Journals.ASM.org

Living in an Extremely Polluted Environment: Clues from the Genome of Melanin-Producing Aeromonas salmonicida subsp. pectinolytica 34mel^T

María Elisa Pavan,^a Esteban E. Pavan,^b Nancy I. López,^{a,c} Laura Levin,^d ^(D)M. Julia Pettinari^{a,c}

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina^a; Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy^b; IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina^c; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina^d

Aeromonas salmonicida subsp. *pectinolytica* 34mel^T can be considered an extremophile due to the characteristics of the heavily polluted river from which it was isolated. While four subspecies of *A. salmonicida* are known fish pathogens, 34mel^T belongs to the only subspecies isolated solely from the environment. Genome analysis revealed a high metabolic versatility, the capability to cope with diverse stress agents, and the lack of several virulence factors found in pathogenic *Aeromonas*. The most relevant phenotypic characteristics of 34mel^T are pectin degradation, a distinctive trait of *A. salmonicida* subsp. *pectinolytica*, and melanin production. Genes coding for three pectate lyases were detected in a cluster, unique to this microorganism, that contains all genes needed for pectin degradation. Melanin synthesis in 34mel^T is hypothesized to occur through the homogentisate pathway, as no tyrosinases or laccases were detected and the homogentisate 1,2-dioxygenase gene is inactivated by a transposon insertion, leading to the accumulation of the melanin precursor homogentisate. Comparative genome analysis of other melanogenic *Aeromonas* strains revealed that this gene was inactivated by transposon insertions or point mutations, indicating that melanin bio-synthesis in *Aeromonas* occurs through the homogentisate pathway. Horizontal gene transfer could have contributed to the adaptation of 34mel^T to a highly polluted environment, as 13 genomic islands were identified in its genome, some of them containing genes coding for fitness-related traits. Heavy metal resistance genes were also found, along with others associated with oxidative and nitrosative stresses. These characteristics, together with melanin production and the ability to use different substrates, may explain the ability of this microorganism to live in an extremely polluted environment.

eromonas salmonicida subsp. pectinolytica 34mel^T is a melanin-producing Aeromonas strain that degrades polypectate, which is an unusual characteristic among Aeromonas species (1). It was isolated from the heavily polluted water of the Riachuelo, the last part of the Matanza River, located in Buenos Aires, Argentina. This river has received the effluents of hundreds of tanneries and other industries, as well as urban sewage and fuels, for more than a century. Among the contaminants found in this environment, which has high organic matter and low dissolved oxygen contents, are hydrocarbons, polychlorinated biphenyls, pesticides, arsenic, and heavy metals, such as chromium, lead, copper, mercury, and nickel (2-4). A molecular analysis of the microbial diversity of river water and sediments from the isolation site showed the presence of bacteria belonging to several taxa. Analysis of 16S rRNA gene sequences revealed the presence of bacteria belonging to the Beta-, Gamma-, and Epsilonproteobacteria in the water, as well as a higher level of diversity in the sediments, in which Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Firmicutes, and Bacteroidetes were detected (5).

The genus *Aeromonas*, belonging to the *Gammaproteobacteria*, currently includes around 30 species. *A. salmonicida* comprises five different subspecies (6): *A. salmonicida* subsp. *salmonicida*, *A. salmonicida* subsp. *achromogenes*, *A. salmonicida* subsp. *masoucida*, and *A. salmonicida* subsp. *smithia*, all of which isolated from fish, and *A. salmonicida* subsp. *pectinolytica*, the only subspecies isolated from the environment. A recent phylogenetic analysis of *Aeromonas* strains based on multilocus sequence typing (MLST) showed that the first four subspecies are closely related, forming a tight cluster that excludes *A. salmonicida* subsp. *pectinolytica*, indicating that it is the most phylogenetically distant subspecies (7).

The first *Aeromonas* genome sequenced was that of *A. hydrophila* ATCC 7966^T, reflecting its ability to thrive in aquatic and host environments (8), and shortly after, the genome of *A. salmonicida* A449 provided insights into the adaptations of this fish pathogen to its host (9). Other *A. salmonicida* genomes sequenced are those of *A. salmonicida* subsp. *salmonicida* strains 01-B526 (10), 2004-05MF26, and 2009-144K3 (11), *A. salmonicida* subsp. *achromogenes* AS03 (12), *A. salmonicida* subsp. *masoucida* NBRC 13784 (BAWQ01000000), and strain CBA100 (13). Annotated genome sequences of several other *Aeromonas* species, including *A.*

Received 18 March 2015 Accepted 20 May 2015 Accepted manuscript posted online 29 May 2015

Citation Pavan ME, Pavan EE, López NI, Levin L, Pettinari MJ. 2015. Living in an extremely polluted environment: clues from the genome of melanin-producing *Aeromonas salmonicida* subsp. *pectinolytica* 34mel^T. Appl Environ Microbiol 81:5235–5248. doi:10.1128/AEM.00903-15.

Editor: V. Müller

Address correspondence to M. Julia Pettinari, jul@qb.fcen.uba.ar.

M.E.P. and E.E.P. contributed equally to this article.

Supplemental material for this article may be found at http://dx.doi.org/10.1128 /AEM.00903-15.

Copyright © 2015, American Society for Microbiology. All Rights Reserved. doi:10.1128/AEM.00903-15

brought to you by T CORE

d by Archivio istituzionale della ricer

caviae (14), *A. veronii* (15), *A. media* (16), *A. aquariorum* (currently *A. dhakensis*) (17), *A. molluscorum* (18), and *A. diversa* (19), are currently available.

Bacteria living in extreme environments use a variety of different strategies to deal with the challenges to which they are exposed, which include combinations of diverse physical and chemical stress factors. The survival strategies that endow bacteria with the capability to adapt to harsh conditions involve special groups of genes, many of which can be acquired by horizontal gene transfer (20, 21). The distinctive characteristics of 34mel^T, along with its ability to live in an extremely polluted environment, prompted us to sequence the genome of this microorganism. This study constitutes an in-depth comparative genomic analysis that focuses on pectin degradation, melanin synthesis, resistance to toxic compounds, and the presence of mobile genetic elements to shed light on the capability of this strain to cope with the different challenges faced in its habitat.

MATERIALS AND METHODS

Bacterial strain and growth conditions. *Aeromonas salmonicida* subsp. *pectinolytica* strain 34mel^T (equivalent to DSM 12609^T) was isolated in 1988 from the water of the Matanza River (Riachuelo), near the Río de la Plata estuary, in Buenos Aires, Argentina (1).

For analysis of melanin production under different conditions, cells were grown on lysogeny broth (LB) (Invitrogen) agar plates or on M9 minimal medium (6 g liter⁻¹ Na₂HPO₄, 3 g liter⁻¹ KH₂PO₄, 0.5 g liter⁻¹ NaCl, 1 g liter⁻¹ NH₄Cl, 0.2 g liter⁻¹ MgSO₄·7H₂O, 5 mg liter⁻¹ thiamine, 2 g liter⁻¹ glucose, pH 7.2) agar plates supplemented with 0.3 g liter⁻¹ tyrosine and/or 0.2 mM CuSO₄. The capability to grow in the presence of heavy metals was analyzed by testing growth on LB plates containing a maximum of 30 ppm (0.267 mM) cadmium, as CdCl₂; 1,000 ppm (15.3 mM) zinc, as ZnSO₄; 7 ppm (0.065 mM) silver, as AgNO₃; 5 ppm (0.025 mM) mercury, as HgCl; 100 ppm (0.483 mM) lead, as Pb(C₂H₃O₂)₂; or 23 ppm (0.362 mM) copper, as CuSO₄. All incubations were carried out at 30°C.

Genome sequencing. Whole-genome shotgun (WGS) sequencing was performed using a Roche 454 GS FLX Titanium pyrosequencer, and reads were assembled with Newbler v. 2.6 (Roche) and annotated as described previously (22). MIRA v. 4.0 (23) was employed to close some gaps between the initially obtained Newbler contigs. The joined contigs were then confirmed by PCR assays.

Comparative genome analysis. General sequence analysis was performed using the bioinformatic tools included in the RAST (Rapid Annotation using Subsystem Technology) server (24) and the IMG (Integrated Microbial Genomes) system (25), together with BLAST (Basic Local Alignment Search Tool) (26).

The genomes of Aeromonas strains used for comparative analysis are shown in Table 1. Other genomes used (with corresponding GenBank accession numbers) were those of Oceanimonas sp. GK1 (NC_016745), Tolumonas auensis DSM 9187 (NC_012691), Succinivibrio dextrinosolvens H5 (JNKL01000000), Aliivibrio salmonicida LFI1238 (NC_011312 and NC_011313), Shewanella oneidensis MR-1 (NC_004347), Alteromonas sp. SN2 (NC_015554), Marinomonas mediterranea MMB-1 (NC_015276), Escherichia coli O104:H4 (NC 018658), Dickeya dadantii 3937 (NC_014500), and Pseudomonas aeruginosa UCBPP-PA14 (NC_008463). Global alignments of the whole genome of 34mel^T with those of bacterial strains belonging to the genus Aeromonas and the related gammaproteobacteria listed above were performed using the Needleman-Wunsch algorithm (using the BLOSUM50 scoring matrix and a maximum gap open penalty of 10), which is included in the Bioinformatics Toolbox of Matlab (30). BLASTp was used to obtain the percent identities between protein sequences. Taking into account the rapidly increasing amount of sequence data, BLAST analysis was performed against the NCBI nonredundant databases for those genes and/or proteins that were analyzed in detail.

*is***DDH.** Genome-to-genome distance calculations were performed using the GGDC program, available at http://ggdc.dsmz.de/, which provides an estimation of *in silico* DNA-DNA hybridization (*is*DDH) values (31). The program supplies results obtained with three formulas. Those reported in this work are the ones recommended by the program (formula 2).

Analysis of mobile elements and virulence factors. Prediction of genomic islands (GIs) was done using IslandViewer 2 (32) and the Colombo SIGI-HMM (33) program. Criteria used to define GIs were as follows: anomalies in G+C content and codon usage, the presence of genes associated with mobile genetic elements, such as integrases, bacteriophages, transposons, and plasmids, and a loss of synteny with genomes of related strains. To determine the boundaries of genomic islands, a comparison with the genomes of all *Aeromonas* strains included in Table 1 was performed using PanSeq (34), revealing regions unique to 34mel^T, and was complemented by manual analysis. BLASTn analysis of the putative GIs was performed against the nucleotide collection and whole-genome shotgun (WGS) databases. Flanking regions were screened for tRNA genes, which are commonly associated with the integration sites of GIs.

PhiSpy (35) and PHAST (36) were used to identify prophages. The presence of plasmids was investigated with PlasmidFinder 1.2 (37), using the *Enterobacteriaceae* database and both 80% and 50% identity thresholds. The Virulence Factor Database (VFDB) was used to search for virulence factors (38).

Nucleotide sequence accession numbers. The sequences obtained through this whole-genome shotgun project have been deposited at DDBJ/EMBL/GenBank under accession number ARYZ00000000. The version described in this paper is available under accession number ARYZ 00000000.2.

RESULTS AND DISCUSSION

Genomic relatedness of 34mel^T to other *Aeromonas* strains. A. salmonicida subsp. pectinolytica was first described as a new subspecies of A. salmonicida after a thorough phenotypic analysis complemented by DNA-DNA hybridization (DDH) experiments that included all other A. salmonicida subspecies and a few other Aeromonas species (1). The current availability of many Aeromonas whole-genome sequences prompted us to extend this analysis by means of *in silico* genome-to-genome comparisons (*is*DDH) that estimate DDH values. As expected, similarities of >70% were found when 34mel^T was compared to all strains of A. salmonicida subsp. salmonicida, A. salmonicida subsp. masoucida, and A. salmonicida subsp. achromogenes, further confirming that they all belong to the same species (Table 1). The isDDH values were almost the same as those previously obtained experimentally for intraspecies comparisons within A. salmonicida (1). However, is-DDH values were lower than 70% when 34mel^T was compared to A. salmonicida CBA100. When the genome of this strain was analyzed against the other A. salmonicida strains, isDDH values well below 70% were obtained, suggesting that CBA100 might not belong to this species. Further comparisons suggested that CBA100 could belong to A. bestiarum (isDDH value, 78.30%).

In silico DDH values of <70% were obtained when 34mel^{T} was compared to representative strains of other *Aeromonas* species (Table 1). The results obtained in the present work, which are well below the species definition cutoff value, corroborate the clear interspecies difference previously observed experimentally, in which DDH values ranging from 15.9 to 34.8% were obtained when 34mel^{T} was compared to other *Aeromonas* species (1).

In a recent study (27) that analyzed the genomes of a large number of *Aeromonas* strains, the authors pointed out that the

 TABLE 1 Aeromonas genomes used for comparative analysis and in silico DNA-DNA hybridization values for A. salmonicida subsp. pectinolytica

 34mel^T with other Aeromonas strains

Aeromonas strain	<i>is</i> DDH value with $34 \text{mel}^{T}(\%)$	Accession no.	Genome reference
<i>A. salmonicida</i> subsp. <i>pectinolytica</i> $34 \text{mel}^{\mathrm{T}}$		ARYZ0000000	22
A. salmonicida subsp. achromogenes AS03	73.90 ± 2.91	AMQG0000000	12
A. salmonicida subsp. masoucida NBRC 13784	74.40 ± 2.51	BAWQ01000000	Unpublished
A. salmonicida subsp. salmonicida A449	74.20 ± 2.91	CP000644	9
A. salmonicida subsp. salmonicida 01-B526	73.90 ± 2.51	AGVO01000000	10
A. salmonicida subsp. salmonicida 2009-144K3	74.10 ± 2.91	JRYV01000000	11
A. salmonicida subsp. salmonicida 2004-05MF26	73.90 ± 2.91	JRYW0000000	11
<i>A. salmonicida</i> subsp. <i>salmonicida</i> CIP 103209 ^T	74.10 ± 2.91	CDDW0000000	27
A. salmonicida subsp. salmonicida JF3224	74.10 ± 2.91	JXTA0000000	Unpublished
A. salmonicida CBA100	39.60 ± 2.51	JPWL0000000	13
A. aquariorum AAK1 (currently A. dhakensis)	30.90 ± 2.45	BAFL01000000	17
A. australiensis CECT 8023^{T}	27.80 ± 2.43	CDDH0000000	27
A. bestiarum CDC 9533-76T (equivalent to CECT 4227 ^T)	39.60 ± 2.51	CDDA0000000	27
A. bivalvium CECT 7113^{T}	26.00 ± 2.41	CDBT0000000	27
A. caviae Ae398	28.20 ± 2.43	CACP01000000	14
A. caviae CECT 838^{T}	28.00 ± 2.43	CDBK0000000	27
A. diversa $2478-85^{\mathrm{T}}$	22.00 ± 2.35	APVG0000000	19
A. encheleia CECT 4342^{T}	29.70 ± 2.44	CDDI0000000	27
A. enteropelogenes CECT 4487^{T}	27.80 ± 2.43	CDCG0000000	27
A. eucrenophila NCMB 74 ^T (equivalent to CECT 4224 ^T)	28.40 ± 2.44	CDDF0000000	27
A. fluvialis LMG 24681 $^{\mathrm{T}}$	28.60 ± 2.44	CDBO0000000	27
A. hydrophila ATCC 7966 ^T	31.70 ± 2.46	CP000462	8
A. hydrophila ML09-119	31.70 ± 2.46	CP005966	28
A. jandaei CECT 4228 ^T	27.70 ± 2.43	CDBV0000000	27
A. media WS	31.30 ± 2.46	CP007567	16
A. media RM^{T} (equivalent to CECT 4232 ^T)	30.50 ± 2.45	CDBZ00000000	27
A. molluscorum $848T^{T}$	25.10 ± 2.40	AQGQ0000000	18
A. piscicola LMG 24783 ^T	41.40 ± 2.52	CDBL0000000	27
A. popoffii LMG 17541 ^T (equivalent to CIP 105493 ^T)	36.90 ± 2.49	CDBI0000000	27
A. rivuli DSM 22539 ^T	25.20 ± 2.40	CDBJ0000000	27
A. sanarellii LMG 24682^{T}	28.40 ± 2.44	CDBN0000000	27
A. simiae CIP 107798^{T}	22.50 ± 2.36	CDBY00000000	27
A. sobria CIP7433 ^T (equivalent to CECT 4245 ^T)	28.10 ± 2.43	CDBW0000000	27
A. taiwanensis LMG 24683^{T}	28.00 ± 2.43	BAWK0000000	29
A. veronii B565	28.70 ± 2.44	CP002607	15

cluster corresponding to A. salmonicida had a low genetic diversity, with *is*DDH values of \geq 98.5%. However, that study did not include strains belonging to A. salmonicida subsp. masoucida or A. salmonicida subsp. pectinolytica. A comparison of the sequenced strain belonging to A. salmonicida subsp. masoucida with strains of A. salmonicida subsp. salmonicida revealed an *is*DDH value comparable to those reported in the mentioned work. In contrast, the *is*DDH analysis performed in the present study, in accordance with the MLST results reported previously (7), indicated that A. salmonicida subsp. pectinolytica is the most genetically distant member of the species. The low genetic diversity reported among A. salmonicida strains was related to the fact that the bacteria analyzed are adapted for fish pathogenicity (27). The genetic divergence between 34mel^T, an environmental isolate, and the pathogenic strains may be related to their different lifestyles.

