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ABSTRACT  

Binary cycles have drawn the attention as a technical solution for the geothermal power production. This attention is mainly due to 

the huge potential of medium-low temperature geothermal sources, typically exploited by means of a binary cycle, and the 

relevance of the environmental concern, which can be conveniently dealt with by means of a closed cycle. The binary cycle has 

been therefore the object of an extended research activity, in order to attain higher plant performance. A crucial matter is the 

improvement of the heat introduction process. For a given geothermal fluid in liquid state, i.e. for a variable temperature heat 

source, in a conventional ORC the working fluid evaporation process is responsible for an important second law loss: removal of 

this loss allows greater power and possibly higher cycle efficiency to be attained. Aim of the present paper is to investigate and 

compare recently proposed technical solutions based on the current technology, which do not entail considerable operating risk or 

relevant investment; they can however lead to an improvement in plant performance and economics. The selected cycle options 

were dealt with in the open literature, and try to reduce the heat introduction second law loss: in the first one, the so called OFC, 

this loss is strongly reduced, because heat is introduced in the cycle when the working fluid is in liquid phase, but a  dissipative 

flash process is then required. In the second one, the so called Pinch Point Smoother, this loss is reduced because the working fluid 

heating curve is smoothed by means of a flow split, which allows a fraction of the working fluid flow to evaporate at a pressure 

lower than the pressure of the main flow, but mechanical recompression is then required to inject the separated flow fraction into 

the turbine. The result of comparison may depend both on the temperature level of thermal sources involved and on the working 

fluid selected: the present paper will discuss several examples, representative of geothermal applications, and try to assess whether 

the adoption of these solutions can be convenient for geothermal exploitation. 

1. INTRODUCTION  

The selection of  the plant scheme and cycle parameters for a  geothermal plant is a complex item, involving many variables. In the 

present paper  liquid-phase geothermal fluid only will be considered. This focus on liquid-phase is due to the general trend towards 

the exploitation of lower temperature and lower enthalpy geothermal heat sources, associated with the basic requirement to avoid 

any emission of pollutants. An effective way to reduce emissions consists in  keeping  the geothermal fluid liquid by proper 

pressurization, all along its pattern  through the wells and at the surface in the power block, and implementing a full reinjection of 

the geothermal fluid and its gas and salt content. Also, the heat exchanger scaling abducted during maintenance, a waste product 

which has to be disposed, is normally  present in smaller quantity if the heat source fluid is pressurized and phase change  is 

avoided. 

The huge potential of medium-low temperature geothermal sources is typically exploited by means of a binary cycle. The binary 

cycle has been therefore the object of an extended research activity, in order to attain higher plant performance. A crucial matter is 

the improvement of the heat introduction process. For a  given  geothermal fluid in liquid state , i.e. for a variable temperature heat 

source, the working fluid evaporation process is responsible for an important second law loss in a conventional subcritical ORC: 

removal of this loss allows greater power and possibly higher cycle efficiency to be  attained. 

The multilevel evaporation cycle, the Kalina cycle, the supercritical cycle, the zeotropic mixture cycle are just some of the most 

known binary cycle options, all aimed at reducing the second law heat introduction loss;  contextually to these cycle configurations, 

the trilateral cycle was also proposed. 

Aim of the present paper is to investigate and compare recently proposed technical solutions based on the current technology, 

which do not entail considerable operating risk or relevant investment and which can however lead to an improvement in plant 

performance and economics. The Kalina cycle and the zeotropic mixture cycle were therefore intentionally disregarded. The 

former, in fact, though already implemented in a few power plants (Husavik, Hjartarson et al. (2005)), Unteraching (Richter 

(2010)), Bruchsal (Herzberger (2010))) and possibly others) entails however high operation pressures, corrosion problems, and a 

complex plant scheme; the latter, only exceptionally adopted, entails disadvantages because of possible working fluid composition 

change and low heat transfer coefficient (it is known that the heat transfer coefficient for mixtures is lower than that of pure fluids). 

Recently proposed cycles which  adopt a two-phase expander, were as well disregarded, as the two–phase expander is not yet a 

proven technology. 

Moreover, in the present paper focus will be placed on subcritical cycles, though some  supercritical cycles will be considered in 

the comparison too. It is in fact well known (Angelino and Casci (1969)) that supercritical cycles have a definite advantage 

concerning the  good matching of the heat release curve of the geothermal fluid and the working fluid heat input curve. In a 

supercritical cycle, also, the  pressure in the whole organic fluid circuit is often much higher than in the subcritical plants. This fact 
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yields much lower volume flow rates on the vapour side components and piping: hence the cross section area for the flow of 

working fluid is lower, components are compact and the cost of both components and connecting piping can possibly be lower.  

