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Abstract

We live in an era of data and information, where an immeasurable amount of discover-
ies, findings, events, news, and transactions are generated every second. Governments,
companies, or individuals have to employ and process all that data for knowledge-based
decision-making (i.e. a decision-making process that uses predetermined criteria to measure
and ensure the optimal outcome for a specific topic), which then prompt them to view the
knowledge as valuable resource. In this knowledge-based view, the capability to create and
utilize knowledge is the key source of an organization or individual’s competitive advantage.
This dynamic nature of knowledge leads us to the study of belief revision (or belief change),
an area which emerged from work in philosophy and then impacted further developments in
computer science and artificial intelligence.

In belief revision area, the AGM postulates by Alchourrón, Gärdenfors, and Makinson con-
tinue to represent a cornerstone in research related to belief change. Katsuno and Mendelzon
(K&M) adopted the AGM postulates for changing belief bases and characterized AGM belief
base revision in propositional logic over finite signatures. In this thesis, two research direc-
tions are considered. In the first, by considering the semantic point of view, we generalize
K&M’s approach to the setting of (multiple) base revision in arbitrary Tarskian logics, cover-
ing all logics with a classical model-theoretic semantics and hence a wide variety of logics
used in knowledge representation and beyond. Our generic formulation applies to various
notions of “base”, such as belief sets, arbitrary or finite sets of sentences, or single sentences.
The core result is a representation theorem showing a two-way correspondence between
AGM base revision operators and certain “assignments”: functions mapping belief bases to
total — yet not transitive — “preference” relations between interpretations. Alongside, we
present a companion result for the case when the AGM postulate of syntax-independence
is abandoned. We also provide a characterization of all logics for which our result can be
strengthened to assignments producing transitive preference relations (as in K&M’s original
work), giving rise to two more representation theorems for such logics, according to syntax
dependence vs. independence. The second research direction in this thesis explores two
approaches for revising description logic knowledge bases under fixed-domain semantics,
namely model-based approach and individual-based approach. In this logical setting, models
of the knowledge bases can be enumerated and can be computed to produce the revision
result, semantically. We show a characterization of the AGM revision operator for this logic
and present a concrete model-based revision approach via distance between interpretations.
In addition, by weakening the KB based on certain domain elements, a novel individual-based
revision operator is provided as an alternative approach.
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Chapter 1

Introduction

We live in an era of data and information, where an immeasurable amount of discover-

ies, findings, events, news, and transactions are generated every second. Governments,

companies, or individuals have to employ and process all that data for knowledge-based

decision-making (i.e. a decision-making process that uses predetermined criteria to measure

and ensure the optimal outcome for a specific topic), which then prompt them to view the

knowledge as valuable resource. In this knowledge-based view, the capability to create and

utilize knowledge is the key source of an organization or individual’s competitive advantage

[TPW03]. This dynamic nature of knowledge leads us to the study of belief revision (or

belief change, cf. Section 1.1), an area which emerged from work in philosophy and then

impacted further developments in computer science and artificial intelligence.

In belief revision area, knowledge are represented in many forms ranging from databases

[FUV83; Bor85; Wil97; GPW03], classical propositional logic [AGM85; Han99; KM91;

Dal88a], to the more expressive data representation such as ontologies [QLB06b; HK06a;

DDL17; RWF+13; RW14a; Flo06]. The change process is defined as a function or an operator,

where the inputs are the knowledge that is specified in one the forms mentioned earlier

and the output is a new knowledge in the same form of the inputs. The forms are usually

called the knowledge bases or knowledge sets. To be a rational revision operator, the change

function should satisfy a set of constraints called postulates. Beyond the constraints, there

is no hint on how to construct a specific revision operator. Overall, the methodology in

studying belief revision is to approach a change operator from two directions: (1) a set of

postulates to define the qualities of a change operator that should be satisfied, and (2) a

formal construction to characterize the collection of instances of the change operator. Then,

a representation theorem is provided to show that these two approaches coincide, i.e. both

approaches capture the same class of operators.

When we focus on the construction side, we will find many equivalent ways in the literature

to characterize the revision operators, which generally can be categorized into two types: (1)

syntax-based approaches (or formula-based approaches, e.g. partial meet [AGM85; RW14b],

kernel [Han94; RW14b; QHH+08], and epistemic entrentchment [GM88; Fer00; Rot03])

1



2 Chapter 1. Introduction

and (2) semantics-based approaches (or model-based approaches, e.g. spheres system

[Gro88] and faithful assignment [KM91]). A syntax-based approach includes modification

on sentences or formula of the knowledge formalism, whereas a semantics-based approach

performs calculation on the interpretation or possible worlds level. However, when working

with ontologies, a syntax-based approach is lack of suitable semantic justification in general

[WWT15] and for two different ontologies O and O′ that have same meaning, revision may

lead to different results [DDL17]. On the opposite side, in the semantics-based approach,

the result of the revision is independent of the initial input knowledge, which is known as

Dalal’s Principle of Irrelevance of Snytax [Dal88b]. This principle follows the argument by

Levesque [Lev84] that one should define the operations on knowledge bases at the knowledge

(semantics) level. This mainly motivates us to approach belief revision problem more from

the semantics point of view. We will investigate the semantics approaches for logics which

cover a wide range of modern (and expressive) knowledge representation formalisms, namely

Tarskian logics.

In the later part of this thesis, we consider Description Logics (DLs) to be investigated as

they provide logical formalisms for the ontologies and the Semantic Web that have been

standardized since 2004. As well as for Tarskian logics, we study the semantics-based

revision approaches for DLs. We found that a number of works have been carried out to find

specific semantic revision approaches for particular DL families [WWT10; CSG14; WWQ+14;

WWT15; ZWW+14; DDL17]. However, as they consider standard semantics for DLs, they

are all struggling with infinitely many models and inexpressibility problems. This mainly

motivates us to explore particular DLs with non-standard semantics, called fixed-domain

semantics [GRS16] (cf. Section 1.2), where the domain is fixed and finite, providing a

feasible computation over models.

1.1 Belief Revision

Belief revision can be described as the problem of how a rational agent should change her

beliefs in the light of new information. An agent can be a human being, a computer machine,

or any kind of system which is able to store beliefs and perform reasoning over beliefs. The

set of information or knowledge that is believed by an agent is represented as a belief state.

This problem is crucial in several areas, including AI systems.

We provide an example where an agent’s belief state contains the following pieces of

information, where the knowledge are represented in classical propositional logic: “Alice is

a university student” (p), “Only few people booked the appointment for vaccination from

the university” (q), “If Alice is a university student and there are only few people who

booked the appointment for vaccination from the university, then Alice is able to book the
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vaccination appointment” (p ∧ q→ r), and “The appointment booking system is developed

by the university IT department” (s).

From the belief state, one can infer the following consequence: “Alice is able to book the

appointment for vaccination” (r). However, suppose it turns out that in fact Alice could not

book an appointment slot (¬r) and we want to add the incoming fact to the belief state.

Unfortunately, the belief state would be inconsistent, i.e. there occurs a contradiction among

sentences. Since the inconsistent belief state would be “useless” (one can infer any sentence

from it), we want to maintain its consistency – we need to revise it. This is exactly our main

focus on belief revision. In consequence, some sentence(s) should be removed from the

belief state. When removing sentences, we want to keep the minimality principle, i.e. we do

not want to retract too much information from the belief state, or in other words, we want

to do the changes as minimal as possible. If a sentence at the end should be dropped, then

the sentence must be really involved in the inconsistency. If a previously believed sentence

does not contradict the new information, then there is no reason to give it up.

The many possibilities of choosing which sentence(s) to give up (or to retain) manifest

the non-triviality of the belief revision problem. For example, to revise our belief state, we

can choose which sentence(s) to retract: p, q, or p ∧ q→ r . Of course, one can decide to

drop all the three sentences, but she will lose all of the information and thus violate the

principle of minimal change. Choosing one of the three sentences is sufficient to maintain

the consistency of the belief state. Assuming unavailable information as false (closed world

assumption), if we trust the conditional statement (p∧q→ r), we can still believe that either

Alice is not a university student or there are too many people that book the appointment.

On the other hand, if we decide that the rule p ∧ q→ r can not be trusted any longer, we

can keep both facts that Alice is a university student and there are only few people who

book the slot. Note also that the sentence s is not relevant to the inconsistency. Then, by the

minimality principle, one should not touch it for modification of the initial belief state.

This area of research has been massively influenced by the AGM paradigm of Alchourrón,

Gärdenfors, and Makinson [AGM85]. The AGM theory assumes that an agent’s beliefs are

represented by a deductively closed set of sentences (commonly referred to as a belief set).

A revision operator for belief sets is required to satisfy appropriate postulates in order to

qualify as a rational revision operator. While the contribution of AGM is widely accepted

as solid and inspiring foundation, it lacks support for certain relevant aspects: it provides

no immediate solution on how to deal with multiple inputs (i.e., several sentences instead

of just one), with bases (i.e., arbitrary collections of sentences, not necessarily deductively

closed), or with the problem of iterated belief revision.

Katsuno and Mendelzon [KM91] – henceforth abbreviated K&M – deal with the issues of

belief bases and multiple inputs in an elegant way: as in propositional logic, every set of

sentences (including an infinite one) is equivalent to one single sentence, belief states and
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multiple inputs are considered as such single sentences. In this setting, K&M provided a set

of postulates, derived from (and equivalent to) the AGM revision postulates, capturing the

principles mentioned earlier in the example. They nicely characterized the AGM revision

operator via mappings of every propositional logic knowledge base to a specific relation over

interpretations.

While the AGM paradigm is axiomatic, much of its success originated from operational-

isations via representation theorems. Yet, most existing characterizations of AGM revision

require the underlying logic to fulfil additional assumptions such as compactness, closure

under standard connectives, deduction, or supra-classicality [RWF+13]. Leaving the safe

grounds of these assumptions complicates matters and gives rise to the main challenge:

representation theorems do not easily generalize to arbitrary logics. This has sparked invest-

igations into tailored characterizations of AGM belief change for non-classical logics, such as

the work by Ribeiro, Wassermann, and colleagues [RWF+13; Rib13; RW14a], Delgrande,

Peppas, and Woltran [DPW18], Pardo, Dellunde, and Godo [PDG09], or Aiguier, Atif, Bloch,

and Hudelot [AAB+18]. Approaches to specific logics were also proposed, such as Horn

logic [DP15], temporal logics [Bon07], action logics [SPL+11], first-order logic [ZWW+19],

and description logics (DLs) [QLB06b; HK06a; DDL17].

1.2 Description Logics under Fixed-Domain Semantics

Description Logics (DLs) are a family of knowledge representation formalisms that can be used

to represent knowledge of an application domain in a structured and well-understood way

[BHL+17]. DLs are more expressive than classical propositional logic, but are still decidable,

as opposed to first order logic. With these important properties, they serve as foundation for

the popular Web Ontology Language (OWL) [Gro12] for exchanging knowledge to support

the Semantic Web Technologies. Many DL-based ontologies are being extensively developed

and used in the biology and medical areas, such as NCI Thesaurus1, the Foundational Model

of Anatomy (FMA)2, SNOMED CT3, GALEN4, and GENE ONTOLOGY5.

Furthermore, fixed-domain semantics for description logics have been introduced to accom-

modate the scenario where the knowledge bases represent constraint-type or configuration

problems [GRS16; RS17]. In this setting, the domain is explicitly given and thus is finite

and fixed a priori. Consequently, this particular DL accomodates the use of knowledge

bases adapting a closed-world assumption, i.e. if an information is not in the knowledge

1https://ncithesaurus.nci.nih.gov/ncitbrowser/
2https://bioportal.bioontology.org/ontologies/FMA
3https://www.snomed.org/
4https://bioportal.bioontology.org/ontologies/GALEN
5http://geneontology.org/docs/download-ontology/
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base, it should be concluded that it is false. A reasoner called Wolpertinger6 has been

developed to support typical reasoning tasks over knowledge bases under the fixed-domain

semantics, which includes satisfiability checking and model enumeration. With respect to

the revision problem, these features would enable us to directly deal with the models of

the knowledge bases to obtain the revision outcome, as opposed to description logics with

standard semantics. However, to the best of our knowledge, the study of belief revision in

description logics under this setting has not been explored so far.

1.3 Research Directions

In view of the above challenges in the area of belief revision (cf. Section 1.1 and Section 1.2),

the main goal of the present work is to find:

1. Appropriate characterizations of AGM revision operators in general logics satisfying

monotonicity. In this regard, we consider Tarskian logics, a class of logics capturing

many well-known logical formalisms, such as classical propositional logic, first-order

and second-order predicate logic, modal logics, and description logics. Our consid-

erations do, however, not apply to non-monotonic formalisms, such as default logic,

circumscription, or logic programming frameworks using negation as failure.

2. Approaches and concrete revision operations for description logics under fixed-domain

semantics. As DLs are also Tarskian logics, results from the first research direction

can be applied to investigate the characterization of revision operators in this logical

setting and then be used to develop their instances. The finiteness of the domain is

also an interesting property to be explored towards alternative revision approaches.

1.4 Contributions and Outline of the Thesis

Chapter 1 motivates this work, discusses its background, and outlines its objectives. Chapter 2

introduces the basic logical setting for AGM revision and notions used in this thesis, including:

description logics, fixed-domain semantics, and Answer Set Programming (ASP). Chapter 3

is dedicated to exploring the first research direction. It contains the following contributions:

• We introduce the notion of base logics to uniformly capture all popular ways of defining

belief states by certain sets of sentences over Tarskian logics. Among others, this

includes the cases where belief states are arbitrary sets of sentences and where belief

states are belief sets.

6https://github.com/wolpertinger-reasoner
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• We extend K&M’s semantic approach from the setting of singular base revision in

propositional logic to multiple base revision in arbitrary base logics.

• For this setting, we provide a representation theorem characterizing AGM belief change

operators via appropriate assignments.

• We provide a variant of the characterization dealing with the case where the postulate

of syntax-independence is not imposed.

• We characterize all those logics for which every AGM operator can even be captured

by preorder assignments (i.e., in the classical K&M way). In particular, this condition

applies to all logics supporting disjunction and hence all classical logics. For those

logics, we provide one representation theorem for the syntax-independent and one for

the syntax-dependent setting.

The content of Chapter 3, some parts of Chapter 1 and some parts of Chapter 2 were

developed in joint work with Kai Sauerwald and Sebastian Rudolph which has been peer-

reviewed at RuleML+RR conference:

• Faiq Miftakhul Falakh, Sebastian Rudolph, Kai Sauerwald: ‘Semantic Characterizations

of AGM Revision for Arbitrary Tarskian Logics’. In Proceeding of the 6th International

Joint Conference on Rules and Reasoning, Berlin (Virtual), Germany, 2022. (Best Student

Paper Awards)

A preliminary report of this joint work has been peer-reviewed and published at the FCR

Workshop 2021 [FRS21]:

• Faiq Miftakhul Falakh, Sebastian Rudolph, Kai Sauerwald: ‘A KatsunoMendelzon-

Style Characterization of AGM Belief Base Revision for Arbitrary Monotonic Logics

(Preliminary Report)’. In Proceedings of the 7th Workshop on Formal and Cognitive

Reasoning co-located with the 44th German Conference on Artificial Intelligence (KI 2021),

September 28, 2021.

My specific contribution was to extend the idea, develop examples, and conduct most proofs of

the main representation theorem in this chapter (Section 3.1–Section 3.5). For the remaining

sections of this chapter (Section 3.6–Section 3.10), while Kai Sauerwald developed the

notions introduced here (e.g. critical loop), conceptualized and conducted the proofs of the

propositions, I provided support in proofreading and making proposals for the presentation

of the proofs. I also initiated the discussion of related work and developed the comparison

table in Section 3.9.

Chapter 4 discusses the second research direction. In this chapter, we show the semantic

representation theorem for knowledge base revision in DL under the fixed-domain semantics.

Alongside, we present two concrete approaches for revising the knowledge bases. The first
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approach is a semantics-based revision approach, which is inspired from the approach by

Katsuno and Mendelzon [KM91] for revising KBs in finite-signature propositional logic. We

provide a representation theorem characterizing AGM revision operators via appropriate

assignments. We also provide a concrete revision operator using the notion of distance

between interpretations and show that the proposed operator satisfies all standard AGM

postulates for DL. The models as the outcome of this operation are expressed in a knowledge

base using our axiom constructor. The second approach is a novel revision operator based

on the notion of exceptional individual set. This individual set serves as a basis to weaken

the prior KB whenever inconsistency occurs. The revision result of this approach is a union

of the weakened prior KB with the new incoming KB. The content of this chapter has been

peer-reviewed at DL Workshop 2022:

• Faiq Miftakhul Falakh, Sebastian Rudolph: ‘AGM Revision in Description Logics un-

der Fixed-Domain Semantics’. In Proceeding of the 35th International Workshop on

Description Logics, Haifa, Israel, 2022.

Finally, Chapter 5 summarizes the contributions of this work and discusses some ideas for

future work.
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Chapter 2

Preliminaries

We introduce the logical and algebraic notions used in the thesis.

2.1 Logics with Classical Model-Theoretic Semantics

We consider logics endowed with a classical model-theoretic semantics. The syntax of such a

logic L is given syntactically by a (possibly infinite) set L of sentences, while its model theory

is provided by specifying a (potentially infinite) class Ω of interpretations (also called worlds)

and a binary relation |= between Ω and L where I |= ϕ indicates that I is a model of ϕ.

Hence, a logic L is identified by the triple (L,Ω, |=). We let ⟦ϕ⟧= {I ∈ Ω | I |= ϕ} denote

the set of all models of ϕ ∈ L. Logical entailment is defined as usual (overloading “|=”) via

models: for two sentences ϕ and ψ we say ϕ entails ψ (written ϕ |=ψ) if ⟦ϕ⟧ ⊆ ⟦ψ⟧.

Notions of modelhood and entailment can be easily lifted from single sentences to sets. We

obtain the models of a set K ⊆ L of sentences via ⟦K⟧=
⋂

ϕ∈K⟦ϕ⟧. For K ⊆ L and K′ ⊆ L
we say K entails K′ (written K |= K′) if ⟦K⟧ ⊆ ⟦K′⟧. We write K ≡ K′ to express ⟦K⟧ = ⟦K′⟧.

A (set of) sentence(s) is called consistent with another (set of) sentence(s) if the two have

models in common. Unlike many other belief revision frameworks, we impose no further

requirements on L (like closure under certain operators or compactness).

The existence of a classical model-theoretic semantics as above is equivalent to the logic

being Tarskian [Tar56; SSC97]. We start by providing the definition of Tarskian logics.

Definition 2.1. Let L be a set. A function Cn : P(L)→ P(L) is called a Tarskian consequence

operator (on L) if it is a closure operator, i.e., it satisfies the following properties for all subsets

K, K1, K2 ⊆ L:

K ⊆ Cn(K) (extensive)

if K1 ⊆ K2, then Cn(K1) ⊆ Cn(K2) (monotone)

Cn(K) = Cn(Cn(K)) (idempotent)

9
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Any Tarskian consequence operator Cn : P(L)→ P(L) gives rise to a Tarskian consequence

relation ||= ⊆ P(L)×L defined by K ||= ϕ if ϕ ∈ Cn(K). Each (L, ||=) obtained from a Tarskian

consequence operator Cn : P(L)→ P(L) will be called a Tarskian logic here.

We proceed to show that the existence of a model-theoretically defined semantics is

sufficient and necessary for a logic being Tarskian.

Proposition 2.2. For every model theory (L,Ω, |=) there exists a Tarskian logic (L, ||=) with

K ||= ϕ if and only if K |= ϕ for all ϕ ∈ L and K ∈ P(L).

Proof. Given (L,Ω, |=), let Cn : P(L)→ P(L) be defined by K 7→ {ϕ ∈ L | ⟦K⟧ ⊆ ⟦ϕ⟧}. We

will show that Cn is a Tarskian consequence operator.

For extensivity, consider some arbitrary ψ ∈ K. Then we obtain ⟦K⟧=
⋂

ϕ∈K⟦ϕ⟧ ⊆ ⟦ψ⟧

and hence ψ ∈ Cn(K). Hence, since ψ was chosen arbitrarily, we obtain K ⊆ Cn(K).
For monotonicity, suppose K1 ⊆ K2. Then ⟦K2⟧ =

⋂

ϕ∈K2
⟦ϕ⟧ ⊆

⋂

ϕ∈K1
⟦ϕ⟧ = ⟦K1⟧.

Therefore, we obtain Cn(K1) = {ϕ ∈ L | ⟦K1⟧ ⊆ ⟦ϕ⟧} ⊆ {ϕ ∈ L | ⟦K2⟧ ⊆ ⟦ϕ⟧}= Cn(K2).

For idempotency, we show bidirectional inclusion. Cn(K) ⊆ Cn(Cn(K)) is an immediate

consequence of extensivity already shown. For the other direction, consider an arbitrary

ψ ∈ Cn(Cn(K)). Then, we obtain ⟦Cn(K)⟧ ⊆ ⟦ψ⟧. On the other hand, we have

⟦Cn(K)⟧=
⋂

ϕ∈L
⟦K⟧⊆⟦ϕ⟧

⟦ϕ⟧=
⋂

ϕ∈K
⟦ϕ⟧= ⟦K⟧,

and therefore, we obtain ⟦K⟧ ⊆ ⟦ψ⟧ and finally ψ ∈ Cn(K). Hence, since ψ was chosen

arbitrarily, we obtain Cn(Cn(K)) ⊆ Cn(K).
Let now ||= denote the Tarskian consequence relation induced by Cn. Then we obtain for

all K ⊆ L and ϕ ∈ L the following:

K ||= ϕ⇐⇒ ϕ ∈ Cn(K)⇐⇒ ⟦K⟧ ⊆ ⟦ϕ⟧⇐⇒ K |= ϕ. □

As last step, we show that for each Tarskian logic there is a canonical model-theoretic

semantics for this Tarskian logic.

Proposition 2.3. For every Tarskian logic (L, ||=) there exists a model theory (L,Ω, |=) such

that K ||= ϕ if and only if K |= ϕ holds for all for all ϕ ∈ L and K ∈ P(L).

Proof. Let (L, ||=) be a Tarskian logic and let Cn : P(L) → P(L) be the corresponding

Tarskian consequence operator. We now define an appropriate (L,Ω, |=) as follows: Let

Ω= {Cn(T ) | T ⊆ L}. Define the model relation |= ⊆ Ω×L such that some Cn(T ) ∈ Ω is a

model of some ϕ ∈ L whenever ϕ ∈ Cn(T ).
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Then we obtain for all K ⊆ L and ϕ ∈ L the following:

K |= ϕ ⇐⇒ ⟦K⟧ ⊆ ⟦ϕ⟧

⇐⇒
⋂

κ∈K⟦κ⟧ ⊆ ⟦ϕ⟧

⇐⇒ {Cn(T ) | T ⊆ L, K ⊆ Cn(T )} ⊆ {Cn(T ) | T ⊆ L, ϕ ∈ Cn(T )}
⇐⇒ ∀T ⊆ L : K ⊆ Cn(T )⇒ ϕ ∈ Cn(T ) (∗)

Moreover, we obtain

(∗) =⇒ K ⊆ Cn(K)⇒ ϕ ∈ Cn(K) instantiate T = K
=⇒ ϕ ∈ Cn(K) extensivity of Cn

=⇒ K ||= ϕ,

and on the other hand:

K ||= ϕ =⇒ ϕ ∈ Cn(K)
=⇒ ∀S ⊆ L : Cn(K) ⊆ S⇒ ϕ ∈ S

=⇒ ∀T ⊆ L : Cn(K) ⊆ Cn(T )⇒ ϕ ∈ Cn(T ) restriction to closed sets

=⇒ ∀T ⊆ L : Cn(K) ⊆ Cn(Cn(T ))⇒ ϕ ∈ Cn(T ) idempotency of Cn

=⇒ (∗) monotonicity of Cn

Concluding, we have established that for all K ⊆ L and ϕ ∈ L the following holds:

K |= ϕ⇐⇒ (∗)⇐⇒ K ||= ϕ. □

Among others, this means that all logics considered here are monotonic, i.e., they satisfy

the following condition:

If K1 |= ϕ and K1 ⊆ K2, then K2 |= ϕ. (monotonicity)

The notion of Tarskian logic captures many well-known classical logical formalisms and in

the following we will give some examples.

We start by providing an example, where sentences and interpretations are finite sets,

which allows us to specify them (as well as the models relation) explicitly. We note that this

is an extension of an example given by Delgrande et al. [DPW18], which will serve as a

running example throughout this thesis.

Example 2.4 (based on [DPW18]). LetLEx = (LEx,ΩEx, |=Ex) be the logic defined by LEx = {ψ0,

. . . ,ψ5,ϕ0,ϕ1,ϕ2,χ ,χ ′} and ΩEx = {ω0, . . . ,ω5}, with the models relation |=Ex implicitly

given by:
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⟦ψ3⟧

ω3 ω4

ω0

ω1

ω2

ω5

⟦χ⟧

⟦ϕ2⟧

⟦ϕ0⟧ ⟦ϕ1⟧

⟦ψ1⟧

⟦ψ0⟧ ⟦ψ2⟧

⟦χ ′⟧

⟦ψ4⟧ ⟦ψ5⟧

Figure 2.5: Illustration of the logic LEx, including the modelhood relations where the solid
borders represent the set of models.

⟦ψi⟧ = {ωi}

⟦χ⟧ = {ω0, . . . ,ω5}

⟦χ ′⟧ = {ω0,ω1,ω2,ω4,ω5}

⟦ϕ0⟧ = {ω0,ω1}

⟦ϕ1⟧ = {ω1,ω2}

⟦ϕ2⟧ = {ω2,ω0}

Since LEx is defined in the classical model-theoretic way, LEx is a Tarskian logic. Note that

logic LEx has no connectives. Figure 2.5 illustrates the logic setting LEx.

Next we turn to propositional logic, observing that the distinction between a finite or

infinite set of propositional symbols leads to differences that we will revisit later on.

Example 2.6 (PLn, propositional logic over n propositional atoms). The logic is defined

by PLn = (LPLn
,ΩPLn

, |=PLn
) in the usual way: Given a finite set Σp = {p1, . . . , pn} of atomic

propositions, we let LPLn
be the set of Boolean expressions built from Σp∪{⊤,⊥} using the usual

set of propositional connectives (¬, ∧, ∨,→, and↔). We then let the set ΩPLn
of interpretations

contain all functions from Σp to {true, false}. The relation |=PLn
is then defined inductively

over the structure of sentences in the usual way.

Notably, finiteness of Σ implies finiteness of ΩPLn
(more specifically, |ΩPLn

| = 2n). This in

turn ensures that, despite LPLn
being infinite, there are only finitely many (namely 2n) sentences

which are pairwise semantically distinct. Even more so: for every (finite or infinite) set K of

PLn sentences, there exists some sentence ϕ ∈ LPLn
with ϕ ≡ K.

Example 2.7 (PL∞, propositional logic over infinite signature). The basic definitions for

PL∞ = (LPL∞ ,ΩPL∞ , |=PL∞) are just like in the previous example, with the notable difference

of Σp = {p1, p2, . . .} being countably infinite. This implies immediately that ΩPL∞ is infinite

(in fact, even uncountable), implying that there are infinitely many sentences that are pairwise
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non-equivalent (e.g., all the atomic ones). Also, there exist infinite sets of sentences for which no

single equivalent sentence from LPL∞ exists, e.g., {p2, p4, p6, . . .}.

Many more (and more expressive) logics are captured by the model-theoretic framework

assumed by us, e.g. first-order and second-order predicate logic, modal logics, and description

logics.

2.2 Relation over Interpretations

For describing belief revision on the semantic level, it is expedient to endow the interpretation

spaceΩwith some structure. In particular, we will employ binary relations⪯ overΩ (formally:

⪯ ⊆ Ω×Ω), where the intuitive meaning of I1 ⪯ I2 is that I1 is “equally good or better”

than I2 when it comes to serving as a model. We call ⪯ total if I1 ⪯ I2 or I2 ⪯ I1 for any

I1, I2 ∈ Ω holds. We write I1 ≺ I2 as a shorthand, whenever I1 ⪯ I2 and I2 ̸⪯ I1 (the

intuition being that I1 is “strictly better” than I2). For a selection Ω′ ⊆ Ω of interpretations,

an I ∈ Ω′ is called ⪯-minimal in Ω′ if there is no I′′ ∈ Ω′ with I′′ ≺ I.1 We let min(Ω′,⪯)
denote the set of ⪯-minimal interpretations in Ω′. We call ⪯ a preorder if it is transitive and

reflexive. For a relation R ⊆ Ω×Ω, the transitive closure of R is the relation TC(R) =
⋃∞

i=0 Ri ,

where R0 = R and Ri+1 = Ri ∪ {(I1, I3) | ∃I2.(I1, I2) ∈ Ri and (I2, I3) ∈ Ri}.

2.3 Bases

This article addresses the revision of and by bases. In the belief revision community, the

term of base commonly denotes an arbitrary (possibly infinite) set of sentences. However,

in certain scenarios, other assumptions might be more appropriate. Hence, for the sake of

generality, we define the notion of base logic, which enable us to employ bases on an abstract

level with minimal requirements (just as we introduced our notion of logic), allowing for its

instantiation in many ways.

Definition 2.8. A base logic is a quintuple B= (L,Ω, |=,B,⋓), where

• (L,Ω, |=) is a logic,

• B ⊆ P(L) is a family of sets of sentences, called bases, and

• ⋓ : B×B → B is a binary operator over bases, called the abstract union, satisfying

⟦B1 ⋓B2⟧= ⟦B1⟧∩ ⟦B2⟧.

Next, we will demonstrate how, for some logic L = (L,Ω, |=), a corresponding base logic

can be chosen depending on one’s preferences regarding what bases should be.

1If ⪯ is total, this definition is equivalent to the I ⪯ I ′ for all I ′ ∈ Ω′.
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Arbitrary Sets. If all (finite and infinite) sets of sentences should qualify as bases, one can

simply set B= P(L). In that case, ⋓ can be instantiated by set union ∪, then the claimed

behavior follows by definition.

Finite Sets. In some settings, it is more convenient to assume bases to be finite (e.g. when

computational properties or implementations are to be investigated). In such cases, one can

set B = Pfin(L), i.e., all (and only) the finite sets of sentences are bases. Again, ⋓ can be

instantiated by set union ∪ (as a union of two finite sets will still be finite).

Belief Sets. This setting is closer to the original framework, where the “knowledge states”

to be modified were assumed to be deductively closed sets of sentences. We can capture

such situations by accordingly letting B= {B ⊆ L | ∀ϕ ∈ L : B |= ϕ⇒ ϕ ∈ B}. In this case,

the abstract union operator needs to be defined via B1 ⋓B2 = {ϕ ∈ L | B1 ∪B2 |= ϕ}.

Single Sentences. In this popular setting, one prefers to operate on single sentences

only (rather than on proper collections of those). For this to work properly, an additional

assumption needs to be made about the underlying logic L = (L,Ω, |=): it must be possible

to express conjunction on a sentence level, either through the explicit presence of the

Boolean operator ∧ or by some other means. Formally, we say that L= (L,Ω, |=) supports

conjunction, if for any two sentences ϕ,ψ ∈ L there exists some sentence ϕ?ψ ∈ L satisfying

⟦ϕ?ψ⟧ = ⟦ϕ⟧∩⟦ψ⟧ (if∧ is available within the logic, we would simply haveϕ?ψ = ϕ∧ψ).

For such a logic, we can “implement” the single-sentence setting by letting B = {{ϕ} | ϕ ∈ L}
and defining {ϕ}⋓ {ψ}= {ϕ?ψ}.

For any of the four different notions of bases, one can additionally choose to disallow or

allow the empty set as a base, while maintaining the required closure under abstract union.

In the following, we will always operate on the abstract level of “base logics”; our notions,

results and proofs will only make use of the few general properties specified for these. This

guarantees that our results are generically applicable to any of the four described (and any

other) instantiations, and hence, are independent of the question what the right notion of

bases ought to be. The cognitive overload caused by this abstraction should be minimal;

e.g., readers only interested in the case of arbitrary sets can safely assume B = P(L) and

mentally replace any ⋓ by ∪.

2.4 Base Change Operators

In this thesis we use base change operators to model multiple revision, which is the process

of incorporating multiple new beliefs into the present beliefs held by an agent in a consistent

way (whenever that is possible). We define change operators over a base logic as follows.
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Definition 2.9. Let B = (L,Ω, |=,B,⋓) be a base logic. A function ◦ : B×B→B is called a

multiple base change operator over B.

We will use multiple base change operators in the “standard” way of the belief change

community: the first parameter represents the actual beliefs of an agent, the second parameter

contains the new beliefs. The operator then yields the agent’s revised beliefs. The term

“multiple” refers the fact that the second input to ◦ is not just a single sentence, but a belief

base that may consist of several sentences [FH18]. For convenience, we will henceforth drop

the term “multiple” and simply speak of base change operators instead.

So far, the pure notion of base change operator is unconstrained and can be instantiated

by an arbitrary binary function over bases. Obviously, this does not reflect the requirements

or expectations one might have when speaking of a revision operator. Hence, in line with

the traditional approach, we will consider additional constraints (so-called “postulates”) for

base change operators, in order to capture the gist of revisions.

2.5 Postulates for Revision

We consider multiple revision focusing on package revision, which is that all given sentences

have to be incorporated, i.e. given a base K and new information Γ (also a base here), we

demand success of revision (K ◦ Γ |= Γ )2. Besides the success condition, the belief change

community has brought up and discussed several further requirements for belief change

operators to make them rational, for summaries see, e.g., [Han99; FH18]. This has led to

the now famous AGM approach of revision [AGM85], originally proposed through a set of

rationality postulates, which correspond to the postulates (KM1)–(KM6) by K&M as follows,

where ϕ,ϕ1,ϕ2,α, and β are propositional sentences, and ◦ is a base revision operator:

(KM1) ϕ ◦α |= α.

(KM2) If ϕ ∧α is consistent, then ϕ ◦α≡ ϕ ∧α.

(KM3) If α is consistent, then ϕ ◦α is consistent.

(KM4) If ϕ1 ≡ ϕ2 and α≡ β , then ϕ1 ◦α≡ ϕ2 ◦ β .

(KM5) (ϕ ◦α)∧ β |= ϕ ◦ (α∧ β).

(KM6) If (ϕ ◦α)∧ β is consistent, then ϕ ◦ (α∧ β) |= (ϕ ◦α)∧ β .

In our work, we will make use of the K&M version of the AGM postulates adjusted to our

generic notion of a base logic B= (L,Ω, |=,B,⋓):

(G1) K ◦ Γ |= Γ .
2Another type of multiple revision is choice revision [Zha19], in which the agent could accept some sentences of
Γ , and could reject some others.
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(G2) If ⟦K⋓ Γ⟧ ̸= ; then K ◦ Γ ≡ K⋓ Γ .

(G3) If ⟦Γ⟧ ̸= ; then ⟦K ◦ Γ⟧ ̸= ;.

(G4) If K1 ≡ K2 and Γ1 ≡ Γ2 then K1 ◦ Γ1 ≡ K2 ◦ Γ2.

(G5) (K ◦ Γ1)⋓ Γ2 |= K ◦ (Γ1 ⋓ Γ2).

(G6) If ⟦(K ◦ Γ1)⋓ Γ2⟧ ̸= ; then K ◦ (Γ1 ⋓ Γ2) |= (K ◦ Γ1)⋓ Γ2.

Together, the postulates implement the paradigm of minimal change, stating that a rational

agent should change her beliefs as little as possible in the process of belief revision. We

consider the postulates in more detail: (G1) guarantees that the newly added belief must

be a logical consequence of the result of the revision. (G2) says that if the expansion of

ϕ by α is consistent, then the result of the revision is equivalent to the expansion of ϕ

by α. (G3) guarantees the consistency of the revision result if the newly added belief is

consistent. (G4) is the principle of the irrelevance of the syntax, stating that the revision

operation is independent of the syntactic form of the bases. (G5) and (G6) ensure more

careful handling of (abstract) unions of belief bases. In particular, together, they enforce that

K ◦ (Γ1 ⋓ Γ2)≡ (K ◦ Γ1)⋓ Γ2, unless Γ2 contradicts K ◦ Γ1.