Pectin degradation. *A. salmonicida* subsp. *pectinolytica* owes its subspecific epithet to its ability to degrade polypectate, which is a unique feature among *Aeromonas* species (1). A search for genes related to pectin degradation in the genome of 34mel^T revealed the presence of several genes coding for pectinolytic enzymes not found in other *Aeromonas* strains but similar to those present in the plant-pathogenic bacterium *Dickeya dadantii* (formerly known as *Erwinia chrysanthemi*).

Pectin, one of the main components of the plant cell wall, is a polysaccharide consisting mostly of galacturonan chains combined with rhamnose moieties and short side chains of sugars, such as galactose, arabinose, and xylose. Pectinolytic enzymes are involved in the degradation of dead plant material, contributing to the natural carbon cycle, and they are used by plant-pathogenic bacteria and fungi for the invasion of host tissues (39, 40).

Genes coding for three pectate lyases that may be involved in the first two steps in the pectin degradation pathway were detected in a cluster unique to 34mel^T that contains all genes needed for pectin degradation (Fig. 1). All of these genes are absent in other Aeromonas species. The pectate lyase encoded by the K931_15166 gene has 56% amino acid identity with PelE of D. dadantii, a bacterium that secretes eight pectate lyases and uses the degradation products as carbon sources for growth (41, 42). The second gene in the cluster codes for an exopolygalacturonate lyase (K931_15171) with 41% identity to PelX of D. dadantii (43). This very uncommon enzyme, also known as pectate disaccharidelyase, is found only in some species of *Dickeya*, *Pectobacterium*, Vibrio, Klebsiella, and Yersinia. The third lyase, oligogalacturonide lyase (K931_15226), shares 69% amino acid identity with Ogl of D. dadantii. Next to ogl is the gene that codes for the transcriptional regulator KdgR (K931_15221) (Fig. 1), which might act as a

FIG 1 Pectin catabolism. (A) Pectin degradation pathway. (B) Genetic organization of the pectin degradation gene cluster. Locus tags for 34mel^{T} are indicated in parentheses. Genes involved in pectin degradation are shaded as follows: genes coding for pectate lyases and other enzymes of the pathway are shown in dark gray, and other genes are shown in light gray. The arrows indicate gene orientations.

general repressor of pectinolytic genes in 34mel^T. In *D. dadantii*, KdgR controls almost all steps of pectin catabolism in response to the growth phase, oxygen limitation, nitrogen starvation, and catabolite repression (43). Other genes in the cluster code for the enzymes 5-keto-4-deoxyuronate isomerase (K931_15206), 2-de-oxy-D-gluconate 3-dehydrogenase (K931_15211), 2-dehydro-3-deoxygluconokinase (K931_15191), and 2-keto-3-deoxy-6-phosphogluconate aldolase (K931_15186), which catalyze degradation to the glycolytic intermediate D-glyceraldehyde-3P, indicating that 34mel^T has all the genetic information necessary for the utilization of pectin as a carbon source (Fig. 1).

The 34mel^T pectin degradation cluster also contains a gene encoding an oligogalacturonate-specific porin (K931_15176) similar to the functionally characterized porin KdgM of *D. dada-ntii* (44), as well as a gene encoding a cupin (K931_15181) sharing 43% identity with the pectin degradation protein KdgF of *D. da-dantii*. It is worth noting that although most of the genes related to pectin degradation found in 34mel^T are similar to genes found in *D. dadantii*, a known plant pathogen, the genetic organization of the genes differs, as the pectin degradation genes in this organism are not clustered together as observed for 34mel^T.

Because *A. salmonicida* subsp. *pectinolytica* 34mel^T was isolated from the water of a highly polluted river and there are no known plant pathogens in the genus *Aeromonas*, it is possible that the capability to degrade pectin enables it to obtain nutrients from plant matter present in its environment, contributing to the nutritional versatility of this microorganism.

Melanin biosynthesis. One of the most distinctive phenotypic characteristics of 34mel^T, which is shared by all strains of *A. salmonicida* subsp. *pectinolytica*, is the production of large amounts of melanin (1), a compound known to confer protection against environmental stress (45). In rich medium, strong pigmentation was observed both in 34mel^T colonies and in the surrounding medium, with the color turning to a very dark brown due to diffusing melanin (Fig. 2). In minimal medium, melanin was not produced unless tyrosine was added, and copper ions were observed to enhance melanin production (Fig. 2). Despite the fact that melanin synthesis has been reported for several *A. salmonicida* and *A. media* strains (1, 46–48), melanin synthesis pathways have not been elucidated for these bacteria.

Melanins are complex and diverse heteropolymeric pigments formed by oxidative polymerization of phenolic and/or indolic compounds. The best-known pathway for melanin biosynthesis involves tyrosinases, which produce eumelanins (brown or black) and phaeomelanins (reddish) through the oxidation of tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) and dopaquinone (49). An early study that investigated melanin-like pigment production in *A. salmonicida* arrived to the conclusion that the pigment produced differed from eumelanin and phaeomelanin (46).

No genes that could code for tyrosinases were found in the genome of 34mel^T, nor were genes encoding other enzymes less frequently involved in melanin biosynthesis in bacteria, such as laccases, polyketide synthases, or 4-hydroxyphenylacetate hydroxylases. A study performed with *A. media* revealed an enzyme

FIG 2 Melanin production by 34mel^{T} colonies on different media. (A) LB plates. (B) M9 plates with different additives (0.3 g liter⁻¹ tyrosine and/or 0.2 mM CuSO₄) and incubation for 2 weeks.

(GenBank accession number ACD40043) that oxidizes L-DOPA and has little similarity to previously reported tyrosinases, and it was proposed that this enzyme is an atypical tyrosinase involved in melanin biosynthesis (50). The gene that codes for this protein is present in 34mel^{T} (K931_01824) and in both melanogenic and nonmelanogenic *Aeromonas* strains. When the genome of *A. me-dia* was published, the authors indicated that it has no typical tyrosinases and mentioned that deletion of the gene previously identified as a tyrosinase gene had no effects on melanin production (16).

Pyomelanin, another kind of melanin first described for *Pseudomonas* (51), is derived from the auto-oxidation and polymerization of homogentisate, an intermediary of tyrosine catabolism, when it accumulates in the medium. A cluster of four genes is responsible for pyomelanin synthesis in *P. aeruginosa* (52) (Table 2). Three of these genes were also found in a cluster in the genome of 34mel^T: *phhA*, encoding a phenylalanine 4-monooxygenase (K931_10868); *phhB*, corresponding to a pterin-4- α -carbino-lamine dehydratase (K931_10863); and *tyrR*, coding for a tran-

TABLE 2 Genes related to melanin s	vnthesis in <i>A. salmonicida</i> 34mel ^T	and Pseudomonas aeruginosa UCBPP-PA14

		Corresponding <i>P. aeruginosa</i> UCBPP- PA14 gene	
Functional group and 34mel ^T locus tag	Annotation for 34mel ^T /putative function	Locus tag	Phenotype of mutant ^a
Amino acid metabolism			
K931_10868	Phenylalanine 4-monooxygenase PhhA	PA14_52990	No pigment
K931_10863	Pterin-4-α-carbinolamine dehydratase PhhB	PA14_53000	No pigment
K931_06321/K931_11063	Aromatic amino acid aminotransferase PhhC	PA14_53010	No pigment
K931_20202	4-Hydroxyphenylpyruvate dioxygenase Hpd	PA14_53070	No pigment
Nucleotide biosynthesis			
K931_13221	Dihydroorotase	PA14_05250	Reduced
K931_05586	Dihydroorotate dehydrogenase 2	PA14_24640	Reduced
K931_04105	Orotate phosphoribosyltransferase	PA14_70370	Reduced
K931_15296	Orotidine 5'-phosphate decarboxylase	PA14_26890	Reduced
K931_14303	Carbamoyl phosphate synthase	PA14_62910	Reduced
Transcription and regulation			
K931_10858	Transcriptional regulatory protein TyrR	PA14_52980	No pigment
Not found	Two-component response regulator	PA14_62540	Reduced
K931_05041	Two-component system nitrogen response regulator	PA14_67680	Reduced
K931_10283	Camphor resistance protein CrcB	PA14_56980	Reduced
K931_14746	RNA polymerase sigma-54 factor	PA14_57940	Reduced
Absent (frameshift)	Sensor/response regulator hybrid	PA14_10770	Reduced
Not found	Transcriptional regulator	PA14_29590	Reduced
Membrane proteins			
K931_15729	Potassium transport protein	PA14_52400	Reduced
K931_18684	Lipocalin (outer membrane lipoprotein)	PA14_67450	No pigment
K931_14716	ABC-type transporter ATP-binding protein	PA14_57880	Reduced
Other functions			
K931_04607	Hydroxy-3-methylbut-2-enyl diphosphate reductase	PA14_60330	Reduced
K931_14951	Methylcrotonoyl-coenzyme A carboxylase	PA14_38480	Reduced
Not found	Hypothetical protein	PA14_53260	Reduced
K931_06636	Aminodeoxychorismate lyase	PA14_25730	No pigment
Not found	Membrane protein	PA14_49050	No pigment
K931_01505	Putative dioxygenase	PA14_27390	Reduced
Not found	Hypothetical protein	PA14_22260	Reduced

^a Effects of mutations in *P. aeruginosa* according to reference 52. "Reduced" indicates a reduction in pigment production.

homogentisate 1,2-dioxygenase EC 1.13.11.5 HmgA degradation to acetoacetate + fumarate

FIG 3 Melanin biosynthesis pathway. The crossed-out arrow indicates an interruption of the pathway due to the inactivation of *hmgA*, the gene that codes for the homogentisate 1,2-dioxygenase. Locus tags for the corresponding genes in 34 mel^T are indicated at the left.

scriptional regulatory protein (K931_10858) (Fig. 3 and Table 2). The fourth gene in the *P. aeruginosa* cluster codes for an aromatic amino acid aminotransferase (EC 2.6.1.57). A search in the genome of 34mel^{T} revealed the presence of two similar genes (K931_06321 and K931_11063) located far from *phhA*, *phhB*, and *tyrR*. Another gene essential for melanin biosynthesis in *P. aeruginosa*, *hpd*, encoding a 4-hydroxyphenylpyruvate dioxygenase (52), is also present in 34mel^{T} (K931_20202).

During tyrosine catabolism, homogentisate is degraded to the final compounds acetoacetate and fumarate (Fig. 3). The first step is catalyzed by the homogentisate 1,2-dioxygenase, encoded by *hmgA*. Analysis of this gene in 34mel^T revealed that *hmgA* is interrupted (K931_20197 and K931_21737 correspond to the two parts of the gene) by a region containing genes that code for IstB, an ATP binding domain-containing protein (K931_21797), and a transposase (K931_21792), both of which are associated with IS21 family insertion sequences. Previous studies showed that transposon insertions in *hmgA* resulted in accumulation of homogentisate and production of pyomelanin in *Pseudomonas* (53).

The presence of all the genes leading to the synthesis of homogentisate, together with the defective homogentisate 1,2-dioxygenase gene found in the genome of 34mel^T, suggests that this strain produces melanin by the homogentisate pathway, through the spontaneous oxidation and polymerization of the homogentisate accumulated in the medium (Fig. 3). Additionally, many other genes observed to affect melanin synthesis in *P. aeruginosa* (52) were also found in 34mel^T, distributed along the genome (Table 2).

A search for homogentisate synthesis genes in the genomes of the *Aeromonas* strains included in Table 1 revealed that all of them have the genes involved in this pathway. *A. salmonicida* A449 (9) and *A. media* WS (16) and RM^{T} (54) are also known to produce dark diffusible pigments. A deeper analysis of the gene coding for the homogentisate 1,2-dioxygenase in these strains revealed that *hmgA* is mutated in all of them. In *A. salmonicida* A449, *hmgA* is a pseudogene due to a frameshift caused by a single base pair deletion. This gene is interrupted by the insertion of a transposase belonging to the IS66 family in *A. media* WS and by a nonsense codon in *A. media* RM^T.

Analysis of *hmgA* in all *Aeromonas* strains revealed that this gene contains no mutations except in 34mel^{T} , the three other known pigment-producing strains mentioned above, and *A. salmonicida* subsp. *salmonicida* 01-B526, 2009-144K3, 2004-05MF26, JF3224, and CIP 103209. This gene is also mutated in *A. salmonicida* subsp. *achromogenes* AS03. While no data on pigment production are available for this strain, the specific epithet of *A. salmonicida* subsp. *achromogenes* refers to a lack of pigmentation. Analysis of genes involved in the homogentisate pathway in AS03 revealed that it contains an additional mutation in *hpd*, the gene leading to homogentisate synthesis, so it is most likely nonpigmented.

