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Abstract: Water quality models are useful tools to understand and mitigate eutrophication processes.
However, gaining access to high-resolution data and fitting models to local conditions can interfere
with their implementation. This paper analyzes whether it is possible to create a spatial model of
nutrient water level at a local scale that is applicable in different geophysical and land-use conditions.
The total nitrogen and phosphorus concentrations were modeled by integrating Geographical In-
formation Systems, Remote Sensing, and Generalized Additive and Land-Use Changes Modeling.
The research was based on two case studies, which included 204 drainage basins, with nutrient and
limnological data collected during two seasons. The models performed well under local conditions,
with small errors calculated from the independent samples. The recorded and predicted concen-
trations of nutrients indicated a significant risk of water eutrophication in both areas, showing the
impact of agricultural intensification and population growth on water quality. The models are a
contribution to the sustainable land-use planning process, which can help to prevent or promote
land-use transformation and new practices in agricultural production and urban design. The ability
to implement models using secondary information, which is easily collected at a low cost, is the most
remarkable feature of this approach.

Keywords: eutrophication models; lotic systems; GIS; GAM; land-use planning; Uruguayan aquatic
systems

1. Introduction

The excessive nutrient enrichment of water ecosystems, or eutrophication, is consid-
ered to be the main water quality problem at the global scale, restricting the sustainability
of environmental goods and services [1–6]. Human actions have intensified eutrophication
problems through drastic modifications of exchanges between land and water ecosystems.
In particular, due to the increasing input of limiting nutrients linked to land-use transfor-
mations, such as phosphorus (P) and nitrogen (N) [7,8], agricultural expansion and the
rising intensification of production have been impacted in recent decades [9–11].

Controlling the increasing nutrient inputs from point and nonpoint sources is essential
to avoid the contamination of aquatic systems, and it is a first step toward rehabilitating
or restoring eutrophic systems. Progress in nonpoint source control has been modest
due to: (a) the complexity of quantifying and controlling inputs [12], (b) the diversity of
mechanisms involved in generating nutrient outputs, and (c) the existence of resilience
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mechanisms (legacy) that maintain the consequences of processes even when fertilization
has been diminished [13,14]. Based on the current trends of the expansion and intensifica-
tion of agriculture and population growth, nonpoint source pollution will multiply and,
consequently, the impacts on water quality will increase [15,16]. Therefore, controlling the
nonpoint loadings of nutrients is urgently required [7,9,17].

Improvements in monitoring in terms of quantity, frequency, variables, automatic
systems, and nutrient export estimations (e.g., [17,18]) have allowed the development of
sophisticated water quality models (i.e., QUAL2E [19], SWAT [20] ARMF [21], HSPF [22],
MIKE-SHE [23]). These models have greatly improved and their use has spread, partic-
ularly for the design of management strategies to reduce the nutrient exports into water
systems [24–26]. In addition, nutrient models have emerged as essential tools to under-
standing the hydrological behavior of drainage basins in response to present and uncertain
future anthropogenic pressures, such as land-use change and climate change [27]. Numer-
ous models with deterministic and process-based modeling approaches have been used to
evaluate various hydrologic processes (i.e., [28–30]). These models are based on the applica-
tion of physical laws that are able to explain the main natural systems’ processes and have
proven to be suitable for representing them at the catchment scale [30]. However, the fact
that the model is based on physical laws does not necessarily guarantee good results [30].
In addition, acquiring and processing sufficient complete, valid and systematic data, as
well as the complex calibration and adaptation of models to local conditions [12,31–34],
are long-term challenges that demand significant economic resources [35]. Therefore, the
construction of local low-cost models is a current need in water management, especially
for countries with severe limitations to generate sufficient data to developed functional
models. Empirical modeling is a promising alternative strategy to explore as it has yielded
good results at local scales [36–38].

Building models with available spatial information finds new opportunities through
the application of Machine Learning (ML) techniques, the integration of Geographic In-
formation Systems (GIS) and Remote Sensing (RS). These alternatives are suitable for
use in eutrophication control, specifically for land-use planning, water treatment, and
fertilization systems design [34]. ML techniques provide a powerful set of tools that could
contribute to the advancement of both explanatory and predictive models [39,40]. Among
ML methods, General Additive Models (GAM) stand out, as they can be integrated with
GIS to solve spatial problems [41]. GAM and GIS have a high potential to work with
possible future scenarios (e.g., climate and land use). The Land Changes Modeler (LCM)
has been broadly used to analyze and predict land cover transformations [42–46]. This type
of model is widely applied to evaluate the role of each driver in land-use transformations.
The prediction of land-use change is based on an empirical process, which begins with the
analysis of past changes, followed by the modeling of the potential transition, and, finally,
the resulting change [44].

In countries that are currently developing their water quality monitoring systems
and applying models such as SWAT [20], which requires significant efforts—to address
data gathering, calibration and validation—the following questions emerge: Can the avail-
able spatial watersheds data—edaphological, geomorphological, geological, climatic and
land-use information—be useful to predict the nitrogen and phosphorus levels according
to the combination of GIS, RS, GAM and LCM considered? If so, how relevant is the
combination of different approaches such as GIS, RS, GAM and LCM for the land-use
planning, prevention, and control of eutrophication processes? Answering these questions
is the first step towards progressing in the management and conservation of aquatic sys-
tems, land-use planning, and the transition of productive systems and associated practices
towards sustainable scenarios. This situation is remarkable in Latin America and calls for
new strategies to gather information applicable to water management in the short term.

In this context, this work’s main objective was to model the nitrogen and phosphorus
levels in lotic systems by combining GAM, GIS, RS, and LCM. The following hypotheses
were formulated: (i) a high proportion of spatial variability of nitrogen and phosphorus



Environments 2021, 8, 129 3 of 19

levels in the water can be predicted using empirical models with available spatial infor-
mation; (ii) if (i) is not rejected, this work’s methodological approach can contribute to the
water management and land-use planning, while more robust models are built.

The models were developed and tested for two cases studies in Uruguay, with con-
trasting geophysics and land-use characteristics. Subsequently, the performance of the
generated models and their ability to predict the spatial distribution of nutrient in the water
were evaluated. Finally, the article assesses the strengths of this approach, its potential for
land-use planning and water resource management, and the challenges ahead.