We can see that, item by item, (G1)–(G6) tightly correspond to (KM1)–(KM6) presented

in the introduction. Note also that further formulations similar to (G1)–(G6) are given

in multiple particular contexts, e.g. in the context of belief base revision specifically for

Description Logics [QLB06b], for parallel revision [DJ12] and investigations on multiple

revision [Zha96; Pep04; KH17]. An advantage of the specific form of the postulates (G1)–

(G6) chosen for our presentation is that it does not require L to support conjunction (while,

of course, conjunction on the sentence level is still implicitly supported via (abstract) union

of bases).

2.6 Description Logics

We very briefly review the description logic SROIQ (which is the logical counterpart of the

standard Web Ontology Language) with its standard syntax and semantics [HKS06; Rud11].

Let NI , NC , and NR be finite and pairwise disjoint sets of individual names, concept names,

and role names, respectively. Using these entities, concept expressions and axioms are built

according to the standard SROIQ constructors. A SROIQ axiom is either a general concept

inclusion (GCI), a concept assertion, a role assertion, an individual (in)equality assertion, a

role inclusion, a role composition, a role disjointness, a role transitivity, a role (a)symmetry,

or a role (ir)reflexivity. Their forms are given in Table 2.11. A SROIQ knowledge base is a

(finite) set of SROIQ axioms, which are in the form of ABox, TBox, or RBox axioms.

Given a SROIQ knowledge base K, we essentially determine the size of K by counting

the number of symbols it takes to write the knowledge base. We start by inductively defining
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the size of SROIQ concepts3 and axioms as shown in Table 2.12 and Table 2.13. Then, the

size of K is the sum of the size of all axioms in K, i.e. size(K) =
∑

α∈K size(α).

Name Syntax Semantics

individual name a aI

atomic role r rI

inverse role r− {(x , y) ∈∆I×∆I | (y, x) ∈ rI}
universal role u ∆I ×∆I

atomic concept A AI

top concept ⊤ ∆I

bottom concept ⊥ ;
conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

negation ¬C ∆I\CI

existential restriction ∃r.C {x | ∃y.(x , y) ∈ rI ∧ y ∈ CI}
universal restriction ∀r.C {x | ∀y.(x , y) ∈ rI → y ∈ CI}
at-least restriction ≥n R.C {x | #{y ∈ CI | (x , y) ∈ rI} ≥ n}
at-most restricion ≤n R.C {x | #{y ∈ CI | (x , y) ∈ rI} ≤ n}
local reflexivity ∃r.Sel f {x | (x , x) ∈ rI}
nominal {a} {aI}

Table 2.10: Syntax and semantics of concept and role constructors in SROIQ, where
a ∈ NI , r ∈ NR, and C , D ∈ NC .

Name Axiom α I |= α if

general concept inclusion C ⊑ D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

role inclusion r ⊑ s rI ⊆ sI

role composition r1 ◦ . . . ◦ rn ⊑ r rI
1 ◦ . . . ◦ rI

n ⊑ rI

role disjointness Dis(s, r) sI ∩ rI = ;
individual equality assertion a

.
= b aI = bI

individual inequality assertion a ̸ .= b aI ̸= bI

Table 2.11: Syntax and semantics of SROIQ axioms.

The semantic of SROIQ is defined through an interpretation I = (∆I , ·I), which consists

of a non-empty set ∆I called domain of I and a function ·I that maps each individual a ∈ NI

to an element aI ∈∆I , each concept C ∈ NC to a subset of ∆I , and each role name r ∈ NR

to a subset of ∆I ×∆I . The function ·I is extended to arbitrary SROIQ concept and role
3We assume that the number n in the qualified number restriction concept is written in binary encoding.
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Table 2.12: Size of concepts in a knowledge base

size(A) = 1 for any A∈ NC (including ⊤,⊥, and Self)
size({a1, . . . , an}) = n for any nominal concept, where a1, . . . , an ∈ NI

size(C ⊓ D) = size(C ⊔ D) = 1+ size(C) + size(D) for any C , D ∈ NC

size(¬C) = 1+ size(C) for any C ∈ NC

size(∃r.C) = size(∀r.C) = 2+ size(C) for any C ∈ NC and any r ∈ NR

size(≤n r.C) = size(≥n r.C) = 2+ log(n) + size(C) for any C ∈ NC and any r ∈ NR

size(r) = size(r−) = 1 for any r ∈ NR

Table 2.13: Size of axioms in a knowledge base

size(C ⊑ D) = 1+ size(C) + size(D) for any axiom C ⊑ D in TBox
size(r ⊑ s) = 3 for any r ⊑ s in RBox
size(C(a)) = 1+ size(C) for any concept assertion in ABox
size(r(a, b)) = 3 for any role assertion in ABox
size(r1 ◦ . . . ◦ rn ⊑ rn+1) = n+ 2 for any role chain axiom in RBox
size(Dis(r, s)) = 3 for any role disjointness axiom in RBox

expressions as defined in Table 2.10 and used to define satisfaction of axioms as shown in

Table 2.11. We say that I satisfies a knowledge base K (or I is a model of K) if it satisfies all

axioms of K, denoted as I |= K. A knowledge base K entails an axiom α if all models of K
are models of α. We use L to denote the DL language, i.e. the set of all possible DL axioms

and Ω to denote the set of all interpretations.

2.7 Fixed-Domain Semantics

Let ∆ ⊆ NI be a non empty finite set called the fixed domain. An interpretation I = (∆I , ·I)

is said to be ∆-fixed, if

• ∆I =∆, and

• aI = a for all a ∈∆.

For a DL knowledge base K, an interpretation I is a∆-model of K (I |=∆ K), if I is a∆-fixed

interpretation and I |= K. A knowledge base K is called ∆-consistent (or ∆-satisfiable) if it

has at least one ∆-model. A knowledge base K ∆-entails an axiom α (K |=∆ α) if I |= α for

every I |=∆ K. Two KBs K and K′ are ∆-semantically equivalent (written as K ≡∆ K′) iff

K |=∆ K′ and K′ |=∆ K. Instead of ∆-consistent, ∆-entail, or ∆-semantically equivalent, we

will just say consistent, entail, or equivalent respectively, if ∆ is clear from the context. The

set of all ∆-models of K is denoted by ⟦K⟧∆. We denote L∆ as a set of all possible axioms in

DL under fixed-domain semantics. Note that we only consider finite knowledge bases in the

process of revision.
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Fixed domain semantics can be seen as a further restriction of finite model reasoning

[GRS16]. This approach restricts reasoning to a domain known a priori. The restriction gives

us not only a computational complexity advantage, but arguably more intuitive models of a

knowledge base in some cases (for more about the reasoning complexity, see [RST17; RS17]).

Previous studies have provided a practical reasoner [RST17], SPARQL querying [RSY19],

and justification framework [RST18] under this approach. The models that are generated

from a knowledge base under fixed-domain semantics, however, can be exponentially many.

In particular, given a KB K under fixed domain ∆, one can possibly have a number of

2|∆|×|NC (K)| × 2|∆|
2×|NR(K)| models, where NC(K) and NR(K) are the set of concept names and

role names occurring in K, respectively.

We are working with SROIQ knowledge bases under some assumptions on the axiom side.

The original definition of SROIQ RBox contains axioms expressing role hierarchy (r ⊑ s),

role chains (r1 ◦ . . . ◦ rn ⊑ r), role disjointness (Dis(r, s)), transitivity (Tra(r)), symmetry

(S ym(r)), asymmetry (As y(r)), reflexivity (Ref(r)), and irreflexivity (I r r(r)). In this article,

we will only consider the first three axiom expressions since the remaining forms can be

syntactically rewritten into other known axioms: S ym(r) can be translated as r− ⊑ r, As y(r)

can be expressed as Dis(r, r−), and Tra(r) can be rewritten into role chain r ◦ r ⊑ r. For

(ir)reflexivity axioms, Ref(r) and I r r(r) can be translated as ⊤⊑ ∃r.Self and ⊤⊑ ¬∃r.Self ,

respectively. Moreover, as opposed to the standard SROIQ definition, we do not impose

the global restriction called regularity since any KB with unrestricted role hierarchies under

the fixed-domain semantics is always guaranteed to be decidable [GRS16].

Considering practical application for revision in Description Logics under fixed-domain

semantics, we are going to encode the knowledge bases into ASP programs (cf. Section 4.2

and Section 4.4). To this end, we assume that the knowledge bases are in simplified forms.

In general, the simplification is based on previous work by Gaggl and colleagues [GRS16].

For a fixed domain ∆ and a KB K = (T , A, R), the simplification of K comprises several

preprocessing steps: (1) ABox simplification, (2) nominal concepts replacement, and (3) KB

normalization. First, we review the notion of a simplified ABox A.

Definition 2.14 (Simplified ABox). Let A be an ABox in K. A is simplified if:

• it only refers to domain individuals from ∆,

• it does not mention elements from NI(K) \∆ (except in nominal concepts), and

• it is free of (in)equality statements.

To obtain the above requirements, one can apply the following model-preserving transformations.

For each α ∈ A, we consider several possible forms of α, where a, b ∈ NI(K) \∆ and c, d ∈∆:
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C(a)⇝ {a} ⊑ C a
.
= b⇝ {a} ⊑ {b}

r(a, b)⇝ {a} ⊑ ∃r.{b} a ̸ .= b⇝ {a} ⊑ ¬{b}
r(c, b)⇝ ∃r.{b}(c) c

.
= b⇝ {b}(c)

r(a, d)⇝ ∃r−.{a}(d) c ̸ .= b⇝ ¬{b}(c)

Second, we assume that K does not contain any nominal concepts. One can apply the

following replacement to obtain the desired requirement:

• Replace every occcurence of nominal concept {a} in K with a fresh auxiliary concept

O{a}.

• Add two axioms ⊤⊑≤ 1u.O{a} and ⊤⊑≥ 1u.O{a} to the TBox. These axioms enforce

the concept O{a} to be interpreted as a singleton set.

• If a ∈∆, add O{a}(a) to the ABox.

Finally, the third preprocessing step is KB normalization.

Definition 2.15 (Normalized Knowledge Base). Let K = (T , A, R) be a SROIQ know-

ledge base under fixed-domain semantics.

• A GCI σ is normalized if it is of the form ⊤ ⊑
⊔n

i=1 Ci, where Ci is of the form B, {a},
∀r.B, ∃r.Sel f , ¬∃r.Sel f , ≥ nr.B, or ≤ nr.B, for B a literal concept, r a role, and n a

positive integer.

• A TBox T is normalized if each GCI σ ∈ T is normalized.

• An ABox A is normalized if:

– each concept assertion in A contains only a literal concept,

– each role assertion in A contains only an atomic role, and

– A contains at least one assertion.

• An RBox R is normalized if each role inclusion axiom is of the form r ⊑ s or r1 ◦ r2 ⊑ r3.

We say K = (T , A, R) is normalized if T , A, and R are normalized. Given an input K, we can

obtain the normalization of K by using the transformation Ω(K) as described in Table 2.16.

2.8 Answer Set Programming

Answer Set Programming (ASP) is a language that can be used for knowledge representation

and reasoning based on the answer set or stable model semantics for logic programs [Gel08].

It is a form of declarative programming oriented towards difficult, primarily NP-hard, search

problems [Lif08; Lif19]. ASP is mainly used to solve combinatoric problems by modelling
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Ω(K) =
⋃

α∈R∪A
Ω(α)∪

⋃

C1⊑C2∈T
Ω(⊤⊑ nnf(¬C1 ⊔ C2))

Ω(⊤⊑ C⊔ C ′) = Ω(⊤⊑ C⊔αC ′)∪
⋃

1≤i≤n
Ω(⊤⊑ ¬̇αC ′ ⊔ Ci)

for C ′ of the form C ′ = C1 ⊓ . . .⊓ Cn and n≥ 2
Ω(⊤⊑ C⊔ ∃r.D) = Ω(⊤⊑ C ⊔ ≥ 1r.D)
Ω(⊤⊑ C⊔∀r.D) = Ω(⊤⊑ C⊔∀r.αD)∪Ω(⊤⊑ ¬̇αD ⊔ D)

Ω(⊤⊑ C ⊔ ≥ n r.D) = Ω(⊤⊑ C ⊔ ≥ n r.αD)∪Ω(⊤⊑ ¬̇αD ⊔ D)
Ω(⊤⊑ C ⊔ ≤ n r.D) = Ω(⊤⊑ C ⊔ ≤ n r.¬̇α¬̇D)∪Ω(⊤⊑ ¬̇α¬̇D ⊔ ¬̇D)

Ω(D(s)) = {αD(s)} ∪Ω(⊤⊑ ¬̇αD ⊔ nnf(D))
Ω(r−(s, t)) = r(t, s)

Ω(r1 ◦ . . . ◦ rn ⊑ r) = {r1 ◦ r2 ⊑ r(r1◦r2)} ∪Ω(r(r1◦r2) ◦ r3 ◦ . . . ◦ rn ⊑ r) for any RIA with n> 2
Ω(β) = {β} for any other axiom β

αC =

�

QC , i f pos(C) = true
¬QC , i f pos(C) = false ,where QC is a fresh concept name unique for C .

pos(⊤) = false pos(⊥) = false
pos(A) = true pos(¬A) = false

pos(∃r.Sel f ) = true pos(¬∃r.Sel f ) = false
pos(C1 ⊓ C2) = pos(C1)∨ pos(C2) pos(C1 ⊔ C2) = pos(C1)∨ pos(C2)

pos(∀r.C1) = pos(C1) pos(≤ n r.C1) =
�

pos(¬̇(C1)) i f n= 0
true otherwisepos(≥ n r.C1) = true

Note: A is an atomic concept, C(i) are arbitrary concept expressions, C is a possibly empty disjunction
of concept expressions, D is not a literal concept. The function ¬̇ is defined as ¬̇(¬A) = A and ¬̇(A) = ¬A
for some atomic concept A.

Table 2.16: Ω-normalization of knowledge base axioms.

them in logic programs and then by using an engine called answer set solver to compute the

stable models representing the solutions for the problems. The answer set solver can load

the program and return the answer (the “stable model”) consisting of all facts that can be

derived using the rules of the program.

ASP is purely declarative and the program always terminates, where the order of the

program rules does not matter. Although ASP is quite close to SAT where the answer sets

are particular classical models of the program, ASP provides more expressive and high-level

features such as transitive closures, negation as failure, and variables. In the following, we

present some basic notions in ASP based on previous work [EIK09; GKK+12].

Syntax Let U be a fixed countable set of (domain) elements or constants and < be a total

order over the domain elements. A (predicate) atom is an expression p(t1, . . . , tn), where p

is a predicate of arity n≥ 0 and each t i is either a variable or an element from U . An atom

is ground if it is free of variables. We denote BU as the set of all ground atoms over U . A

(normal) rule ρ is of the form

a← b1, . . . , bk, not bk+1, . . . , not bm.
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with m≥ k ≥ 0, where a, b1, . . . , bm are atoms and “not” denotes default negation. The head

of ρ is the singleton set H(ρ) = {a} and the body of ρ is B(ρ) = {b1, . . . , bk, not bk+1, . . . ,

not bm}. Furthermore, we denote B+(ρ) = {b1, . . . , bk} and B−(ρ) = {not bk+1, . . . , not bm}.
A rule ρ is safe if each variable in ρ occurs in B+(ρ). A rule ρ is ground if no variable occurs

in ρ. A fact is a ground rule with empty body. An (input) database is a set of facts. A (normal)

program is a finite set of normal rules. For a program Π and an input database D, we often

write Π(D) instead of Π∪ D. For any program Π, let UΠ be the set of all constants appearing

in Π. Gr(Π) is the set of all rules ρσ obtained by applying, to each rule ρ ∈ Π, all possible

substitutions σ from the variables in ρ to elements of UΠ.

Semantics An interpretation I ⊆ BU satisfies a ground rule ρ iff H(ρ) ∩ I ̸= ; whenever

B+(ρ) ⊆ I , B−(ρ) ∩ I = ;. I satisfies a ground program Π, if each ρ ∈ Π is satisfied

by I . A non-ground rule ρ (respectively, a program Π) is satisfied by an interpretation

I iff I satisfies all groundings of ρ (respectively, Gr(Π)). I ⊆ BU is an answer set (also

called stable model) of Π iff it is a subset-minimal set satisfying the Gelfond-Lifschitz reduct

ΠI = {H(ρ)← B+(ρ) | I ∩ B−(ρ) = ;,ρ ∈ Gr(Π)}. For a program Π, we denote the set of

its answer sets by AS(Π).
We make use of further syntactic extensions, namely integrity constraints, count expres-

sions, and sum expressions, which all of them can be recast to ordinary normal rules as

described in [GKK+12]. An integrity constraint is a rule ρ where H(ρ) = 0, which intu-

itively represents an undesirable situation, i.e. to avoid B(ρ) evaluates positively. Count

expressions are of the form #count{l : l1, . . . , ln} ▷◁ u, where l is an atom and l j = p j or

l j = not p j, for p j an atom, 1 ≤ j ≤ i, u a non-negative integer, and ▷◁∈ {≤,<, =,>,≥}.
The expression {l : l1, . . . , ln} denotes the set of all ground instantiations of l, governed

through {l1, . . . , ln}. The sum expression are of the form #sum{w1 : l1, . . . , wn : ln} ▷◁ u,

where {w1 : l1, . . . , wn : ln} denotes the set of all ground instantiations with their weights

(or cost) and w1, . . . , wn are positive integers. We restrict the occurrence of count expres-

sions and sum expressions in a rule ρ to B+(ρ) only. Intuitively, an interpretation satisfies

count expression #count{l : l1, . . . , ln} ▷◁ u if N ▷◁ u holds, where N is the cardinality of the

set of ground instantiations of l, i.e. N = |{l | l1, . . . , ln}|, for ▷◁∈ {≤,<,=,>,≥} and u a

non-negative integer. Accordingly, an interpretation intuitively satisfies the sum expression

#sum{w1 : l1, . . . , wn : ln} ▷◁ u if M ▷◁ u holds, where M =
∑

1≤wi≤n
wi .

ASP Solver Clingo In this work, we use an ASP solver Clingo from the Potassco4 suite to

generate the answer sets for ASP programs. The description of the tool and its features are

based on Potassco Guide version 2.2.05. Given a program in a text file “file.pl”, the solver
4Potsdam Answer Set Solving Collection (https://potassco.org/)
5https://github.com/potassco/guide/releases/download/v2.2.0/guide.pdf
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can be easily run by calling the program “clingo file.pl” from the command line. We

will exploit certain Clingo features to solve revision problems considered in this thesis, in

particular:

• Minimize statement. The minimize statement is a way to express an optimization

problem. A minimize statement of the form

#minimize{w1 : l1, . . . , wn : ln}.

represents the following n special integrity constraints called weak constraints:

← l1.[w1]. . . . ← ln.[wn].

The semantics of a program with weak constraints is intuitive: an answer set is

minimal if the obtained weight w (or cost) is minimal among all answer sets of the

given program.

• Interval. Clingo supports integer interval i.. j, which represents each integer k such

that i ≤ k ≤ j is expanded during grounding. In the head of a rule, an interval is

expanded conjunctively, while in the body of a rule, it is expanded disjunctively. For

example, we could simply write “num(1..5).” to represent five facts.

• Heuristic. Clingo provides means for incorporating domain-specific heuristics into

ASP solving. This allows for modifying the heuristic of the solver from within a logic

program or from the command line. We will use one heuristic specifically to compute

subset minimal answer sets. To achieve this task, we append the program with heuristic

directive

#heurist ic a(X ). [1, f alse],

which guarantees that the first answer set produced is subset minimal with respect

to the atoms of predicate a/1 (irrespective of the value of variable X ). The heuristic

can be activated using option ––heuristic=Domain from the command line when

running the Clingo application.
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Chapter 3

Representation Theorem in Tarskian Logics

In this chapter, we consider (multiple) base revision in arbitrary Tarskian logics, i.e., logics

exhibiting a classically defined model theory. We thereby refine and generalise the popular

approach by Katsuno and Mendelzon [KM91] which was tailored to belief base revision in

propositional logic with a finite signature. K&M start out from belief bases, assigning to each

a total preorder on the interpretations, which expresses – intuitively speaking – a degree

of “modelishness”. The models of the result of any AGM revision then coincide with the

preferred (i.e., preorder-minimal) models of the injected information.

Our approach generalises this idea of preferences over interpretations to the general setting,

which necessitates adjusting the nature of the “modelishness-indicating” assignments: We

have to explicitly require that minimal models always exist (min-completeness) and that

they can be described in the logic (min-expressibility). Moreover, we show that demanding

preference relations to be preorders is infeasible in our setting; we have to waive transitivity

and retain only a weaker property (min-retractivity).

3.1 Base Revision in Propositional Logic

A well-known and by now popular characterization of base revision has been described by

Katsuno and Mendelzon [KM91] for the special case of propositional logic. To be more

specific and apply our terminology, K&M’s approach applies to the base logic

PLn = (LPLn
,ΩPLn

, |=PLn
, Pfin(LPLn

),∪)

for arbitrary, but fixed n (cf. Example 2.6). The assumption of the finiteness on the underlying

signature of atomic propositions is not overtly explicit in K&M’s paper, but it becomes

apparent upon investigating their arguments and proofs – we will see shortly that their

characterization fails as soon as this assumption is dropped. K&M’s approach also hinges on

other particularities of this setting: As discussed earlier, any propositional belief base K can

be equivalently written as a single propositional sentence. Consequently, in their approach,

belief bases are actually represented by single sentences, without loss of expressivity.

25
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One key contribution of K&M is to provide an alternative characterization of the pro-

positional base revision operators satisfying (KM1)–(KM6) by model-theoretic means, i.e.

through comparisons between propositional interpretations. In the following, we present

their results in a formulation that facilitates later generalization. One central notion for the

characterization is the notion of faithful assignment.

Definition 3.1 (assignment, faithful). Let B = (L,Ω, |=,B,⋓) be a base logic. An assign-

ment for B is a function ⪯(.): B→ P(Ω×Ω) that assigns to each belief base K ∈ B a total

binary relation ⪯K over Ω. An assignment ⪯(.) for B is called faithful if it satisfies the following

conditions for all I, I′ ∈ Ω and all K, K′ ∈B:

(F1) If I, I′ |= K, then I ≺K I′ does not hold.

(F2) If I |= K and I′ ̸|= K, then I ≺K I′.

(F3) If K ≡ K′, then ⪯K =⪯K′ .

An assignment ⪯(.) is called a preorder assignment if ⪯K is a preorder for every K ∈B.

Intuitively, faithful assignments provide information about which of the two interpretations

is “closer to K-modelhood”. Consequently, the actual K-models are ⪯K-minimal. The next

definition captures the idea of an assignment adequately representing the behaviour of a

revision operator.

Definition 3.2 (compatible). Let B = (L,Ω, |=,B,⋓) a base logic. A base change operator ◦
for B is called compatible with some assignment ⪯(.) for B if it satisfies

⟦K ◦ Γ⟧=min(⟦Γ⟧,⪯K)

for all bases K and Γ from B.

With these notions in place, K&M’s representation result can be smoothly expressed as

follows:

Theorem 3.3 (Katsuno and Mendelzon 1991). A base change operator ◦ for PLn satisfies

(G1)–(G6) if and only if it is compatible with some faithful preorder assignment for PLn.

In the next section, we discuss and provide a generalization of the overall approach to the

setting of arbitrary base logics.

3.2 Approach for Arbitrary Base Logics

In this section, we prepare our main result by revisiting K&M’s concepts for propositional

logic and investigating their suitability for our general setting of base logics. The result
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by Katsuno and Mendelzon established an elegant combination of the notions of preorder

assignments, faithfulness, and compatibility in order to semantically characterize AGM base

change operators. However, as we mentioned before and will make more precise in the

following, K&M’s characterization hinges on features of signature-finite propositional logic

that do not generally hold for Tarskian logics. So far, attempts to find similar formulations

for less restrictive logics have made good progress for understanding the nature of AGM

revision (cf. Section 3.9). Here we go further, by extending the K&M approach by novel

notions to the very general setting of base logics.

3.2.1 First Problem: Non-Existence of Minima

The first issue with K&M’s original characterization when generalizing to arbitrary base logics

is the possible absence of ⪯K-minimal elements in ⟦Γ⟧.

Observation 3.4. For arbitrary base logics, the minimum from Definition 3.2, required in

Theorem 3.3, might be empty.

One way this might happen is due to infinite descending ⪯K-chains of interpretations. To

illustrate this problem (and to show that it arises even for propositional logic, if the signature

is infinite but bases are finite), consider the base logic

PL∞ = (LPL∞ ,ΩPL∞ , |=PL∞ , Pfin(LPL∞),∪),

i.e., propositional logic with finite bases, but countably infinitely many distinct atomic

propositions Σ = {p1, p2, . . .} (cf. Example 2.7). We will exhibit a base change operator that

is compatible with a faithful preorder assignment, yet does violate one of the postulates, due

to the problem mentioned above.

Example 3.5. We define ◦∪ by simply letting K◦∪ Γ = K∪Γ . Obviously ◦∪ violates (G3) as one

can see by picking, say K = {p1} and Γ = {¬p1}. Nevertheless, for this operator, a compatible

assignment exists, as we will show next. Assume a base K and two propositional interpretations

I1, I2 : Σ→ {true, false}. Let Itrue
k denote {pi ∈ Σ | Ik(pi) = true} for k ∈ {1,2}, i.e., the set

of atomic symbols that Ik maps to true. Then we let I1 ⪯∪K I2 if at least one of the following is

the case:

(1) I1 |= K

(2) I2 ̸|= K and Itrue
2 is infinite

(3) I1, I2 ̸|= K, both Itrue
1 and Itrue

2 are finite, and |Itrue
1 | ≥ |Itrue

2 |

The following proposition shows that ⪯∪K is a faithful preorder assignment that is compatible

with ◦∪. This shows that Theorem 3.3 by K&M does not straightforwardly generalize to PL∞.
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Proposition 3.6. The relation ⪯∪K is a faithful preorder assignment and is compatible with the

base change operator ◦∪ for PL∞, yet ◦∪ does not satisfy (G3).

Proof. We show that ⪯∪K is a preorder assignment.

(Totality) For totality, assume the contrary, i.e. there are two interpretations I1, I2 with

I1 ̸⪯∪K I2 and I2 ̸⪯∪K I1. From the definition of ⪯∪K, we have I1, I2 ̸|= K where both I1 and

I2 are finite with |Itrue
1 | ̸≥ |Itrue

2 | and |Itrue
2 | ̸≥ |Itrue

1 |. Since ≥ is total over integers, this is a

contradiction. Reflexivity follows from totality.

(Transitivity) For transitivity, suppose I1 ⪯∪K I2 and I2 ⪯∪K I3. We make a case distinction by

I1 ⪯∪K I2 and the definition of ⪯∪K:

(1) The case of I1 |= K. Then I1 ⪯∪K I3 follows immediately.

(2) The case of I2 ̸|= K and Itrue
2 is infinite. As I2 ⪯∪K I3, we consider three subcases:

(2.1) I2 |= K. This contradicts the prior assumption, and hence this case is not

possible.

(2.2) I3 ̸|= K with infinite Itrue
3 . Then I1 ⪯∪K I3 follows.

(2.3) Itrue
2 and Itrue

3 are finite. This is also impossible due to immediate contra-

diction.

(3) The case of I1, I2 ̸|= K, both Itrue
1 and Itrue

2 are finite and |Itrue
1 | ≥ |Itrue

2 |. From I2 ⪯∪K I3

we consider three subcases:

(3.1) I2 |= K. This is not possible, immediate contradiction.

(3.2) I3 ̸|= K with infinite Itrue
3 . This implies I1 ⪯∪K I3.

(3.3) I2, I3 ̸|= K, both Itrue
2 and Itrue

3 are finite with |Itrue
2 | ≥ |Itrue

3 |. Since

|Itrue
1 | ≥ |Itrue

2 | and |Itrue
2 | ≥ |Itrue

3 |, from transitivity of ≥ over integers, we have

|Itrue
1 | ≥ |Itrue

3 | and finally I1 ⪯∪K I3.

We show that ⪯∪K is faithful and that ⪯∪
(.)

is compatible with ◦∪.

(Faithfulness) The first condition of faithfulness, the Condition (F1), follows from the as-

sumption I1, I2 |= K and case (1) of the definition of ⪯∪K, given in Example 3.5.

For (F2), let I1 |= K and I2 ̸|= K. From the case (1) of the definition, I1 ⪯∪K I2 holds. Now

assume, by way of contradiction, that I2 ⪯∪K I1. Following the definition of ⪯∪K, we consider

three cases. (Case 1) I2 |= K contradicts our assumption. (Case 2) and (Case 3) are not

applicable because they require I1 ̸|= K. Hence, I2 ̸⪯∪K I1 and therefore I1 ≺∪K I2 holds.

For (F3), assume K ≡ K′ (i.e. ⟦K⟧ = ⟦K′⟧) and let I1 ⪯∪K I2. We consider three cases.

(Case 1) I1 |= K. Then it also holds I1 |= K′, and hence I1 ⪯K′ I2. (Case 2) I2 ̸|= K and

Itrue
2 is infinite. Then I2 ̸|= K′ and hence I1 ⪯K′ I2. (Case 3) where I1, I2 ̸|= K we also have

I1, I2 ̸|= K′ and consequently I1 ⪯K′ I2. Therefore, we have ⪯∪K=⪯K′ (i.e. I1 ⪯∪K I2 if and

only if I1 ⪯K′ I2).
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(Compatibility with ◦) For the compatibility with ◦∪, we show that ⟦K ◦∪ Γ⟧ =min(⟦Γ⟧,⪯∪K).
For any inconsistent Γ , we have ⟦K ◦∪ Γ⟧ = ; =min(⟦Γ⟧,⪯∪K). If K∪ Γ is consistent, then we

have ⟦K ◦ Γ⟧ = ⟦K∪ Γ⟧. Because ⪯∪K is faithful, we directly obtain ⟦K ◦ Γ⟧ =min(⟦Γ⟧,⪯∪K).
Thus, for the remaining steps of the proof, we assume that K ∪ Γ is inconsistent and Γ is

consistent.

We show in the following that min(⟦Γ⟧,⪯∪K) = ; holds by contradiction, i.e., there exists

some I1 ∈ min(⟦Γ⟧,⪯∪K). This means, that I1 ∈ ⟦Γ⟧ and there is no other I2 ∈ ⟦Γ⟧ such

that I2 ≺∪K I1. Note that from the definition of ◦∪ and our case assumption, we have

⟦K ◦∪ Γ⟧ = ⟦K ∪ Γ⟧ = ;, and hence I1, I2 ̸|= K. Let ΣΓ ⊆ Σ be a set of atomic symbols

occurring in Γ . Clearly, because Γ is finite, we have that ΣΓ contains finitely many atoms.

We have two cases: Itrue
1 can be finite or infinite.

(Itrue
1 is finite) Then, there exists an atomic symbol q such that q ∈ Σ\ (Itrue

1 ∪ΣΓ ) (as both

Itrue
1 and ΣΓ are finite and Σ is infinite). Then we could define another interpretation

I2 such that I2(q) = true and I2(pi) = I1(pi) for all pi ∈ Σ \ {q}. Since q does not

occur in Γ , we have I2 ∈ ⟦Γ⟧ and |Itrue
2 | = |Itrue

1 |+1. Hence, I2 ≺∪K I1, a contradiction

to the minimality of I1.

(Itrue
1 is infinite) We define another interpretation I2 such that for all pi ∈ Σ we set

I2(pi) = true if pi ∈ (ΣΓ ∩ Itrue
1 ) and I2(pi) = false otherwise. As I1 and I2 coincide

on ΣΓ , we obtain I2 ∈ ⟦Γ⟧. Since Itrue
2 is finite while Itrue

1 is infinite, we have I2 ≺∪K I1,

which again is a contradiction to the minimality of I1. □

Fact 3.7. The base change operator ◦∪ for PL∞ violates (G3) despite being compatible with

the faithful preorder assignment ⪯∪(.).

To remedy the problem exposed above, one needs to impose the requirement that minima

exist whenever needed, as specified in the notion of min-completeness, defined next.

Definition 3.8 (min-complete). Let B = (L,Ω, |=,B,⋓) be a base logic. A binary relation ⪯
over Ω is called min-complete (for B) if min(⟦Γ⟧,⪯) ̸= ; holds for every Γ ∈B with ⟦Γ⟧ ̸= ;.

The following example demonstrates that for a binary relation it depends on the base logic

whether the relation is min-complete or not.

Example 3.9. Consider two base logics BZ≤ and BZ≥ with

BZ≤ = (L1, Z, |=, Pfin(L1) \ {;}, ∪), and

BZ≥ = (L2, Z, |=, Pfin(L2) \ {;}, ∪),
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where L1 = {[≤n] | n ∈ Z} and L2 = {[≥n] | n ∈ Z}. Furthermore let m |= [≤n] if m ≤ n

and m |= [≥n] if n≤ m, assuming the usual meaning of ≤ for integers. In words, these logics

talk about the domain of integers by means of comparisons with a fixed integer. We now define

the relation ⪯ over Ω by letting m1 ⪯ m2 if and only if m1 ≤ m2. It can be verified that the

relation is transitive and for any consistent base Γ ∈ Pfin(L1), respectively for Γ ∈ Pfin(L2), we

have infinitely many models ⟦Γ⟧.

Note that for each set of sentences of the form [≤n] ∈ L1, there are no minimal models

min(⟦Γ⟧,⪯), and thus, ⪯ is not min-complete for BZ≤. However, for BZ≥, the relation ⪯ is

min-complete.

In the special case of ⪯ being transitive and total, min-completeness trivially holds

whenever Ω is finite (as, e.g., in the case of propositional logic over n propositional atoms;

cf. Example 2.6). In the infinite case, however, it might need to be explicitly imposed, as

already noted in earlier works [DPW18] (cf. also the notion of limit assumption by Lewis

[Lew73]). Note that min-completeness does not entirely disallow infinite descending chains

(as well-foundedness would), it only ensures that minima exist inside all model sets of

consistent belief bases.

3.2.2 Second Problem: Transitivity of Preorder

When generalizing from the setting of propositional to arbitrary base logics, the requirement

that assignments must produce preorders (and hence transitive relations) turns out to be too

restrictive.

Observation 3.10. Transitivity of the relation produced by the assignment, as required in The-

orem 3.3, is too strict of a property for characterizing arbitrary Tarskian logics.

In fact, it has been observed before that the incompatibility between transitivity and K&M’s

approach already arises for propositional Horn logic [DP15]. The following example builds

on Example 2.4 and provides an operator and a belief base for which no compatible transitive

assignment exists.
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Example 3.11 (continuation of Example 2.4). Consider the base logicBEx = (LEx,ΩEx, |=Ex,

P(LEx),∪). Let KEx = {ψ3} and let ◦Ex be the base change operator defined as follows:

KEx ◦Ex Γ =















































KEx ∪ Γ if ⟦KEx ∪ Γ⟧ ̸= ;,

Γ ∪ {ψ4} if ⟦KEx ∪ Γ⟧= ; and ⟦{ψ4} ∪ Γ⟧ ̸= ;,

Γ ∪ {ψ0} if ⟦KEx ∪ Γ⟧= ; and ⟦{ψ0} ∪ Γ⟧ ̸= ; and ⟦{ψ2} ∪ Γ⟧=;,

Γ ∪ {ψ1} if ⟦KEx ∪ Γ⟧= ; and ⟦{ψ1} ∪ Γ⟧ ̸= ; and ⟦{ψ0} ∪ Γ⟧=;,

Γ ∪ {ψ2} if ⟦KEx ∪ Γ⟧= ; and ⟦{ψ2} ∪ Γ⟧ ̸= ; and ⟦{ψ1} ∪ Γ⟧=;,

Γ if none of the above applies,

Moreover, for all K′ with K′ ≡ KEx we define K′ ◦Ex Γ = KEx ◦Ex Γ and for all K′ with K′ ̸≡ KEx

we define

K′ ◦Ex Γ =







K′ ∪ Γ if K′ ∪ Γ consistent

Γ otherwise.