Mutations in the homogentisate 1,2-dioxygenase gene have also been observed to promote melanin synthesis in *P. aeruginosa* (52). In contrast, in other bacteria that also synthesize melanin through the homogentisate pathway, such as *Vibrio cholerae* HTX-3, *Shewanella colwelliana* D, and a strain of *Hyphomonas*, the accumulation of homogentisate is due to increased amounts of the 4-hydroxyphenylpyruvate dioxygenase that leads to its synthesis, not to a mutation in the homogentisate 1,2-dioxygenase gene (55).

Taking into account that the analysis of the genomes of *Aero-monas* revealed that (i) all genes involved in the synthesis of homogentisate are present and (ii) the genes coding for the homogentisate 1,2-dioxygenase are defective in known melanogenic strains, it can be proposed that the production of melanin occurs through the oxidation and polymerization of homogentisate accumulated as a result of different mutations in the gene that codes for the enzyme that catalyzes its degradation in *A. salmonicida* 34mel^T and A449 and *A. media* WS and RM^T. The fact that four sequenced melanogenic *Aeromonas* strains have different mutations that inactivate *hmgA* indicates that these mutations arose independently and suggests that melanin production triggered by these mutations may confer a selective advantage to these bacteria.

While the present work was in the process of revision, melanin synthesis in *A. media* WS was demonstrated to occur through the homogentisate pathway (56), supporting the genetic evidence presented in this study.

Melanin biosynthesis has been observed in both pathogenic and environmental microorganisms. In pathogens, the capability to synthesize the pigment increases virulence, and in free-living bacteria, it enhances resistance against environmental stress (49). The capability of melanin to sequester metals (57) and to protect cells from UV radiation and oxidative agents (49) may help 34mel^T to survive under these and other stressful conditions encountered in the extremely polluted river water from which it was isolated.

Resistance to heavy metals. The last part of the Matanza River (Riachuelo) presents heavy metal contamination (3, 4), so 34mel^T was expected to possess the capability to deal with these pollutants. Experimental tests showed that this strain was able to grow in the presence of Ag, Cd, Hg, Pb, Zn, and Cu (data not shown).

FIG 4 Organization of the *mer* region present in the genomic island AspecGI-1 of 34mel^T. Genes located at both sides of AspecGI-1 are also observed flanking a nonrelated genomic island in strain A449. The *mer* regions found in plasmids in other *Aeromonas* strains and the highly similar *mer* region of plasmid pMC1 of *D. acidovorans* are shown for comparison. Genes related to mobility and resistance to different stress factors are indicated. The arrows indicate gene orientations.

Moreover, Cu increased the synthesis of melanin (Fig. 2), and early pigmentation of the cultures was observed in the presence of 15 ppm Cd, 800 ppm Zn, or 5 ppm Ag, suggesting that the production of melanin could be used by this bacterium to cope with heavy metals.

The search for heavy metal resistance genes in the genome of 34mel^T revealed three regions containing groups of genes related to mercury, copper, silver, and arsenic resistance.

The first region contains a mer operon that comprises genes coding for three mercuric transport proteins (MerT, MerP, and MerC), the mercuric reductase MerA, the mercury resistance protein MerE, and the transcriptional regulators MerD and MerR (Fig. 4 and Table 3). Interestingly, sequence similarity analysis revealed that this region is almost identical (99% overall nucleotide identity) to the region containing the mer operon in plasmid pMC1 of the distantly related betaproteobacterium Delftia acidovorans (58), strongly suggesting a possible horizontal gene transfer origin. Identical mer regions (100% nucleotide identity) were also found in three plasmids from uncultured bacteria from agricultural soils (59). A search against other Aeromonas sequences revealed the presence of a mer operon with the same genetic organization in plasmid 4 (pAsa4) of A. salmonicida A449 (9), but with a lower (84%) nucleotide identity (Fig. 4). Some of the mer genes are also present in plasmid pR148 (89% nucleotide identity) of A. hydrophila (60) and plasmid pSN254b (84% nucleotide identity) of A. salmonicida 2004-05MF26 (11, 61), along with antimicrobial resistance genes. Highly similar (>80% nucleotide identity) mer operons were also observed in plasmids from both environmental

strains and known pathogens, including pVS6 from *P. aeruginosa* (62), Plasmid1 from *Nitrosomonas eutropha* (63), and pECL_A from *Enterobacter cloacae* (64). Although the majority of *mer* operons similar to that of 34mel^T are located in plasmids, a high similarity (85% nucleotide identity) was also observed with the *mer* operons found in a genomic island of the multidrug resistance pathogen *Salmonella enterica* serovar Typhimurium (65) and in the chromosomes of several bacterial species, such as *Acidovorax ebreus* (66) and the enteroaggregative *E. coli* O104:H4 strain 2011C-3493 (67). However, no *mer* operons were detected in the chromosomes of *Aeromonas* strains other than 34mel^T.

The second region contains copper and silver resistance genes, including genes for periplasmic proteins, efflux pumps, and transcriptional regulators, in a region flanked by transposase genes. We detected the cop system, containing copA, encoding a multicopper oxidase; *copB*, coding for copper resistance protein B; copC, coding for a blue (type1) copper domain-containing protein; *copF*, coding for a heavy metal-translocating P-type ATPase; and *copRS*, encoding a two-component regulatory system (Fig. 5) and Table 3). None of these genes are present in any of the other strains of A. salmonicida subsp. salmonicida, A. salmonicida subsp. achromogenes, and A. salmonicida subsp. masoucida sequenced to date. A BLAST search for similar genes in other Aeromonas species revealed that *copRS* and *copF* are present in *A. hydrophila* SSU (accession no. AGWR0000000). On the other hand, the copABC genes were found in A. hydrophila SSU, A. caviae Ae398, and also A. veronii by. sobria, in which copA is associated with copper tolerance, based on transposon mutant analysis (68). In addition,

