

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-813777

Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, Wolfgang Lehner

From a Comprehensive Experimental Survey to a Cost-based Selection
Strategy for Lightweight Integer Compression Algorithms

Erstveröffentlichung in / First published in:

ACM Transactions on Database Systems. 2019, 44(3), Art. Nr. 9 [Zugriff am: 13.10.2022]. ACM
Digital Library. ISSN 0362-5915.

DOI: https://doi.org/10.1145/3323991

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-813777
https://doi.org/10.1145/3323991

From a Comprehensive Experimental Survey to a

Cost-based Selection Strategy for Lightweight Integer

Compression Algorithms

PATRICK DAMME, ANNETT UNGETHÜM, JULIANA HILDEBRANDT, DIRK HABICH,
and WOLFGANG LEHNER, Technische Universität Dresden, Germany

Lightweight integer compression algorithms are frequently applied in in-memory database systems to tackle
the growing gap between processor speed and main memory bandwidth. In recent years, the vectorization of
basic techniques such as delta coding and null suppression has considerably enlarged the corpus of available
algorithms. As a result, today there is a large number of algorithms to choose from, while different algorithms
are tailored to different data characteristics. However, a comparative evaluation of these algorithms with
different data and hardware characteristics has never been sufficiently conducted in the literature. To close
this gap, we conducted an exhaustive experimental survey by evaluating several state-of-the-art lightweight
integer compression algorithms as well as cascades of basic techniques. We systematically investigated the
influence of data as well as hardware properties on the performance and the compression rates. The evaluated
algorithms are based on publicly available implementations as well as our own vectorized reimplementations.
We summarize our experimental findings leading to several new insights and to the conclusion that there is
no single-best algorithm. Moreover, in this article, we also introduce and evaluate a novel cost model for the
selection of a suitable lightweight integer compression algorithm for a given dataset.

CCS Concepts: • General and reference → Surveys and overviews; • Information systems → Data

compression; Physical data models; Main memory engines;

Additional Key Words and Phrases: Lightweight data compression, vectorization, SIMD, experiment and
analysis, cost modeling, compression algorithm selection

ACM Reference format:

Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, and Wolfgang Lehner. 2019. From a
Comprehensive Experimental Survey to a Cost-based Selection Strategy for Lightweight Integer Compression
Algorithms. ACM Trans. Database Syst. 44, 3, Article 9 (June 2019), 46 pages.
https://doi.org/10.1145/3323991

This work was partly funded (1) by the German Research Foundation (DFG) within the CRC 912 (HAEC), RTG 1907 (RoSI)
as well as by an individual project LE-1416/26-1, and (2) by the German Federal Ministry of Education and Research (BMBF)
with the EXPLOIDS project (16KIS0523).
Authors’ address: P. Damme, A. Ungethüm, J. Hildebrandt, D. Habich, and W. Lehner, Technische Universität Dresden,
Data-base Systems Group, Noethnitzer Str. 46, Dresden, Saxony, 01189, Germany; emails: {patrick.damme,
annett.ungethuem, juliana.hildebrandt, dirk.habich, wolfgang.lehner}@tu-dresden.de.
©2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. This is the author’s version of the work.
It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in
Association for Computing Machinery, Transactions on Database Systems Vol. 44, No. 3, Article 9. Publication date: June
2019
https://doi.org/10.1145/3323991

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/3323991
mailto:permissions@acm.org
https://doi.org/10.1145/3323991

1 INTRODUCTION

Data management is a core service for every business or scientific application. The data life cycle
consists of different phases starting from understanding external data sources and integrating data
into a common database schema. The life cycle continues with an exploitation phase by answering
queries against a potentially very large database and closes with archiving activities to store data
with respect to legal requirements and cost efficiency. While understanding the data and creat-
ing a common database schema is a challenging task from a modeling perspective, efficiently and
flexibly storing and processing large datasets is the core requirement from a system architectural
perspective. For the past 30 to 40 years, disk-centric database systems based on commodity hard-
ware exploiting only a minimal set of regular operating system services have reflected the state of
the art. Within the past recent years, however, this picture has dramatically changed due to several
reasons, but especially due to significant developments in the hardware sector. This awareness of
the necessity to be more focused on capabilities of the underlying systems has a huge impact on
the research as well as on the commercial data management ecosystem [26].

Currently, the architecture of database systems is constantly evolving [4, 11, 21, 22, 24, 31]. For
instance, the database architecture shifted from a disk-centric to a main memory-centric archi-
tecture to efficiently exploit the ever-increasing capacities of main memory [4 , 11, 22, 24]. This
in-memory architecture is now state-of-the-art and characterized by the fact that all relevant data
is completely stored and processed in main memory [4, 11, 22, 24]. Unfortunately, the gap be-
tween computing power of the CPUs and main memory bandwidth continuously increases, which
is now the main bottleneck for efficient data processing [4]. To efficiently address this bottleneck,
the memory organization of relational tables shifted from a row to a column format [4], and the
traditional tuple-at-a-time query processing model was replaced by newer and adapted processing
models like column-at-a-time [4] or vector-at-a-time [5]. Based on that, queries only need to read
the data of necessary columns instead of the complete rows [4, 5].

To further increase the query performance, in particular for analytical queries in these in-
memory column stores, data compression plays an important role [1, 5, 24]. Fundamentally, data
compression is a well-known optimization technique for database systems [13, 35]. In disk-centric
database systems, data compression has been extensively used for a long time to optimize the disk
access bottleneck [6, 13, 35]. Here, classical or so-called heavyweight generic data compression
schemes such as Lempel-Ziv [39, 42], Huffman [20], or arithmetic coding [40] have been applied,
because these compression schemes only optimize for compression ratio. The more compact the
data, the faster the data can be loaded from disk. Moreover, the performance overheads for com-
pression as well as decompression of these heavyweight compression algorithms are negligible,
because the disk access is slower by factors. However, these heavyweight compression schemes
are less suitable for in-memory column stores [2], because all values of every column are usually
encoded as a sequence of integers in those systems [1–3]. Therefore, data stored in columns is
more compressible than data stored in rows [1, 2], but the overhead for (de)compression is not
negligible anymore [1, 2]. Additionally, data compression can further improve query performance
beyond simply saving on load and store operations [2, 7, 18]. If a database query can directly oper-
ate on compressed data, then decompression can be avoided completely and performance can be
further improved [2, 7, 18]. To enable that for in-memory column stores, a large variety of so-called
lightweight integer compression algorithms has been developed [8, 19]. That means that while the
focus of heavyweight generic data compression is on optimizing disk accesses, lightweight in-
teger algorithms are used to optimize the in-memory processing. This fundamental difference is
also recognizable in modern disk-centric column store systems such as Impala [23]. Here, data
is also organized column-wise on the physical layer (disk) using appropriate storage formats like

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Parquet.1 Fundamentally, Parquet is an open-source columnar file format offering both high com-
pression and high scan efficiency, whereby Parquet with snappy compression2 achieves the best
compression among other heavyweight generic compression algorithms [23]. However, snappy
as a generic compression algorithm has about half the compression efficiency to some specific
lightweight integer compression algorithms while being an order of magnitude slower [28].

The main focus of this article is on lightweight integer compression algorithms, which are used
to optimize the in-memory processing in state-of-the-art in-memory column store systems. These
lossless lightweight integer compression schemes are not only optimized for compression ratio,
but also for performance and processing capabilities [2, 8]. Moreover, the efficient vectorized imple-
mentation of these lightweight compression algorithms using SIMD (Single Instruction Multiple
Data) instructions has attracted a lot of attention in recent years [28, 32, 36–38, 41], since it further
reduces the computational effort. To better understand these vectorized lightweight compression
algorithms and to be able to select a suitable algorithm for a given dataset, the behavior of the
algorithms regarding different data and hardware characteristics has to be known. In particular,
the behavior in terms of performance (compression, decompression, and processing) and compres-

sion rate is of interest. In the literature, there are two papers with a considerable evaluation part.
First, Adabi et al. [1] evaluated a small number of unvectorized algorithms on different data char-
acteristics, but they neither considered a rich set of data distributions nor the explicit combination
of different compression techniques. Second, Lemire et al. [28] evaluated vectorized lightweight
integer compression algorithms, but considered only null suppression with and without delta cod-
ing. Furthermore, their focus is on postings lists from the Information Retrieval domain, which
narrows the considered data characteristics. Hence, an exhaustive comparative evaluation as a
foundation has never been sufficiently conducted. To overcome this issue, we already published
an earlier version of this experimental survey at the EDBT 2017 conference [8]. In this earlier ver-
sion, we evaluated a broad range of algorithms with different data characteristics in a systematic
way, whereby we restricted ourselves to algorithm implementations using 128-bit vector opera-
tions. In this article, we extend this evaluation to 256-bit and 512-bit vector operations. Based on
that extended exhaustive evaluation, we also introduce and evaluate a novel cost model for the
selection of a suitable lightweight integer compression scheme for a given dataset in this article.
Thus, our main contributions in detail are:

(1) Performance and compression rate of the algorithms vary greatly, depending on the data
properties. Even algorithms based on the same techniques show a very different behavior.

(2) Not only the data properties have an influence on the algorithm performance, but also the
hardware properties.

(3) By combining various basic techniques, the compression rate can be improved signifi-
cantly. The performance may rise or fall, depending on the combination.

(4) There is no single-best lightweight algorithm, but the decision depends on data as well as
hardware properties. To select an appropriate algorithm, a compromise between perfor-
mance and compression rate must be defined.

(5) The selection can be done using a cost model for fine-grained decisions. For that, our novel
cost model allows the estimation of the compression rate as well as the performance and
automatically adapts to different hardware settings.

(6) The entire source code and raw measurements used for this article are available online.3

1https://parquet.apache.org.
2https://github.com/google/snappy.
3https://github.com/MorphStore/LC-BaSe.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://parquet.apache.org
https://github.com/google/snappy
https://github.com/MorphStore/LC-BaSe

Fig. 1. Classification of lightweight integer compression techniques, algorithms, and implementations.

The remainder of this article is organized as follows: In Section 2, we present more details about
the area of lightweight integer compression and introduce our evaluated algorithms. After that, we
present our extensive evaluation in two parts: The first part (Section 3) focuses on the influence
of the data characteristics on the behavior of lightweight integer compression algorithms. The
second part (Section 4) evaluates the vectorization using different SIMD extensions as a special
hardware feature. Then, we present our developed cost model for selecting a suitable lightweight
integer compression algorithm in Section 5. In this section, we will also present selective evaluation
results for this cost model. Finally, we summarize our work in Section 6.

2 BACKGROUND ON LIGHTWEIGHT INTEGER COMPRESSION

State-of-the-art in-memory database systems organize relational data tables by column rather than
by row [4, 11]. To further reduce the necessary memory space and to be able to directly work on
the data, the columns are usually compressed in a specific way [1, 18, 43]. For that, in-memory
column stores follow a common approach: (i) encode the values of each column as a sequence
of integers using some kind of dictionary encoding [1] and (ii) apply lightweight lossless integer
compression to each sequence of integers, resulting in a sequence of compressed column codes [1,
18, 43]. Thus, the focus of this article is the large corpus of lossless lightweight integer compression
algorithms. Based on the underlying data storage format, the input of every lightweight integer
compression algorithm is a finite s equence o f u ncompressed v alues (usually i nteger v alues [1,
43]). The output is a compressed representation, whereby the overall goal is to represent the input
sequence with as few as possible bits on the physical level. Thus, input and output data have a
logical representation (semantic level) and a physical representation (bit or encoding level). To
better understand the algorithm corpus, this section briefly summarizes the basic concepts and
introduces the algorithms that are used in our experimental survey.

2.1 Lightweight Integer Compression

First, we have to distinguish between techniques, algorithms, and implementations in the domain
of lightweight integer compression. These terms are arranged in Figure 1. By compression tech-
niques, we refer to guiding ideas to achieve different sub-goals of integer compression. Then, each
compression algorithm orchestrates one or more of these techniques and defines the binary data
layout. An implementation of an integer compression algorithm is a hardware-specific executable
code that maps the input data sequence to an encoded (compressed) representation.

2.1.1 Techniques. Generally, two obvious goals for compression, i.e., for reducing the overall
number of bits, can be differentiated: (1) reducing the number of values and (2) reducing the num-
ber of bits per value. To achieve the latter, a preprocessing can help to obtain small numbers that
can be encoded with fewer bits. Thus, a third sub-goal is (3) to map the input values to smaller
ones. As depicted on the right side in Figure 1, these three sub-goals address different data levels.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 2. Examples for lightweight compression techniques.

While the reduction of the number of values and the mapping to smaller values consider the logical

data level, the reduction of the number of bits per value addresses the physical level.
As highlighted in Figure 1, five basic techniques are currently known and frequently used:

frame-of-reference (FOR) [13, 43], delta coding (DELTA) [28, 35], dictionary encoding (DICT) [1, 3,
35, 43], run-length encoding (RLE) [1, 35], and null suppression (NS) [1, 35]. These five techniques
address different sub-goals. While FOR, DELTA, and DICT consider the mapping to smaller val-
ues, the goal of RLE is to reduce the number of values on the logical level, and NS addresses the
physical level of bits or bytes to reduce the number of bits per value. This explains why lightweight
integer compression algorithms are always composed of one or more of these techniques. Thus,
we will denote FOR, DELTA, and DICT as preprocessing techniques for the physical compression
with NS.

To better understand each technique, we will briefly explain each of them by means of a short
example. FOR and DELTA represent each value as the difference to either a certain given reference
value (FOR) or to its predecessor value (DELTA). For decompression purposes, we have to store
the reference values in FOR. DICT replaces each value by its unique key in a dictionary, whereby
this technique can be used to map values of any data type to integer values [3]. The dictionary
has to be stored for decompression as well. Examples for these preprocessing techniques are given
on the left side in Figure 2. As depicted, the objective of these three well-known techniques is to
represent the original data as a sequence of small integers, which is then suited for actual com-
pression using the NS technique. NS is the most studied lightweight compression technique. Its
basic idea is the omission of leading zeros in the bit representation of small integers. An example
is shown in Figure 2. If the given input sequence only includes small integer values between 0
and 3 as illustrated in Figure 2, then we only require two bits for each value. Finally, RLE tackles
uninterrupted sequences of occurrences of the same value, so-called runs. Each run is represented
by its value and length as depicted in Figure 2. Hence, the compressed data is a sequence of such
pairs.

These techniques can be further divided into two groups, depending on how the input values are
mapped to output values. FOR, DELTA, and DICT map each input value to exactly one integer as
the output value (1:1 mapping). In RLE, not every input value is necessarily mapped to an encoded
output value, because a successive subsequence of equal values is encoded in the output as a pair
of run value and run length (N:1 mapping). In this case, a compression is already done at the logical
level. The NS technique is either a 1:1 or an N:1 mapping, depending on the algorithm.

2.1.2 Algorithms. The genericity of these techniques is the foundation to tailor lightweight
integer compression algorithms to different data characteristics. Therefore, a lightweight integer
compression algorithm can be described as a cascade of one or more of these basic techniques. On
the level of the lightweight integer compression algorithms, the NS technique has been studied
most extensively. There is a very large number of specific algorithms showing the diversity of
the implementations for a single technique. The pure NS algorithms can be divided into the

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 3. Data alignment and data layout.

following classes [41]: (i) bit-aligned, (ii) byte-aligned, and (iii) word-aligned.4 While bit-aligned
NS algorithms try to compress an integer using a minimal number of bits, byte-aligned NS
algorithms compress an integer with a minimal number of bytes (1:1 mapping). The word-aligned
NS algorithms encode as many integer values as possible into one 32-bit or 64-bit word (N:1
mapping). The difference between these classes is illustrated on the right side of Figure 3.

The NS algorithms also differ in their data layout, thus two core layouts are known in the litera-
ture [28]: horizontal and vertical. In the so-called horizontal layout, the compressed representations
of two consecutive values are situated in consecutive memory locations [28, 36]. In the so-called
vertical layout, the compressed representations of two consecutive values are stored at the corre-
sponding positions within two separate memory words [28, 36]. In this article, we use both layouts
as described in the following section.

The logical-level techniques have not been considered to such an extent as the NS technique on

the algorithm level. In most cases, the preprocessing steps have been investigated in connection
with the NS technique. For instance, PFOR-based algorithms implement the FOR technique in
combination with a bit-aligned NS algorithm [43]. These algorithms usually subdivide the input
in subsequences of a fixed length and calculate two parameters per subsequence: a reference value
for the FOR technique and a common bit width for NS. Each subsequence is encoded using their
specific parameters, thus the parameters are data-dependently derived. The values that cannot be
encoded with the given bit width are stored separately with a greater bit width.

2.1.3 Implementations. An implementation of a compression algorithm is a hardware-specific
executable code. In recent years, the efficient vectorized implementation using SIMD (Single In-
struction Multiple Data) instructions has attracted a lot of attention [28, 32, 36–38, 41]. Generally,
SIMD extensions such as Intel’s SSE and AVX have been available in modern processors for sev-
eral years. SIMD instructions apply one operation to multiple elements of so-called vector registers

at once. The available operations include parallel arithmetic, logical, and shift operations as well
as permutations. These are highly relevant to lightweight compression algorithms to speed up
(de)compression. Consequently, most of our evaluated algorithms make use of SIMD extensions.

2.2 Survey Foundation: Considered Algorithms

In our experimental survey, we consider all five basic techniques in detail. Regarding the selected
algorithms, we investigate both implementations of a single technique as well as cascades of one
logical-level and one physical-level technique. We decided to reimplement the logical-level tech-
niques on our own as described later to be able to freely combine them with all five considered
NS algorithms. Table 1 gives an overview of our five selected NS algorithms. As illustrated, most
algorithms are implemented in a vectorized way. In the following, we briefly sketch the idea of
each considered NS algorithm.