As a matter of fact, however, for most of the existing successful geothermal ORC plants  Di Pippo (2005)/ a subcritical cycle was 

adopted; nevertheless, very effective supercritical systems can be obtained (Astolfi et al. (2013)). Both technical solution have their 

own strength points. 

Most of the subcritical cycles adopted are characterized by a working fluid which is liquid at normal ambient temperature, so that it 

can be easily stored and handled as a liquid without large pressurization.  For example iso-pentane, a well-established working 

fluid, has a 28 °C boiling point, and normally it condenses at a pressure slightly above the atmospheric pressure in an air-condenser. 

Though geothermal ORC systems  are well cared of from the design and construction aspects concerning tightness, a low pressure 

in the condensing section is certainly an advantage from the point of  view of potential leakages; all the more so, if the pressure 

falls below the atmospheric pressure when the machine is inactive. Another intrinsic advantage is that the low pressure at the 

evaporator involves lower parasitic power requirements for the liquid feed pump; in ORC systems in fact, due to the low specific 

work produced in the turbine, the power to drive the feed pumps is much larger than in an equivalent steam system: in the case of 

supercritical cycles the power of the pump is often of the same order of magnitude as the turbine power. Finally, a further point in 

favour of low pressure systems, comes from the loads imposed to some critical components by high pressure, namely in the turbine, 

the sealing systems, the system control valves. As a consequence of the advantages emphasized, the low pressure ORC are really 

tough and robust. 

On these premises, the authors decided to compare the basic simple subcritical Rankine cycle, with Rankine cycles including some 

cycle enhancements, in order to obtain an increased performance. 

In the so called Pinch Point Smoother, introduced by Gaia and Pietra (2013), the working fluid heating curve is “smoothed” by 

means of a flow split, which allows a fraction of the working fluid flow to evaporate at a pressure lower than the pressure of the 

main flow, but mechanical recompression is then required to inject the separated flow fraction into the turbine. In the so called 

Organic Flash Cycle (OFC)( Note that most of the papers found in literature relating to flash cycles, see for example Fischer and 

Lai (2012), involve a two-phase expander, and are therefore not considered in this work.), see Ho et al, (2012), heat is introduced in 

the cycle when the working fluid is in liquid phase, but a dissipative flash process is then required.  

The result of comparison may depend both on the temperature level of thermal sources involved and on the working fluid selected: 

the present paper will discuss several examples, representative of geothermal applications, and assess whether the adoption of these 

solutions can be convenient for geothermal exploitation. 

2. SELECTED CYCLE SCHEMES  AND WORKING FLUID 

The selected cycle schemes are described in the following paragraphs; in all cases the hydrofluorocarbon HFC-245fa (1,1,1,3,3 

pentafluoropropane) is selected as working fluid. This working fluid (see tab. 1 for thermophysical properties) is a refrigerant 

largely used in actual plants, not flammable, featuring low toxicity and easily available, which can be conveniently adopted in 

subcritical cycles up to a maximum source temperature of about 170 °C; for higher temperature sources a supercritical cycle or a 

working fluid with a higher critical temperature should be adopted.  

Table 1: Thermophysical properties of HFC245fa 

Critical temperature (°) 154.05 

Critical pressure (bar) 36.4 

Normal boiling point (°C) 15.3 

Molecular mass (g/mol) 134.05 

Ozone Depletion Potential, ODP 0 

Atmospheric lifetime (years) ≈ 7 

Global Warming Potential, GWP ≈ 1000 

 

Basic single pressure level ORC, two pressure level ORC and in some cases supercritical ORC (adopting a proper working fluid) 

are here considered for comparison.  

