

Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /

This is a self-archiving document (published version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-817301

Thomas Kissinger, Hannes Voigt, Wolfgang Lehner

SMIX Live. A Self-Managing Index Infrastructure for Dynamic Workloads

Erstveröffentlichung in / First published in:

2012 IEEE 28th International Conference on Data Engineering, Arlington, 01.-05.04.2012.
IEEE, S. 1225-1228. ISBN 978-0-7695-4747-3.

DOI: http://dx.doi.org/10.1109/ICDE.2012.9

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-817301
http://dx.doi.org/10.1109/ICDE.2012.9

SMIX Live - A Self-Managing Index Infrastructure
for Dynamic Workloads

Thomas Kissinger, Hannes Voigt, Wolfgang Lehner

Database Technology Group
Dresden University of Technology

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

Abstract— As databases accumulate growing amounts of data
at an increasing rate, adaptive indexing becomes more and
more important. At the same time, applications and their use
get more agile and flexible, resulting in less steady and less
predictable workload characteristics. Being inert and coarse-
grained, state-of-the-art index tuning techniques become less
useful in such environments. Especially the full-column in-
dexing paradigm results in lot of indexed but never queried
data and prohibitively high memory and maintenance costs. In
our demonstration, we present Self-Managing Indexes, a novel,
adaptive, fine-grained, autonomous indexing infrastructure. In
its core, our approach builds on a novel access path that
automatically collects useful index information, discards useless
index information, and competes with its kind for resources to
host its index information. Compared to existing technologies
for adaptive indexing, we are able to dynamically grow and
shrink our indexes, instead of incrementally enhancing the index
granularity. In the demonstration, we visualize performance and
system measures for different scenarios and allow the user to
interactively change several system parameters.

I. INTRODUCTION

Indexes are the most fundamental technique to speed up

queries on datasets. An index stores references to tuples in a

special access path that allows fast querying of these indexed

elements of the dataset. Database systems leverage indexes

heavily to efficiently manage huge datasets. Since indexes

support only fractions of a database’s workload while requiring

resources to be stored and maintained, indexing needs to

be optimized. With changing data and shifting workloads,

the optimum is a moving target. Index information that is

beneficial today may be unprofitable tomorrow. Self-managing

indexing, where index optimization is an integral part of the

database system, is the way to permanently relieve the user

from the burden of index optimization.

In relational databases, columns form the primary granu-

larity of indexing; each index covers all values of one or

more columns. As databases accumulate growing amounts of

data at an increasing rate, the core problems of full column

indexing become more evident. If the data in a column doubles

over time, a full column index takes nearly twice the time

to be created and consumes about twice the storage. At the

same time the data of interest is unlikely to double in size

as an increasing share of data is primarily kept for reasons

of revision, linage, and versioning. In short, the trend of

growing data sizes has two consequences: (1) The traditional

full-column index will soon encompass and maintain mainly

unused index information. (2) The traditional index tuning

based on creating and dropping indexes will soon become

prohibitively expensive.

The historic dominance of coarse-grained full column in-

dexing has two practical reasons: (1) The user can define

easily what should be indexed. (2) The query optimizer can

determine easily which indexes apply to a query. However,

these two reasons disappear when we consequently rethink in-

dexing as a self-managing component in the database system.

First, with self-managing indexing the task of index selection

is taken away from the user. The system decides on its own.

Second, the optimizer’s need to find applicable indexes arises

only because indexes are mainly secondary, optional, user-

created access-paths. Once indexing is directly integrated in

the system as a default access path available on every column,

it is not required to track which parts of data are indexed or

not. Self-managing indexing not only disburdens the user from

index optimization tasks, it also paves the way to more fine-

grained indexing.

In this demonstration, we present a novel, adaptable, fine-

grained, autonomous indexing infrastructure for row stores,

structuring rows to blocks or pages. It is based on the Self-

Managing Index (SMIX), a new access path that automatically

creates a partial index of the column it is working on. The

SMIX indexing infrastructure comes with only a very few

configuration knobs, mainly the amount of resources that can

be used for indexing. SMIXs distribute the heavy lifting of in-

dex creation over time and focus index creation on the data of

interest. Furthermore, the approach does not involve expensive

what-if calls to the query optimizer. This way, SMIXs reduce

the required user interaction dramatically without sacrificing

performance by missing indexing opportunities or imposing to

much overhead on the DBS.