For all K′ with K′ ̸≡ KEx, there is no violation of the postulates (G1)–(G6) since we obtain a

trivial revision, which satisfies (G1)–(G6) (cf. Example 3.33). For the case of K′ ≡ KEx, the

satisfaction of (G1)–(G6) can be shown case by case or using Theorem 3.31 in Section 3.4.

Now assume there were a preorder assignment ⪯(.) compatible with ◦Ex. This means that for

all bases K and Γ from P(LEx), the relation ⪯K is a preorder and ⟦K ◦Ex Γ⟧ =min(⟦Γ⟧,⪯KEx
).

Now consider Γ0 = {ϕ0}, Γ1 = {ϕ1}, and Γ2 = {ϕ2}. From the definition of ◦Ex and compatibility,

we obtain ⟦KEx ◦Ex Γ0⟧ = {I0} = min(⟦Γ0⟧,⪯KEx
), ⟦KEx ◦Ex Γ1⟧ = {I1} = min(⟦Γ1⟧,⪯KEx

),

and ⟦KEx ◦Ex Γ2⟧= {I2}=min(⟦Γ2⟧,⪯KEx
). Recall that ⟦Γ0⟧= {I0, I1}, ⟦Γ1⟧= {I1, I2}, and

⟦Γ2⟧ = {I2, I0}. Yet, this implies I0 ≺KEx
I1, I1 ≺KEx

I2, and I2 ≺KEx
I0, contradicting the

assumption that ⪯KEx
is transitive. Hence it cannot be a preorder.

As a consequence, we cannot help but waive transitivity (and hence the property of the

assignment providing a preorder) if we want our characterization result to hold for all

Tarskian logics. However, for our result, we need to retain a new, weaker property (which is

implied by transitivity) defined next.

Definition 3.12 (min-retractive). Let B= (L,Ω, |=,B,⋓) be a base logic. A binary relation

⪯ over Ω is called min-retractive (for B) if, for every Γ ∈ B and I′, I ∈ ⟦Γ⟧ with I′ ⪯ I,

I ∈min(⟦Γ⟧,⪯) implies I′ ∈min(⟦Γ⟧,⪯).

Note that min-retractivity prevents minimal elements from being ⪯-equivalent to elements

with ≺-lower neighbours, for instance elements lying on a “≺-cycle” or elements being part

of an infinite descending chain. Consider the following illustrative example.
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ω0 ω2

ω1

ω3

⪯mr
1

⪯mr
1

⪯mr
1 ⪯mr

1

⪯mr
1

(a) Not min-retractive relation ⪯mr
1 for Bmr.

ω0 ω2

ω1

ω3

⪯mr
2 ⪯mr

2 ⪯mr
2

⪯mr
2

(b) Min-retractive relation ⪯mr
2 for Bmr.

Figure 3.13: Illustration of the two relations ⪯mr
1 and ⪯mr

2 from Example 3.14.

Example 3.14. Let Bmr = (L,Ω, |=,B,⋓) be a base logic with just one base B = {Γmr} and

four interpretations Ω = {I0, I1, I2, I3} such that ⟦Γmr⟧ = Ω. Now consider the following total

relation ⪯mr
1 on Ω illustrated in Figure 3.13a and given by

ωi ⪯
◦Ex
KEx
ωi , 0≤ i ≤ 3,

ω3 ≺
◦Ex
KEx
ωi , 0≤ i ≤ 2,

ωi ≺
◦Ex
KEx
ω3, 0≤ i ≤ 2,

ω0 ≺
◦Ex
KEx
ω1,

ω1 ≺
◦Ex
KEx
ω2,

ω2 ≺
◦Ex
KEx
ω0.

We show that ⪯mr
1 is not min-retractive for Bmr. The ⪯mr

1 -minimal models of Γmr are given

by min(⟦Γmr⟧,⪯mr
1 ) = {ω3}. Observe that ω0 is a non-minimal model of Γmr while being

⪯mr
1 -equivalent to ω3, and in particular ω0 ⪯mr

1 ω3. This is a violation of min-retractivity.

Let ⪯mr
2 be the same relation as ⪯mr

1 , except that ⪯mr
2 strictly prefers ω3 over all over in-

terpretations, i.e., ⪯mr
2 = ⪯mr

1 \ {(ω,ω3) | ω ̸= ω3}. An illustration of ⪯mr
2 is given in

Figure 3.13b. Indeed, we have that ⪯mr
2 is min-retractive for Bmr. In particular, observe that the

prior counterexample for ⪯mr
1 does not apply to ⪯mr

2 , as we have ω0 ̸⪯mr
2 ω3.

As an aside, let us note that, if ⪯ is total but not transitive, min-completeness can be

violated even in the setting where Ω is finite, by means of strict cyclic relationships.

Example 3.15. Let Brps = (L,Ω, |=, P(L),∪) be the base logic defined by L = {ALL-THREE} and

Ω = {®,§,°}, with the models relation |= given by ⟦ALL-THREE⟧ = Ω. We now define the

relation ⪯rps as the common game “rock-paper-scissors”: paper beats rock (§≺rps ®), scissors

beat paper (°≺rps §), and rock beats scissors (®≺rps °). Clearly, the set of interpretations

Ω is finite and the relation ⪯rps is total, but not transitive. It is, however vacuously min-

retractive. By considering a consistent base Γ containing the only sentence ALL-THREE, we find

that min(⟦Γ⟧,⪯rps) = ;, and hence a violation of min-completeness.

As a last act in this section, we conveniently unite the two identified properties into one

notion.

Definition 3.16 (min-friendly). Let B = (L,Ω, |=,B,⋓) be a base logic. A binary relation ⪯
over Ω is called min-friendly (for B) if it is both min-retractive and min-complete. An assignment

⪯(.): B→ P(Ω×Ω) is called min-friendly if ⪯K is min-friendly for all K ∈B.
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3.3 One-Way Representation Theorem

We are now ready to generalize K&M’s representation theorem from propositional to arbitrary

Tarskian logics, by employing the notion of compatible min-friendly faithful assignments.

Theorem 3.17. Let ◦ be a base change operator for some base logic B. Then, ◦ satisfies

(G1)–(G6) if and only if it is compatible with some min-friendly faithful assignment for B.

We show Theorem 3.17 in three steps. First, we provide a canonical way of obtaining an

assignment for a given revision operator. Next, we show that our construction indeed yields

a min-friendly faithful assignment that is compatible with the revision operator. Finally, we

show that the notion of min-friendly compatible assignment is adequate to capture the class

of base revision operators satisfying (G1)–(G6).

3.3.1 From Postulates to Assignments

Very central for the original result by Katsuno and Mendelzon 1991 is a constructive way to

obtain the assignment from a revision operator. In their proof for Theorem 3.3, they provided

the following way of extracting the preference relations from the revision operator:

I1 ≤K I2 if I1 |= K or I1 |= K ◦ form(I1, I2) (3.1)

where form(I1, I2) ∈ L denotes a sentence with ⟦form(I1, I2)⟧ = {I1, I2}. Unfortunately, this

method for obtaining a canonical encoding of the revision strategy of ◦ does not generalize

to the general setting here. This is because a belief base Γ satisfying ⟦Γ⟧ = {I1, I2} may not

exist.

As a recourse, we suggest the following construction, which we consider one of this thesis’s

core contributions. It realizes the idea that one should (strictly) prefer ω1 over ω2 only

if there is a witness belief base Γ that certifies that ◦ prefers ω1 over ω2. Should no such

witness exist, ω1 and ω2 will be deemed equally preferable.

Definition 3.18. Let B = (L,Ω, |=,B,⋓) be a base logic, let ◦ be a base change operator for B
and let K ∈B be a belief base. The relation ⊑◦K over Ω is defined by

I1 ⊑◦K I2 if I2 |= K ◦ Γ implies I1 |= K ◦ Γ for all Γ ∈B with I1, I2 ∈ ⟦Γ⟧.

Definition 3.18 already yields an adequate encoding strategy for many base logics. However,

to also properly cope with certain “degenerate” base logics, we have to hard-code that the

prior beliefs of an agent are prioritized in all cases, that is, only models of the prior beliefs

are minimal. In Section 3.8.2 we will analyze this in more detail. The following relation

builds upon the relation ⊑◦K and takes explicit care of handling prior beliefs.
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Definition 3.19. Let B = (L,Ω, |=,B,⋓) be a base logic, let ◦ be a base change operator for B
and let K ∈B be a belief base. The relation ⪯◦K over Ω is then defined by

I1 ⪯◦K I2 if I1 |= K or
�

I1, I2 ̸|= K and I1 ⊑◦K I2

�

.

Let ⪯◦
(.)

: B→ P(Ω×Ω) denote the mapping K 7→ ⪯◦K.

In the following, we apply the relation encoding given in Definition 3.19 to our running

example and show that the relation is not transitive, yet min-friendly.

Example 3.20 (continuation of Example 3.11). Applying Definition 3.19 to KEx and ◦Ex

yields the following relation⪯◦Ex
KEx

on ΩEx (whereω≺◦Ex
KEx
ω′ denotesω⪯◦Ex

KEx
ω′ andω′ ̸⪯◦Ex

KEx
ω):

ωi ⪯
◦Ex
KEx
ωi , 0≤ i ≤ 5

ω3 ≺
◦Ex
KEx
ωi , i ∈ {0, 1,2, 4,5}

ω0 ≺
◦Ex
KEx
ω1

ω1 ≺
◦Ex
KEx
ω2

ω2 ≺
◦Ex
KEx
ω0

ω4 ≺
◦Ex
KEx
ωi , i ∈ {0,1, 2,5}

ωi ≺
◦Ex
KEx
ω5, 0≤ i < 4

Observe that ⪯◦Ex
KEx

is not transitive, since ω0,ω1,ω2 form a ≺◦Ex
KEx

-circle (see Figure 3.21). Yet,

one can easily verify that ⪯◦Ex
KEx

is a total and min-friendly relation. In particular, as ΩEx is finite,

min-completeness can be checked by examining minimal model sets of all consistent bases in LEx.

Moreover, there is no belief base Γ ∈ P(LEx) such that there is some ω /∈min(⟦Γ⟧,⪯◦Ex
KEx
) and

ω′ ∈ min(⟦Γ⟧,⪯◦Ex
KEx
) with ω ⪯◦Ex

KEx
ω′. Note that such a situation could appear in ⪯◦Ex

KEx
if an

interpretation ω would be ⪯◦Ex
KEx

-equivalent to ω0, ω1 and ω2 and there would be a belief base

Γ satisfied in all these interpretations, e.g., if ω=ω5 would be equal to ω0,ω1 and ω2, and

⟦Γ⟧ = {ω0,ω1,ω2,ω5}. However, this is not the case in ⪯◦Ex
KEx

and such a belief base Γ does not

exist in BEx. Therefore, the relation ⪯◦Ex
KEx

is min-retractive.

As a first insight, we obtain that the construction in Definition 3.19 is strong enough for

always obtaining a relation that is total and reflexive.

Lemma 3.22 (totality). If ◦ satisfies (G5) and (G6), the relations ⪯◦K and ⊑◦K are total (and

hence reflexive) for every K ∈B.

Proof. Note that by construction, totality of⪯◦K is an immediate consequence of totality of⊑◦K.

We show the latter by contradiction: Assume the contrary, i.e. there are ⊑◦K-incomparable I1

and I2. Due to Definition 3.18, there must exist Γ1, Γ2 ∈B with I1, I2 |= Γ1 and I1, I2 |= Γ2,

such that I1 |= K ◦ Γ1 and I2 ̸|= K ◦ Γ1 whereas I1 ̸|= K ◦ Γ2 and I2 |= K ◦ Γ2. Since

I1 ∈ ⟦K ◦ Γ1⟧ ∩ ⟦Γ2⟧ = ⟦(K ◦ Γ1)⋓ Γ2⟧ and thus ⟦(K ◦ Γ1)⋓ Γ2⟧ ≠ ;, (G5) and (G6) jointly

entail ⟦(K◦Γ1)⋓Γ2⟧ = ⟦K◦(Γ1⋓Γ2)⟧. From commutativity of ⋓, ⟦K◦(Γ1⋓Γ2)⟧ = ⟦K◦(Γ2⋓Γ1)⟧
follows. Now again, since I2 ∈ ⟦K◦Γ2⟧∩⟦Γ1⟧ = ⟦(K◦Γ2)⋓Γ1⟧ and hence ⟦(K◦Γ2)⋓Γ1⟧ ≠ ;,
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ω3 ω4

ω0 ω2

ω1

ω5

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

≺◦Ex
KEx

Figure 3.21: The structure of relation ⪯◦Ex
K on ΩEx, where a solid arrow represents ω≺◦Ex

K ω′

for any ω,ω′ ∈ ΩEx.

(G5) and (G6) together entail ⟦K ◦ (Γ2 ⋓ Γ1)⟧ = ⟦(K ◦ Γ2) ⋓ Γ1⟧. So, together, we obtain

I1 ∈ ⟦(K◦Γ2)⋓Γ1⟧ = ⟦K◦Γ2⟧∩⟦Γ1⟧ which directly contradicts our assumption I1 ̸∈ ⟦K◦Γ2⟧.

Reflexivity follows immediately from totality. □

We proceed with an auxiliary lemma about belief bases and ⪯◦K.

Lemma 3.23. Let ◦ satisfy (G2), (G5) and (G6) and let K ∈B. Then the following hold:

(a) If I1 ̸⪯◦K I2 and I2 ̸|= K, then there exists some Γ with I1, I2 |= Γ as well as I2 |= K ◦ Γ
and I1 ̸|= K ◦ Γ .

(b) If there is a Γ with I1, I2 |= Γ such that I1 |= K ◦ Γ , then I1 ⪯◦K I2.

(c) If there is a Γ with I1, I2 |= Γ such that I1 |= K ◦ Γ and I2 ̸|= K ◦ Γ , then I1 ≺◦K I2.

Proof. For the proofs of all statements, recall that by Lemma 3.22, the relation ⪯◦K is total.

(a) By totality of ⪯◦K, guarateed by Lemma 3.22 , we obtain I2 ⪯◦K I1. By definition of ⪯◦K,

this together with I2 ̸|= K entails I1 ̸|= K. Therefore, again by definition, we obtain

I1 ̸⊑◦K I2. Consequently, in view of Definition 3.18, there must exist some Γ ∈B with

I1, I2 |= Γ such that I2 |= K ◦ Γ does not imply I1 |= K ◦ Γ . Yet this can only be the

case if I2 |= K ◦ Γ and I1 ̸|= K ◦ Γ , as claimed.

(b) Let Γ and I1, I2 be as assumed. We proceed by case distinction:

I2 |= K. Then I2 ∈ ⟦K⟧ ∩ ⟦Γ⟧ = ⟦K ⋓ Γ⟧ and thus ⟦K ⋓ Γ⟧ ≠ ;. Therefore, by

(G2), we obtain ⟦K ◦ Γ⟧ = ⟦K ⋓ Γ⟧ = ⟦K⟧∩ ⟦Γ⟧ and consequently I1 |= K. By

Definition 3.19, we conclude I1 ⪯◦K I2.

I2 ̸|= K. Toward a contradiction, suppose I1 ̸⪯◦K I2. Then, by part (a) above, there

is a Γ ′ with I1, I2 |= Γ ′, I1 ̸|= K ◦ Γ ′ and I2 |= K ◦ Γ ′. Thus I1 and I2 witness non-

emptiness of ⟦(K ◦ Γ )⋓ Γ ′⟧ and ⟦(K ◦ Γ ′)⋓ Γ⟧, respectively. Then, using (G5) and
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(G6) twice, we obtain (K◦Γ ′)⋓Γ ≡ K◦(Γ⋓Γ ′)≡ (K◦Γ )⋓Γ ′. But this allows to con-

clude I1 ∈ ⟦K◦Γ⟧∩⟦Γ ′⟧ = ⟦(K◦Γ )⋓Γ ′⟧ = ⟦(K◦Γ ′)⋓Γ⟧ = ⟦K◦Γ ′⟧∩⟦Γ⟧ ⊆ ⟦K◦Γ ′⟧,

and thus I1 |= K ◦ Γ ′, which contradicts I1 ̸|= K ◦ Γ ′ above. □

(c) Let Γ and I1, I2 be as assumed. We already know I1 ⪯◦K I2 due to part (b). It remains

to show I2 ̸⪯◦K I1. We proceed by case distinction:

I1 |= K. Then I1 ∈ ⟦K⟧∩ ⟦Γ⟧ = ⟦K⋓ Γ⟧ and thus ⟦K⋓ Γ⟧ ≠ ;. Therefore, by (G2),

we obtain ⟦K ◦ Γ⟧= ⟦K⋓ Γ⟧= ⟦K⟧∩ ⟦Γ⟧. Since I2 ̸|= K ◦ Γ but I2 |= Γ we can

infer I2 ̸|= K. Consequently, by Definition 3.19, we obtain I2 ̸⪯◦K I1.

I1 ̸|= K. Since we already established I1 ⪯◦K I2, Definition 3.19 ensures I2 ̸|= K. Yet,

by Definition 3.18, the existence of Γ implies I2 ̸⊑◦K I1, and thus Definition 3.19

yields I2 ̸⪯◦K I1.

We show that our construction indeed yields a compatible assignment.

Lemma 3.24 (compatibility). If ◦ satisfies (G1)–(G3), (G5), and (G6), then it is compatible

with ⪯◦
(.)

.

Proof. We have to show that ⟦K ◦ Γ⟧=min(⟦Γ⟧,⪯◦K). In the following, we show inclusion

in both directions.

(⊆) Let I ∈ ⟦K ◦ Γ⟧. By (G1), we obtain I ∈ ⟦Γ⟧. But then, using Lemma 3.23(b), we can

conclude I ⪯◦K I′ for any I′ ∈ ⟦Γ⟧, hence I ∈min(⟦Γ⟧,⪯◦K).

(⊇) Let I ∈min(⟦Γ⟧,⪯◦K). Due to ⟦Γ⟧ ≠ ; and (G3), there exists an I′ ∈ ⟦K◦Γ⟧. From the

(⊆)-proof follows I′ ∈min(⟦Γ⟧,⪯◦K). Then, by (G1) and Lemma 3.23(b), we obtain

I′ ⪯◦K I from I ∈ ⟦Γ⟧ and I′ ∈ ⟦Γ⟧ and I′ ∈ ⟦K ◦ Γ⟧. From I ∈ min(⟦Γ⟧,⪯◦K) and

I′ ∈ ⟦Γ⟧ follows I ⪯◦K I′. We proceed by case distinction:

I |= K. Then I ∈ ⟦K⟧∩ ⟦Γ⟧= ⟦K⋓ Γ⟧ and thus ⟦K⋓ Γ⟧ ̸= ;. Therefore, by (G2),

we obtain ⟦K ◦ Γ⟧= ⟦K⋓ Γ⟧= ⟦K⟧∩ ⟦Γ⟧ and hence I ∈ ⟦K ◦ Γ⟧.

I ̸|= K. Then by Definition 3.19, I ⪯◦K I′ requires I′ ̸|= K and therefore I ⊑◦K I′

must hold. Consequently, by Definition 3.18, I, I′ ∈ ⟦Γ⟧ and I′ ∈ ⟦K ◦ Γ⟧ imply

I ∈ ⟦K ◦ Γ⟧. □

For min-friendliness, we have to show that each ⪯◦K is min-complete and min-retractive.

Lemma 3.25 (min-friendliness). If ◦ satisfies (G1)–(G3), (G5), and (G6), then ⪯◦K is min-

friendly for every K ∈B.

Proof. Observe that min-completeness is a consequence of (G3) and the compatibility of ⪯◦
(.)

with ◦ from Lemma 3.24.

For min-retractivity, suppose towards a contradiction that it does not hold. That means

there is a belief base Γ and interpretations I′, I |= Γ with I′ ⪯◦K I and I ∈min(⟦Γ⟧,⪯◦K) but
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I′ ̸∈min(⟦Γ⟧,⪯◦K). From Lemma 3.24 we obtain I |= K ◦ Γ and I′ ̸|= K ◦ Γ . Now, applying

Lemma 3.23(c) yields I ≺◦K I′, contradicting I′ ⪯◦K I. □

We show that ⪯◦
(.)

yields faithful relations for every belief base.

Lemma 3.26 (faithfulness). If ◦ satisfies (G2), (G4), (G5), and (G6), the assignment ⪯◦
(.)

is

faithful.

Proof. We show satisfaction of the three conditions of faithfulness, (F1)–(F3).

(F1) Let I, I′ ∈ ⟦K⟧. Then I′ ⪯◦K I is an immediate consequence of Definition 3.19. This

implies I ̸≺◦K I′.

(F2) Let I ∈ ⟦K⟧ and I′ ̸∈ ⟦K⟧. By Definition 3.19 we obtain I ⪯◦K I′ and I′ ̸⪯◦K I.

(F3) Let K ≡ K′ (i.e. ⟦K⟧= ⟦K′⟧). From Definition 3.19 and (G4) follows ⪯◦K =⪯
◦
K′ , i.e.,

I1 ⪯◦K I2 if and only if I1 ⪯◦K′ I2.

The previous lemmas can finally be used to show that the construction of ⪯◦
(.)

according to

Definition 3.19 yields an assignment with the desired properties.

Proposition 3.27. If ◦ satisfies (G1)–(G6), then ⪯◦
(.)

is a min-friendly faithful assignment

compatible with ◦.

Proof. Assume (G1)–(G6) are satisfied by ◦. Then ⪯◦
(.)

is an assignment since every ⪯K is

total by Lemma 3.22; it is min-friendly by Lemma 3.25; it is faithful by Lemma 3.26; and it

is compatible with ◦ by Lemma 3.24. □

3.3.2 From Assignments to Postulates

Now, it remains to show the “if" direction of Theorem 3.17.

Proposition 3.28. If there exists a min-friendly faithful assignment ⪯(.) compatible with ◦,
then ◦ satisfies (G1)–(G6).

Proof. Let ⪯(.): K 7→⪯K be as described. We now show that ◦ satisfies all of (G1)–(G6).

(G1) Let I ∈ ⟦K ◦ Γ⟧. Since ⟦K ◦ Γ⟧ =min(⟦Γ⟧,⪯K), we have that I ∈min(⟦Γ⟧,⪯K). Then,

we also have that I ∈ ⟦Γ⟧. Thus, we have that ⟦K ◦ Γ⟧ ⊆ ⟦Γ⟧ as desired.

(G2) Assume ⟦K ⋓ Γ⟧ ̸= ;. We prove ⟦K ◦ Γ⟧ = ⟦K ⋓ Γ⟧ by showing inclusion in both

directions.

(⊆) Let I ∈ ⟦K ◦ Γ⟧. By compatibility, we obtain I ∈min(⟦Γ⟧,⪯K) and thus trivially

also I ∈ ⟦Γ⟧. Since ⟦K⋓Γ⟧ ≠ ;, there exists some other I′ ∈ ⟦K⋓Γ⟧ = ⟦K⟧∩⟦Γ⟧,

which implies I′ ∈ ⟦K⟧ and I′ ∈ ⟦Γ⟧. Therefore, I ∈ min(⟦Γ⟧,⪯K) implies

I ⪯K I′, which means that I′ ≺K I cannot hold and therefore, by contraposition,

(F2) ensures I ∈ ⟦K⟧. Yet then I ∈ ⟦K⟧∩ ⟦Γ⟧= ⟦K⋓ Γ⟧ as desired.
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(⊇) Let I ∈ ⟦K ⋓ Γ⟧ = ⟦K⟧ ∩ ⟦Γ⟧, i.e. I ∈ ⟦K⟧ and I ∈ ⟦Γ⟧. Since I ∈ ⟦K⟧, we

obtain from (F1) and (F2) that I ⪯K I′ must hold for all I′ ∈ ⟦Γ⟧. Hence,

I ∈min(⟦Γ⟧,⪯K), and by compatibility I ∈ ⟦K ◦ Γ⟧.

(G3) Assume ⟦Γ⟧ ̸= ;. By min-completeness, we have min(⟦Γ⟧,⪯K) ̸= ;. Since ⟦K ◦ Γ⟧ =
min(⟦Γ⟧,⪯K) by compatibility, we obtain ⟦K ◦ Γ⟧ ̸= ;.

(G4) Suppose there exist K1, K2, Γ1, Γ2 ∈B with K1 ≡ K2 and Γ1 ≡ Γ2. Then, ⟦K1⟧= ⟦K2⟧

and ⟦Γ1⟧ = ⟦Γ2⟧. From (F3), we conclude ⪯K1
=⪯K2

. Now assume some I ∈ ⟦K1 ◦Γ1⟧,

then by compatibility I ∈ min(⟦Γ1⟧,⪯K1
) = min(⟦Γ2⟧,⪯K2

). Therefore, again by

compatibility, I ∈ ⟦K2 ◦ Γ2⟧). Thus, ⟦K1 ◦ Γ1⟧ ⊆ ⟦K2 ◦ Γ2⟧ holds. Inclusion in the other

direction follows by symmetry. Therefore, we have K1 ◦ Γ1 ≡ K2 ◦ Γ2.

(G5) Let I ∈ ⟦(K ◦ Γ1) ⋓ Γ2⟧ = ⟦K ◦ Γ1⟧ ∩ ⟦Γ2⟧. This means that I ∈ ⟦Γ2⟧ but – since

⟦K ◦ Γ1⟧ =min(⟦Γ1⟧,⪯K) by compatibility – we also obtain I ∈min(⟦Γ1⟧,⪯K), mean-

ing that I ⪯K I′ holds for all I′ ∈ ⟦Γ1⟧. Yet then I ⪯K I′ holds particularly for

all I′ ∈ ⟦Γ1⟧ ∩ ⟦Γ2⟧ and hence I ∈ min(⟦Γ1⟧ ∩ ⟦Γ2⟧,⪯K) = min(⟦Γ1 ⋓ Γ2⟧,⪯K). By

compatibility follows I ∈ ⟦K ◦ (Γ1 ⋓ Γ2)⟧. Thus ⟦(K ◦ Γ1) ⋓ Γ2⟧ ⊆ ⟦K ◦ (Γ1 ⋓ Γ2)⟧ as

desired.

(G6) Let (K ◦ Γ1) ⋓ Γ2 ̸= ;, thus I′ ∈ ⟦(K ◦ Γ1) ⋓ Γ2⟧ = ⟦K ◦ Γ1⟧ ∩ ⟦Γ2⟧ for some I′. By

compatibility, we then obtain I′ ∈ min(⟦Γ1⟧,⪯K). Now consider an arbitrary I
with I ∈ ⟦K ◦ (Γ1 ⋓ Γ2)⟧. By compatibility we obtain I ∈ min(⟦Γ1 ⋓ Γ2⟧,⪯K) and

therefore, since I′ ∈ ⟦Γ1⟧ ∩ ⟦Γ2⟧ = ⟦Γ1 ⋓ Γ2⟧, we can conclude I ⪯K I′. This

and I′ ∈ min(⟦Γ1⟧,⪯K) imply I ∈ min(⟦Γ1⟧,⪯K) by min-retractivity. Hence every

I ∈ ⟦K ◦ (Γ1 ⋓ Γ2)⟧ satisfies I ∈min(⟦Γ1⟧,⪯K) = ⟦K ◦ Γ1⟧ but also I ∈ ⟦Γ2⟧, whence

⟦K ◦ (Γ1 ⋓ Γ2)⟧ ⊆ ⟦K ◦ Γ1⟧∩ ⟦Γ2⟧= ⟦(K ◦ Γ1)⋓ Γ2⟧ as desired.

The proof of Theorem 3.17 follows from Proposition 3.27 and 3.28.

3.4 Two-Way Representation Theorem

Theorem 3.17 establishes the correspondence between operators and assignments under

the assumption that ◦ is given and therefore known to exist. What remains unsettled is the

question if generally every min-friendly faithful assignment is compatible with some base

change operator that satisfies (G1)–(G6). It is not hard to see that this is not the case.

Example 3.29. Consider the base logic Bnb = (L,Ω, |=, P(L),∪) with L= {none, both} and

Ω = {I1, I2} satisfying ⟦none⟧ = ; and ⟦both⟧ = {I1, I2} = Ω. There are four bases in

this logic, satisfying {none} ≡ {none, both} and ; ≡ {both}. Let the assignment ⪯nb
(.)

be

such that ⪯nb
{}=⪯

nb
{both}= Ω × Ω and ⪯nb

{none}=⪯
nb
{none,both}= {(I1, I1), (I1, I2), (I2, I2)}. It

is straightforward to check that ⪯nb
(.)

is a min-friendly faithful assignment. Note that any ◦
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compatible with⪯nb
(.)

would have to satisfy ⟦{none}◦{both}⟧ =min(⟦{both}⟧,⪯nb
{none}) = {I1},

yet, as we have seen, no base with this model set exists, therefore such a ◦ is impossible.

Therefore, toward a full, two-way correspondence, we have to provide an additional

condition on assignments, capturing the operator existence.

As indicated by the example, for the existence of an operator, it will turn out to be essential

that any minimal model set of a belief base obtained from an assignment corresponds to

some belief base, a property which is formalized by the following notion.

Definition 3.30 (min-expressible). Let B = (L,Ω, |=,B,⋓) be a base logic. A binary relation

⪯ over Ω is called min-expressible if for each Γ ∈B there exists a belief base BΓ ,⪯ ∈B such that

⟦BΓ ,⪯⟧= min(⟦Γ⟧,⪯). An assignment ⪯(.) will be called min-expressible, if for each K ∈B, the

relation ⪯K is min-expressible. Given a min-expressible assignment ⪯(.), let ◦⪯(.) denote the base

change operator defined by K ◦⪯(.) Γ =BΓ ,⪯K
.

It should be noted that min-expressibility is a straightforward generalization of the notion

of regularity by Delgrande, Peppas, and Woltran 2018 to base logics. By virtue of this

extra notion, we now find the following bidirectional relationship between assignments and

operators, amounting to a full characterization.

Theorem 3.31. Let B be a base logic. Then the following hold:

• Every base change operator for B satisfying (G1)–(G6) is compatible with some min-

expressible min-friendly faithful assignment.

• Every min-expressible min-friendly faithful assignment for B is compatible with some base

change operator satisfying (G1)–(G6).

Proof. For the first item, let ◦ be the corresponding base change operator. Then, by Proposi-

tion 3.27, the assignment ⪯◦
(.)

as given in Definition 3.19 is min-friendly, faithful, and compat-

ible with ◦. As for min-expressibility, recall that, by compatibility, ⟦K ◦ Γ⟧= min(⟦Γ⟧,⪯◦K)
for every Γ . As K ◦ Γ is a belief base, min-expressibility follows immediately.

For the second item, let ⪯(.) be the corresponding min-expressible assignment and ◦⪯(.) as

provided in Definition 3.30. By construction, ◦⪯(.) is compatible with ⪯(.). Proposition 3.28

implies that ◦⪯(.) satisfies (G1)–(G6). □

As an aside, note that the above theorem also implies that every min-expressible min-

friendly faithful assignment is compatible only with AGM base change operators. This is due

to the fact that, one the one hand, any such assignment fully determines the corresponding

compatible base change operator model-theoretically and, on the other hand, (G1)–(G6) are

purely model-theoretic conditions.

Continuing our running example, we observe that ⪯◦Ex
KEx

is also a min-expressible relation.
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Example 3.32 (continuation of Example 3.20). Consider again⪯◦Ex
(.) , and observe that⪯◦Ex

(.)

is compatible with ◦Ex, e.g. ⟦KEx◦ExΓ⟧ =min(⟦Γ⟧,⪯◦Ex
KEx
). Thus, for every belief base Γ ∈ P(LEx),

the minimum min(Γ ,⪯◦Ex
KEx
) yields a set expressible by a belief base. Theorem 3.31 guarantees us

that ◦Ex satisfies (G1)–(G6), as ⪯◦Ex
(.) is a faithful min-expressible and min-friendly assignment.

As a last step of this section, we will apply the theory developed here to demonstrate that

the standard operator of trivial revision1 [Han99; FH18] indeed satisfies (G1)–(G6) in the

general setting of base logics.

Example 3.33. Let B = (L,Ω, |=, P(L),⋓) be an arbitrary base logic. We define the trivial

revision operator ◦fm for B by

K ◦fm Γ =







K⋓ Γ if ⟦K⋓ Γ⟧ is consistent

Γ otherwise

To show satisfaction of (G1)–(G6) we construct a min-expressible min-friendly faithful assignment

⪯fm
(.)

compatible with ◦fm. For each K ∈ B let I1 ⪯fm
K I2 if I1 |= K or I2 ̸|= K. Obviously,

the relation ⪯fm
K is a total preorder where I1, I2 are ⪯fm

K -equivalent, if either I1, I2 |= K
or I1, I2 ̸|= K holds. Moreover, it is not hard to see that the relation ⪯fm

K is min-complete

and min-retractive. By construction of ⪯fm
(.)

we obtain that min(⟦Γ⟧,⪯fm
K ) = ⟦Γ⟧ if K ⋓ Γ is

inconsistent. If K ⋓ Γ is consistent, we obtain min(⟦Γ⟧,⪯fm
K ) = ⟦K⟧ ∩ ⟦Γ⟧ = ⟦K ⋓ Γ⟧. In

summary, the assignment ⪯fm
(.)

is min-expressible and min-friendly, and the base change operator

◦fm is compatible with it.

In Section 3.2 to Section 3.4, we discussed how K&M’s result about semantically char-

acterizing AGM belief revision in finite-signature propositional logic can be generalized to

arbitrary base logics. Thereby, we cover all Tarskian logics and support any notion of bases

that are closed under “abstract union”. We demonstrated certain central aspects by our

running example (see Example 2.4, Example 3.11, Example 3.20, Example 3.32), which can

be summarized as follows.

Fact 3.34. The operator ◦Ex for the base logic BEx satisfies (G1)–(G6) and is compatible with

the faithful min-friendly and min-expressible assignment ⪯◦Ex
(.) . That is, for any base K of BEx,

the relation ⪯◦Ex
K is min-friendly and min-expressible. However there is a base KEx, such that

⪯◦KEx
is not transitive. In fact, no transitive faithful min-friendly and min-expressible assignment

compatible with ◦Ex exists, whatsoever.

By now, our rationale has been to cover the most general setting of base logics possible,

while sticking to the complete set of the AGM postulates and without adding further condi-

tions.
1Note that trivial revision is known to coincide with full meet revision in many logical settings.
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However, one might remark that the AGM postulates were specifically designed for de-

scribing the change of belief sets, i.e., deductively closed theories, which naturally include

all syntactic variants. As opposed to this, approaches to describing the change of (not neces-

sarily deductively closed) bases might take the syntax into account [Han99]. Under such

circumstances, the syntax-independence expressed by (G4) might be called into question.

Another aspect is that, for the sake of generality, we had to replace the stronger requirement

of transitivity by the weaker notion of min-retractivity inside the assignments. Waiving

transitivity (and hence preorders) might be considered unconventional, as a transitive

preference relation is often deemed to be the actual motivation behind the postulates (G1)

and (G6). This raises the question for which Tarskian logics the existence of a compatible

preorder assignment for any AGM revision operator can be guaranteed.

In the following sections we will discuss these aspects as variations of the approach we

presented in the preceding sections, showing that exact characterizations exist for these

cases as well. Moreover, we will discuss some aspects of the notion of base logic, and the

role of disjunctions in decomposability.

3.5 Base Changes and Syntax-Independence

Up to this point, we have been considering base change operators fulfilling the full set of

postulates (G1)–(G6). The research on base changes deals with syntax-dependent changes,

and in our approach the postulate (G4) implies that a base change operator yields semantically

the same result on all semantically equivalent bases. As consequence, one might conclude

that the base change operators considered here have only limited freedom when it comes to

taking the syntactic structure into account when changing.

However, note that neither the postulates (G1)–(G6) nor our representation results make

assumptions about the specific syntactic structure of a base obtained by a base change

operator. Thus, for syntactically different bases Γ1 and Γ2 that are semantically equivalent, we

might obtain syntactically different results after revision, which are semantically equivalent.