4Reference [41] also defines a frame-based class, which we omit, as the representatives we consider also match the bit-

aligned class.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 1. The Considered Null Suppression Algorithms

NS class Algorithm Data layout Code origin Vectorized (SIMD)

bit-aligned SIMD-BP128 vertical FastPFOR-library yes
SIMD-FastPFOR vertical FastPFOR-library yes

byte-aligned 4-Wise NS horizontal Schlegel et al. yes
Masked-VByte horizontal FastPFOR-library decompression only

word-aligned SIMD-GroupSimple vertical our own code yes

2.2.1 Bit-Aligned NS Algorithms. For the bit-aligned null suppression, we consider two different
algorithms: SIMD-BP128 [28] and SIMD-FastPFOR [28]. The goal of each algorithm is to compress
integer values using a minimal number of bits, but each algorithm achieves that goal differently.

SIMD-BP128 [28] subdivides the data into blocks of 128 integers each. For each block, the
number of bits required for the largest element is determined. Then, all 128 integers in each block
are stored using the vertical layout (see Figure 3) with that many bits for each value. The used bit
width is stored in a single byte, whereby 16 of these bit widths are followed by 16 blocks.

SIMD-FastPFOR [28] is a variant of the original PFOR algorithm [43], whose idea is to classify
all data elements as either regular coded values or exceptions, depending on whether they can be
represented with a certain bit width. This bit width is chosen such that the overall compression
rate becomes optimal. All data elements are packed with the chosen bit width using the vertical
layout. The exceptions require a special treatment, since that number of bits does not suffice for
them. In SIMD-FastPFOR the exceptions are stored in additional packed arrays. The overall input
is subdivided into pages that are further subdivided into blocks of 128 integers. SIMD-FastPFOR
stores the exceptions at the page level and uses an individual bit width for each block.

2.2.2 Byte-Aligned NS Algorithms. While bit-aligned NS algorithms try to compress an integer
using a minimal number of bits, byte-aligned NS algorithms compress an integer with a minimal
number of bytes. For this byte-aligned null suppression, we consider two well-known algorithms:
4-Wise Null Suppression [36] and Masked-VByte [32].

4-Wise Null Suppression [36] compresses integers by omitting leading zero bytes. For each
32-bit integer, zero, or up to 3 bytes might be omitted. Thus, the number of bytes omitted in one
data element can be expressed with 2 bits, called descriptor. 4-Wise NS processes four data elements
at a time and combines the corresponding four 2-bit descriptors into a 1-byte mask. In the output,
four masks are followed by four compressed blocks in the horizontal layout (see Figure 3). The
decompression examines the mask to determine where zero bytes need to be reinserted.

Masked-VByte [32] uses the same compressed representation as the VByte algorithm [28] and
differs only in implementation details. It subdivides an integer into 7-bit units. Each unit that is
required to represent the integer, i.e., which does not span only leading zero bits of the original
integer, produces 1 byte in the output. The 7 data bits are stored in the lower part of that byte,
while the most significant bit is used to indicate whether or not the next byte belongs to the next
data element. Subsequent compressed values are stored using the horizontal layout (see Figure 3).

2.2.3 Word-Aligned NS Algorithms. The word-aligned NS algorithms encode as many inte-
ger values as possible into one 32-bit or 64-bit word. For this class, we consider only SIMD-
GroupSimple [41], since it is currently the only vectorized word-aligned algorithm in the literature.

SIMD-GroupSimple [41] processes the input in units of so-called quads, i.e., four values at a
time. For each quad, it determines the number of bits required for the largest element. Based on
the bit widths of subsequent quads, it partitions the input sequence into groups, such that as many

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

quads as possible can be stored in four consecutive 32-bit words using the vertical layout. There are
10 compression modes: the four consecutive 32-bit words could be filled with 4 × 32 1-bit values,
4 × 16 2-bit values, 4 × 10 3-bit values, and so on. A 4-bit selector represents the mode chosen for
the compressed block being stored in a different memory area than the compressed blocks.

3 EVALUATING THE INFLUENCE OF THE DATA PROPERTIES

As already mentioned in the introduction, the aim of this article is (i) to provide a better under-
standing of lightweight integer compression algorithms and (ii) to introduce an approach to be
able to select a suitable algorithm for a given dataset. To achieve that, we divide our article into
two main components: In the first component (Sections 3 and 4), we present a comprehensive eval-
uation of our selected compression algorithms as well as cascades of compression techniques. In
the second component (Section 5), we introduce and evaluate a novel cost model for the selection
of a suitable lightweight integer compression scheme.

Our comprehensive evaluation is the first component and this component is divided into
two parts. Each part has its own focus, as presented in the following sections. In the first part,
we systematically investigate the influence of different data properties on the behavior using
a fixed hardware setting. That means, we restrict our evaluation to algorithm implementations
using 128-bit vector operations in this part, because most of the algorithms presented in the
literature are designed for 128-bit vector widths. All algorithms are implemented in C/C++, and
we compiled them with g++ 5.4.0 using the optimization flag -O3. Furthermore, all experiments
in this first part have been executed on the same hardware machine to be able to compare the
results. The used machine was equipped with an Intel Core i7-4710MQ (Haswell) processor with
4 physical and 8 logical cores running at 2.5GHz. The L1 data, L2, and L3 caches have a capacity of
32KB, 256KB, and 6MB, respectively. We use only one core at any time of our evaluation to avoid
competition for the shared L3 cache. The capacity of the DDR3 main memory was 16GB. We are
able to copy data using memcpy() at a rate of 8.0GiB/s or 2,140mis (million integers per second).

All experiments in both parts of the survey happened entirely in-memory. The disk was never
accessed during the time measurements. The whole survey was performed using our benchmark
framework [9]. The synthetic data generation was performed by our data generator. The data
properties were recorded and the algorithms were repeatedly executed on the generated data.
During the executions, the runtimes and the compression rates were measured. We emptied the
cache before each algorithm execution by copying a 12MB array (twice as large as the L3 cache).

All time measurements were carried out by means of the wallclock-time (C++-STL
high_resolution_clock) and were repeated 12 times to receive stable values. We only report
average values (the relative standard deviation is virtually always below 5%). The time measure-
ments include:

Compression: Loading uncompressed data from main memory, applying the compression
algorithm, storing the compressed data to main memory.

Decompression: Loading compressed data from main memory, applying the decompression
algorithm, storing the uncompressed data to main memory.

Decompression & Aggregation: Loading compressed data from main memory, applying the
decompression and summation, storing 8 bytes in total to main memory.

We focus on the aspects of compression as well as decompression to better understand light-
weight integer compression algorithms in an isolated way [8, 28]. Furthermore, we include de-
compression and aggregation in our evaluation as a first insight for the processing capability. This
processing aspect should definitely be explored in more detail in future work (see Section 5.3),
where this work is very helpful as a foundation. Before we present our evaluation results of

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

this first survey part in Section 3.2, we make some remarks on the implementation aspects in
Section 3.1. Then, we conclude this part with lessons learned in Section 3.3.

3.1 Implementation Remarks

As already mentioned, we reimplemented all four logical-level techniques in C++, i.e., DELTA,
DICT, FOR, and RLE. Regarding the physical-level, several high-quality open-source implementa-
tions of NS are available. We used these whenever possible and reimplemented only one of them.
Table 1 summarizes the origins of the implementations we employed. We also implemented cache-
conscious generic cascades of logical-level techniques and NS. Furthermore, we implemented a
decompression with aggregation for all algorithms to evaluate a processing of compressed data. In
the following, when we speak of vectorized operations, we refer to the use of Intel’s SIMD instruc-
tion set extension SSE, which works on 128-bit vector registers, which can fit four uncompressed
32-bit integers. SSE’s SIMD instructions can be used without writing assembler code by using C-
style intrinsic functions, or short intrinsics.5 The names of these intrinsics start with _mm_*. In this
section, we describe some of the most crucial implementation details with respect to performance.

3.1.1 Physical-Level Techniques: NS. In the following, we describe crucial points regarding ex-
isting implementations as well as one reimplementation.

Bit-Aligned NS Algorithms. We obtained the implementation of SIMD-BP128 and SIMD-

FastPFOR from the FastPFOR-library.6 Both implementations use vectorized shift and mask oper-
ations as well as a dedicated optimized packing and unpacking routine for each of the 32 possible
bit widths. While the original PFOR algorithm [43] is a combination of the FOR and the NS tech-
nique, SIMD-FastPFOR, despite its name, does not include the FOR technique, but only the NS
technique.

Byte-Aligned NS Algorithms. Regarding 4-Wise Null Suppression, we use the original imple-
mentation by Schlegel et al. [36]. It implements the horizontal packing of the uncompressed values
using a vectorized byte permutation. The 16-byte permutation masks required for this are built
once in advance and looked up from a table during the compression. This table is indexed with
the 1-byte compression masks, thus there are 256 permutation masks in total. The decompression
works by using the inverse permutation masks.

Masked-VByte vectorizes the decompression of the compressed format of the original VByte
algorithm. The implementation we use is available in the FastPFOR-library and is based on code
by the original authors. The crucial point of the vectorization is the execution of a SIMD byte
permutation to reinsert the leading zero bytes removed by the compression. After 16 bytes of
compressed data have been loaded into a vector register, the most significant bits of all bytes are
extracted using a SIMD instruction. The lower 12 bits of this 16-bit mask are used as a key to look
up the required permutation mask in a table. After the permutation, the original 7-bit units need
to be stitched together, which is done using vectorized shift and mask operations. Masked-VByte
also has an optimization for the case of 12 compressed 1-byte integers.

Word-Aligned NS Algorithms. We reimplemented SIMD-GroupSimple based on the description
in the original paper, since we could not find an available implementation.7 We employed the
two optimizations discussed by the original authors: (1) We calculate the pseudo-quad max values

5Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/.
6The FastPFOR C++ library: https://github.com/lemire/FastPFOR.
7Note that we reimplemented SIMD-GroupSimple for the conference paper; this paper is based on Reference [8]. However,
meanwhile, we have contributed our source code to the FastPFOR-library. Hence, it can also be found there.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

9

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://github.com/lemire/FastPFOR

instead of the quad max values to reduce the number of branch instructions. (2) We use a dedicated
and a vectorized packing routine for each selector, whereby the correct one is chosen by a switch.

The original compression algorithm processes the input data in three runs: The first run scans
the entire input and materializes the pseudo-quad max array in main memory. The size of this
array is one quarter of the input data size. The second run scans the pseudo-quad max array
and materializes the selector array. The third run iterates over the selector array and calls the
respective packing routine to do the actual compression. This procedure results in a suboptimal
cache utilization, since at the end of each run, the data it started with has already been evicted
from the caches. Thus, reaccessing it in the next run becomes expensive.

To overcome this issue, we enhanced the compression part of the algorithm with one more
optimization, which was not presented in the original paper: Our reimplementation stores the
pseudo-quad max values in a ring buffer of a small constant size (32 32-bit integers) instead of
an array proportional to the input size. This is based on the observation that the decision for the
next selector can never require more than 32 pseudo-quad max values, since at most 4 × 32 (1-bit)
integers can be packed into four 32-bit words. Due to its small size (128 bytes), the ring buffer fits
into the L1 data cache and can thus be accessed at top speed. Our modified compression algorithm
repeats the following steps until the end of the input is reached (starting with an empty ring buffer):

(1) Fill the ring buffer by calculating the next up to 32 pseudo-quad max values. This reads
up to 4 × 32 = 128 uncompressed integers.

(2) Run the original subroutine for determining the next selector on the ring buffer.
(3) Store the obtained selector to the selectors section in the output.
(4) Compress the next block using the subroutine belonging to the selector. This will typically

reread the uncompressed data touched in step (1). Note that this data is very likely to still
reside in the L1 cache, since only a few bytes of memory have been touched in between.

(5) Increase the position in the ring buffer by the number of input quads compressed in the
previous step. We observed that using this additional optimization, the compression part
of our reimplementation is always faster than without it. Note that this optimization does
not affect the compressed output in any way, i.e., it uses exactly the same format.

3.1.2 Logical-Level Techniques. As mentioned in Section 2, logical-level techniques are usually
combined with NS in existing algorithms, and are thus hardly available in isolation. To be able
to freely combine any logical-level technique with any NS algorithm, we reimplemented all four
logical-level compression techniques as stand-alone algorithms. An important goal is the 128-bit
vectorization of those algorithms.

Vectorized DELTA. Our implementation of DELTA represents each input element as the differ-
ence to its fourth predecessor. This allows for an easy vectorization by processing four integers at
a time. The first four elements are always copied from the input to the output. During the compres-
sion, the next four differences are calculated at once using _mm_sub_epi32(). The decompression
reverses this by employing _mm_add_epi32(). This follows the description in Reference [28] with
the difference that we do not overwrite the input data, because we still need it as the input for the
other algorithms.

Sequential DICT. Our implementation of DICT is a purely sequential single-pass algorithm em-
ploying a static dictionary, which is built on the uncompressed data before the (de)compression
takes place. Thus, building the dictionary is not included in our time measurements and the dictio-
nary itself is not included in the compressed representation. This represents the case of a domain-
specific dictionary that is known in advance. The compression uses a C++-STL unordered_map
to map values to their keys, whereas the decompression uses the key as the index of a vector to
look up the corresponding value.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

10

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Vectorized FOR. We implemented the compression of FOR as a vectorized two-pass algorithm.
The first pass iterates over the input and determines the reference value, i.e., the minimum using
_mm_min_epu32(). This minimum is then copied into all four elements of one vector register. The
second pass iterates over the input again and subtracts this vector register from four input elements
at a time using _mm_sub_epi32(). In the end, the reference value is appended to the output. The
decompression adds this reference value to four data elements at a time using _mm_add_epi32().

Vectorized RLE. Our RLE implementation also utilizes SIMD instructions. The compression part
is based on parallel comparisons. It repeats the following steps until the end of the input is reached:

(1) One 128-bit vector register is loaded with four copies of the current input element.
(2) The next four input elements are loaded.
(3) The intrinsic _mm_cmpeq_epi32() is employed for a parallel comparison. The result is

stored in a vector register.
(4) We obtain a 4-bit comparison mask using _mm_movemask_ps(). Each bit in the mask in-

dicates the (non-)equality of two corresponding vector elements. The number of trailing
1-bits in this mask is the number of elements for which the run continues. If this num-
ber is 4, then we have not seen the run’s end yet and continue at (2). Otherwise, we have
reached the run’s end and append the run value and run length to the output and continue
with step 1 at the next element after the run’s end.

The decompression executes the following until the entire input has been consumed:

(1) Load the next pair of run value and run length.
(2) Load one vector register with four copies of the run value.
(3) Store the contents of that register to memory as often as required to match the run length.

3.1.3 Cascades of Techniques. The challenge of implementing cascades, i.e., combinations of
logical-level and physical-level techniques, is the high implementation effort due to the high num-
ber of possible combinations. To address this problem, we implemented a cache-conscious cascade
that is generic with respect to the employed algorithms. That is, it can be instantiated for any

two algorithms, without further implementation effort. It takes three parameters: a logical-level
algorithm L, a physical-level algorithm P , and an (uncompressed) block size bsu .

The output consists of compressed blocks, each of which starts with its size as a 32-bit integer fol-
lowed by 12 bytes of padding to achieve the 16-byte alignment required by SSE’s load and store in-
structions. The block contains the compressed data possibly followed by additional padding bytes.

The compression procedure repeats the following steps until the end of the input is reached:

(1) Skip 16 bytes in the output buffer.
(2) Apply the compression of L to the next bsu data elements in the input. Store the result in

an intermediate buffer.
(3) Apply the compression of P to that buffer and store the result to the output buffer.
(4) Store the size bsc of the compressed block to the bytes skipped in step (1).
(5) Skip some bytes after the compressed block if it is necessary to achieve 16-byte alignment.

The decompression is the reverse procedure repeatedly executing the following steps:

(1) Read the size bsc of the current compressed block and skip the padding.
(2) Apply the decompression of P to the next bsc bytes in the input. Store the result to an

intermediate buffer.
(3) Decompress the contents of that buffer using L and append the result to the output.
(4) Skip the padding in the input, if necessary.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

11

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 2. A (Simplified) Summary of the Characteristics of the Synthetic
Datasets Used Throughout Our Evaluation

Dataset Sorted Data properties Varied data property

D0 no common exact bit width for all values bit width
D1 no uniform distribution with min=0 max
D2 no normal distribution with stddev=20 mean
D3 no 90% small values, 10% outliers mean of the outliers
D4 no 50% small values, 50% outliers mean of the outliers
D5 no uniform distribution with min=0, max=216 − 1 avg. run length
D6 yes uniform distribution with min=0 max resp. #distinct values
D7 no 4-bit values, 28-bit outliers outlier ratio

Each dataset consists of 100M uncompressed 32-bit integers.

The intermediate buffer i s r eused f or a ll b locks. I ts s ize i s i n t he o rder o f m agnitude of bsu
(we chose 4 KiB + 2 × bsu as a pessimistic estimation). This algorithm is cache-conscious if bsu
is chosen to fit the Lx cache, because then, the data read by the second algorithm is likely to still
reside in that cache. Finally, since the involved algorithms are executed for each block individually,
our generic cascade also determines the frame size used with FOR.

3.1.4 Decompression with Aggregation. We also modified t he d ecompressions o f b oth our
own reimplementations and existing implementations such that they sum up the decompressed
data instead of writing it to memory. The usual case for the vectorized algorithms is that
four decompressed 32-bit integers reside in a vector register before they are stored to mem-
ory using _mm_store_si128(). We replaced these store instructions by vectorized additions.
However, since the sum might require more than 32 bits, we first d istribute t he f our 32-bit
elements to the four 64-bit elements of two 128-bit registers using _mm_unpacklo_epi32() and
_mm_unpackhi_epi32() and add both to two 64-bit running sums (which are added in the very
end) by applying _mm_add_epi64(). In the case of RLE, we add the product of the run length and
the run value to the running sum.

