

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-807629

J. Albrecht, W. Hümmer, W. Lehner, L. Schlesinger

Query optimization by using derivability in a data warehouse
environment

Erstveröffentlichung in / First published in:

CIKM00: Ninth International Conference on Information and Knowledge Management,
McLean 06.11. – 11.11.2000. ACM Digital Library, S. 49-56. ISBN 978-1-58113-323-3

DOI: https://doi.org/10.1145/355068.355315

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-807629
https://doi.org/10.1145/355068.355315

QUERY OPTIMIZATION BY USING DERIVABILITY
IN A DATA WAREHOUSE ENVIRONMENT

J. Albrecht, W. Hümmer, W. Lehner, L. Schlesinger
Department of Database Systems, University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, Germany

{albrecht, huemmer, lehner, schlesinger}@immd6.informatik.uni-erlangen.de

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
ABSTRACT

Materialized summary tables and cached query results are fre-
quently used for the optimization of aggregate queries in a data
warehouse. Query rewriting techniques are incorporated into data-
base systems to use those materialized views and thus avoid the
access of the possibly huge raw data. A rewriting is only possible if
the query is derivable from these views. Several approaches can be
found in the literature to check the derivability and find query rewri-
tings. The specific application scenario of a data warehouse with its
multidimensional perspective allows the consideration of much
more semantic information, e.g. structural dependencies within the
dimension hierarchies and different characteristics of measures.
The motivation of this article is to use this information to present
conditions for derivability in a large number of relevant cases which
go beyond previous approaches.

1 INTRODUCTION
Data warehousing has nowadays become a common technology.
The goal of a data warehouse is to provide analysts and managers
with strategic information about the key figures of the underlying
business. Since microdata are of no interest at this level, almost all
queries on data warehouses involve aggregates. This includes sim-
ple totals on the measures recorded in the database as well as aggre-
gations on derived measures like turnovers or values including sales
tax.

In the area of statistical databases the modeling and processing of
summary values has been studied extensively (e.g. [6]). A funda-
mental problem in this area is the statistical inference problem. To
protect some data which are to remain private, it might be necessary
to ensure that these private data are not derivable from public data.
Interestingly, a similar problem occurs if query processing is con-
cerned. A common optimization technique in data warehousing is
the use of materialized summary tables. Because in general the fact
tables storing the summary values of interest are very large, it is
especially in an OLAP environment infeasible to query the fact
tables directly. Instead, queries should be answered by materialized

aggregate views if possible. The question of derivability in the pre-
sence of redundancy is as old as the theory of relations ([9]). In
order to rewrite queries three questions have to be investigated:

1) Under which circumstances is an aggregate query derivable
from one or more materialized views?

2) How must the query be rewritten in order to make use of the
materialized views?

3) If there are several possibilities to use materialized views,
which is least expensive?

Some of the large relational database vendors like Oracle [25] and
IBM [17] provide mechanisms to transparently rewrite certain types
of queries so that appropriate materialized views are used instead.
However, in general the problem is NP-hard and in some cases
unsatisfiable. Therefore, many algorithms for query rewriting espe-
cially for aggregate queries are of exponential complexity (see
related work in section 3).

The focus of this article is on the first two questions. We propose an
extension of traditional query rewrite techniques. In order to answer
the third question our technique should be extended with an appro-
priate cost model. This is one part of our future work. For now, we
refer to the published articles, e.g. [29]. In contrast to commercial
products which can utilize materialized views only in a very limited
number of cases and very complex and expensive approaches in
literature, we want to identify simple cases for the derivability of
aggregate queries with high practical use in data warehousing and
statistical databases. A very interesting special case which has not
been considered before is the derivation of composite measures,
like the turnover which can be computed from a sales quantity and
the respective price. However, we do not present any algorithms but
we present a framework as an extension of query rewrite techniques
based on a normal form of the query typically used in data ware-
houseing.

The article is organized as follows: In section 2 an example is given
to motivate our case. Section 3 gives information about related
work and the shortcomings of previous approaches. A formalism to
describe the class of queries which is to be investigated is defined
in section 4. Sufficient conditions for the derivability of such que-
ries are discussed in section 5. An overview of future work is given
in section 6. Section 7 closes with a short summary.