2. Materials and Methods
2.1. Research Strategy

Empirical probabilistic models are built with the aim of predicting response variables
(nutrient levels) from predictor variables. The predictor variables were selected from
a well-known causal mechanism (e.g., soil type, land use, geomorphology, key water
channel processes such as in-stream oxygen levels) and spatial information available in
Uruguay. The links between the two types of variables are known in theoretical terms,
but not the contribution of each driver when analyzing the spatial variation of nutrients
in the water in Uruguay’s geophysical and socio-economic context. To test the strategy,
two contrasting case studies were selected. In both cases, spatially robust water quality
monitoring programs exist, an uncommon condition in other Uruguayan watersheds. This
allowed us to establish the ability for extrapolation of nutrient levels in the rest of the
territory where there are currently no water quality monitoring programs. For this purpose,
two extreme periods in hydrological conditions and the productive agricultural calendar
of Uruguay were considered. In sum, a period of higher flows, lower temperature, prior to
the beginning of the spring and summer crop cycles (winter–spring—WS—transition) and
the opposite conditions in the summer–autumn (SA) transition.

A conceptual model was built to determine and evaluate the incidence of a group
of potential causal factors of total phosphorus (TP) and total nitrogen (TN) levels in
lotic systems. Second, a mathematical model was generated to identify the relationship
between the selected drivers (predictor variables) and the TP and TN concentrations in
water (response variables) in two case studies. The nutrient levels and other physical and
chemical parameters were measured during WS and SA—in 2008–2009 for Case 1 and
2015–2016 for Case 2. The drainage basins of each water data collection point were defined
as units of analysis to evaluate the connections between the TP and TN concentrations,
structural attributes (type of soil, geomorphology, slopes), and land uses. A mathematical
model was generated by integrating the following three stages:

i. The definition of natural and anthropic-originated (geophysical and land-use vari-
ables) controls that determine the levels of TP and TN concentrations in water.

ii. The development a GIS for the systematization, evaluation, and integration of the
controls (variables) identified in stage one to the 204 monitoring points distributed
by the WS and SA periods.

iii. The analysis of the relationships between controls and the TP and TN concentrations
in lotic systems. The modeling was accomplished using GAMs.

Last, the future water quality scenarios were evaluated using the model generated in
stage three, adding information from an LCM and projected population growth for 2030.

2.2. Case Studies

Two case studies were conducted (Figure 1), as they present contrasting geophysical
and land-use characteristics [47], and are strongly involved in water supply for human
consumption. Combined, the area of both case studies provide freshwater for around
70% of Uruguay’s population. The climate in both areas is humid and temperate, with an
annual rainfall over 1100 mm and an annual average temperature of 16.4 ◦C.
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Figure 1. Case study area and data collection points in lotic systems for Case 1 (A) and Case 2 (B). In both maps dark grey 
tone corresponds to urban areas and tones from light (1) to dark blue (8) to stream order according to Strahler’s classifica-
tion system. Agricultural use intensity values were taken from Díaz et al. 2018 [47]. 

Case 1. Located mostly in Canelones and Lavalleja (Figure 1A) in south Uruguay, has 
an area of around 349,000 ha, which is subdivided into 87 hydrographic basins (average 
area: 13,631 ha; minimum area: 200 ha; maximum area: 77,000 ha). Hills are the dominant 
landform, with slopes under 6%, and the soils are highly fertile [48]. The most common 
land uses in rural areas are intensive agriculture and livestock production. This area 
shows high levels of anthropic soil erosion caused by human production throughout his-
tory. The urban population is 250,000 inhabitants, while in rural areas, it is approximately 
41,000 [49]. The majority of towns and cities do not have traditional sewage systems [50]. 
In total, 74 agro-industrial complexes were registered, generally located in most densely 
populated areas. 

Case 2. The Laguna del Sauce basin (Figure 1B) in Maldonado is located southeast 
Uruguay. It has an area of 70,743 ha, with a broad tributary network. A total of 117 sites 
were sampled, therefore 117 micro-basins were delineated (average area: 1,558 ha; mini-
mum area: 571 ha; maximum area: 31,107 ha). Most of its surface is covered by natural 
pasture (53.9%), followed by afforestation (15%). Cattle farming dominates the primary 
sector activity in the area, with forestry and agriculture in second place. The urban and 
rural populations are 10,300 and 700 inhabitants, respectively [49]. Urban development 
intensification occurs near the water bodies, mainly for residential and touristic purposes. 

2.3. Water Quality Data 
For Case 1 (Canelones), the water quality data were provided by the Strategic Water 

Quality Plan for Canelones (PEDCA—IDC [51]) designed and implemented by the Ca-
nelones´ municipality. Two water sampling campaigns were performed in 87 sites. For 
Case 2 (Laguna del Sauce), data were collected in three consecutive sampling campaigns 
by Levrini [52] in 117 sites (Figure 1). In both cases, data were collected during the WS 
and SA transitions (2008–2009 in Canelones and 2015–2016 in Laguna del Sauce). The se-
lection of sites aimed to cover the entire study area and account for the diversity of edaph-

Figure 1. Case study area and data collection points in lotic systems for Case 1 (A) and Case 2 (B). In both maps dark grey
tone corresponds to urban areas and tones from light (1) to dark blue (8) to stream order according to Strahler’s classification
system. Agricultural use intensity values were taken from Díaz et al. 2018 [47].

Case 1. Located mostly in Canelones and Lavalleja (Figure 1A) in south Uruguay, has
an area of around 349,000 ha, which is subdivided into 87 hydrographic basins (average
area: 13,631 ha; minimum area: 200 ha; maximum area: 77,000 ha). Hills are the dominant
landform, with slopes under 6%, and the soils are highly fertile [48]. The most common
land uses in rural areas are intensive agriculture and livestock production. This area shows
high levels of anthropic soil erosion caused by human production throughout history.
The urban population is 250,000 inhabitants, while in rural areas, it is approximately
41,000 [49]. The majority of towns and cities do not have traditional sewage systems [50].
In total, 74 agro-industrial complexes were registered, generally located in most densely
populated areas.

Case 2. The Laguna del Sauce basin (Figure 1B) in Maldonado is located southeast
Uruguay. It has an area of 70,743 ha, with a broad tributary network. A total of 117 sites
were sampled, therefore 117 micro-basins were delineated (average area: 1,558 ha; mini-
mum area: 571 ha; maximum area: 31,107 ha). Most of its surface is covered by natural
pasture (53.9%), followed by afforestation (15%). Cattle farming dominates the primary
sector activity in the area, with forestry and agriculture in second place. The urban and
rural populations are 10,300 and 700 inhabitants, respectively [49]. Urban development
intensification occurs near the water bodies, mainly for residential and touristic purposes.