Example 3.35. Consider the logic PL2 (cf. Example 2.6), e.g. propositional logic over the signa-

ture {p, q} as follows. Given K1 = {p, q}, K2 = {p∧q}, Γ1 = {p, p→¬q}, and Γ2 = {p∧¬q}. We

have K1 and K2, as well as Γ1 and Γ2, which are two semantically equivalent bases with different

syntax. By applying the trivial revision operation ◦fm (cf. Example 3.33) to K1 by Γ1 and to K2 by

Γ2, we obtain K1◦Γ1 = {p, p→¬q} and K2◦Γ2 = {p∧¬q}. The two revision results are different

syntactically, yet semantically equivalent (i.e. ⟦K1◦Γ1⟧ = ⟦K2◦Γ2⟧ = {I : p 7→ true, q 7→ false}).

Moreover, the semantic viewpoint developed here in this article is flexible and is eligible for

further liberation regarding syntax-dependence of a base change operator. In particular, our
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approach allows us to drop (G4). As an alternative to (G4), consider the following weaker

version [Han99]:

(G4w) If Γ1 ≡ Γ2, then K ◦ Γ1 ≡ K ◦ Γ2.

The main difference between (G4w) and (G4) is that by (G4w) a base change operator is not

restricted to treat semantically equivalent prior belief bases equivalently. When considering

the extended AGM postulates (G5) and (G6) it turns out that postulate (G4w) is a baseline

of syntax-independence, as (G1), (G5) and (G6) together already imply (G4w), which is a

generalization of a result by Aiguier et al. 2018, Prop. 3.

Proposition 3.36. Let ◦ be a base change operator for a base logic B = (L,Ω, |=,B,⋓). If ◦
satisfies (G1), (G5) and (G6), then ◦ satisfies (G4w).

Proof. Let K, Γ1, Γ2 ∈B be belief bases such that Γ1 ≡ Γ2. By (G1), the postulate (G4w) holds

if Γ1 is inconsistent. For the remaining parts of the proof, we assume consistency of Γ1. First

observe that (K ◦ Γ1)⋓ Γ2 ≡ K ◦ Γ1 by (G1) and analogously (K ◦ Γ2)⋓ Γ1 ≡ K ◦ Γ2. By (G5) we

obtain (K ◦ Γ1)⋓ Γ2 |= K ◦ (Γ1 ⋓ Γ2). Moreover, because (K ◦ Γ1)⋓ Γ2 is consistent, we obtain

K ◦ (Γ1 ⋓ Γ2) |= (K ◦ Γ1)⋓ Γ2 by (G6). In summary we obtain (K ◦ Γ1)⋓ Γ2 ≡ K ◦ (Γ1 ⋓ Γ2). By

an analogous line of arguments we obtain (K ◦ Γ1)⋓ Γ2 ≡ K ◦ (Γ1 ⋓ Γ2)≡ (K ◦ Γ2)⋓ Γ1. Using

our prior observations this expands to K ◦ Γ1 ≡ K ◦ Γ2. □

To obtain a representation theorem for base change operators without (G4), relaxing the

constraint on the syntactic side requires the relation of the conditions on the semantic side.

For dropping (G4), we weaken the notion of faithfulness to the notion of quasi-faithfulness.

Definition 3.37 (quasi-faithful). An assignment ⪯(.) is called quasi-faithful if it satisfies the

following conditions:

(F1) If I, I′ |= K, then I ≺K I′ does not hold.

(F2) If I |= K and I′ ̸|= K, then I ≺K I′.

Note that quasi-faithful assignments might assign to every belief base a different order,

independent from whether they are semantically equivalent or not. Thus, this enables a base

change operator to treat base differently depending on their syntactic structure.

Luckily, our canonical assignment ⪯◦
(.)

(cf. Definition 3.19) carries over to the setting where

(G4) is not satisfied. The following lemma attests that ⪯◦
(.)

yields a quasi-faithful assignment

for this case.

Lemma 3.38. If ◦ satisfies (G2), (G5), and (G6), then the assignment ⪯◦
(.)

is quasi-faithful.

Proof. The proof of the two conditions of quasi-faithfulness, (F1) and (F2), is identical to

the proof of (F1) and (F2) in Lemma 3.26. □
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Using the notion of quasi-faithfulness and ⪯◦
(.)

(cf. Definition 3.19) we obtain the following

characterization result, which is similar to a result already provided by Aiguier et al. 2018,

Thm. 2.

Proposition 3.39. Let ◦ be a base change operator. The operator ◦ satisfies (G1)–(G3), (G5),

and (G6) if and only if it is compatible with some min-friendly quasi-faithful assignment.

Proof (Sketch). The proof is the nearly the same as for Theorem 3.17. Note that the proof of

Theorem 3.17, which shows correspondence between (G1)–(G6) and compatible min-friendly

faithful assignments uses (G4) and (F3) only in special situations. In particular, observe that

condition (F3) is only used to show satisfaction of (G4) in the proof of Proposition 3.28.

Moreover, note that⪯◦K from Definition 3.19 is a total min-friendly relation due to Lemma 3.22

and Lemma 3.25 for each K ∈ B; compatibility of ⪯◦
(.)

with ◦ is ensured by Lemma 3.24

while satisfaction of quasi-faithfulness is ensured by Lemma 3.38. □

In view of this, we can now present the syntax-dependent version of our two-way repres-

entation theorem.

Theorem 3.40. Let B be a base logic. Then the following hold:

• Every base change operator for B satisfying (G1)–(G3), (G5), and (G6) is compatible

with some min-expressible min-friendly quasi-faithful assignment.

• Every min-expressible min-friendly quasi-faithful assignment for B is compatible with

some base change operator satisfying (G1)–(G3), (G5), and (G6).

In research on base revision, various special postulates for the changing of bases have been

considered, e.g. in the seminal research on belief revision by Hansson, special postulates for

base changes are proposed, e.g., see [Han99]. Of course, an interesting and open question

is, which of them could be characterized or reconstructed by the approach of this thesis.

3.6 Total Preorder-Representability

As we have shown, regrettably, not every AGM belief revision operator in every Tarskian

logic can be described by a total preorder assignment. Yet, we also saw that, for some logics

(like PLn), this correspondence does indeed hold. Consequently, this section is dedicated to

find a characterization of precisely those logics wherein every AGM base change operator is

representable by a compatible min-complete faithful preorder assignment. The following

definition captures the notion of operators that are well-behaved in that sense.

Definition 3.41 (total-preorder-representable). A base change operator ◦ for some base

logic is called total-preorder-representable if there is a min-complete quasi-faithful preorder

assignment compatible with ◦.
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Recall that transitivity implies min-retractivity, and thus, every min-complete preorder is

automatically min-friendly. Moreover, in view of Section 3.5, our definition uses the more

lenient notion of quasi-faithfulness to accommodate the syntax-dependent setting. However,

as the following lemma shows, the same definition of total-preorder-representability is

adequate in the syntax-independent setting.

Lemma 3.42. For any base change operator ◦ that satisfies (G4), total-preorder-representa-

bility coincides with the existence of a min-complete faithful preorder assignment compatible

with ◦.

Proof. Any compatible min-complete faithful preorder assignment is also quasi-faithful and

hence the existence of such an assignment implies total-preorder-representability. For the

other direction, let ⪯(.) be a min-complete quasi-faithful preorder assignment compatible

with ◦. We then define ⪯ff
(.)

as K 7→ ⪯σ([K]≡) where σ is a selection function mapping every

≡-equivalence class of B to one of its elements (i.e., σ([K]≡) ∈ [K]≡). Then, the property

of being a min-complete quasi-faithful preorder assignment compatible with ◦ carries over

pointwise from ⪯(.) to ⪯ff
(.)

, while the construction ensures that ⪯ff
(.)

also satisfies (F3) from

Definition 3.1 and hence is faithful. □

In the next section, we will provide a necessary and sufficient criterion for a logic such

that universal total-preorder-representablity is guaranteed.

The following definition describes the occurrence of a certain relationship between several

bases. Such an occurrence will turn out to be the one and only reason to prevent total-

preorder-representability.

Definition 3.43 (critical loop). Let B = (L,Ω, |=,B,⋓) be a base logic. Three or more bases

Γ0,1, Γ1,2, . . . , Γn,0 ∈B are said to form a critical loop of length (n+ 1) for B if there exists a

base K ∈B and consistent bases Γ0, . . . , Γn ∈B such that

(1) ⟦K⋓ Γi,i⊕1⟧= ; for every i ∈ {0, . . . , n}, where ⊕ is addition mod (n+ 1),

(2) ⟦Γi⟧∪ ⟦Γi⊕1⟧ ⊆ ⟦Γi,i⊕1⟧ and ⟦Γ j ⋓ Γi⟧= ; for each i, j ∈ {0, . . . , n} with i ̸= j, and

(3) for each ΓÏ ∈ B that is consistent with at least three bases from Γ0, . . . , Γn, there exists

some Γ ′Ï ∈B such that ⟦Γ ′Ï⟧ ̸= ; and ⟦Γ ′Ï⟧ ⊆ ⟦ΓÏ⟧ \
�

⟦Γ0,1⟧∪ . . .∪ ⟦Γn,0⟧
�

.

The three conditions in Definition 3.43 describe the canonic situation brought about by

some bases Γ0,1, . . . , Γn,0 allowing for the construction of a revision operator that unavoidably

gives rise to a circular compatible relation. Note that due to Condition (3), every three of

Γ0,1, Γ1,2, . . . , Γn,0 together are inconsistent, but each two of them which have an index in

common are consistent, i.e. Γi,i⊕1 ⋓ Γi⊕1,i⊕2 is consistent for each i ∈ {0, . . . , n}.
In the following, we provide some intuition for the notion of critical loop. The bases

Γ0, . . . , Γn provide model sets that are pairwise disjoint (cf. the second part of Condition (2))
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⟦K⟧

⟦Γ0⟧

⟦Γ1⟧

⟦Γ2⟧

⟦Γn⟧

⟦Γ0,1⟧

⟦Γ1,2⟧

⟦Γn,0⟧

(a) By Condition (2), the models of each base
Γi,i⊕1 encompass the models of Γi and of Γi⊕1,
while by Condition (1), all these model sets
are disjoint from the models of K.

⟦Γi⟧

⟦Γj⟧⟦Γk⟧

⟦Γ ′Ï⟧

⟦ΓÏ⟧

(b) By Condition (3), for each ΓÏ that is consist-
ent with at least three distinct elements of
the circle (e.g. Γi , Γj , Γk ∈ {Γ0, . . . , Γn}), there
exists a base Γ ′Ï that is subsumed by ΓÏ but
inconsistent with all Γ0,1, . . . , Γn−1,n, Γn,0.

Figure 3.44: Illustrations of the Conditions (1)–(3) of a critical loop given in Definition 3.43.

and can be thought of as arranged in a circle, while the bases Γ0,1, . . . , Γn,0 overlap any

two adjacent model sets as indicated by their indices (cf. the first part of Condition (2)).

Exploiting this situation, we now want to define the result of revising K such that the circular

arrangement governs the choice of the “K-preferred” models as follows: the models of

K◦Γi,i⊕1, obtained by revising K with Γi,i⊕1, encompass all models of Γi , but no model of Γi⊕1.

Consequently, for any i, the revision K ◦ Γi,i⊕1 provides a preference of Γi over Γi⊕1. Thus, a

relation compatible to ◦ has to contain a “preference-loop” of interpretations. In order to

guarantee that this arrangement technique is applicable, Condition (1) and Condition (3)

from Definition 3.43 are ruling out all cases, where other bases of B together with (G1)–(G6)

prevent our intended construction from working:

Condition (1) ensures that none of the bases Γ0,1, . . . , Γn,0 has models in common with

the current belief base K (c.f. Figure 3.44a). If one base Γi,i⊕1 would have a model

in common with K, then the postulate (G2) would prevent a circular situation. Thus,

this condition is necessary for admitting circular situations.

Condition (3) comes into play if a belief base ΓÏ “covers” three or more elements of the

circle, meaning that three or more interpretations of a circle are models of this base ΓÏ.

For any such ΓÏ, there is a consistent belief base Γ ′Ï which shares all of its models with ΓÏ
but no model with any of the Γi,i⊕1 (c.f. Figure 3.44b). This is crucial for the presence
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of circles: if no such Γ ′Ï would exist, the operator would (by min-completeness and

min-expressibility) choose models of the circle, e.g., the bases Γi ⋓ ΓÏ, as the result of

the revision by ΓÏ. In the end, this would give one base Γi preference over Γi⊕1, . . . , Γi⊕n

and thus, would prevent creation of a circle. Therefore, Condition (3) rules out the

cases where min-completeness and min-expressibility and non-existence of such a Γ ′Ï
together would prevent formation of a circle.

Definition 3.43 is inspired by our running example. Before explicating this link, we

continue with the presentation of the general results.

The next theorem is the central result of this section, stating that the notion of critical

loop captures exactly those base logics for which some operator exists that is not total-

preorder-representable. By contraposition, this just means that for all base logics B, the

absence of critical loops from B is a necessary and sufficient criterion for universal total-

preorder-representability and hence for the existence of a characterization result for B that

is based on total preorders. This characterization result will not only hold for base change

operators that satisfy (G1)–(G6), but also for operators that do not satisfy (G4), but the

remaining postulates (G1)–(G3), (G5), and (G6). To provide a result applicable to both

groups of postulates, we will show for the necessary and sufficient direction the respectively

stronger result, i.e., if our base logic exhibits a critical loop we provide a construction for a

non-total-preorder-representable base change operator that satisfies (G1)–(G6), and for the

other direction, we show that in the absence of critical loops every operator that satisfies

(G1)–(G3), (G5), and (G6) is total-preorder-representable.

Theorem 3.45. For all base logics B, the following statements hold:

(I) If B exhibits a critical loop, then there exists a base change operator for B that satisfies

(G1)–(G6) and is not total-preorder-representable.

(II) If B does not admit a critical loop, then every base change operator for B that satisfies

(G1)–(G3), (G5), and (G6) is total-preorder-representable.

We dedicate Section 3.6.1 to the first statement of Theorem 3.45 while the second statement

is shown in Section 3.6.2.

3.6.1 Total Preorder-Representability Implies Absence of Critical Loops

We proceed to show (by contraposition) that the absence of critical loops is necessary for

total-preorder-representability of all AGM change operators. To this end, we will provide

a construction which, given a critical loop C in some base logic B, yields an AGM change

operator ◦C for B that is demonstrably not total-preorder-representable.
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Definition 3.46. Let B = (L,Ω, |=,B,⋓) be a base logic with a critical loop C = (Γ0,1, Γ1,2,

. . . , Γn,0) and let Γ0, . . . , Γn ∈B and K as in Definition 3.43.

Let C denote the set of all Γ ′Ï guaranteed by Condition (3) from Definition 3.43, i.e. Γ ′Ï ∈ C if

there is some ΓÏ with ; ̸= ⟦Γ ′Ï⟧ ⊆ ⟦ΓÏ⟧ \
�

⟦Γ0,1⟧∪ . . .∪ ⟦Γn,0⟧
�

and ΓÏ is consistent with three

(or more) bases from {Γ0, . . . , Γn}. Now let C′ = {Γ ′Ï ∈ C | ⟦Γ ′Ï ⋓K⟧ = ;}, i.e., all belief bases

from C that are inconsistent with K. Let ⩽C′ be an arbitrary linear order on C′ with respect to

which every non-empty subset of C′ has a minimum.2

We now define ◦C as follows: for every K′ ̸≡ K and any Γ , let K′ ◦C Γ = K′ ⋓ Γ if K′ ⋓ Γ is

consistent, otherwise K′ ◦C Γ = Γ . For K′ ≡ K, we define:

K′ ◦C Γ =



























Γ ⋓K′ if ⟦K′ ⋓ Γ⟧ ̸= ;,

Γ ⋓ Γ C′
min if ⟦K′ ⋓ Γ⟧= ;, and ⟦Γ ⋓ Γ ′Ï⟧ ̸= ; for some Γ ′Ï ∈ C′,

Γ ⋓ Γi if none of the above applies, ⟦Γi ⋓ Γ⟧ ̸= ;, and
⋃

j∈{0,...,n}\{i,i⊕1}
⟦Γ j ⋓ Γ⟧= ;,

Γ if none of the cases above apply,

where Γ C′
min =min({Γ ′Ï ∈ C′ | ⟦Γ ′Ï ⋓ Γ⟧ ̸= ;},⩽C′).

In the following, we show that ◦C from Definition 3.46 is indeed an AGM revision, but not

total-preorder-representable.

Proposition 3.47. For a base logic B with a critical loop C, the operator ◦C for B satisfies

(G1)–(G6) and is not total-preorder-representable.

Proof. We will first show that ◦C satisfies (G1)–(G6). For K′ ̸≡ K we obtain a trivial revision

which satisfies (G1)–(G6) (cf. Example 3.33). Consider the remaining case of K (and any

equivalent base):

Postulates (G1)–(G4). The satisfaction of (G1)–(G3) follows directly from the construction

of ◦C. For (G4) observe that, when computing K◦CΓ , the case distinction above only considers

the model sets of the participating bases rather than their syntax. Thus, for K ≡ K′ and

Γ ∗1 ≡ Γ
∗
2 we always obtain K ◦C Γ ∗1 ≡ K′ ◦C Γ ∗2 .

Postulate (G5) and (G6). Consider two belief bases Γ ∗1 and Γ ∗2 . If Γ ∗2 is inconsistent with

K ◦C Γ ∗1 , then we obtain satisfaction of (G5) immediately. For the remaining case of (G5) and

for (G6) we assume K ◦C Γ ∗1 to be consistent with Γ ∗2 , i.e., ⟦(K ◦C Γ ∗1 )⋓ Γ
∗
2⟧ ̸= ;. Consequently,

there exists some interpretation I such that I ∈ ⟦K ◦C Γ ∗1⟧ and I ∈ ⟦Γ ∗2⟧. The postulate (G1)

implies that I ∈ ⟦Γ ∗1⟧ and hence Γ ∗1 ⋓ Γ
∗
2 is consistent. We now inspect all different cases

from the definition of ◦C above that may apply when revising K by Γ ∗1 :

2Such a ⩽C′ exists due to the well-ordering theorem, by courtesy of the axiom of choice [Zer04].
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If Γ ∗1 is consistent with K, then we obtain from ⟦(K◦CΓ ∗1 )⋓Γ
∗
2⟧ ̸= ; and (G2) that K is con-

sistent with Γ ∗1⋓Γ
∗
2 . This implies (K◦CΓ ∗1 )⋓Γ

∗
2 ≡ (K⋓Γ

∗
1 )⋓Γ

∗
2 ≡ K⋓(Γ ∗1⋓Γ

∗
2 )≡ K◦C(Γ ∗1⋓Γ

∗
2 );

yielding satisfaction of (G5) and (G6).

Next, consider the second case of the definition, where Γ ∗1 is inconsistent with K,

but consistent with some Γ ′Ï ∈ C′ and assume Γ ′Ï is the ⩽C′-minimal such base, i.e.,

Γ ′Ï = (Γ
∗
1 )

C′
min. Then, from the construction of ◦C and the consistency of (K ◦C Γ ∗1 )⋓ Γ

∗
2

we obtain ⟦(K ◦C Γ ∗1 )⋓ Γ
∗
2⟧= ⟦Γ ∗1 ⋓ Γ

′
Ï ⋓ Γ

∗
2⟧ ̸= ;. Consequently, the set Γ ∗1 ⋓ Γ

∗
2 is also

consistent with Γ ′Ï, which, together with Γ ′Ï = (Γ
∗
1 )

C′
min, implies Γ ′Ï = (Γ

∗
1 ⋓ Γ

∗
2 )

C′
min. For

determining K◦C(Γ ∗1 ⋓Γ
∗
2 ), note that from K being inconsistent with Γ ∗1 , it follows that K

must also be inconsistent with Γ ∗1 ⋓ Γ
∗
2 , therefore, due to the existence of Γ ′Ï , the second

line of the definition of ◦C must apply. We obtain (K ◦C Γ ∗1 )⋓ Γ
∗
2 ≡ ((Γ

∗
1 )

C′
min ⋓ Γ

∗
1 )⋓ Γ

∗
2

≡ Γ ′Ï ⋓ Γ
∗
1 ⋓ Γ

∗
2 ≡ (Γ

∗
1 ⋓ Γ

∗
2 )

C′
min ⋓ (Γ

∗
1 ⋓ Γ

∗
2 ) ≡ K ◦C (Γ ∗1 ⋓ Γ

∗
2 ); establishing (G5) and (G6)

for this case.

We now inspect the third case from the definition, i.e., we consider some Γ ∗1 that is

inconsistent with K and with all elements from C′. If Γ ∗1 is consistent with Γi and incon-

sistent with all Γ j , where j ∈ {0, . . . , n}\{i, i⊕1}, then by the construction of ◦C and the

consistency of (K◦CΓ ∗1 )⋓Γ
∗
2 we have ⟦(K◦CΓ ∗1 )⋓Γ

∗
2⟧ = ⟦Γ ∗1⋓Γi⋓Γ

∗
2⟧ ̸= ;. Then, likewise

Γ ∗1 ⋓ Γ
∗
2 is consistent with Γi and inconsistent with all Γ j with j ∈ {0, . . . , n} \ {i, i ⊕ 1}.

Moreover, if Γ ∗1 is inconsistent with K and with all elements from C′, then so is Γ ∗1 ⋓ Γ
∗
2 ,

i.e., when determining K ◦C (Γ ∗1 ⋓ Γ
∗
2 ), the third case of the definition applies. Hence,

by the definition of ◦C we obtain (K ◦C Γ ∗1 )⋓ Γ
∗
2 ≡ Γ

∗
1 ⋓ Γ

∗
2 ⋓ Γi ≡ K ◦C (Γ ∗1 ⋓ Γ

∗
2 ).

If none of the conditions above applies to Γ ∗1 , then they also do not apply to Γ ∗1 ⋓ Γ
∗
2 .

From the construction of ◦C we obtain K ◦C (Γ ∗1 ⋓ Γ
∗
2 )≡ (K ◦C Γ

∗
1 )⋓ Γ

∗
2 ≡ Γ

∗
1 ⋓ Γ

∗
2 .

In summary, we obtain that ◦C satisfies (G5) and (G6) in all cases. It remains to show that ◦C is

not total-preorder-representable. Towards a contradiction suppose the contrary, i.e., there is a

min-complete faithful preorder assignment⪯(.), such that ◦C is compatible with⪯(.). Transitiv-

ity and min-completeness imply that ⪯(.) is min-friendly. As all Γ0, . . . , Γn are consistent, there

are Ii ∈ ⟦Γi⟧ for all i ∈ {0, . . . , n}. By construction of ◦C and Condition (2) of Definition 3.43,

we have K◦CΓi,i⊕1 = Γi,i⊕1⋓Γi ≡ Γi , and consequently Ii |= K◦CΓi,i⊕1 and Ii⊕1 ̸|= K◦CΓi,i⊕1 for

each i ∈ {0, . . . , n}. As ◦C is compatible with ⪯(.), we obtain ⟦K◦C Γi,i⊕1⟧ =min(⟦Γi,i⊕1⟧,⪯K).

In particular, the definition of ◦C yields Ii ∈ min(⟦Γi,i⊕1⟧,⪯K) and Ii , Ii⊕1 |= Γi,i⊕1 and

Ii⊕1 /∈min(⟦Γi,i⊕1⟧,⪯K). We obtain thereof the strict relationship Ii ≺K Ii⊕1. In summary,

we get I0 ≺K I1 ≺K . . .≺K In ≺K I0, which contradicts the presumed transitivity of ⪯K. □

This establishes that the absence of critical loops is a necessary condition for universal total-

preorder-representability in any Tarskian logic, because Theorem 3.45 (I) is an immediate

consequence of Proposition 3.47.
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3.6.2 Absence of Critical Loops Implies Total Preorder-Representability

We will now show that the identified criterion of critical loop (Definition 3.43) is also

sufficient, even in the more general, syntax-dependent setting. That is, we will demonstrate

in the following that Theorem 3.45 (II) holds. To this end, we need to argue that any base

change operator ◦ that satisfies (G1)–(G3), (G5), and (G6) for any critical-loop-free B gives

rise to a compatible min-complete quasi-faithful preorder assignment⪯⪯◦(.). We will show how

to obtain ⪯⪯◦(.) via a step-wise transformation of the assignment ⪯◦(.) from Definition 3.19.

The transformation from ⪯◦(.) to ⪯⪯◦(.) consists of three steps. To begin with, recall that ⪯◦
(.)

is a min-complete quasi-faithful assignment compatible with ◦ by Proposition 3.39. This

means that ⪯◦K is a total relation for each K, whence transitivity is the only condition that

⪯◦K fails to meet to qualify as a total preorder.

For the first step, we will identify a group of interpretation pairs D◦K ⊆ ⪯
◦
K such that at least

one pair from D◦K is involved whenever ⪯◦K violates transitivity. The first step then consists

in removing all D◦K from ⪯◦K, resulting in ⪯◦K
′. The relation ⪯◦K

′ will be a non-transitive and

non-total relation, but minima of models of bases will be preserved. We will then extend ⪯◦K
′

to a transitive relation ⪯◦K
′′ in the second step, by taking the transitive closure. We will show

that only elements from D◦K can be added back by the transitive closure, which guarantees

that, again, minima of models of bases are preserved. In a last step, we obtain the final result

⪯⪯◦(.) by “linearizing” ⪯◦K
′ to a total preorder in a way that minima of models of bases are

again preserved.

Step I: Removing detached pairs. Let ◦ be a base change operator that satisfies (G1)–

(G3), (G5), and (G6). Then, for any two bases K, Γ ∈ B, all quasi-faithful assignments

⪯(.) compatible with ◦ yield the same set of minimal interpretations of ⟦Γ⟧ with respect to

⪯K. This property already stipulates much of ⪯K for each K (for some base logics ⪯K is

even completely determined by that property). Still, in the general case, when forming a

compatible assignment, there is certain freedom on relating those interpretations for which

the given base change operator gives no hint about how to order them. The following notion

formally defines such pairs of interpretations.

Definition 3.48. Let ◦ be a base change operator for B and K a base of B. A pair (I, I′) ∈ Ω×Ω
is called detached from ◦ in K, if I, I′ ̸|= K ◦ Γ for all Γ ∈ B with I, I′ |= Γ . With D◦K we

denote the set of all pairs (I, I′) which are detached from ◦ in K and satisfy I ̸= I′.

Note that detachment is a symmetric property, i.e., (I, I′) is detached if and only if (I′, I)
is. It so happens that ⪯◦K may contain too many of such detached pairs, i.e., in some cases,

⪯◦K is not a total preorder even if the base change operator ◦ is total preorder-representable

(see also Section 3.8.2). In the following, we show that every violation of transitivity in ⪯◦K
involves a detached pair (as illustrated in Figure 3.49).
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I0

I1

I2≺
◦ K

⪯ ◦
K

⪯
◦

K

Figure 3.49: Illustration of a critical loop-situation of length 3 on the semantic side. If B
does not exhibit a critical loop, then this situation is, due to Lemma 3.50, only
possible when (I1,I2) or (I2,I0) is a detached pair.

Lemma 3.50. Assume B be a base logic which does not admit a critical loop and ◦ a base

change operator for B which satisfies (G1)–(G3), (G5), and (G6). If I0 ⪯◦K I1 and I1 ⪯◦K I2

with I0 ̸⪯◦K I2, then (I0, I1) or (I1, I2) is detached from ◦ in K.

Proof. Let I0, I1, I2 such that a violation of transitivity is obtained as given above, i.e.

I0 ⪯◦K I1 and I1 ⪯◦K I2 with I0 ̸⪯◦K I2. By Definition 3.19, we have that I0 ̸⪯◦K I2 is

only possible if I0 ̸|= K. From Definition 3.19 and I0 ⪯◦K I1, we obtain I1 ̸|= K. By an

analogue argument we obtain I2 ̸|= K. Thus, for the rest of the proof we have I0, I1, I2 ̸|= K.

Towards a contradiction, assume that (I0, I1) and (I1, I2) are both not detached from ◦
in K. By Lemma 3.22 the relation ⪯◦K is total, and thus we have that I2 ≺◦K I0. As I2 ̸|= K
and I0 ̸⪯◦K I2, due to Lemma 3.23(a), there is a base Γ2,0 ∈B with I0, I2 |= Γ2,0 such that

I2 |= K◦Γ2,0 and I0 ̸|= K◦Γ2,0. By I0, I1, I2 ̸|= K and Definition 3.19 we obtain I0 ⊑◦K I1 and

I1 ⊑◦K I2 (cf. Definition 3.18). Because (I0, I1) is not detached, there is some Γ0,1 ∈B with

I0, I1 |= Γ0,1 such that I0 |= K ◦ Γ0,1 or I1 |= K ◦ Γ0,1. By Definition 3.18 and I0 ⊑◦K I1 we

obtain that I0 |= K ◦ Γ0,1. Using an analogue argumentation, there exist Γ1,2 ∈B satisfying

I1, I2 |= Γ1,2 and I1 |= K ◦ Γ1,2.

Recall that ⪯◦
(.)

is compatible, min-retractive and quasi-faithful by Lemma 3.24 and by the

proof of Lemma 3.38. Let Γi = (K ◦ Γi,i⊕1)⋓ Γi⊕2,i for each i ∈ {0, 1, 2}. Note that each Γi is a

consistent base, since we have Ii ∈ ⟦Γi⟧. We now show that Conditions (1) and Condition

(2) from Definition 3.43 are satisfied:

(1) Towards a contradiction, assume that K is consistent with some Γi,i⊕1. From (G2)

we obtain ⟦K ◦ Γi,i⊕1⟧ = ⟦K ⋓ Γi,i⊕1⟧ for some i ∈ {0,1,2}. Since Ii ∈ ⟦Γi⟧, by the

definition of Γi we have Ii ∈ ⟦(K ◦ Γi,i⊕1)⋓ Γi⊕2,i⟧= ⟦(K ⋓ Γi,i⊕1)⋓ Γi⊕2,i⟧ and obtain

Ii ∈ ⟦K⟧ for some i ∈ {0, 1,2}, which contradicts I0, I1, I2 ̸|= K.

(2) By the postulate (G1) we have ⟦K ◦ Γi,i⊕1⟧ ⊆ ⟦Γi,i⊕1⟧ for each i ∈ {0,1,2}. The

definition of Γi yields ⟦Γi⟧ ⊆ ⟦Γi,i⊕1 ⋓ Γi⊕2,i⟧ for each i ∈ {0,1,2}. Substituting i by

i ⊕ 1 yields ⟦Γi⊕1⟧ ⊆ ⟦Γi⊕1,i⊕2 ⋓ Γi,i⊕1⟧; showing that ⟦Γi⟧∪ ⟦Γi⊕1⟧ ⊆ ⟦Γi,i⊕1⟧ holds for

each i ∈ {0,1, 2}.
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We show that each Γi ⋓ Γ j is inconsistent, by assuming the contrary, i.e., there are

some i, j ∈ {0,1,2} such that i ̸= j and Γi ⋓ Γ j is consistent, i.e. there exists some

I∗ ∈ ⟦Γi⟧ ∩ ⟦Γ j⟧. From the definition of Γi and the definition of Γ j, we obtain

I∗ ∈ ⟦K◦Γi,i⊕1⟧∩⟦Γi⊕2,i⟧∩⟦K◦Γ j, j⊕1⟧∩⟦Γ j⊕2, j⟧. Hence, we obtain I∗ ∈ ⟦Γi⊕2,i⋓Γ j⊕2, j⟧

and from compatibility of ⪯◦
(.)

with ◦, we obtain I∗ ∈ min(⟦Γi,i⊕1⟧,⪯◦K) and I∗ ∈
min(⟦Γ j, j⊕1⟧,⪯◦K). Now observe that I0, I1, I2 ∈ ⟦Γi,i⊕1⟧ ∪ ⟦Γ j, j⊕1⟧ holds; this is be-

cause we have ⟦Γk⟧ ⊆ ⟦Γk,k⊕1⟧∪ ⟦Γk⊕n,k⟧ for each k ∈ {0,1,2}. Hence, independent

of the specific i and j, we obtain I∗ ⪯◦K Ik from I∗ ∈ ⟦K ◦ Γi,i⊕1⟧ and Lemma 3.23(b)

for each k ∈ {0,1,2}. Together, Ii ∈ ⟦K ◦ Γi,i⊕1⟧, I j ∈ ⟦K ◦ Γ j, j⊕1⟧, and compatib-

ility, imply Ii ⪯◦K I∗ and I j ⪯◦K I∗. Because of ⟦Γi⟧ ∪ ⟦Γi⊕1⟧ ⊆ ⟦Γi,i⊕1⟧, we have

that Ii , I j , I∗ ∈ ⟦Γi,i⊕1⟧ or Ii , I j , I∗ ∈ ⟦Γ j, j⊕1⟧ holds. For the case Ii , I j , I∗ ∈ ⟦Γi,i⊕1⟧,

since I j ⪯◦K I∗ and I∗ ∈ min(⟦Γi,i⊕1⟧,⪯◦K), from min-retractivity we obtain I j ∈
min(⟦Γi,i⊕1⟧,⪯◦K). As Ii ∈ min(⟦Γi,i⊕1⟧,⪯◦K), we obtain Ii ⪯◦K I j and I j ⪯◦K Ii. By

an analogue argumentation, we obtain for the case of Ii , I j , I∗ ∈ ⟦Γ j, j⊕1⟧ the same

conclusion, i.e., Ii ⪯◦K I j and I j ⪯◦K Ii. This shows that Ii ⪯◦K I j and I j ⪯◦K Ii must

hold in general.

We consider in the following all possible choices for i and j. For the case of i = 0 and

j = 2, we obtain a contradiction to I2 ≺◦K I0. We next consider the case of i = 1 and

j = 2. Because of ⟦Γ0⟧= ⟦K ◦ Γ0,1⟧∩ ⟦Γ2,0⟧=min(⟦Γ0,1⟧,⪯◦K)∩ ⟦Γ2,0⟧, we have that

I0, I2, I∗ ∈ ⟦Γ2,0⟧ holds. As I0 ⪯◦K I∗ and I∗ ∈min(⟦Γ2,0⟧,⪯◦K) holds, min-retractivity

of⪯◦K yields I0 ∈min(⟦Γ2,0⟧,⪯◦K). Consequently, we obtain that I0 ⪯◦K I2 holds, which

is a contradiction to I2 ≺◦K I0. The proof for the case of i = 2 and j = 1 is analogous

to the case of i = 1 and j = 2. We obtain that Condition (2) from Definition 3.43 is

satisfied.

Recall that by assumption, the base logic B does not exhibit a critical loop. Yet Γ0,1,

Γ1,2, Γ2,0 satisfy Conditions (1) and Condition (2) of a a critical loop, hence Condition (3)

of Definition 3.43 must be violated. This means that there exists some ΓÏ ∈ B such that

⟦Γi ⋓ ΓÏ⟧ ̸= ; for every i ∈ {0,1,2}, but no required base Γ ′Ï ∈B such that Condition (3) is

satisfied. Consequently, for all Γ ∈B holds

⟦Γ⟧ ̸= ; implies ⟦Γ⟧ ̸⊆ ⟦ΓÏ⟧ \ (⟦Γ0,1⟧∪ ⟦Γ1,2⟧∪ ⟦Γ2,0⟧). (⋆1)

For the remaining parts of the proof, let IÏi ∈ Ω be an interpretation with IÏi ∈ ⟦Γi⟧∩ ⟦ΓÏ⟧
for each i ∈ {0,1,2}. Because ◦ satisfies (G1) and (G3), we obtain ⟦K ◦ ΓÏ⟧ ⊆ ⟦ΓÏ⟧ and

consistency of K ◦ ΓÏ. Together with (⋆1) we obtain that there exists k ∈ {0,1,2} with

⟦K ◦ ΓÏ⟧∩ ⟦Γk,k⊕1⟧ ̸= ;. We consider each of the two cases ⟦K ◦ ΓÏ⟧∩ ⟦K ◦ Γk,k⊕1⟧ ≠ ; and

⟦K ◦ ΓÏ⟧∩ ⟦K ◦ Γk,k⊕1⟧= ; independently.
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The case of ⟦K ◦ ΓÏ⟧∩ ⟦K ◦ Γk,k⊕1⟧ ̸= ;. As first step, we show that

IÏ0 ⪯
◦
K IÏ2 and IÏ2 ⪯

◦
K IÏ1 and IÏ1 ⪯

◦
K IÏ0 (⋆2)

holds for this case. Clearly, ⟦K ◦ ΓÏ⟧∩ ⟦K ◦ Γk,k⊕1⟧ ̸= ; implies that there exists some I⋆k ∈ Ω
such that I⋆k ∈ ⟦K ◦ ΓÏ⟧ and I⋆k ∈ ⟦K ◦ Γk,k⊕1⟧. From the compatibility of ◦ with ⪯◦

(.)
, we

obtain IÏk ∈min(⟦Γk,k⊕1⟧,⪯◦K), implying that IÏk ⪯
◦
K I⋆k holds. Remember that IÏk , I⋆k ∈ ⟦ΓÏ⟧

and I⋆k ∈ min(⟦ΓÏ⟧,⪯◦K), by min-retractivity we obtain IÏk ∈ min(⟦ΓÏ⟧,⪯◦K). From this last

observation and from IÏk⊕1, IÏk⊕2 ∈ ⟦ΓÏ⟧ we obtain that IÏk ⪯
◦
K IÏk⊕1 and IÏk ⪯

◦
K IÏk⊕2 holds.