TABLE 3 Genes associated with heavy metal resistance and homeostasis in 34mel^T

Mercury resistance rmscriptional regulator merk K331_05716 Mercuric transport, protein merC K331_05736 Mercuric reductate merC K331_05746 Copper and slive resistance protein copB K331_18227 Copper resistance protein B copB K331_18227 Blue copper domain-containing protein copC K331_18127 Two-component sensor protein copB K331_18127 Copper/slive reflux system protein copR K331_18127 Copper/slive reflux system protein copR K331_18127 Copper/slive reflux system protein copR K331_1433 Two-component heavy metal response regulator copR K331_1433 Two-component nessop protein copR K331_1433 Two-component response regulator copR K331_1433 Two-component response regulator copR K331_1433 State exclusive to A. safmonicida safmonicida	Functional assignment	Gene	Locus tag	Note
Transcriptional regulator merk K931_05726 Mercuric transport, protein merk K931_05736 Mercury resistance protein merk K931_05746 Copper and silver resistance protein copB K931_18227 Mercury resistance protein copB K931_18227 Placy metal -finasolociting P-type ATPace copF K931_18197 Two-component heavy metal response regulator copF K931_18197 Two-component heavy metal response regulator copF K931_118197 Copper/silver resistance periplasmic protein caA K931_11408 Two-component heavy metal response regulator copF K931_11408 Two-component heavy metal response regulator copS K931_11408 Two-component heavy metal response copS K931_11408 Two-component heavy metal response copS K931_11408 Assenici ception tram-acting repressor arR K931	Mercury resistance			
Mercuric transport, protein merT K931_05726 Mercuric transport, periplasnic protein merC K931_05736 Mercuric transport, periplasnic protein merC K931_05731 Cluster situated in AspecGI-1 merC K931_05731 Mercuric transport protein merD K931_05731 Mercuric reductase merD K931_05736 Copper and silver resistance merE K931_05736 Multicoper oxidase copper resistance protein copA K931_18227 Copper resistance protein B copB K931_18227 Hue copper domain- containing protein copC K931_18127 Proo-component heavy metal response regulator copR K931_1817 Copper silver resistance protein capA K931_1817 Copper silver resistance protein capA K931_1817 Copper silver resistance periplasmic protein capA K931_1817 Copper silver resistance capA K931_1817 Copper silver resistance capA K931_1817 Two-component response regulator copR K931_112260 Two-component response regulator copR K931_11433 Arsenic operon regulator anR K931_112260 Arsenic derostance operin trans-acting repressor anD K93	Transcriptional regulator	merR	K931_05716	
Mercuric transport, prepipasnic protein mer K931_05736 Cluster situated in AspecGI-1 Mercuric transport protein mer/L K931_05736 Cluster situated in AspecGI-1 Mercury resistance protein mer/L K931_18227 Cluster situated in AspecGI-1 Copper and silver resistance protein cop/L K931_18227 Cluster situated in AspecGI-1 Copper and silver resistance protein cop/L K931_18227 Cluster unique to 34mel ^T Pacy metal-translocating Pryce ATPase cop/L K931_1827 Cluster unique to 34mel ^T Two-component heavy metal response regulator cop/S K931_1817 Cluster unique to 34mel ^T Two-component response regulator cop/S K931_11226 Cluster unique to 34mel ^T Two-component response regulator cop/S K931_11408 Situated in AspecGI-3 Meracy metal-transport response regulator cop/S K931_11408 Situated in AspecGI-3 Arsenic resistance cop/S K931_11408 Situated in AspecGI-3 Arsenic resistance expont num-acting repressor ar.D K931_11408 Situated in AspecGI-3 Arsenic resistance ergulator cop/S K931_11408 Situated in AspecGI-3 Arsenic resistance ergulator ar.D K931_11408 Situated in AspecGI-3 Arsenic fultis p	Mercuric transport protein	merT	K931 05721	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mercuric transport, periplasmic protein	merP	K931_05726	
Mercuric reductase merA K931_05741 Transcriptional regulator merD K931_05741 Mercury restance protein merD K931_0574 Copper and silver resistance merD K931_0574 Multicopper oxidase copper resistance protein copA K931_18122 Bute copper domain-containing protein copC K931_18197 Two-component sensor protein copF K931_1817 Two-component sensor protein copR K931_18172 Copper silver relistance erplosine regulator copR K931_18172 Copper silver relistance protein copR K931_18172 Copper silver relistance protein copR K931_18172 Copper silver relistance protein copR K931_18172 Copper silver relistance flow regulator copR K931_14143 Two-component response regulator copR K931_14143 Two-component sensor histidine kinase copS K931_11403 Arsenic resistance arc K931_11403 Arsenic resistance arc K931_11383 Arsenic resistance arc K931_11383 Arsenic resistance regulator	Mercuric transport protein	merC	K931 05731	Cluster situated in AspecGI-1
Transcriptional regulator merD K931_05741 Mercury resistance protein merE K931_05746 Copper and silver resistance copA K931_18227 Copper resistance protein B copA K931_18227 Copper resistance protein B copA K931_18227 Heavy metal-translocating P-type ATPase copF K931_18187 Two-component sensor protein copF K931_18187 Two-component sensor protein copR K931_18187 Copper/silver efilture system protein copG K931_12260 Two-component response regulator copR K931_12265 Situated in AspecGI-3 Situated in AspecGI-3 Arsenic operon regulator arsR K931_11408 Arsenic operon regulator arsR K931_11408 Arsenic operon regulator arsR K931_11383 Arsenic operon regulator arsR K931_11383 Arsenic operon regulator arsR K931_11383 Arsenic approtein chrA K931_11383 Arsenic apport arset are set are	Mercuric reductase	merA	K931_05736	· · · · · · · · · · · · · · · · · · ·
Mercury resistance protein merE K931_05746 Copper and silver resistance CopA K931_18227 Multicopper oxidase copper resistance protein copA K931_18227 Bue copper domain-containing protein copC K931_18217 Heavy metal-translocating Protein copF K931_18172 Two-component heavy metal response regulator copF K931_18172 Copper rising protein copG K931_18172 Copper/silver resistance periplasmic protein copG K931_18172 Copper/silver resistance periplasmic protein copG K931_11817 Copper/silver resistance periplasmic protein copG K931_12260 Heavy metal sensor histidine kinase copF K931_11403 Arsenic resistance arsA K931_11403 Arsenic resistance opron trauv-acting repressor arsB K931_11393 Arsenic efflux pump arsB K931_11393 salmonicida Arsenic resistance regulator Arsf family transcriptional regulator arsR K931_11383 Arsenic resistance arsC K931_11383 salmonicida Arsenic resistance regulator Arsf family transcriptional regulator arsR K931_0175 Molybdate resistance regulator Arsf family transcriptional regulator arsR K931_0175 A	Transcriptional regulator	merD	K931 05741	
Copper and silver resistance Multicopper oxidase copper resistance protein copA K931_18227 Multicopper oxidase copper resistance protein copB K931_18217 Copper resistance protein copC K931_18197 Heavy metal-translocating P-type ATPase copF K931_18197 Two-component sensor protein copF K931_18172 Copper/silver resistance ergulator copR K931_18172 Copper/silver resistance protein copA K931_12255 Metal binding protein copR K931_12255 Two-component response regulator copR K931_14260 Two-component response regulator copR K931_11408 Arsenic operon regulator capR K931_11408 Arsenic operon regulator arsA K931_11408 Arsenic operon regulator arsA K931_11398 caluser exclusive to A. Arsenic officing monoxygenase arsO K931_11383 almonicida Arsenic regulator ArsR K931_0129 chromate transport protein chrA K931_0129 Chromate transport protein chrA K931_0129 chromate transport protein modA K931_0175	Mercury resistance protein	merE	K931_05746	
Multicopper existance protein copA K931_18227 Copper resistance protein B copB K931_18227 Bue copper domain-containing protein copC K931_18221 Havy metal-translocating P-type ATPase copF K931_18122 Two-component sensor protein copS K931_18127 Copper/silver resistance periplasmic protein copS K931_18127 Copper/silver resistance periplasmic protein cusA K931_18167 Two-component heavy metal response regulator copR K931_1225 Copper/silver resistance periplasmic protein cusA K931_1225 Two-component response regulator copR K931_11408 Arsenic operon trans-acting repressor arsR K931_11408 Arsenic operon trans-acting repressor arsD K931_11403 Arsenic operon trans-acting repressor arsC K931_11393 salmonicida Arsenic operon trans-acting repressor arsC K931_11393 salmonicida Arsenic operon trans-acting repressor arsC K931_11393 salmonicida Arsenical pump-driving ATPase arsC K931_11838 salmonicida Arsenical resistance regulator <td>Copper and silver resistance</td> <td></td> <td></td> <td></td>	Copper and silver resistance			
Copper resistance protein BcopBK931_18222Bute copper domain-containing proteincopCK931_18127Heavy metal-translocating ProteincopSK931_18197Two-component heavy metal response regulatorcopSK931_18187Copper/silver resistance periplasmic proteincasAK931_18187Copper/silver resistance periplasmic proteincasAK931_18187Copper/silver resistance periplasmic proteincasAK931_12250Situated in AspecGI-3Situated in AspecGI-3Arsenic operon regulatorcasAK931_11408Arsenic operon regulatorarsRK931_11408Arsenica periplasmic proteinarsRK931_11408Arsenical resistancearsRK931_11408Arsenical resistance operon trans-acting repressorarsBK931_11408Arsenical resistance operon frams-acting repressorarsBK931_11388Arsenical resistance operon frams-acting repressorarsBK931_11388Arsenical resistance regulator ArsR family transcriptional regulatorarsRK931_11388Arsenical resistance regulator ArsR family transcriptional regulatorarsRK931_10129Chromate resistance regulatorchrAK931_00175Molybdate transporter porteinmodAK931_00175ABC-type molybdate transporter periplasmic binding proteinmodAK931_00176ABC-type molybdate transporter periplasmic binding proteinmodAK931_0176ABC-type molybdate transporter periplasmic binding proteinmodAK931_0176ABC-type molybdate transpo	Multicopper oxidase copper resistance protein	codA	K931 18227	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Copper resistance protein B	copB	K931_18222	
Havy metal-translocating P-type ATPasecopPK931_18197Two-component sensor proteincopSK931_18197Two-component heavy metal response regulatorcopRK931_1817Copper/silver refitux system proteincusAK931_1817Copper/silver refitux system proteincusAK931_1443Two-component heavy metal response regulatorcopRK931_1443Two-component heavy metal sensor histidine kinasecopRK931_12250Metal binding proteincopSK931_12255Arsenic resistancearsenic resistancesaltransocating repressorArsenic operon regulatorarsRK931_11408Arsenic resistance operon trans-acting repressorarsRK931_11408Arsenic relix pumparsRK931_11393Arsenic relix pumparsRK931_11383Arsenic relix pumparsRK931_11383Arsenic relix pumparsRK931_11383Arsenic relix pumparsRK931_11383Arsenic relix pumparsRK931_11383Arsenical resistance operon trans-acting repressorarsGChromium resistancearsGK931_11383Arsenical resistance regulator ArsR family transcriptional regulatorarsRChromate transport proteinchrAK931_00175Molybdate resistance and homeostasisABC-type molybdate transporter peripasmic binding proteinmodAABC-type molybdate transporter ATP-binding proteinmodAK931_07464ABC-type molybdate transporter ATP-binding proteinmodAK931_07464ABC	Blue copper domain-containing protein	copC	K931_18217	
Chromiter is the second sec	Heavy metal-translocating P-type ATPase	copE	K931_18197	_
Two-component heavy metal response regulatorcop/sK931_18187Two-component heavy metal response regulatorcop/sK931_18187Copper/silver resistance periplasmic proteincop/sK931_12260Metal binding proteincop/sK931_12250Metal binding proteincop/sK931_12250Meavy metal sensor histidine kinasecop/sK931_11408Arsenic personse regulatorars/sK931_11403Arsenic operon regulatorars/sK931_11403Arsenica person regulatorars/sK931_11403Arsenica person trans-acting repressorars/sK931_11393Arsenica resistance operon trans-acting repressorars/sK931_11393Arsenica resistance operon trans-acting repressorars/sK931_11393Arsenica resistance operon trans-acting repressorars/sK931_11383Arsenica resistance regulator Ars/s family transcriptional regulatorars/sK931_11383Arsenical resistance regulator Ars/s family transcriptional regulatorars/sK931_10129Chromium resistancechr/rK931_00170AbC-type molybdate transporter periplasmic binding proteinmodAK931_00175Molybdate resistance and homeostasismodAK931_07464ABC-type molybdate transporter permeasemodBK931_07464ABC-type molybdate transporter permeasemodBK931_07464ABC-type molybdate transporter permeasemodBK931_07464ABC-type molybdate transporter permeasemodBK931_07464ABC-type molybdate transporter permease	Two-component sensor protein	cops	K931_18192	Cluster unique to 34mel ^T
The construction of the intermediationtopicKP31_1010Copper/silver efflux system proteincusAKP31_18167Metal binding proteincopGKP31_11403Two-component response regulatorcopRKP31_112255Heavy metal sensor histidine kinasecopSKP31_11408Arsenic resistancearsRKP31_11408Arsenic resistancearsRKP31_11403Arsenic resistancearsAKP31_11403Arsenic resistancearsAKP31_11398Arsenic resistancearsAKP31_11398Arsenic resistancearsBKP31_11393Arsenic resistancearsBKP31_11393Arsenic resistance regulator ArsR family transcriptional regulatorarsBKP31_11393Arsenic resistance regulator ArsR family transcriptional regulatorarsRKP31_10129Chromute resistance regulator ArsR family transcriptional regulatorarsRKP31_00175Molybdate resistance regulatorchrAKP31_00175ABC-type molybdate transporter proteinmodAKP31_00175ABC-type molybdate transporter periplasmic binding proteinmodAKP31_0170ABC-type molybdate transporter periplasmic binding proteinmodAKP31_0176ABC-type molybdate transporter ATP-binding proteinmodAKP31_0176ABC-type molybdate transporter periplasmic binding proteinmodAKP31_0176ABC-type molybdate transporter ATP-binding proteinmodAKP31_0176ABC-type molybdate transporter Periplasmic binding proteinmodAKP31_07464 <t< td=""><td>Two component beau metal response regulator</td><td>copB</td><td>K031_10192</td><td></td></t<>	Two component beau metal response regulator	copB	K031_10192	
Copperside resistance per protein $(133, 123)$ Gopper side resistance protein $(134, 123)$ Two-component response regulator $(134, 123)$ Heavy metal sensor histidine kinase $(134, 123)$ Arsenic resistance $(134, 123)$ Arsenic resistance $(134, 123)$ Arsenic operon regulator $arsR$ K931_11403Arsenica resistance operon trans-acting repressor $arsR$ Arsenica resistance operon trans-acting repressor $arsR$ Ravin binding monoxygenase $arsR$ Arsenica resistance regulator ArsR family transcriptional regulator $arsR$ Chromium resistance $(hrA K931_1138)$ Chromate resistance regulator $chrA K931_0129$ Chromate resistance regulator $chrA K931_00175$ ABC-type molybdate transporter permease $modA K931_00175$ ABC-type molybdate transporter permease $modA K931_00175$ ABC-type molybdate transporter permease $modA K931_00176$ ABC-type molybdate transporter permease $modA K931_00175$ ABC-type molybdate transporter permease $modA K931_00176$ ABC-type molybdate tr	Copper/silver resistance periplasmic protein	сорк	K931_10107 K031_10172	
Coppersative chick system proteinchar $(8571_{-1610}, -1)$ Metal binding proteincopG (8931_{-1225}) Situated in AspecGI-3Arsenic approximation response regulatorcopR (8931_{-1225}) Situated in AspecGI-3Arsenic operon regulatorarsR (8931_{-1120}) Cluster exclusive to A.Arsenical resistance operon trans-acting repressorarsR (8931_{-1139}) Cluster exclusive to A.Arsenical fully pumparsR (8931_{-1139}) SalmonicidaArsenic efflux pumparsR (8931_{-1139}) SalmonicidaArsenic efflux pumparsR (8931_{-1138}) SalmonicidaArsenic efflux pumpchrA (8931_{-0117}) Situated in AspecGI-3Chromate resistance regulatorchrA (8931_{-0117}) AbC-type molybdate transporter periplasmic binding proteinmodA (8931_{-0117}) AbC-type molybdate transporter periplasmic binding proteinmodA (8931_{-0176}) ABC-type molybdate transporter Periplasmic binding proteinmodA $(89$	Copper/silver afflux system protein	auc A	K931_10172 V031_19167	
Metal binding protein copG K931_1433 Two-component response regulator copS K931_12255 Situated in AspecGI-3 Arsenic resistance arsR K931_11403 Arsenici cesistance operon trans-acting repressor arsR K931_11403 Arsenici resistance operon trans-acting repressor arsR K931_11393 Arsenici resistance operon trans-acting repressor arsA K931_11393 Arsenici regulator arsA K931_11393 salmonicida Arsenici regulator Arsen Karsi (Sall) arsB K931_11393 salmonicida Arsenice regulator ArsR family transcriptional regulator arsR K931_10129 cluster exclusive to A. Chromium resistance clrrR K931_10129 cluster exclusive to A. salmonicida Chromate transport protein chrA K931_01129 cluster exclusive to A. salmonicida ABC-type molybdate transporter peripasmic binding protein modA K931_010175 Molybdate RS31_00165 ABC ABC salmonicida ABC ABC Situated in AspecGI-4 Heavy metal efflux pump czcA K931_01280 K931_0175 ABC ABC Situated in AspecGI-4 <td>Copper/silver emux system protein</td> <td>cusA</td> <td>K951_16107 -</td> <td></td>	Copper/silver emux system protein	cusA	K951_16107 -	
Two-component response regulatorcopkK931_1225Situated in AspecGI-3Heavy metal sensor histidine kinasecopSK931_12255Situated in AspecGI-3Arsenic operon regulatorarsRK931_11408Arsenic operon regulatorarsRK931_11403Arsenical resistance operon trans-acting repressorarsAK931_11398Arsenical pump-driving ATPasearsAK931_11393salmonicidaArsenice efflux pumparsBK931_1133salmonicidaArsenice regulator ArsR family transcriptional regulatorarsCK931_11383salmonicidaArsenical resistance regulator ArsR family transcriptional regulatorarsRK931_0172K931_0129Chromate transport proteinchrAK931_00175K931_00175Molybdate transporter periplasmic binding proteinmodAK931_0170ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter ATP-binding proteinmodAK931_07464ABC-type molybdate transporter ATP-binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic proteinmodAK931_07464ABC-type molybdate transporter periplasmic proteinmodAK931_0125Coball/zinc/cadmium efflux pumpczcAK931_0126Heavy metal efflux system periplasmic proteinmodBK931_01275Magnesium/cobal	Metal binding protein	copG	K951_14545	
Heavy metal sensor institutine kinase cops K931_12255_J Arsenic resistance arsR K931_11408 Arsenic resistance operon trans-acting repressor arsD K931_11403 Arsenical pump-driving ATPase arsA K931_11398 Cluster exclusive to A. Arsenical resistance operon trans-acting repressor arsB K931_11393 salmonicida Arsenic reflux pump arsB K931_11383 cluster exclusive to A. Arsenic reductase arsC K931_1183 Flavin-binding monooxygenase arsO K931_11823 Arsenical resistance regulator ArsR family transcriptional regulator arsR K931_0129 Chromium resistance Chromium resistance Chromium resistance Chromate transport protein chrA K931_0175 Molybdate resistance regulator modA K931_00175 Molybdate transporter periplasmic binding protein modA K931_00170 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter	I wo-component response regulator	сорк	K951_12260	Situated in AspecGI-3