2.3. Water Quality Data

For Case 1 (Canelones), the water quality data were provided by the Strategic Wa-
ter Quality Plan for Canelones (PEDCA—IDC [51]) designed and implemented by the
Canelones´ municipality. Two water sampling campaigns were performed in 87 sites. For
Case 2 (Laguna del Sauce), data were collected in three consecutive sampling campaigns
by Levrini [52] in 117 sites (Figure 1). In both cases, data were collected during the WS and
SA transitions (2008–2009 in Canelones and 2015–2016 in Laguna del Sauce). The selection
of sites aimed to cover the entire study area and account for the diversity of edaphological,
geomorphological and land-use conditions, including water systems of social interest,
environmentally relevant systems or areas, regions with high pressure on resources, paired
micro-basins and location of nonpoint and point sources [51,52].
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Through using a portable multiparameter sonde, conductivity (K), pH, and dissolved
oxygen (DO) data were collected in the field. Water samples were taken below surface in
the center of water channel and then filtered with GF/C Whatman. The resulting filters
were dried at 100 ◦C until obtaining constant weight. Afterward, they were heated in a
muffle furnace at 500 ◦C for 15 min and weighed again. The total suspended solids (TSS)
concentration and suspended organic matter (SOM) content were estimated by weight
difference [53]. With non-filtered samples, alkalinity was determined through titration with
acid according to Wattenberg’s method [53]. The TP and TN concentrations were estimated
from instantaneous-grab sampling using the simultaneous oxidation of phosphorus and
nitrogenous compounds with the persulfate of potassium and specific spectrophotometric
methods [54–56]. Analytic determinations were performed in Centro Regional del Este
(UdelaR) the laboratories.

2.4. Land Use and Drainage Basin Characteristics

From the 87 samples corresponding to Case 1 and 117 to Case 2, an equal number of
drainage basins were delimited through a digital terrain model (DTM) with 30 × 30 m
resolution [57]. The database source used for modeling started with 13 variables, resulting
in 18 parameters (Table 1). For each basin, a value for each parameter was extracted.

Table 1. Variables, parameters, method and spatial database source used for modeling.

Variable Parameter Method Source

Precipitation PP accumulated (7, 30
and 60 days) Kriging’s spatial interpolation [58]

Soil physical properties Soil depth Literature [48]
Soil physical properties Soil texture Literature [48]
Soil chemical properties Soil pH a Literature [48]
Soil organic compounds Soil organic compounds a Literature [48]

Basin morphol-
ogy/morphometry Drainage system density Geoprocessing (GIS) [59]

Basin morphol-
ogy/morphometry Stream order Geoprocessing (GIS) [60]

Basin morphol-
ogy/morphometry Basin shape coefficient Geoprocessing (GIS) [61]

Basin morphol-
ogy/morphometry Basin area Geoprocessing (GIS) [61]

Topography Slope DTM 30 × 30 m [57]
Lithology Geologic formation a Literature [62]

Land use/cover Use/cover Supervised image classification LANDSAT 5TM a, CBERS 2b a

LANDSAT 8OLI b

Soil erosion Active erosion area a Supervised image classification LANDSAT 5TM a, CBERS 2b a

Demography Dispersed urban population a Geoprocessing (GIS) [49,63]
Demography Rural population density a Geoprocessing (GIS) [49,63]

Point sources Presence or absence of
industrial sources a Geoprocessing (GIS) [64]

Riparian area Conservation status Qualitative classification
(1 = very low a 5 = very high) [65]

Livestock production Number of livestock Geoprocessing (GIS).
Interviewing producers [66] and field data collection

Internal stream process Dissolved oxygen c Portable multiparameter sonde [51,52]
a Only in Case 1, b Only in Case 2, c Dissolved oxygen (DO) is not and independent variable. However, it was considered to be a predictor
variable because it is a key driver in the mobilization of phosphorus from the streambed to the water column, as well as denitrification
processes in streams. Anoxic and hypoxic conditions trigger various feedback processes, for example the solubility of phosphorus
complexed to iron and other elements, as well as the promotion of denitrification processes.

2.5. Data Analysis

The water quality parameters, geophysical attributes, and land use were initially
analyzed for each basin using statistical univariate tests. Thereafter, Spearman’s rank corre-



Environments 2021, 8, 129 6 of 19

lation coefficient (ρ) was used to identify statistic relationships between these parameters.
In the second stage, the existence of spatial dependency between sampling points was
analyzed for each temporal period considered by Mantel’s test [67]. The tests considered
the algorithms of Euclidean distance (ED) as the correlation (C) for the physical–chemical
and geographical distance for the coordinate matrices. Mantel’s test proved the absence of
spatial dependency. Therefore, this aspect was not considered when creating the model. In
addition, the spatial patterns for water quality found in both the WS and SA transitions
were analyzed using Mantel’s test. In this case, dissimilarity matrices (ED) containing a
set of physical–chemical parameters for both periods were correlated. The analysis was
performed using R software, version 3.6.1 [68].

2.6. Modeling

To model the relationship between predictor (land use and watershed geophysical char-
acteristics) and response variables (TP and TN), a Generalized Linear Model (GLM, [69,70])
was initially applied. Thereafter, a GAM was used due to could perform better when there
are non-linear relationships between variables [71] (Supplementary material (SM1)). The
water nutrient level is controlled by several natural (i.e., soil type, parental substrate) and
anthropogenic drivers (i.e., domestic effluent, agriculture). The GAM allowed us to identify
the most important control factors that explain the spatial pattern of the observed water
nutrients. One model is generated for PT and another model for NT.

In GAMs, as in GLMs, the components of the Y vector (response variable) are indepen-
dent variables from an exponential family, this means that the random variables Y1, . . . ,
Yn are assumed independent and each Yi has a density function in the linear exponential
family (e.g., Normal, Binomial, Poisson, Gamma, etc.)

