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Abstract. The spectral bidirectional reflectance distribution function (BRDF) of metals plays an 

important role in industrial processing involving laser-surface interaction. In particular, in laser 

metal machining, absorbance is strongly dependent on the radiation incidence angle as well as 

on finishing and contamination grade of the surface, and in turn it can considerably affect 

processing results. Very recently, laser radiation is also used to structure metallic surfaces, in 

order to produce many particular optical effects, ranging from a high level polishing to angular 

color shifting. Of course, full knowledge of the spectral BRDF of these structured layers makes 

it possible to infer reflectance or color for any irradiation and viewing angles. In this paper, we 

present Vis-NIR spectral BRDF measurements of laser-polished metallic, opaque, flat samples 

commonly employed in such applications. The resulting optical properties seem to be dependent 

on the atmospheric composition during the polishing process in addition to the roughness. The 

measurements are carried out with a Perkin Elmer Lambda 950 double-beam spectrophotometer, 

equipped with the Absolute Reflectance/Transmittance Analyzer (ARTA) motorized 

goniometer. 

1 Introduction  

Laser surface processing techniques on metals are a subject of great interest from both a scientific and 

industrial standpoint, since they can allow faster machining times and yield more precise finishing 

properties than the mechanical counterpart. Moreover, they can be used to obtain several number of 

interesting features, like controlled microstructures for enhancing glues adhesion [1], coloring via 

oxidation phenomena, and surface polishing. However, laser machining requires the fine adjustment of 

several parameters, i.e., beam power, velocity and frequency, atmosphere composition and angle of 

incidence. Hence most of the works in open literature are about finding general correlations between the 

aforementioned parameters and the experimental results. In this context, the paper by Veiko et al. [2] 

proposes a correlation between a chromaticity coefficient and laser treatment regimes for stainless steel 

and titanium coloring, while the work by Bordatchev et al. [3] is an interesting review of laser polishing 

experiments on various metal surfaces carried out by several research groups, but the comparison takes 

into account only the starting and the achieved average roughness. The assessment of laser polishing 

processes requires a detailed optical surface characterization to define the visual appearance of the 

finished product, as well as to evaluate its radiative properties in engineering applications. Although the 

BRDF is only one of the parameters considered in [4] to evaluate visual appearance, where texture 

properties have to be taken into account, it still is the main measurable feature in characterizing surfaces, 

and it can give a full insight on the optical properties of a surface finish.  
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In this paper, Vis-NIR BRDF measurements are carried out on four laser polished steel samples, 

machined with two different sets of laser parameters in two different atmospheric compositions. The 

achieved optical properties are compared with those of the untreated steel, to show the effect of the laser 

surface processing.  

 

2 Experiments 

2.1 Spectral BRDF 

The definition of BRDF, or fr, for an element of area dA, has been given by Nicodemus et al. [5] as  

 

𝑓𝑟(𝜃𝑖, 𝜑𝑖; 𝜃𝑟, 𝜑𝑟) =
𝑑𝐿𝑟(𝜃𝑖, 𝜑𝑖; 𝜃𝑟, 𝜑𝑟)

𝑑𝐸𝑖(𝜃𝑖, 𝜑𝑖)
   [𝑠𝑟−1] (1) 

 
where dLr is the reflected radiance, dEi is the incident irradiance, the spherical coordinates (θi,φi) and 

(θr,φr) are the generic directions of the incoming and the reflected radiation, respectively. This definition 

is valid under the assumption of geometrical (ray) optics, flat reference surface uniformly irradiated, and 

scattering properties uniform and isotropic across the reference plane.  

Although BRDF is defined as a differential quantity, the use of finite quantities is needed for a 

definition of BRDF that can be applied in real measurement situations, typically with the rotation of the 

sample along one or two axes and a movable detector with an aperture area Ad that can revolve around 

the test object. Under these approximations, we get [6] 

 

𝑓𝑟(𝜃𝑖, 𝜑𝑖; 𝜃𝑟, 𝜑𝑟) ≈
𝐿𝑟(𝜃𝑖, 𝜑𝑖; 𝜃𝑟, 𝜑𝑟)

𝐸𝑖(𝜃𝑖, 𝜑𝑖)
=

Φ𝑟

Φ𝑖

𝑟2

cos(𝜃𝑟)𝐴𝑑
   [𝑠𝑟−1] (2) 

 

where Φi and Φr are the incident and reflected fluxes, respectively, r is the center to center distance from 

the sample to detector aperture. However, fr is a total quantity whereas for our purposes, where 

fluorescence effects are absent and the wavelength of the incident and reflected radiation is the same, 

we introduce a spectral BRDF fr,λ, defined by similarity with equation (2) as 

 

𝑓𝑟,𝜆(𝜃𝑖, 𝜑𝑖; 𝜃𝑟 , 𝜑𝑟; 𝜆) ≈
𝐿𝑟,𝜆(𝜃𝑖, 𝜑𝑖; 𝜃𝑟, 𝜑𝑟 , 𝜆)

𝐸𝑖,𝜆(𝜃𝑖, 𝜑𝑖 , 𝜆)
= 𝜌(𝜆)

𝑟2

cos(𝜃𝑟)𝐴𝑑
   [𝑠𝑟−1] (3) 

 
where ρ(λ) is the measured spectral reflectance for a given direction of incident radiation and for a given 

detector position, i.e. the Φr,λ(λ) to Φi,λ(λ) ratio.  