3.2 Evaluation Results

In this section, we present selected results for this first part of our survey. Generally, we generated
synthetic datasets to be able to control the data properties in a systematic way. Table 2 provides an
overview of these datasets, which we will introduce one-by-one as we go through our evaluation.
All uncompressed arrays contain 100M 32-bit integers, i.e., 400MB. Thus, only a small portion
of the uncompressed data fits into the L3 cache. We report speeds in million integers per second
(mis) and compression rates in bits per integer (bits/int). We begin with the evaluation of pure NS
algorithms. After that, we investigate pure logical-level algorithms. Then, we evaluate cascades of
logical-level techniques and NS.

3.2.1 Null Suppression Algorithms. In this section, we compare the five considered NS algo-
rithms in the context of different data distributions. Note that all three classes of NS are repre-
sented in this selection. A closer investigation of the above-mentioned classes of NS including
some more algorithms can be found in the conference paper this journal article is based on [8].
We generated unsorted datasets D1–4 using four distributions, varying one parameter for each of
them. D1 follows a uniform distribution with a minimum of 0 and a maximum varying from 1 to
232 − 1. D2 is normally distributed with a standard deviation of 20 and a mean varying from 64 to
231. For D3, 90% of the values follow a normal distribution with a standard deviation of 2 and a

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

12

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 4. Comparison of NS algorithms of different classes on different data distributions.

mean of 8, while 10% are drawn from a normal distribution with the same standard deviation and
a mean varying from 8 to 231. That is, 90% of the data elements are small integers, while 10% are
increasingly large outliers. D4 is like D3, but with a ratio of 50:50. While D1–2 have a high data
locality, D3–4 do not.

The results for D1 can be found in Figure 4(a–d). The bit-aligned algorithms SIMD-BP128 and
SIMD-FastPFOR always achieve the best compression rates, since they can adapt to any bit width.
Masked-VByte is almost always the fastest compressor for small values, although it is not even vec-
torized, except for a maximum of one, when SIMD-GroupSimple is the fastest. However, for larger
values, SIMD-BP128 and then 4-Wise NS are the fastest. Regarding the decompression, SIMD-
GroupSimple yields the highest decompression speed for small values. For larger values, SIMD-
BP128 and SIMD-FastPFOR are the fastest, whereby 4-Wise NS and SIMD-GroupSimple come quite
close to the performance of SIMD-BP128, especially for the values for which they do not waste too
many bits due to their coarser granularity. For D2 (Figure 4(e–h)), we can make similar observa-
tions. However, the steps in the curves of the byte-aligned algorithms become flatter, since D2
contains values with less distinct bit widths than D1.

The results of D3 (Figure 4(i–l)) reveal some interesting effects. Regarding the compression rate,
SIMD-FastPFOR remains the winner, while SIMD-BP128 is competitive only for small outliers. For
large outliers it even yields the worst compression rates of all five algorithms. This is due to the
fact that SIMD-BP128 packs blocks of 128 integers with the bit width of the largest element in
the block, i.e., one outlier per block affects the compression rate significantly. SIMD-FastPFOR,
on the other side, can handle this case very well, since it—like all variants of PFOR—is explicitly
designed to tolerate outliers. The byte-aligned algorithms 4-Wise NS and Masked-VByte are worse

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

13

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

than SIMD-FastPFOR, but still quite robust, since they choose an individual byte width for each
data element and are thus not affected by outliers. SIMD-GroupSimple compresses similar to or
better than SIMD-BP128, since outliers lead to small input blocks, while there can still be large
blocks of non-outliers. In terms of compression speed, SIMD-BP128 performs very well, but it is
overtaken by 4-Wise NS for large outliers and by Masked-VByte for small outliers. Concerning de-
compression speed, 4-Wise NS overtakes SIMD-BP128 when the outliers need more than 12 bits.
SIMD-FastPFOR is nearly as fast as 4-Wise NS, but achieves much better compression rates. Re-
garding the aggregation, SIMD-BP128 is still the fastest algorithm, although SIMD-FastPFOR and
SIMD-GroupSimple come very close for small outliers and 4-Wise NS slightly overtakes it for the
largest outliers.

D4 increases the amount of outliers to 50%. The compression rate of SIMD-BP128 does not
change anymore, since basically all blocks were affected by outliers in D3 already. However, since
the other algorithms compress worse now, the trade-offs have to be reevaluated. Thanks to patched
coding, SIMD-FastPFOR still is in the top two regarding the compression rate. However, this comes
at the cost of (de)compression and aggregation performance, which heavily decreases as the out-
liers grow. Encoding each value individually, 4-Wise NS and Masked-VByte come very close to the
compression rate of SIMD-FastPFOR, and 4-Wise NS decompresses faster than SIMD-FastPFOR
for large outliers.

To sum up, the best algorithm regarding compression rate or performance depends on the data
distribution. Regarding one objective, a certain algorithm can be the best for one distribution and
the worst for another distribution. Moreover, for a certain distribution, the best algorithm regard-
ing one objective can be the worst for another objective. In fact, there are many points of inter-
section between the algorithms’ compression rates and speeds offering many different trade-offs.

3.2.2 Logical-Level Techniques. A general trend observable in Figure 4 is that all NS algorithms
get worse as the data elements get larger. Logical-level techniques can be able to change the
data properties in favor of NS. To illustrate this, we provide the results of the application of
the four stand-alone logical-level techniques to two unsorted datasets: D2, already known from the
previous section, and D5, whose data elements are uniformly drawn from the range [0, 216 − 1]
while varying the average run length rl (the individual run lengths are uniformly distributed in
[rl − 5; rl + 5]).

We start with the discussion of D5. First, in Figure 5(a), we can see that the total number of data
elements after the application of FOR, DELTA, and DICT is the same as in the uncompressed data
(1:1 mapping); while with RLE, it decreases significantly as the run length increases (N:1 mapping).
This has two consequences: (1) an NS algorithm applied after RLE needs to compress less data and
(2) RLE alone suffices to reduce the data si ze. Figure 5(e–i) shows the data distributions in the
uncompressed data as well as in the outputs of the logical-level techniques. Most uncompressed
values have 16 or 15 effective bits. This does not change much with FOR, since the value distri-
bution can produce values close to zero. In contrast, the output of DELTA contains nearly only
values of 1 effective bit for long runs, since these yield long sequences of zeros. Note that there
are also outliers having 32 effective bits, resulting from negative differences being represented in
the two’s complement. With DICT, the values start to get smaller as soon as the run length is high
enough to lead to a decrease of the number of distinct values (see Figure 5(b)), and thus the maxi-
mum key. For RLE, there are always two peaks in the distributions: one is at a bit width of 16 and
corresponds to the run values, and the other one is produced by the increasingly high run lengths.
Note that this distribution is quite similar to D4 from the previous section. The distributions might
seem to get worse for high run lengths. However, it must be kept in mind that RLE reduces the
total number of data elements in those cases. Figure 5(c–d) provides the (de)compression speeds.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

14

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 5. Logical-level techniques applied to datasets D5 (a–i) and D2 (j–n). How to read (e–n): The y-axis
lists all possible numbers of effective bits a data element can have. Each vertical slice corresponds to one
configuration of the data properties. The intensity encodes what portion of the data elements has how many
effective bits; that means the dark pixels show which numbers of effective bits occur most frequently in the
dataset.

The performance of DELTA and FOR is independent of the data characteristics, since they exe-
cute the same instructions for each group of four values. However, RLE is slow for short runs,
but becomes by far the fastest algorithm for long runs, since it has to write(read) less data during
the (de)compression. DICT is the slowest compressor due to the expensive lookups in the map.
Regarding the decompression, it is competitive to DELTA and FOR, but sensitive to the number of
distinct values, which influences whether or not the dictionary fits into the Lx cache.

The distributions for D2 are visualized in Figure 5(j–n). Here, FOR can improve the distribution
significantly, since the value range is narrow. The same applies to DICT, since consequently the
number of distinct values is small. As the data is unsorted and does not have runs, about half of
the values in the output of DELTA have 32 effective bits, i.e., the distributions get worse in most
cases. Note that RLE doubles the number of data elements due to the lack of runs.

To sum up, logical-level techniques can significantly improve the data distribution in favor of
NS. However, the data properties determine which techniques are suitable. In the worst case, the
distributions might even become less suited. We also experimented with other data characteristics
such as the number of distinct values and sorted datasets leading to similar conclusions.

3.2.3 Cascades of Logical-Level and Physical-Level Techniques. To find out which improvements
over the stand-alone NS algorithms the additional use of logical-level techniques can yield, we
compare the five selected stand-alone NS algorithms from Section 3.2.1 to their cascades with the
four logical-level techniques. That is, we compare 5 + 5 × 4 = 25 algorithms in total. The evalua-
tion is conducted on three datasets: D1 and D5, which are already known, and D6, a sorted dataset
for which we vary the number of distinct data elements by uniformly drawing values from the
range [0, max], whereby max starts with 1 and is increased until we reach 100M distinct values,

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

15

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 6. Comparison of the cascades on dataset D2. The bars in these diagrams are sorted, such that the best
algorithm is at the left. We use the color to encode the NS algorithm and the hatch to encode the logical-
level technique, whereby (none) means a stand-alone NS algorithm. Furthermore, bars with an X on top mark
algorithms that do not achieve a size reduction on the dataset, i.e., require at least 32 bits per integer.

i.e., until all data elements are unique. For all three datasets, we provide a detailed comparison of
SIMD-BP128 to its cascaded derivatives as well as a comparison of all 25 algorithms for selected
data configurations. For our generic cascade algorithm, we chose a block size of 16KiB, i.e., 4,096
uncompressed integers. This size is a multiple of the block sizes of all considered algorithms and
fits into the L1 cache of our machine. We also experimented with larger block sizes but found that
16KiB yields the best speeds.

Figure 6(a–d) shows the results of SIMD-BP128 and its cascaded variants on D2. The results for
the compression rate are consistent with the distributions in Figure 5(j–n): Combined with FOR
or DICT, SIMD-BP128 always yields equal or better results than without a preprocessing, while
DELTA and RLE affect the results negatively. However, the cascades with logical-level techniques
decrease the speeds of the algorithm, whereby the slowdown is significant for small data elements
but becomes acceptable for large values at least for DICT (decompression) and FOR. Indeed, the
decompression of FOR + SIMD-BP128 is faster than SIMD-BP128 alone for means larger than 216.
A comparison of all 25 algorithms can be found in Figure 6(e–h) and 6(i–l) for means of 26 and
231, respectively. For the small mean, the cascades with RLE and DELTA achieve the worst com-
pression rates, while for DICT, FOR, and stand-alone NS, the algorithms are roughly grouped by
the employed NS algorithm, since DICT and FOR do not change the distributions for the consid-
ered mean (see Figure 5(j–n)). Regarding the speeds, the top ranks are held by stand-alone NS
algorithms. When changing the mean to 231, the cascades with FOR and DICT achieve the best
compression rates by far. Stand-alone NS algorithms are still among the top ranks for the speeds.
However, none of them achieves an actual size reduction. Depending on the application, many
trade-offs between compression rate and speed could be reasonable. However, it generally does
not make sense to accept compression rates of more than 32 bits/int, since then, the data could
rather be copied or not touched at all, which would be even faster. Keeping this in mind, the cas-
cades with FOR achieve the best results regarding all three speeds, whereby DELTA also makes it
into the top three for the compression.

Figure 7 shows the results on D5. The cascades of any logical-level technique and SIMD-BP128
achieve better compression rates than the stand-alone SIMD-BP128 from some run length on

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

16

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 7. Comparison of the cascades on dataset D5. The bars in these diagrams are sorted, such that the best
algorithm is at the left. We use the color to encode the NS algorithm and the hatch to encode the logical-
level technique, whereby (none) means a stand-alone NS algorithm. Furthermore, bars with an X on top mark
algorithms that do not achieve a size reduction on the dataset, i.e., require at least 32 bits per integer.

(Figure 7(a)). Regarding the (de)compression speeds, only RLE + SIMD-BP128 can yield an
improvement if the run length exceeds 25. It is noteworthy that the cascades with DELTA and
FOR imply only a slight slowdown, while they achieve much better compression rates. The
aggregation speed of RLE + SIMD-BP128 gets out of scope for any other cascade for run lengths
above 28, since the aggregation of RLE has to execute only one multiplication and one addition
per run. The next three rows of Figure 7 compare all cascades for average run lengths of 6, 36,
and 517. Even for the lowest of these run lengths (Figure 7(e–h)), the cascades with RLE yield
the best compression rates by far, while those with DELTA are among the last ranks. However,
the (de)compression speeds of the cascades with RLE are not competitive to those of the best
stand-alone NS algorithms. However, RLE + SIMD-BP128 has the best aggregation speed. As the
run lengths get a little higher (Figure 7(i–l)), the cascades with RLE move further towards the top
ranks of the speeds and further improve their compression rates. Interestingly, the compression
rates of the cascades with DELTA do now achieve the best compression rates after the cascades
with RLE, except for DELTA + SIMD-BP128, which still yields the worst compression rate. When
the run length is increased further (Figure 7(m–p)), these trends continue and the cascades with
RLE do now dominate both the compression rate and all three speeds.

Figure 8(a–d) reports the results of SIMD-BP128 and its cascades on D6 subject to the number of
distinct data elements. Since D6 is sorted, a low number of distinct values is equal to a high average
run length. Consequently, RLE + SIMD-BP128 achieves a better compression rate than stand-alone
SIMD-BP128 until the number of distinct values comes close to the total number of values, i.e.,
100M. Although the possible minimum value is 0, FOR + SIMD-BP128 also improves the compres-
sion rate. This is due to the fact that within each input block of the cascade, the value range is small
as the data is sorted. Apart from that, especially the decompression speed is interesting. For low

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

17

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 8. Comparison of the cascades on dataset D6. The bars in these diagrams are sorted, such that the best
algorithm is at the left. We use the color to encode the NS algorithm and the hatch to encode the logical-
level technique, whereby (none) means a stand-alone NS algorithm. Furthermore, bars with an X on top mark
algorithms that do not achieve a size reduction on the dataset, i.e., require at least 32 bits per integer.

numbers of distinct values and thus long runs, SIMD-BP128 and its cascade with RLE are nearly
equally fast. As the number of distinct values increases, SIMD-BP128 is affected stronger than RLE
+ SIMD-BP128. However, when the number of distinct values exceeds 221, the performance of the
cascade with RLE deteriorates and, from this point on, the cascade with FOR, respectively DELTA
is the fastest algorithm. Note that in this case, the decompression of the stand-alone SIMD-BP128
is never the fastest alternative. Figure 8(e–h) shows the comparison of all 25 algorithms when the
dataset contains 128 distinct values. Since the average run length is very high (nearly 800K), the
cascades including RLE are the best regarding both compression rate and speeds. The extreme
case of unique data elements, i.e., 100M distinct values, is given in Figure 8(i–l). Now the cascades
of RLE are among the worst algorithms for all four measured variables, since the data contains
no runs. The best compression rates are now achieved by the cascades of DELTA, since the data
is sorted. While the fastest compressor is DELTA + Masked-VByte, the next ranks are held by
stand-alone NS algorithms and cascades making use of DELTA. Regarding the decompression
speed, the top-three algorithms are SIMD-BP128 + DELTA, SIMD-BP128 + FOR, and stand-alone
SIMD-FastPFOR. In terms of the aggregation speed, the stand-alone NS algorithms SIMD-BP128
and SIMD-FastPFOR are the fastest. However, FOR + SIMD-BP128 and DELTA + SIMD-BP128
also achieve very good aggregation speeds, but much better compression rates.

Summing up, the changes to the data distributions achieved by the logical-level techniques do
indeed propagate to the compression rates of their cascades with NS. Furthermore, the speeds
of the cascades can even exceed those of the corresponding stand-alone NS algorithms. This is
especially true for the cascades including RLE if the data contain long enough runs. Cascades
with the other three logical-level techniques generally lead to less significant speed-ups or even
slowdowns, whereby these often come with an improvement of the compression rate. Finally, if the
logical-level technique is fixed, its cascades with different NS algorithms can lead to significantly
different results regarding compression rate and speed. This justifies the consideration of multiple
different NS algorithms even in cascades.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

18

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

3.3 Lessons Learned

In the first part of our evaluation, we have investigated the influence of the characteristics of the
data to be processed on the behavior of lightweight integer compression algorithms in detail. To
sum up, we have learned the following lessons: Regarding the compression techniques, we can
observe some general trends. For instance, NS usually performs better when the values are lower,
while RLE profits from long runs, and DICT from few distinct values. However, these facts can be
derived from the ideas of the techniques and have already been shown experimentally by other au-
thors, e.g., by Abadi et al. [1]. What is more interesting is the level of the compression algorithms.
While SIMD-BP128 seems to be a good choice regardless of the objective if the data exhibits a good

locality, the case is more complicated for data with a low locality or outliers. What makes the se-
lection of the best algorithm even more complex is that the performance of some NS algorithms
is not monotonic in the size of the values. This holds, e.g., for Masked-VByte (Figure 4(b, f, j, n)).
Furthermore, we have seen that the logical-level techniques can improve the data distributions
significantly in favor of NS. Therefore, especially cascades of logical-level techniques and NS can
achieve very good compression rates and might be faster or slower than the stand-alone NS al-
gorithm, depending on the data characteristics. Finally, the best algorithm regarding compression
rate is not necessarily the best regarding performance, so a trade-off must necessarily be defined.