The predictor and expected values of the response variable Y are related by a link
function that must be monotonic and differentiable. GAMs have the following structure:

g(µ) = ß0 +f1(X1) + f2(X2)+ . . . + fp(Xp)

where g (the link function) is a known monotone differentiable function, µ is the expectation
of the response variable, and functions fi(Xi) are smooth functions. These functions are
flexible functions that adapt to the data and can be of several forms (cubic splines, natural
splines, thin plate regression splines, etc.; for more detail of the construction of the smooth
functions we refer to: [71]). It must be noticed that within one single model, different
smooth functions can be considered to model the relation between different predictor
variables and the response.

A total of 16 models were generated considering the different areas (Cases 1 and 2),
nutrients (TP and TN), periods (WS and SA), and sections of the watershed. The two
sections studied to understand nutrient dynamics of drainage basins were: (1) the drainage
basin as a whole (section A), and (2) the in-stream processes (section B).

The final set of predictor variables in the models was defined according to Akaike’s
Information Criterion (AIC; [70,72]) using a stepwise backward selection method [73].
In this method, the predictor variables are tested in an automatic procedure, and the
variables that generate a model with lower AIC are eliminated through a stepped approach.
The objective of this method is to reduce the set of variables and choose those that are
most important to explain the response variable. With the aim to avoid multicollinearity
problems, mainly in GLM models, in cases where the correlation between a pair of variables
was greater than 0.5, only one of them was preserved.

The GAMs adjustment was performed using R software [68], applying the gam
function from the mgcv package [74,75]. In all cases, the Gaussian family and identity link
function were considered, maintaining the other parameters by default. Each model and all
variables (response and predictor) used a transformation log (x + 1). This was necessary for
the response variables to meet the model assumptions (normal and homoscedastic residue).
For the predictor variables, the transformation was used because it significantly improved
the model adjustment. The smoot functions thin plate regression spline [76] was used. The
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adequate adaptation of the dimension of the smooth functions base according to different
predictors was checked using the function gam.check [74,75]. The gam.check function test
whether the basis dimension (which is related to the degree of smoothness) for a smooth
is adequate [77]. It computes an estimate of the residual variance based on differencing
residuals that are near neighbours according to the (numeric) covariates of the smooth.
This estimate divided by the residual variance is defined as k-index which is reported by
the gam.check function. The further below 1 this is, the more likely it is that there is missed
pattern left in the residuals, and then a higher basis dimension is recommended [77,78].

The goodness-of-fit measures were evaluated using the adjusted R2 and Generalized
Cross-Validation (GCV, [79]) values. Both statistics were provided by the gam function.
GCV is the model’s mean squared error estimator based on a crossed validation process:
the leave-one-out type. Considering that GAMs tend to over-adjust data, the performance
measurement was calculated on independent test samples to evaluate its predictive ability.
The performance measurement used was the square root of the normalized mean squared
error (NRMSE). Its calculation is as follows:

i. Data were randomly divided into two sets in a 90% training–10% test
sampling proportion.

ii. The training sample trained a GAM model with default parameters, and the test
sample evaluated model adjustment with the training sample.

iii. NRMSE (evaluation indicator) was calculated as Equation (1):

RMSE
mean(Y)

(1)

iv. RMSE refers to the square root of the quadratic error calculated as Equation (2):√
∑n

i=1(predi − obsi)
2

n
(2)

where pred stands for predictor values for trained models on sample test data, and
obs refers to values resulting from the response variable to the sample test.

Lastly, mean (Y) represents the response variable average in the sample test.
In total, 25 random partitions were made, and 25 values for NRMSE were obtained on

the sample test. The purpose of doing several splits and averaging results was to avoid
bias in NRMSE estimate related to one particular split [40]. These values were averaged to
obtain the NRMSE average (±sd), which indicates the predictive ability of the models. The
NRMSE was selected as an indicator due to: (a) it is easily interpretable (values close to
zero indicate less residual variance), and (b) it allows easy comparison between models.

2.7. 2030 Scenario

A 2030 scenario was projected based on the assumption of rainfed agriculture (cereals
and oleaginous) expansion, and the urban and rural population growth, following the
ongoing trend of population growth since 2000 [63,78]. Additionally, productive strategies
in the area, and urban and industrial source treatment systems were assumed to be constant
for the studied period. The database considered for the LCM to project the agricultural and
livestock uses for 2030 included the land-use classifications for the years 2000 and 2015,
performed using the non-supervised classification of LANDSAT 5TM and LANDSAT 8OLI
images and K-means clustering. The approximate area of agricultural and livestock growth
was taken from Achkar et al. 2012 [79] and Uruguay’s Presidential Office of Planning and
Budget [78].

Through the application of the LCM module [44], the probability of the transition to
agricultural or livestock uses was analyzed from a spatial perspective for Cases 1 and 2.
The variables under consideration were the soil suitability for agriculture, slopes, road
distance, urban areas’ distance, and legal restrictions [50]. The agricultural and livestock
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projected areas of growth were distributed according to the detected areas with a greater
probability of change. Finally, the values for each basin (sampling point) were integrated
with the prediction model for the nutrient concentrations.

3. Results
3.1. Water Quality in Both Case Studies

In Case 1 (Canelones), most analyzed water quality attributes showed a high variation
coefficient, indicating a significant spatial heterogeneity (Table 2). Significant pH gradients
were found, most notably during SA, where the pH varied from very acid (3) to very basic
(8.9) values, with a neutral pH mean for both periods. The conductivity (k) and alkalinity
(Alk) presented moderately high values for both WS and SA, as well as an important spatial
variability, especially for the K values (WS: 247, SA: 190.1 uS cm−1). The DO presented
intermediate values during both periods, with higher variability during SA. The TSS
concentration and SOM percentage displayed a broad spatial variability, particularly WS
(170 mg/L and 71.1%). High nutrient concentrations were registered, with high spatial
variability for both periods. The WS mean values of TN were greater than TP (5028 µg/L
and 124.9 µg/L), while in SA, an opposite behavior was observed (816 µg/L and 2063 µg/L,
respectively). Generally, the attributes presenting greater spatial variability were TN and
TP, followed by K and the TSS concentration. This pattern applied for both periods, with
higher variability during the WS transition. All analyzed attributes presented significant
statistical differences between the studied periods. The values for TP and TN were highly
correlated during WS (ρ = 0.69, p < 0.001) and SA (ρ = 0.73, p < 0.001). In addition, negative
correlations were detected between TN and DO (WS: ρ = −0.43, p < 0.001; SA: ρ = −0.44,
p < 0.001), and between TP and DO (WS: ρ = −0.37, p < 0.001; SA: ρ = −0.43, p < 0.001).