2.2 Geometric definitions 

With respect to the geometry of the experimental apparatus that will be introduced in the next paragraph, 

let us define a few relevant angles, which are also visualized in figures 1 and 2. Given a specimen whose 

test surface lays on the x-y plane, and being the z axis coincident with its normal direction, in our 
configuration the incident and reflected beams lay always on the x-z plane, thus the azimuth angle φ is 

always 0. Three angles define the geometry of the setup for a single spectrophotometric measure, namely 
the incidence angle θi, between the incident beam and the sample normal, positive clockwise, the 

detector angle θd, between the incident beam and the line joining the detector and sample centers, 

positive clockwise, and the aspecular angle θa, defined as the angle from direct specular direction, 

positive towards incident illumination. In particular, the relationship between these three angles is 

expressed in equation 4: 
 

𝜃𝑎 = 2𝜃𝑖 − 𝜃𝑑 (4) 
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being 2θi the angle between incident and specular reflected radiation. θd is the angular position of the 

detector that collects the reflected radiation, hence it corresponds to θr in the BRDF definition given by 

equation (3).  The range of the angles is from 10° to 350° for θd, although the extremities shouldn’t be 

reached because the beam periscope blocks part of the detector viewing angle, and from -90° to 90° for 
θi in case of reflectance measurements.  

 

 
 

(a) (b) 

Figure 1. Generic spherical coordinates (a), and top-view scheme of the ARTA with moving detector 

(1), beam periscope (2), and sample (3), (b). 

2.3 Experimental setup 

The measurements are carried out with a Perkin Elmer Lambda 950 double beam spectrophotometer 

equipped with the ARTA goniophotometer accessory by OMT Solutions BV, presented in [7] and shown 

in figure 2. The sample is positioned on a motorized rotation stage in the center, whereas the PMT and 

PbS sensors, mounted in a 25 mm integrating sphere with a 30 mm wide and 17 mm high entrance port, 

can rotate around the same axis as the sample holder.  

 

 

Figure 2. Sample compartment of the ARTA with illustrated axes and angles: 

sample beam periscope (1), sample with alignment beam (2).  

 

(1) 

(3) (2) 
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The accessory has two polarizing filters, and every measurement is repeated twice, in s and p 

polarization, and results are then averaged. The beam size with normal incidence is 10 mm x 5 mm, and 
its width is increased with the sample rotation angle θi by the factor 1/cos(θi). The distance between the 

sample center and the entrance port is 91.5 mm. For this experimental campaign, the sample port width 

has been reduced to 14 mm with black paperboard in order to improve angular accuracy, giving the 
sensor a horizontal view angle Δθv = 8.8°. The vertical view angle is Δφv = 10.6°. The errors introduced 

by using a finite sized detection solid angle in benchtop goniophotometers are well analyzed in [6], and 

they depend on both the aperture size and the variation of the measured radiation over the aperture, thus 

they can vary with the instrument setup, the measurement sample, and the sample properties. An in-

depth discussion of these effect is beyond the purpose of this work, however it should be pointed out 

that measurement errors of about 3% are expected.  

In this work, measurements are taken in the Vis-NIR wavelength range, i.e., from 350 to 2000 nm, 

with steps of 10 nm. A preliminary analysis has been carried out with an angle of incidence of incoming 
radiation θi = 45°, and sensing angles θd ranging from 15° to 105° with 15° increments. Since very low 

reflected radiation values have been detected outside aspecular angles θa of ±15°, the main measurement 

campaign has been carried out with θa ranging from -15° to 15°, with 5° increments. Two angles of 

incidence, θi = 45° and θi = 15° are considered. The measurement geometries are listed in tables 1 and 

2 and illustrated in figure 3. 

 

Table 1. Preliminary test geometries 

θi = 45° 

θd  [°] 345 15 30 45 60 75 90 105 

θa [°] 105 75 60 45 30 15 0 -15 

 
Table 2. Test geometries 

θi  = 15° 

θd  [°] 15 20 25 30 35  40  45 

θa [°] 15 10  5  0 -5 -10 -15 

θi = 45° 

θd  [°] 75 80 85 90 95 100 105 

θa [°] 15 10  5  0 -5  -10  -15 

 

 

 

 

 
 

(a) (b) (c) 
Figure 3. Scheme of the test geometries. Preliminary test (a), test with θi =15° (b), test with θi =45°. 