4 EVALUATING THE INFLUENCE OF THE VECTOR WIDTH

In the first part of our evaluation, we have concentrated on vectorized lightweight compression
algorithms using SIMD instructions with a fixed vector width of 128 bits. This vector width cor-
responds to Intel’s Streaming SIMD Extensions (SSE8). In fact, most of the literature on vectorized
lightweight integer compression [28, 32, 36, 37, 41] focuses on 128-bit vector instructions. However,
in recent years hardware vendors have introduced new SIMD instruction set extensions operating
on wider vector registers. For instance, Intel’s Advanced Vector Extensions 2 (AVX2) operates on
256-bit vector registers9 and Intel’s AVX-512 uses even 512-bit vector registers. Table 3 summarizes
the SIMD instruction set extensions used in this section. The general idea of SIMD instructions is
the same irrespective of the vector width. However, the wider the vector registers, the more data
elements can be stored in one vector. For example, while an SSE 128-bit vector register can store
four uncompressed 32-bit data elements, an AVX2 256-bit vector can store eight (2×) and an AVX-
512 512-bit vector can store 16 (4×) of such data elements. Consequently, the SIMD instructions on
these wider vector registers can also process 2× and 4×, respectively, the number of data elements
in one instruction, which promises significant speed-ups. In spite of their great potential, these
newer SIMD extensions have received only little attention in the literature on lightweight integer
compression. Some papers [36, 41] propose approaches to vectorize lightweight compression
algorithms, which essentially treat the vector width as an adjustable parameter. However, none
of these has actually discussed wider vectors in detail nor evaluated their proposed algorithms
using SIMD extensions beyond 128 bits. While there are papers [17] that employ 256-bit SIMD
in their evaluation, to the best of our knowledge, a systematic investigation of 256-bit and 512-bit
SIMD extensions for lightweight integer compression has never been published. Therefore, in the
second evaluation part, we systematically investigate the impact of different SIMD instruction
set extensions with vector widths of 128, 256, and 512 bits on the behavior of lightweight integer
compression algorithms. Some of these aspects have already been published in Reference [15].

8Note that there are several versions of SSE, all of which use a vector width of 128 bits. We refer to them collectively as
SSE.
9Note that 256-bit vector registers had already been introduced with Intel’s AVX. However, most instructions relevant to
lightweight integer compression were only introduced with AVX2.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

19

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 3. Summary of the SIMD Instruction Set
Extensions Employed in This Section

Width of a vector register
SIMD extension bits bytes 32-bit integers

SSE 128 16 4
AVX2 256 32 8
AVX-512 512 64 16

This section is structured as follows: In Section 4.1 we discuss important implementation as-
pects of our vectorized lightweight compression algorithms for 256- and 512-bit SIMD. Section 4.2
presents our experimental results. In the end, we draw conclusions regarding the influence of the
vector width in Section 4.3.

4.1 Implementation Remarks

Just like SSE instructions, AVX2 and AVX-512 instructions can be used without writing assem-
bler code through the use of C-style intrinsic functions, whose names start with _mm256_* and
mm512*, respectively.10 To obtain implementations of lightweight compression algorithms for
AVX2 and AVX-512 SIMD extensions, we did a straightforward reimplementation of most of the
vectorized algorithms we considered in the first part of our evaluation. By a straightforward reim-
plementation, we mean that we tried to stick with the original source code for 128-bit instructions
as much as possible and applied only intuitive changes. In particular, we mainly substituted the
SSE intrinsics for 128-bit vectors by the corresponding AVX2 or AVX-512 intrinsics for 256- or
512-bit vectors, respectively. This is possible in many cases, since many instructions offered by
SSE are also offered by AVX2 and AVX-512 on wider vectors. For instance, for the SSE intrinsic
_mm_slli_epi32(), which shifts each of the four 32-bit data elements in a 128-bit vector register
to the left by a specified number of bits, there are also equivalents in AVX2 and AVX-512, namely
_mm256_slli_epi32() and _mm512_slli_epi32(), which left-shift the eight and sixteen, respec-
tively, 32-bit data elements in a 256-bit and 512-bit, respectively, vector register. However, not
all SSE instructions have an AVX2 or AVX-512 equivalent. Furthermore, we slightly adapted the
storage layout of some algorithms in case it was necessary and possible in an intuitive way, thus
remaining faithful to the ideas behind the original implementation.

It is worth mentioning that straightforward reimplementations might not exploit the capabilities
of newer SIMD extensions to the maximum extent. This is because straightforward reimplemen-
tations, by nature, can only utilize operations that have already been available in SSE. However,
each new extension typically introduces some novel operations that are not just a wider-vector
equivalent to an earlier operation. To provide an example, AVX-512 introduces horizontal reduce
operations aggregating the elements within one vector register.

Nevertheless, we decided to employ straightforward reimplementations, because they appear
to be the natural way of exploiting newer SIMD extensions without a time-consuming algorithm
redesign, which would be beyond the scope of this article and should rather be addressed in future
research. Furthermore, only straightforward reimplementations allow a fair comparison of the dif-
ferent SIMD-variants of a specific algorithm as a basis for the investigation of the influence of the
vector width. In the following, we briefly discuss crucial points of the reimplementation of each
algorithm or justify why a straightforward reimplementation is not possible.

10Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

20

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

4.1.1 Physical-Level Techniques: NS. We tried to port one SSE representative of each class of
NS to AVX2 and AVX-512. As we detail below, this is only possible for our selected bit-aligned and
word-aligned algorithms, but not for the selected byte-aligned algorithms.

Bit-Aligned NS Algorithms. We decided to reimplement SIMD-BP128 as a representative of bit-
aligned null suppression. We call our AVX2 and AVX-512 reimplementations SIMD-BP256 and
SIMD-BP512, respectively. SIMD-BP256 and SIMD-BP512 are based on the original source code
of SIMD-BP128 by Lemire et al., which is available in the FastPFOR-library. This original imple-
mentation is based on SSE shift and mask operations on 128-bit vector registers, for each of which
there are equivalent operations for 256-bit and 512-bit vectors in AVX2 and AVX-512, respectively.
Therefore, the SIMD intrinsics could be exchanged in a straightforward way. As a consequence,
while SIMD-BP128 determines a common bit width for a block of 128 data elements at a time,
SIMD-BP256 and SIMD-BP512 determine the bit width for a block of 256 and 512 integers at a
time, respectively. SIMD-BP128 uses one byte to store the bit width used for a particular block.
In memory, 16 of these descriptor bytes are stored subsequently and are followed by 16 com-
pressed blocks. This is necessary, because SSE’s load and store instructions require an alignment
of 16 bytes. Since this alignment requirement naturally increases to 32 and 64 bytes in AVX2 and
AVX-512, respectively, we had to slightly and intuitively adapt the storage format for our reim-
plementations. In the formats of SIMD-BP256 (SIMD-BP512), 32 (64) descriptor bytes are stored,
subsequently followed by 32 (64) compressed blocks.

Byte-Aligned NS Algorithms. The crucial point in the implementation of the two byte-aligned
NS algorithms we consider in our experimental survey, 4-Wise NS and Masked-VByte, is an
SSE permutation instruction of the bytes within one 128-bit vector register. This permutation
is done using the SSE intrinsic _mm_shuffle_epi8(). Unfortunately, there is no true equiva-
lent to this intrinsic in AVX2 and AVX-512, since the intrinsics _mm256_shuffle_epi8() and
_mm512_shuffle_epi8() are unable to shuffle bytes between the lower and upper half of a 256-
or 512-bit vector register, respectively. Therefore, they cannot be used to port the algorithms in a
straightforward way. Nevertheless, even if these permutation instructions were available, straight-
forward ports of 4-Wise NS and Masked-VByte to AVX2 and AVX-512 would not be practical; this
is due to their use of a lookup table that stores the masks required for these permutations. For
instance, with 4-Wise NS, each of the four uncompressed 32-bit data elements in a 128-bit vector
register could have zero to three leading zero bytes to be removed through the byte permutation.
Hence, one out of #bytes per data element#data elements per vector = 44 = 256 different byte permuta-
tions might be necessary, depending on the actual data elements. For each of these permutations,
a 128-bit mask must be stored in the compression’s lookup table. Thus, this table has a size of
256 × 16 bytes = 4KiB. Additionally, the decompression requires the same amount of space for
the masks of the inverse permutations, so 8KiB are required in total. Note that this amount of data
can easily fit into the L1 data cache of modern processors. However, when going to AVX-512, the
situation changes dramatically. Now, a vector register fits 16 uncompressed 32-bit integers, such
that the lookup table contains 416 = 4 Gi entries, each of which is a 512-bit vector, resulting in a
size of 256GiB for one table and 512GiB for both tables. It is self-evident that storing 512GiB of
auxiliary information for a compression algorithm is practically infeasible. This shows that not
every 128-bit SIMD algorithm can be ported to 256- or 512-bit SIMD in a straightforward way.
Owing to these reasons, we do not consider byte-aligned null suppression in the second part.

Word-Aligned NS Algorithms. As an example of word-aligned null suppression, we selected
SIMD-GroupSimple, whose SSE implementation is called SIMD-GroupSimple128 in this sec-
tion, while the ported variants are called SIMD-GroupSimple256 and SIMD-GroupSimple512.
These ported variants are based on our own implementation of SIMD-GroupSimple128 and also

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

21

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

employ all optimizations discussed in Section 3.1.1. Since this algorithm is based on vectorized
shift and mask operations, we could use equivalent AVX2 and AVX-512 operations just like we
did for our ports of SIMD-BP128. Moreover, SIMD-GroupSimple128 calculates the (pseudo) maxi-
mum of four consecutive data elements and only considers the bit width of this (pseudo) maximum
when compressing the values. The number of four data elements is chosen to match the number
of uncompressed 32-bit data elements fitting into one 128-bit vector register. Therefore, SIMD-
GroupSimple256 and SIMD-GroupSimple512 need to calculate the (pseudo) maximums for groups
of eight and sixteen data elements, respectively. Hence, the output of these three variants might
differ for the same input.

4.1.2 Logical-Level Techniques. We also ported our vectorized logical-level algorithms to AVX2
and AVX-512. Note that we do not consider DICT in this section, since its implementation is not
vectorized but purely sequential and, thus, not a candidate for being ported. For the remaining
three algorithms, we append the vector width as a suffix to th e na me as we di d fo r th e NS
algorithms.

Vectorized DELTA. DELTA128 is based on SSE’s subtraction and addition operations, which also
exist in AVX2 and AVX-512. Therefore, the straightforward ports to DELTA256 and DELTA512
are possible. While DELTA128 replaces each data element by the difference to i ts fourth prede-
cessor, DELTA256 and DELTA512 naturally use the eighth and sixteenth predecessor, respectively.
Therefore, the outputs of the three variants of DELTA might be different even if the input is the
same.

Vectorized FOR. FOR128 uses SSE minimum as well as subtraction and addition operations,
which are offered by AVX2 and AVX-512 as well, such that FOR256 and FOR512 can be reim-
plemented easily. In fact, the output of all three variants of FOR is exactly the same for the same
input.

Vectorized RLE. RLE128 is based on vectorized comparisons. Equivalents of these are also avail-
able in AVX2 and AVX-512. The ported variants RLE256 and RLE512 yield exactly the same
output as RLE128 if the input is the same.

4.1.3 Cascades of Techniques. In addition to the stand-alone physical-level and logical-level
algorithms, we also adapted our generic cascade to the use of wider vector registers. While the
cascade itself does not use any vectorized operations, the memory alignment required by the algo-
rithms being cascaded needs to be taken into account. In particular, this applies to the payload of
the compressed blocks stored inside the output of the cascade. In Section 3, padding bytes needed
to be inserted to align these blocks to 16-byte boundaries in memory, as required by SSE’s load
and store instructions. Analogously, if algorithms using AVX2 or AVX-512 shall be executed in a
cascade, the blocks must be aligned to 32- or 64-byte boundaries, respectively.

4.1.4 Decompression with Aggregation. Finally, we also modified the decompression algorithms
of all ported algorithms such that they do not store the uncompressed data to main memory, but do
a SUM-aggregation instead. To be consistent with the algorithms, this summation also uses AVX2
and AVX-512 instructions, respectively. All required SSE operations are also available in AVX2 and
AVX-512 for vector registers of the respective width. Note that we do not consider the summation
of RLE in this section, since it is purely sequential.

4.2 Evaluation Results

Evaluating the influence of the vector width on the behavior of l ightweight compression algo-
rithms requires an evaluation platform supporting SSE, AVX2, and AVX-512. This holds only for

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

22

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 9. The variants of SIMD-BP (rows 1 and 2) and SIMD-GroupSimple (rows 3 and 4) on dataset D0. Rows 1
and 3 report absolute measurements, while rows 2 and 4 report the measurements of each algorithm variant
relative to the measurement of the classical 128-bit variant.

very recent Intel processors. Therefore, we use a system equipped with an Intel Xeon Phi 7250
running at 1.4GHz. This processor’s L1 and L2 caches have a capacity of 32KB and 1MB, respec-
tively, while there is no L3 cache. The capacity of the DDR4 RAM is 192GB running at 2,400MHz.
The throughput of memcpy() is 5.3GiB/s, or 1,420mis. We call this hardware platform Xeon Phi
for short. We compile our C++ source code using g++-7.0.1 with the optimization flag -O3. The
rest of our evaluation setup is identical to that of the first part of our evaluation (Section 3). In
particular, we still only consider the single-thread performance, and all reported speeds are based
on the average of 12 individual time measurements. As in the first part of our evaluation, we be-
gin with the investigation of the pure NS algorithms. After that, we present the results for the
pure logical-level algorithms. Finally, we have a look at cascades of logical-level and physical-level
algorithms.

4.2.1 Null Suppression Algorithms. We investigate the variants of the two NS algorithms we
have ported to AVX2 and AVX-512 on two different datasets. The first dataset is D0, which is al-
ready known from the first two parts of our evaluation. Figure 9(a, e) shows the results for the
compression rate of the variants of SIMD-BP on this dataset. In D0, all data elements have the
same number of effective bits. Therefore, all three variants of SIMD-BP yield nearly the same
compression rate, since each of them can adapt to the bit width in the same way. However, the
blocks of SIMD-BP256 and SIMD-BP512 are twice and four times, respectively, as large as the
blocks of SIMD-BP128. At the same time, all three variants need the same amount of metadata per
block, namely one byte. Thus, the compression rates achieved by SIMD-BP256 and SIMD-BP512
are in fact minimally better than those of SIMD-BP128. Regarding the performance (Figure 9(b–
d)), we can make the general observation that the speed increases as the vector width is increased.
Figure 9(f–h) shows the speed-ups of each variant compared to SIMD-BP128. With respect to the

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

23

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

(de)compression performance, it becomes visible that the performance gains achieved through the
use of wider vector registers are lower than might be expected. In the ideal case, SIMD-BP256 and
SIMD-BP512 could yield speed-ups of 2× and 4×, respectively, compared to SIMD-BP128. How-
ever, the true speed-ups are far less than than those for both the compression and the decompres-
sion. Moreover, it is worth noting that, while SIMD-BP256 is significantly faster than SIMD-BP128,
SIMD-BP512 can add only little to the speed of SIMD-BP256. The use of SIMD extensions with
wider vector registers enables faster computations. As a consequence, the algorithms become in-
creasingly memory-bound, which explains the sub-optimal speed-ups. However, if we have a look
at the aggregation speeds and speed-ups in Figure 9(d, h), we observe that SIMD-BP256 and SIMD-
BP512 can indeed reach the expected speed-ups of about 2× and 4×, respectively, at least for small
bit widths. Unlike the decompression, the aggregation does not store the decompressed values
to memory, but adds them to a running sum. Thus, the aggregation is generally rather compute-
bound than memory-bound and can, in consequence, profit much more from AVX2 and AVX-512.
Finally, the speed-ups achieved also depend on the bit width and the data characteristics in general.

Figure 9(i–p) presents the results for the variants of SIMD-GroupSimple. The absolute compres-
sion rates (Figure 9(i)) of all variants seem to be nearly equal. However, if we have a close look
at the compression rates relative to those of SIMD-GroupSimple128 (Figure 9(m)), we see that,
especially for small bit widths, the variants utilizing wider vector registers achieve significant
further size reductions compared to SIMD-GroupSimple128. E.g., for 1-bit data elements, the out-
puts of SIMD-GroupSimple256 and SIMD-GroupSimple512 have only 75% and 67%, respectively,
of the size of the output of SIMD-GroupSimple128. Concerning the performance, we can again
observe that the speed grows with the width of the vectors. A look at the relative speeds of the
(de)compression (Figure 9(n–o)) reveals that the speed-ups are much better than for SIMD-BP,
unless the bit width is very low. In fact, for bit widths of about 11, the (de)compression speed-up
of SIMD-GroupSimple256 comes very close to the optimal speed-up of 2×. One explanation for
the good speed-ups of SIMD-GroupSimple compared to SIMD-BP is that, for larger bit widths,
the absolute speeds of the variants of SIMD-GroupSimple are far lower than those of the vari-
ants of SIMD-BP, such that there is more potential for improvement before the algorithm becomes
memory-bound. Just like for SIMD-BP, the aggregation of SIMD-GroupSimple (Figure 9(l, p)) yields
better speed-ups than the (de)compression, whereby the difference is most significant for small bit
widths.

The first part of our evaluation (Section 3) has revealed that outliers in the data play a crucial role
for the behavior of lightweight integer compression algorithms. Therefore, we now investigate the
interplay of outliers and vector widths. For this purpose, we introduce a new synthetic dataset D7,
which is an unsorted dataset consisting of 100M uncompressed 32-bit integers. Each data element
is either a 4-bit value or a 28-bit outlier, whereby we vary the outlier ratio.