2 MOTIVATION
We will motivate our case with an illustrative example. Consider the
conceptual schema of the data warehouse of some retail store chain
as depicted in figure 1. By adopting a multidimensional termino-
logy, there are three dimensions, Product, Location and Time with
several category attributes. The arrows define functional dependen-
cies in database terms. Each path from a terminal attribute, e.g. Arti-
cle, to the Top category in the respective dimension defines a classi-
fication hierarchy (figure 1). Parallel paths result in parallel hierar-

©2000 Copyright held by the owner/author(s). Publication rights licensed to
ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in DOLAP '00 11/00 McLean, VA, USA
https://doi.org/10.1145/355068.355315
1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
chies. For the OLAP user these paths describe the basic navigation
constructs for drill-down and roll-up operations. In the sample data-
base there are four measures. Only the quantity sold (Qty) is given
per article, day and shop. The other measures are gathered at a
higher granularity. For example the retail chain has the policy that
the prices are the same in all of its shops and they change only quar-
terly. The budget is assigned once a year to each shop. Taxes are
depending on the state the shop is located in and may also change
quarterly.

In a relational database this schema is mapped to a snowflake
schema with a fact table for each measure and one dimension table
for each category attribute with according foreign key relationships
[18]. To prevent lots of joins in the examples we will assume a star
schema with one denormalized table for each dimension (figure 2
left side).

Consider the following query: “Give me the turnover per branch,
region and quarter for the sales in Germany in 1999.” The appro-
priate SQL query is printed on the right side of figure 2.

In figure 3 there are two query plans for this query. To emphasize
the important matters the dimension tables and the respective joins
have been removed. Both query plans are yielding the same result.
The plan in figure 3a is straight-forward and similar to the one cho-
sen by any relational DBMS (before optimization). The plan in
figure 3b makes only sense if the gray areas are materialized views.
In order to determine that the query is also derivable from the views,
the optimizer must be aware of the facts that

1) the applied aggregation function in view 1 and view 2 is
SUM and SUM is additive,

2) the granularity, i.e. the aggregation level, of view 2 is finer
than the requested one and thus it can and must be further
aggregated,

3) the union of the regions “G-North” and “G-South” yields whole
“Germany”,

4) Turnover can generally be computed as Turnover = Qty • Price,
5) the already summarized value of Qty in view 2 can still be

used to compute the Turnover at higher granularities,

6) Price, although given at granularity (Article, Quarter), can be
used at any finer granularity as well, because prices for a
given product and quarter are the same for all months, days,
shops.

If now the views 1, 2, and 3 were materialized views, either manu-
ally created or cached results from previous queries, this plan might
actually be cheaper than the original one. In this case only the com-
pensations, i.e. the operations outside of the gray boxes, would have
to be executed and because of the high aggregation levels of the
views these are likely to be much smaller than the original fact
tables.

3 RELATED WORK
The question of derivability has been investigated for some time.
First concepts were examined for statistical and scientific database
systems. Nowadays the topic has gained importance once more as
possible optimization strategy for large data warehouse systems. A
short classification of related work is given below.

Preconditions for Derivability
An important query optimization technique is algebraic transfor-
mation of queries. [27] suggest how to speed up the computation of
a relational SPJ query by generating several execution plans consi-
dering different choices of access paths to base relations and diffe-
rent join sequences. [33] and [7] extend this idea to queries involv-
ing aggregate functions and grouping by using push-down and pull-
up techniques. [8] in addition to its predecessor also consider aggre-
gate functions. Although algebraic transformations are a necessary
prerequisite for query rewriting, these approaches do not utilize
materialized views. They also do not exploit the multidimensional
semantics with dimensional hierarchies.

First Definitions of Derivability
[28] introduces the notion of derivability in the context of statistical
database systems and divides summary data into different classifi-
cations. One classification may be derivable from another one by
inference rules. [12] exploits algebraic transformation of query
graphs to detect common subexpressions between queries. If a new
query contains at least part of an already evaluated one, this part can
be replaced. This is the beginning of utilizing materialized views.
The method is extended in several articles, e.g. [6], [32], [24], [10]
or [11]. The algorithms published in these papers most of the time
treat special cases that are of little relevance for data warehouses.
Furthermore many of the algorithms are of exponential complexity.
Our approach reduces complexity dramatically as we exploit addi-
tional information and focus on a set of typical queries in the area
of OLAP.