II. RELATED WORK

Substantial research has been done in the field of index

tuning. First research in that area dates back to the late 1970s.

Nowadays commercial database management systems offer

index tuning tools, [1], [2], [3], which recommend an index

configuration for a given workload and a storage bound the

configuration has to fit into. However, all these state-of-the-art

tools consider the database workload as static and predictable.

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1225-1228, ISBN 978-0-7695-4747-3
http://dx.doi.org/10.1109/ICDE.2012.9

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 1. SMIX in Database Architecture

Other approaches extend the idea of the index tuning tool

to dynamic workloads. Here, the tool analyses the workload

as a series of events over time and recommends a series of

index configurations [4], [5]. Since all index tuning tools work

offline, the user has to be able to predict the regular workload.

Research concentrated on autonomous index tuning in the

recent past. A couple of solutions have been proposed [6],

[7], [8]. All of them stick with the core concepts of the

index tuning tools: full-column indexing and expensive query

cost evaluation. Consequently, they suffer from the same two

drawbacks: (1) The index tuning remains very coarse-grained

and the resulting indexes are likely to include a lot of data

that is not of interest. (2) The index tuning requires expensive

creation and dropping of complete indexes. Although SMIXs

are also an autonomous index tuning approach, they are

fundamentally different. SMIXs inherently index only data of

interest and build on less expensive incremental index creation

and adaption.

Approaches based on incremental partitioning of unsorted

data [9], [10] (also known as database cracking) and incremen-

tal merging of pre-sorted data chunks [11], [12] specifically

remedy the creation costs of indexes. Both concepts piggyback

on queries to create index information on the tuples that are

requested; this lowers the creation costs and distributes the

effort over time. Although approaches are appealing, they do

not represent solutions to the index optimization problem.

Without any dropping of index information, every incremental

index creation converges to a regular full index so that also

uninteresting tuples will be indexed at some point. Our SMIX

approach is more comprehensive. SMIXs do not only involve

incremental collection of index information, but also incre-

mental displacement. Instead of converging to full indexation,

SMIXs converge to the workload.

III. SYSTEM OVERVIEW

The core idea of SMIX is a new default access path

that adapts itself to the workload. This requires two novel

components to the database architecture shown in Figure 1.

The first component is the SMIX itself, the new self-managing

access path. The second component is the SMIX manager,

which supervises the SMIX population in the system.

A SMIX combines the abilities of traditional table scan and

index scan in a single access path. Like a traditional table scan,

a SMIX acts as a default built-in access path, which is available

on every column and does not have to be created explicitly.

Like a traditional index, a SMIX incorporates index infor-

mation, which allows reducing page accesses significantly.

Implementation-wise, a SMIX even reuse the logic of these

traditional access paths. A SMIX autonomously collects index

information based on the tuples that are accessed by the

workload. It directly leverages this collected information for

the next accesses, even if these accesses relate to other tuples.

Additionally, a SMIX not only collects new index information,

a SMIX also discards index information that turned out to be

less useful. Therefore, a SMIX adapts to the data workload and

is also able to control its use of storage and memory resources.
SMIXs co-exist to traditional access paths in the system.

The query optimizer still decides which access path to take

for a specific query. It applies two general rules for the

access path selection: (1) It always chooses a SMIX scan

over a table scan, if the optimizer would take an covering

index on this column, because a SMIX can quickly adapt

to better performance. (2) It always chooses a traditional

index scan over the SMIX scan if a single column index

is present, because a SMIX rarely exceeds the performance

of a traditional index scan and redundant index information

should be avoided. If multicolumn indexes are present on the

queried column, the optimizer relies on traditional statistics-

based decision rules. In order to accomplish that, every SMIX

maintains statistics about itself in the system catalog, similar

to traditional index and table statistics.
SMIXs are query-driven; they are not created explicitly. A

SMIX that was never accessed, does not consume any space.

Each indexable column has a catalog entry indicating if it

has an initialized SMIX present. A query can utilize a SMIX

scan on a column even if the column’s SMIX has not been

initialized. The first SMIX scan on a column will initialize the

SMIX on that column.
Considering a query against a column c, a partial index IX

on c can help answering the query in two cases:

1) If all tuples with value x in column c are indexed in

index IX , the tuples answering a query c = x can be

directly discovered with IX . This is the desired case,

because a table scan can be avoided. The more queries

fall into this category, the better the partial index is

adapted to the workload.