Table 2. Minimum (Min), maximum (Max), mean values, and variation coefficient (VC) as a percentage of physical–chemical
parameters’ variations: conductivity (K, µS/m), pH, dissolved oxygen (DO, mg/L), alkalinity (Alk, mg CaCO3/L), total
suspended solids (TSS, mg/L), suspended organic matter (SOM, mg/L), total nitrogen (TN, µg/L), total phosphorus (TP,
µg/L). The statistical significance of the Mann–Whitney test is included, comparison between both periods of the year
monitored. NS: non-significant, ** significant, p < 0.01, *** significant, p < 0.001.

Parameters K Alk pH DO TSS SOM %SOM TN TP

Case 1

WS

Min 119.7 42.6 6.7 1.6 3 0.2 1.9 300 14.7
Max 2286.7 952 8.1 10.8 538.8 456.3 98.4 149,800 2625

Mean 672.5 266 7.5 6.8 48.8 33 38.4 5028 124.9
VC 247 54.3 3.6 28.4 170 227 71.1 312 235

SA

Min 134 30 3.0 6.2 21.7 3.9 9.1 0.01 43.8
Max 2407 900 8.9 8.2 1765 85 88.2 14560 26550

Mean 538.7 183.2 7.3 7.3 255.9 77.0 33.8 816 2063
VC 190.1 75.1 4.9 58.7 132.3 118.6 52.6 288.3 217.7

M-W *** *** *** *** *** *** ** *** ***

Case 2

WS

Min 44 16 6 5.2 0.6 0.2 3.5 143.8 10.4
Max 1299 442 8.2 14.1 85.4 10.5 100 1586.1 410.8

Mean 214 119 7.2 9.9 7.1 2 35.6 503.7 42.1
VC 82.3 79.2 6.2 13.5 130.2 92.4 52.2 51.9 116.3

SA

Min 45 18 5.8 1.5 0.1 0.1 8.7 193.7 <10
Max 979 440 9.3 16.7 202.5 47.5 100 3900 1260.8

Mean 257 114 7.3 7.4 12.5 4.2 45.7 647.8 73.2
VC 68.8 74 7.6 33.7 215.1 176.8 56.9 72.5 210.4

M-W NS NS NS *** NS *** *** ** NS
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Case 2 (Laguna del Sauce) showed a diverse (spatially heterogeneity) tributary system
in terms of physical–chemical properties, which was more visible during SA (Table 2).
Significant pH gradients were registered, from acid (5.8) to basic (9.3), with a relatively
neutral mean (7.2). K, as well as Alk, presented great spatial variability, with high mean
values for both periods. The DO variability was low during both the WS and SA transitions,
with similar mean values. The TSS concentration and SOM percentage showed variable
spatial patterns, indicating water systems with a very low suspended matter (0.1 mg/L)
and low SOM (0.1 mg/L), and systems with high TSS values (202.5 mg/L) and associated
OM content (47.5 mg/L). The TN concentration presented very moderate mean values
during both periods (WS: 503.7 µg/L and SA: 647.8 µg/L), with intermediate spatial
variability. The TP concentration showed an important spatial variability in both periods
(WS: 116.3 µg/L y SA: 210.4 µg/L). Overall, the attributes with greater spatial heterogeneity
during WS period were TSS and TP, which increased during SA. The physical–chemical
attributes that showed statistical differences between the WS and SA transitions were DO,
TN, and SOM. The values for TP and TN were significantly correlated in both WS (ρ = 0.29
p < 0.001) and SA (ρ = 0.47, p < 0.001). An inverse relationship between TN and DO was
observed during both periods. Finally, Cases 1 and 2 show partially stable spatial patterns
between seasons. In addition, a lack of spatial dependency was noted for both cases.

3.2. Main Relationships between Nutrients and Land Use—Geophysical Variables

The TN and TP concentrations in Case 1 were mostly correlated with the land-use
variables, especially with intensive agricultural, urban, and industrial uses (Table 3). As a
general pattern, for both periods, correlation between TP and geomorphological and land
use variables was greater than the correlation between those variables and TN. In Case 2,
the correlations found between nutrients and geophysical variables were greater, as well as
between water nutrients and non-intensive land uses, natural vegetation, and the state of
riparian conservation.

In Case 1, excluding the drainage basins with point sources from the analysis, the
correlations between the riparian areas and nutrients were significant during SA for both
TP (ρ = −0.50, p < 0.0001) and TN (ρ = −0.32, p < 0.05), and during WS for TP (−0.28,
p < 0.005).

3.3. Total Phosphorus and Total Nitrogen Models

The selected variables to elaborate the nutrient models were similar within each area
(Case 1 and Case 2). The composition of the models differed more between area than
nutrients (Table 4).

The models in Case 1 were built with a larger number of variables (six or seven) than
Case 2 (four or five). In Case 1, variables linked to intensive land uses were included, such
as point industrial sources, dispersed urban population, and rural population density. In
addition, high-intensity rural land uses were included, such as orchard or crop production.
Finally, livestock production, active soil erosion areas, and DO were included in the model.
The models in Case 2 included less intensive rural land uses and did not include highly
intense non-agricultural uses (e.g., industrial or urban uses). Case 2 also included the type
of soil and conservation of riparian areas.

In both cases, the models, including section B (basin + in-stream), showed a greater
correlation between the predictor and response values, lower NRMSE, and smaller AIC,
except for TN in SA for Case 2 (Table 5). The models showed better performance during
SA for Case 1 and for both nutrients. Similarly, during WS in Case 2, greater R2 for TP was
registered than for TN, but at the same time, the error was higher. In general, the models’
performance fluctuated between 0.53 and 0.67 in Case 1 and between 0.3 and 0.54 in Case 2.
The models that performed better for both nutrients displayed NRMSE values varying
between 7.5% and 24.3%.
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Table 3. Spearman’s rank correlation coefficient (ρ) between geophysical and land-use attributes, total nitrogen (TN, µg/L)
and total phosphorus (TP, µg/L). Results of Cases 1 and 2 were included, showing winter–spring (WS) and summer–autumn
(SA) sampling. NS: non-significant, NA: not analyzed, Nap: Not applicable *: significant p < 0.05), ** significant, p < 0.01),
*** significant, p < 0.001.