Remember that by Condition (2) we have IÏk , IÏk⊕2 ∈ ⟦Γk⊕2,k⟧ and by compatibility we obtain

IÏk⊕2 ∈ min(⟦Γk⊕2,k⟧,⪯◦K). This last observation, together with IÏk ⪯
◦
K IÏk⊕2, Ik |= K ◦ Γ

and min-retractivity, yields IÏk ∈ min(⟦Γk⊕2,k⟧,⪯◦K). Thus, we have IÏk⊕2 ⪯
◦
K IÏk . By a

symmetric argument, we have IÏk⊕1, IÏk⊕2 ∈ ⟦Γk⊕1,k⊕2⟧ and IÏk⊕1 ∈ ⟦K ◦ Γk⊕1,k⊕2⟧. Thus,

we obtain IÏk⊕1 ⪯
◦
K IÏk⊕2 from Lemma 3.23(b). By combination of these observations with

IÏk⊕1, IÏk⊕2 ∈ ⟦ΓÏ⟧ and IÏk ∈ min(⟦ΓÏ⟧,⪯◦K), we obtain IÏk , IÏk⊕1, IÏk⊕2 ∈ min(⟦ΓÏ⟧,⪯◦K) from

min-retractivity. As direct consequence, we obtain that (⋆2) holds.

We will now show that a contradiction with I2 ≺◦K I0 is unavoidable. Recall that

I0, I2 ∈ ⟦Γ2,0⟧ and I2 |= K ◦ Γ2,0, but I0 ̸|= K ◦ Γ2,0. The last observation together with

the compatibility of ⪯◦
(.)

with ◦ implies that IÏ2 ∈ min(⟦Γ2,0⟧,⪯◦K) holds. Because (⋆2)

holds, we obtain IÏ0 ∈ min(⟦Γ2,0⟧,⪯◦K) from min-retractivity of ⪯◦
(.)

. Similarly, we ob-

tain I0, IÏ0 ∈ min(⟦Γ0,1⟧,⪯◦K) from compatibility and I0, IÏ0 ∈ ⟦K ◦ Γ0,1⟧; showing that

I0 ⪯◦K IÏ0 holds. Because of IÏ0 , I0, I2 ∈ ⟦Γ2,0⟧, we obtain I0 ∈ min(⟦Γ2,0⟧,⪯◦K) from

IÏ0 ∈ min(⟦Γ2,0⟧,⪯◦K) and min-retractivity, and consequently, we obtain the contradiction

I0 ⪯◦K I2.

The case of ⟦K◦ΓÏ⟧∩⟦K◦Γk,k⊕1⟧ = ;. Using ⟦K◦ΓÏ⟧∩⟦Γk,k⊕1⟧ ̸= ; yields that there exist some

I∗ ∈ ⟦K ◦ ΓÏ⟧∩ ⟦Γk,k⊕1⟧. From Lemma 3.23(c) and I∗, IÏk ∈ ⟦Γk,k⊕1⟧ and IÏk ∈ ⟦K ◦ Γk,k⊕1⟧

and I∗ /∈ ⟦K ◦ Γk,k⊕1⟧ we obtain IÏk ≺
◦
K I∗. Because (G1) is satisfied by ◦, we have that

I∗ ∈ ⟦K ◦ ΓÏ⟧ implies I∗ ∈ ⟦ΓÏ⟧. We obtain the contradiction I∗ ⪯◦K IÏk from I∗, IÏk ∈ ⟦ΓÏ⟧

and I∗ ∈ ⟦K ◦ ΓÏ⟧ by using Lemma 3.23(b).

In summary, this shows that Conditions (1)–(3) from Definition 3.43 are satisfied, i.e.,

Γ0,1, Γ1,2, Γ2,0 form a critical loop. This contradicts the assumption that B does not exhibit a

critical loop and consequently, (I0, I1) or (I1, I2) is detached from ◦ in K. □

Lemma 3.50 provides the rationale for the first transformation step: For every K ∈B, we

obtain ⪯◦K
′ by removing all non-reflexive detached pairs from ⪯◦K, that is, ⪯◦K

′ =⪯◦K \D
◦
K.

The resulting ⪯◦K
′ is not guaranteed to be total anymore, and it is not necessarily transitive.

But we will show that ⪯◦K
′ inherits other important properties from ⪯◦K.
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I0

I1

I2 I3

Ii

Ii+1

In

≺
◦ K

⪯
◦

K

⪯◦K

⪯
◦K

⪯◦
K ⪯◦K (not detached)

detached

Figure 3.52: Illustration of a critical loop-situation of length n on the semantic side. This
situation is due to Lemma 3.53 impossible for ⪯◦K if B does not exhibit a critical
loop. IfB does not exhibit a critical loop, then this situation is due to Lemma 3.53
only possible when there is some i ∈ {1, . . . , n} such that (Ii , Ii⊕1) is a detached
pair.

Lemma 3.51. Let B = (L,Ω, |=,B,⋓) be a base logic which does not admit a critical loop, let ◦
be a base change operator satisfying (G1)–(G3), (G5), and (G6) and let ⪯◦K be a quasi-faithful

min-friendly assignment compatible with ◦. For each K, Γ ∈B, min(⟦Γ⟧,⪯◦K
′) =min(⟦Γ⟧,⪯◦K)

holds and ⪯◦K
′ is min-complete and reflexive.

Proof. By definition of ⪯◦K
′ we have I ⪯◦K

′ I′ if and only if I ⪯◦K I′ for all (I, I′) ∈ Ω×Ω
which are not detached pairs. Because for every I, I′ ∈ ⟦Γ⟧ with I ∈min(⟦Γ⟧,⪯◦K) we have

I |= K ◦ Γ by compatibility of ⪯◦
(.)

with ◦. Consequently, the pair (I, I′) is not detached and

thus min(⟦Γ⟧,⪯◦K
′) =min(⟦Γ⟧,⪯◦K). The latter implies that min-completeness of ⪯◦K carries

over to ⪯◦K
′. Reflexivity of ⪯◦K

′ is obtained by construction, the reflexivity of ⪯◦K and by the

definition of D◦K. □

Step II: Taking the transitive closure. In this step, for every K ∈B, we obtain⪯◦K
′′ by taking

the transitive closure of ⪯◦K
′, i.e., we have ⪯◦K

′′ = T C(⪯◦K
′) = T C(⪯◦K \D

◦
K). The resulting

⪯◦K
′′ is still not guaranteed to be total, but it is reflexive and transitive by construction, and it

inherits further important properties from ⪯◦K
′. It will turn out that the transitive closure will

only add pairs to ⪯◦K
′ that are detached pairs. This means that ⪯◦K

′′ contains only elements

from ⪯◦K
′ and from D◦K. Because adding detached pairs does not influence minimal sets of

models of a base Γ with respect to ⪯K, we will obtain that these sets are preserved when

taking the transitive closure.

If the transitive closure would (hypothetically) add non-detached pairs to ⪯◦K
′, then the

relation ⪯◦K would contain a circle of interpretations consisting only of non-detached pairs

(such as the circle illustrated in Figure 3.52). The following lemma shows that for base logics

without critical loops such circles do not exist in ⪯◦K.
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ω∗

ωλ

ωb

ωcωa

Figure 3.55: Exemplary situation of Lemma 3.56. Four interpretations lying on a strict circle,
connected by another interpretation I∗.

Lemma 3.53. Let B = (L,Ω, |=,B,⋓) be a base logic which does not admit a critical loop, let

K ∈B be a base, and let ◦ be a base change operator for B that satisfies (G1)–(G3), (G5), and

(G6). If there are three or more interpretations I0, . . . , In ∈ Ω, i.e. n≥ 2, such that

(a) I0 ≺◦K I1,

(b) Ii ⪯◦K Ii⊕1 for all i ∈ {1, . . . , n}, where ⊕ is addition mod(n+ 1),

then there is some i ∈ {1, . . . , n} such that (Ii , Ii⊕1) is a detached pair.

The proof will make use of circles of interpretations which are violating the situation given

in Lemma 3.53. To make such situations easier to handle, we introduce the following notion

which makes implicit use of ⪯◦
(.)

, defined in Definition 3.19.

Definition 3.54. Let B = (L,Ω, |=,B,⋓) be a base logic, let K ∈B be a base, and let ◦ be a base

change operator for B that satisfies (G1)–(G3), (G5), and (G6). A sequence of interpretations

⟳ = I0, . . . , In, I0 from Ω is said to form a strict circle of length n+ 1 (with respect to ◦ and

K) if

• I0, . . . , In are satisfying Condition (a) and Condition (b) from Lemma 3.53, and

• (Ii , Ii+1) is not a detached pair for each i ∈ {0, . . . , n}, where ⊕ is addition mod(n+ 1).

We will also substitute elements in a strict circle ⟳ and use therefore the following notion.

For a substitution σ = {Ii1 7→ x1, Ii2 7→ x2, . . .}, we denote by ⟳[σ] the simultaneous

replacement of Ii j
by x j in ⟳ for all Ii j

7→ x j ∈ σ.

The following lemma will be useful, and describes situations like in Figure 3.55.

Lemma 3.56 (cross lemma). Let B = (L,Ω, |=,B,⋓) be a base logic with no critical loop, let

K ∈B be a base, and let ◦ be a base change operator for B that satisfies (G1)–(G3), (G5), and

(G6). If there are I0, . . . , In ∈ Ω, with n> 3, and pairwise distinct λ, a, b, c ∈ {0, . . . , n}, such

that
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(a) I0, I1, . . . , In, I0 is a strict circle of length n+ 1,

(b) there exists an interpretation I∗ such that

I∗ ⪯◦K Ia I∗ ⪯◦K Ib I∗ ⪯◦K Ic Iλ ⪯◦K I∗ , and

(c) every pair of ⪯◦K considered in (b) is not detached from ◦ in K,

then there is a strict circle of length m with 3≤ m≤ n.

Proof. We assume a < b < c, and we assume that the path Ic , . . . , Iλ does not contain Ia

and Ib (when seeing ⪯◦K as a graph). All other cases will follow by symmetry. We continue

by considering several cases:

The case of Iλ ≺◦K I∗. We obtain Iλ ≺◦K I∗ ⪯◦K Ic ⪯◦K . . . ⪯◦K Iλ, which yields that

⟳λc = Iλ, I∗, Ic , . . . , Iλ is a strict circle. Note that because ⟳λc contains I∗ and in addi-

tion only elements of {I0, . . . , In} \ {Ia, Ib}, we have that ⟳λc has a length of at most n.

The case of I∗ ≺◦K Ic and no prior case applies. If I∗ ≺◦K Ic, then we obtain I∗ ≺◦K Ic ⪯◦K . . .

⪯◦K Iλ ⪯◦K I∗, yielding that ⟳cλ = I∗, Ic , . . . , Iλ, I∗ is a strict circle. Note that because ⟳cλ

contains I∗ and in addition only elements of {I0, . . . , In} \ {Ia, Ib}, we have that ⟳cλ has a

length of at most n.

The case of I∗ ≺◦K Ib and no prior case applies. In this case we have Ic ⪯◦K I∗. We obtain

I∗ ≺◦K Ib ⪯◦K . . .⪯◦K Ic ⪯◦K I∗, which yields that ⟳bc = I∗, Ib, . . . , Ic , I∗ is a strict circle. Note

that because ⟳bc contains, beside of I∗, only elements of {I0, . . . , In}\ {Ia, Iλ}, we have that

⟳bc has a length of at most n.

The case of I∗ ≺◦K Ia and no prior case applies. In this case we have Ib ⪯◦K I∗. We obtain

I∗ ≺◦K Ia ⪯◦K . . . ⪯◦K Ib ⪯◦K I∗, which yields that ⟳ab = I∗, Ia, . . . , Ib, I∗ is a strict circle.

Note that because ⟳ab contains, beside of I∗, only elements of {I0, . . . , In} \ {Ic , Iλ}, we

have that ⟳ab has a length of at most n.

If none of the cases above applies, then we have that I∗ ⪯◦K Iλ and Ia ⪯◦K I∗ and

Ib ⪯◦K I∗ and Ic ⪯◦K I∗ holds. For the following line of arguments, recall that a < b < c

holds. We consider the case of 0 < λ < a; for all other cases (where 0 < λ < a does

not hold), the line of arguments is symmetric to the proof we present here in the fol-

lowing for the case of 0 < λ < a. Because I0, I1, . . . , In, I0 is a strict circle of length

n+ 1, we obtain that I0 ≺◦K I1 ⪯◦K . . . ⪯◦K Iλ ⪯◦K I∗ ⪯◦K Ic ⪯◦K . . . ⪯◦K I0. This show that

⟳0λc = I0, I1, . . . , Iλ, I∗, Ic , . . . , I0 is a strict circle. Because⟳0λc contains I∗ and additionally

only elements from I0, . . . , In, but not Ia and Ib, we obtain that ⟳0λc has a length of at most

n.

In summary, we obtain a strict circle of length m with 3≤ m≤ n for each case. □
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Note that it is not necessary to assume that I∗ is distinct from I0, . . . , In in Lemma 3.56.

We now give a full proof of Lemma 3.53.

Proof of Lemma 3.53 . Let I0, . . . , In ∈ Ω such that Condition (a) and Condition (b) of

Lemma 3.53 are satisfied. With ⊕ we denote addition mod(n+ 1). The proof will be

by induction. Note that for n = 2 we obtain the result by Lemma 3.50. We proceed with

the proof for the case of n > 2 and assume that Lemma 3.53 already holds for all m with

2 ≤ m < n. A consequence of the induction hypothesis is that there is no strict circle of

length c for 3≤ c ≤ n.

We are striving for a contradiction. Therefore, we assume ⟳0n = I0, . . . , In, I0 is a strict

circle of length n+ 1, which is, due to Condition (a) and Condition (b) from Lemma 3.53,

equivalent to assuming that (Ii , Ii⊕1) is not a detached pair for each i ∈ {1, . . . , n}. The

remaining parts of the proof show that the existence of the strict circle ⟳0n implies existence

of a critical loop.

As first step, we show that I0, . . . , In /∈ ⟦K⟧ holds. If I1 ∈ ⟦K⟧, then due Definition 3.19,

we obtain I1 ⪯◦K I0, which contradicts Condition (a). If Ii ∈ ⟦K⟧ for some i ∈ {0, 2, 3, . . . , n},
then, because of Condition (b), there is some j with I j ⪯◦K I j⊕1 and I j /∈ ⟦K⟧ and I j⊕1 ∈ ⟦K⟧;

which is again impossible due to Definition 3.19. Thus, we have I0, . . . , In /∈ ⟦K⟧ for the

remaining parts of the proof.

We continue by showing the existence of several bases, which will form a critical loop.

Definition 3.19 and Definition 3.48 together implies that for each i ∈ {1, . . . , n} exists a base

Γi,i⊕1 ∈B such that

Ii , Ii⊕1 |= Γi,i⊕1 and Ii |= K ◦ Γi,i⊕1 (#1)

holds. Moreover, by I0 ≺◦K I1 from Condition (1) and I1 ̸|= K and Lemma 3.23(a), there

exists a base Γ0,1 ∈B such that the following holds:

I0, I1 |= Γ0,1 and I0 |= K ◦ Γ0,1 and I1 ̸|= K ◦ Γ0,1. (#2)

We show that Γ0,1, Γ1,2, . . . , Γn,0 is forming a critical loop. To this end we are setting

Γi = (K ◦ Γi,i⊕1)⋓ Γi⊕n,i for each i ∈ {0, . . . , n}. By (#1) and (#2) each Γi is a consistent base

with Ii ∈ ⟦Γi⟧. We continue by verifying that Conditions (1)–(3) from Definition 3.43 are

satisfied.

(1) If K is inconsistent, then Condition (1) is immediately satisfied. We consider the

case where K is consistent and ⟦K ⋓ Γi,i⊕1⟧ ̸= ; for some i ∈ {0, . . . , n}. From

(G2) we obtain ⟦K ◦ Γi,i⊕1⟧ = ⟦K ⋓ Γi,i⊕1⟧. From Ii ∈ ⟦Γi⟧ and the definition of

Γi, we obtain Ii ∈ ⟦K ◦ Γi,i⊕1⟧ ∩ ⟦Γi⊕n,i⟧. As ⟦K ◦ Γi,i⊕1⟧ = ⟦K ⋓ Γi,i⊕1⟧, we obtain

Ii ∈ ⟦K ⋓ Γi,i⊕1⟧ ∩ ⟦Γi⊕n,i⟧. Consequently, there exists some i ∈ {0, . . . , n} such that

Ii ∈ ⟦K⟧, yielding a contradiction to I0, . . . , In /∈ ⟦K⟧.
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(2) By the postulate (G1) we have ⟦K ◦ Γi,i⊕1⟧ ⊆ ⟦Γi,i⊕1⟧ for each i ∈ {0, . . . , n}. The

definition of Γi yields ⟦Γi⟧ ⊆ ⟦Γi,i⊕1 ⋓ Γi⊕n,i⟧ ⊆ ⟦Γi,i⊕1⟧ for each i ∈ {0,1,2}. Sub-

stitution of i by i ⊕ 1 yields ⟦Γi⊕1⟧ ⊆ ⟦Γi⊕1,i⊕2 ⋓ Γi,i⊕1⟧ ⊆ ⟦Γi,i⊕1⟧; showing that

⟦Γi⟧∪ ⟦Γi⊕1⟧ ⊆ ⟦Γi,i⊕1⟧ holds for each i ∈ {0, . . . , n}.

We show that each Γi ⋓ Γ j is inconsistent, by assuming the contrary, i.e. there are some

i, j ∈ {0, . . . , n} such that i ̸= j and Γi⋓Γ j is consistent. Because of the commutativity of

⋓, we assume i < j without loss of generality. By compatibility and definition of Γi and

by definition of Γ j , there exists some I∗ ∈ ⟦Γi⊕n,i ⋓ Γ j⊕n, j⟧ with I∗ ∈min(⟦Γi,i⊕1⟧,⪯◦K)
and I∗ ∈ min(⟦Γ j, j⊕1⟧,⪯◦K). Recall that Ii , Ii⊕1 ∈ ⟦Γi,i⊕1⟧ and I j , I j⊕1 ∈ ⟦Γ j, j⊕1⟧.

Consequently, for all k ∈ {i, i⊕1, j, j⊕1} holds I∗ ⪯◦K Ik. Moreover, because of (#1) and

(#2) we obtain Ii ⪯◦K I∗ and I j ⪯◦K I∗ from Lemma 3.23(b). From I∗ ∈ ⟦Γi⊕n,i⋓Γ j⊕n, j⟧

we obtain, by an analogous argument, that Ii⊕n ⪯◦K I∗ and I j⊕n ⪯◦K I∗ holds. In

summary, we have:

I∗ ⪯◦K Ii I∗ ⪯◦K I j I∗ ⪯◦K Ii⊕1 Ii⊕n ⪯◦K I∗

Ii ⪯◦K I∗ I j ⪯◦K I∗ I∗ ⪯◦K I j⊕1 I j⊕n ⪯◦K I∗
(�1)

Note that all pairs (I∗, Iξ), (I∗, Iξ⊕1) and (Iξ⊕n, I∗) with ξ ∈ {i, j} are not detached.

We are now striving for a contradiction by showing the existence of a strict circle with

a length of at most n. Recall that ⟳0n = I0, . . . , In, I0 is a strict circle of length n+ 1.

At first, we consider two particular cases:

(Ii = I j⊕1) We obtain a strict circle of length of at most n from Lemma 3.56 by using

⟳0n and setting λ = i, a = j, b = i ⊕ 1, and c = j ⊕ n. Note that λ, a, b, c are

pairwise distinct indices.

(I j = Ii⊕1) We obtain a strict circle of length of at most n from Lemma 3.56 by using

⟳0n and setting λ = i, a = j, b = j ⊕ 1, and c = i ⊕ n. Note that λ, a, b, c are

pairwise distinct indices.

For all situations not covered by the cases above, we obtain that i, i ⊕ 1, j, j ⊕ 1 are

pairwise distinct. Because of (�1), we can apply Lemma 3.56 by using ⟳0n and setting

λ = i, a = i⊕ 1, b = j, and c = j⊕ n. This yields a strict circle with a length of at most

n.

In summary, for every possible case we obtain a contradiction, which shows that

Condition (2) of critical loops (cf. Definition 3.43) is satisfied.

(3) We show Condition (3) from Definition 3.43 by contradiction. Therefore, assume there

is a base ΓÏ ∈B such that for

B = {Γi | ⟦ΓÏ ⋓ Γ⟧ ̸= ;} ⊆ {Γ0, . . . , Γn} (⋆1)
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holds |B| ≥ 3 and there exists no base Γ ′Ï ∈ B as required by Condition (3). Con-

sequently, for each base Γ ∈B we have

⟦Γ⟧ ̸= ; implies ⟦Γ⟧ ̸⊆ ⟦ΓÏ⟧ \
�

⟦Γ0,1⟧∪ . . .∪ ⟦Γn,0⟧
�

. (⋆2)

From (⋆1) we obtain that ΓÏ is consistent, and thus, by (G3), that K◦ΓÏ is consistent and

from satisfaction of (G1) we obtain ⟦K◦ ΓÏ⟧ ⊆ ⟦ΓÏ⟧. Consequently, because of (⋆2), we

have ⟦K ◦ ΓÏ⟧ ̸⊆ ⟦ΓÏ⟧ \
�

⟦Γ0,1⟧∪ . . .∪ ⟦Γn,0⟧
�

. This implies that ⟦K ◦ ΓÏ⟧∩ ⟦Γk,k⊕1⟧ ̸= ;
for some k ∈ {0, . . . , n}. Let I⋆k be an interpretation with I⋆k ∈ ⟦K◦ΓÏ⟧∩⟦Γk,k⊕1⟧. From

(G5) and (G6), I⋆k ∈ ⟦K ◦ ΓÏ⟧∩ ⟦Γk,k⊕1⟧ and commutativity of ⋓ we obtain

I⋆k ∈min(⟦ΓÏ⟧,⪯◦K)∩ ⟦Γk,k⊕1⟧=min(⟦Γk,k⊕1 ⋓ ΓÏ⟧,⪯◦K) and Ik ⪯◦K I⋆k , (⋆3)

whereby the latter is a direct consequence of I⋆k ∈ ⟦Γk,k⊕1⟧ and Ik ∈min(⟦Γk,k⊕1⟧,⪯◦K).
Furthermore, let IÏi be some interpretation with IÏi ∈ ⟦ΓÏ ⋓ Γi⟧ for each Γi ∈ B. We

show as next for each Γξ ∈ B and for each I∗
ξ⊕n ∈ ⟦Γξ⊕n⟧ and for each I∗

ξ⊕1 ∈ ⟦Γξ⊕1⟧

that we have
I⋆k ⪯

◦
K IÏξ I∗ξ⊕n ⪯

◦
K IÏξ Iξ ⪯◦K IÏξ

IÏξ ⪯
◦
K I∗ξ⊕1 IÏξ ⪯

◦
K Iξ .

(⋆4)

We obtain I⋆k ⪯
◦
K IÏ

ξ
from Lemma 3.23(b), because I⋆k , IÏ

ξ
∈ ⟦ΓÏ⟧ and I⋆k ∈ ⟦K ◦ ΓÏ⟧

holds. From Iξ, IÏ
ξ
∈ min(⟦Γξ,ξ⊕1⟧,⪯◦K) we directly obtain Iξ ⪯◦K IÏ

ξ
and IÏ

ξ
⪯◦K Iξ.

Compatibility of ⪯◦
(.)

with ◦, together with the definitions of Γξ and Condition (2),

yields the remaining statements of (⋆4).

Moreover, as next step, we show for each Γξ ∈ B and for each I∗
ξ⊕n ∈ ⟦Γξ⊕n⟧ and for

each I∗
ξ⊕1 ∈ ⟦Γξ⊕1⟧ the following holds:

I∗ξ⊕n ≺
◦
K Iξ if and only if I∗ξ⊕n ≺

◦
K IÏξ

Iξ ≺◦K I∗ξ⊕1 if and only if IÏξ ≺
◦
K I∗ξ⊕1

(⋆5)

Observe that (⋆5) holds, otherwise, we would obtain a strict circle of length 3. These

strict circles are directly obtainable from (⋆4): if I∗
ξ⊕n ≺

◦
K Iξ and IÏ

ξ
⪯◦K I∗

ξ⊕n, obtain

the strict circle I∗
ξ⊕n ≺

◦
K Iξ ⪯◦K IÏ

ξ
⪯◦K I∗

ξ⊕n with a length of 3. For all other cases, we

obtain analogously a strict circle of length 3.

Now let ℓmin,ℓmed,ℓmax be integers with 0≤ ℓmin < ℓmed < ℓmax ≤ n such that Γk⊕ℓmin
,

Γk⊕ℓmed
, Γk⊕max ∈ B and ℓmin is the smallest number from {0, . . . , n} with Γk⊕ℓmin

∈ B,

and ℓmax is the greatest number from {0, . . . , n} with Γk⊕max ∈ B. For convenience,

we will sometimes write ℓx and Ix , instead of ℓk⊕ℓx
and Ik⊕ℓx

, respectively, for any

x ∈ {min,med, max}.
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We now establish that replacing ωi in ⟳0n by IÏi for some Γi ∈ B yields again a strict

circle. Remember that each pair given in (⋆4) and (⋆5) is a non-detached pair. Because

of this and because ⟳0n is a strict circle of length n+ 1, we obtain from (⋆4) and (⋆5)

that ⟳0n[σ] is also a strict circle of length n+ 1 for each substitution σ with

σ ⊆ {Imin 7→ IÏmin, Imed 7→ IÏmed, Imax 7→ IÏmax} ,

i.e., substituting each Ix by IÏx in I0, I1, . . . , In, for some of x ∈ {min,med, max}, yields

a strict circle of length n+ 1.

We consider two cases, the case where Γk ⋓ ΓÏ is inconsistent and the case where Γk ⋓ ΓÏ
is consistent.

The case of Γk ⋓ ΓÏ is inconsistent. For this case we have that Γk /∈ B holds. Remember

that by (⋆3) and (⋆4) the following holds:

Ik ⪯◦K I⋆k I⋆k ⪯
◦
K IÏmed

I⋆k ⪯
◦
K IÏmin I⋆k ⪯

◦
K IÏmax

We obtain that there exists a strict circle with a length of at most n by using Lemma 3.56

when setting λ = k, a = k⊕ ℓmin, b = k⊕ ℓmed and c = k⊕ ℓmax, using the strict circle

⟳0n[Ia 7→ IÏp , Ib 7→ IÏτ , Ic 7→ IÏq ].

The case of Γk ⋓ ΓÏ is consistent. This case is equivalent to having ℓmin = 0, i.e.,

Γmin = Γk ∈ B. Consequently, we have that IÏk ∈ ⟦Γk ⋓ ΓÏ⟧.

From the definition of Γk, and from IÏk , I⋆k ∈ ⟦Γk,k⊕1⟧ with IÏk ∈ ⟦K ◦ Γk,k⊕1⟧, and

from compatibility and min-retractivity we also obtain I⋆k , IÏk ∈ ⟦K ◦ Γk,k⊕1⟧∩ ⟦ΓÏ⟧ =
min(⟦Γk,k⊕1⟧,⪯◦K)∩ ⟦ΓÏ⟧. Consequently, all observations for I⋆k do also hold for IÏk ; in

particular, this applies to (⋆3)–(⋆5). Thus, we assume I⋆k = IÏk in the following.

Together with (⋆4) and (⋆5) we can summarize as follows:

I⋆k ⪯
◦
K IÏmax I⋆k ⪯

◦
K Ik⊕1 I⋆k ⪯

◦
K Ik

I⋆k ⪯
◦
K IÏmed Ik⊕n ⪯◦K I⋆k Ik ⪯◦K I⋆k

(⋆6)

We are striving for a contradiction by showing the existence of a strict circle of length

that is strictly smaller than n+1. Therefore, we will make use of Lemma 3.56, whenever

that is possible. We consider three cases in the following, depending on the values of

ℓmed and ℓmax. Recall that 1≤ ℓmed < ℓmax ≤ n holds.
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(ℓmed ̸= 1) Because of (⋆6), we can directly apply Lemma 3.56 by setting λ = k,

a = k⊕1, b = k⊕ℓmed and c = k⊕ℓmax, and by using the strict circle⟳0n[Iτ 7→ IÏτ ,

Iq 7→ IÏq ] for Lemma 3.56, which yields a strict circle with a length of at most n.

(ℓmax ̸= n) We apply Lemma 3.56 by setting λ = k, a = k ⊕ ℓmed, b = k ⊕ ℓmax and

c = k ⊕ n, and by using the strict circle ⟳0n[Ip 7→ IÏp , Iτ 7→ IÏτ], which yields

again a strict circle with a length of at most n.

(ℓmed = 1 and ℓmax = n) Because of ℓmax = n, we have that IÏmax ∈ ⟦Γk⊕n⟧. Together

with I⋆k ∈ ⟦Γk⟧, we obtain from (⋆4) that IÏmax ⪯
◦
K I⋆k . From the min-retractivity of

⪯◦K and Γk⊕n ∈ B, we obtain IÏmax ∈min(⟦ΓÏ⟧,⪯◦K), which implies IÏmax ⪯
◦
K IÏmed.

If IÏmax ≺
◦
K IÏmed, then we obtain the strict circle IÏmax, IÏmed, Ik⊕(ℓmed+1), . . . ,

Ik⊕(ℓmax+n), IÏmax which has a length of at most n. Due to the induction hypo-

thesis there is no such strict circle, and thus, IÏmax ≺
◦
K IÏmed is impossible. From

totality of ⪯◦K we obtain that IÏmed ⪯
◦
K IÏmax holds. If k⊕ ℓmax = 0, then we obtain

the strict circle IÏmax, Ik, IÏmed, IÏmax of length 3. If k = 0, then we obtain the

strict circle Ik, IÏmed, IÏmax, Ik of length 3. If none of the prior cases applies, then

⟳ = I0, I1, . . . , IÏmax, IÏmed, . . . , I0 is a strict circle. Note that Ik is not part of the

strict circle ⟳, and consequently the length of ⟳ is bounded by n.

We obtain a contradiction in every case, which shows that Condition (3) of Defini-

tion 3.43 is satisfied.

In summary, assuming that each (Ii , Ii⊕1) is not a detached pair leads to formation of a

critical loop by Γ0,1, Γ1,2, . . . , Γn,0; contradicting the critical loop-freeness of B. Consequently,

at least one (Ii , Ii⊕1) has to be a detached pair. □

By employing Lemma 3.53 we show now that transformation of ⪯◦K
′ to ⪯◦K

′′ by taking the

transitive closure only adds detached pairs.

Lemma 3.57. Let B = (L,Ω, |=,B,⋓) be a base logic which does not admit a critical loop, let

K ∈B be a base, and let ◦ be a base change operator for B that satisfies (G1)–(G3), (G5), and

(G6). The following holds:

⪯◦K
′ ⊆ ⪯◦K

′′ ⊆ ⪯◦K

Proof. By construction of ⪯◦K
′′, we have ⪯◦K

′ ⊆ ⪯◦K
′′, and by construction of ⪯◦K

′ we have

⪯◦K
′ ⊆ ⪯◦K. To show that ⪯◦K

′′ ⊆ ⪯◦K holds, we assume the contrary, i.e., there exists

a pair (I1, I0) ∈ ⪯◦K
′′ such that I1 ̸⪯◦K I0. From ⪯◦K

′ ⊆ ⪯◦K we obtain I1 ̸⪯◦K
′ I0 and

because ⪯◦K is a total relation, we have that I0 ≺◦K I1 holds. By the definition of transitive

closure (cf. Section 2.2), there exist I2, . . . , In ∈ Ω, for some n ∈ N, such that I1 ⪯◦K
′ I2

and In ⪯◦K
′ I0 and Ii ⪯◦K

′ Ii+1 for each i ∈ {2, . . . , n − 1}. From ⪯◦K
′ ⊆ ⪯◦K, we obtain

I0 ≺◦K I1 ⪯◦K I2 . . . ⪯◦K In ⪯◦K I0. We obtain a contradiction, because ⪯◦K
′ does not contain
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any detached pairs, but due to Lemma 3.53 there is some i ∈ {2, . . . , n−1} such that (Ii , Ii+1)

is a detached pair. Consequently, we obtain ⪯◦K
′′ ⊆ ⪯◦K. □

Combining Lemma 3.51 and Lemma 3.57 yields that ⪯◦K
′′ is a (possibly non-total) preorder

with useful properties. In particular, the sets of minimal models for every base Γ ∈B coincide

for ⪯◦K
′ and ⪯◦K

′′.

Lemma 3.58. Let B = (L,Ω, |=,B,⋓) be a base logic which does not admit a critical loop, let

K ∈B and let ◦ be a base change operator for Bwhich satisfies (G1)–(G3), (G5), and (G6). Then

⪯◦K
′′ is a min-complete preorder and for any Γ ∈B holds min(⟦Γ⟧,⪯◦K

′′) =min(⟦Γ⟧,⪯◦K
′).

Proof. Because of Lemma 3.57 we have min(⟦Γ⟧,⪯◦K
′′) =min(⟦Γ⟧,⪯◦K

′) for any Γ ∈B, since

⪯◦K
′′ \D◦K = ⪯

◦
K \D

◦
K. Recall that by Lemma 3.51 we have that ⪯◦K

′ is min-complete and

reflexive. Consequently, the transitive closure ⪯◦K
′′ of ⪯◦K

′ is a preorder. Moreover, as in the

proof of Lemma 3.51, from min(⟦Γ⟧,⪯◦K
′′) =min(⟦Γ⟧,⪯◦K

′)we obtain that min-completeness

carries over from ⪯◦K
′ to ⪯◦K

′′. □

Step III: Linearizing. As last step, we extend⪯◦K
′′ to a total relation without losing transitivity.

In order to obtain totality, we make use of the following result. Note that this theorem requires

the axiom of choice.3

Theorem 3.59 (Hansson 1968, Lemma 3). For every preorder ≤ on a set X there exists a

total preorder ≤lin on X such that

• if x ≤ y, then x ≤lin y, and

• if x ≤ y and y ̸≤ x, then x ≤lin y and y ̸≤lin x.

As stated in Lemma 3.58, the relation ⪯◦K
′′ is a preoder. Thus, we can safely apply

Theorem 3.59 to obtain ⪯⪯◦K from ⪯◦K
′′ through extension, i.e., ⪯⪯◦K = (T C(⪯◦K \D

◦
K))

lin. The

resulting relation ⪯⪯◦K is then a total preorder, while it still coincides with ⪯◦K
′′ regarding the

relevant properties. Combining Theorem 3.59, Lemma 3.51 and Lemma 3.58 we obtain the

desired result.

Proposition 3.60. If B does not admit a critical loop, then, for any given base change operator

◦ for B satisfying (G1)–(G3), (G5), and (G6), the mapping ⪯⪯◦
(.)