Semantic Query Optimization and Derivability
Semantic query optimization modifies queries due to the know-
ledge of the contents of the database and the application area of the
data which are stored in the database. For that the techniques used

Country

State

Shop

City

Manager

Branch

Group

Article

Family
Publisher

Product Location

TopTop

Year

Quarter

Month

Top

Time

Qty

Tax

DayPrice

Figure 1: Sample conceptual schema of a retail store chain

Budget

Fact_Qty (Article, Shop, Day, Qty)
Fact_Price (Article, Quarter, Price)
Fact_Budget (Shop, Year, Budget)
Fact_Tax (State, Quarter, Tax)
Product (Article, Family, Group, Branch,

 Publisher)
Location (Shop, City, State, Country, Manager)
Time (Day, Month, Quarter, Year)

SELECT P.Branch, L.Region, T.Quarter,
SUM(Qty*Price) AS Turnover

FROM Fact_Qty FQ, Fact_Price FP,
Product P, Location L, Time T

WHERE FQ.Article = P.Article AND
FQ.Shop = L.Shop AND
FQ.Day = T.Day AND
FP.Article = P.Article AND
FP.Quarter = T.Quarter AND
L.Country = ‘Germany’ AND
T.Year = ‘1999’

GROUP BY P.Branch, L.Region, T.Quarter

Figure 2: Tables of the scenario and SQL query
2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
in this area try to detect rules and dependencies among the current
values ([34], [15]). These rules then can be used for derivability.
Another important paper about derivability using aggregated views
is [30] . Here the combination of multiple query fragments is intro-
duced. The main difference between our approach to semantic
query optimization and previous methods is that we do not need
(and do not use) any knowledge about the contents of the database
except for dimensions and hierarchies and information about the
measures to derive a query from a computed result while they pri-
marily have to generate the rules for the complete raw date before
applying these rules for derivability. This is also the reason why this
kind of semantic query optimization is not feasible in the context of
data warehouses.

Semantics in combination with summarizability is studied in [22].
Here three conditions for summarizability are introduced. Of spe-
cial importance for this article are the different aggregation types of
measures (flow, stock and value-per-unit).

Derivability using Aggregation Lattices
The aggregation lattice ([14], [4], [13]) forms the basis for deriv-
ability in the multidimensional context. According to the aggrega-
tion level, aggregates can be arranged in a lattice structure which
reflects the derivability relation. However, these approaches do not
consider any kind of restrictions.

All related work has in common, that the semantics of composite
measures is not considered.

4 AGGREGATE VIEWS
Since the problem of query derivability in general is NP-hard [31],
the focus of this article is not to investigate all possibilities of the
derivability of relational queries. Instead, we restrict the scope of
interest to the typical class of data warehouse queries: star (or snow-
flake) queries with aggregations and restrictions on measures pos-
sibly computed like Turnover in section 2. Thus, a template for the
aggregate queries we want to consider is the following:

SELECT <granularity>, <AGG1(measure1), ..., AGGm(measurem)>
FROM <fact tables>, <dimension tables>
WHERE <join conditions> AND <scope restriction>
GROUP BY <granularity>

Clearly the query in section 2, as well as most other data warehouse
queries, belongs to this category. For the formalization of sufficient
conditions for derivability we introduce a compact formalism to

completely describe these simple aggregate queries by using only
the components printed in italics above. However, it is necessary to
make two further assumptions:

1) Measures are uniquely identified by their names.
This does not actually restrict the class of possible queries
but simplifies their description.

2) All joins are lossless.
Otherwise the join might eliminate tuples unnoticedly and
it would not be possible to determine derivability. All tuples
which are not desired in the result set must explicitly be
removed by the WHERE clause. Note, that lossless joins are
the default in data warehouse queries.

Since the class of queries we describe has multidimensional cha-
racteristics and in fact all conditions for derivability given in the fol-
lowing can also be applied in multidimensional OLAP systems, we
will use a multidimensional terminology. The goal of the following
section is to express the additional semantics of dimension hierar-
chies and measures.