CASE 1 CASE 2

WS SA WS SA

TN TP TN TP TN TP TN TP

Precipitation regime 1

Accumulated precipitation
7 days NS NS NS NS NA NA NA NA

Accumulated precipitation
30 days NS 0.21 * NS 0.27 ** NA NA NA NA

Accumulated precipitation
60 days NS 0.23 * NS 0.25 * NA NA NA NA

Soil
Deep soils NS NS 0.10 * 0.35 *** 0.44 *** 0.21 * 0.32 *** -

Moderately deep soils NS NS 0.31 *** −0.46 *** NS NS NS 0.20 *
Shallow soils 0.23 ** −0.22 ** −0.20 * −0.18 *** −0.39 *** −0.34 *** −0.31 *** −0.32 ***
Sandy soils 0.11 ** −0.18 ** 0.32 *** 0.35 *** −0.50 *** −0.20 * −0.47 *** −0.41 ***
Silty soils NS NS 0.30 *** −0.44 *** 0.49 *** 0.20 * 0.47 *** 0.41 ***
Clay soils NS NS 0.15 * 0.33 *** NC NC NC NC
Soil pH 0.22 *** 0.22 *** NS NS NS NS NS NS

Soil organic carbon NS NS NS −0.25 ** NS NS NS NS

Geomorphology and
lithology

Drainage system density NS NS NS NS NS NS NS NS
Stream order NS NS NS NS NS NS NS −0.20 *

Drainage basin area NS NS NS NS NS −0.23 * −0.20 * NS
Soft slopes (≤3%) 0.34 *** 0.34 * 0.11 * NS 0.47 ** 0.28 ** 0.48 *** 0.36 ***

Medium slopes (3 < x < 8) 0.32 *** −0.32 *** 0.24 * NS 0.48 *** 0.28 ** 0.42 *** 0.36 ***
Strong slopes ≥ 8 −0.29 *** −0.36 *** 0.28 ** NS −0.48 *** −0.28 ** −0.42 *** −0.36 ***

Geological formation
(high drainage) NS NS 0.16 * NS NA NA NA NA

Land use
Land use: Crops NS NS 0.21 * NS 0.33 *** NS NS 0.25 **

Land use: Natural
grasslands NS NS NS NS −0.33 *** NS NS NS

Land use: Native forest NS NS NS NS −0.31 *** −0.32 *** −0.38 *** −0.39 ***
Land use: Forestation NS −0.31 *** −0.30 *** NS NS NS NS NS

Land use: Orchard 0.23 *** NS 0.39 *** 0.25 *** NAp NAp NAp NAp
Land use: Urban 0.26 *** NS 0.37 *** 0.22 * 0.36 *** NS 0.26 ** -

Active erosion area 0.22 * 0.21 * 0.26 ** 0.21 * NA NA NA NA
Dispersed urban population 0.25 *** NS 0.32 *** NS NA NA NA NA

Rural population density 0.33 *** 0.30 *** 0.51 *** 0.44 *** NAp NAp NAp NAp
Point sources 0.37 *** 0.23 *** 0.45 *** 0.30 * NAp NAp NAp NAp

Riparian area conservation NS 0.13 ** NS NS −0.26 ** NS −0.31 *** −0.21 *
Cattle NS 0.21 *** NS NS NA NA NA NA

Limnological processes
Dissolved oxygen - - - - −0.21 * NS - NS

1 Accumulated in the x days prior to the sampling date of monitoring. These periods were defined respectively according to: the average
time of concentration of the selected micro-watersheds [80,81], and two periods of longer duration to contemplate processes that may
develop in a scenarios of higher or lower rainfall than average.
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Table 4. Variables considered in total nitrogen (TN, µg/L) and total phosphorus (TP, µg/L) models
in Cases 1 and 2, for winter-summer (WS) and spring-autumn (SA) sampling. The significance of
each variable in both models is specified: * significant, p < 0.10, * significant, p < 0.05), ** significant,
p < 0.01), *** significant, p < 0.001.

Case 1

TP
WS IU *** RA * DUP * RD * LP * DO ***
SA IU *** RA ** FVP * CFO. DP *** LP. DO ***

TN
WS IU *** CFO * DUP. AE. DP *** LP. DO ***
SA IU *** RA * FVP * AE. DP *** LP. DO ***

Case 2

TP
WS LTS *** CFO * NG ** DO *
SA LTS ** CFO * NG * RA DO **

TN
WS LTS ** CFO * RA DO **
SA LTS CFO * RA ** DO *

IU = Industrial use, RA = Riparian area, DUP = Dispersed urban population, RD = Rural population density,
LP = Livestock production, FVP = Fruit and vegetable production, CFO = Cereals, forages and oleaginous crops
area, AE = Active soil erosion area, LTS = Light texture soils, NG = Natural grassland area, DO = Dissolved oxygen.

Table 5. Generalized additive model (GAM) for total nitrogen (TN, µg/L) and total phosphorus (TP, µg/L) in Case 1
(Canelones) and Case 2 (Laguna del Sauce), for sections A (drainage basin) and B (drainage basin + in-stream), in winter–
spring (WS) and summer–autumn (SA). Correlation between predicted and response values (R2) is presented, Generalized
Cross-Validation (GCV) coefficient, the difference between models including sections A and B according to Akaike’s
Information Criterion (∆AIC), and normalized root mean square error (NRMSE) as a percentage (%).

Nutrient TP TN

Sampling WS SA WS SA

Statistical R2 GCV ∆AIC NRMSE R2 GCV ∆AIC NRMSE R2 GCV ∆AIC NRMSE R2 GCV ∆AIC NRMSE

Case
1

Section A 0.30 0.13 - 24.2 0.44 0.16 - 18.5 0.41 0.14 - 12.1 0.25 0.34 - 29.0
Section B 0.53 0.10 28 21.1 0.67 0.11 15 14.1 0.59 0.10 27 11.9 0.63 0.20 53 23.1

Case
2

Section A 0.50 0.04 - 13.3 0.29 0.28 - 25.5 0.34 0.03 - 7.5 0.28 0.04 - 7.6
Section B 0.54 0.03 8 12.9 0.40 0.25 15 24.3 0.42 0.03 9 7.0 0.41 0.04 1 7.5