These selected cycle schemes aim at the best utilization of the exchange surface. It is well known that the minimum temperature 

difference between the two streams of an evaporator (the so called Pinch Point Temperature Difference, ∆Tpp) is a techno-economic 

key parameter: reducing this temperature difference requires a higher heat transfer surface, but allows better thermodynamic 

performance; however, the gain is reduced when the ∆Tpp becomes small, because of the constant temperature evaporation process 

(see fig.1) 

All the enhanced cycles considered in this work aim at solving this problem and require a higher heat transfer surface with respect 

to the base single pressure cycle: the scope is to evaluate which solution has the best ratio between net power gain and extra 

surface. 
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Figure 1: T-Q diagram for single pressure level ORC with different values of ∆Tpp (left) and ORC power increase versus 

hot heat exchanger surface 

 

2.1 Pinch Point Smoother 

The plant scheme required for the so called Pinch Point Smoother, is shown in figure 2: the heating of the working fluid up to 

saturation condition is accomplished by means of two subsequent preheaters: the working fluid flow is split after the first preheater, 

so that a minor fraction of the flow can be sent to a throttling valve, in order to evaporate at a pressure lower than the pressure of 

the main flow; mechanical recompression is then required to inject the separated flow fraction into the main flow before the turbine. 

Such a plant scheme allows a “smoothed”,  more favourable T-Q diagram with respect to the base case of the single pressure level 

ORC and can be accomplished with a conventional single admission turbine. 

 

Figure 2: ORC plant scheme with pinch point smoother (left) and corresponding “smoothed” T-Q diagram (right) (derived 

from a quantitative example) 

 

The main advantage of the Pinch Point Smoother scheme is the proper utilization of the heat exchangers surface. 

2.2 OFC cycle schemes  

The so called Organic Flash Cycles were recently investigated by Ho, Mao and Greif (2012a):  OFC distinctive feature is that the 

liquid is pumped to a pressure higher than the turbine inlet pressure, so that heat is introduced in the cycle when the working fluid is 

in liquid phase, and subsequently the working fluid is flashed down to the turbine inlet pressure, in order to generate the vapour to 

be expanded. Heat is thus introduced in the cycle by means of a single primary heat exchanger placed downstream from the pump, 

where the liquid is heated up to the saturation point. The basic advantage is clear: the heating and cooling curves in the T-Q 

diagram are almost ideally matched, the plant scheme is simple, and no new technology is required. However, there are two major 

drawbacks, the dissipative flash process and the unused working fluid liquid fraction, which is sent to the condenser after a 

throttling process. 

In the preliminary analysis conducted Ho, Mao and Greif found that, for the base OFC, at least for the selected fluids (aromatic 

hydrocarbons and syloxanes), no real advantage occurs with respect to basic ORC, because the second law loss which is saved 

during the heat introduction process is than lost in the flash process, thus giving no particular advantage to OFC versus ORC in this 

case.  
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Figure 3: OFC plant scheme with double flash (left) and corresponding T-Q diagram (right)  

 

On the basis of the work carried out, observing that the single OFC performs roughly the same as the base ORC, Ho, Mao and Greif 

(2012b) argued that any possible enhancement of the OFC should give to the latter a clear advantage versus the base ORC. They 

conducted therefore an additional study considering several OFC enhanced schemes: among these, the double flash  and the 

modified OFC were obtainable with current technology, though employing two turbines, while the other enhanced OFC scheme 

required the two-phase turbine technology (and will be therefore not mentioned in this work). In the double flash cycle (fig. 3), the 

flash process is repeated two times, so that the unused liquid fraction is reduced. The modified OFC (fig. 4) has a two stage 

expansion, and employs the throttled liquid fraction to desuperheat the vapour at the end of the first stage expansion: it  may be 

profitable but only with some specific fluids. As a matter of fact, the conclusion of the study was that the modified cycle was 

profitable for aromatic hydrocarbons (+10%), but it proved useless with siloxanes. 

 

Figure 4: OFC modified  

 

As already mentioned, HFC245fa is considered in this study as working fluid: no information was found in literature regarding 

OFC performance with refrigerants. Preliminary calculation performed in the frame of this work ((not reported here) showed that, 

for HFC245fa, with a geothermal source  at 150°C the performance of the single level OFC is definitely lower than that of an 

optimized single level ORC. It was therefore decided to consider in this work only the double flash cycle; the enhanced modified 

version of the flash cycle with HFC245fa proved also useless. 

3. PERFORMANCE EVALUATION 

The different cycle schemes are calculated by means of the same commercial process simulator, Aspen plus (2006) which allows to 

properly evaluate both geothermal fluid and working fluid thermodynamic properties in order to fulfill a correct simulation of the 

plant behavior and a sound comparison between different plant schemes. 

3.1 Calculation model 

The thermodynamic properties of the ORC working fluid are calculated by means of a modified Peng-Robinson equation.  