Figure 10(a–h) displays the results of the variants of SIMD-BP on this dataset. Regarding the
compression rate (Figure 10(a, e)), the three variants differ significantly subject to the outlier ratio.
More precisely, as the vector width grows, so does the algorithm’s vulnerability to outliers. In the
worst cases, SIMD-BP256 and SIMD-BP512 might yield approximately 1.5× and 2×, respectively,
of the compressed data size of SIMD-BP128. The reason for this is that these ported variants of
the algorithm use blocks of larger sizes. Even one outlier per block suffices to force the use of the
outlier bit width for all data elements in the entire block. Thus, the larger the blocks, the higher
the number of blocks which are affected even by just one outlier. Regarding the performance, we
can make the same observations as for D0. However, with respect to the outlier ratio, we see that
the (de)compression speed of SIMD-BP512 is even less than that of SIMD-BP256 for those outlier
ratios at which it suffers most regarding compression rate.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

24

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 10. The variants of SIMD-BP (rows 1 and 2) and SIMD-GroupSimple (rows 3 and 4) on dataset D7.
Rows 1 and 3 report absolute measurements, while rows 2 and 4 report the measurements of each algorithm
variant relative to the measurement of the classical 128-bit variant.

For the variants of SIMD-GroupSimple (Figure 10(i–p)) the situation is generally less dramatic.
The compression rates of these algorithms are affected by outliers equally severely as the variants
of SIMD-BP, i.e., SIMD-GroupSimple256 and SIMD-GroupSimple512 might output about 1.5× and
2× the amount of compressed data as SIMD-GroupSimple128. However, to make these worst cases
happen, the outlier ratio must be about one order of magnitude higher than for SIMD-BP. This is
due to SIMD-GroupSimple’s ability to choose the block size flexibly depending on the data, which
permits a better adaptation to outliers. Regarding the performance, the speed-ups achieved by the
ported variants are least significant at the worst-case outlier ratios. Nevertheless, here it still holds
that the speed is higher when the vector registers are wider.

To summarize, when porting NS algorithms to SIMD extensions using wider vector registers,
the performances can generally be increased. However, the algorithms quickly become memory-
bound, resulting in sub-optimal speed-ups compared to the classical 128-bit variants. Conse-
quently, with newer SIMD extensions, the need to keep data compressed in memory and decom-
press it only temporarily during processing becomes even stronger than for 128-bit SIMD, which
is illustrated by our measured aggregation performance. In terms of compression rate, the consid-
ered algorithms tend to use larger blocks for larger vector widths, which results in less metadata
to be stored, but also increases the vulnerability to outliers in the data.

4.2.2 Logical-Level Techniques. In Section 3.2.2, we have shown that the logical-level tech-
niques can improve the characteristics of the data in favor of NS. These results still hold without

any restrictions for our ported variants of RLE and FOR, i.e., RLE256 and RLE512 have exactly the
same effect on the data characteristics as RLE128, and analogously for the variants of FOR. This
follows directly from the fact that all three variants of RLE and FOR, respectively, produce exactly
the same output data for the same input data. However, our ports of DELTA can differ in their

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

25

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 11. The compression and decompression performance of the three variants of RLE on dataset D5. (a–b)
report the absolute speeds, while (c–d) report the speeds relative to RLE128.

Fig. 12. The constant absolute performances of the three variants of DELTA and FOR on dataset D5.
The numbers above the bars are the speed-ups compared to the classical 128-bit variant of the respective
algorithm.

outputs. As mentioned in Section 4.1, the wider the vector registers employed for the vectorized
subtraction, the larger the distance between minuend and subtrahend with respect to their positions
in the dataset. This increased distance can imply an increase in the difference with respect to the
actual data values, depending on the data characteristics and especially for sorted datasets. Thus,
the differences output by DELTA512 might have a higher average bit width than those output by
DELTA256, which in turn might be larger than those output by DELTA128, depending on the data
characteristics.

Concerning the performance, we can generally make the same observations as for the NS algo-
rithms. Figure 11 shows the results for the variants of RLE on dataset D5. Here, we omit the com-
pression rate, since all three variants of RLE always have the same output, as mentioned above.
Furthermore, we do not show the aggregation performance, because the aggregation algorithm of
RLE128 is purely sequential and could, thus, not be ported to AVX2 and AVX-512. Regarding the
compression, RLE256 and RLE512 achieve considerable speed-ups of about 1.4× and 3×, respec-
tively. Regarding the decompression, however, RLE256 performs significantly worse than RLE128
and yields only about half of the classical variant’s speed for long runs.

In Section 3.2.2, we found out that the performance of DELTA128 and FOR128 does not depend
on the data characteristics. This same conclusion holds for the variants ported to AVX2 and
AVX-512. Therefore, Figure 12 only reports these constant speeds on dataset D5. Just like for the
other algorithms investigated so far, the 256-bit and 512-bit variants of DELTA and FOR yield
higher speeds than the respective 128-bit variants. However, the speed-ups, again, are sub-optimal.

4.2.3 Cascades of Logical-Level and Physical-Level Techniques. When we investigated cascades
of logical-level and physical-level algorithms in the first part of our evaluation (Section 3.2.3), we
found out that these combinations can achieve dramatically better compression rates for many
configurations of the data characteristics, but often a lso imply s lowdowns compared to the in-
volved stand-alone NS algorithm. In this second part of our evaluation, we have learned that using
SIMD extensions with wider vector registers can speed up both physical-level and logical-level
algorithms, whereby these algorithms quickly become memory-bound as the vector width is in-
creased. Combining these two observations, it seems likely that the much better compression rates
achieved by cascades could alleviate the memory-boundedness of the algorithm variants using

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

26

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 13. The variants of RLE + SIMD-BP on dataset D5. The first row compares the absolute measurements of
the cascade with those of stand-alone SIMD-BP. The second row presents the measurements of each variant
of the cascade relative to RLE128 + SIMD-BP128. The third row provides the speed-ups of the variants of the
cascade compared to the same-vector-width-variant of stand-alone SIMD-BP. As before, we do not report
the aggregation performance, since the aggregation of RLE is purely sequential.

wider vector registers to a certain degree. Therefore, in the following, we investigate the cascades
anew in the light of different SIMD extensions.

We choose the variants of SIMD-BP for the physical-level part of the cascades and investigate
each of the three vectorized logical-level algorithms, i.e., the variants RLE, DELTA, and FOR, for
the logical-level part. Moreover, while it would be possible to cascade algorithms implemented
for different vector widths, we only consider cascades with a common vector width for both the
logical-level and the physical-level algorithms. To find out the potential of the cascades depending
on the vector width, we deliberately choose a suitable dataset for each of the involved logical-level
algorithms. More precisely, we evaluate the cascades involving RLE on D5, those involving DELTA
on D6, and those involving FOR on D2.

Figure 13 shows the results for the variants of RLE + SIMD-BP on dataset D5 subject to the
average run length. When looking at the absolute performances of the variants of RLE + SIMD-BP
(Figure 13(b–c)) and the speed-ups compared to RLE128 + SIMD-BP128 (Figure 13(e–f)), we can see
that the effects observed for the variants of stand-alone RLE and SIMD-BP are also recognizable
in the behavior of the cascade. What is most interesting, though, is the comparison of the variants
of RLE + SIMD-BP to stand-alone SIMD-BP, which can be seen in absolute terms in Figure 13(b–
c). In addition to that, Figure 13(h–i) shows the speed-up of the cascade to the stand-alone NS
algorithm for each vector width. Regarding the compression, RLE128 + SIMD-BP128 is significantly
slower than SIMD-BP128 for all run lengths. Then, RLE256 + SIMD-BP256 achieves a performance
very close to that of SIMD-BP256 for large run lengths. When moving further to the AVX-512
variants, SIMD-BP512 is only as fast as SIMD-BP256, whereas RLE512 + SIMD-BP512 is much
faster than RLE256 + SIMD-BP256, resulting in a considerable speed-up of the cascade compared
to the stand-alone NS algorithm of about 2× for average run lengths of 32 and greater. Regarding

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

27

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 14. The variants of DELTA + SIMD-BP on dataset D6. The first row compares the absolute measurements
of the cascade with those of stand-alone SIMD-BP. The second row presents the measurements of each
variant of the cascade relative to DELTA128 + SIMD-BP128. The third row provides the speed-ups of the
variants of the cascade compared to the same-vector-width-variant of stand-alone SIMD-BP.

the decompression, RLE128 + SIMD-BP128 is faster than SIMD-BP128 from average run lengths
of 210 on. In contrast, RLE256 + SIMD-BP256 is always slower than SIMD-BP256, while RLE512
+ SIMD-BP512 achieves approximately the same speed-ups over SIMD-BP512 as for the 128-bit
case.

Figure 14 presents the results for the variants of DELTA + SIMD-BP on dataset D6 subject to
the number of distinct data elements. Regarding the compression rate, Figure 14(a) reveals that, as
mentioned in Section 4.2.2, the compression rate of the variants of DELTA + SIMD-BP gets worse
as the vector width is increased. Figure 14(e) further shows that the compressed data output by
DELTA256 + SIMD-BP256 is nearly twice as large as that output by the 128-bit variant of the cas-
cade in the worst case, while for DELTA512 + SIMD-BP512, the increase comes even close to 4×.
However, Figure 14(a, i) clearly suggests that the cascade still yields much better compression rates
than the stand-alone NS algorithm. Focusing on the compression of DELTA + SIMD-BP compared
to SIMD-BP alone, we can state that the performance of the cascade comes closer to the perfor-
mance of SIMD-BP as the vector width increases. While DELTA128 + SIMD-BP128 is significantly
slower than SIMD-BP128 for all numbers of distinct data elements, DELTA512 + SIMD-BP512 is as
fast as SIMD-BP512 for high numbers of distinct values, while offering much better compression
rates. A similar observation can be made for the decompression performance, although in this case
even the 128-bit variant of the cascade reaches the performance of the stand-alone NS algorithm,
but only when each value in the dataset is unique. However, the 256-bit and 512-bit variants of
the cascade become equally fast as the stand-alone NS algorithm for 225 and 222 distinct data ele-
ments already and are much closer to it also for low numbers of distinct data elements. In terms of
the aggregation speed, the case is less clear. Here, the speed-up of DELTA512 + SIMD-BP512 over
SIMD-BP512 is less than that of DELTA128 + SIMD-BP128 over SIMD-BP128 if there are less than
217 distinct data elements, and higher otherwise.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

28

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 15. The variants of FOR + SIMD-BP on dataset D2. The first row compares the absolute measurements of
the cascade with those of stand-alone SIMD-BP. The second row presents the measurements of each variant
of the cascade relative to FOR128 + SIMD-BP128. The third row provides the speed-ups of the variants of
the cascade compared to the same-vector-width-variant of stand-alone SIMD-BP.

Finally, we briefly look at the variants of FOR + SIMD-BP on dataset D2 subject to the mean
of the data distribution. The results are presented in Figure 15. We can see that especially the
compression performance of the cascade comes closer to that of the stand-alone NS algorithm
the wider the vectors are. Concerning the decompression and aggregation speed, the speed-ups
of the different vector widths are closer to each other, such that for some means, higher vector
widths are better, while for other means, lower vector widths are better.

To sum up, when SIMD extensions with wider vector registers are employed, the cascades of
logical-level and physical-level algorithms still yield compression rates superior to those of stand-
alone NS algorithms if the data characteristics are suitable. Moreover, the cascades become faster
than with SSE in most cases. Finally, we could confirm our initial idea, at least in several cases:
when 256-bit or 512-bit SIMD operations are used, the cascades perform better compared to the
stand-alone NS algorithm using the same SIMD extension than for 128-bit SIMD operations.

4.3 Lessons Learned

In the second part of our evaluation, we have investigated the influence of the different vector
register widths offered by different recent SIMD instruction set extensions on the behavior of
lightweight compression algorithms. Our lessons learned can be summarized as follows: Many
lightweight compression algorithms can be ported to newer SIMD extensions in a straightforward

way, but for some algorithms, this is not possible. The larger block sizes of NS algorithms resulting
from straightforward reimplementations increase the vulnerability of these algorithms to outliers
in the data, which can affect both the compression rate as well as the performance negatively.
Generally speaking, both logical-level and physical-level algorithms become faster the wider the
employed vector registers are. However, the speed-ups are sub-optimal in most cases, since the
algorithms quickly become memory-bound when the computations are accelerated through wider

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

29

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

vector registers processing more data elements at once. This has two implications when employing
AVX2 and AVX-512: First, accessing uncompressed data in main memory should be avoided even
more strictly than with SSE, which we showed with our aggregation of compressed data. Second,
cascades of logical-level and physical-level algorithms become even more promising alternatives to
stand-alone NS algorithms, since they still yield superb compression rates but perform much more
competitively to stand-alone NS algorithms when implemented with wider vector registers. We
have conducted our evaluation using 128-, 256-, and 512-bit SIMD extensions, which are the ones
currently available in general-purpose processors. However, the increase of the vector width is an
obvious trend in processor evolution. Thus, we will likely see SIMD extensions with even wider
vector registers in the future. We expect the effects we observed in our evaluation to become even
more important by then. Finally, we would like to highlight again that the vector width of the
employed SIMD extension has an impact on the relative ranking of the lightweight compression
algorithms regarding compression rate, performance, and any trade-off of these two. Therefore,
when choosing a strategy for selecting the best lightweight compression algorithm, one should
also be aware of the employed SIMD extension to make a wise decision.

5 SELECTING A SUITABLE LIGHTWEIGHT INTEGER COMPRESSION ALGORITHM

Our comprehensive experimental survey clearly indicates that there is no single-best lightweight

integer compression algorithm. The compression rates and performances of all algorithms differ
significantly, depending on the data characteristics and the employed SIMD extension. Thus, the
effective employment of lightweight compression requires the selection of a suitable algorithm.
Moreover, given a specific dataset, one algorithm can be differently suitable regarding different
objectives, such as the compression rate or the performance.

Therefore, in this section, we address the problem of selecting a suitable lightweight integer
compression algorithm, which we formally define as follows: Given a set of available algorithms
A (perhaps including variants of one algorithm targeted at different SIMD extensions), an objective
O ∈ {ratecompr , tcompr , tdecompr , taдд } (i.e., the compression rate or a runtime) and a dataset D, we
want to find the most suitable algorithm Aopt defined as:

Aopt (A,O,D) = argminA∈A behavior (A,O,D). (1)

Here, behavior (A, O, D) is the true behavior of algorithm A on dataset D with respect to objective
O , as it could be measured by executing A on D.

The problem of selecting a suitable algorithm could be solved in a naïve way by executing each
algorithm in A on dataset D and measuring its behavior with respect to objective O . However, this
would be prohibitively expensive and is, therefore, not an option. That is, the selection problem
must be solved without actually executing the algorithms. Indeed, similar problems also exist in
other areas of database research. The most well-known examples include query optimization [29]
and automatic physical design decisions [34], such as materialized view selection [30] and index
selection [14].

In principle, there are two approaches for solving such selection problems: (1) rule-based se-

lection strategies and (2) cost-based selection strategies. Rule-based selection strategies are usually
modeled as a decision tree or graph guiding through a number of questions to arrive at the sug-
gested solution. In the field of lightweight integer compression, Abadi et al. [1] provided such a
decision tree. However, cost-based selection strategies are based on a cost model and provide a cost
function estimating the cost of an alternative solution. The selection problem is solved by choosing
the alternative solution incurring the minimum cost according to the cost function. Cost models
have successfully been applied to numerous selection problems in the database context. While
there have been some attempts to select a lightweight integer compression algorithm based on its

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

30

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

estimated compression rate [24, 33, 34], these works do not consider performance estimations.11

This is a significant deficiency, since our experimental survey clearly shows that the algorithm
with the best compression rate is often not the fastest.

Due to the complex behavior of state-of-the-art lightweight integer compression algorithms, we
decided to adopt the cost model approach to tackle the selection problem. This approach offers nu-
merous advantages: It is transparent in the sense that the ideas behind it are clear. It can, therefore,
easily be adapted and extended if necessary, e.g., to new algorithms. Furthermore, since it provides
not only decisions but also cost estimates, it has a wider applicability, e.g., solving trade-offs be-
tween different objectives. We propose and evaluate a novel cost model for lightweight integer
compression algorithms, which is able to provide cost estimates for the compression rate as well

as the runtimes. To the best of our knowledge, this is the first proposal of such a cost model in the
field of lightweight integer compression.

More precisely, we address the problem of selecting a suitable algorithm the following way:

Aopt (A,O,D) = argminA∈A cost (A,O,DCD). (2)

That is, we select the algorithm with the minimal cost according to our cost function cost . Thereby,
DCD denotes a vector of those data characteristics of dataset D that are relevant to our estimation.
In the following two sections, we present our cost function in detail (Section 5.1) and provide an
evaluation of our cost-based selection strategy (Section 5.2). Finally, we discuss future directions
regarding the employment of our cost model (Section 5.3).

5.1 Estimating the Cost of Lightweight Integer Compression Algorithms

In this section, we provide an in-depth presentation of our cost model, adopting a gray-box ap-
proach. On the one hand, we view a compression algorithm as a white box by explicitly modeling

all of its properties directly known from the algorithm description. This includes the data char-
acteristics its behavior depends on, the way it views the data (e.g., in units of blocks), and its
composition (in the case of cascades). A white-box view on these aspects enables us to exploit all
the knowledge we have about the algorithm. On the other hand, we view an algorithm as a black

box by measuring its behavior on a very low number of well-chosen datasets once in advance in a
calibration phase. Here, a black-box view allows us to abstract from the complexity (1) of devel-
oping formulas for the compression rates as other authors do [33], and (2) of explicitly modeling
the quantitative impact of hardware features such as the clock frequency of the CPU, the band-
width and latency of all levels of the memory hierarchy from registers over the caches to the main
memory, and the cost of cache misses and branch mispredictions.