Arsenic resistance arsR K931_11408 Arsenical resistance operon trans-acting repressor arsD K931_11403 Arsenical pump-driving ATPase arsA K931_11398 Cluster exclusive to A. Arsenite efflux pump arsB K931_11393 salmonicida Arsenite efflux pump arsC K931_11388 cluster exclusive to A. Arsenite reductase arsC K931_11383 salmonicida Arsenical resistance regulator ArsR family transcriptional regulator arsR K931_10129 Chromate resistance regulator ArsR family transcriptional regulator chrA K931_00175 Chromate transport protein chrA K931_00175 Chromate resistance regulator chrA K931_00175 Molybdate ABC transporter periplasmic binding protein modA K931_00175 Molybdate transporter periplasmic binding protein modA K931_00175 ABC-type molybdate transporter periplasmic binding protein modA K931_00175 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporters	Heavy metal sensor histidine kinase	copS	K931_12255	*
Arsenic operon regulatorarsRK931_11408Arsenical resistance operon trans-acting repressorarsRK931_11403Arsenical resistance operon trans-acting repressorarsAK931_11393Arsenite efflux pumparsBK931_11393salmonicidaArsenite efflux pumparsBK931_11383salmonicidaArsenite efflux pumparsCK931_11383salmonicidaArsenite efflux pumparsCK931_11383salmonicidaArsenite efflux pumparsRK931_11383salmonicidaChromium resistance regulator ArsR family transcriptional regulatorarsRK931_10129Chromate transport proteinchrAK931_00175Chromate transport proteinmodAK931_00175Molybdate resistance and homeostasismodBK931_00175ABC-type molybdate transporter periplasmic binding proteinmodAK931_00175Molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodCK931_07469ABC-type molybdate transporter periplasmic binding proteinmodCK931_107469ABC-type molybdate transporter periplasmic proteinmodCK931_10280Heavy metal efflux pumps and transportersK931_01280Situated in AspecGI-4Heavy metal efflux pumpczcAK931_01280K931_01275Magnesium/cobalt efflux proteincorBK931_01275Magnesium/cobalt efflux protein <t< td=""><td>Arsenic resistance</td><td></td><td></td><td></td></t<>	Arsenic resistance			
Arsenical resistance operon trans-acting repressorarsDK931_11403Arsenical pump-driving ATPasearsAK931_11398Cluster exclusive to A.Arsenite efflux pumparsBK931_11393salmonicidaArsenite reductasearsCK931_11383salmonicidaFlavin-binding monooxygenasearsOK931_11383salmonicidaArsenical resistance regulator ArsR family transcriptional regulatorarsRK931_11823salmonicidaChromium resistanceChromate transport proteinchrAK931_0129salmonicidaChromate resistance regulatorchrRK931_00175salmonicidaMolybdate resistance and homeostasismodAK931_00175salmonicidaABC-type molybdate transporter periplasmic binding proteinmodAK931_00170salmonicidaABC-type molybdate transporter ATP-binding proteinmodAK931_0165salmonicidaABC-type molybdate transporter ATP-binding proteinmodAK931_07464salmonicidaABC-type molybdate transporter ATP-binding proteinmodBK931_07469salmonicidaABC-type molybdate transporter ATP-binding proteinmodAK931_07469situated in AspecGI-4Heavy metal efflux pumps and transportersczcAK931_01280situated in AspecGI-4Heavy metal efflux pumpczcAK931_01275situated in AspecGI-4Heavy metal efflux proteinK931_01275K931_01631situated in AspecGI-2Magnesium/cobalt efflux proteinK931_06296Situated in AspecGI-2Magnesium/cobalt efflux pr	Arsenic operon regulator	arsR	K931_11408	
Arsenical pump-driving ATPasearsAK931_11398Cluster exclusive to A.Arsenite efflux pumparsBK931_11393salmonicidaArsenate reductasearsCK931_11383salmonicidaFlavin-binding monooxygenasearsCK931_11383salmonicidaArsenical resistancearsRK931_11383salmonicidaChromium resistancearsRK931_10129salmonicidaChromate transport proteinchrAK931_0179salmonicidaChromate resistance regulatorchrRK931_00175salmonicidaMolybdate resistance regulatormodAK931_00175salmonicidaMolybdate ransporter periplasmic binding proteinmodAK931_00170salmonicidaABC-type molybdate transporter periplasmic binding proteinmodAK931_0165salmonicidaABC-type molybdate transporter periplasmic binding proteinmodAK931_07464salmonicidaABC-type molybdate transporter periplasmic binding proteinmodAK931_07464salmonicidaABC-type molybdate transporter periplasmic binding proteinmodAK931_07464salmonicidaABC-type molybdate transporter periplasmic proteinmodAK931_07464salmonicidaABC-type molybdate transporter periplasmic proteinmodAK931_07464salmonicidaABC-type molybdate transporter ATP-binding proteinmodAK931_07464salmonicidaHeavy metal efflux pumpczcAK931_0120situated in AspecGI-4Heavy metal efflux system periplasmic proteinK931_01275K931_0	Arsenical resistance operon trans-acting repressor	arsD	K931_11403	
Arsenite efflux pumparsBK931_11393salmonicidaArsenate reductasearsCK931_11383salmonicidaFlavin-binding monooxygenasearsOK931_11383salmonicidaArsenical resistance regulator ArsR family transcriptional regulatorarsRK931_18237salmonicidaChromium resistanceChromate transport proteinchrAK931_0179Chromate resistance regulatorchrAK931_03730Molybdate resistance and homeostasisABC-type molybdate transporter periplasmic binding proteinmodAK931_00175ABC-type molybdate transporter periplasmic binding proteinmodAK931_00165ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodAK931_07469ABC-type molybdate transporter ATP-binding proteinmodAK931_07469ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter ATP-binding proteinmodCK931_07469ABC-type molybdate transporter ATP-binding proteinmodCK931_07469ABC-type molybdate transporter permeasemodBK931_07464Heavy metal efflux pumps and transportersK931_01205K931_01205Cobalt/zinc/cadmium efflux proteinK931_01275K931_01275Magnesium/cobalt efflux pumpczcAK931_01275K931_01275Heavy metal efflux system periplasmic proteincorBK931_01216Metal ion transporterK931_0	Arsenical pump-driving ATPase	arsA	K931_11398	Cluster exclusive to A.
Arsenate reductase arsC K931_11388 Flavin-binding monooxygenase arsO K931_11383 Arsenical resistance regulator ArsR family transcriptional regulator arsR K931_11383 Arsenical resistance regulator ArsR family transcriptional regulator arsR K931_10129 Chromium resistance chrA K931_0179 Chromate transport protein chrA K931_00175 Molybdate resistance and homeostasis modA K931_00175 Molybdate transporter periplasmic binding protein modA K931_00170 Molybdate transporter periplasmic binding protein modB K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07469 ABC-type molybdate transporter periplasmic binding protein modB K931_07469 ABC-type molybdate transporter perimease modB K931_07469 ABC-type molybdate transporter perimease modB K931_07469 ABC-type molybdate transporter ATP-binding protein modC K931_07474 Heavy metal efflux pumps and transporters Cobalt/zinc/cadmium efflux pump czcA K931_01275 </td <td>Arsenite efflux pump</td> <td>arsB</td> <td>K931_11393</td> <td>salmonicida</td>	Arsenite efflux pump	arsB	K931_11393	salmonicida
Flavin-binding monooxygenase arsO K931_11383 Arsenical resistance regulator ArsR family transcriptional regulator arsR K931_18237_ Chromium resistance Chromate transport protein chrA K931_10129 Chromate resistance regulator chrR K931_00175 Molybdate resistance and homeostasis ABC-type molybdate transporter periplasmic binding protein modA K931_00175 Molybdate ABC transporter periplasmic binding protein modA K931_00176 ABC-type molybdate transporter periplasmic binding protein modA K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter ATP-binding protein modB K931_07464 ABC-type molybdate transporter ATP-binding protein modC K931_01276 ABC-type molybdate transporter ATP-binding protein modZ K931_01270 Heavy metal efflux pump czcA K931_01275 K931_01275 <t< td=""><td>Arsenate reductase</td><td>arsC</td><td>K931 11388</td><td></td></t<>	Arsenate reductase	arsC	K931 11388	
Arsenical resistance regulator ArsR family transcriptional regulator arsR K931_18237 Chromium resistance chrA K931_10129 Chromate transport protein chrA K931_00730 Molybdate resistance and homeostasis chrA K931_00175 Molybdate resistance and homeostasis modA K931_00175 ABC-type molybdate transporter periplasmic binding protein modA K931_00170 ABC-type molybdate transporter periplasmic binding protein modA K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07469 ABC-type molybdate transporter perimease modB K931_07474 Heavy metal efflux pumps and transporters K931_01280 K931_01280 Heavy metal efflux pump czcA K931_01275 K931_01275 Magnesium/cobalt efflux protein K931_01275 K931_01275 K931_01275 Magnesium/cobalt efflux protein corB K	Flavin-binding monooxygenase	arsO	K931_11383	
Chromium resistance Chromate transport protein Chromate resistance regulator Molybdate resistance and homeostasis ABC-type molybdate transporter periplasmic binding protein ABC-type molybdate transporter periplasmic binding protein ABC-type molybdate transporter ATP-binding protein ABC-type molybdate transporter periplasmic binding protein ABC-type molybdate transporter ATP-binding protein ABC-type molybdate transporter ATP-binding protein ABC-type molybdate transporter ATP-binding protein ABC-type molybdate transporter ATP-binding protein Meavy metal efflux pumps and transporters Cobalt/zinc/cadmium efflux protein Heavy metal efflux pump ABC-type molybdate transporters Cobalt/zinc/cadmium fflux protein Meany metal efflux system periplasmic protein Mea	Arsenical resistance regulator ArsR family transcriptional regulator	arsR	K931_18237	
Chromate transport protein Chromate resistance regulator <i>chrA</i> K931_10129 <i>chrR</i> Molybdate resistance and homeostasismodAK931_00175 Molybdate transporter periplasmic binding proteinmodAK931_00175 Molybdate ABC transporter periplasmic binding proteinABC-type molybdate transporter permeasemodBK931_00170 Molybdate transporter permeaseABC-type molybdate transporter PermeasemodAK931_00170 Molybdate transporter permeaseABC-type molybdate transporter permeasemodAK931_07464 MolBABC-type molybdate transporter permeasemodBK931_07464ABC-type molybdate transporter ATP-binding proteinmodAK931_07469 MolBABC-type molybdate transporter PermeasemodBK931_07469ABC-type molybdate transporter ATP-binding proteinmodCK931_07469Heavy metal efflux pumps and transportersK931_01280 K931_01275Situated in AspecGI-4Heavy metal efflux pumpczcAK931_01275 K931_01275Magnesium/cobalt efflux proteinHeavy metal efflux proteincorBK931_06121 K931_01275Situated in AspecGI-2Magnesium/cobalt efflux proteinK031_16439Situated in AspecGI-2	Chromium resistance			
Chromate resistance regulatorchrRK931_03730Molybdate resistance and homeostasisABC-type molybdate transporter periplasmic binding proteinmodAK931_00175Molybdate ABC transporter permeasemodBK931_00170ABC-type molybdate transporter periplasmic binding proteinmodCK931_00165ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter permeasemodBK931_07464ABC-type molybdate transporter ATP-binding proteinmodCK931_07464ABC-type molybdate transporter ATP-binding proteinmodCK931_07464Heavy metal efflux pumps and transportersCccAK931_18841Situated in AspecGI-4Heavy metal efflux pumpczcAK931_01280K931_01275Heavy metal efflux system periplasmic proteincorBK931_01275Magnesium/cobalt efflux proteinMagnesium/cobalt efflux proteincorBK931_06121Metal ion transporterMatal ion transporterK931_06296Situated in AspecGI-2	Chromate transport protein	chrA	K931 10129	
Molybdate resistance and homeostasismodAK931_00175Molybdate ABC transporter periplasmic binding proteinmodAK931_00170MBC-type molybdate transporter permeasemodBK931_00165ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter permeasemodAK931_07464ABC-type molybdate transporter permeasemodBK931_07469ABC-type molybdate transporter permeasemodBK931_07469ABC-type molybdate transporter permeasemodCK931_07474Heavy metal efflux pumps and transportersK931_07474Heavy metal efflux pumps and transportersK931_01280Heavy metal efflux system periplasmic proteinK931_01280Heavy metal efflux proteinK931_01275Magnesium/cobalt efflux proteinCorBK931_06121K931_06121Metal ion transporterK931_06296	Chromate resistance regulator	chrR	K931_03730	
Molybdate resistance and homeostasis modA K931_00175 ABC-type molybdate transporter periplasmic binding protein modB K931_00170 ABC-type molybdate transporter ATP-binding protein modC K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter permease modB K931_07469 ABC-type molybdate transporter ATP-binding protein modC K931_07469 ABC-type molybdate transporter ATP-binding protein modC K931_07469 Heavy metal efflux pumps and transporters K931_18841 Situated in AspecGI-4 Heavy metal efflux pump czcA K931_01280 Heavy metal efflux system periplasmic protein K931_01275 K931_01275 Magnesium/cobalt efflux protein corB K931_06121 K931_0124 Metal ion transporter K931_06296 Situated in AspecGI-2 Zinc/cadmium/mercurv/lead-transporting ATPase		0,111	1001_00700	
ABC-type molybdate transporter periplasmic binding protein modA K931_00175 Molybdate ABC transporter permease modB K931_00170 ABC-type molybdate transporter ATP-binding protein modC K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter permease modB K931_07469 ABC-type molybdate transporter ATP-binding protein modC K931_07469 ABC-type molybdate transporter ATP-binding protein modC K931_07469 Heavy metal efflux pumps and transporters K931_01280 Situated in AspecGI-4 Heavy metal efflux pump czcA K931_01280 K931_01275 Heavy metal efflux system periplasmic protein K931_01275 K931_01275 K931_06121 Magnesium/cobalt efflux protein corB K931_06121 K931_0439 Situated in AspecGI-2 Zinc/cadmium/mercurv/lead-transporting ATPase zntA K931_06296 Situated in AspecGI-2	Molybdate resistance and homeostasis			
Molybdate ABC transporter permeasemodBK931_00170ABC-type molybdate transporter ATP-binding proteinmodCK931_00165ABC-type molybdate transporter periplasmic binding proteinmodAK931_07464ABC-type molybdate transporter permeasemodBK931_07469ABC-type molybdate transporter ATP-binding proteinmodBK931_07469ABC-type molybdate transporter ATP-binding proteinmodCK931_07469Heavy metal efflux pumps and transportersK931_01280K931_01280Heavy metal efflux pumpczcAK931_01280Heavy metal efflux system periplasmic proteinK931_01275K931_01275Magnesium/cobalt efflux proteincorBK931_06121Metal ion transporterK931_16439Situated in AspecGI-2Zinc/cadmium/mercurv/lead-transporting ATPasezntAK931_06296	ABC-type molybdate transporter periplasmic binding protein	modA	K931_00175	
ABC-type molybdate transporter ATP-binding protein modC K931_00165 ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter permease modB K931_07469 ABC-type molybdate transporter permease modC K931_07474 Heavy metal efflux pumps and transporters modC K931_18841 Cobalt/zinc/cadmium efflux protein K931_01280 Heavy metal efflux system periplasmic protein K931_01280 Heavy metal efflux protein corB Heavy metal efflux protein K931_01280 Heavy metal efflux system periplasmic protein K931_01280 Heavy metal efflux protein corB K931_01275 Magnesium/cobalt efflux protein K931_06121 K931_06121 Metal ion transporter K931_16439 Situated in AspecGI-2 Zinc/cadmium/mercurv/lead-transporting ATPase zntA K931_06296	Molybdate ABC transporter permease	modB	K931_00170	
ABC-type molybdate transporter periplasmic binding protein modA K931_07464 ABC-type molybdate transporter permease modB K931_07469 ABC-type molybdate transporter ATP-binding protein modC K931_07474 Heavy metal efflux pumps and transporters K931_18841 Situated in AspecGI-4 Heavy metal efflux pump czcA K931_01280 Heavy metal efflux system periplasmic protein K931_01275 Magnesium/cobalt efflux protein corB K931_06121 Metal ion transporter K931_16439 Situated in AspecGI-2 Zinc/cadmium/mercurv/lead-transporting ATPase zntA K931_06296	ABC-type molybdate transporter ATP-binding protein	modC	K931_00165	
ABC-type molybdate transporter permeasemodBK931_07469ABC-type molybdate transporter ATP-binding proteinmodCK931_07474Heavy metal efflux pumps and transportersK931_18841Situated in AspecGI-4Heavy metal efflux pumpczcAK931_01280Heavy metal efflux system periplasmic proteinK931_01275Magnesium/cobalt efflux proteincorBK931_06121Metal ion transporterK931_16439Situated in AspecGI-2Zinc/cadmium/mercury/lead-transporting ATPasezntAK931_06296	ABC-type molybdate transporter periplasmic binding protein	modA	K931_07464	
ABC-type molybdate transporter ATP-binding proteinmodCK931_07474Heavy metal efflux pumps and transportersCobalt/zinc/cadmium efflux proteinK931_18841Heavy metal efflux pumpczcAK931_01280Heavy metal efflux system periplasmic proteinK931_01275Magnesium/cobalt efflux proteincorBK931_16439Situated in AspecGI-2Zinc/cadmium/mercury/lead-transporting ATPasezntAK931_06296	ABC-type molybdate transporter permease	modB	K931_07469	
Heavy metal efflux pumps and transporters K931_18841 Situated in AspecGI-4 Cobalt/zinc/cadmium efflux protein K931_01280 Situated in AspecGI-4 Heavy metal efflux system periplasmic protein K931_01280 Situated in AspecGI-4 Magnesium/cobalt efflux protein K931_01275 Situated in AspecGI-2 Metal ion transporter K931_06121 Situated in AspecGI-2 Zinc/cadmium/mercurv/lead-transporting ATPase zntA K931_06296	ABC-type molybdate transporter ATP-binding protein	modC	K931_07474	
Cobalt/zinc/cadmium efflux proteinK931_18841Situated in AspecGI-4Heavy metal efflux pumpczcAK931_01280Heavy metal efflux system periplasmic proteinK931_01275Magnesium/cobalt efflux proteincorBK931_06121Metal ion transporterK931_16439Situated in AspecGI-2Zinc/cadmium/mercury/lead-transporting ATPasezntAK931_06296	Heavy metal efflux pumps and transporters			
Heavy metal efflux pumpczcAK931_01280Heavy metal efflux system periplasmic proteinK931_01275Magnesium/cobalt efflux proteincorBK931_06121Metal ion transporterK931_16439Situated in AspecGI-2Zinc/cadmium/mercury/lead-transporting ATPasezntAK931_06296	Cobalt/zinc/cadmium efflux protein		K931_18841	Situated in AspecGI-4
Heavy metal efflux system periplasmic proteinK931_01275Magnesium/cobalt efflux proteincorBK931_06121Metal ion transporterK931_16439Situated in AspecGI-2Zinc/cadmium/mercury/lead-transporting ATPasezntAK931_06296	Heavy metal efflux pump	czcA	K931_01280	-
Magnesium/cobalt efflux proteincorBK931_06121Metal ion transporterK931_16439Situated in AspecGI-2Zinc/cadmium/mercury/lead-transporting ATPasezntAK931_06296	Heavy metal efflux system periplasmic protein		K931_01275	
Metal ion transporter K931_16439 Situated in AspecGI-2 Zinc/cadmium/mercury/lead-transporting ATPase zntA K931_06296	Magnesium/cobalt efflux protein	corB	K931_06121	
Zinc/cadmium/mercury/lead-transporting ATPase zntA K931 06296	Metal ion transporter		K931_16439	Situated in AspecGI-2
	Zinc/cadmium/mercury/lead-transporting ATPase	zntA	K931 06296	- <u>i</u>
Cobalt/zinc/cadmium efflux system component czcD K931 06311	Cobalt/zinc/cadmium efflux system component	czcD	K931_06311	