: K 7→ ⪯⪯◦K is a min-friendly

quasi-faithful preorder assignment compatible with ◦.

Proof. From Lemma 3.58 we obtain that ⪯◦
(.)
′′ is a min-complete preorder assigment. Ap-

plication of Theorem 3.59 yields a total preorder ⪯⪯◦K. Observe that linearization by The-

orem 3.59 retains strict relations, i.e., if I1 ⪯◦K
′′ I2 and I2 ̸⪯◦K

′′ I1, then I1 ⪯⪯◦K I2 and

3In set theory, axiom of choice states that for any collection of (non-empty) sets, one can construct a new set
containing an element from each set in the original collection.
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I2 ̸⪯⪯◦K I1. Thus, we have I1 ∈min(⟦Γ⟧,⪯◦K
′′) and only if I1 ∈min(⟦Γ⟧,⪯⪯◦K), which yields

min(⟦Γ⟧,⪯◦K
′′) = min(⟦Γ⟧,⪯⪯◦K) for each base Γ ∈ B. Consequently, min-completeness

carries over from ⪯◦K
′′ to ⪯⪯◦K. Moreover, by Lemma 3.51 and Lemma 3.58 we obtain

min(⟦Γ⟧,⪯⪯◦K) =min(⟦Γ⟧,⪯◦K) for each base Γ of B. As every ⪯⪯◦K is transitive and total, we

obtain that ⪯⪯◦K is min-retractive and thus, ⪯⪯◦
(.)

is a min-friendly assignment. Because ⪯◦
(.)

is a

quasi-faithful assignment which is compatible with ◦ and we have min(⟦Γ⟧,⪯⪯◦K) =min(⟦Γ⟧,⪯◦K)
for each K ∈B, we also obtain that ⪯⪯◦

(.)
is a quasi-faithful assignment which is compatible

with ◦. □

This completes the argument regarding the correspondence between the absence of critical

loops and total-preorder-representability, by establishing that the former is also sufficient for

the latter. Obviously, Theorem 3.45 (II) is a direct consequence of Proposition 3.60.

3.7 Characterization Theorems and Example

Combining the two arguments presented in Section 3.6.1 and Section 3.6.2, we establish

that the absence of critical loop coincides with universal total-preorder-representability, i.e.,

Theorem 3.45 holds.

We will now employ the novel notion of critical loop (cf. Definition 3.43) and our repres-

entation theorem for total-preorder-representability (Theorem 3.45) to show that there is no

(total) preorder assignment for the operator ◦Ex from our running example.

Example 3.61 (continuation of Example 3.20). We will now see that the base logic BEx =

(LEx,ΩEx, |=Ex, P(LEx),∪) from Example 3.11 constructed from LEx exhibits a critical loop.

For this, choose Γi,i⊕1 = {ϕi}, and K = KEx = {ψ3} (as in Example 3.11) and Γi = {ψi}
for i ∈ {0,1,2}, where ⊕ denotes addition mod 3. We consider each of the three conditions of

Definition 3.43 as a separate case:

Condition (1). Observe that KEx is inconsistent with Γ0,1, Γ1,2 and Γ2,0. Thus, Condition (1) is

satisfied.

Condition (2). For each i ∈ {0, 1, 2}, the models of bases Γi and Γi⊕1 are contained in ⟦Γi,i⊕1⟧,

but Γi is inconsistent with Γ j with i ̸= j, e.g. ⟦{ψ0}⟧∪⟦{ψ1}⟧ ⊆ ⟦{ϕ0}⟧ and {ψ0} is not

consistent with neither {ψ1} nor {ψ2}.

Condition (3). The belief base ΓÏ = {χ ′} is the only belief base consistent with Γ0, Γ1, and Γ2.

For the satisfaction of Condition (3) observe that Γ ′Ï = {ψ4} fulfils the required condition

; ̸= ⟦Γ ′Ï⟧ ⊆ ⟦ΓÏ⟧ \ (⟦Γ0,1⟧∪ ⟦Γ1,2⟧∪ ⟦Γ2,0⟧).

In summary Γ0,1, Γ1,2, and Γ2,0 form a critical loop for BEx (see Figure 3.62). As given by

Theorem 3.45 (I), every min-complete faithful preorder assignment compatible with ◦Ex is not
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⟦K⟧

ω3 ω4

ω0

ω1

ω2

ω5

⟦ψ5⟧

⟦χ⟧

⟦Γ2,0⟧
⟦

Γ 0
,1
⟧

⟦Γ
1,2
⟧

⟦Γ1⟧

⟦Γ0⟧ ⟦Γ2⟧

⟦ΓÏ⟧= ⟦χ ′⟧

⟦Γ ′Ï⟧

Figure 3.62: Critical loop situation in BEx presented in Example 3.61. The solid borders
represent the sets of models and each arrow depicts the relation ≺◦Ex

KEx
between

models.

transitive. To illustrate this, we use here the assignment ⪯◦Ex
(.) defined in Example 3.20 and

sketched in Figure 3.21 for KEx (see also Figure 3.62). Consider the revisions KEx ◦Ex Γ0,1,

KEx ◦Ex Γ1,2, and KEx ◦Ex Γ2,0. From the construction of ◦Ex given in Definition 3.46 and

compatibility of ⪯◦Ex
(.) with ◦Ex, we have

I0 ∈min(⟦Γ0,1⟧,⪯◦Ex
KEx
), but I1 ̸∈min(⟦Γ0,1⟧,⪯◦Ex

KEx
) ,

I1 ∈min(⟦Γ1,2⟧,⪯◦Ex
KEx
), but I2 ̸∈min(⟦Γ1,2⟧,⪯◦Ex

KEx
) , and

I2 ∈min(⟦Γ2,0⟧,⪯◦Ex
KEx
), but I0 ̸∈min(⟦Γ2,0⟧,⪯◦Ex

KEx
) ,

showing I0 ≺
◦Ex
KEx

I1 ≺
◦Ex
KEx

I2 ≺
◦Ex
KEx

I0, which is impossible for a transitive relation.

Moreover, observe that the construction of ◦Ex presented in Example 3.11 illustrates the

construction given by Definition 3.46 and used in the proof of Proposition 3.47. In particular,

for the example presented here one would obtain C′ = {Γ ′Ï} = {{ψ4}} when following the outline

of the construction.

Having established the necessary and sufficient criterion for total-preorder-representability,

we can now provide two more versions of the two-way representation theorem. The first

representation theorem is one where the base change operator satisfies (G4), thus abstracting
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from the syntactic form of the belief bases. Note that transitivity implies min-retractivity, and

thus a transitive min-complete relation is automatically min-friendly.

Theorem 3.63. Let B be a base logic which does not admit a critical loop. Then the following

hold:

• Every base change operator for B satisfying (G1)–(G6) is compatible with some min-

expressible min-complete faithful preorder assignment.

• Every min-expressible min-complete faithful preorder assignment for B is compatible with

some base change operator satisfying (G1)–(G6).

Proof. The first statement is a consequence of statement (II) of Theorem 3.45 together with

Lemma 3.42. The second statement is an immediate consequence of the second statement

of Theorem 3.31. □

The second representation theorem is for base change operators which do not necessarily

satisfy (G4), and thus might be sensitive to the syntax of the prior belief base.

Theorem 3.64. Let B be a base logic which does not admit a critical loop. Then the following

hold:

• Every base change operator for B satisfying (G1)–(G3), (G5), and (G6) is compatible

with some min-expressible min-complete quasi-faithful preorder assignment.

• Every min-expressible min-complete quasi-faithful preorder assignment for B is compatible

with some base change operator satisfying (G1)–(G3), (G5), and (G6).

Proof. The first statement is a consequence of statement (II) of Theorem 3.45. The second

statement is an immediate consequence of the second statement of Theorem 3.40. □

We close this section with an implication of Theorem 3.45. A base logic B=(L,Ω, |=, B,⋓)
is called disjunctive, if for every two bases Γ1, Γ2 ∈B there is a base Γ1 > Γ2 ∈B such that

⟦Γ1 > Γ2⟧= ⟦Γ1⟧∪ ⟦Γ2⟧. This includes the case of any (base) logic allowing disjunction to

be expressed on the sentence level, i.e., when for every γ,δ ∈ L there exists some γ>δ ∈ L
with ⟦γ>δ⟧= ⟦γ⟧∪ ⟦δ⟧, such that Γ1 > Γ2 can be obtained as {γ>δ | γ ∈ Γ1,δ ∈ Γ2}.

Corollary 3.65. In a disjunctive base logic, every belief change operator satisfying (G1)–(G6)

is total-preorder-representable.

Proof. A disjunctive base logic never exhibits a critical loop; Condition (3) would be violated

by picking Γ = ((Γ0 > Γ1) . . .)> Γn. □

As a consequence, for a vast amount of well-known logics, including all classical logics

such as first-order and second order predicate logic, one directly obtains total-preorder-

representablility of every AGM base change operator by Corollary 3.65.
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3.8 Discussion on The General Approach

In this chapter, we discuss some more specific aspects and noteworthy implications of our

approach. First, we will discuss the notion of base logics and demonstrate that the decision

how to define bases affects the applicability of certain notions. Next, we explore the novel

notion of min-retractivity (in comparison to transitivity) and discuss its relationship to

decomposability of disjunctions. We give additional insights into our way of encoding

operators as assignments in the next section. In the last section, we compare the existing

related works with our approach.

3.8.1 On the Notion of Min-Retractivity

As a primary ingredient to our results, the novel notion of min-retractivity has been introduced

and motivated in Section 3.2.2 and proven to serve its purpose later on. As noted earlier, it is

immediate that any preorder over Ω is min-retractive, irrespective of the choice of the other

components of the underlying base logic. On the other hand, we have exposed examples of

min-retractive relations that are not transitive for certain base logics. This raises the question

if there are conditions, under which the two notions do coincide, at least when presuming

min-completeness (a condition already known and generally accepted). We start by formally

defining this notion of coincidence.

Definition 3.66. A base logic B = (L,Ω, |=,B,⋓) is called preorder-enforcing, if every binary

relation over Ω that is total and min-friendly for B is also transitive (and hence a total preorder).

As an aside, we note that being preorder-enforcing implies the absence of critical loops.

Proposition 3.67. Every preorder-enforcing base logic does not have critical loops.

Proof. Let B = (L,Ω, |=,B,⋓) be a preorder-enforcing base logic. By Theorem 3.45, absence

of critical loops would follow from the fact that every base change operator for B satisfying

(G1)–(G6) is total-preorder-representable. To show the latter, consider an arbitrary base

change operator ◦ of that kind. By Proposition 3.27, ⪯◦
(.)

is a min-friendly faithful assignment

compatible with ◦. In particular, for every K ∈B, the corresponding ⪯◦K is total and min-

friendly for B. Yet then, by assumption, any such ⪯◦K is also a total preorder, and therefore

⪯◦
(.)

is even a preorder assignment. Hence, ◦ is total-preorder-representable. □

The question remains, which base logics are actually preorder-enforcing. We will next

present a simple criterion and then show that it is indeed necessary and sufficient for being

preorder-enforcing.

Definition 3.68. A base logic B = (L,Ω, |=,B,⋓) is called trio-expressible, if for any three

interpretations I1, I2, I3 ∈ Ω there is a base ΓI1I2I3
satisfying ⟦ΓI1I2I3

⟧= {I1, I2, I3}.
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Theorem 3.69. A base logic is preorder-enforcing if and only if it is trio-expressible.

Proof. We show the “if” direction followed by the “only if” one.

“⇐” Let ⪯ be a min-friendly total relation over Ω. Toward a contradiction, assume ⪯ is not

transitive, i.e., there exist interpretations I, I′, I′′ ∈ Ω such that I ⪯ I′ and I′ ⪯ I′′

but I ̸⪯ I′′. By totality, the latter implies I′′ ≺ I. Now consider ΓII′I′′ and note

that min(⟦ΓII′I′′⟧,⪯) ̸= ; thanks to min-completeness, but then, by min-retractivity,

min(⟦ΓII′I′′⟧,⪯) = {I, I′, I′′} follows. However, I ∈ min(⟦ΓII′I′′⟧,⪯) contradicts

I ̸⪯ I′′.

“⇒” We actually show the contraposition: starting from a base logic B = (L,Ω, |=,B,⋓)
that is not trio-expressible, we show violation of being preorder-enforcing by exhibiting

a total, min-friendly relation over Ω that is not transitive. From non-trio-expressibility,

the existence of I1, I2, I3 ∈ Ω with ⟦Γ⟧ ≠ {I1, I2, I3} for every Γ ∈B follows. Let now

⪯− be an arbitrary well-order4 over Ω− = Ω \ {I1, I2, I3}, i.e., it is total, transitive

(hence min-retractive) and min-complete, therefore also min-friendly. We now define

⪯=⪯− ∪ (Ω− × {I1, I2, I3})∪ {(I1, I2), (I1, I3), (I3, I1), (I2, I3)}.

It is easy to see that ⪯ is still a total relation. It is min-complete (for B) by case

distinction: on one hand, if ⟦Γ⟧ ̸⊆ {I1, I2, I3}, then min(⟦Γ⟧,⪯) ̸= ; follows from

min-completeness of ⪯−, on the other hand, for any two- or one-element subset of

{I1, I2, I3} also a minimum clearly exists (note that by assumption ⟦Γ⟧= {I1, I2, I3}
cannot occur). We proceed to show min-retractivity of ⪯, again by case-distinction:

If ⟦Γ⟧ ̸⊆ {I1, I2, I3} then, due to min-completeness and antisymmetry of ⪯−, the

set min(⟦Γ⟧,⪯) contains exactly one element and is strictly smaller than any other

element from ⟦Γ⟧, thus min-retractivity is vacuously satisfied. If ⟦Γ⟧ ⊂ {I1, I2, I3}
min-retractivity is easily verified case by case. We finish our argument by showing that

⪯ is not transitive: we have I2 ⪯ I3 as well as I3 ⪯ I1, but I2 ⪯ I1 fails to hold. □

The preceding theorem provides yet another argument why preorders can be used as

preference relations for finite-signature propositional logic (as in fact, they are the only

preference relations arising in that setting). However, note that the result also applies to

more complex logics such as first-order logic under the finite model semantics.5

4As discussed earlier, existence of such a ⪯− is assured by the well-ordering theorem, depending on the axiom
of choice.

5Strictly speaking, this requires a slightly non-standard (but semantically equivalent) model theory which
abstracts from the domains used and considers isomorphic models as equal.
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3.8.2 On the Encoding of Operators

We will now discuss how revision operators are encoded into a preference relation. Recall

that for K&M’s encoding, presented in Equation (3.1), the existence of a sentence form(I1, I2)

satisfying ⟦form(I1, I2)⟧ = {I1, I2} is required for any interpretations I1, I2 in the considered

logic. The problem in a general Tarskian logical setting is that there might not be such a

sentence or base.

Therefore, generalizing this idea to our case (using just the bases that do exist) bears the

danger that the relation between certain pairs of elements is left undetermined: depending

on the shape of the logic (and its model theory) as well as the operator, there might be no

preference between certain elements (because there is no revision which provides information

on the preference). We called these pairs of interpretations detached (cf. Definition 3.48). In

particular, when one wants to obtain a total relation, these elements have to be ordered in a

certain way, and the appropriate selection of a “preference” between these two interpretations

is a “non-local” choice (as it may have ramifications for other “ordering choices”). As a

solution, we came up with Definition 3.19, providing an encoding ⪯◦(.) different from the

approach by Katsuno and Mendelzon. This definition solves the problem with the detached

pairs of interpretations by treating them as equally preferable.

This uniform treatment of all detached pairs may produce a non-preorder assignment even

in cases where an encoding by means of a preorder assignment were actually possible as

demonstrated next.

Example 3.70. Let B = (L,Ω, |=,B,⋓) with L = {⊥,ϕ,ψ,γ1, . . . ,γ4} and Ω = {I1, . . . , I4},
such that:

⟦⊥⟧= {} ⟦ϕ⟧= {I1, I2, I4} ⟦ψ⟧= {I1, I3} ⟦γi⟧= {Ii}

Moreover let B = {{χ} | χ ∈ L} and let ⋓ be the idempotent, commutative binary function

over B satisfying {ϕ}⋓ {ψ} = {ϕ}⋓ {γ1} = {ψ}⋓ {γ1} = {γ1} and producing {⊥} in all other

cases. Let ◦ be as defined in the following operator table.

◦ {⊥} {ϕ} {ψ} {γ1} {γ2} {γ3} {γ4}

{⊥} {⊥} {ϕ} {ψ} {γ1} {γ2} {γ3} {γ4}
{ϕ} {⊥} {ϕ} {γ1} {γ1} {γ2} {γ3} {γ4}
{ψ} {⊥} {γ1} {ψ} {γ1} {γ2} {γ3} {γ4}
{γ1} {⊥} {γ1} {γ1} {γ1} {γ2} {γ3} {γ4}
{γ2} {⊥} {γ2} {ψ} {γ1} {γ2} {γ3} {γ4}
{γ3} {⊥} {ϕ} {γ3} {γ1} {γ2} {γ3} {γ4}
{γ4} {⊥} {γ4} {γ3} {γ1} {γ2} {γ3} {γ4}
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I4 I3 I2 I1
≺◦K ⪯◦K ⪯◦K

≺◦K

≺◦K

≺◦K

(a) Relation ⪯◦K for K = {γ4}. No preorder as I1 ⪯◦K I2 and I2 ⪯◦K I3, yet I1 ̸⪯◦K I3.

I4 I3 I2 I1≺K ≺K ⪯K

≺K

≺K

≺K

(b) Appropriate preorder encoding ⪯K of preference relation with respect to K = {γ4} for ◦.

Figure 3.71: Illustrations of the relations used in Example 3.70.

In particular, for K = {γ4}, we thus obtain

K ◦ {ϕ}= {γ4} ⟦K ◦ {ϕ}⟧= {I4}

K ◦ {ψ}= {γ3} ⟦K ◦ {ψ}⟧= {I3}

K ◦ {γi}= {γi} ⟦K ◦ {γi}⟧= {Ii}

Figure 3.71a shows that the assignment ⪯◦(.) derived from ◦ is not a preorder assignment, while

Figure 3.71b demonstrates that such an assignment for ◦ indeed exists.

Still, while failing to yield preorder assignments whenever possible, Definition 3.19 is

unique in another respect: ⪯◦(.) turns out to be the (set-inclusion-)maximal canonical repres-

entation for the preferences of an operator – a property the encoding approaches given by

Equation (3.1) do not have.

Proposition 3.72. Let ◦ be a base change operator satisfying (G1)-(G6). If⪯(.) is a min-friendly

faithful assignment compatible with ◦, then I1 ⪯K I2 implies I1 ⪯◦K I2 for every I1, I2 ∈ Ω and

every belief base K ∈B.

Proof. Toward a contradiction, assume there were I1, I2 ∈ Ω such that I1 ⪯K I2 but I1 ̸⪯◦K I2

(hence, by totality I2 ≺◦K I1).

Let us first consider the case I2 |= K. Then I2 ≺◦K I1 and faithfulness of ≺◦
(.)

imply I1 ̸|= K.

But this contradicts I1 ⪯K I2, as ⪯(.) is also faithful by assumption.

It remains to consider the case I2 ̸|= K. Then, by Lemma 3.23(a), there is a belief

base Γ with I1, I2 |= Γ such that I2 |= K ◦ Γ and I1 ̸|= K ◦ Γ . Therefore, by compatibility,

I2 ∈min(⟦Γ⟧,⪯K) = ⟦K ◦ Γ⟧ and I1 /∈min(⟦Γ⟧,⪯K) = ⟦K ◦ Γ⟧, a contradiction to I1 ⪯K I2

due to min-retractivity. □
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As a last discussion item in this section, we would like to point out that the more smoothly

and economically defined relation ⊑◦
(.)

(Definition 3.18) is very close to already serving the

purpose of the somewhat more “tinkered” ⪯◦
(.)

(Definition 3.19). In fact, the very natural

assumption of the existence of an “non-constraining” base that covers all interpretations

makes the two relation encodings coincide. In most logics, such a base is trivially available

(for instance, the empty base).

Proposition 3.73. Let B = (L,Ω, |=,B,⋓) be a base logic and ◦ be a base change operator for

B satisfying (G1)–(G6). If there exists a base ΓΩ ∈B such that ⟦ΓΩ⟧= Ω, then ⊑◦K =⪯
◦
K for

any K ∈B, i.e. I1 ⊑◦K I2 if and only if I1 ⪯◦K I2 for any I1, I2 ∈ Ω.

Proof. Let I1, I2 be two interpretations and assume there exists a base ΓΩ ∈ B such that

⟦ΓΩ⟧ = Ω. Then, for any K ∈ B, we have ⟦K ⋓ ΓΩ⟧ = ⟦K⟧ ∩ Ω = ⟦K⟧. We show the

equivalence of ⊑◦K and ⪯◦K in two directions:

“⇒” Let I1 ⊑◦K I2. Assume for a contradiction that I1 ̸⪯◦K I2. From Definition 3.19, we have

I1 ̸|= K and three cases: I1 |= K, I2 |= K or I1 ̸⊑◦K I2. The case I1 |= K immediately

contradicts I1 ̸|= K and the third case I1 ̸⊑◦K I2 contradicts our assumption I1 ⊑◦K I2.

For the remaining case I2 |= K, since I2 ∈ ⟦K⟧ = ⟦K ⋓ ΓΩ⟧, from postulate (G2) we

obtain ⟦K ◦ ΓΩ⟧= ⟦K⋓ ΓΩ⟧. From Definition 3.18, we have two subcases:

I1 |= K ◦ ΓΩ. Since ⟦K ◦ ΓΩ⟧ = ⟦K ⋓ ΓΩ⟧, we have I1 ∈ ⟦K ⋓ ΓΩ⟧ = ⟦K⟧, which

contradicts I1 ̸|= K.

I2 ̸|= K◦ΓΩ. Since ⟦K◦ΓΩ⟧ = ⟦K⋓ΓΩ⟧, we have I2 ̸∈ ⟦K⋓ΓΩ⟧, and hence I2 ̸∈ ⟦K⟧,

which contradicts our case assumption I2 |= K. □

“⇐” Let I1 ⪯◦K I2. In view of Definition 3.19, we consider two cases: I1 |= K or (I1, I2 ̸|= K
and I1 ⊑◦K I2). The second case immediately yields the desired I1 ⊑◦K I2. For the

former case, I1 |= K, assume for a contradiction I1 ̸⊑◦K I2. Then, there exists Γ ∈B

with I1, I2 ∈ ⟦Γ⟧ such that I1 ̸|= K◦Γ and I2 |= K◦Γ . Since I1 ∈ ⟦K⟧∩⟦Γ⟧ = ⟦K⋓Γ⟧,

from postulate (G2) we have ⟦K ◦ Γ⟧ = ⟦K ⋓ Γ⟧. This implies I1 ∈ ⟦K ◦ Γ⟧, which

contradicts I1 ̸|= K ◦ Γ .

3.9 Related Work

In settings beyond propositional logic, we are aware of three closely related approaches

that propose model-based frameworks for revision of belief bases (or sets) without fixing

a particular logic or the internal structure of interpretations, and characterize revision

operators via minimal models à la K&M with some additional assumptions. In the following,

we discuss these results and their relationship to our approach. Table 3.74 summarizes the
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three approaches and compares them with K&M’s result and our approach, which comes in

four variants.

Grove [Gro88]. One semantics-based approach related to the one of K&M was proposed by

Grove 1988 in the setting of Boolean-closed logics. Instead of a preorder relation ⪯K, he

originally characterized AGM revision operators via systems of spheres, collections S of sets

of interpretations satisfying certain conditions. The notion of a system of spheres is closely

related to that of a faithful preorder relation ⪯K as the latter can be generated from the

former [GR95]. Given a faithful preorder ⪯K, for each I ∈ Ω, one can define SI as a set of

interpretations I′ such that I′ ⪯K I. However, the set S of all such sets might not satisfy

min-completeness in general (Grove [Gro88] denotes min-completeness with (S4) – one of

the four conditions that must be satisfied for a sphere system). Delgrande and colleagues

[DPW18] then reformulated Grove’s representation theorem stating that (expressed in our

terminology) any AGM revision operator can be obtained from a compatible min-complete

faithful preorder assignment, provided the set of interpretations is Ω-expressible, i.e. for any

subset Ω′ ⊆ Ω there exists a base Γ such that ⟦Γ⟧ = Ω′. In this formulation, Groves result

also holds for logics with infinite Ω.

Grove’s result constitutes a special case of our representation theorem: from the assumption

of Boolean-closedness, it follows that the considered logics are disjunctive and therefore free

of critical loops (cf. Theorem 3.45 and Corollary 3.65). The assumption of Ω-expressibility

immediately implies min-expressibility for all relations. In the light of these observations,

Grove’s result turns out to be a special case of the third variant of our result in Table 3.74.

Delgrande, Peppas, and Woltran [DPW18]. The representation result of Delgrande et al.

[DPW18] confines the considered logics to those where the set Ω of interpretations (or

possible worlds) is finite6 and where any two different interpretations ω,ω′ ∈ Ω can be

distinguished by some sentence ϕ ∈ L, i.e., ω ∈ ⟦ϕ⟧ and ω′ ̸∈ ⟦ϕ⟧. Moreover, they extend

the AGM postulates by the following extra one, denoted (Acyc):

For any base K and all Γ1, . . . , Γn ∈ P(L)with ⟦Γi∪K◦Γi+1⟧ ̸= ; for each 1≤ i < n

as well as ⟦Γn ∪K ◦ Γ1⟧ ̸= ; holds ⟦Γ1 ∪K ◦ Γn⟧ ̸= ;.

With these ingredients in place, Delgrande and colleagues [DPW18] establish that, for

the logics they consider, there is a two-way correspondence between those AGM revision

operators satisfying (Acyc) and min-expressible faithful preorder assignments. Instead of the

term “min-expressible”, they use the term regular.

6Note that this precondition excludes more complex logics such as first-order or modal logics and most of their
fragments, but also propositional logic with infinite signature. On the positive side, this choice guarantees
min-completeness of any preorder.
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logic
setting

belief
bases

assignment postulates
relation
encoding

notes

Katsuno and Mendelzon [KM91]

propositional lo-
gic over finite sig-
nature

P(L),
Pfin(L),
L

preorder,
faithful

(G1)-(G6) Eq. (3.1) logic natively free of crit-
ical loops; natively min-
friendly; two-way repres-
entation theorem

Grove [Gro88], reformulated by Delgrande, Peppas, and Woltran [DPW18]

Boolean-closed
logics that are
Ω-expressible

P(L) preorder,
faithful,
min-complete

(G1)-(G6) Eq. (3.1) all such logics natively free
of critical loops; any assign-
ment min-expressible; two-
way representation theorem

Delgrande, Peppas, and Woltran [DPW18]

Tarskian logics
with finite Ω, any
ω,ω′ distinguish-
able by some
sentence

P(L) preorder,
faithful,
min-expressible

(G1)-(G6),
(Acyc)

Eq. (3.2) extra postulate (Acyc) rules
out “non-preorder operat-
ors”; two-way representa-
tion theorem

Aiguier, Atif, Bloch, Hudelot [AAB+18]

Tarskian logics P(L) quasi-faithful,
min-complete

(G1)-(G3),
(G5),(G6)

Eq. (3.3) non-standard notion of in-
consistency; additional ad-
hoc constraint on compat-
ibility; one-way representa-
tion theorem

our approach

Tarskian logics

ar
bi

tr
ar

y,
cl

os
ed

un
de

r
ab

st
ra

ct
un

io
n faithful,

min-complete,
min-retractive,
min-expressible

(G1)-(G6) Def. 3.19 most general (syntax-in-
dependent version); two-
way representation theorem
(Theorem 3.31)

Tarskian logics quasi-faithful,
min-complete,
min-retractive,
min-expressible

(G1)-(G3),
(G5),(G6)

Def. 3.19 most general (syntax-de-
pendent version); two-way
representation theorem
(Theorem 3.40)

Tarskian logics
without critical
loop (e.g., with
disjunction)

preorder,
faithful,
min-complete,
min-expressible

(G1)-(G6) Def. 3.19 preorder preference (syn-
tax-independent version);
two-way representation the-
orem (Theorem 3.63)

Tarskian logics
without critical
loop (e.g., with
disjunction)

preorder,
quasi-faithful,
min-complete,
min-expressible

(G1)-(G3),
(G5),(G6)

Def. 3.19 preorder preference (syn-
tax-dependent version);
two-way representation
theorem (Theorem 3.64)

Table 3.74: Overview of our characterization results and comparison with related work.
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The approach of [DPW18] can be seen as complementary to ours. As we saw before, in

logics exhibiting critical loops, one cannot hope for a characterization of all AGM revision

operators by means of assignments producing preorders. Our proposal is to relinquish the

requirement of using preorders, giving up transitivity and merely retaining min-retractivity.

As an alternative to this approach, one might argue that those AGM revision operators not

corresponding to some preorder assignment are somewhat “unnatural” and should be ruled

out from the consideration. The additional postulate (Acyc) serves precisely this purpose: it

allows for a preorder characterization even in logics with critical loops, by disallowing some

“unnatural” AGM revision operators.

Aiguier, Atif, Bloch, and Hudelot [AAB+18]. The approach of Aiguier, Atif, Bloch, and

Hudelot [AAB+18] considers AGM belief base revision in logics with a possibly infinite set

Ω of interpretations. Notably, they propose to consider certain bases that actually do have

models as inconsistent (and thus in need of revision). While, in our view, this is at odds with

the foundational assumptions of belief revision (revision should be union/conjunction of the

inputs unless facing unsatisfiability), this appears to be a design choice immaterial to the

established results. To avoid confusion, we will ignore it in our presentation. As far as the

postulates are concerned, Aiguier et. al. [AAB+18] decide to rule out (KM4)/(G4), arguing

in favor of syntax-dependence. Consequently, they re-define the notion of faithfulness of

assignments, eliminating (F3), and arriving at the notion that we call quasi-faithfulness. Like

us, Aiguier and colleagues [AAB+18] propose to drop the requirement that assignments have

to yield preorders. Also, their representation result (Theorem 1) features a condition that

corresponds to min-completeness (second bullet point). In addition to the standard notion

of compatibiliy, their result hinges on the following additional correspondence between the

assignment and the preorder (third bullet point), for every K, Γ1, Γ2 ∈ P(L):

If (K ◦ Γ1)∪ Γ2 is consistent, then min(⟦Γ1⟧,⪯K)∩ ⟦Γ2⟧=min(⟦Γ1 ∪ Γ2⟧,⪯K).

A closer inspection of this extra condition shows that it is essentially a translation of a

combination of the postulates (G5) and (G6) into the language of assignments and minima.

It remains somewhat unclear to us what the intuitive justification of this (arguably rather

technical and unwieldy) extra condition should be, beyond providing the missing ingredient

to make the result work. Possibly, this is the reason why the presented result is just one-way:

it does not provide a characterization of exactly those assignments for which a compatible

AGM revision operator exists. Rather it pre-assumes existence of a revision operator under

consideration.

We think that our approach provides improvements regarding ways to construct an appro-

priate assignment from a given belief revision operator. For comparison, Delgrande et. al.
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[DPW18] solve this problem by simultaneously revising with all sentences satisfying I1 and

I2, in order to “simulate” the revision by the desired formula form(I1, I2): for every base K,

⪯K is the transitive closure of {(I1, I2) | I1 |= K ◦ (t({I1})∩ t({I2}))} (3.2)

where t({ω}) is the set of all sentences satisfied byω. Aiguier, Atif, Bloch, and Hudelot 2018

use a similar approach by revising with all sentences at once: they let, for every base K,

I1 ⪯K I2 if I1 |= K or I1 |= K ◦ {I1, I2}∗ (3.3)

where {ω1,ω2}∗ is the set of all sentences satisfied by both ω1 and ω2. In summary, neither

Aiguier et al. nor Delgrande et al. use an encoding approach in the spirit of Katsuno and

Mendelzon, attempting to establish a relation between two interpretations, whenever the

revision operator provides evidence. As discussed in Section 3.8.2, we take a somewhat dual

approach: we establish a relation between any two worlds, unless the considered revision

operator provides evidence to the contrary.

3.10 Summary

The central objective of our treatise was to provide an exact model-theoretic characterization

of AGM belief revision in the most general reasonable sense, i.e., one that uniformly applies

• to every logic with a classical model theory (i.e., every Tarskian logic),

• to any notion of bases that allows for taking some kind of “unions” (including the cases

of belief sets, sets of sentences, finite sets of sentences, and single sentences), and

• to all base change operators adhering to the unaltered AGM postulates (without

imposing further restrictions through additional postulates).

To this end, we followed the well-established approach of using assignments: functions that

map every base K to a binary relation ⪯K over the interpretations Ω of the considered logic,

where I1 ⪯K I2 intuitively expresses a preference, i.e., that I1 is “closer” than (or at least

as close as) I2 to being a model of K (even if it is not a proper model). With this notion in

place, the compatibility between a revision operator and an assignment then requires that the

result of revising a base K by some base Γ yields a base whose models are the ⪯K-minimal

interpretations among the models of Γ .

The original result of K&M for signature-finite propositional logic established a two-way-

correspondence between AGM revision operators and faithful assignments that yield total

preorders. We showed that in the general case considered by us, this original result fails
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in many ways and needs substantial adaptations. In particular, aside from delivering total

relations and being faithful, the assignment now needs to satisfy

• min-expressibility, guaranteeing existence of a describing base for any model set ob-

tained by taking minimal interpretations among some base’s models,

• min-completeness, ensuring that minimal interpretations exist in every base’s model

set, and

• min-retractivity instead of transitivity, making sure that minimality is inherited to more

preferable elements.

While the first two adjustments have been recognized and described in prior work, the

notion of min-retractivity (and the decision to replace transitivity by this weaker notion and

thus give up on the requirement that preferences be preorders) is novel to the best of our

knowledge. Yet, it turns out to be the missing piece for establishing the desired two-way

compatibility-correspondency between AGM revision operators and preference assignments

of the described kind (cf. Theorem 3.31).

In view of the fact that the requirement of syntax-independence – as expressed in Postulate

(G4) – may be (and has been) put into question, we also established a syntax-dependent

version of our characterization (cf. Theorem 3.40). Crucial to this result is the observation

that (G4) is exactly mirrored by the third faithfulness condition on the semantic side; thus

removing it (going from faithfulness to quasi-faithfulness) yields the class of assignments

compatibility-corresponding to revision operators satisfying the postulates (G1)–(G3), (G5),

and (G6).

Conceding that transitivity is a rather natural choice for preferences and preorder assign-

ments might be held dear by members of the belief revision community, we went on to

investigate for which logics our general result holds even if assignments are required to

yield preorders. We managed to pinpoint a specific logical phenomenon (called critical loop),

the absence of which in a logic is necessary and sufficient for total-preorder-representability.

While the criterion by itself maybe somewhat technical and unwieldy, it can be shown to

subsume all logics featuring disjunction and therefore all classical logics. This justifies to

formulate these findings in two theorems: a syntax independent version (Theorem 3.63)

and a syntax-dependent one (Theorem 3.64).



Chapter 4

Revision in Description Logics under
Fixed-Domain Semantics

In general, approaches for revising DL knowledge bases are classified into syntax-based and

semantics-based approaches. In syntax-based approaches, the operators directly modifiy the

axioms in the knowledge bases. Existing work on syntactic approaches could not satisfy

all AGM postulates [QLB06a; AAB+18], considered only semi-revision [HK06b; RW09a],

or proposed additional postulates (different from the AGM’s) for capturing the minimality

principle [RW09b; RW14b].

In contrast, semantics-based revision approaches investigate the models of KBs, search

for the most plausible set of models to become the revision result, and generate a KB which

corresponds to the produced model set. However, it has been shown that in DL with standard

semantics, there are two main issues: (1) the models of the knowledge bases can be infinitely

many and (2) even if we can somehow “compute” the model-based revision, the set of models

as the result of the revision might not be able to be expressed in a knowledge base (this is

known as the inexpressibility problem [LLM+06]). Investigations were carried out to find

alternative semantic characterizations [WWT15; ZWW+14; DDL17] or to consider a hybrid

approach for lightweight DL families [ZKN+19a]. However, these approaches required a new

set of completely translated postulates to be satisfied, rather than the standard postulates for

DL knowledge bases.