The highlighted (grey) region is swept by the detector with discrete angular intervals. 
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2.4 Samples 

The samples are 0.5 mm thick steel plates with 16 mm x 12 mm surface polished areas, prepared with a 

pulsed active fiber laser source, operating at a wavelength of 1064 nm. The setup is fully presented in 

[8]. Four finishes are considered representing two different roughness classes and processing 

environments. Finishes N1A1 and N2A2 were obtained in Ar atmosphere, exhibiting low and high 

roughness classes respectively. Analogously, N1 and N2 were obtained under N2, and represent low and 

high surface roughness cases. The different textures of the laser polished surfaces are highlighted in 

figure 4. The “untreated steel” measurements have been taken on the backside of the specimen with N1 

and N2 treatments.  

 

  
Figure 4. Pictures of the laser-treated samples. 

 

 

3 Results 

3.1 Angle of incidence effect 

A slight increase of the specular component of the reflection with the increase of the angle of incidence 
θi from 15° to 45° is shown in figures 5 and 6. In particular, sample N1A1 shows lesser sensitivity to 

variations of θi than the other samples. It is common behavior between all samples that reflectance 

differences peak at the specular direction. 

 

  
Figure 5. Spectra in specular directions, angle of incidence θi = 15° and θi = 45°, samples N1 and 

N1A1 
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Figure 6. Spectra in specular directions, angle of incidence θi = 15° and θi = 45°, samples N2 and 

N2A2 

3.2 BRDF 
The BRDFs of the laser-treated surfaces are shown for θi = 45° in figure 7. It should be noted that the 

four different finishes show different angular and spectral variations: sample N1 is the only one that 
presents high BRDF values for negative aspecular angles θa, whereas sample N1A1 shows a perfectly 

symmetric behavior. The peculiarity of sample N2A2 is that it’s the only one whose BRDF doesn’t peak 
at θa = 0°. 

 

  

  
Figure 7. BRDF of the four laser-treated surfaces at three wavelegths, angle of incidence θi = 45°. 
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Figure 8. BRDF of the untreated steel surface at three wavelegths, angle of incidence θi = 45° (left) 

and θi = 15° (right). 

 
The curves show similar trends for θi = 15°, as shown in figure 9, but with smaller values, and as 

pointed out in paragraph 3.1. The reflectance increase of the laser polished surfaces with respect to the 

untreated bare steel is easily noticeable in figure 8 by comparison. Further considerations on this point 

are drawn in section 3.3. 

 

 

  

  
Figure 9. BRDF of the four laser-treated surfaces at three wavelegths, angle of incidence θi = 15°. 
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3.3 Reflectance differences 

The surface polishing process causes an increase of the mirror-like behavior in steel, by factors listed in 

table 4, while considering the visible wavelength range. The largest specular reflectance increase is 

shown by sample N1A1, while the lowest by sample N2A2. However, the most interesting behavior is 

the change of the angular reflection properties, which are very specific for each of the four samples. 

Figure 10 shows, indeed, that the four angular shapes of reflectance increase peak at different angles. 
The only sample that also shows a reflection decrease, for θa = 5°, is sample N1.  

 

Table 3. Average reflectance increase in specular direction due to laser polishing, Vis range 

 N1 N1A1 N2 N2A2 

θi = 15° [%R] 22.7 32.9 22.2 12.2 

θi = 45° [%R] 25.1 31.2 23.0 12.7 

 
Figure 11 shows a 3D plot of the angular variation of the spectra with θa, where the differences in 

shape between the sample N1 and the untreated bare steel surface can be highlighted.  

 

  
Figure 10. Average reflectance increase, Vis range, for θi = 15° and θi = 45°, at seven aspecular 

angles. 

 

 
Figure 11. Full spectra with angular dependency of sample N1 and untreated steel, θi = 45° 
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4 Conclusions 

A first attempt to characterize the angular-dependent optical properties of steel laser polished surfaces 

has been carried out by means of the benchtop spectrogoniometer ARTA. The analyses allow to 

characterize the reflectance increase due to the laser machining. The BRDF has been calculated for two 

different angles of incidence, showing spectral and angular properties of the four considered samples. 

In addition, the results show that different machining parameters lead to different angular-dependent 

values of reflectance increase. Further studies are needed to verify the link between the angular and 

spectral variations of the surface reflectance, and the laser machining parameters, as well as the 

connection of spectral properties to the superficial roughness and texture.  
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