genes encoding two components of copper/silver efflux pumps (K931_18167 and K931_18172) are located next to the *cop* genes (Fig. 5 and Table 3), along with *arsR*, encoding an arsenical resistance regulator (K931_18237). More genes related to copper resistance were detected in other genomic regions of 34mel^{T} , including a metal binding protein gene (K931_14343) similar to *copG* of *Pseudomonas putida* that is present in all *Aeromonas* strains, as well as an additional copy of *copRS* (K931_12255 and K931_12260) that is absent from the other sequenced *Aeromonas*

strains. CopG has been proposed to be involved in survival in the presence of high levels of bioavailable Cu(II) (69).

The third genomic region contains a cluster of genes coding for proteins involved in arsenic detoxification and resistance that include the arsenite pump-driving ATPase ArsA, the arsenite efflux pump ArsB, the arsenate reductase ArsC, the flavin-binding monooxygenase ArsO, and the regulators ArsR and ArsD (Fig. 5 and Table 3). Comparison of these genes with those of other *Aeromonas* strains revealed that strains belonging to different *A. sal-*

FIG 5 Organization of two genomic regions of 34mel^T containing heavy metal resistance genes. Those related to resistance to Cu are shown in black, those encoding Cu/Ag efflux pumps are shown in dark gray, and those related to resistance to As are shown in light gray. The arrows indicate gene orientations.

monicida subspecies contain the whole *ars* cluster, while most *Aeromonas* species have only some of the genes. For example, *A. hydrophila* ATCC 7966^T has four *ars* genes (8).

Apart from those located in the three regions described above, other heavy metal resistance genes were found dispersed in the genome of 34mel^T, and also in those of other *Aeromonas* strains. Among them were those encoding the chromate transporter ChrA, the chromate resistance regulator ChrR, two heavy metal efflux pumps (K931_01280 and K931_01275), the Mg/Co efflux protein CorB, the Zn/Cd/Hg/Pb-transporting ATPase ZntA, the Co/Zn/Cd efflux system component CzcD, and a metal ion transporter (K931_16439) (Table 3). Additionally, two copies of *mod-ABC*, related to molybdate resistance and/or homeostasis, were detected. These genes code for the molybdate ABC transporter, composed of the periplasmic Mo-binding protein ModA, the permease ModB, and the ATP-binding protein ModC. The *modABC* genes were found in two different genomic regions in 34mel^T, similar to what was observed for other *Aeromonas* strains.

A previous work that studied 104 freshwater *Aeromonas* isolates belonging to 11 different species showed that most of them were sensitive to different metals, including chromium, cobalt, copper, mercury, and zinc (70), indicating that resistance to heavy metals is not widespread among these bacteria. The presence in 34mel^T of a trove of genes related to heavy metal resistance, some of which are uncommon or unique among related strains, helps us to understand the capability of this microorganism to survive in an environment with elevated heavy metal pollution.

Genomic islands. Analysis of the region surrounding the *mer* operon of 34mel^{T} revealed the presence of multiple genes coding for transposases and other mobile genetic elements flanking the *mer* genes that, together with codon usage bias and the lack of synteny with the genomes of related *Aeromonas* strains, indicated that this region belongs to a genomic island (Fig. 4). Genomic islands (GIs) confer important advantages relative to the lifestyle of a bacterium, contributing to genetic variability, fitness, and competitiveness in different environments (20, 21). With this in mind, a general search for GIs was performed on the genome of 34mel^{T} , following the criteria delineated in Materials and Methods and leading to the detection of several putative genomic islands (see Table S1 in the supplemental material).

The largest genomic island (\approx 34 kb), denominated AspecGI-1, contains the above-described *mer* operon (Fig. 4). AspecGI-1 could be considered a resistance and fitness island, as it also contains antitoxin genes, genes related to DNA repair and stress responses (*umuD* and *uvrD* [encodes a helicase]), and genes encoding regulators belonging to the CheY and XRE families, which may be involved in the response to environmental stimuli. Comparison with the genome of *A. salmonicida* A449 surprisingly revealed that it has an unrelated GI in the same region, containing many phage genes (Fig. 4). A high degree of synteny was observed at the sides of the GIs in both genomes, with similar (98% amino acid identity) phage integrase genes next to the GIs, suggesting the presence of a possible hot spot for GI insertions. As previously mentioned, in the other *Aeromonas* strains that contain *mer* genes, these genes are located in plasmids. In pR148 of *A. hydrophila*, plasmid 4 (pAsa4) of *A. salmonicida* A449, and plasmid pSN254b of *A. salmonicida* 2004-05MF26, the *mer* operons are situated in regions that also contain several transposase genes. However, these plasmids carry genes that provide resistance against several antibiotics (9, 60, 61), while AspecGI-1 does not contain any antibiotic resistance genes (Fig. 4; see Table S1 in the supplemental material).

Another large GI, denominated AspecGI-2, contains a large region (87% of the GI) identical (100% nucleotide identity) to the central part of Tn1721 found in plasmid pFBAOT6 from A. caviae (71). However, no other genes similar to those present in pFBAOT6 and no plasmid maintenance and partitioning functions were found in the genome of 34mel^T. This GI contains genes related to stress responses along with mobile genetic elements, including a Tn3 family transposase. Genes found in AspecGI-2 include genes coding for several transcriptional regulators, an antitoxin module, two transporter proteins, and two zinc-binding dehydrogenases and genes involved in detoxification, such as genes that code for a glutathione S-transferase and three methionine sulfoxide reductases that may be involved in the repair of proteins damaged by oxidative stress (72) (see Table S1). AspecGI-3 and AspecGI-4 also carry genes related to stress responses. AspecGI-3 contains the genes for a unique cold shock protein and a hydroxyisourate hydrolase (whose possible function in 34mel^T is unclear, as other enzymes involved in the catabolism of urate to allantoin were not found). AspecGI-4 contains genes coding for two cold shock-like proteins, a Co/Zn/Cd efflux protein, an outer membrane receptor for ferrienterochelin and colicins, an ABC-type transporter periplasmic binding protein, several hypothetical proteins, and two integrases (see Table S1).

Three of the GIs found in the genome of 34mel^{T} contained phage-related genes. An incomplete prophage, with a 41.3% G+C content, was detected in AspecGI-5 by use of the PHAST and PHISPY programs. It includes the phage attachment sites *attL* and *attR*, a tail fiber protein gene (K931_13538) similar to that of *Aeromonas* phage 65 (73), and several genes related to those of three other phages (Fig. 6). Genes encoding a portal protein (K931_13473), a prohead peptidase (K931_13478), a major capsid protein (K931_13483), a head-tail connector protein (K931_ 13488), and three hypothetical phage proteins (K931_13498, K931_13518, and K931_13528) similar to those of *Vibrio* phage henriette 12B8 (accession no. NC_021073.1) were also detected, together with a site-specific recombinase gene (K931_13548) related to that of *Bacillus* phage W β (74) and a terminase gene similar to one found in *Xanthomonas* phage phiL7 (75).

The mosaicism of this region, containing genes similar to those of several different phages, suggests that it may correspond to a novel bacteriophage. Genes encoding phage-related proteins were also found in other regions of the genome, in GIs containing mostly genes for hypothetical proteins, such as AspecGI-6 and AspecGI-7 (see Table S1 in the supplemental material). Interestingly, AspecGI-6 is located adjacent to *ssrA* (K931_00925), in the

FIG 6 Genetic organization of AspecGI-5, which contains a mosaic of genes similar to those found in four previously described phages, as indicated by different shading. Phage attachment sites (*attL* and *attR*) are shown. Other genes encoding hypothetical proteins are indicated in white. The arrows indicate gene orientations.

same location observed for a phage-related GI of *A. hydrophila* PPD134/91 and GIs of other bacteria, suggesting that this locus acts as an insertion site for cryptic phages and pathogenicity islands (76).

Two metabolic GIs, AspecGI-8 and AspecGI-9, contain many genes related to cell wall synthesis. AspecGI-8 includes a novel cluster of genes involved in the biosynthesis of the O-antigen polysaccharide that differs in genetic organization compared to the corresponding genes in other *Aeromonas* strains (77). AspecGI-9 has a *Vibrio* core oligosaccharide biosynthesis gene cluster and also encodes transcriptional regulators, including a phage regulator, and carries two genes similar to those of restriction modification systems. Several additional GIs were detected, including AspecGI-10, AspecGI-11, and AspecGI-12, which are adjacent to tRNA genes, and AspecGI-13, which carries DNA repair genes (see Table S1 in the supplemental material).

A comparison of all genomic islands by using BLASTn against the WGS database confirmed that none were present in other *Aeromonas* strains, except for AspecGI-13, which was also found in *A. caviae* YL12 (accession no. JOVP00000000) and in *A. hydrophila* M062 (78).

Despite the fact that genome sequences for several *Aeromonas* strains are available, the occurrence of GIs in these bacteria was only very recently analyzed in isolates of the fish pathogen *A. salmonicida* subsp. *salmonicida* (79). GIs belong to the flexible genetic pool, as they normally carry genes that are not essential for growth but provide advantages under unfavorable conditions (20). An increased genetic versatility can contribute to the colonization of some habitats, such as those containing chemical compounds derived from anthropogenic activities, and lead to successful adaptation to changing growth conditions (21). The genetic flexibility of 34mel^T was reflected by the presence of many GIs encoding traits that could increase its fitness and survival, suggesting that acquisition of these genes has helped this microorganism to adapt to harsh environmental conditions.

Nitrogen metabolism and resistance to toxic nitrogen intermediates. In highly contaminated environments, such as the isolation site of 34mel^T, oxygen availability is scarce, favoring the growth of microorganisms that can adapt to diverse oxygen levels. *Aeromonas* species have been associated with dissimilatory nitrate reduction activity in anaerobic river sediments (80). *A. salmonicida* subsp. *pectinolytica* is a facultative aerobe that reduces nitrate to nitrite and can ferment several substrates (1). In bacteria, reduction of nitrate to nitrite can be performed by different types of nitrate reductases. Strain 34mel^T has a group of genes involved in periplasmic nitrate reduction (*nap*; K931_00200 to K931_00235) and two genes coding for the nitrate/nitrite two-component sensor regulator (K931_00245 and K931_00250), similar to those described for A. hydrophila ATCC 7966^T (8) and present in most of the Aeromonas strains currently sequenced. The physiological function of Nap is uncertain even for the well-studied denitrifying bacterium P. aeruginosa (81), and it has been proposed to participate in redox balancing by dissipating excess reducing power in the nondenitrifier Rhodobacter sphaeroides (82). The genes responsible for the conversion of nitrite to nitric oxide, an intermediary step in denitrification, were not found in the genome of 34mel^T, suggesting that it cannot carry out the complete denitrification pathway. In this metabolic scenario, the periplasmic Nap pathway of 34mel^T may be either dissimilatory or indirectly respiratory via the consumption of electrons derived from NADH, as proposed for A. hydrophila ATCC 7966^T (8).

Despite the absence of a complete denitrification pathway, it is interesting that the norRVW genes (K931_10458, K931_10463, and K931_10468), which code for proteins involved in the conversion of nitric oxide (NO) to nitrous oxide (N₂O), and nosZ (K931_21231), coding for the nitrous oxide reductase NosZ (EC 1.7.2.4), which catalyzes the conversion of nitrous oxide to N_2 , i.e., the last step in denitrification, were found in 34mel^T. Genes coding for the transcriptional regulator NosR (K931_21226), the copper-binding periplasmic protein NosD (K931_21236), the NosF ATPase (K931_21241), the NosL lipoprotein (K931_21884), and the multicopper enzyme maturation ABC transporter NosY (K931_21889) were also detected. Among the genes involved in nitrogen metabolism commonly present in other Aeromonas strains are the norRVW genes, which are associated with detoxification processes (83). In contrast, nos genes are present only in 34mel^T, A. media WS, and A. sanarellii LMG 24682. NosZ removes nitrous oxide from the environment and is well studied in denitrifying bacteria (84). Nitrous oxide is a potent greenhouse gas emitted from soils and aquatic environments, including those exposed to anthropogenic activities, such as wastewater treatment plants. This compound can be produced both by nonbiological processes and as a result of nitrifying and denitrifying metabolism (85, 86). A recent study identified nos genes in some Pseudomonas strains that are not able to carry out the complete conversion of nitrate to N₂, and it has been proposed that in these bacteria these genes may have a role in the detoxification of nitrous oxide present in the environment (86). A molecular assessment of the microbial

diversity in the Matanza River showed a great abundance of potential denitrifiers (5), which are considered the main biological source of N_2O . In this context, the capability of 34mel^T to detoxify toxic nitrogen intermediates may be a selective advantage.

Pathogenicity-related genes. The genus *Aeromonas* contains many known pathogens that affect different animals, including humans. *A. salmonicida* subsp. *salmonicida* is the causative agent of furunculosis, considered an important freshwater fish disease in aquaculture, and strains belonging to *A. salmonicida* subsp. *achromogenes, A. salmonicida* subsp. *masoucida*, and *A. salmonicida* subsp. *smithia* are also fish pathogens (87). To date, *A. salmonicida* subsp. *pectinolytica* has been isolated solely from river water environments (1, 88), and no pathogenicity has been reported for this subspecies.

Among the main virulence factors in *Aeromonas* strains are genes corresponding to toxins and secretion systems. The type III secretion system (T3SS) genes are associated with virulence in *A. salmonicida* subsp. *salmonicida* (89). In A449, 35 of these genes are located in plasmid 5, and 1 is chromosomal (9). A study that analyzed the presence of genes related to the T3SS in different strains by dot blot hybridization reported their detection in 34mel^{T} (90), while a later, PCR-based assessment (91) reported that none were present in this strain. In view of these contrasting results, the genome of 34mel^{T} was screened for these genes. None of the 36 genes for the T3SS were found in the 34mel^{T} genome.

A search for genes encoding the type VI secretion system (T6SS), another virulence-associated secretion mechanism discovered in *A. hydrophila* that comprises nearly 20 proteins, revealed that T6SS genes were not present in the genome of 34mel^T, except for two copies of the gene encoding the hemolysin-coregulated protein (Hcp) and two copies of the gene encoding the valine-glycine repeat G protein (VgrG). These are structural and effector proteins of the T6SS, but it is unlikely that these proteins are functional in 34mel^T, as studies performed with *A. hydrophila* have demonstrated that the complete T6SS is necessary for the translocation of VgrG (92).

A complete T2SS gene complement (K931_09935 to K931_ 09990, K931_17071, and K931_17076) was found in the 34mel^T genome, with the same genetic organization as that observed in other sequenced *Aeromonas* strains. This system is responsible for the secretion of some virulence factors, such as hemolysins (93). Although hemolysis on sheep blood agar is a variable characteristic for *A. salmonicida* subsp. *pectinolytica* (1), 34mel^T is clearly hemolytic. The genes for two β -barrel pore-forming toxins, an aerolysin (K931_20432) and a hemolysin (K931_00580), similar (99% amino acid identity) to AerA and AerB of *A. salmonicida* A449, respectively, were found in the 34mel^T genome and could be responsible for its hemolytic activity.