2) If all tuples in a page p are indexed in index IX , all

tuples matching a query on c can be discovered by a

table scan. This table scan is able to skip p, but needs

to combine its result set with the output of an IX
index scan. Hence, skipping a lot of pages during a

table scan helps to mitigate query execution costs in

situations where the partial index is not well adapted

to the workload and many table scans are necessary to

answer queries.

To cover both cases, a SMIX collects index information in two

separate B-Trees.

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1225-1228, ISBN 978-0-7695-4747-3
http://dx.doi.org/10.1109/ICDE.2012.9

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 2. SMIX in index spaces

1) The covered values tree (CVT) indexes the most queried

values to answer most of the common queries efficiently.

2) The intermediate values tree (IVT) completes the index-

ation of a subset of pages, to speed up table scans.

This way, a SMIX is able to adapt to a workload while quickly

leveraging collected index information.

Besides CVT and IVT, a SMIX manages a list of counters,

called page population table (PPT). The PPT contains a

counter for each page of the table the SMIX serves. Each

counter shows the number of tuples in its page that are indexed

neither in the CVT nor in the IVT. The PPT helps to quickly

select pages that are most worthwhile to be indexed in the IVT

(pages with a low counter greater than zero). It also allows

to easily identify pages that can be skipped by a table scan

(pages with a counter equal to zero). A SMIX initializes the

PPT with the first table scan it has to perform and subsequently

maintains the PPT incrementally.

The SMIX access path automatically collects index infor-

mation on potentially every column. Two principles keep the

SMIX population of a database from exceeding a configurable

global resource limit.

1) Every SMIX has an individual resource quota and it is

able to displace less queried index entries to lower its

resource usage.

2) All SMIXs compete for the globally granted resources,

so that invaluable index information automatically drops

out of the system.

The globally available resources for indexing are index

spaces, where the index information is stored. For SMIXs,

we distinguish two types of index spaces.

1) The establishment space represents disk resources; it

offers persistency and supports crash recovery. A SMIX

stores its CVT in the establishment space, since the CVT

has proven value for the workload.

2) The evolution space represents faster main memory

resources; it is transient and does not support crash re-

covery. A SMIX stores its IVT and PPT int the evolution

space. Both are supporting structures and contain less

valuable indexing information.

Figure 2 summarizes this setup. Especially when a SMIX is

barely adapted to the workload, it makes heavily use of the

IVT. Hence, the main-memory-based evolution space allows a

faster adaption at lower costs compared to disk.

The SMIX manager is the supervisor component for all

SMIXs in the system. Since SMIXs are automatically created

and allocate new storage and memory resource on their own,

they need to be controlled, in order to not exceed the glob-

ally available resources. The SMIX manager collects access

statistics for every SMIX. Based on these statistics, the SMIX

manager assigns quotas for establishment space and evolution

space to each SMIX, while the absolute size of establishment

space and evolution space is configured by the DBA. To

enforce the quotas, the SMIX manager orders displacement of

index information. In evolution space, a SMIX simply discards

the complete IVT to free space. In the establishment space,

a SMIX takes more care and removes only single leaf nodes

of the CVT. Additionally, a SMIX removes CVT leaf nodes

proactively if they are barely accessed.

IV. DEMONSTRATION

In this demo, we will show SMIXs in action. We have

implemented SMIX in the open source database system Post-

greSQL. The core presentation and interaction element of the

demo is a GUI client called SMIX Live dashboard, which

allows controlling and monitoring the SMIX implementation

With SMIX Live dashboard, the SMIX operating can be

shown in detail for various parameter settings and workload

scenarios. A single SMIX demo run involves setting the tech-

nical parameters of the SMIX concept, generating a workload

with specific characteristics, and run generated workload with

the SMIX implementation. The SMIX dashboard allows con-

trolling all these step handily. While executing the workload,

the SMIX Live dashboard monitors runtime measures and

displays them to reveal the inner operations and performance

of the SMIX concept to the demo visitors. All demo workloads

build on synthetic scenarios. This allows controlling all aspects

of a run.