3.1.1 Basic assumptions  

Basic assumptions for the calculation are reported in table 2. Assumptions regarding the geothermal fluid flow are representative of 

the Molasse Basin typical operating conditions; moreover no restriction for the discharge temperature was assumed. 
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Table 2: Basic assumptions 

Geothermal fluid temperature Variable in the range 125-150°C 

Geothermal fluid salt content  1 g/l 

Geothermal fluid volumetric flow 150 l/s 

Ambient temperature 15°C (as per ISO standard) 

Condenser cooling medium  Air 

Air cooler electric parasitic consumption, percentage of condensation heat 1% 

Turbine on-design isoentropic efficiency  0.85 

Generator mechanical-electrical efficiency  0.97 

Pumps hydraulic efficiency  0.75 

Pump mechanical-electrical efficiency  0.95 

Compressor isoentropic efficiency  0.8 

Compressor motor efficiency 0.96 

Hot heat exchangers minimum ∆Tpp 2°C 

Hot heat exchangers, working fluid site: preheater ∆p  1bar 

Hot heat exchangers, working fluid site: evaporator ∆p  0.2bar 

Cold heat exchangers minimum ∆Tpp, 2°C 

Cold heat exchangers, working fluid site: condenser ∆p  0.1bar 

Working fluid condensation temperature 30°C 

 

3.1.2 Cycle optimization and performance evaluation parameters 

Each cycle has its own operating parameters which must be optimized in order to get the highest performance. The variables which 

were optimized are: the evaporation temperature for the base ORC case; the two evaporation temperatures for the two pressure 

level cycle; the fractions of working fluid mass flow and the evaporation temperatures for the Pinch Point Smoother; the flash 

pressures for the double OFC. 

Optimization was conducted by means of a sensitivity analysis, continuously varying the parameters to be optimized and evaluating 

the net electrical power. This procedure, even if not as fast as an optimization algorithm, entails the advantage of permitting to 

easily follow and understand the dependence of the net electrical power with respect to the operational parameters; it becomes 

however cumbersome with complex plant schemes. In particular in this work the double flash cycle represents a limit situation, 

involving a considerable calculation time. 

Calculations were carried out considering the net electrical power as the optimization function; the efficiencies were then 

calculated. For power plants receiving heat from variable temperature heat sources, sometimes called “finite thermal energy 

reservoirs”,   which is the case of geothermal liquid sources, several plant efficiency definitions may be found in literature, above 

all for the second law efficiency (or exergy efficiency, see Di Pippo (2004)). In the frame of this work the plant second law 

efficiency is calculated as the ratio of the plant efficiency to the ideal Lorentz cycle efficiency, i.e.: 

𝜂𝐼,𝑝𝑙𝑎𝑛𝑡 =
𝑊𝑛𝑒𝑡

𝑄𝑖𝑛𝑝𝑢𝑡
       

𝜂𝐼𝐼,𝑝𝑙𝑎𝑛𝑡 =
𝜂𝐼,𝑝𝑙𝑎𝑛𝑡

𝜂𝐿𝑜𝑟𝑒𝑛𝑡𝑧
 

𝜂𝐿𝑜𝑟𝑒𝑛𝑡𝑧 = 1 −
𝑇𝑎𝑚𝑏

(
𝑇𝑖𝑛,𝐺𝑒𝑜 − 𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐺𝑒𝑜

ln⁡(
𝑇𝑖𝑛,𝐺𝑒𝑜

𝑇𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝐺𝑒𝑜
)

)

 

where ηI,plant is the first law plant efficiency, Wnet is the net electrical power, Qinput is the thermal power introduced in the cycle, 

ηII,plant is the second law plant efficiency, ηLorentz is the efficiency of an ideal cycle operating between the same thermal sources of 
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the real cycle, Tamb is the ambient temperature, Tin,Geo is the geothermal fluid temperature at power plant inlet, and Tdischarge,Geo is the 

temperature of  the geothermal fluid at the discharge from the power plant. 

3.2 Results discussion 

Calculation were performed with different constraints: constant minimum ∆Tpp and constant “US”; the first constraint is commonly 

used in power plant design; in the second case, “US”, i.e. the product of the heat transfer coefficient multiplied by the heat transfer 

surface, is an indicator of the heat  exchanger cost. 