3.4. Total Phosphorous and Total Nitrogen Models Application for 2030 Scenario

For the 2030 scenario, a 20% growth and 160% growth in agricultural area is expected
in Case 1 and Case 2, respectively, as well as a 7% population growth in both areas (Supple-
mentary material (SM2)). These changes would increase the TP and TN concentrations in
winter–spring and in summer–autumn (Figure 2) if the fertilization practices and domestic
wastewater treatment remain unchanged. In Case 1, the TP growth would be 35% higher
during SA than in WS, even though in relative terms, the growth would be even (15% in
WS and 13% in SA). This growth was dissimilar among the 87 sampling points, as well as
between both seasons (SA: VC = 119%, WS: VC = 112%). The average TN would increase
two times more during SA (26% growth) than during WS (8%). The growth was also
differential between the 87 sampling points (SA: VC= 89%; WS: VC = 151%). Considering
the seasons (WS and SA) and sampling points, the projected growth of the TN and TP
concentrations was not correlated (p > 0.05), indicating a spatially diverse increase for both
nutrients. In Case 2, a similar expected growth of the TP concentrations was found in the
SA (11%) and WS (10%) transitions. This increase would not be homogeneous among the
different sampling points during SA (VC= 141%) and WS (VC = 98%). The TN average
projected growth was higher in SA (7%) than in WS (2%), and showed variations between
sampling points (SA: VC = 99%, WS: VC = 71%). In alignment with the Case 1 results, a
spatially heterogeneous expected growth for both nutrients was registered between the
seasons (p > 0.05).
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Figure 2. Case 1 (Canelones). Total phosphorus (TP, µg/L) concentrations (log PT + 1) were sampled, and their difference (∆)
projected for 2030. During winter–spring (WS) (A) and summer–autumn (SA) (B) Total nitrogen (TN, µg/L) concentrations
(log NT + 1) were surveyed and projected for the 2030 scenario in WS (C) and SA (D) Case 2 (Laguna del Sauce). TP concen-
trations (log PT + 1) sampled, and its difference (∆) projected for the 2030. During WS (E) and SA (F). TN concentrations
(log NT + 1) surveyed and projected for 2030 scenario in WS (G) and SA (H).

As a general pattern for both areas, the TN concentrations in the 2030 scenario would
increase at a higher rate in basins with lower current concentration values (Table 6). For
TP, the same pattern was observed, except for SA in Case 1. In Canelones’ case, the
projected increase in the TN and TP concentrations was mainly explained by the population
growth (ρ = 0.57, p < 0.001; ρ = 0.73, p < 0.001), while in Case 2, it was associated with the
agricultural growth (ρ = 0.51, p < 0.001).
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Table 6. Spearman’s rank correlation coefficient (ρ) between collected data in total nitrogen (TN,
µg/L) and total phosphorus (TP, µg/L) concentrations, with the expected increase of these concentra-
tions for the year 2030 scenario in Case 1 (Canelones) and 2 (Laguna del Sauce), during winter–spring
(WS) and summer–autumn (SA). NS: non-significant, *: significant p < 0.05), *** significant, p < 0.001.

TP WS TP SA TP WS TP SA

Case 1 ρ −0.20 * NS −0.30 *** −0.20 ***
Case 2 ρ −0.49 *** −0.32 *** −0.40 *** −0.49 ***

4. Discussion

The approach that was carried out allowed the identification of the main drivers of
nutrient levels in the water and to predict nitrogen and phosphorus levels in lotic systems.
The application of the models under contrasting geophysical and land-use conditions
delivered similar results in both cases. Thus, the models developed are a promising tool
for applications in different social, economic, ecosystemic, and productive contexts. The
tested models allowed the identification of natural and anthropogenic controls for the
observed patterns, enabling them to guide the design of strategies and policies to control
nonpoint sources, as well as research and action. Applying a predictive model for land-use
changes and population growth provided another potential benefit for assessing water
quality impacts and land-use planning.

Using GAM models made it possible to explain a substantial part of the spatial vari-
ability of TP and TN to a greater extent for both periods and case studies (Supplementary
material (SM3)). GAM models, unlike GLM models, consider different types of relation-
ships (i.e., linear or non-linear) between the response and predictor variables. In addition,
the relationships can be of different types for each driver considered. In short, it is an
alternative with greater potential if the system is composed of non-linear relationships
or different types of relationships between response and predictor variables, a likely sit-
uation in study areas with significant environmental and spatial gradients. In addition,
the models that included the dissolved oxygen concentration in the water achieved better
results in all cases, indicating the importance of considering the internal processes within
rivers and streams [82,83]. In summary, using GAM models with the combination of
landscape attributes and water channel attributes (DO) increased the predictive ability of
the nutrient’s models.

A positive association between the contribution of each driver to water runoff (steeper
slopes and coarse-grained soils) and nutrient movement was detected [84]. However,
the relationships do not entirely agree with the scientific literature (e.g., slopes and soil
type). The spatial pattern of nutrients was conditioned by the spatial distribution of the
land-use intensity, where intensive uses—which tend to account for higher TN and TP
concentrations in soil—are in areas with favorable geophysical conditions (softer slopes,
less degraded soils, fine-grained soils, etc.). On this basis, the land uses possibly mask the
influences of the “structural variables”. The sign and the magnitude of the correlation’s
coefficient found between the drainage basins’ attributes—geophysical and land use—
and nutrient concentrations in both study areas allow us to support this hypothesis. The
correlations were significantly stronger in Case 2 (non-intensive land uses) than in Case 1
(intensive land uses). No significant relationships were found for the other drivers (basin
size, stream order, and other morphometric and morphologic features).