This chapter discusses the revision problem in description logics under fixed-domain

semantics, where we follow the standard postulates for revision. Besides semantic character-

ization, we present two concrete approaches to revise knowledge bases expressed in these

logics. The first approach is inspired from distance-based revision over models, while the

second one is a syntax-based approach which exploits the individual elements. We start by

instantiating the base logic for DL SROIQ under fixed-domain semantics as follows:

DL∆ = (LDL∆ ,ΩDL∆ , |=∆, Pfin(LDL∆),∪)

75
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As the model-based revision operator would be defined semantically, we will require some

way to obtain a knowledge base from the set of ‘preferred’ models. For this objective, we

introduce a method to construct a SROIQ axiom under fixed-domain semantics from a given

set of interpretations such that the models of the axiom are exactly the given interpretations.

This construction is useful to express the result of our model-based revision approach (see

Section 4.1) into a DL knowledge base and to show that our semantic characterization is

indeed compatible with the revision operator (see Definition 4.8). Let {I1, . . . , In} ⊆ Ω be a

set of ∆-interpretations and Ii ∈ {I1, . . . , In} be one of the interpretations, we define

τ(Ii) =
� l

C∈NC

l

d∈∆ and d∈CIi

∃u.({d} ⊓ C)
�

⊓
� l

r∈NR

l

d,e∈∆ and (d,e)∈RIi

∃u.({d} ⊓ ∃r.{e})
�

⊓

� l

C∈NC

l

d∈∆ and d /∈CIi

∃u.({d} ⊓ ¬C)
�

⊓
� l

r∈NR

l

d,e∈∆ and (d,e)/∈rIi

∃u.({d} ⊓ ¬∃r.{e})
�

⊓

� l

a∈NI (K)\∆,d∈∆ and aIi=d

∃u.({a} ⊓ {d})
�

,

where u is a universal role. Then, we construct a SROIQ axiom as follows:

form({I1, . . . , In}) =⊤⊑
⊔

1≤i≤n

(τ(Ii)) (4.1)

Lemma 4.1. For any ∆-interpretation I and concept expression C, it holds that (∃u.C)I = ; if

CI = ; and (∃u.C)I =∆I if CI ̸= ;.

Proof. For the first part, assume CI = ;, i.e., there is no d ∈ ∆I with d ∈ CI . By defin-

ition (∃u.C)I = {e | ∃d.(e, d) ∈ (∆I × ∆I) ∧ d ∈ CI} and therefore (∃u.C)I = ;. For

the second part, assume CI ̸= ;, i.e., there is some d ∈ ∆I with d ∈ CI . By definition

(∃u.C)I = {e | ∃d.(e, d) ∈ (∆I ×∆I)∧ d ∈ CI} and therefore (∃u.C)I =∆I . □

Lemma 4.2. I |= form(I) for any ∆-interpretation I.

Proof. We show I |= form(I), i.e. ∆I ⊆ τ(I)I . Let c ∈∆I . From the definition of τ(I), we

have τ(I)I = τC(I)I ∩τ¬C(I)I ∩τr(I)I ∩τ¬r(I)I ∩τa(I)I , where
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τC(I)I = (
l

C∈NC

l

d∈∆ and d∈CI

∃u.({d} ⊓ C))I ,

τ¬C(I)I = (
l

C∈NC

l

d∈∆ and d /∈CI

∃u.({d} ⊓ ¬C))I ,

τr(I)I = (
l

r∈NR

l

d,e∈∆ and (d,e)∈rI

∃u.({d} ⊓ ∃r.{e}))I ,

τ¬r(I)I = (
l

r∈NR

l

d,e∈∆ and (d,e)/∈rI

∃u.({d} ⊓ ¬∃r.{e}))I , and

τa(I)I = (
l

a∈NI (K)\∆,d∈∆ and aI=d

∃u.({a} ⊓ {d}))I .

We split the proof into several parts w.r.t concept interpretation sets involved in the

intersection:

Part 1: τC(I)I . We have τC(I)I =
⋂

C∈NC

⋂

d∈∆ and d∈CI (∃u.({d} ⊓ C))I . Now con-

sider ({d} ⊓ C)I = {d}I ∩ CI . From the definition of τC(I)I , for every C ∈ NC , for every

d ∈ ∆ and d ∈ CI , we have {d}I ∩ CI ̸= ;, and hence ({d} ⊓ C)I ̸= ;. Since c ∈ ∆I and

({d}⊓ C)I ̸= ;, from Lemma 4.1 we have c ∈ (∃u.({d}⊓ C))I for every C ∈ NC and for every

d ∈∆ and d ∈ CI . Hence, c ∈ τC(I)I .

Part 2: τ¬C(I)I . We have τ¬C(I)I =
⋂

C∈NC

⋂

d∈∆ and d ̸∈CI (∃u.({d}⊓¬C))I . Now consider

({d} ⊓ ¬C)I = {d}I ∩∆I\CI . From the definition of τ¬C(I)I , for every C ∈ NC , for every

d ∈ ∆ and d ̸∈ CI , we have {d}I ∩∆I\CI ≠ ;, and hence ({d} ⊓ ¬C)I ≠ ;. Since c ∈ ∆I

and ({d} ⊓ ¬C)I ̸= ;, from Lemma 4.1 we have c ∈ (∃u.({d} ⊓ ¬C))I for every C ∈ NC and

for every d ∈∆ and d ̸∈ CI . Hence, c ∈ τ¬C(I)I .

Part 3: τr(I)I . We have τr(I)I =
⋂

r∈NR

⋂

d,e∈∆ and (d,e)∈rI (∃u.({d} ⊓ ∃r.{e}))I . Now

consider ({d} ⊓ ∃r.{e})I = {d}I ∩ (∃r.{e})I . From the definition of τr(I)I , for every r ∈ NR,

for every d, e ∈∆ and (d, e) ∈ rI , we have {d}I∩(∃r.{e})I ̸= ;, and hence ({d}⊓∃r.{e})I ̸= ;.
Since c ∈∆I and ({d} ⊓ ∃r.{e})I ̸= ;, from Lemma 4.1 we have c ∈ (∃u.({d} ⊓ ∃r.{e}))I for

every r ∈ NR and for every d, e ∈∆ and (d, e) ∈ rI . Hence, c ∈ τr(I)I .

Part 4: τ¬r(I)I . We have τr(I)I =
⋂

r∈NR

⋂

d,e∈∆ and (d,e)̸∈rI (∃u.({d} ⊓ ¬∃r.{e}))I . Now

consider ({d} ⊓ ¬∃r.{e})I = {d}I ∩∆I\(∃r.{e})I . From the definition of τ¬r(I)I , for every

r ∈ NR, for every d, e ∈ ∆ and (d, e) ̸∈ rI , we have {d}I ∩∆I\(∃r.{e})I ̸= ;, and hence

({d} ⊓ ¬∃r.{e})I ̸= ;. Since c ∈ ∆I and ({d} ⊓ ¬∃r.{e})I ̸= ;, from Lemma 4.1 we have

c ∈ (∃u.({d} ⊓ ¬∃r.{e}))I for every r ∈ NR and for every d, e ∈ ∆ and (d, e) ∈ rI . Hence,

c ∈ τ¬r(I)I .

Part 5: τa(I)I . We have τa(I)I =
⋂

a∈NI (K)\∆,d∈∆ and aI=d(∃u.({d}⊓{a}))I . Now consider

({d}⊓ {a})I = {d}I ∩{a}I . From the definition of τa(I)I , for every a ∈ NI (K) \∆, for every
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d ∈∆ and aI = d, we have {d}I ∩ {a}I ≠ ;, and hence ({d} ⊓ {a})I ̸= ;. Since c ∈∆I and

({d} ⊓ {a})I ̸= ;, from Lemma 4.1 we have c ∈ (∃u.({d} ⊓ {a}))I for every a ∈ NI(K) \∆,

such that d ∈∆ and aI = d. Hence, c ∈ τa(I)I .

From all parts above, we have c ∈ τC(I)I ∧ c ∈ τ¬C(I)I ∧ c ∈ τr(I)I ∧ c ∈ τ¬r(I)I∧
c ∈ τa(I)I . This implies c ∈ (τC(I)I ∩ τ¬C(I)I ∩ τr(I)I ∩ τ¬r(I)I ∩ τa(I)I). Hence, we

have c ∈ τ(I)I . □

Lemma 4.3. Let I and J be two ∆-interpretations. For any d ∈∆I , d ∈ τ(J )I if and only if

I = J .

Proof. (Only if). Let d ∈ τ(J )I . Then d ∈ (τC(J )I∩τ¬C(J )I∩τr(J )I∩τ¬r(J )I∩τa(J )I),
where
τC(J )I = (

d
C∈NC

d
d j∈∆ and d j∈CJ ∃u.({d j} ⊓ C))I ,

τ¬C(J )I = (
d

C∈NC

d
d j∈∆ and d j /∈CJ ∃u.({d j} ⊓ ¬C))I ,

τr(J )I = (
d

r∈NR

d
d j ,e j∈∆ and (d j ,e j)∈RJ ∃u.({d j} ⊓ ∃r.{e j}))I ,

τ¬r(J )I = (
d

r∈NR

d
d j ,e j∈∆ and (d j ,e j)/∈RJ ∃u.({d j} ⊓ ¬∃r.{e j}))I , and

τa(J )I = (
d

a∈NI (K)\∆,d j∈∆ and aJ=d j
∃u.({a} ⊓ {d j}))I .

This implies d ∈ τC(J )I ∧ d ∈ τ¬C(J )I ∧ d ∈ τr(J )I ∧ d ∈ τ¬r(J )I ∧ d ∈ τa(J )I . We

divide the proof into several parts, whose each showing arguments based on every conjunct:

Part 1: d ∈ τC(J )I . Then for all C ∈ NC , for all d j ∈ CJ , we have d ∈ (∃u.({d j} ⊓ C))I .

Since (∃u.({d j} ⊓ C))I ≠ ;, then from the semantical definition of a concept we have

({d j} ⊓ C)I ̸= ;. Consequently, there exists y ∈ ({d j} ⊓ C)I , and thus y ∈ {d j}I ∩ CI with

y = d j and d j ∈ CI , yield CJ ⊆ CI .

Now we show the other inclusion. Since d ∈ τ¬C(J )I , then for all C ∈ NC , for all

d j ̸∈ CJ , we have d ∈ (∃u.({d j}⊓¬C))I . Since (∃u.({d j}⊓¬C))I ̸= ;, then from the concept

semantic definition we have ({d j} ⊓ ¬C)I ̸= ;. There exists y ∈ ({d j} ⊓ ¬C)I . We have

y ∈ {d j}I ∩ (¬C)I with y = d j and d j ∈ (¬C)I , yield (¬C)J ⊆ (¬C)I . Now let di ∈ CI ,

then di ̸∈ (¬C)I . Since (¬C)J ⊆ (¬C)I , it holds di ̸∈ (¬C)J . Thus di ∈ CJ holds and hence

CI ⊆ CJ . We have CJ = CI as desired.

Part 2: d ∈ τr(J )I . Then for all r ∈ NR, for all (d j , e j) ∈ rJ , we have d ∈ (∃u.({d j}⊓
∃r.{e j}))I . Since (∃u.({d j} ⊓ ∃r.{e j}))I ̸= ;, then from the concept semantic definition we

have ({d j}⊓ ∃r.{e j})I ̸= ;. There exists y ∈ ({d j}⊓∃r.{e j})I . We have y ∈ {d j}I ∩ (∃r.{e j})I

with y = d j and y ∈ {r | ∃s.(r, s) ∈ rI ∧ s ∈ {e j}I}. Hence, ∃s.(y, s) ∈ rI ∧ s ∈ {e j}I .

Consequently, s = e j and (d j , e j) ∈ rI , yield rJ ⊆ rI .

Now we show the other inclusion. Since d ∈ τ¬r(J )I , then for all r ∈ NR, for all

(d j , e j) ̸∈ rJ , we have d ∈ (∃u.({d j} ⊓ ¬∃r.{e j}))I . Since (∃u.({d j} ⊓ ¬∃r.{e j}))I ̸= ;,
then from the concept semantic definition, it holds ({d j} ⊓ ¬∃r.{e j})I ̸= ;. There exists

y ∈ ({d j}⊓¬∃r.{e j})I . Thus, y ∈ {d j}I ∩(¬∃r.{e j})I with y = d j and y ̸∈ {r | ∃s.(r, s) ∈ rI∧
s ∈ {e j}I}. Then, s = e j and (d j , e j) ̸∈ rI , yield uJ \rJ ⊆ uI\rI .
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Now let (di , ei) ∈ rI , then (di , ei) ̸∈ uI\rI . Since uJ \rJ ⊆ uI\rI , we have (di , ei) ̸∈ uJ \rJ .

Thus (di , ei) ∈ rJ holds, and hence rI ⊆ rJ . Finally we have rJ = rI as desired.

Part 3: d ∈ τa(J )I . Then for all a ∈ NI (K)\∆, d j ∈∆ and aJ = d j , we have d ∈ (∃u.({a}⊓
{d j}))I . Since (∃u.({a} ⊓ {d j}))I ̸= ;, then from the concept semantic definition we have

({a} ⊓ {d j})I ̸= ;. There exists y ∈ ({a} ⊓ {d j})I . Thus, y ∈ {a}I ∩ {d j}I , implies

y = aJ = d j = aI .

From the three parts above, we have CJ = CI , rJ = rI , and aJ = aI for all C ∈ NC , r ∈ NR,

and a ∈ NI(K)\∆. This implies I = J .

(If). Let I = J . Then form(I) = form(J ), consequently (⊤ ⊑ τ(I)) ≡ (⊤ ⊑ τ(J ). From

Lemma 4.2, we have I |= (⊤⊑ τ(I)). Then, ∆I ⊆ τ(I)I is true. This implies for any d ∈∆I

we have d ∈ τ(I)I . Since I = J , we have d ∈ τ(J )I . □

Proposition 4.4. Let {I1, . . . , In} be a set of ∆-interpretations. Mod∆(form(I1, . . . , In)) =

{I1, . . . , In} holds.

Proof. (⊆) We show Mod∆(form(I1, . . . , In)) ⊆ {I1, . . . , In}. Let I ∈ Mod∆ (form(I1, . . . , In)).

Then, I |=∆ ⊤ ⊑
⊔

1≤i≤n(τ(Ii)). This implies ∆I ⊆ (τ(I1))I ∪ . . . ∪ (τ(In))I . Then,

For any d ∈ ∆I , we have d ∈ τ(I1)I ∨ . . . ∨ d ∈ τ(In)I . From Lemma 4.3, we have

(I1 = I)∨ . . .∨ (In = I). Then, there exist Ii ∈ {I1, . . . , In} with 1≤ i ≤ n such that Ii = I.

Hence, I ∈ {I1, . . . , In}.
(⊇) We show Mod∆(form(I1, . . . , In)) ⊇ {I1, . . . , In}. Let I ∈ {I1, . . . , In}. Then, there

exist Ii ∈ {I1, . . . , In} with 1 ≤ i ≤ n such that Ii = I. We have (I1 = I) ∨ . . . ∨ (In = I).
From Lemma 4.3, we have for any d ∈ ∆I , d ∈ τ(I1)I ∨ . . . ∨ d ∈ τ(In)I . This implies

∆I ⊆ (τ(I1))I ∪ . . . ∪ (τ(In))I and consequently I |= ⊤ ⊑ τ(I1) ⊔ . . . ⊔ τ(In). Hence,

I ∈ Mod∆(form(I1, . . . , In)). □

We provide a semantic characterization of AGM revision operator in DL∆ as follows.

Theorem 4.5 (Adaptation of Theorem 3.3. in [KM91]). Let ◦∆ be a revision operator for

DL∆ (i.e. DL under fixed-domain semantics). Then, ◦∆ satisfies (G1)–(G6) if and only if it is

compatible with some preorder faithful assignment.

Proof. The proof is similar to the one of the Representation Theorem by Katsuno and

Mendelzon [KM91, Theorem 3.3.]. For the “if” direction, the arguments are similar and

straightforward. For the “only if” direction, we assume the existence of a revision operator

◦∆ which satisfies postulates (G1)–(G6). Then, for any knowledge base K, one can obtain

a faithful preorder assignment compatible with ◦∆ by employing relation encoding ⪯K as:

I ⪯K I′ if and only if either I ∈ ⟦K⟧∆ or I ∈ ⟦K ◦∆ form∆(I, I′)⟧∆ for any interpretations I
and I′. □

We also remark thatDL∆ is a disjunctive (base) logic, such that for every bases K, K′ ⊆ LDL∆ ,

a base K > K′ can be obtained using the axiom constructor as {form(⟦K⟧∆ ∪ ⟦K′⟧∆)}.
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4.1 Model-based Approach

In this section, we present our first approach to perform model-based revision in the fixed-

domain semantics setting. Our concrete revision operator is adapted from Dalal’s operator

[Dal88b]. The original Dalal operator works for two propositional formulas ψ and µ. The

difference set between their models consists of propositional variables that are interpreted

differently by them (e.g. when comparing two models, each from the models of ψ and µ, a

variable p is interpreted as true in the model of ψ, but it is interpreted as false the model of

µ). Then, the distance between them is defined as the minimal cardinality of the difference

sets between models of ψ and µ. The set of models of revising ψ by µ consists of models of

µ such that there exists a model of ψ such that the cardinality of the difference set between

the two models is the same as the distance between ψ and µ. In [KM91], it has been shown

that Dalal’s revision operator can be defined as the set of minimal models of µ w.r.t a faithful

preorder relation ⪯ψ.

To adapt Dalal’s revision operator to DL under fixed-domain semantics, we need to define

the “difference set” between two models. Thanks to the finitely many known elements in the

domain, we can characterize the ∆-models of the knowledge bases and then we can define

the difference between two ∆-models in a similar way as the difference set between two

models in propositional logic based on the grounded form of the interpretations.

Definition 4.6 (Grounded interpretation). Let K be a KB and I = (∆I , ·I) be a ∆-fixed

interpretation. The ground representation of I is the following: Gr(I) = {C(d) | d ∈∆ and

d ∈ CI} ∪ {r(d, e) | d, e ∈∆ and (d, e) ∈ rI} ∪ {a = d | a ∈ NI(K), d ∈∆ and aI = d}.

In the following, we introduce a distance between two models based on the operator of

symmetric difference, denoted with ⊕, which is defined as S ⊕ S′ = (S ∪ S′) \ (S ∩ S′) for any

set S and S′.

Definition 4.7 (Distance). Let ⟦K⟧∆ be a set of all ∆-models of knowledge base K and I′ be

a ∆-interpretation. The distance between ⟦K⟧∆ and I′ is defined as:

dist(⟦K⟧∆, I′) = min
I∈⟦K⟧∆

dist(I, I′),

where dist(I, I′) = |diff(I, I′)| and diff(I, I′) = Gr(I)⊕ Gr(I′).

Now we are ready to introduce a model-based revision operator for Description Logic under

fixed-domain semantics.

Definition 4.8. Let K and K′ be any two knowledge bases. Let ⪯∆(.): K 7→⪯∆K be an assignment,

where a binary relation ⪯∆K is defined as

I1 ⪯∆K I2 if and only if dist(⟦K⟧∆, I1)≤ dist(⟦K⟧∆, I2) for all interpretations I1 and I2.
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We define the model-based revision operator ◦d
∆ as follows:

⟦K ◦d
∆ K′⟧=min(⟦K′⟧∆,⪯∆K).

Proposition 4.9. The model-based change operator ◦d
∆ satisfies postulates (G1)–(G6).

Proof. Similar to the assignment presented in [KM91, Section 4.1.], we have that the assign-

ment ⪯∆(.) is a preorder faithful assignment. From Proposition 4.4, we have ⟦K ◦d
∆ K′⟧∆ =

min(⟦K′⟧∆,⪯∆K), which shows compatibilty. Finally from Theorem 4.5, we have ◦d
∆ satisfies

postulates (G1)-(G6). □

Note that up to this point, we just defined the revision operator semantically. As the output

of a revision operator should be a knowledge base, one can simply use the axiom construction

to obtain the desired revision outcome as K ◦∆ K′ = {form(min(⟦K′⟧∆,⪯∆K))}.

4.2 Model-Based Approach via ASP Encoding

We now introduce an encoding of the model-based revision approach via answer-set pro-

gramming (ASP). The KB-to-program encoding is based on the naïve encoding [GRS16],

which has already been implemented in the Wolpertinger reasoner. The main idea is to

generate the models of the two knowledge bases involved in the revision using the naïve

encoding, compute the distance between models (which are now in the form of answer

sets), then find the model set of the new information K′ with minimal distance to the model

set of the prior KB K. To this end, we assume that both knowledge bases K and K′ are in

normalized forms [GRS16].

First, we generate all possible interpretations and then check for each interpretation

whether it violates any axiom in both knowledge bases or not. Note that we are dealing with

two knowledge bases, we translate the axioms from both K and K′. Since the domain is

fixed, the number of interpretations generated from this step are bounded by finitely many

elements. Let ∆ be a fixed domain, K = (A, T , R) and K′ = (A′, T ′, R′) be two knowledge

bases, we have

Πgen(K∪K′,∆) = {A_1(X )← not ¬A_1(X ), thing(X ) | A∈ NC(K∪K′)}∪ (4.2)

{¬A_1(X )← not A_1(X ), thing(X ) | A∈ NC(K∪K′)}∪ (4.3)

{r_1(X , Y )← not ¬r_1(X , Y ), thing(X ), thing(Y ) | r ∈ NR(K∪K′)}∪ (4.4)

{¬r_1(X , Y )← not r_1(X , Y ), thing(X ), thing(Y ) | r ∈ NR(K∪K′)}∪ (4.5)
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{A_2(X )← not ¬A_2(X ), thing(X ) | A∈ NC(K∪K′)}∪ (4.6)

{¬A_2(X )← not A_2(X ), thing(X ) | A∈ NC(K∪K′)}∪ (4.7)

{r_2(X , Y )← not ¬r_2(X , Y ), thing(X ), thing(Y ) | r ∈ NR(K∪K′)}∪ (4.8)

{¬r_2(X , Y )← not r_2(X , Y ), thing(X ), thing(Y ) | r ∈ NR(K∪K′)}∪ (4.9)

{thing(δ) | δ ∈∆}. (4.10)

We append indices “1” and “2” to the predicate name which represents the concept and role

name to distinguish the concept and role name from the prior KB (e.g. A_1(X) or r_1(X,Y))

or from the new information (e.g. A_2(X) or r_2(X,Y)). Intuitively, the ASP program in

Equation (4.2)–Equation (4.10) spans all candidate interpretations based on the knowledge

bases signature. The next step is checking if there exists some axiom violation. To find the

violation, again for both knowledge bases, we encode for each ABox, TBox, and RBox. The

following Equation (4.11)–Equation (4.14) are the encodings for the ABox from K:

Πchk(A) = {A_1(a) | A(a) ∈ A}∪ (4.11)

{¬A_1(a) | ¬A(a) ∈ A}∪ (4.12)

{r_1(a, b) | r(a, b) ∈ A}∪ (4.13)

{¬r_1(a, b) | ¬r(a, b) ∈ A}. (4.14)

As we can see, the encoding of ABox is straightforward. Every individual assertion C(a) and

every role assertion r(a, b) in the ABox is encoded in the program as a fact. Any contradiction

(A_i(X ) and ¬A_i(X )) is handled by semantics of strong negations in ASP. For the ABox from

KB K′, the encoding are the same, except that the appended index after each concept/role

name is changed to 2 and each predicate represent concept/role assertion in A′.
Now for the TBox, remember that the TBox is in normalized form, i.e. each GCI in the

TBox is of the form ⊤ ⊑
⊔

1≤i≤n Ci. From the DL semantics, the axiom means that each

individual should be a member of a concept Ci for some 1≤ i ≤ n. The axiom is violated if

there exists an individual which is not a member of any Ci . This axiom is directly translated

into a constraint in ASP in the Equation (4.15) below. As for TBox K′, we simply modify the

index and employ T ′ for the rule.

Πchk(T ) = {← t rans(C1), ..., t rans(Cn) | ⊤ ⊑
⊔

1≤i≤n

Ci ∈ T }. (4.15)

The RBox might consist of role axioms of the form r ⊑ s, r1 ◦ r2 ⊑ r3, or Dis(r, s). Similar

to the TBox encoding, we search for any violation of RBox axioms as ASP constraints in
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the Equation (4.16)–Equation (4.18) below. Again, RBox from K′ is encoded similarly with

simple replacement of index 1 by 2 and R by R′.

Πchk(R) = {← r_1(X , Y ), not s_1(X , Y ) | r ⊑ s ∈R}∪ (4.16)

{← r_1(X , Y ), s_1(X , Y ) | Dis(r, s) ∈R}∪ (4.17)

{← s1_1(X , Y ), s2_1(Y, Z), not r_1(X , Z) | s1 ◦ s2 ⊑ r ∈R}. (4.18)

Now, we have complete translations of axioms in K and K′ as the following equations:

Πchk(K,∆) = Πchk(A)∪Πchk(T )∪Πchk(R). (4.19)

Πchk(K′,∆) = Πchk(A′)∪Πchk(T ′)∪Πchk(R′). (4.20)

Gaggl and colleagues [GRS16, Theorem 10] have shown that the candidate generation

(Equation (4.2)–Equation (4.10)) and the axiom encoding (Equation (4.11)–Equation (4.18))

correctly produce a tight one-to-one correspondence between ∆-models of the knowledge

bases and answer sets of its ASP translation. Therefore, up to this stage, we have the

collection of both models from the KB K and K′.
Second, for every answer set (which is a union of two single models from the two KBs),

we count the number of differences between grounded instances for each concept name A

and each role name r. The difference increases whenever A(X ) occurs in the model of K
but ¬A(X ) occurs in the model of K′, or we have ¬A(X ) in the model of K but A(X ) is in the

model of K′. In particular, we collect the number of the concepts interpreted differently by

the two models in the atom count(A, M). Since we are only interested in overall differences

between two interpretations, we sum all concept differences in the atom total(Z). We use

the aggregate construct #count and #sum from Clingo to perform the counting and the

summation.

Πdiff(K∪K′,∆) = {count(A, M)← K = #count{X : A_1(X ), not A_2(X )},

L = #count{X : not A_1(X ), A_2(X )},

M = K + L. | A∈ NC(K∪K′))}∪

(4.21)

{count(r, M)← K = #count{X , Y : r_1(X , Y ), not r_2(X , Y )},

L = #count{X , Y : not r_1(X , Y ), r_2(X , Y )},

M = K + L. | r ∈ NR(K∪K′))}.

(4.22)

total(Z)← Z = #sum{Y, (X , Y ) : count(X , Y )}. (4.23)
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Now, given two KBs K and K′, we can encode the model-based revision approach as the

following program:

Π(K ◦d
∆ K′,∆) = Πgen(K∪K′,∆)∪Πchk(K,∆)∪Πchk(K′,∆)

∪Πdiff(K∪K′,∆).
(4.24)

Note that the answer sets of the program Π(K ◦d
∆ K′,∆) (i.e. Equation (4.24)) contain all

possible models of both knowledge bases together with the total number of difference in

each answer set. As we are only interested in the models K′ with the smallest “distance” to

the models of K, we have to pick the minimal models of K′ based on the smallest number Z

captured in the atom total(Z) in each answer set. We utilize the optimization statement

#minimize from Clingo to get the desired results by appending “#minimize{C : total(C)}.”
in the program file.

We also remark that each generated answer set contains models from both knowledge

bases K and K′. To come up with the final result of the revision, we only require the models

of K′ which have minimal differences to the model of K. Since we already have index “2” in

the predicates of the answer set, we can only consider the predicates which represent the

models of the new information K′. Thus, an answer set A of Πgen(K∪K′,∆) corresponds to

an interpretation I′A = (∆, ·I
′
A) of knowledge base K′ over the fixed-domain ∆ as follows:

AI′A = {δ | A_2(δ) ∈ A}, for all A∈ NC(K∪K′),

rI′A = {(δ,δ′) | r_2(δ,δ′) ∈ A}, for all r ∈ NR(K∪K′),

aI′A = a.

Given {I′A1
, . . . , I′An

} ⊆ AS(Π(K ◦d
∆ K′,∆)) as the minimal models of K′, one can construct

a knowledge base as a revision result using the axiom constructor in Equation (4.1), i.e.

form({I′A1
, . . . , I′An

}).

4.3 Individual-based Approach

In this section, we present the second approach to revise our DL knowledge bases. The main

idea is that instead of removing the whole axiom(s) whenever inconsistency occurs, the

axioms are modified by adding some exceptions. We call these modified axioms weakened

axioms. Different from the previous approach (cf. Section 4.1) which computes the inter-

pretations, this approach exploits the prior given domain elements. In particular, we will

focus on the set of exceptional individuals which serves as a basis to weaken the knowledge

base. For the weakening process, we impose the assumption that the knowledge base K
is free of RBox axioms. This assumption will enable simpler weakening steps as we only
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consider TBox and ABox axioms. To this end, we introduce an equivalent transformation for

an arbitrary knowledge base into a KB without RBox axioms. This transformation is possible

as we are working with fixed-domain semantics. The idea is to keep the TBox and ABox

axioms unchanged and to “partially ground” any RBox axiom into a set of GCIs involving

existential restriction with nominal concepts.

Definition 4.10 (KB transformation). Let ∆ be a fixed domain and K = (A, T , R) be a KB

under the fixed-domain semantics, where A is an ABox, T is a TBox, and R is an RBox. The KB

transformation is trans∆(K) =
⋃

α∈K
trans∆(α), where:

• trans∆(α) = {α} for any α ∈ T ∪A.

• trans∆(α) =
⋃

d∈∆{∃r.{d} ⊑ ∃s.{d}} for any α= r ⊑ s ∈R.

• trans∆(α) =
⋃

d∈∆{∃r1 . . .∃rn.{d} ⊑ ∃r(n+1).{d}} for any α = r1 ◦ . . . ◦ rn ⊑ r(n+1) ∈R.

• trans∆(α) =
⋃

d∈∆{(∃r.{d})⊓ (∃s.{d})⊑⊥} for any α= Dis(r, s) ∈R.

We observe that the new RBox-free KB is semantically equivalent to the original one.

Lemma 4.11. Let ∆ be a fixed domain and K = (A, T , R) be a KB under the fixed-domain

semantics and trans(K) be the transformation of K (cf. Definition 4.10). trans(K)≡∆ K holds.

Proof. We show trans∆(K) |=∆ K and K |=∆ trans∆(K).

(trans∆(K) |=∆ K) Let It r |=∆ trans∆(K), i.e. It r |=∆ αt r for any αt r ∈ trans∆(K). We show

It r |=∆ α for any α ∈ K. We consider cases based on the form of axiom α ∈ K:

(1) α ∈ A or α ∈ T . Then, trans∆(α) = {α} and hence It r |=∆ α.

(2) α ∈R. Note that trans∆(α) ⊆ trans∆(K) and It r |=∆ trans∆(K), then It r |=∆ σ for any

σ ∈ trans∆(α).

We consider subcases based on the type of the RBox axiom:

(2.1) α = r ⊑ s. Then, trans∆(α) = {∃r.{d} ⊑ ∃s.{d} | d ∈ ∆}. Let (x , d) ∈ rIt r .

Then, x ∈ (∃r.{d})It r . Since It r |=∆ σ for any σ ∈ trans∆(α), we have It r |=∆
∃r.{d} ⊑ ∃s.{d} for any d ∈∆. It holds that (∃r.{d})It r ⊆ (∃s.{d})It r . Then, we

have x ∈ (∃s.{d})It r . From the definition of the semantics, there exists some

y ∈∆ such that (x , y) ∈ sIt r with y = d. Then, (x , d) ∈ sIt r . Hence, rIt r ⊆ sIt r

and It r |=∆ r ⊑ s as desired.

(2.2) α = r1◦. . .◦rn ⊑ r(n+1). Then, trans∆(α) = {∃r1 . . .∃rn.{d} ⊑ ∃r(n+1).{d} | d ∈∆}.
Let (x , x i) ∈ rIt r

1 , (x i , x(i+1)) ∈ rIt r
i , and (x(n−1), d) ∈ rIt r

n for 1 ≤ i ≤ n.

Then, x ∈ (∃r1 . . .∃rn.{d})It r . Since It r |=∆ σ for any σ ∈ trans∆(α), we have

It r |=∆ ∃r1 . . .∃rn.{d} ⊑ ∃r(n+1).{d} for any d ∈∆. It holds that (∃r1 . . .∃rn.{d})It r
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⊆ (∃r(n+1).{d})It r . Then, we have x ∈ (∃r(n+1).{d})It r . From the definition of the

semantics, there exists some y ∈∆ such that (x , y) ∈ rIt r
(n+1) with y = d. Then,

(x , d) ∈ rIt r
(n+1). Hence, rIt r

1 ◦ . . . ◦ rIt r
n ⊆ rIt r

(n+1) and It r |=∆ r1 ◦ . . . ◦ rn ⊑ r(n+1) as

desired.

(2.3) α = Dis(r, s). Then, trans∆(α) = {(∃r.{d}) ⊓ (∃s.{d}) ⊑ ⊥ | d ∈ ∆}. Since

It r |=∆ σ for any σ ∈ trans∆(α), we have It r |=∆ (∃r.{d})⊓ (∃s.{d})⊑⊥ for any

d ∈ ∆. It holds that (∃r.{d})It r ∩ (∃s.{d})It r ⊆ ;. Then, for any x ∈ ∆, it holds

x ̸∈ (∃r.{d})It r or x ̸∈ (∃s.{d})It r . From the semantic definition, x ̸∈ (∃r.{d})It r

means there is no y ∈∆ such that (x , y) ∈ rIt r with y = d and x ̸∈ (∃s.{d})It r

means there is no y ∈ ∆ such that (x , y) ∈ sIt r with y = d. Then, we have

(x , d) ̸∈ rIt r or (x , d) ̸∈ sIt r . Hence, rIt r ∩ sIt r = ; and It r |=∆ Dis(r, s) as desired.

(K |=∆ trans∆(K)) Let I |=∆ K, i.e. I |=∆ α for any α ∈ K. We show I |=∆ αt r for any

axiom αt r ∈ trans∆(K). We consider several cases of the axiom set trans∆(K)′ ⊆ trans∆(K):

(1) trans∆(K)′ = {α}, where α ∈ T or α ∈ A. Then, I |=∆ αt r for any αt r ∈ trans∆(K)′.

(2) trans∆(K)′ = {∃r.{d} ⊑ ∃s.{d} | d ∈ ∆} and trans∆(K)′ ̸⊆ T . Then, r ⊑ s ∈ K. Since

I |=∆ K, then I |=∆ r ⊑ s. It holds that rI ⊆ sI . Let x , d ∈∆ with x ∈ (∃r.{d})I . Then,

there exists y ∈∆ such that (x , y) ∈ rI and y = d. We have (x , d) ∈ rI . Since rI ⊆ sI ,

we also have (x , d) ∈ sI . From the definition of the semantics, we have x ∈ (∃s.{d})I .

We have (∃r.{d})I ⊆ (∃s.{d})I and I |=∆ ∃r.{d} ⊑ ∃s.{d} for any d ∈ ∆. Hence,

I |=∆ αt r for any αt r ∈ {∃r.{d} ⊑ ∃s.{d} | d ∈∆} as desired.

(3) trans∆(K)′ = {∃r1 . . .∃rn.{d} ⊑ ∃r(n+1).{d} | d ∈ ∆} and trans∆(K)′ ̸⊆ T . Then,

r1 ◦ . . . ◦ rn ⊑ r(n+1) ∈ K. Since I |=∆ K, then I |=∆ r1 ◦ . . . ◦ rn ⊑ r(n+1). It holds

that rI
1 ◦ . . . ◦ rI

n ⊆ rI
n+1. Let x , d ∈ ∆ with x ∈ (∃r1 . . .∃rn.{d})I . Then, there exist

x1, . . . , xn ∈ ∆ such that (x , x1) ∈ rI
1 , (x i , x(i+1)) ∈ rI

i , (x(n−2), x(n−1)) ∈ rI
(n−1) and

x(n−1) ∈ (∃rn.{d})I . Then, there exists y ∈ ∆ such that (x(n−1), y) ∈ rI
n with y = d.