3.2.1 Comparison of plant performance at constant minimum ∆Tpp 

Following table 2, plant performance was calculated considering the minimum allowed value for ∆Tpp (2 °C). Results presented in 

table 3 and figure 5 and 6 show that, with respect to the base single pressure level ORC, all the enhanced cycles allow a much 

higher turbine gross power. However, this advantage is partly counterbalanced by the higher ORC parasitic electric consumption: 

looking at the net power, the two- pressure level cycle, which has the least parasitic consumption among the enhanced cycles, 

emerges as the best cycle; the single pinch point smoother cycle, has still an advantage versus the base single pressure ORC, but the 

double flash cycle is only slightly better than the base ORC at 150 °C and performs worst at 125°C. As it can be immediately seen 

from figure 6, the required heat transfer surfaces are different in the various cases. 

 

Figure 5: Net power comparison at constant  ∆Tpp=2°C. 

 

 

Figure 6: Required “US” for the hot heat exchanger at constant  ∆Tpp=2°C. 

 

3.2.2 Comparison of plant performance at constant “US” 

It is interesting to compare the cycles performance at constant “US”, i.e. at the same value of the product between the overall heat 

transfer coefficient and heat exchanger surface: this comparison shows whether the extra heat transfer surface needed with respect 

to the base case, is properly used to allow more power. Estimating the cost of the power block in an ORC plant is a tough task: 

however, it is well known that the cost of heat exchangers represents a major fraction of the overall cost. Comparing the plant 

performance at the same US gives a roughly idea of performance at comparable heat exchanger cost. 

Extended calculations were performed firstly at 150°C; the “US“ value of the two pressure level ORC previously calculated with 

∆Tpp=2°C (5700 kW/K for the hot heat exchangers and 5500 kW/K for the cold heat exchanger) was selected as the common 

reference value; two supercritical cycles, adopting R134a and propane as working fluid were added for comparison. 
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Table 3: Calculation results  with constant  ∆Tpp=2°C. ORC auxiliary electric consumption comprise the ORC pump 

electric consumption and the Pinch Point Smoother compressor electric consumption. 

 

Base 

ORC 

Two 

pressure 

level 

ORC 

Single 

pinch 

point 

smoother 

Double 

flash 

Base 

ORC 

Two 

pressure 

level 

ORC 

Single 

pinch 

point 

smoother 

Double 

flash 

Geothermal source 

temperature, °C 150 150 150 150 125 125 125 125 

Turbine gross 

electric power, kW 6002 7078 7157 6948 3549 4322 4409 4173 

ORC auxiliary 

electric 

consumption, kW 254 383 914 1044 126 185 597 705 

Air condenser 

electric 

consumption,  kW 433 492 468 573 320 379 355 446 

Net power, kW 5315 6203 5776 5331 3104 3757 3457 3022 

Thermal power 

from geothermal 

source, MW 49,2 56,1 53,3 63,5 35,5 42,2 39,4 48,3 

Plant efficiency, I 

law 10,8% 11,1% 10,8% 8,4% 8,7% 8,9% 8,7% 6,2% 

Geothermal  fluid 

discharge 

temperature, °C 65,3 53,3 58,2 40,4 65,0 53,6 58,3 43,3 

 

Calculation results (presented in fig. 7) show that, at constant US, the best performance is obtained with the HFC245fa two pressure 

level cycle and R134a supercritical cycle: these cycle arrangements allow the same performance. A slightly lower performance is 

obtainable again with a supercritical cycle, but adopting propane as working fluid; when the supercritical cycle is concerned, the 

adoption of R134a with respect to propane should therefore be preferable, both because of better performance and non–

flammability. As already mentioned, attention is drawn in this paper on subcritical cycles, and supercritical cycles are introduced 

only for comparison: it can be however stressed that, although with similar heat transfer surfaces, supercritical cycle heat 

exchangers, operating at high pressure, would possibly require higher material thickness than the heat exchanger of subcritical 

cycles, and cost could be therefore somewhat higher. This occurrence was verified for example by Astolfi et al.(2014), in the frame 

of techno-economic optimization for ORC power cycles aimed at geothermal sources; it was found that supercritical cycles allow 

both best thermodynamic and economic performance with respect to subcritical cycles, but from the economic point of view the 

advantage is less evident.  

 

Figure 7: Net power generated at constant US. 

 

The single Pinch Point Smoother cycle allows a higher performance than base ORC, however lower than the two pressure level 

ORC. The double flash cycle performance is the lowest: the heat introduced in the cycle is reduced, because of reduction of heat 

transfer surface, but the intrinsic dissipation process remains, and performance is therefore penalized. 