4.1. Dimensions
A dimension provides semantic information about the hierarchical
relationships between its elements which are classified for example
into product groups or geographic regions. This information is
heavily used in queries on the one hand to define the aggregation
level, i.e. the granularity, and on the other hand to restrict the scope
of interest. Both can be exploited for query rewriting.

Definition 1: A dimension schema consists of a partially ordered set
of category attributes (D ∪ {TopD};→) where D = {D1,...,Dn} and
“→” denotes the functional dependency relation. TopD is the
special level which is maximal with respect to “→”, i.e. Di→−
TopD for each Di∈ D.
The instances c ∈ dom(Di) of a category attribute Di ∈D are called
categories of Di. Moreover, dom(TopD) := {‘ALL’}. The instance of
a dimension D is the set of all category attributes.

Dimension schemas were already illustrated in figure 1. Each path
to Top in a dimension schema specifies a hierarchy as the one shown
in figure 4. By defining dom(Top):={‘ALL’} it is guaranteed that all clas-
sification hierarchies are trees having “ALL” as the single root node,
a property that is necessary in the context of summarizability [21].
In this article we consider dimensions only as unordered sets of ele-
ments.

Fact Qty Fact Price

σ
T.Year 199
L.Country ”Germany” AND

Σ P.Branch
L.Region
T.Quarter

Fact Qty Fact Price

σ
T.Year 1999
L.Region ”G South” AND

Σ P.Article
L.City
T.Month

σ L.Country ”Germany”

π Qty • Price Turnover

Σ P.Branch
L.Region
T.Quarter

π Qty • Price Turnover

∪

σ T.Year 1999

Fact Qty Fact Price

σ L.Country ”G North”

Σ P.Branch
L.Region
T.Quarter

π Qty Price Turnover

View V1 View V2 View V3

Figure 3: Possible query plans for the sample query.

a) Plan based on raw data b) Rewritten plan based on materialized views
3

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
4.2. Simple Aggregate Views and Queries
Using the definition of a dimension it is possible to define a data
structure for simple aggregate queries or views by assuming that all
joins are determined implicitly by foreign keys to the respective
tables. In the context of this work the difference between a query
and a view is of no interest. Thus we will use the same notation for
an aggregate view and an aggregate query.

Definition 2: A simple aggregate view (or query) is a structure
V = [G, M, S]1 where

• G = (G1,...,Gn) is the granularity consisting of a set of cate-
gory attributes2 which are functionally independent, i.e. for
each Gi, Gj ∈ G: Gi →/ Gj,

• M = (AGG1(M1),..., AGGm(Mm)) is a set of aggregated measures
where AGGi ∈ {NONE, SUM, COUNT, MIN, MAX} denotes the
applied aggregation operation,

• S is a logical predicate defining the scope restriction.

In the definition of a simple view the SQL aggregation operation
AVG is missing. This is because the AVG is not additive in the sense
of [6], i.e. averages are not derivable from averages. However, if
derivability is concerned an AVG operation can be internally mapped
to SUM and COUNT. The operation NONE means that no aggregation
was performed. We call a simple aggregate view a raw data view for
measure Mi if NONE(Mi) ∈ M. The raw granularity of a measure,
denoted as Gran(M), is the granularity of its raw data view.

In the multidimensional perspective an aggregate view can be illus-
trated as a data cube (figure 5). Therefore, we will refer to the con-
tents of the cube as data cells.

Since aggregate views define queries on the raw data, the scope can
be an arbitrary logical expression involving any dimension attibutes
functionally dependent on some granularity attribute in the respec-
tive raw data view for one of the measures.

Example 1: A raw data view for the quantity fact table in section 2
is VQty = [(P.Article, L.Shop, T.Day), NONE(Qty), ∅].
As in this example we will use dimension aliases as prefixes for
the category attributes to make the context clear. For simplicity
we will not specify empty scopes or aggregate restrictions.
Thus we might just write VQty = [(P.Article, L.Shop, T.Day),
NONE(Qty)] for the view above. Similar definitions exist for
VPrice, VBudget and VTax.

The simple aggregate view V2 in figure 3 could be specified as
V2 = [(P.Article, L.City, T.Month), SUM(Sales), (L.Region=”G-South” ∧
T.Year=”1999”)].

To specify the turnover we need a notation for composite measures
which will be introduced in section 4.6.