Since rI
1 ◦ . . . ◦ rI

n ⊆ rI
(n+1), we also have (x , d) ∈ rI

(n+1). From the definition of the

semantics, we have x ∈ (∃r(n+1).{d})I . We have (∃r1 . . .∃rn.{d})I ⊆ (∃r(n+1).{d})I

and I |=∆ ∃r1 . . .∃rn.{d} ⊑ ∃rn+1.{d} for any d ∈ ∆. Hence, I |=∆ αt r for any

αt r ∈ {∃r1 . . .∃rn.{d} ⊑ ∃r(n+1).{d} | d ∈∆} as desired.

(4) trans∆(K)′ = {(∃r.{d})⊓(∃s.{d})⊑⊥ | d ∈∆} and trans∆(K)′ ̸⊆ T . Then, Dis(r, s) ∈ K.

Since I |=∆ K, then I |=∆ Dis(r, s). It holds that rI ∩ sI = ;. Then, there is no

(x , y) ∈∆×∆, such that (x , y) ∈ rI and (x , y) ∈ sI . Now assume for a contradiction

that (∃r.{d})I ∩ (∃s.{d})I ̸= ;. Then, there exists x ∈∆ such that x ∈ (∃r.{d})I and

x ∈ (∃s.{d})I . From semantic definition, there exists a y ∈ ∆ such that (x , y) ∈ rI

with y = d and there exists z ∈∆ such that (x , z) ∈ sI with z = d. We have (x , d) ∈ rI
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and (x , d) ∈ sI , which is a contradiction. Then, we have (∃r.{d})I ∩ (∃s.{d})I = ;.
Therefore, I |=∆ (∃r.{d})⊓ (∃s.{d}) ⊑ ⊥ for any d ∈∆ and hence I |=∆ αt r for any

αt r ∈ {(∃r.{d})⊓ (∃s.{d})⊑⊥ | d ∈∆}.

From the proof of the both directions above, we finally have trans(K)≡∆ K. □

While preserving the semantics of the original KB K, one might notice that the new KB

trans∆(K) is “bigger” than K. Let nK be the size of some KB K = (A, T , R). Since trans∆(α)
produces the same axiom for each axiom α ∈ A or α ∈ T , the size of the transformed ABox

and TBox are equal to the size of the original ABox and TBox in K. For an RBox axiom

α ∈R, trans∆(α) generates |∆| number of transformed axioms. Then, the size of trans∆(K)
is linearly bounded by nK × |∆|.

Given the knowledge base is in the transformed form, now we are ready to weaken the

axioms in the knowledge base.

Definition 4.12 (Weakened knowledge base). Let ∆ be a fixed domain and L∆ be a set of

possible axioms in DL under fixed-domain semantics, K be a transformed knowledge base, C , D

be any two concept names, r be a role name, and ∆′ = {a1, . . . , an} be a set of individual

elements, i.e. ∆′ ⊆∆. Consider an axiom σ ∈ K:

(1) If σ is a general concept inclusion C ⊑ D, then the weakened GCI σ−∆
′

w.r.t ∆′ is

C ⊓¬{a1} ⊓ ...⊓¬{an} ⊑ D.

(2) If σ is a concept assertion C(ai), then the weakened concept assertion σ−∆
′

w.r.t ∆′ is

⊤(ai) if ai ∈∆′ and C(ai) otherwise.

(3) If σ is a role assertion r(a, b), then the weakened role assertion σ−∆
′
w.r.t ∆′ is u(a, b)

if a ∈∆′, and r(a, b) otherwise. The same rule also applies for any inverse role assertion

r−(a, b).

The weakened knowledge base K−∆
′

of K w.r.t ∆′ is K−∆
′
= {σ−∆

′
| σ ∈ K}, i.e. the set of all

weakened axioms of K.

Definition 4.12 describes the way to weaken any axiom in a KB K given the set ∆′ ⊆∆ of

individuals. We note that our definition of weakening is syntax-dependent. For two semantic-

ally equivalent knowledge bases, the weakening process might produce two non-equivalent

results, even if we weaken both knowledge bases based on the exact same individuals. For in-

stance, let ∆= {c, d}, K1 = {A⊑ ∀r.B, A(c), r(c, d)} and K2 = {∃r−.A⊑ B, A(c), r−(d, c)}. It

can be checked that K1 ≡∆ K2. Suppose we weaken the two KBs w.r.t. ∆′ = {c}, then the res-

ults are K−∆
′

1 = {A⊓¬{c} ⊑ ∀r.B,⊤(c), u(c, d)} and K−∆
′

2 = {∃r−.A⊓¬{c} ⊑ B,⊤(c), r−(d, c)}.
Consider a ∆-interpretation I such that AI = {c, d}, BI = {c}, and rI = {(c, d)}. We observe

that I is a model of K−∆
′

1 , but it is not a model of K−∆
′

2 . This shows that K−∆
′

1 and K−∆
′

2 are
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not semantically equivalent. Next, we proceed by defining the exceptional individual set as

follows.

Definition 4.13 (Exceptional individual set). Let K and K′ be two knowledge bases. A set

of exceptional individuals w.r.t K and K′ is a set Exc ⊆ ∆ such that K−Exc ∪K′ is consistent.

We use E(K, K′) to denote the set of all sets of exceptional individuals w.r.t K and K′.

The following lemma shows that an exceptional individual set always exists w.r.t any two

consistent knowledge bases.

Lemma 4.14. Let ∆ = {a1, . . . , an} be a set of fixed-domain elements. For any two know-

ledge bases K and K′ which are consistent and in the transformed forms (w.l.o.g), we have

E(K, K′) ̸= ;.

Proof. We can always pick Exc=∆ (i.e. all domain elements to be exceptional individuals)

to satisfy the consistency requirement. Then, each axiom σ−∆ ∈ K−∆ is in the form of one

of the following:

(1) ⊤(a) for any C(a) ∈ K.

(2) u(ai , a j) for any r(ai , a j) ∈ K.

(3) C ⊓¬{a1} ⊓ ...⊓¬{an} ⊑ D for any C ⊑ D ∈ K.

Since K′ is consistent, there exists some I′ |=∆ K′. We show that K−∆ ∪K′ is consistent by

showing that I′ also satisfies each axiom σ−∆ ∈ K−∆. We consider several cases based on

the form of σ−∆:

(1) σ−∆ =⊤(a). Since any I satisfies ⊤(a), it follows that I′ |=∆ ⊤(a).

(2) σ−∆ = u(ai , a j) ∈ K−∆. Since any I satisfies u(ai , a j), it follows that I′ |=∆ u(ai , a j).

(3) σ−∆ = C⊓¬{a1}⊓...⊓¬{an} ⊑ D. From the definition of the semantics, (C⊓¬{a1}⊓...⊓¬{an})I

= CI ∩∆ \ {a1} ∩ . . . ∩∆ \ {an} = CI ∩ ; = ; for any I. As ; ⊆ DI for any concept

D ∈ NC and any I, we obtain I′ |=∆ C ⊓¬{a1} ⊓ ...⊓¬{an} ⊑ D.

Since I′ |=∆ K′ and I′ |=∆ σ−∆ for each axiom σ−∆ ∈ K−∆, we have I′ |=∆ K−∆ and hence

K−∆ ∪K′ is consistent. □

We show that our exceptional-individual-based weakening is monotonic in terms of ∆-

entailment between two weakened knowledge bases.

Lemma 4.15. Let K be a knowledge base that is consistent and w.l.o.g in a transformed form.

Let ∆1,∆2 ⊆∆ be two sets of individuals. If ∆1 ⊆∆2, then K−∆1 |=∆ K−∆2 .
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Proof. We show that for each J |=∆ K−∆1 , it also holds J |=∆ β for each axiom β ∈ K−∆2 .

Let ∆1 ⊆ ∆2 and J |=∆ K−∆1 . Then, J |=∆ α for every axiom α ∈ K−∆1 . We consider

several cases of β :

(1) β = C ⊓ ¬{b1} ⊓ . . . ⊓ ¬{bn} ⊑ D, where {b1, . . . , bn} = ∆2. Then, we have axiom

C ⊑ D ∈ K. Since∆1 ⊆∆2, we have α = C ⊓¬{bi}⊓ . . .⊓¬{b j} ⊑ D ∈ K−∆1 , for some

bi , . . . , b j ∈∆2 with 1≤ i < j ≤ n. Since J |=∆ α, it holds that CJ∩∆\{bi}∩. . .∩∆\{b j}
⊆ DJ . Let x ∈ ∆ such that x ∈ (CJ ∩∆ \ {b1} ∩ . . . ∩∆ \ {bn}). Then, x ∈ CJ and

x ∈∆\{bk} for all k ∈ {1, . . . , n}. In particular, we have x ∈ (CJ∩∆\{bi}∩. . .∩∆\{b j})
with 1≤ i < j ≤ n. Since (CJ ∩∆ \ {bi} ∩ . . .∩∆ \ {b j}) ⊆ DJ , we also have x ∈ DJ .

Hence, (CJ ∩∆ \ {b1} ∩ . . .∩∆ \ {bn}) ⊆ DJ and J |=∆ β .

(2) β is a concept assertion. We consider subcases β = C(a) or β =⊤(a):

(2.1) β = C(a). Then, a ̸∈ ∆2. We have C(a) ∈ K. Since ∆1 ⊆ ∆2 and a ̸∈ ∆2, we

have a ̸∈ ∆1. Then, α = C(a) ∈ K−∆1 . Since J |=∆ α and β = α, we have

J |=∆ β .

(2.2) β =⊤(a). Then, J |=∆ β holds since any I satisfies ⊤(a).

(3) β is a role assertion. We consider subcases β = r(a, b) or β = u(a, b):

(3.1) β = r(a, b). Then, both a, b ̸∈ ∆2. We have r(a, b) ∈ K. Since ∆1 ⊆ ∆2 and

a, b ̸∈ ∆2, we have a, b ̸∈ ∆1. Then, α = r(a, b) ∈ K−∆1 . Since J |=∆ α and

β = α, we have J |=∆ β .

(3.2) β = u(a, b). Then, J |=∆ β holds since any I satisfies u(a, b).

Since for any J |=∆ K−∆1 we have that J |=∆ β for any β ∈ K−∆2 , it follows that J |=∆ K−∆2 .

Hence, K−∆1 |=∆ K−∆2 as desired. □

Using the notion of the exceptional individual set, we present the individual-based revision

operator for any two knowledge bases under the fixed-domain semantics. Whenever the

incoming KB is inconsistent with the prior KB, the operator chooses one of the minimal

exceptional individual sets so that the weakened prior KB is consistent with the incoming

one.

Definition 4.16 (Individual-based Revision). Let K and K′ be two knowledge bases and

E(K, K′) be the set of exceptional individual sets. An individual-based revision operator is a

revision operator ◦π∆ such that for any knowledge base K and K′:

K ◦π∆ K′ =

¨

trans∆(K)−π(E(K,K′)) ∪K′ if K′ is consistent,

K′ otherwise,
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where π : P(P(∆)) → P(∆) is a selection function such that: (1) π retrieves subset-minimal 
elements, i.e. π(X ) ∈ X and there is no Y ∈ X such that Y ⊂ π(X ), and (2) for every K′′ with K′′ |
=∆ K′, π(E(K, K′′)) ⊆ π(E(K, K′)).

The result of the revision K ◦π∆ K′ is linearly bigger than the inputs K and K′. The only

size change is for the prior KB K (i.e. to be transformed and weakened), while K′ remains

unchanged. In the weakening process, the size of the axioms changes only whenever the

GCIs are weakened. As π(E(K, K′)) ⊆ ∆, every GCI weakening adds at most n∆ negated

nominal concepts which represent exceptional individuals, where n∆ = |∆|. Hence, the size

growth from trans∆(K) to trans∆(K)−π(E(K,K′)) is only linearly bounded by n∆. Overall, in

the worst case scenario, when we revise an arbitrary knowledge base K (with the size of

nK) by some KB K′ (with the size of nK′), the result of the revision K ◦π∆ K′ has the size of

(nK × n2
∆) + nK′ . Note that n2

∆ comes from transformation and weakening procedures.

This individual-based revision operator works on the syntactic level by weakening the ax-

ioms of the original knowledge base. Recall that the weakening process is syntax dependent,

this revision operation also depends on the syntax of the knowledge base. For two knowledge

bases which are semantically equivalent but syntactically different, there is no guarantee

that the revision would result in two equivalent weakened knowledge bases. For instance,

assume we have ∆ = {c, d} and two equivalent knowledge bases as previously defined

K1 = {A⊑ ∀r.B, A(c), r(c, d)} and K2 = {∃r−.A⊑ B, A(c), r−(d, c)}. Suppose we want to re-

vise each K1 and K2 by an incoming KB K3 = {¬B(d)}. Since both unions K1∪K3 and K2∪K3

are inconsistent, we search for the minimal set of exceptional individuals that would make the

weakened version of the two prior KBs consistent with K3. Then, we find π(E(K1, K3)) = {c}
and π(E(K2, K3)) = {d}. The result of the revision K1 ◦π∆ K3 = {A⊓ ¬{c} ⊑ ∀r.B,¬B(d)},
while for the other one K2 ◦π∆ K3 = {∃r−.A⊓ ¬{d} ⊑ B, A(c),¬B(d)}. Hence, we observe

that K1 ◦π∆ K3 ̸≡∆ K2 ◦π∆ K3. These observation can be considered a counter example to

show that the revision operator ◦π∆ fails to satisfy postulate (G4) which guarantees the

irrelevance of syntax principle. For the satisfaction of the five remaining postulates, the

following proposition shows positive results.

Proposition 4.17. The individual-based change operator ◦π∆ satisfies postulates (G1)–(G3),

(G5), and (G6).

Proof. For inconsistent K′, (G1-G3) are immediately satisfied since ⟦K ◦π∆ K′⟧∆ = ⟦K′⟧∆
= ⟦K ∪ K′⟧∆ = ;. For (G5-G6), since K′ is inconsistent, we have ⟦K ◦π∆ K′ ∪ K′′⟧∆ = ;
= ⟦K ◦π∆ (K

′ ∪K′′)⟧∆. Now we assume K′ is consistent.

(G1). Let I ∈ ⟦K ◦π∆ K′⟧∆. By Definition 4.16, we have I ∈ ⟦K−π(E(K,K′)) ∪K′⟧∆. This

means I ∈ ⟦K−π(E(K,K′))
⟧∆ and I ∈ ⟦K′⟧∆. Therefore, K ◦π∆ K′ |=∆ K′.
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(G2). Let K ∪ K′ be consistent. Then, ; ∈ E(K, K′). Consequently, π(E(K, K′)) = ;
and hence K−π(E(K,K′)) ≡ K. Therefore, ⟦K−π(E(K,K′)) ∪ K′⟧∆ = ⟦K ∪ K′⟧∆ and we have

K ◦∆ K′ ≡ K∪K′.
(G3). Since K′ is consistent, from Definition 4.16, we have that K◦π∆K′ = K−π(E(K,K′))∪K′.

From the definition of of exceptional individual set (chosen by π), K−π(E(K,K′)) ∪ K′ is

consistent, i.e. ⟦K−π(E(K,K′)) ∪K′⟧∆ ̸= ;.
(G5–G6). For (G5) and (G6), assume (K◦π∆K′)∪K′′ is consistent. By the definition 4.16 and

the associativity of the ∪ operator, we have that K−π(E(K,K′)) ∪ K′ ∪ K′′ is also consistent. By
the associativity of the ∪ operator, we can see the knowledge base as K−π(E(K,K′)) ∪ (K′ ∪K′′). 
Since the knowledge base is consistent, we have π(E(K, K′)) ∈ E(K, K′ ∪ K′′). Now con-

sider π(E(K, K′ ∪ K′′)) ∈ E(K, K′ ∪ K′′). From Condition (2) of π, we have π(E(K, K′ ∪ K′′)) ⊆ 
π(E(K, K′)). From Lemma 4.15, it holds K−π(E(K,K′∪K′′)) |=∆ K−π(E(K,K′)). From Defini-tion 
4.13, we also have K−π(E(K,K′∪K′′)) ∪ K′ ∪ K′′ is consistent. Then, π(E(K, K′ ∪ K′′)) ∈ E(K, K
′). As π(E(K, K′)) is a subset-minimal set and π(E(K, K′ ∪ K′′)) ⊆ π(E(K, K′)), we also have 
π(E(K, K′)) ⊆ π(E(K, K′ ∪ K′′)). Again by Lemma 4.15, we have K−π(E(K,K′)) |=∆ K−π(E(K,K′∪K

′′)). Hence, K−π(E(K,K′)) ≡∆ K−π(E(K,K′∪K′′)). We have K−π(E(K,K′)) ∪ K′ ∪ K′′ ≡

K−π(E(K,K′∪K′′))∪K′∪K′′. Therefore, by Definition 4.16, we have (K◦π∆K′)∪K′′ ≡ K◦π∆(K
′∪K′′).□

4.4 Individual-Based Approach via ASP Encoding

In the following, we introduce an ASP encoding for the individual-based revision approach

described in the previous section. Given a fixed domain ∆ and two knowledge bases

K = (T , A, R) and K′ = (T ′, A′, R′), the goal of this encoding is to find the minimal set of

exceptional individuals ∆′ ⊆∆ such that if we weaken the knowledge base K based on those

set, i.e. K−∆
′
, we have that K−∆

′
∪K′ is consistent. We begin by generating the set of all

possible sets of exceptional individuals (E(K, K′)) using the interval function from Clingo

of the form 1..|∆|. As the interval function occurs in the body, it is expanded disjunctively

in the process of grounding, providing all possible sets of the individuals. We capture all

generated elements as exceptional individuals exc(X ).

Πexc(K∪K′,∆) = {exc(X )← X = 1..|∆|}. (4.25)

As in the model-based revision encoding, we generate all possible interpretations based

on the signature of the union of both knowledge bases.
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Πgen(K∪K′,∆) = {A(X )← not ¬A(X ), thing(X ) | A∈ NC(K∪K′))}∪
{¬A(X )← not A(X ), thing(X ) | A∈ NC(K∪K′))}∪
{r(X , Y )← not ¬r(X , Y ), thing(X ), thing(Y ) | r ∈ NR(K∪K′))}∪
{¬r(X , Y )← not r(X , Y ), thing(X ), thing(Y ) | r ∈ NR(K∪K′))}∪
{thing(i) | δi ∈∆}.

(4.26)

Next, for each answer set representing an interpretation, we search for a set of exceptional

individuals within the answer set. The rule for the TBox is similar to the constraint we used

for a violation checking in the model-based revision encoding, except that we add an atom

exc(X ) in the body. Intuitively, if an individual is involved in a violation of some axiom, it is

marked as an exceptional individual. Note that we do this treatment only for the TBox from

the prior knowledge base K as our aim is to weaken K only.

Πchk(T , T ′,∆) = {← not exc(X ), t rans(C1), ..., t rans(Cn) | ⊤ ⊑
n
⊔

i=1
Ci ∈ T }∪

{← t rans(C1), ..., t rans(Cn) | ⊤ ⊑
n
⊔

i=1
Ci ∈ T ′}.

(4.27)

We encode the checking rule for the ABox as the same as in model-based revision encoding.

Every individual assertion C(a) and every role assertion r(a, b) in the ABox is encoded in

the program as a fact.

Πchk(A∪A′,∆) = {A(ai) | A(ai) ∈ A∪A′}∪
{¬A(ai) | ¬A(ai) ∈ A∪A′}∪
{r(ai , b j) | r(ai , b j) ∈ A∪A′}∪
{¬r(ai , b j) | ¬r(ai , b j) ∈ A∪A′}.

(4.28)

For the RBox, we also add atom exc(X ) to capture the exceptional individuals violating

the RBox axioms of the knowledge base K. Again, we consider the RBox axioms in the form

of r ⊑ s, r1 ◦ r2 ⊑ r3, or Dis(r, s) for both K and K′.



4.4 Individual-Based Approach via ASP Encoding 93

Πchk(R, R′,∆) = {← not exc(X ), not exc(Y ), r(X , Y ), s(X , Y ) | Dis(r, s) ∈R}∪
{← not exc(X ), not exc(Y ), r(X , Y ), not_s(X , Y ) | r ⊑ s ∈R}∪
{← not exc(X ), not exc(Y ), s1(X , Y ), s2(Y, Z), not_r(X , Z) |
s1 ◦ s2 ⊑ r ∈R}∪
{← r(X , Y ), s(X , Y ) | Dis(r, s) ∈R′}∪
{← r(X , Y ), not_s(X , Y ) | r ⊑ s ∈R′}∪
{← s1(X , Y ), s2(Y, Z), not_r(X , Z) | s1 ◦ s2 ⊑ r ∈R′}.

(4.29)

We summarize the axioms encoding from the knowledge base K∪K′ as follows:

Πchk(K, K′,∆) = Πchk(T , T ′,∆)∪Πchk(A∪A′,∆)∪Πchk(R, R′,∆) (4.30)

Given two knowledge bases K and K′, the complete encoding of the individual-based

revision approach is the following program:

Π(K ◦π∆ K′,∆) = Πexc(K∪K′,∆)∪Πgen(K∪K′,∆)∪Πchk(K, K′,∆). (4.31)

Given the set AS(Π(K ◦π∆ K′,∆)), we obtain the answer sets containing many exceptional

individual set possibilities to weaken the KB K (i.e. the set E(K, K′)). Remember that we

want to only retrieve the answer sets where the exceptional individual sets are (subset)

minimal. We use the heuristic feature from Clingo to obtain the subset minimal answer sets.

The application of this feature requires the additional statement below to be appended in the

logic program. To activate the heuristic, we call a particular command option when running

the Clingo program on the command line.

{#heuristic exc(X ). [1, false] }

The directive #heuristic represents that the statement is a heuristic program to be

activated when the solver is running. The statement “exc(X). [1,false]” assigns mod-

ifier false with value 1 to the atom exc(X ) to minimize. We employ the line option

“--heuristic=Domain” when executing Clingo to run the whole program (i.e. “clingo

--heuristic=Domain file.pl”). Note that since it is possible to have many subset-minimal

answer sets, the final choice for KB weakening (i.e. the set π(E(K, K′))) is left to user prefer-

ence. Finally, the individual-based revision result can be obtained by weakening K w.r.t ∆′

as K ◦π∆ K′ = K−π(E(K,K′)) ∪K′.
We observe that the computation of individual-based approach via the ASP encoding is

exponential in the size of individual elements in the domain and thus causes non-scalability in
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practical applications, i.e. the solution space is incomprehensible. In particular, as we could

see in the ASP encoding earlier, the program requires to generate all possible exceptional

individual sets before finding the appropriate one to be chosen as the underlying set for

weakening process. Given n number of individuals, the program generates 2n possible sets.

To reduce the exponential magnitude, one can limit the number of individual elements for

the generation step. Some individuals can be prioritized not to be exceptional. This could be

achieved by setting a ranking or preference over the individuals in the domain by users. For

example, in the ABox, suppose we want to maintain some concept or role assertions not to

be weakened (or removed) from the knowledge base. Based on the individual ranking, those

individuals occurred in the assertions would not be involved when generating exceptional

individual sets. In other words, we only generate the solution space based on the other

non-prioritized individuals.

Another way to help with the incomprehensibility issue is by applying a navigation frame-

work for the answer sets, which was introduced by Fichte, Gaggl, and Rusovac [FGR22].

Using their approach, users are able to explore the solution space (e.g. all possible sets

of exceptional individuals) by consciously zooming in or out of sub-solutions at a certain

configurable pace. As we are only interested in a subset-minimal solutions, we can zoom in

on particular exceptional individuals that still produce proper revision results, which leads

to smaller sub-space of solutions. On the implementation side, this navigation framework

employs an additional layer on top of Clingo solver, which supports the usability of our

encoding-based revision practice.

4.5 Related Work

Syntax-based approaches for revision in DLs directly modify the axioms occuring in the

knowledge base. The modification includes dropping a set of axioms [HK06b; RW09a; RW08;

ZKN+19b] or by weakening axioms [QLB06a; AAB+18]. However, applying the original

AGM postulates [AGM85] to a syntax-based approach for revision in DL is found to have a

main issue: while AGM used axiom negation for their syntax-based revision construction, DL

axioms are not closed under negation. Earlier approaches [HK06b; RW09a] implemented

semi-revision in the DL family SHOIN , where the consistency postulate (corresponding to

(G3)) and the success postulate (corresponding to (G1)) can not be guaranteed simultaneously.

Later, Ribeiro and Wasserman [RW09b; RW14b] introduced alternative constructions for

revision in general negation-free logics. However, they did not consider postulates (G5) and

(G6) in their representation theorem. Instead, they proposed some special postulates for base

change inspired by Hansson [Han99], namely core-retainment and relevance to capture the

minimal change principles. Our individual-based approach can be regarded as a syntax-based

approach since the outcome of the revision is generated by axioms weakening.
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Table 4.18: Overview of our approach and comparison with related work.

Approach Class DL setting Postulates Method for generating result

Qi et al. [QLB06a]

sy
nt

ax
-b

as
ed

ALC (G1)-(G3), (G5),
(G6)

axioms weakening

Aiguier et al.
[AAB+18]

ALC (G1)-(G3), (G5),
(G6)

axioms relaxation

Halaschek-Wiener et
al. [HK06b]

SHOIN semi-revision postu-
lates

axioms removal

Ribeiro and Wasser-
mann [RW09a;
RW08]

SHOIN (D);
SROIQ

semi-revision postu-
lates

axioms removal

Zheleznyakov et al.
[ZKN+19b]

DL-Lite customized postu-
lates

axioms removal

Our individual-
based approach

SROIQ; fixed-
domain

(G1)-(G3), (G5),
(G6)

axioms weakening

Wang et al.
[WWT10; WWT15]

se
m

an
ti

c-
ba

se
d

DL-LiteN
bool (G1)-(G5) distance between features;

approximation
Chang et al.
[CSG14]

EL⊥ (G1)-(G5) graph-based justification;
axioms removal

Zhuang et al.
[WWQ+14;
ZWW+14]

DL-Litecore customized postu-
lates

type-based axioms removal

Dong et al. [DDL17] SHIQ customized postu-
lates

distance between completion
graphs; approximation

Our model-based ap-
proach

SROIQ; fixed-
domain

(G1)-(G6) distance between models; dir-
ect axiom construction from
models (c.f. Equation (4.1))

To deal with the possibility of infinitely many models in DL knowledge bases under stand-

ard semantics, many studies in semantic-based approaches [WWT10; CSG14; WWQ+14;

WWT15; ZWW+14; DDL17] investigate alternative semantic characterizations for specific

DL families. As a consequence, their model-based revision operators work with finitely many

“characterized” interpretations. To address the inexpressibility problem, the notion of a

maximal approximation was introduced to capture the revision result into a knowledge base

[GLP+06; WWT15; DDL17; ZKN+19a]. A maximal approximation of a result of revision

K ◦K′ is a new knowledge base K′′ such that Mod(K ◦K′) ⊆Mod(K′′) and there is no other

K∗ with Mod(K ◦K′) ⊆ Mod(K∗) and Mod(K′) ⊂ Mod(K∗). In our fixed-domain semantics

setting, both above issues can be resolved naturally. The most plausible (the minimal) models

can be computed as the interpretations are finite and the revised knowledge base can be

obtained as these models can be expressed into axioms. Table 4.18 summarizes the related

approaches and compares them with our model-based and individual-based approach.
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4.6 Summary

We have presented two approaches for revising knowledge bases in Description Logics under

the fixed-domain semantics, where the models of the knowledge bases are guaranteed to

be finite. The approaches are: (1) a model-based approach and (2) an individual-based

approach. For both revision approaches, we proposed an encoding into an ASP program to

exhibit the possibility for practical implementations.

For our model-based approach, we provided an axiom construction from a given set of

interpretations where the axiom’s models are exactly the given interpretation set. We adapted

the K&M’s semantic approach and provided a representation theorem for the AGM revision

operator in DL under fixed-domain semantics, as well as a concrete model-based revision

operation using the notion of distance. To find the the revision result, we first compute the

distances between models of the new information and the models of the prior knowledge

base. The models of the new information which have least distance to the models of the initial

knowledge are becoming the models of the revision outcome. Then, an axiom constructor is

used to represent the minimal models into a knowledge base.

The second approach is a novel revision technique for this particular DL by axioms weak-

ening based on exceptional individual sets. For the general concept inclusion axioms, weak-

enings are performed by expanding the left hand side concept expression of the subsumption

with conjunctions of nominal concepts representing exceptional individuals. For the concept

or role assertions, we replace the concept or role name with the top concept, or in other

words, we drop the assertions from the knowledge base. The revision outcome is achieved

by the union of the incoming knowledge base and the weakened prior knowledge base with

regard to certain subset-minimal exceptional individual set. We showed that this revision

approach does not satisfy one particular postulate (G4) and hence syntax-independent results

from applying this method can not be guaranteed.

In the preliminaries, we proposed a DL axiom constructor from a given set of interpretations.

Despite the constructor at the end serves our intention to express the revision models back

into a knowledge base, the structure is arguably rather technical and unwieldy: it contains

only one axiom with possibly “very big” concept expression on the right hand side of the

subsumption. Finding a new axiom constructor from a given set of ∆-interpretations may be

a viable path for the future.



Chapter 5

Conclusions and Outlook

5.1 Conclusions

In this thesis, we investigated AGM belief revision in general Tarskian logics from the semantic

point of view. Tarskian logics are logics satisfying extensivity, idempotence, and monotonicity.

This class of logics captures many well-known knowledge representation formalisms such as

classical propositional logic, first-order logic, and description logics. In the preliminaries, we

provided the proofs showing that these logics are equivalent to the logics endowed with a

classical model-theoretical semantics. We aim to find appropriate semantic characterization

for AGM revision operators in these logics. To achieve our main goal, we introduced a generic

notion of base logic which is uniformly applicable to every Tarskian logic allowing union

over bases without additional restriction on postulates side.

While the semantic characterization of AGM revision operators in finite-signature pro-

positional logic has been well studied by Katsuno and Mendelson [KM91] via the notion of

assignment, there remains several challenges to find an appropriate semantic representation

theorem for arbitrary Tarskian logics. The identified problems are: (1) the possibility of

knowledge bases to have infinitely many models, (2) the possibility of AGM revision operators

coincide with non-transitive (hence not a preorder) assignment, and (3) the possibility of the

minimal models as the revision outcome cannot be expressed into any base in the considered

logic. To address those challenges, we provided a two-ways representation theorem which

shows that in general Tarskian logics case, in addition to totality and faithfulness, now an

assignment should also satisfy min-completeness, min-retractivity, and min-expressibility. We

also established a syntax-dependent version of the theorem, where we showed that revision

operators satisfying the AGM postulates except (G4) coincide with an assignment satisfying

all above general conditions except the third condition of faithfulness.

We also investigated further to answer the question of what properties of logics where

every AGM revision operator is compatible with some faithful assignment that only yields

total preorders. We managed to identify a situation involving several bases in the logic that

97
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is called a critical loop. The absence of critical loop indicates that any AGM revision operator

in the considered logic is guaranteed to be compatible with some preorder assignments.

In addition to the results for general logics, we also studied the AGM revision in a particular

logic family that is called description logics under fixed-domain semantics. This logical setting

enables us to have a direct computations over models (e.g. counting distance between models)

and always provides us with some knowledge base from any given set of models. Although

the logics are enjoying those nice properties, study on belief revision in this logical setting

has not been carried out yet. We aimed to find a semantic revision approach and other

potential methods to revise knowledge bases in these logics. Continuing from the general

results, we started by presenting a semantic characterization of AGM revision operators

in these logics, which showed that the representation theorem is similar to the one of

Katsuno and Mendelzon via total preorder assignment. Using the notion of distance between

interpretations, a concrete model-based revision operator was proposed and showed to satisfy

all standard AGM postulates. In this model-based approach, we search the models of the

incoming knowledge which have minimal distance to the models of the initial knowledge.

Thanks to the finiteness of the domain elements, using axiom constructor introduced in the

preliminaries, we could obtain a knowledge base as a revision outcome from the minimal

models of the new information. An encoding of this approach in ASP was presented for a

practical showcase.

As the axiom constructor is rather complex and might not be intuitive for human ob-

servers, we proposed an alternative approach to revise knowledge bases using the axioms

weakening method so that the result can be relatively “more readable”. We called this ap-

proach individual-based revision. The revision outcome is the union of the new information

with weakened prior knowledge base. The weakening process is based on the exceptional

individuals set that is subset-minimal over all set possibilities. As the revision process manip-

ulates the axioms, this individual-based approach is categorized as a syntax-based approach.

We provided a case where two semantically equivalent knowledge bases might produce

non-equivalent results even though we revise both initial KBs by the exact same piece of

information. To confirm this observation, we showed that the revision operators applying

this approach satisfy all AGM postulates except (G4). We also presented an ASP encoding of

this individual-based approach to support practical applications.

5.2 Outlook

Historically, the AGM theory departed from a belief change problem that is called belief

contraction. In contracting a sentence α from the knowledge base K, denoted by K − α,

the agent no longer believes α (while not necessarily believing ¬α). Formally, if α is not a

tautology, then one requires that α ̸∈ K− α. Interestingly, in the classical AGM approach,



5.2 Outlook 99

the revision and contraction operation are interdefinable. Given a contraction operator

−, a revision operator can be defined via Levi identity: K ◦ α = (K−¬α) + α, where + is

called expansion operator (e.g. simply conjunction in propositional logic). Analogously,

given a revision operator ◦, via Harper identity, a contraction operator can be defined as:

K−α = K∩ (K ◦ ¬α). Unfortunately, when we extend to general logics, both operators are

independent of each others, e.g. description logics sentences (or axioms) are not closed

under negation. As the whole thesis focuses only on revision, we think that working on

finding a semantic characterization for contraction is an interesing direction to pursue.

The traditional AGM revision framework that is considered throughout this work focuses

only on one-step transition and does not provide any further strategy for iterated revision.

As one has observed in our semantic approach, we can obtain the corresponding assignment

that is compatible with the AGM revision operator. For instance, we want to revise K by

some base Γ and expect the revision outcome K ◦ Γ . Then, we can obtain the corresponding

relation ⪯K compatible with ◦. Suppose now we have another new information Γ ′ to be

added into the first revision result K ◦ Γ . We expect that we can produce K ◦ Γ ◦ Γ ′ from

what we already know (K, Γ , and ⪯K). However, the previously obtained ⪯K cannot be used

again to have the desired result of the second revision. We need a new appropriate relation

⪯K◦Γ that is in some sense rationally related to the previous one. Unfortunately, the AGM

postulates give us no clue about how to produce ⪯K◦Γ . To address this issue, Darwiche and

Pearl [DP97] introduced an additional set of postulates, called (DP1)–(DP4), to govern the

iterated revision. They used a different structure from AGM framework: revision operators

apply to epistemic states rather than to a belief base (or a set). Further investigation is needed

for examining the general setting of base logics presented here in the line of the iterated

base revision. Apart from that, in research on base revision, various special postulates for

changing the bases have been considered, e.g. in the seminal research on belief base revision

by Hansson [Han99]. For example, to capture the principle of minimal change, he proposed

two additional postulates, namely relevance and core-retainment. It would be interesting to

see how semantic approach in this work could characterize the special postulates of base

revision.

In a wider perspective, we think that the semantic framework for revising beliefs can be

instrumental in understanding phenomena such as different attitudes between entities in

the society towards knowledge incorporation. Suppose we have two different entities which

possess the same initial knowledge. Moreover, we assume that the two entities receive the

same external input. It is not always the case that the two entities adjust their knowledge

in the same way. This can happen because they both have a different ‘change mechanism’ –

their revision operators are not necessarily the same. From the semantic point of view, for

instance, the same incoming input possibly has different meaning or importance for the two
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parties. Consequently, both entities would have distinct ranking (or preference) towards the

interpretations, which leads them to display different revision policies.
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