We have a number of prepared SMIX demo runs, to give

an introduction to demo visitors. The prepared demo runs

are designed to show the core aspects of the SMIX concept.

However, the demo is designed to be interactive. Demo visitors

are invited to suggest different settings and scenarios. In

general, which particular settings and scenarios are shown is

guided by the conversation with the demo visitor, so that it

fits best the visitor’s way of approaching and understanding

the SMIX concept.

Figure 3 shows the SMIX dashboard in detail. The SMIX

dashboard is divided in three main parts:

1) the scenario selection

2) the SMIX parameter configuration panel

3) the measurement area.

In the following, we describe these parts more detailed.

Scenario Selection: The scenario selection allows the vis-

itor to choose from five predefined scenarios. Each scenario

runs a different workload on our SMIX implementation. The

first three scenarios involve a single SMIX, each with another

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1225-1228, ISBN 978-0-7695-4747-3
http://dx.doi.org/10.1109/ICDE.2012.9

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 3. SMIX Live Dashboard

workload pattern that changes over time. This helps the demo

visitor to easily understand the SMIX indexing strategy. We

provide workload patterns for:

1) instantly changing query ranges

2) expanding query ranges

3) slowly moving query ranges.

A query range means a continuous domain of values, on

which the queries are executed. The remaining two scenarios

generate workloads that involve multiple SMIXs. This gives

an understanding, how the SMIX manager distributes the

available storage between the individual SMIXs over time.

Each of this complex scenarios uses changing column access

frequencies and query ranges.

SMIX Parameter Configuration Panel: This Panel allows

the demo visitor to change the technical parameters of the

SMIX concept. All parameter changes are applied live to

the SMIX implementation, which shows immediate response.

We allow the core parameters: (1) size of the establishment

and evolution space, (2) stability threshold, and (3) automatic

displacement aggressiveness, to be changed. While playing

with these parameters, the visitor will understand the influence

of each of them.

Measurement Area: The measurement area updates fre-

quently and shows the query performance as well as the

internal SMIX state. We included live charts for (1) the query

execution time (with the table scan and index scan as baseline),

(2) the CVT hit rate, and (3) the usage of the establishment

and evolution space. With the help of those charts, we are able

to describe SMIX behavior under certain circumstances to the

visitor and suspend the scenario execution in case of deeper

questions.

All these possibilities of the SMIX Live dashboard allow

visitors to immerse theirself in the SMIX concept.

REFERENCES

[1] S. Agrawal, S. Chaudhuri, L. Kollár, A. P. Marathe, V. R. Narasayya,
and M. Syamala, “Database Tuning Advisor for Microsoft SQL Server
2005.” in VLDB’04, 2004.

[2] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm, C. Garcia-
Arellano, and S. Fadden, “DB2 Design Advisor: Integrated automatic
physical database design.” in VLDB’04, 2004.

[3] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zaı̈t, and M. Ziauddin,
“Automatic SQL tuning in Oracle 10g,” in VLDB’04, 2004.

[4] S. Agrawal, E. Chu, and V. R. Narasayya, “Automatic physical database
tuning: Workload as a sequence.” in SIGMOD’06, 2006.

[5] H. Voigt, W. Lehner, and K. Salem, “Constrained dynamic physical
database design,” in SMDB’08, 2008.

[6] N. Bruno and S. Chaudhuri, “An online approach to physical design
tuning.” in ICDE’07, 2007.

[7] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis, “On-line index
selection for shifting workloads,” in SMDB’07, 2007.

[8] K.-U. Sattler, M. Luehring, K. Schmidt, and E. Schallehn, “Autonomous
management of soft indexes,” in SMDB’07, 2007.

[9] M. L. Kersten and S. Manegold, “Cracking the database store,” in
CIDR’05, 2005.

[10] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in
CIDR’07, 2007.

[11] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incrementally
optimized indexes,” in EDBT’10, vol. 426, 2010.

[12] ——, “Adaptive indexing for relational keys,” in ICDEW’10, 2010.

Final edited form was published in "2012 IEEE 28th International Conference on Data Engineering. Arlington 2012", S. 1225-1228, ISBN 978-0-7695-4747-3
http://dx.doi.org/10.1109/ICDE.2012.9

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADP39C6.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Thomas Kissinger, Hannes Voigt, Wolfgang Lehner