4.3. Operations on Simple Aggregate Views
This section informally introduces our notation for operations on
simple aggregate views, because the definition of the operators
should be intuitively clear.

The projection πE(M) is used to project a subset of the measures or
an expression thereof with the operators {+, -, • , /, cmin, cmax}. The
operations cmin and cmax are not part of SQL, but nonetheless com-
mon in data warehouse applications. They are used to find the
smaller (respectively larger) value of two measures (cell minimum/
maximum, e.g. cmin(Qty_Sold, Qty_Stock)) in contrast to the MIN and
MAX aggregation operations which find the minimum and maximum
of one measure for a certain group of cells.

The scope restriction σS’ is used to apply further restrictions to the
view. It is defined only, if the predicate S’ contains only dimension
attributes functionally dependent on some Gi ∈ G. In this case

σS’([G, M, S]) = [G, M, S∧ S’].
Most important are aggregations. An aggregation groups cells at a
finer granularity into cells at a coarser granularity and applies an
aggregation operation on the measures. The finer/coarser relation-
ship can be visualized by a lattice structure as suggested in [14].

Definition 3: A granularity, i.e. a set of category attributes
G’ = (G1’,...,Gk’) is coarser (or equal) than a granularity
G = (G1,...,Gn), denoted as G’ ≥ G, if and only if for each Gj' ∈ G’
there is a Gi ∈ G such that Gi→Gj’. In this case G is said to be finer
than G’, i.e. G ≤ G’.
The aggregation of a simple aggregate view V = [G, (AGG1(M1), ...
AGGm(Mm)), S] by a family of aggregate functions A = (AGG1’, ...,
AGGm’) to the granularity G’, denoted as A(G’, V) is well-defined
if G’ ≥ G and AGGi’ = AGGi or AGGi = NONE. In this case

A(G’, V) = [G’, (AGG1’(M1), ... AGGm’(Mm)), S].

The term well-defined in the last definition means that the result
again can be described as simple aggregate view. In general the
introduced operations are not as powerful as the relational algebra
because not all relational algebra expressions can be defined in
terms of these. This is by intention, because the goal is only to give
sufficient conditions for certain special cases of queries.

4.4. Joins of Aggregate Views
Often queries request several measures possibly contained in mul-
tiple data cubes or multiple fact tables in a star schema. Such que-
ries are also the basis for the computation of composite measures.
Consider the query: “Give me the quantities sold and on stock for
each product and day”. If these two measures were stored in diffe-

1. The definition of G and M as tuples is for the sake of
simplicity only; as in the relational data model the order
of the attributes does, at least from the conceptual point
of view, not matter. Therefore, we will also apply the
set operators like ∈, ∪, ∩, = to G and M.

2. Category attributes are used to describe the granularity,
i.e. the aggregation level. Thus each Gi = Dj in some di-
mension.

ALL

White Goods

HomeVCR Camcorder

AudioVideo

Brown Goods

Computers

Top

Branch

Group

Family

Article

Products

...

...

Qty

Location
Product

Time

Figure 4: Sample product hierarchy Figure 5: Multidimensional view of
the quantity fact table
4

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
rent fact tables of a star schema an inner join would not show tuples
for products sold but out of stock. Thus, as stated in the second
requirement in section 4 we assume a lossless join semantic which
requires an outer join.

Definition 4: The join of two simple aggregate views V1 = [G1, M1,

S1] and V2 = [G2, M2, S2], denoted as V1 V2, is well-defined, if it
is lossless and G1 = G2. In this case the result is a simple
aggregate query V1 V2 = [G1, M1 ∪ M2, S1 ∧ S2].

4.5. Multiplexable Measures and
Aggregation Types

The join defined in the previous section is meant as an equi-join on
all granularity attributes. However, the condition that the granulari-
ties must be the same would forbid the following query: “Give me
the turnover as the product of the quantities sold and the respective
price for each article and day.” These measures are given at differ-
ent granularities. In the sample schema Gran(Price) = (P.Article, T.Quar-

ter). This does not mean that the price for a product cannot be deter-
mined for each day and shop, but that it is the same for each day and
shop in a given quarter, and even for each customer and whatever
other dimension there may be in the database. Thus, it is possible to
use the price at a finer granularity as its raw granularity, e.g. (P.Arti-

cle, T.Day, L.Shop). Measures of this kind are called multiplexable and
are introduced by [2]. Therefore, we present here only a short over-
view and refer for a more in detail discussion to the original article.