As of now, we only consider a static dataset whose data characteristics are known accurately.12

Our cost function cost bases its estimation on only a few relevant data characteristics DCD of a
dataset D, which are summarized in Table 4. According to our experimental survey, this is the
minimal set of statistics required to address all considered compression algorithms. While more
comprehensive statistics on the data would generally facilitate more accurate cost estimates, they
would also incur a higher model complexity and a more expensive data analysis. Moreover, a
minimal set of statistics enables the employment of our cost model in a wide range of application
scenarios in the database context, since all of these properties are well established and normally

11The HyPer DataBlocks approach [24] restricts the available algorithms to byte-aligned ones for performance reasons.
However, this is a decision made by the authors, not by any cost model.
12In Section 5.3 we briefly discuss the dynamic case as well as inaccurate statistics on the data.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

31

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Table 4. Reference of the Data Characteristics DCD

of Dataset D Used by Our Cost Model

Short Description
DCD .#elems The total number of data elements
DCD .#distinct The number of distinct values

DCD .rl The average run length
DCD .min The minimum value
DCD .isSorted Whether the dataset is sorted
DCD .valHist The value histogram
DCD .bwHist The bit width histogram

available in a DBMS’s system catalog due to their integral importance to query optimization.13 In
the remainder of this section, we simply write DC instead of DCD .

Our extensive experimental survey revealed the different behaviors of lightweight compression
algorithms at the physical and logical level. Hence, their cost must be calculated in individual ways:

cost (A,O,DC) =
⎧⎪⎪⎨
⎪⎪
⎩

costP (A,O,DC), if A is a physical-level algorithm,
costL (A,O,DC), if A is a logical-level algorithm,
costC (A,O,DC), if A is a cascade.

(3)

Note that our overall focus is on solving the algorithm selection problem. This requires good
but not necessarily 100% accurate cost estimates. Thus, at some points, we deliberately sacrifice
top accuracy for the sake of the simplicity of our cost model. In the following, we describe each
of the functions costP (Section 5.1.1), costL (Section 5.1.2), and costC (Section 5.1.3) in detail. After
that, we summarize the concepts behind our cost function (Section 5.1.4).

5.1.1 Physical-Level Techniques: NS. In this section, we explain how we estimate the cost of
physical-level (null suppression) algorithms. In our extensive experimental survey, we identified
the data distribution as the decisive data property for the behavior of these algorithms. The data dis-
tribution covers properties such as the value range and the amount of outliers. For a given dataset,
we cannot observe the underlying distribution directly. Instead, we utilize the value histogram
DC .valHist . The value histogram is a real-valued vector of size 232, and DC .valHist[v] is the rela-
tive frequency of valuev in the dataset.14 The sum over all elements of the value histogram equals 1.

In fact, for NS algorithms, the exact values are irrelevant. Instead, only the bit width, i.e.,
the number of bits remaining after the elimination of all leading zero bits, is important. Thus,
we can coarsen the value histogram DC .valHist to a bit width histogram DC .bwHist . The bit
width histogram is a real-valued vector of size 32. Its bw th element reports the relative frequency
of values having a bit width of bw in the dataset and can be calculated as DC .bwHist[bw] =∑vmax (bw)

v=vmin (bw)
DC .valHist[v] for bw ∈ {1, 2, . . . , 32}, i.e., as the cumulative relative frequency of

all values having bit width bw . Thereby, vmin (bw) = 0 (for bw = 1) and vmin (bw) = 2bw−1 (for
bw > 1), and vmax (bw) = 2bw − 1 are the least and greatest values of bit width bw , respectively.
Again, the sum over all elements of the bit width histogram equals 1. Consisting of only 32 values,
the bit width histogram is very compact, which is an advantage compared to the corresponding
value histogram.

13Exceptions to this might be the bit width histogram and the average run length, which can be derived from the other
data characteristics in a straightforward way, as described in Sections 5.1.1 and 5.1.2, respectively.
14While we assume unsigned 32-bit integers as the data type, our cost model can easily be extended to other integer types.

.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

32

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Due to the large number of possible bit width histograms, it is not an option to experimentally
record the behavior of an NS algorithm on datasets resulting in every bit width histogram. Instead,
our idea is to experimentally obtain the behavior of the algorithm only for a few datasets with well-

chosen bit width histograms during the calibration phase and to combine these measurements for
arbitrary bit width histograms during the cost estimation. More precisely, we choose the 32 one-hot

bit width histograms, i.e., histograms reporting a relative frequency of 1 for exactly one bit width
and 0 for all others. In the calibration phase, we generate 32 datasets exhibiting these bit width
histograms, execute the NS algorithm on these datasets, and measure its behavior with respect to
all objectives of interest. This yields a vector of size 32 for each combination of an NS algorithm
A and an objective O . We call this vector the bit width profile of A with respect to O , bwPro fA,O ,
where bwPro fA,O [bw] is the measured behavior of A on a dataset containing only values of bit
widthbw . The bit width profile reflects the behavior of the algorithm subject to the bit width. Since
a bit width profile consists of only 32 values, its storage requirement is negligible.

Further, we observe that each bit width histogram can be expressed as a linear combination
of one-hot bit width histograms. The core idea of the cost estimation for NS algorithms is that,
analogously, the behavior of an algorithm on any dataset can be expressed as a linear combination
of its behaviors on datasets with a one-hot bit width histogram. As an example, assume one half
of a dataset are 4-bit values, while the other half are 17-bit values. The compression runtime of
algorithm A on the dataset should be 1

2 · bwPro fA,tcompr
[4] + 1

2 · bwPro fA,tcompr
[17]. In general,

the estimated cost of algorithm A on a dataset with bit width histogram DC .bwHist with respect
to objectiveO is calculated as the dot product • ofA’s bit width profile bwPro fA,O and the dataset’s
bit width histogram DC .bwHist .

However, this is only a simplification. To achieve good estimates, two additional effects must be
taken into account. First, not all NS algorithms can represent each compressed data element using
its individual bit width, and thus the bit width histogram does not reflect those algorithms’ view on
the data. For instance, SIMD-BP128 uses the bit width of the greatest data element in a block of 128
data elements to encode all data elements in that block. We address this issue by adapting the bit

width histogram to one of a few cases of NS algorithms using the function adaptA. Second, owing
to hardware effects such as branch mispredictions, the mixture of data elements with different bit
widths can affect the runtime negatively. Since bit width histograms employing more than one bit
width are not considered in the bit width profiles, they cannot account for such effects. We address
this issue by adding a performance penalty provided by the function penaltyA,O to the estimated
runtimes. In the following, we present our solutions to these two issues in detail. However, note
that both effects need to be taken into account for unsorted datasets only, since sorted datasets
mostly consist of long sequences of values with the same bit width. Combining everything, the
formula for estimating the cost of NS algorithms is as follows:

costP (A,O,DC) = FO (DC) ·
⎧⎪⎪⎨
⎪⎪
⎩

(
bwPro fA,O • DC .bwHist

)
, if DC .isSorted,(

bwPro fA,O • adaptA (DC .bwHist), otherwise,
+ penaltyA,O (DC .bwHist)

)
.

(4)

FO (DC) is a factor accounting for the possibly different sizes of the dataset of the calibration phase
and the given dataset, i.e.,DCcalib .#elems andDC .#elems . Runtime estimates must be scaled by the
quotient of these sizes, as they are based on measurements of absolute times, whereas compression
rate estimates are relative to the dataset size and, thus, require no scaling. FO (DC) is defined as:

FO (DC) =

{
1, if O ∈ {ratecompr },

DC .#elems
DCcal ib .#elems

, if O ∈ {tcompr , tdecompr , taдд }.
(5)

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

33

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Adaptation of the Bit Width Histogram. For the cost estimation of NS algorithms, it is crucial
to know which share of the data elements is represented with which bit width. The bit width
histogram only reflects this if the NS algorithm compresses each data element using its individual
bit width, i.e., if the compressed bit width of a data element does not depend on that of others. As
this does not hold for each NS algorithm A, we need to apply a function adaptA to the dataset’s bit
width histogram to obtain a bit width histogram adapted to algorithmA’s view on the data. 4-Wise
NS and Masked-VByte use an individual bit width for each data element. Thus, adapt4-Wise NS =

adaptMasked-VByte = id . For the other NS algorithms, we identify the following three cases:
Common bit width per fixed-size block (non-outlier-tolerant). This case is intended for

NS algorithms dividing the dataset into fixed-size blocks while using the greatest bit width in the
block to represent all data elements in the block. Representatives of this case are SIMD-BP128
and its variants for other SIMD extensions. The bit width histogram is adapted by the function
adaptFixedbs , which is parameterized by the algorithm’s block size (in terms of data elements) bs .
For each bit width bw , it estimates the relative frequency of a block whose greatest data element
is of bit width bw , forcing the block to be represented using bw bits per data element:

adaptFixedbs (bwHist)[bw] = bwHist[≤ bw]bs − bwHist[< bw]bs , (6)

where bwHist[≤ bw] and bwHist[< bw] are the sums over the original bit width histogram for
all bit widths ≤ bw and < bw , respectively. The minuend approximates the relative frequency of
a block containing only data elements of a bit width ≤ bw , while the subtrahend approximates
the relative frequency of a block containing only data elements of a bit width < bw . Thus, the
difference is an approximation for the relative frequency of a block containing at least one value
of bit width bw , but no value of a bit width > bw . In fact, adaptSIMD-BPvw = adaptFixedvw for
vw ∈ {128, 256, 512}.

Common bit width per fixed-size block (outlier-tolerant). This case is designated to NS al-
gorithms, dividing the dataset into fixed-size blocks while choosing an optimal bit width, perhaps
less than the block’s maximum bit width, and classifying all data elements in the block as either
regular values or exceptions, depending on whether they can be represented using the selected
bit width. Representatives of this case are the PFOR-family algorithms, such as SIMD-FastPFOR.
Interestingly, these algorithms decide the bit width of a block in a cost-based manner, depending
on the bit width histogram of the block using an internal cost function ic (bw,bwHist). ic estimates
the compressed data size resulting from choosing bit width bw for a block with bit width his-
togram bwHist . We reuse this internal cost function in our function adaptFixedPFORbs,ic , which
estimates, for each bit width bw , the relative frequency of a block represented using bw bits per
data element:

adaptFixedPFORbs,ic (bwHist)[bw] =
⎧⎪⎨
⎪
⎩

1, if bw = round
(

minbw′ ic (bw ′,bwHist)
bs

)
,

0, otherwise.
(7)

While SIMD-FastPFOR uses the argmin of its internal cost function to obtain the bit width of regu-

lar values, we are interested in the actual compressed size, i.e., the min, since this also accounts for
the outliers. We divide this compressed size in bits by the block size in data elements and round it to
obtain the average bit width including outliers. For simplicity, we assume that all data elements are
represented using this average bit width. Note that, while the compression of SIMD-FastPFOR ap-
plies its internal cost function for every block, we apply it only once, assuming that the bit width his-
togram in each block is basically the same as that of the entire dataset. This assumption is reason-
able, since the dataset is unsorted.15 Finally, adaptSIMD-FastPFOR = adaptFixedPFOR128,icSIMD-FastPFOR .

15Remember that we do not adapt the bit width histogram for sorted datasets, as stated above.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

34

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Common bit width per variable-size block. The last case addresses NS algorithms choosing
even the block size, depending on the bit widths of the data elements. Representatives of this case
include the Simple-family algorithms, such as SIMD-GroupSimple128 and its variants for other
SIMD extensions. Each of these algorithms has a partitioning routine, splitting the dataset into
blocks, based on the bit widths of the data elements. Due to the constant size of a (compressed)
output block, the larger an (uncompressed) input block, the smaller its bit width, whereby only
a few combinations of block size and bit width are possible. For instance, SIMD-GroupSimple128
supports blocks of 128 1-bit values, 64 2-bit values, and so on. We adapt the bit width histogram us-
ing the function adaptVarpr , which reuses the partitioning routine pr of the respective algorithm.
Due to the variable block sizes, it is hard to calculate the adapted bit width histogram directly from
the original one. Thus, we generate a very short unsorted random sequence s of bit widths follow-
ing the original bit width histogram. Then, we applypr to s and count how often each bit width was
chosen for a block. We multiply this number by the corresponding block size to obtain the number
of input data elements represented with that bit width. Finally, we normalize these absolute fre-
quencies with the length of s to obtain relative frequencies. The so-obtained bit width histogram
is returned by adaptVarpr . Note that this procedure does not execute the actual compression al-
gorithm. Finally, adaptSIMD-GroupSimplevw = adaptVarprSIMD-GroupSimplevw

for vw ∈ {128, 256, 512}.
Performance Penalty. Most lightweight integer compression algorithms execute the same in-

structions (perhaps with different arguments) for all data elements or at least for a large amount
of data elements, e.g., a block. This execution scheme is often favored by vectorized compression
algorithms. Nevertheless, there are algorithms treating data elements of different bit widths dif-
ferently by processing them in different code branches. For instance, SIMD-FastPFOR classifies
each data element as either a regular one or an exception, depending on the bit width. Thereby,
exceptions demand some additional processing. In general, some algorithms employ conditional
branching, e.g., in the form of if-then-else constructs, depending on the data element’s bit width in
the performance-critical parts of their code. Therefore, the mixture of data elements with different
bit widths can affect the performance negatively, e.g., due to branch mispredictions.

Modern microprocessors use pipelining to increase efficiency. They subdivide the execution of
an instruction into multiple stages, while the hardware can execute different stages of multiple
instructions in one cycle. That is, multiple subsequent instructions are being executed at the same
time. This is only possible if the next instructions to be executed are known in advance. For se-
quential programs, this is always the case. However, if the code employs conditional branches, the
next instruction depends on the result of the branch condition. Modern processors are equipped
with smart branch prediction facilities allowing them to guess the outcome of the branch condition
in advance. The instructions of the guessed branch are inserted in the pipeline and executed spec-

ulatively before the branch condition is actually evaluated. If the prediction turns out to be wrong
afterwards (called a branch misprediction), then these instructions are discarded and, effectively,
the time spent on them was wasted. If this happens frequently, then the degree of parallelism is de-
creased, which affects the performance negatively. Branch prediction works well if a certain branch
condition usually evaluates to one and the same value when it is repeatedly encountered during
the program execution. On the contrary, this means the worst case is a balanced 50:50 decision.

For our considered algorithms, these effects only occur if the dataset contains data elements
of different bit widths. Since such datasets are excluded from our bit width profile generation on
purpose, they must be taken into account separately using the function penaltyA,O defined as:

penaltyA,O (bwHist) =mixtureA (bwHist) · penaltyFactorA,O . (8)

We again employ a gray-box approach by modeling the number of occurrences of such effects
depending on the bit width histogram in a functionmixtureA, but measuring how expensive they

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

35

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

are with respect to runtime expressed in a penaltyFactorA,O . That said, the compression rates are
generally not affected, such thatpenaltyFactorA,r atecompr

= 0 for all NS algorithmsA. Furthermore,
among the five NS algorithms we consider, only SIMD-FastPFOR and Masked-VByte are vulnerable
to such mixtures. Therefore,mixtureSIMD-BPvw =mixture4-Wise NS =mixtureSIMD-GroupSimplevw = 0
for all vector widths vw ∈ {128, 256, 512}. In the following, we present the mixture functions for
SIMD-FastPFOR and Masked-VByte, before we come to the determination of the penalty factors.

Penalty for SIMD-FastPFOR. The performance of SIMD-FastPFOR suffers from exceptions
since they incur (1) branch mispredictions during the classification of regular values and excep-
tions and (2) extra processing and storage effort. These effects are more significant the higher the
exception rate is, i.e., the relative frequency of exceptions in the dataset:

mixtureSIMD-FastPFOR (bwHist) = exceptionRate (bwHist). (9)

Here, exceptionRate (bwHist) is the exception rate resulting from the bit width selection using the
internal cost function of SIMD-FastPFOR.

Penalty for Masked-VByte. Masked-VByte employs branching for the size of the compressed
data element in bytes. Thus, branch mispredictions especially occur for balanced mixes of data
elements of different compressed sizes. We calculate the mixture as follows:

mixtureMasked-VByte (bwHist) = max(q, 1 − q), (10)

where q is the relative frequency of the most frequent compressed size of a data element and

can be calculated as q = maxi ∈{1,2, ...,5}
∑min(32,7i−1)

bw=7(i−1)
bwHist[bw]. This is motivated by the fact that

Masked-VByte subdivides an uncompressed data element into units of 7 bits each, whereby each
such unit results in one output byte.

Determination of the penalty factors. Each penaltyFactorA,O is determined in the calibra-
tion phase, once in advance. Ideally, the runtime estimate should equal the actual runtime. We
generate an unsorted dataset Dmix with a significant mixture of different bit widths, e.g., D4 from
Table 2, which contains 50% large outliers, and measure the actual runtime behavior (A,O,Dmix)
of A with respect to O ∈ {tcompr , tdecompr , taдд } on Dmix . We equate costP (A,O,DCDmix

) with
behavior (A,O,Dmix) and solve the unsorted-data case of Equation 4 to penaltyFactorA,O , so it
can be computed as:

penaltyFactorA,O =

behavior (A,O,Dmix)

FO (DCDmix)
− bwPro fA,O • adaptA

(
DCDmix

.bwHist
)

mixtureA
(
DCDmix

.bwHist
) . (11)

5.1.2 Logical-Level Techniques. Regarding a logical-level algorithmA, we must estimate: (1) the
cost of A, i.e., costL (A,O,DC), and (2) the data characteristics of the output of A, which are crucial
for estimating the cost of cascades. In the following, we address these two challenges.

Estimating the Cost. The definition of costL distinguishes two cases explained in detail below.
The factor FO (DC) (Equation (5)) is included for the same reason as in Equation (4).

costL (A,O,DC) = FO (DC) ·
{
costLdi

(A,O,DC), if A ∈ {DELTA, FOR},
costLdd

(A,O,DC), if A ∈ {RLE, DICT}. (12)

Logical-level algorithms with data-independent behavior. In Section 3.2.2, we learned that
algorithms such as DELTA and FOR have a constant behavior not depending on the data character-
istics. Thus, during the calibration phase, we need to run the algorithm on any dataset and measure
its behavior. Consequently, the data-independent profile diPro f A,O of algorithm A with respect to
objective O consists of just a single number. Therefore, costLdi (A, O, DC) = diPro fA,O .

