Methods

It is accepted that elevation has influence over the 
formation of landslides, despite researchers not fully 
reaching a consensus. This study tried to research the 
influence of the parameter over landslides. For this 
purpose, close to 1500 studies prepared between 1967 
and 2017 were reviewed. According to the literature, 
the parameter of elevation was used in analyses because 
of its effect on the formation of landslides, because Figure 2- The preferred class range distributions in the literature.
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it’s easy to produce, and because it is morphologically 
effective. A review of previous studies determines that 
landslides are encountered at various elevations. It 
was determined that any elevation triggers landslides, 
remaining under the influence of a different parameter. 

For the purpose of comparison with the data in 
the literature, 64 out of 2945 landslide map sections 
at a scale of 1/25.000 prepared by Mineral Research 
and Exploration (MRE) were selected and were 
digitized by adjusting the cell size to 28 pixels. For 
elevation maps to be created, digitized topographic 
maps at a scale of 1/25.000 in which the contours 
belonging to the selected landslide regions pass 
once every 10 m were procured from the General 
Command of Cartography. Using the ArcGIS 10.4 
software, the attributions of the numerical contours 
and TIN (Triangulated Irregular Network) model 
and numerical elevation models were acquired in the 
form of triangular networks. The numerical elevation 
model (NEM) was obtained with the prolongation 
from the acquired TIN models (TIN to Raster). This 
model is incredibly important in terms of constituting 
a base for the other data used as topographical data in 
the studies. Thus, procuring the elevation parameter 
from other secondary topographical data was more 
easily provided and was converted into a raster data 
format. Elevation classes were made considering the 
conditions of the terrain. These range distances can 
be increased and decreased based on the conditions of 
the terrain. Using the literature, the class ranges of 50 
and 100 m were selected for elevation. By digitalizing 
inventory maps for 50 selected map sections, they were 
superposed with elevation maps. The result maps were 
produced with “reclassify” and “raster to polygon” by 
selecting the class ranges. At which elevation values 
landslides occurred was determined by analyzing the 
prepared maps, and they were compared with their 
corresponding values in the literature. 

7. Findings

The selected map sections were classified with 100 
m ranges, and a total of 32 ranges were procured. Figure 
3 provides the results in percentage distributions. 

Figure 3- Distributions of the analyzed map sections in % based on 
100 m class ranges.

As a result of the analysis of approximately 50 map 
sections, the range values were evaluated between 0 
and 3300 because the areas had different elevation 
values. There are no significant differences between 
class ranges, and it was reported that about 20% of 
landslides occurred between 500-700 m. The lowest 
values were found in areas above 2600 m.

It was seen that range values increased in providing 
a stable value because class ranges are unique to each 
area. The 10 map sections selected have values that 
can be classified with 50 m ranges. The analysis values 
are seen in figure 4. 

Figure 4- Distributions of the analyzed map sections in % based on 
50 m class ranges.

The 50-100-meter range with 14% is the area at 
which the most landslides are seen. The 100-150 m 
range and the 450-500 m class range follow that with 
12%. The lowest values are encountered after 1900 
m. The reason for this is that elevations that allow for 
short ranges have comparatively low elevation values. 

Finally, elevation distribution graphics were 
created for each area. The reason for this is that each 
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field will be unable to resort to generalization from 
there being unique elevation values but that how 
distribution changes based on the terrain is examined 
(Figure 5).

The graphics show that gradually increasing 
values decreases again gradually after reaching a peak 
point. A drop occurred after a regular increase in all 
areas. If we are to generalize, landslides occurred at 
the average elevation values for the study area.

Figure 5- Elevation class range-landslide field distribution for the map sections used in the study (km2). 
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Figure 5- Continued.



209

Bull. Min. Res. Exp. (2020) 162: 197-224

Figure 5-  Continued.
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Figure 5-  Continued.
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Figure 5-  Continued.
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Figure 5-  Continued.
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Figure 5-  Continued.
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Figure 5-  Continued.

8. Results and Discussion

The literature uses elevation values in two forms: 
relative and topographical. But topographical elevation 
is more commonly chosen. The most important reason 
that it is used as a parameter in susceptibility maps is 
that it is easy to access and produce.

When the parameter is evaluated by itself, 
an indirect effect from the influence of the other 
parameters becomes relevant, even if it is not 
influential. The effect of the parameter affects the 
entire system. The most affected parameter was the 
effect of precipitation, seismicity, temperature, flora 
and humans. 

There is no clear elevation range at which landslides 
occur. Each area has unique properties. The increase of 
elevation in an area with seismicity also increases the 
severity of the formation of landslides. The change of 
climate conditions and flora with elevation concludes 
the same results. While terrain sometimes forms from 
lower elevations, it sometimes has higher elevations.

There are landslides that form in many different 
classes in the literature. Each area has its own unique 

elevation values. Therefore, elevation classes must 
reflect the character of the selected area. If this subject 
is to be assistance from the literature, determining the 
class range for the same areas is providing ideas about 
the effects of different areas but similar parameters 
(such as climate, terrain, anthropological effect, and 
temperature) as well as how they would be assessed. 

Most studies in the literature assert that the 
intensity of landslides increases with the increase of 
elevation. Contrary to this, there are studies that assert 
that landslides cannot be seen at certain elevations. 
In addition to this, there are studies that assert that it 
is more susceptible to landslides at low and medium 
elevations. Some studies according to the literature 
say that landslides intensify at certain elevations while 
there are studies that assert that the effects of different 
elevations on susceptibility to landslides are also 
different.

It was seen in the selected map section analyses 
that each area has its own characteristics elevation 
values. Landslides varies based on the elevation values 
for their own study areas. Just as landslides can occur 
at very high elevations in other areas compared to 
one area, landslides can occur at low elevations. The 
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results of the analysis showed that landslide intensities 
increase gradually in any study area and reach a peak 
value at a certain point of elevation. If we are to 
generalize, while it cannot be envisaged that landslides 
will occur at a certain elevation value, landslides peak 
at average values at their own elevation values for the 
area for each area. This peak point, compared to other 
variables, is observed two or three more times in some 
areas. 

Although it is not a determinant parameter for 
each area, the effect of elevation consequently is 
determinant if the study area comprises mountainous 
areas with different elevation values. The effect value 
also changes based on the parameter variables found 
for the same system. Landslides should be expected at 
the average elevation values of an area. It was reported 
that landslides occurred at certain elevation values 
for the study area (medium elevations for the field), 
although not at a certain elevation value.
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