It can be observed from figure 8 that, having fixed the same US value for all the cycles (obviously except the base ORC), the 

geothermal fluid discharge temperature is similar, i.e. the heat introduced in the cycle is almost the same in all cases: different 
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performance is then obtained because of different cycle arrangement. Observing figure 8 it is also to be stressed that the Pinch Point 

Smoother cycle allows almost the same heat introduction process of the two pressure level cycle, but requiring a conventional 

turbine without the two admission ports feature. It can be also observed that, at the operating condition here considered, for the 

double flash cycle the specific heat is not really constant during all the heat introduction process. 

 

Figure 8: Temperature vs. power during heat introduction and heat rejection process for the cycles considered. Top, left: 

supercritical, propane. Top, right: supercritical, R134a. Center, left: two pressure level ORC. Center, right: base 

single pressure level ORC. Bottom, left: single pinch point smoother. Bottom, right: double flash.  

 

Detailed information from calculation discussed in the previous figures is reported in table 4. 

Table 4: Calculation results  with constant  US. ORC auxiliary electric consumption comprise the ORC pump electric 

consumption and the Pinch Point Smoother compressor electric consumption. 

 

Base ORC 2 pressure 

level ORC 

Single pinch 

point 

smoother Double flash 

Supercritical 

cycle, propane 

Supercritical 

cycle, R134a 

Geothermal 

source 

temperature,°C 150 150 150 150 150 150 

Turbine gross 

electric power, 

kW 6002 7069 7457 6136 8088 8060 

ORC auxiliary 

electric 

consumption, 

kW 254 381 1289 931 1591 1370 

Aircondenser 

electric 

consumption,  

kW 433 490 509 516 501 495 
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Net power, kW 5315 6198 5659 4688 5996 6195 

Thermal power 

from 

geothermal 

source, MW 49,2 55,9 57,4 57,0 57,0 56,5 

Plant efficiency, 

I law 10,80% 11,09% 9,87% 8,22% 10,53% 10,96% 

Geothermal  

fluid discharge 

temperature, °C 65,3 53,6 51,1 51,7 51,8 52,6 

 

Further calculations were conducted varying the temperature of the geothermal fluid, and considering 125°C and 140°C.  

Calculation results (fig. 9) show that, on the whole, the situation is unchanged: the best performance is obtainable with the two 

pressure level cycle, though the single pinch point smoother allows better performance than the base ORC; the double flash cycle 

still performs less than the base ORC. 

 

Figure 9: Net power generated at constant US for different values of the geothermal fluid temperature.. 

 

 

Figure 10 Second law efficiency at constant US for different values of the geothermal fluid temperature.  

 

The second law efficiency is finally reported in figure 10 for the considered cases: both the two pressure level cycle and the Pinch 

Point Smoother cycle show remarkable efficiencies, definitely higher than the base ORC; on the contrary the flash cycle is strongly 

penalized by the dissipative flash process. 



Bombarda et al. 

 10 

4. CONCLUSION 

The calculation implemented is obviously limited by the fact of considering a single working fluid and a single value for ambient  

air temperature. However, though limited in scope and conducted on simple assumptions, the reported results allow to draw some 

conclusion, which should be compared on a larger working fluid selection base and more detailed plant analysis. These conclusions 

are here summarized: 

- The two pressure level solution and the Pinch Point Smoother solution are comparable from the point of view of 

performance, giving a definite advantage compared to the base cycle, single pressure level ORC and represent therefore a 

potentially valuable solution for geothermal applications. The decision to adopt one or the other solution will possibly 

depend on the turbine frame actually available for the specific application (with or without an additional admission port, 

as required for the two pressure level plant). The Pinch Point Smoother solution could also be adopted for plant retrofit, 

so as to increase performance maintaining the existing turbine and enhancing the heat introduction process. 

- The simple supercritical cycles provide an overall performance similar to the two pressure level cycle, however they are 

more demanding in terms of maximum cycle pressure (at turbine inlet) and they involve a much higher power for the feed 

pump. 

- Apparently the double flash cycle solution, when restricted to conventional technology, excluding two-phase turbine, is 

not attractive for applications with HFC245fa; if adopted, it should be implemented with no restriction on the heat 

transfer surface. It could represent an attractive solution for specific cases, which would take advantage of the single 

phase primary heat exchanger, e.g. for very high pressure geothermal fluids like in geo-pressurised reservoirs. Also, geo-

fluid with highly corrosive characteristics, or high salt content, could be better exploited thanks to a single phase primary 

heat exchanger. 

Only a detailed case by case analysis, taking into account power block investment, time of delivery, reliability, O&M requirements, 

environmental impact, can ultimately lead to the preferable plant solution. 
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