Definition 5: A measure M is multiplexable if for all granularities
finer than its raw data granularity Gran(M) the values can be dis-
aggregated by the identity function.

The fact that prices are multiplexable is related to the aggregation
type of a measure which is introduced in [22], tells something about
summarizability and can be FLOW (e.g. turnover, sold quantity),
STOCK (e.g. inventories) or VPU (value-per-unit; e.g. prices) in gen-
eral. Accordingly to [2] we restrict ourselves to the aggregation
type Type(M) ∈ {FLOW, VPU} for a measure M.

Axiom 1: A measure is multiplexable if and only if it is of the
aggregation type VPU.

Definition 6: The multiplex operator MUX for the granularity G’

applied to a raw data view V = [G, (NONE(M1), ..., NONE(Mm)), S],
denoted as MUX(G’, V) = [G’, MUX(M1), ..., MUX(Mm), S], is well-
defined if G’ ≤ G and Type(Mi) = VPU for each i = 1, ..., m.

For aggregations (definition 3) a
measure MUX(M) can be assumed as
not aggregated. For each cell c” at a
granulariy G” with G’ ≤ G” ≤ G the
value of any cell at G’ which
belongs to the group of c” can be
chosen, because all share the same
value of the corresponding original
cell at granularity G (see figure 6
for an illustration). This is also the
motivation for the term “multiplex-
able” because one value at the
coarser granularity is multiplexed
to many cells at the finer granula-
rity.

4.6. Composite Measures
As already pointed out, measures are often derived from other mea-
sures by simple formulas or business rules. Frequent examples are
Turnover = Qty • Price or TurnoverTax = Turnover • Tax. We call these
measures composite. The conceptual granularity of such a measure
is that of the finest of the operands in its definition. For example
Turnover has the same granularity as Qty. This is because for the com-
putation a join of VQty and VPrice is necessary. If formulas are speci-
fied on a conceptual level, aggregate views of the operands of the
formula can be used to derive the result (section).

Definition 7: A formula M = M1 op M2, where op ∈ {+, -,• , /, cmin,
cmax}, is well-defined if the join between the respective raw data
views of M1 and M2 is well-defined and the aggregation type of
M can be determined by table 1. Then the granularity of M is
determined as Gran(M) = min(Gran(M1), Gran(M2)).

Of course the operands M1 and M2 can be composite measures them-
selves, like TurnoverTax = Turnover• Tax. Although in the following we
will only consider non-nested definitions of composite measures,
the laws of distributivity and associativity can be used to derive
much more rewriting possibilities for queries in the general case.

5 DERIVABILITY OF SIMPLE
AGGREGATE VIEWS

Derivability of multidimensional aggregates is the condition that
has to be fulfilled to compute the result of an aggregate query based
on the values of one or more aggregate views. Informally a query Q
defined on a set of tables is derivable from a set of views V, if it can
be computed alone by using these views instead of the original
tables. In other words, there must exist a rewriting for Q. More for-
mally derivability can be defined as follows:

Definition 8: An aggregate query Q is derivable from a set of aggre-
gate views V = {V1, ..., Vv} if and only if a rewriting of Q involving
only the views in V exists.

Germany

G-South G-North

BY BW BRB NRW

7

7 7

7 77 7

G=L.Country

G”=L.Region

G’=L.State

Figure 6: Multiplexing of a
value-per-unit measure

which is defined at
granularity L.Country to

L.Region and L.State.

Table 1: Resulting aggregation types for composite measures.
Empty fields signal that the formula is not well-defined.

Aggregation Types of
the Operands

op

+ - * / cmin cmax

FLOW op FLOW FLOW VPU FLOW FLOW

FLOW op VPU FLOW FLOW

VPU op FLOW FLOW

VPU op VPU VPU VPU VPU VPU VPU
5

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
The definition of a simple aggregate query Q implicitly involves the
respective raw data views. In fact, a reformulation of Q using only
raw data is the trivial rewriting that always exists.