The aerolysin AerA was early described as a lytic exotoxin in *A. hydrophila* and is one of the major virulence factors produced by this microorganism. It forms pores in the host cell membrane through a general mechanism resembling that of the *Bacillus an-thracis* protective antigen (93, 94). Our preliminary experimental results have shown that production and secretion of the aerolysin of 34mel^T, which shares 96% amino acid identity with that of *A. hydrophila* ATCC 7966^T, depend on culture conditions (M. E. Pavan, E. E. Pavan, N. I. López, and M. J. Pettinari, unpublished data). A detailed analysis of the hemolysin AerB of 34mel^T revealed that it has three defined regions: a hemolysin N region, a leukocidin region, and a ricin region. Similar hemolysins were

found in *A. salmonicida* subsp. *salmonicida* A449 and *A. salmonicida* subsp. *masoucida* NBRC 13784, with 99% amino acid identity, in several strains of *A. hydrophila* (91%), and in *A. aquariorum* AAK1 (91%).

Genes coding for several extracellular enzymes, such as an elastase (K931_13913), a collagenase (K931_07126), and several chitinases, were also detected in the genome of 34mel^{T} . The elastase of *Aeromonas veronii* bv. sobria plays an indirect role in virulence through the activation of the aerolysin (95), and the major secreted elastase of *A. hydrophila* is essential for pathogenicity (96). However, in *A. salmonicida* A449, the elastase gene (ASA_3440) contains a frameshift due to a single base pair deletion, and a pseudogene was also observed for *A. salmonicida* 01-B526, suggesting that this gene is not essential for pathogenicity in these strains. The collagenase was observed to be involved in pathogenicity in *A. veronii* RY001, as a mutant deficient in the production of this protein had reduced adhesion and invasion abilities on carp cells (97).

Three putative chitinase genes were also found in the 34mel^{T} genome. Two of them (K931_03026 and K931_12138) encode proteins similar to ChiB and CdxA of *A. salmonicida* A449, respectively (9). The gene coding for Chi2, another chitinase of A449, was found to be disrupted by two transposases in 34mel^{T} . The gene for the third chitinase found in 34mel^{T} (K931_03036) has no homologues in A449.

Although all these enzymes have been associated with virulence in some pathogenic bacteria, they participate in the degradation of different substrates and can serve nutritional purposes (98, 99). In 34mel^T, these enzymes could increase the range of carbon and energy sources that can be used by this microorganism.

Conclusions. Analysis of the genome of A. salmonicida subsp. *pectinolytica* 34mel^T revealed metabolic versatility, as it can potentially use a wide variety of substrates and tolerates the environmental challenges that this bacterium must face in the heavily contaminated river from which it was isolated. Genomic analysis shed light on the two main characteristics of this microorganism, i.e., pectin lysis and melanin synthesis. The genes for several pectinases not found in any other Aeromonas strain were organized in a cluster unique to 34mel^T, containing all genes needed for the complete degradation of pectin. When melanin biosynthesis pathways were analyzed, no genes coding for known enzymes leading to the synthesis of melanin through L-DOPA were detected. The discovery of a transposon insertion in the gene that codes for the homogentisate 1,2-dioxygenase led to the proposal that melanin synthesis in 34mel^T occurs through the homogentisate pathway. Genome-wide analyses of other melanin-synthesizing Aeromonas strains revealed different mutations in their homogentisate 1,2dioxygenase genes, suggesting that this is the common pathway for melanin synthesis in these bacteria. Copper, silver, arsenate, and chromate resistance genes were identified, along with others related to oxidative and nitrosative stress. Some of these genes seem to have been acquired horizontally, enhancing the survival capability of this bacterium. Thirteen putative genomic islands, some of them carrying fitness-related genes, such as those involved in resistance to mercury, were found in the genome. These characteristics, together with melanin production and the ability to use different substrates, including pectin and chitin, may explain the ability of 34mel^T to thrive in an extremely polluted environment.

ACKNOWLEDGMENTS

N.I.L., M.J.P., and L.L. are career investigators from CONICET. This work was partially supported by the University of Buenos Aires.

REFERENCES

- 1. Pavan ME, Abbott SL, Zorzópulos J, Janda JM. 2000. Aeromonas salmonicida subsp. pectinolytica subsp. nov., a new pectinase-positive subspecies isolated from a heavily polluted river. Int J Syst Evol Microbiol 50:1119–1124. http://dx.doi.org/10.1099/00207713-50-3-1119.
- 2. Acumar Autoridad de Cuenca Matanza Riachuelo. 2012. Sistema de indicadores. Publicación anual 2012. http://www.acumar.gov.ar/content /documents/8/2048.pdf.
- 3. Ronco A, Peluso L, Jurado M, Rossini GB, Salibian A. 2008. Screening of sediment pollution in tributaries from the southwestern coast of the Río de la Plata Estuary. Lat Am J Sedimentol Basin Anal 15:67–75.
- 4. Magdaleno A, Puig A, de Cabo L, Salinas C, Arreghini S, Korol S, Bevilacqua S, López L, Moretton J. 2001. Water pollution in an urban Argentine river. Bull Environ Contam Toxicol 67:408–415. http://dx.doi .org/10.1007/s001280139.
- Pavan ME, Carbonelli D, Zorzópulos J. 2002. Molecular approach to microbial diversity studies in the heavily polluted Matanza River. Rev Museo Argent Cienc Nat 4:139–144.
- Martin-Carnahan A, Joseph SW. 2005. Aeromonadaceae, p 556–580. *In* Garrity GM (ed), Bergey's manual of systematic bacteriology, 2nd ed, vol 2. Springer-Verlag, New York, NY.
- Roger F, Marchandin H, Jumas-Bilak E, Kodjo A, colBVH Study Group, Lamy B. 2012. Multilocus genetics to reconstruct aeromonad evolution. BMC Microbiol 12:62. http://dx.doi.org/10.1186/1471-2180 -12-62.
- Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF. 2006. Genome sequence of *Aeromonas hydrophila* ATCC 7966^T: jack of all trades. J Bacteriol 188: 8272–8282. http://dx.doi.org/10.1128/JB.00621-06.
- Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J, Nash JH, Johnson SC, Brown LL. 2008. The genome of *Aeromonas salmonicida* subsp. *salmonicida* A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427. http://dx.doi.org/10.1186/1471-2164-9-427.
- Charette SJ, Brochu F, Boyle B, Filion G, Tanaka KH, Derome N. 2012. Draft genome sequence of the virulent strain 01-B526 of the fish pathogen *Aeromonas salmonicida*. J Bacteriol 194:722–723. http://dx.doi .org/10.1128/JB.06276-11.
- Vincent AT, Tanaka KH, Trudel MV, Frenette M, Derome N, Charette SJ. 2015. Draft genome sequences of two Aeromonas salmonicida subsp. salmonicida isolates harboring plasmids conferring antibiotic resistance. FEMS Microbiol Lett 362:1–4. http://dx.doi.org/10.1093/femsle/fnv002.
- 12. Han JE, Kim JH, Shin SP, Jun JW, Chai JY, Park SC. 2013. Draft genome sequence of *Aeromonas salmonicida* subsp. *achromogenes* AS03, an atypical strain isolated from crucian carp (*Carassius carassius*) in the Republic of Korea. Genome Announc 1:e00791-13. http://dx.doi.org/10.1128/genomeA.00791-13.
- Valdes N, Espinoza C, Sanhueza L, Gonzalez A, Corsini G, Tello M. 2015. Draft genome sequence of the Chilean isolate *Aeromonas salmonicida* strain CBA100. FEMS Microbiol Lett 362:fnu062. http://dx.doi.org /10.1093/femsle/fnu062.
- 14. Beatson SA, das Graças de Luna M, Bachmann NL, Alikhan NF, Hanks KR, Sullivan MJ, Wee BA, Freitas-Almeida AC, Dos Santos PA, de Melo JT, Squire DJ, Cunningham AF, Fitzgerald JR, Henderson IR. 2011. Genome sequence of the emerging pathogen *Aeromonas caviae*. J Bacteriol 193:1286–1287. http://dx.doi.org/10.1128/JB.01337-10.
- Li Y, Liu Y, Zhou Z, Huang H, Ren Y, Zhang Y, Li G, Zhou Z, Wang L. 2011. Complete genome sequence of *Aeromonas veronii* strain B565. J Bacteriol 193:3389–3390. http://dx.doi.org/10.1128/JB.00347-11.
- Chai B, Wang H, Chen X. 2012. Draft genome sequence of highmelanin-yielding *Aeromonas media* strain WS. J Bacteriol 194:6693–6694. http://dx.doi.org/10.1128/JB.01807-12.
- Wu CJ, Wang HC, Chen CS, Shu HY, Kao AW, Chen PL, Ko WC. 2012. Genome sequence of a novel human pathogen, *Aeromonas aquariorum*. J Bacteriol 194:4114–4115. http://dx.doi.org/10.1128/JB.00621-12.
- Spataro N, Farfán M, Albarral V, Sanglas A, Lorén JG, Fusté MC, Bosch E. 2013. Draft genome sequence of *Aeromonas molluscorum* strain 848T^T,

isolated from bivalve molluscs. Genome Announc 1:e00382-13. http://dx .doi.org/10.1128/genomeA.00382-13.

- Farfán M, Spataro N, Sanglas A, Albarral V, Lorén JG, Bosch E, Fusté MC. 2013. Draft genome sequence of the Aeromonas diversa type strain. Genome Announc 1:e00330-13. http://dx.doi.org/10.1128/genom eA.00330-13.
- Hacker J, Carniel E. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381.
- 21. Dobrindt U, Hochhut B, Hentschel U, Hacker J. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414-424. http://dx.doi.org/10.1038/nrmicro884.
- 22. Pavan ME, Pavan EE, López NI, Levin L, Pettinari MJ. 2013. Genome sequence of the melanin-producing extremophile *Aeromonas salmonicida* subsp. *pectinolytica* strain 34mel^T. Genome Announc 1:e00675-13. http://dx.doi.org/10.1128/genomeA.00675-13.
- Chevreux B, Wetter T, Suhai S. 1999. Genome sequence assembly using trace signals and additional sequence information, p 45–56. *In* Computer science and biology. Proceedings of the German Conference on Bioinformatics GCB '99. GCB, Hannover, Germany.
- 24. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. http://dx.doi.org/10.1186 /1471-2164-9-75.
- 25. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Pillay M, Ratner A, Huang J, Woyke T, Huntemann M, Anderson I, Billis K, Varghese N, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. 2014. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567. http://dx.doi.org/10.1093/nar /gkt963.
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. http: //dx.doi.org/10.1093/nar/25.17.3389.
- 27. Colston SM, Fullmer MS, Beka L, Lamy B, Gogarten JP, Graf J. 2014. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using *Aeromonas* as a test case. mBio 5:e02136. http://dx.doi .org/10.1128/mBio.02136-14.
- Tekedar HC, Waldbieser GC, Karsi A, Liles MR, Griffin MJ, Vamenta S, Sonstegard T, Hossain M, Schroeder SG, Khoo L, Lawrence ML. 2013. Complete genome sequence of a channel catfish epidemic isolate, *Aeromonas hydrophila* strain ML09-119. Genome Announc 1:e00755-13. http://dx.doi.org/10.1128/genomeA.00755-13.
- Wang HC, Ko WC, Shu HY, Chen PL, Wang YC, Wu CJ. 2014. Genome sequence of *Aeromonas taiwanensis* LMG 24683^T, a clinical wound isolate from Taiwan. Genome Announc 2:e00579-14. http://dx.doi.org/10.1128 /genomeA.00579-14.
- Henson R, Cetto L. 2005. The MATLAB bioinformatics toolbox. *In* Jorde L, Little P, Dunn M, Subramaniam S (ed), Encyclopedia of genetics, genomics, proteomics and bioinformatics. John Wiley & Sons, Hoboken, NJ. http://dx.doi.org/10.1002/047001153X.g409308.
- Auch AF, von Jan M, Klenk H, Göker M. 2010. Digital DNA-DNA hybridization for microbial species delineation by means of genome-togenome sequence comparison. Stand Genomic Sci 2:117–134. http://dx .doi.org/10.4056/sigs.531120.
- Langille MG, Brinkman FS. 2009. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 25:664–665. http://dx.doi.org/10.1093/bioinfor matics/btp030.
- Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R. 2006. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7:142. http://dx.doi.org/10.1186/1471-2105-7-142.
- 34. Laing C, Buchanan C, Taboada EN, Zhang Y, Kropinski A, Villegas A, Thomas JE, Gannon VP. 2010. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions. BMC Bioinformatics 11:461. http://dx.doi.org/10.1186/1471 -2105-11-461.
- 35. Akhter S, Aziz RK, Edwards RA. 2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and

composition-based strategies. Nucleic Acids Res 40:e126. http://dx.doi .org/10.1093/nar/gks406

- 36. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. 2011. PHAST: a fast phage search tool. Nucleic Acids Res 39:W347-W352. http://dx.doi.org /10.1093/nar/gkr485.
- 37. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895-3903. http://dx.doi.org /10.1128/AAC.02412-14.
- 38. Chen LH, Yang J, Yu J, Yao ZJ, Sun LL, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33: D325-D328.
- 39. Sharma N, Rathore M, Sharma M. 2013. Microbial pectinase: sources, characterization and applications. Rev Environ Sci Biotechnol 12:45-60. http://dx.doi.org/10.1007/s11157-012-9276-9.
- 40. Ramos AM, Gally M, García MC, Levin L. 2010. Pectinolytic enzyme production by Colletotrichum truncatum, causal agent of soybean anthracnose. Rev Iberoam Micol 27:186-190. http://dx.doi.org/10.1016/j .riam.2010.06.002.
- 41. Glasner JD, Yang CH, Reverchon S, Hugouvieux-Cotte-Pattat N, Condemine G, Bohin JP, Van Gijsegem F, Yang S, Franza T, Expert D, Plunkett G, III, San Francisco MJ, Charkowski AO, Py B, Bell K, Rauscher L, Rodriguez-Palenzuela P, Toussaint A, Holeva MC, He SY, Douet V, Boccara M, Blanco C, Toth I, Anderson BD, Biehl BS, Mau B, Flynn SM, Barras F, Lindeberg M, Birch PR, Tsuyumu S, Shi X, Hibbing M, Yap MN, Carpentier M, Dassa E, Umehara M, Kim JF, Rusch M, Soni P, Mayhew GF, Fouts DE, Gill SR, Blattner FR, Keen NT, Perna NT. 2011. Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937. J Bacteriol 193:2076-2077. http://dx.doi.org /10.1128/JB.01513-10.
- 42. Kazemi-Pour N, Condemine G, Hugouvieux-Cotte-Pattat N. 2004. The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177-3186. http://dx.doi.org/10.1002/pmic.200300814.
- 43. Shevchik VE, Kester HC, Benen JA, Visser J, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N. 1999. Characterization of the exopolygalacturonate lyase PelX of Erwinia chrysanthemi 3937. J Bacteriol 181:1652-1663.
- 44. Blot N, Berrier C, Hugouvieux-Cotte-Pattat N, Ghazi A, Condemine G. 2002. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J Biol Chem 277:7936-7944. http: //dx.doi.org/10.1074/jbc.M109193200.
- 45. Nosanchuk JD, Casadevall A. 2003. The contribution of melanin to microbial pathogenesis. Cell Microbiol 5:203-223. http://dx.doi.org/10 .1046/j.1462-5814.2003.00268.x.
- 46. Donlon J, McGettigan S, O'Brien P, Ó Carra P. 1983. Re-appraisal of the nature of the pigment produced by Aeromonas salmonicida. FEMS Microbiol Let 19:285-290. http://dx.doi.org/10.1111/j.1574-6968.1983 .tb00558.x.
- 47. Gibson LF, George AM. 1998. Melanin and novel melanin precursors from Aeromonas media. FEMS Microbiol Lett 169:261-268. http://dx.doi .org/10.1111/j.1574-6968.1998.tb13327.x.
- 48. Wan X, Liu HM, Liao Y, Su Y, Geng J, Yang MY, Chen XD, Shen P. 2007. Isolation of a novel strain of Aeromonas media producing high levels of DOPA-melanin and assessment of the photoprotective role of the melanin in bioinsecticide applications. J Appl Microbiol 103:2533–2541. http: //dx.doi.org/10.1111/j.1365-2672.2007.03502.x.
- 49. Plonka PM, Grabacka M. 2006. Melanin synthesis in microorganismsbiotechnological and medical aspects. Acta Biochim Pol 53:429-443.
- 50. Wan X, Chai B, Liao Y, Su Y, Ye T, Shen P, Chen X. 2009. Molecular and biochemical characterization of a distinct tyrosinase involved in melanin production from Aeromonas media. Appl Microbiol Biotechnol 82: 261-269. http://dx.doi.org/10.1007/s00253-008-1742-5.
- 51. Yabuuchi E, Ohyama A. 1972. Characterization of "pyomelanin"producing strains of Pseudomonas aeruginosa. Int J Syst Bacteriol 22:53-64. http://dx.doi.org/10.1099/00207713-22-2-53.
- 52. Hunter RC, Newman DK. 2010. A putative ABC transporter, hatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. J Bacteriol 192:5962-5971. http://dx.doi.org/10.1128 /JB.01021-10.
- 53. Rodríguez-Rojas A, Mena A, Martín S, Borrell N, Oliver A, Blázquez J. 2009. Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence

in chronic lung infection. Microbiology 155:1050-1057. http://dx.doi.org /10.1099/mic.0.024745-0.