Geophysical variables should not be interpreted as less important than land-use vari-
ables. This implies that if intensive land uses are developed in other geophysical contexts
(e.g., soils with stronger slopes, fine-grained and degraded), the nutrient concentrations
results would be different, probably higher. For example, reestablishing the intensive
production of several areas in Case 1 could unchain an extra input of TP for two reasons:
(1) because of the system’s fragility and its predisposition to increased runoff (soil degra-
dation and/or strong slopes), and (2) due to the available TP storage accumulated from
previous agricultural uses [85] in the studied areas’ soils. Some aspects of the models
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should be highlighted, as that the empirical approaches do not imply that they cannot
incorporate causal mechanisms. The strength of empirical models to identify the main
drivers of a response variable—as in this work—is simultaneous with their limitations to
model behaviors governed by processes that were not identified with a statistical approach.
Other approaches, such as deterministic ones, have been successfully implemented in
numerous cases (e.g., [29]) and could contribute to solve some of these problems. Determin-
istic models offer good results after the calibration of the variables and their application is
supported with knowledge of modeling [86]. However, those models need the parameteri-
zation of the variables, which is often expensive, time-consuming and difficult to achieve.
A major challenge lies in exploiting the advantages of both models. This would make
it possible to understand processes with more precision [38], improve predictions, and
generate a powerful tool to evaluate mitigation measures for specific conditions with no
available precedent. This situation would make it possible to resize the role of structural
variables. Considering these variables at a lower level of importance than land-use ones,
could have serious impacts on water quality. The geophysical and land-use variations
between both cases determined clear differences in the waters’ nutrient concentrations and
marked distinctions in the models’ attributes. In the Case 1 model, the type of soil variable
was not included, but point (industries) and nonpoint sources (rural population) were
considered. The rural population density in Case 2 (1.0 hab/km2) was lower than in Case 1
(11.7 hab/km2), as well as the point sources, which determined a marginal impact of these
actions as sources of limiting nutrients. Finally, the intensity of rural land use in Case 1
was twice that of Case 2, and the production was more diversified [47], which determined
a lower inclusion of the land-use variables in Case 2 (e.g., orchard production).

The projected 2030 scenario would trigger an increase in the nutrient concentrations
in water. This increase could intensify the already critical situation detected by the water
quality sampling in Case 1, especially for TP. In Case 2, the increases would be lower
than in Case 1. However, Laguna del Sauce is an ecosystem that is extremely sensitive to
eutrophication (with severe interference to the drinking water supply due to cyanobacterial
blooms) given its mean depth and residence time [87]. Hence, slight changes in land use
could lead to a significant intensification of eutrophication.

In Case 1, the increase in the nutrient concentration in water did not correlate with
agricultural growth. This pattern is likely to occur because: (i) the intensification of
agriculture would be accompanied by an increase in other sources of nutrient export
(increase in population and population density), (ii) the pattern of agricultural growth is
not homogenous, and covers a large part of the study area, (iii) both factors may hide the
role of agriculture as a nonpoint source of nutrients. In addition, the Land Use Planning
Ordinance [50] may control and discourage agricultural expansion and therefore could
reduce its impacts on water quality. In fact, the projected scenario already considers a
significant area of exclusion for industrial agriculture in the Case 1 (SM 2). Simultaneously,
the absence of correlations between the nutrient concentration and agricultural growth
detected in Case 1 contributes to new evidence supporting the complexity of the area. We
hypothesize that there is a legacy effect of abandoned or replaced agricultural systems and
more point sources inputs—from urban and industrial areas—than nonpoint inputs.

In Case 2 (a less complex system showing less intensive land uses and smaller urban
and rural populations), agricultural growth was the decisive factor determining an increase
in the TP concentrations. An additional phenomenon to be studied is the expansion
of afforestation (exotic species) registered in recent decades in Uruguay, a trend that is
expected to continue. This variable was not included in generated models. Therefore, it
was not included in the 2030 projection either. Since this change in land use would alter the
hydrological behavior [88,89], it may promote an inferior dilution capacity and, ultimately,
increase the risk of eutrophication during drier seasons.

The implemented approach allows for the generation of information for land-use
planning at two scales—the drainage basin and region—and for two target resources: water
and soil. At a drainage basin scale, it enables the identification of specific land uses in
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certain locations that may compromise water quality. At a regional scale—a group of micro-
basins—it can contribute to the spatial planning design to ensure that changes in rural land
use will prevent impacts on water quality. The expansion and intensification of Uruguayan
agricultural production have been documented [90], and the most likely scenario is that
this trend will continue. These models are a powerful tool to monitor the impacts of
agricultural intensification on the water quality in each basin, a major input for assessing
the impacts of land-use changes according to predefined water quality standards/criteria.
This information is crucial in rural regions where land-use intensification is imminent (it
only remains to decide precisely where), and where national agricultural policies promoting
intensification must coexist in harmony with water resource conservation. Incorporating
information about changes in agricultural practices into the model (i.e., tillage practice,
fertilization and pesticide application methods), and upgrades in treatment systems (urban
and industrial), will allow the assessment of different mitigation strategies, a key aspect of
water resources management.

In the last two decades, several environmental regulations have been introduced in
Uruguay (e.g., Decree Nº405/008—Land Use and Responsible Management Plan [91]).
Nevertheless, the intensification and expansion of agriculture, livestock, and Eucalyptus
forestry production [90] demands new approaches and regulations (especially nutrient
input control). The interaction between environmental policies and agrarian intensification
raises major uncertainties today. Integrating spatial models elaborated with planning
scenarios could improve decision making process. The developed models can provide valu-
able information for new approaches, such as the construction of projected scenarios [92]
for climate, land-use changes, land-use planning, and environmental policies.

The models developed in this research demonstrate that it is possible to obtain low
prediction errors (NRMSE = 15 ± 6) and high correlation between predictive and response
values (R2 = 0.53 ± 10) with data from open or available databases, information generated
by remote sensing or geoprocessing, and without depending on excessive monitoring
efforts after the initial sampling. However, several challenges related to the scaling, up-
dating, and reliability of the data persist and could hinder the implementation of these
models in Uruguay. The main challenge is to access up-to-date information generated at
manageable costs.

The ability to implement models using currently available secondary information, or
easily collected at a low cost, is the most remarkable feature of this approach. The generated
models are a viable alternative for expanding our knowledge of ungauged Uruguayan
aquatic systems.

5. Final Remarks

The combination of different approaches—GIS, GAM, RS, and LCM—shows that it is
possible to develop efficient local spatial models, with a moderate data collection effort, to
evaluate the nutrient concentration in lotic systems.

The developed models show the importance of land uses as the main drivers of
nutrient concentration in the water, as well as the contribution of natural (structural)
control factors. In addition, the models made it possible to determine the role of the key
internal processes of the aquatic ecosystems, such as the dynamic of oxygen concentration,
on a nutrient level.

The results suggest that for long-term solutions to water quality problems, it is essen-
tial create productive systems with nutrient balances close to zero or, in the most critical
situations, negative. Similarly, there is still a need to improve the point source control and
sewage system efficiency. Actions focused on the final phase of the nutrient export process—
to implement buffer areas—could contribute to the reduction of nutrient input into water
ecosystems. However, these actions will not be fully sufficient if the processes associated
with agriculture in upper and medium drainage basins are not monitored and controlled.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/environments8110129/s1.
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