If the query can be derived from a single aggregate view several
well known conditions like the compatibilities of the granularities
or the aggregation operators have to be compared ([3]). In [2] the
conditions are extended for granularities after involving the the
multiplex operator. This article extends the considerations regard-
ing to the derivability of composite measures, which is presented in
the next paragraph.

Special Cases of Derivability for Composite
Measures
An interesting topic about derivability is the possibility of deriving
aggregate queries involving composite measures not only from
views containing exactly the same measure, but also from aggregate
views containing aggregations of the corresponding raw measures.

Theorem 1: Let Q = [GQ, AGGQ(MQ), SQ] be an aggregated query
where MQ = M1 op M2 is a composite measure. Let V1 = [G1,
AGG1(M1), S1] and V2 = [G2, AGG2(M2), S2] be aggregated views and
let VR1[GR1, NONE(M1)] and VR2[GR2, NONE(M2)] be the respective
raw data views. Then Q is derivable from V1 and V2 if

• G1 ≤ GQ,
• the scope restriction SQ implies SVi and σSQ(Vi) is well-

defined for i = 1, 2 and
• G2 ≤ GQ and one of the cases 1, 2 or 3 in table 2 applies

or
• G1 ≤ GQ,
• the scope restriction SQ implies SVi and σSQ(Vi) is well-

defined for i = 1, 2 and
• V2 is a raw data view, i.e. V2 = VR2, and GQ ≤ G2 and one of

the cases 4 or 5 in table 2 applies.

In the first case let GV = max(G1, G2). Then a rewriting is
AGGQ(GQ, π(MQ = M1 op M2) (σS (AGGQ(GV, V1) AGGQ(GV, V2)))

In the second case let GV = min(GQ, G2). Then a rewriting is
AGGQ(GQ, π(MQ = M1 op M2) (σS (AGGQ(GV, V1) MUX(GV, V2))).

If one considers the views as subqueries, a group-by push-down or
eager aggregation similar to the methods proposed in [33] or [7] is
applied. In general these methods would not work here, because
first the information that MQ = M1 op M2 is necessary, and second, the
aggregation type of the measure must be known for the cases 4 and
5. However, the proposed rewriting technique can be seen as a
semantic extension of this work.

As explained in section 4.5 each measure M has an aggregation type
Type(M) which is either FLOW or VPU. For the first three cases equi-
valence holds because of the laws of associativity and distributivity
for summation and min/max operations.

Figure 7 illustrates the theorem for case 3 in the context of simple
aggregate queries. Assume two two-dimensional raw data views
VR1 = [G1, NONE(M1)] and VR2 = [G2, NONE(M2)] and the aggregate
query Q = [GQ, SUM(MQ)] where MQ = M1 + M2. The operator graph in
the left part of the figure shows the usual way of processing this
query. First VR1 and VR2 are joined, then the measures are added in
each cell (or tuple) and finally the aggregation is performed. The
view V = [Gv, SUM(MQ)] with GV ≤ GQ could be used to derive Q.
However, as illustrated on the right side, it is possible to aggregate
first and then perform the join and add the measures. If the views
V1[Gv1, SUM(M1)] and V2[Gv2, SUM(M2)] were materialized, the query
could be derived from V1 and V2 as well.

For the remaining combinations of aggregation operations and
operators on the measures counter examples can be found, but are
not presented here due to the lack of space.

Table 2: Derivability of composite measures

No. AGGQ(M1 op M2)= AGG1(M1) op’ AGG2(M2) Type(M1) Type(M2)

1 MIN(cmin(M1, M2))= cmin(MIN(M1), MIN(M2)) FLOW, VPU FLOW, VPU

2 MAX(cmax(M1, M2))= cmax(MAX(M1), MAX(M2)) FLOW, VPU FLOW, VPU

3 SUM(M1 ± M2)= SUM(M1) ± SUM(M2) FLOW, VPU FLOW, VPU

4 SUM(M1 • M2)= SUM(M1) • MUX(M2) FLOW, VPU

5 SUM(M1 / M2)= SUM(M1) / MUX(M2) FLOW, VPU

Figure 7: Deriving a sum from sum values Figure 8: Deriving a product from sum values

SUM(M1)+SUM(M2)

VR1 VR2

M1+M2

SUM(M1) SUM(M2)

VR1 VR2

SUM(M1+M2)