- 54. Allen DA, Austin B, Colwell RR. 1983. Aeromonas media, a new species isolated from river water. Int J Syst Bacteriol 33:599-604. http://dx.doi .org/10.1099/00207713-33-3-599.
- 55. Kotob SI, Coon SL, Quintero EJ, Weiner RM. 1995. Homogentisic acid is the primary precursor of melanin synthesis in Vibrio cholerae, a Hyphomonas strain, and Shewanella colwelliana. Appl Environ Microbiol 61: 1620-1622
- 56. Wang H, Qiao Y, Chai B, Qiu C, Chen X. 2015. Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS. PLoS One 10:e0120923. http://dx.doi.org/10.1371/journal .pone.0120923.
- 57. Hong L, Simon JD. 2007. Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. J Phys Chem B 111:7938-7947. http://dx.doi.org/10.1021/jp071439h.
- 58. Schleinitz KM, Kleinsteuber S, Vallaeys T, Babel W. 2004. Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1. Appl Environ Microbiol 70:5357-5365. http://dx.doi .org/10.1128/AEM.70.9.5357-5365.2004.
- 59. Sen D, Van der Auwera GA, Rogers LM, Thomas CM, Brown CJ, Top EM. 2011. Broad-host-range plasmids from agricultural soils have IncP-1 backbones with diverse accessory genes. Appl Environ Microbiol 77:7975-7983. http://dx.doi.org/10.1128/AEM.05439-11.
- 60. Del Castillo CS, Hikima J, Jang HB, Nho SW, Jung TS, Wongtavatchai J, Kondo H, Hirono I, Takeyama H, Aoki T. 2013. Comparative sequence analysis of a multidrug-resistant plasmid from Aeromonas hydrophila. Antimicrob Agents Chemother 57:120-129. http://dx.doi.org/10 .1128/AAC.01239-12.
- 61. McIntosh D, Cunningham M, Ji B, Fekete FA, Parry EM, Clark SE, Zalinger ZB, Gilg IC, Danner GR, Johnson KA, Beattie M, Ritchie R. 2008. Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. J Antimicrob Chemother 61:1221-1228. http://dx.doi .org/10.1093/jac/dkn123.
- 62. Petrovski S, Stanisich VA. 2010. Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. J Bacteriol 192:1865-1874. http://dx.doi.org/10.1128/JB.01322-09.
- 63. Stein LY, Arp DJ, Berube PM, Chain PS, Hauser L, Jetten MS, Klotz MG, Larimer FW, Norton JM, Op den Camp HJ, Shin M, Wei X. 2007. Whole-genome analysis of the ammonia-oxidizing bacterium, Nitrosomonas eutropha C91: implications for niche adaptation. Environ Microbiol 9:2993-3007. http://dx.doi.org/10.1111/j.1462-2920.2007.01409.x.
- 64. Ren Y, Ren Y, Zhou Z, Guo X, Li Y, Feng L, Wang L. 2010. Complete genome sequence of Enterobacter cloacae subsp. cloacae type strain ATCC 13047. J Bacteriol 192:2463-2464. http://dx.doi.org/10.1128/JB.00067-10.
- 65. Izumiya H, Sekizuka T, Nakaya H, Taguchi M, Oguchi A, Ichikawa N, Nishiko R, Yamazaki S, Fujita N, Watanabe H, Ohnishi M, Kuroda M. 2011. Whole-genome analysis of Salmonella enterica serovar Typhimurium T000240 reveals the acquisition of a genomic island involved in multidrug resistance via IS1 derivatives on the chromosome. Antimicrob Agents Chemother 55:623-630. http://dx.doi.org/10.1128/AAC.01215-10.
- 66. Byrne-Bailey KG, Weber KA, Chair AH, Bose S, Knox T, Spanbauer TL, Chertkov O, Coates JD. 2010. Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. J Bacteriol 192:1475-1476. http://dx.doi.org/10.1128/JB.01449-09.
- 67. Ahmed SA, Awosika J, Baldwin C, Bishop-Lilly KA, Biswas B, Broomall S, Chain PS, Chertkov O, Chokoshvili O, Coyne S, Davenport K, Detter JC, Dorman W, Erkkila TH, Folster JP, Frey KG, George M, Gleasner C, Henry M, Hill KK, Hubbard K, Insalaco J, Johnson S, Kitzmiller A, Krepps M, Lo CC, Luu T, McNew LA, Minogue T, Munk CA, Osborne B, Patel M, Reitenga KG, Rosenzweig CN, Shea A, Shen X, Strockbine N, Tarr C, Teshima H, van Gieson E, Verratti K, Wolcott M, Xie G, Sozhamannan S, Gibbons HS. 2012. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including Shiga toxin encoding phage stx2. PLoS One 7:e48228. http://dx.doi.org/10.1371/journal.pone.0048228.
- 68. Francki KT, Chang BJ, Mee BJ, Collignon PJ, Susai V, Keese PK. 2000. Identification of genes associated with copper tolerance in an adhesiondefective mutant of Aeromonas veronii biovar sobria. FEMS Immunol

Med Microbiol 29:115–121. http://dx.doi.org/10.1111/j.1574-695X.2000 .tb01513.x.

- 69. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J, van der Lelie D. 2011. Comparative genomics and functional analysis of niche-specific adaptation in *Pseudomonas putida*. FEMS Microbiol Rev 35:299–323. http://dx .doi.org/10.1111/j.1574-6976.2010.00249.x.
- Huddleston JR, Zak JC, Jeter RM. 2006. Antimicrobial susceptibilities of Aeromonas spp. isolated from environmental sources. Appl Environ Microbiol 72:7036–7042. http://dx.doi.org/10.1128/AEM.00774-06.
- Rhodes G, Parkhill J, Bird C, Ambrose K, Jones MC, Huys G, Swings J, Pickup RW. 2004. Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl Environ Microbiol 70:7497–7510. http://dx.doi.org/10.1128/AEM.70.12.7497-7510.2004.
- Weissbach H, Resnick L, Brot N. 2005. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochim Biophys Acta 1703:203–212. http://dx.doi.org/10.1016/j.bbapap.2004.10 .004.
- Petrov VM, Ratnayaka S, Nolan JM, Miller ES, Karam JD. 2010. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol J 7:292. http://dx.doi.org/10.1186/1743-422X-7 -292.
- 74. Schuch R, Fischetti VA. 2006. Detailed genomic analysis of the Wβ and γ phages infecting *Bacillus anthracis*: implications for evolution of environmental fitness and antibiotic resistance. J Bacteriol 188:3037–3051. http://dx.doi.org/10.1128/JB.188.8.3037-3051.2006.
- Lee CN, Lin JW, Weng SF, Tseng YH. 2009. Genomic characterization of the intron-containing T7-like phage phiL7 of *Xanthomonas campestris*. Appl Environ Microbiol 75:7828–7837. http://dx.doi.org/10.1128/AEM .01214-09.
- Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY. 2005. Identification and characterization of putative virulence genes and gene clusters in *Aeromonas hydrophila* PPD134/ 91. Appl Environ Microbiol 71:4469–4477. http://dx.doi.org/10.1128 /AEM.71.8.4469-4477.2005.
- 77. Hossain MJ, Waldbieser GC, Sun D, Capps NK, Hemstreet WB, Carlisle K, Griffin MJ, Khoo L, Goodwin AE, Sonstegard TS, Schroeder S, Hayden K, Newton JC, Terhune JS, Liles MR. 2013. Implication of lateral genetic transfer in the emergence of *Aeromonas hydrophila* isolates of epidemic outbreaks in channel catfish. PLoS One 8:e80943. http://dx .doi.org/10.1371/journal.pone.0080943.
- Chan KG, Tan WS, Chang CY, Yin WF, Mumahad Yunos NY. 2015. Genome sequence analysis reveals evidence of quorum-sensing genes present in *Aeromonas hydrophila* strain M062, isolated from freshwater. Genome Announc 3:e00100-15. http://dx.doi.org/10.1128/genomeA .00100-15.
- 79. Emond-Rheault JG, Vincent AT, Trudel MV, Brochu F, Boyle B, Tanaka KH, Attéré SA, Jubinville É Loch TP, Winters AD, Faisal M, Frenette M, Derome N, Charette SJ. 2015. Variants of a genomic island in *Aeromonas salmonicida* subsp. *salmonicida* link isolates with their geographical origins. Vet Microbiol 175:68–76. http://dx.doi.org/10.1016/j .vetmic.2014.11.014.
- Kelso B, Smith RV, Laughlin RJ, Lennox SD. 1997. Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation. Appl Environ Microbiol 63:4679–4685.
- Arai H. 2011. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in *Pseudomonas aeruginosa*. Front Microbiol 2:103. http://dx.doi.org/10.3389/fmicb.2011.00103.
- Gavira M, Roldán MD, Castillo F, Moreno-Vivián C. 2002. Regulation of *nap* gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium *Rhodobacter sphaeroides* DSM158. J Bacteriol 184:1693–1702. http://dx.doi.org/10.1128/JB.184.6.1693-1702.2002.
- 83. Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. 2005.

Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 1:e55. http: //dx.doi.org/10.1371/journal.pcbi.0010055.

- 84. Henry S, Bru D, Stres B, Hallet S, Philippot L. 2006. Quantitative detection of the *nosZ* gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, *narG*, *nirK*, and *nosZ* genes in soils. Appl Environ Microbiol 72:5181–5189. http://dx.doi.org/10.1128 /AEM.00231-06.
- Schreiber F, Wunderlin P, Udert KM, Wells GF. 2012. Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. Front Microbiol 3:372. http://dx.doi.org/10.3389/fmicb.2012.00372.
- Raiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC, López NI. 2015. Genome sequence analysis of *Pseudomonas extremaustralis* provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles 19:207–220. http://dx.doi .org/10.1007/s00792-014-0700-7.
- 87. Beaz-Hidalgo R, Figueras MJ. 2012. Molecular detection and characterization of furunculosis and other *Aeromonas* fish infections, p 97–132. *In* Carvalho E (ed), Health and environment in aquaculture. InTech, Rijeka, Croatia. http://cdn.intechopen.com/pdfs/35139/InTechMolecular _detection_and_characterization_of_furunculosis_and_other _aeromonas_fish_infections.pdf.
- Krejcí E, Sedlácek I, Baudisová D. 2009. Classification of brown pigmented aeromonads isolated from river water. Folia Microbiol (Praha) 54:123–129. http://dx.doi.org/10.1007/s12223-009-0018-5.
- Burr SE, Wahli T, Segner H, Pugovkin D, Frey J. 2003. Association of type III secretion genes with virulence of *Aeromonas salmonicida* subsp. *salmonicida*. Dis Aquat Organ 57:167–171. http://dx.doi.org/10.3354 /da0057167.
- Burr SE, Pugovkin D, Wahli T, Segner H, Frey J. 2005. Attenuated virulence of an *Aeromonas salmonicida* subsp. *salmonicida* type III secretion mutant in a rainbow trout model. Microbiology 151:2111–2118. http: //dx.doi.org/10.1099/mic.0.27926-0.
- Studer N, Frey J, Vanden Bergh P. 2013. Clustering subspecies of Aeromonas salmonicida using IS630 typing. BMC Microbiol 13:36. http://dx .doi.org/10.1186/1471-2180-13-36.
- Suarez G, Sierra JC, Erova TE, Sha J, Horneman AJ, Chopra AK. 2010. A type VI secretion system effector protein, VgrG1, from *Aeromonas hydrophila* that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol 192:155–168. http://dx.doi.org/10.1128/JB.01260-09.
- Iacovache I, van der Goot FG, Pernot L. 2008. Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611– 1623. http://dx.doi.org/10.1016/j.bbamem.2008.01.026.
- 94. Pavan ME, Pettinari MJ, Cairó F, Pavan EE, Cataldi AA. 2011. *Bacillus anthracis*: a molecular look at a famous pathogen. Rev Argent Microbiol **43**:294–310.
- Song T, Toma C, Nakasone N, Iwanaga M. 2004. Aerolysin is activated by metalloprotease in *Aeromonas veronii* biovar *sobria*. J Med Microbiol 53:477–482. http://dx.doi.org/10.1099/jmm.0.05405-0.
- Cascón A, Yugueros J, Temprano A, Sánchez M, Hernanz C, Luengo JM, Naharro G. 2000. A major secreted elastase is essential for pathogenicity of *Aeromonas hydrophila*. Infect Immun 68:3233–3241. http://dx .doi.org/10.1128/IAI.68.6.3233-3241.2000.
- Han HJ, Taki T, Kondo H, Hirono I, Aoki T. 2008. Pathogenic potential of collagenase gene from *Aeromonas veronii*. Can J Microbiol 54:1–10. http://dx.doi.org/10.1139/W07-109.
- Miyoshi S. 2013. Extracellular proteolytic enzymes produced by human pathogenic *Vibrio* species. Front Microbiol 4:339. http://dx.doi.org/10 .3389/fmicb.2013.00339.
- Adrangi S, Faramarzi MA. 2013. From bacteria to human: a journey into the world of chitinases. Biotechnol Adv 31:1786–1795. http://dx.doi.org /10.1016/j.biotechadv.2013.09.012.