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

36

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Logical-level algorithms with data-dependent behavior. In Section 3.2.2, we also learned
that the behaviors of RLE and DICT depend on the average run length and the number of dis-
tinct values, respectively. In the following, we describe the calibration and estimation for RLE;

calibration and estimation for DICT is similar, but hinges on DC .#distinct rather than DC .rl .
In the calibration phase, we generate several datasets, varying the average run length, execute

RLE on these datasets, and measure its behavior. The resulting data-dependent profile ddPro fRLE,O

is a sequence of pairs of the average run length and the measured behavior with respect to O .
Motivated by the smooth behavior of RLE, we estimate costLdd

(RLE,O,DC) as the linear interpo-

lation of DC .rl using the measurements of the two run lengths closest to DC .rl in ddPro fRLE,O .

As an exception, if DC .rl is larger than all of the run lengths covered by ddPro fRLE,O , then we
estimate the cost as the measurement of the largest run length in ddPro fRLE,O . This is due to the
observation that the behavior of RLE arrives at a plateau when a certain average run length is
reached.

Estimating the Output Data Characteristics. In Section 3.2.2, we have investigated the impact of
the logical-level algorithms on the data properties. We observed that the characteristics can be
improved in favor of NS, which motivates cascades of logical-level and physical-level algorithms.
In the following, we present the ideas behind the function chanдeA, which estimates the data char-
acteristics after the application of the logical-level algorithm A. This will be a crucial step in the
estimation of the cascades in the next section. We denote the data characteristics of the input
and output of A as DCi and DCo , respectively. Note that we need to estimate only DCo .#elems ,
DCo .bwHist , and DCo .isSorted , since these are the only data properties relevant to costP (Equa-
tion (4)). Predicting DCo from DCi accurately is highly complex and might not always be possible
without executing A. Since we want to avoid the latter, we make some simplifying assumptions,
which might not hold for all DCi . Nevertheless, we found them to be a good trade-off between
usefulness and comprehensibility.

RLE. The output of RLE is usually unsorted, since it interleaves run values and run lengths.
Moreover, it consists of two data elements per run in the input and there are approximately

DCi .#elems/DCi .rl runs. Note that we could estimate the relative run length if it was not directly

available: If Di is sorted, then DCi .rl = DCi .#elems/DCi .#distinct . If Di is unsorted, then DCi .rl
is approximately 1, if we make the simplifying assumption that the data follows a uniform dis-
tribution, because then, two subsequent equal data elements are unlikely to occur. Since half of
the output’s data elements are run values and half are run lengths, we roughly estimate that in
DCo .bwHist the relative frequency of each bit width is half of that in DCi .bwHist , while addition-

ally, the relative frequency of the bit width of DCi .rl is increased by 0.5, whereby we assume that
the run lengths are rather balanced, such that the average run length represents them well.

DELTA. The total number of data elements remains unchanged. The output is unsorted. We
assume that the input dataset has a uniform distribution. The output’s bit width histogram depends
on whether the input data is sorted. For a sorted input, we first show the case of a scalar DELTA:
An output data element, a so-called delta, is not 0 if two subsequent input data elements differ. This
case occurs once less than there are distinct values in the input, while it does not matter where
exactly these positions are. We approximate the deltas at these points as the average delta Δ =
DCi .max−DCi .min

DCi .#dist inct−1 . The output’s bit width histogram reports a relative frequency of DCi .#dist inct−1
DCi .#elems

for the bit width of Δ (accounting for the non-zero deltas) and the complementary for the bit
width 1 (accounting for the zero deltas). Vectorized DELTA subtracts from each data element its
vsth predecessor, wherevs is the vector size in data elements. Thus, the input dataset is effectively
split into vs independently processed, but interleaved sub-datasets, each of which has roughly the

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

37

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

same data characteristics DC ′i , namely a size of DCi .#elems
vs

and roughly the same min and max
values. Furthermore, the number of distinct values in the sub-dataset is taken as the minimum of
DCi .#distinct and the sub-dataset’s size, since it cannot exceed either of them. Note that, while the
min and max values stay constant, the number of distinct values may decrease in the sub-dataset, if
there are too many distinct values in the input. Thus, the average delta can increase. The output’s
bit width histogram is that of any of the sub-datasets according to the scalar case. Conversely, if
the input is unsorted, we assume that 50% of the input data elements are followed by a greater
value, while 50% are followed by a smaller value. In the former case, the delta is positive and we
estimate the average delta as Δ = DCi .max−DCi .min

3 . In the latter case, the delta is negative and,
thus, represented in the two’s complement, which has a bit width of 32, since its most significant
bit is always set. The output’s bit width histogram reports a relative frequency of 0.5 for both the
bit width of Δ (accounting for the positive deltas) and 32 (accounting for the negative deltas). This
consideration does not depend on the vector size, since in an unsorted dataset there is no particular
relation between two data elements at a certain distance from each other.

FOR and DICT. The total number of data elements remains unchanged. The output is sorted if
the input is sorted. The output bit width histogram can be roughly estimated as:

DCo .bwHist[bwo] =
32

bwi=1

DCi .bwHist[bwi] ·
���[vmin (bwo), vmax (bwo)] ∩ Ishift

���

number of distinct

∑
values in the original interval. For simplicity, we assume that the interval of

each bit width bwi contains DCi .bwHist[bwi] · DCi .#distinct distinct values, i.e., that the bit width
histogram also reflects how many of the distinct values have which bit width.

5.1.3 Cascades of Techniques. In this section, we explain how we estimate the cost of our
generic cascades of logical-level and physical-level algorithms. The main challenge with estimat-
ing cascades is the high number of possible combinations. If there are #L logical-level algorithms
and #P physical-level algorithms, then #L · #P cascades are possible. Due to this high number, indi-
vidually modeling each combination incurs too much effort regarding both theory and calibration.
Thus, we estimate the cost of the cascade [AL, AP] based on the cost of the involved logical-level
algorithm AL on the original data properties DC and the cost of the physical-level algorithm AP on
chanдeAL (DC), the data properties after the application of AL as described in Section 5.1.2. More-
over, (absolute) runtime estimates are combined by summation and (relative) compression rate

���Ishift
���

. (13)

The intuition behind this formula is the following: DCi .bwHist[bwi] is the relative frequency of
values in the interval [vmin (bwi), vmax (bwi)] in the input data. Applying FOR or DICT shifts the
values in this interval to a new interval Ishif t , whose lower and upper bounds are lower than before.
While Ishif t still has a relative frequency of DCi .bwHist[bwi] in the output, it usually spans across
the intervals of several bit widths ≤ bwi , since the length of these intervals is the smaller, the lower
the bit width. Thus, we reassign a certain share of the relative frequency of Ishif t to the relative
frequency of each bit width interval it touches in the output. This share is calculated as the ratio of
the size of the overlap of the interval [vmin (bwo), vmax (bwo)] in the output and Ishif t divided by
the size of Ishif t . For each bit width bwo in DCo .bwHist , we accumulate these shares from all bit
widths bwi in DCi .bwHist . For FOR, Ishift = [vmin (bwi) − DCi .min, vmax (bwi) − DCi .min], since
the minimum value is subtracted from each data element. This assumes that in the input data, the
values with bit widthbwi are distributed uniformly within the interval ofbwi . Note that the shifted

interval has the same size as the original interval. For DICT, Ishif t = [
∑bwi−1

bw=1
DCi .bwHist[bw] ·

DCi .#distinct ,
bwi

bw=1
DCi .bwHist[bw] · DCi .#distinct). Here, the size of the shifted interval is the

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

38

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 16. The pool of profiles.

estimates by multiplication:16

costC ([AL,AP],O,DC) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪
⎩

costL (AL,O,DC) · costP (AP ,O, chanдeAL
(DC))

—if O ∈ {ratecompr },
costL (AL,O,DC) + costP (AP ,O

′, chanдeAL
(DC))

—if O ∈ {tcompr , tdecompr , taдд }.

(14)

Where O ′ = tdecompr if O = taдд and otherwise O ′ = O , because for the aggregation, the physical
side performs a normal decompression and only the logical side does the final aggregation.

It must be noted that for the estimation of a cascade’s cost with respect to any of the runtime

objectives, we should not use the same profiles that we used for the estimation of the respective
stand-alone algorithms’ costs. Otherwise, we would over-estimate the cascade’s runtime. A stand-
alone algorithm loads its input data from RAM and stores its output data to RAM (assuming the
dataset does not fit into the cache). However, the crucial point for the efficiency of our generic cas-
cades is that they use a small L1-cache-resident intermediate buffer to exchange data between the
involved logical-level and physical-level algorithms. Hence, in a cascade, the involved algorithms
load from RAM and store to the L1 cache or vice versa, depending on whether it is a logical-level
or a physical-level algorithm and whether it is a compression or a decompression/aggregation.
Thus, when calculating the cost of a cascade, we use profiles that were obtained by making the
algorithms read from RAM and store to the cache, or vice versa, as they would do it in a cascade.

5.1.4 Cost Estimation Summary. Our cost model adopts a gray-box approach by modeling
knowledge about the algorithms in specific cost functions and basing its estimates on measured
profiles. Figure 16 summarizes which and how many profiles are created for which algorithms.
For each algorithm, we need one profile per objective for the use in a cascade. NS algorithms
require bit width profiles and, in some cases, penalty factors. Regarding the logical-level, DELTA
and FOR require data-independent profiles, while RLE and DICT require data-dependent profiles.
Furthermore, separate bit width profiles are needed for stand-alone NS algorithms, whereas we
consider logical-level algorithms only as a preparation for NS in cascades. Cost estimations for
stand-alone NS utilize the stand-alone profiles and penalty factors, while estimations for cascades
are based on those of the involved NS and logical-level algorithms, both using their profiles for
cascade situations.

5.2 Evaluation of Our Cost-based Selection Strategy

In this section, we evaluate the fitness of our cost model for solving the problem of selecting a
suitable lightweight integer compression algorithm. We consider three different hardware plat-
forms: Haswell and Xeon Phi, already known from Sections 3.2 and 4.2, respectively, as well as

16The multiplication can be applied in this way if the compression rate is represented without the unit bits/int, i.e., as the
mere quotient of the compressed and uncompressed data size, where values in [0, 1) indicate a size reduction.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

39

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 17. Quality of our cost-based selection: NS algorithms on datasets D1 (a–d) and D3 (e–h) on Haswell.

one more system equipped with an Intel Core i7-6820HK of the sixth generation (Skylake) run-
ning at 2.7GHz. The L1, L2, and L3 caches of this processor have capacities of 32KB, 256KB, and
8MB, respectively. The DDR3 main memory has a capacity of 16GB and a frequency of 2,133MHz.
memcpy() achieves a speed of 8.8GiB/s equal to 2,370mis. We call this third system simply Skylake
for brevity.

We executed the calibration measurements on each of these three systems to obtain the algo-
rithms’ profiles as well as penalty factors, as described in the previous section. We repeated all
calibration measurements 12 times and used the mean. On each of the three systems, the calibra-
tion phase took only a few minutes. Since it has to be done only once in advance, this is a negligible
overhead. Hence, we do not investigate it further.

We focus on the datasets already known from our experimental survey and listed in Table 2. For
each configuration of the data characteristics, we select the most suitable algorithm according to
our cost model and retrieve the measurements of its compression rate and speeds from the results
of our survey. To measure the quality of our selection, we compare (1) our cost-based selection to
the best measurement-based selection and (2) the worst measurement-based selection to the best
measurement-based selection. The former comparison indicates how far behind our cost-based
selection is with respect to the considered objective, while the latter comparison clarifies how
much could be lost in the worst case. We report the differences between the algorithms in terms
of the relative error of the actual measurements. For instance, a relative error of 12% means that the
selected algorithm requires 12% more bits/int for the compression rate, or has a 12% lower speed.

We implemented our cost-based selection strategy in Python. We investigate the quality of our
cost-based selection subject to the data characteristics (Section 5.2.1), the employed SIMD exten-
sion (Section 5.2.2), and the hardware platform (Section 5.2.3).

5.2.1 Data Characteristics. In this part, we choose Haswell as the hardware platform and con-
sider only the 128-bit SIMD variants of all algorithms. In the beginning, we further restrict the
available algorithms to the five stand-alone NS algorithms and investigate the quality of our cost-
based selection on two datasets: D1 exhibiting a good data locality due to its uniform distribution,
and D3 containing 10% outliers. The results are provided in Figure 17. In fact, on D1 (Figure 17(a–d))

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

40

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

our cost-based selection strategy always chooses the actual best algorithm for all four objectives.
Note that, depending on the maximum value, different algorithms are the actual best ones for the
performances and we detect the break-even points between these correctly. At the same time, the
worst possible selection would have incurred relative errors between 22% and 841% (compression
rate), 65% and 89% (compression speed), 24% and 73% (decompression speed), and 25% and 90%
(aggregation speed). These excellent results are a consequence of the good data locality of D1.

In contrast to that, D3 (Figure 17(e–h)) contains 10% outliers and, thus, a more varied mixture of
different bit widths. In spite of that, our strategy chooses the actual best NS algorithm with respect
to the compression rate and compression speed for all considered means of the outlier distribution.
Regarding the decompression speed, our cost model could not detect that SIMD-BP128 is the actual
best algorithm for outlier means of 25 to 211. However, the relative error incurred by our selection
is between 0% and 3%, i.e., negligible, while errors of 22% to 37% would have been incurred by the
worst selection. With respect to the aggregation speed, indeed, we choose SIMD-GroupSimple for
an outlier mean of 25, which yields an error of 33%, close to the worst-case error of 35%. When
further increasing the outlier mean, our strategy correctly detects that SIMD-BP128 is not the best
choice for an outlier mean of 231 anymore. While we choose SIMD-FastPFOR instead of 4-Wise
NS, the incurred error of 11% is, again, not very significant compared to the worst-case error of
83%. To sum up, our cost-based strategy yields superb results for stand-alone null suppression.

Now, we extend the algorithms to choose from to all cascades of logical-level and physical-level
algorithms, i.e., to 25 algorithms in total. From our experimental survey, we know that cascades are
especially good at improving the compression rate compared to stand-alone NS algorithms, but of-
ten result in slowdowns. This motivates the introduction of a trade-off: In the following, the goal is
to select the most suitable algorithm yielding a compression rate of 16 bits/int or better. Hence, the
set of algorithms to choose from depends on the data properties as well, and our cost model must
identify the permitted algorithms on its own based on its estimates for the compression rate. Note
that the ability of formulating such a trade-off is yet another advantage of a cost-based approach.
Furthermore, employing the wrong logical-level algorithm can yield very bad compression rates
and performances. Therefore, we also report the relative error of the worst cascade using the
correct logical-level algorithm compared to the best algorithm, in those cases where we select
the right logical-level but wrong NS algorithm. The results are displayed in Figure 18. We start the
discussion with D2 (Figure 18(a–d)). Regarding the compression rate, we choose the actual best
algorithm for a mean of 26. For all other means, FOR + SIMD-FastPFOR is the actual best algorithm.
While our strategy detects that a cascade should be chosen here, it erroneously prefers DICT +
SIMD-BP128 for all means. This results in an error of 12%, while choosing the worst algorithm
would incur an error between 38% and 109%; that is, our selection is still acceptable. Regarding
the speeds, the selection quality is generally better. For all speeds, a stand-alone NS algorithm is
the best up to a mean of 214, from where a cascade involving FOR is the fastest. Our cost model
correctly detects this break-even point for all performance objectives. With respect to the decom-
pression and aggregation speeds, we almost always select the actual best algorithm. At the same
time, by choosing the worst one, errors between 48% and 78% (decompression) and 68% and 83%
(aggregation) would have been possible. Regarding the compression speed, for those means where
a cascade with FOR is the fastest, our strategy often selects another NS algorithm (SIMD-BP128)
rather than the best one (Masked-VByte). This is most likely a consequence of the limited accuracy
of the estimated data characteristics after FOR. Nevertheless, selecting SIMD-BP128 here implies
an error of only 5% to 7%, while the worst combination of FOR and an NS algorithm would incur
errors between 55% and 59%; that is, our selection of the cascade’s physical side is still very good.

Dataset D6 (Figure 18(e–h)) is sorted. Thus, at the logical-level, RLE and DELTA are intuitively
promising. We vary the maximum of the uniform distribution and it holds that the greater the

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

41

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 18. Quality of our cost-based selection: NS and cascades on datasets D2 (a–d) and D6 (e–h) on Haswell.

Fig. 19. Quality of our cost-based selection: variants of SIMD-BP on dataset D7 on Xeon Phi.

maximum, the greater the number of distinct values and the smaller the average run length.
Regarding each objective, a cascade involving RLE is the best up to a certain point, from where
on DELTA should be preferred. This break-even point differs b etween t he o bjectives. F or the
compression rate and speed, our cost model identifies i t c orrectly. F or t he a ggregation speed,
it switches from RLE to DELTA slightly too early, incurring an error of 21%, while for the
decompression speed it switches a little too late. While we often do not select the best algorithm,
the errors of our choice are significantly lower than those of the worst choice in most cases. Again,
our selection of the physical-level algorithm would benefit from a more accurate estimation of the
data characteristics after the logical-level algorithm. To sum up, our cost-based selection strategy
is able to take the impact of the data characteristics into account correctly.

5.2.2 SIMD Extension. From Section 4.2, we know that algorithms using wider vector registers
are more vulnerable to outliers in the data. Figure 19 displays the selection quality on dataset D7,
where we vary the outlier ratio for the Xeon Phi hardware platform. At a very low outlier ratio
of 2−19, none of the three variants is significantly affected by the outliers, such that SIMD-BP512
achieves the best compression rate, as it has the least amount of metadata. As the outlier ratio
increases, first SIMD-BP256 and then SIMD-BP128 yield the best compression rate, since they are
less vulnerable to outliers. Finally, from an outlier ratio of 2−3, all three variants suffer strongly,
such that, again, SIMD-BP512 is the best. Our cost model reflects this development correctly.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

42

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Fig. 20. Quality of our cost-based selection: NS algorithms on dataset D1 on all three hardware platforms.

Regarding the compression speed, SIMD-BP512 is the fastest algorithm for most outlier ratios,
while SIMD-BP256 is faster for 2−9 to 2−7. To sum up, our cost model is capable of correctly
deciding which SIMD algorithm variant should be applied.

5.2.3 Hardware Platform. Finally, we show that the calibration phase of our cost model enables
it to automatically adapt to different hardware platforms. Figure 20 contrasts the selection qual-
ity, with respect to the compression speed, on dataset D1 for all three hardware platforms. The
algorithms to choose from are all five stand-alone NS algorithms. First, we see that the fastest al-
gorithm for a given dataset differs between the hardware platforms. On Haswell and Skylake, each
NS algorithm except for SIMD-FastPFOR can be the fastest compressor, although the two systems
differ at a maximum of 24, while on Xeon Phi, SIMD-BP128 is the fastest in all cases of D7. These
differences stem from the different hardware characteristics. Obviously, our cost-based selection
strategy can successfully adapt to each hardware platform.

5.3 Discussion and Future Work

In this section, we have proposed a novel cost model for lightweight integer compression and em-
pirically proved its ability to select a suitable algorithm. While our strategy does not always choose
the best algorithm, it virtually never selects a really unsuited algorithm, i.e., it behaves robustly. In
the broader scope of our research, our cost model provides a core element for the realization of
our overall vision: a balanced query processing based on compressed intermediate results [7, 18]. In
in-memory column stores, accessing intermediates produced during query processing is as ex-
pensive as accessing base data. Thus, the optimization of intermediates for efficient access should
receive equal attention. In particular, we envision every intermediate in a query execution plan
of compression-aware physical operators to be represented using a suitable lightweight integer
compression algorithm. These algorithms’ sensitivity to the data properties, as revealed in our ex-
perimental survey, necessitates a compression-aware query optimization in which our cost model
will play a central role. To realize this vision, we are integrating our cost model into MorphStore

[16], our in-memory column store with a novel compression-aware query processing concept. In
this context, the following directions of future work on our cost model are most important:

Sampling and inaccurate statistics. Statistics on the characteristics of the base data in the
system catalog are often inaccurate, because they were obtained by sampling or they are out of
date [27]. Similarly, the characteristics of intermediates must be estimated in advance or analyzed
during their creation and will, thus, also often be inaccurate. With the data characteristics after
the application of the logical-level algorithms being only rough estimates, the evaluation of our
cost model featured this inaccurate case in a certain sense and proved our cost model to be only
slightly affected. Nevertheless, a systematic investigation of the impact of inaccurate statistics is
required.

Dynamic datasets and format changes. Base data change over time through DML opera-
tions. To prevent frequent full reanalyses, there are works addressing efficient updates of sample
synopses [12], which are orthogonal to our cost model. The characteristics of intermediates can
change dramatically during query processing through the application of operators. In both cases,

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

43

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

changed characteristics suggest a change of the compressed representation to another format,
which is a core idea of MorphStore. For doing so efficiently without decompression, we proposed
direct transformation techniques [10]. Here, the main challenge is to enhance our cost model with
such direct transformation algorithms.

Physical operators. While there are proposals of certain operators for certain compressed for-
mats in the literature [1, 6, 25], in MorphStore, we ultimately want to support all typical column-
specific operators on a high number of compressed formats. Here, the main challenge is the high
integration effort [18]. Modular approaches are a promising solution [6, 18]. For instance, the tran-

sient decompression approach [6] surrounds an operator processing only uncompressed data with
a wrapper temporarily decompressing the inputs and recompressing the outputs using existing
compression algorithms. Our cost model would be a perfect basis for this case, since it already
supports the compression and decompression objectives. We plan to extend our cost model to
support further physical operators on compressed data.

6 SUMMARY

To increase the performance of especially analytical database queries, lightweight integer com-
pression plays an important role in modern in-memory column stores to compensate for the low
main memory bandwidth [1, 5, 16, 18, 24]. In recent years, the corpus of available lightweight in-
teger compression algorithms has significantly grown, mainly due to the use of SIMD instruction
set extensions [8, 19, 28, 32, 36–38, 41]. These algorithms strive to optimize not only the compres-
sion rate, but also the performance and the ability to process the compressed data. We conducted
a comprehensive experimental survey of such algorithms by systematically evaluating the influ-
ence of the data characteristics and the employed SIMD extension. We have shown that there is no

single-best lightweight integer compression algorithm suitable in all situations. Moreover, the best
algorithm regarding the compression rate is often not the fastest. To enable the effective use of
lightweight compression, we proposed a cost-based selection strategy and empirically proved its
ability to select a suitable lightweight integer compression algorithm for a given dataset.

REFERENCES

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating compression and execution in column-
oriented database systems. In Proceedings of the SIGMOD Conference. 671–682. DOI:https://doi.org/10.1145/1142473.
1142548

[2] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. 2008. Column-stores vs. row-stores: how different are they
really? In Proceedings of the SIGMOD Conference. 967–980. DOI:https://doi.org/10.1145/1376616.1376712

[3] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. 2009. Dictionary-based order-preserving string compression
for main memory column stores. In Proceedings of the SIGMOD Conference. 283–296. DOI:https://doi.org/10.1145/
1559845.1559877

[4] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the memory wall in MonetDB. Commun.

ACM 51, 12 (2008), 77–85. DOI:https://doi.org/10.1145/1409360.1409380
[5] Peter A. Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-pipelining query execution. In Pro-

ceedings of the CIDR. 225–237. http://cidrdb.org/cidr2005/papers/P19.pdf
[6] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. 2001. Query optimization in compressed database systems. In Pro-

ceedings of the SIGMOD Conference. 271–282. DOI:https://doi.org/10.1145/375663.375692
[7] Patrick Damme. 2017. Query processing based on compressed intermediates. In Proceedings of the VLDB PhD Work-

shop. http://ceur-ws.org/Vol-1882/paper05.pdf.
[8] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner. 2017. Lightweight data compression algo-

rithms: An experimental survey (experiments and analyses). In Proceedings of the International Conference on EDBT.
72–83. DOI:https://doi.org/10.5441/002/edbt.2017.08

[9] Patrick Damme, Dirk Habich, and Wolfgang Lehner. 2015. A benchmark framework for data compression techniques.
In Proceedings of the TPCTC. 77–93. DOI:https://doi.org/10.1007/978-3-319-31409-9_6

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

44

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1142473.1142548
https://doi.org/10.1145/1376616.1376712
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/1559845.1559877
https://doi.org/10.1145/1409360.1409380
http://cidrdb.org/cidr2005/papers/P19.pdf
https://doi.org/10.1145/375663.375692
http://ceur-ws.org/Vol-1882/paper05.pdf
https://doi.org/10.5441/002/edbt.2017.08
https://doi.org/10.1007/978-3-319-31409-9_6

[10] Patrick Damme, Dirk Habich, and Wolfgang Lehner. 2015. Direct transformation techniques for compressed data:
General approach and application scenarios. In Proceedings of the Symposium on ADBIS. 151–165. DOI:https://doi.
org/10.1007/978-3-319-23135-8_11

[11] Franz Faerber, Alfons Kemper, Per-Åke Larson, Justin J. Levandoski, Thomas Neumann, and Andrew Pavlo. 2017.
Main memory database systems. Found. Trends. Datab. 8, 1–2 (2017), 1–130. DOI:https://doi.org/10.1561/1900000058

[12] Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. 2008. Maintaining bounded-size sample synopses of evolving
datasets. VLDB J. 17, 2 (2008), 173–202. DOI:https://doi.org/10.1007/s00778-007-0065-y

[13] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing relations and indexes. In Proceedings of

the ICDE. 370–379. DOI:https://doi.org/10.1109/ICDE.1998.655800
[14] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1997. Index selection for OLAP. In

Proceedings of the ICDE. 208–219. DOI:https://doi.org/10.1109/ICDE.1997.581755
[15] Dirk Habich, Patrick Damme, Annett Ungethüm, and Wolfgang Lehner. 2018. Make larger vector register sizes new

challenges?: Lessons learned from the area of vectorized lightweight compression algorithms. In Proceedings of the

DBTest@SIGMOD Conference. 8:1–8:6. DOI:https://doi.org/10.1145/3209950.3209957
[16] Dirk Habich, Patrick Damme, Annett Ungethüm, Johannes Pietrzyk, Alexander Krause, Juliana Hildebrandt, and

Wolfgang Lehner. 2019. MorphStore—In-memory query processing based on morphing compressed intermediates
LIVE. In Proceedings of the SIGMOD Conference.

[17] Abdullah Al Hasib, Juan M. Cebrian, and Lasse Natvig. 2015. V-PFORDelta: Data compression for energy efficient
computation of time series. In Proceedings of the International Conference on HiPC. 416–425. DOI:https://doi.org/10.
1109/HiPC.2015.11

[18] Juliana Hildebrandt, Dirk Habich, Patrick Damme, and Wolfgang Lehner. 2016. Compression-aware in-memory
query processing: Vision, system design and beyond. In Proceedings of the ADMS@VLDB Conference. 40–56. DOI:
https://doi.org/10.1007/978-3-319-56111-0_3

[19] Juliana Hildebrandt, Dirk Habich, Thomas Kühn, Patrick Damme, and Wolfgang Lehner. 2017. Metamodeling light-
weight data compression algorithms and its application scenarios. In Proceedings of the ER Forum. 128–141. http://
ceur-ws.org/Vol-1979/paper-12.pdf

[20] David A. Huffman. 1952. A method for the construction of minimum-redundancy codes. Proc. Inst. Radio Eng. 40, 9
(1952).

[21] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive work placement for query processing on het-
erogeneous computing resources. PVLDB 10, 7 (2017), 733–744. DOI:https://doi.org/10.14778/3067421.3067423

[22] Thomas Kissinger, Tim Kiefer, Benjamin Schlegel, Dirk Habich, Daniel Molka, and Wolfgang Lehner. 2014. ERIS:
A NUMA-aware in-memory storage engine for analytical workload. In Proceedings of the ADMS@VLDB Conference.
74–85. http://www.adms-conf.org/2014/adms14_kissinger.pdf

[23] Marcel Kornacker et al. 2015. Impala: A modern, open-source SQL engine for Hadoop. In Proceedings of the CIDR.
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf

[24] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. 2016. Data
blocks: Hybrid OLTP and OLAP on compressed storage using both vectorization and compilation. In Proceedings of

the SIGMOD Conference. 311–326. DOI:https://doi.org/10.1145/2882903.2882925
[25] Jae-Gil Lee, Gopi K. Attaluri, Ronald Barber, Naresh Chainani, Oliver Draese, Frederick Ho, Stratos Idreos,

Min-Soo Kim, Sam Lightstone, Guy M. Lohman, Konstantinos Morfonios, Keshava Murthy, Ippokratis Pandis, Lin
Qiao, Vijayshankar Raman, Vincent Kulandai Samy, Richard Sidle, Knut Stolze, and Liping Zhang. 2014. Joins on
encoded and partitioned data. PVLDB 7, 13 (2014), 1355–1366. DOI:https://doi.org/10.14778/2733004.2733008

[26] Wolfgang Lehner. 2017. The data center under your desk—How disruptive is modern hardware for DB system design?
PVLDB 10, 12 (2017), 2018–2019. DOI:https://doi.org/10.14778/3137765.3137834

[27] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2015. How
good are query optimizers, really? PVLDB 9, 3 (2015), 204–215. DOI:https://doi.org/10.14778/2850583.2850594

[28] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second through vectorization. Softw., Pract.

Exper. 45, 1 (2015), 1–29. DOI:https://doi.org/10.1002/spe.2203
[29] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Generic database cost models for hierarchical memory

systems. In Proceedings of the VLDB. 191–202. http://www.vldb.org/conf/2002/S06P03.pdf
[30] Hoshi Mistry, Prasan Roy, S. Sudarshan, and Krithi Ramamritham. 2001. Materialized view selection and mainte-

nance using multi-query optimization. In Proceedings of the SIGMOD Conference. 307–318. DOI:https://doi.org/10.
1145/375663.375703

[31] Ismail Oukid and Wolfgang Lehner. 2017. Data structure engineering for byte-addressable non-volatile memory. In
Proceedings of the SIGMOD Conference. 1759–1764. DOI:https://doi.org/10.1145/3035918.3054777

[32] Jeff Plaisance, Nathan Kurz, and Daniel Lemire. 2015. Vectorized VByte decoding. CoRR abs/1503.07387. Retrieved
from http://arxiv.org/abs/1503.07387.

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

45

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1007/978-3-319-23135-8_11
https://doi.org/10.1007/978-3-319-23135-8_11
https://doi.org/10.1561/1900000058
https://doi.org/10.1007/s00778-007-0065-y
https://doi.org/10.1109/ICDE.1998.655800
https://doi.org/10.1109/ICDE.1997.581755
https://doi.org/10.1145/3209950.3209957
https://doi.org/10.1109/HiPC.2015.11
https://doi.org/10.1109/HiPC.2015.11
https://doi.org/10.1007/978-3-319-56111-0_3
http://ceur-ws.org/Vol-1979/paper-12.pdf
http://ceur-ws.org/Vol-1979/paper-12.pdf
https://doi.org/10.14778/3067421.3067423
http://www.adms-conf.org/2014/adms14_kissinger.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
https://doi.org/10.1145/2882903.2882925
https://doi.org/10.14778/2733004.2733008
https://doi.org/10.14778/3137765.3137834
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1002/spe.2203
http://www.vldb.org/conf/2002/S06P03.pdf
https://doi.org/10.1145/375663.375703
https://doi.org/10.1145/375663.375703
https://doi.org/10.1145/3035918.3054777
http://arxiv.org/abs/1503.07387

[33] Piotr Przymus and Krzysztof Kaczmarski. 2014. Compression planner for time series database with GPU support.
Trans. Large-Scale Data- Knowl.-Center. Syst. 15 (2014), 36–63. DOI:https://doi.org/10.1007/978-3-662-45761-0_2

[34] Alexander Rasin and Stanley B. Zdonik. 2013. An automatic physical design tool for clustered column-stores. In
Proceedings of the International Conference on EDBT. 203–214. DOI:https://doi.org/10.1145/2452376.2452402

[35] Mark A. Roth and Scott J. Van Horn. 1993. Database compression. SIGMOD Record 22, 3 (1993), 31–39. DOI:https://
doi.org/10.1145/163090.163096

[36] Benjamin Schlegel, Rainer Gemulla, and Wolfgang Lehner. 2010. Fast integer compression using SIMD instructions.
In Proceedings of the DaMoN@SIGMOD Conference. 34–40. DOI:https://doi.org/10.1145/1869389.1869394

[37] Alexander A. Stepanov, Anil R. Gangolli, Daniel E. Rose, Ryan J. Ernst, and Paramjit S. Oberoi. 2011. SIMD-based
decoding of posting lists. In Proceedings of the CIKM. 317–326. DOI:https://doi.org/10.1145/2063576.2063627

[38] Annett Ungethüm, Johannes Pietrzyk, Patrick Damme, Dirk Habich, and Wolfgang Lehner. 2018. Conflict detection-
based run-length encoding—AVX-512 CD instruction set in action. In Proceedings of the ICDE Workshops. 96–101.
DOI:https://doi.org/10.1109/ICDEW.2018.00023

[39] Ross N. Williams. 1991. An extremely fast Ziv-Lempel data compression algorithm. In Proceedings of the DCC. 362–
371. DOI:https://doi.org/10.1109/DCC.1991.213344

[40] Ian H. Witten, Radford M. Neal, and John G. Cleary. 1987. Arithmetic coding for data compression. Commun. ACM

30, 6 (1987), 520–540. DOI:https://doi.org/10.1145/214762.214771
[41] Wayne Xin Zhao, Xudong Zhang, Daniel Lemire, Dongdong Shan, Jian-Yun Nie, Hongfei Yan, and Ji-Rong Wen.

2015. A general SIMD-based approach to accelerating compression algorithms. ACM Trans. Inform. Syst. 33, 3 (2015),
15:1–15:28. DOI:https://doi.org/10.1145/2735629

[42] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data compression. IEEE Trans. Inform.

Theor. 23, 3 (1977), 337–343. DOI:https://doi.org/10.1109/TIT.1977.1055714
[43] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. 2006. Super-scalar RAM-CPU cache compression.

In Proceedings of the ICDE. 59. DOI:https://doi.org/10.1109/ICDE.2006.150

Final edited form was published in "ACM Transactions on Database Systems" 44 (3), Art. Nr. 9. ISSN: 0362-5915
https://doi.org/10.1145/3323991

46

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

https://doi.org/10.1007/978-3-662-45761-0_2
https://doi.org/10.1145/2452376.2452402
https://doi.org/10.1145/163090.163096
https://doi.org/10.1145/163090.163096
https://doi.org/10.1145/1869389.1869394
https://doi.org/10.1145/2063576.2063627
https://doi.org/10.1109/ICDEW.2018.00023
https://doi.org/10.1109/DCC.1991.213344
https://doi.org/10.1145/214762.214771
https://doi.org/10.1145/2735629
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/ICDE.2006.150

	ADP401.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, Wolfgang Lehner
	From a Comprehensive Experimental Survey to a Cost-based Selection Strategy for Lightweight Integer Compression Algorithms