V1

V

MUX(M2)

SUM(M1)

SUM(M1)•M2

M1•M2

SUM(M1•M2)

V2

V2

VR1 VR2 VR1 VR2

V1

13 14
16 12

29 26 29 26

15,14 12,14

7,6 9,5
8,8 3,9

7 9
8 3

6 5
8 9

15 12 14 14

7 9
8 3

6 5
8 9

45 60 45 60

21 45
24 15

7,3 9,5
8,3 3,5

3 5
3 5

15,3 12,5

15 12

7 9
8 3

7 9
8 33 5 3 5
6

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
Most interesting are cases 4 and 5. Since multiplication is commu-
tative, there also exists a symmetric case for case 4. The reason is
similar for the division of a measure by a value-per-unit measure,
although there is no symmetric equivalent. For illustration we will
use case 4. Basically what is stated here is that SUM(M1• M2) =
SUM(M1)• M2! Intuitively this is clear if M2 is a constant. And in fact
this is the reason why it works here. Consider the example in
figure 8 with the raw data views VR1 = [GR1, NONE(M1)] and
VR2 = [GR2, NONE(M2)] and the aggregate query Q = [GQ, SUM(MQ)]
where MQ = M1 • M2 and Type(M2)=VPU. To make it clear, assume the
formula Turnover = Qty • Price. The left part of the figure shows the
simple execution, first computing the turnover at raw data level and
then aggregating. Obviously already computed turnover values, if
for example the view V1 was materialized, could be used as well to
derive the query. But the key point here is that also aggregated quan-
tities as in V2 can be used in combination with VR2 to derive the
result. This means that the group-by operation can be pushed down
over the join because M2 is of type value-per-unit. Note that this
makes query processing faster even if the view V2 was not material-
ized. In fact any aggregate query Q = [GQ, SUM(MQ)] can be computed
by first aggregating VR1 to the granularity G2 and then performing
the join. Also, any materialized view like V2 can be used to derive Q
as long as GV2 ≤ G2. In the example GV2 = G2, otherwise the MUX
operator must be applied to adjust the granularity. In any case the
values in a cell of VR2 are constant for all cells in VR1 or any view
like V2 which belong to the same group as this cell after the join.

After investigating the operations MIN, MAX and SUM the special
case of the COUNT remains. Because it only counts elements, it does
not depend on the operator. However, it does depend on the seman-
tics of the join (inner/outer) and the default treatment of NULL val-
ues. [18] states therefore that the common SQL COUNT operation is
problematic in data warehouse queries. There are special cases
where the counting of one of the operand measures yields the same
result as counting the composite measure, but additional constraints
must be satisfied. For example if Price is defined for every product
and each quarter where the product was sold, the count of Turnover
is the same as the count of Qty.

6 FUTURE WORK
Our future goal is to extend
the set of semantic condi-
tions for the derivability
especially of those queries
which are restricted by the
HAVING-clause. The
present paper does not deal
with this problem because of
the concentration on the
derivability of composite
measures. To illustrate the
general idea of our future
work we refer to figure 9. It
shows the possibility of
deriving a query with the
aggregation operator MIN
from another query with the same aggregation operator, but with
different restrictions after the aggregation. We will investigate this
derivability problem for the standard aggregation functions and the
common comparison operators.

Another future topic is to integrate the semantic conditions into the
prototypical ROLAP server CUBESTAR. A subset of the cases pre-
sented here has already been successfully tested in [1].

7 SUMMARY
The utilization of materialized views has gained much attention,
especially as an optimization strategy for aggregate queries in data
warehouses. A necessary prerequisite in order to compute a query
from one or more aggregate views is that there exists a rewriting for
the query based on the views instead of the raw data. In this article
we identify several cases where rewritings exist. All conditions
make use of additional semantics which in general is not available
at a purely relational level. However, the provided rewritings in
these cases are simple and still of great practical interest.

REFERENCES
1 Albrecht, J.; Bauer, A.; Deyerling, O.; Günzel, H.; Hümmer,

W.; Lehner, W.; Schlesinger, L.: Management of
multidimensional Aggregates for efficient Online Analytical
Processing, in: International Database Engineering and
Applications Symposium (IDEAS’99, Montreal, Canada,
August 1-3), 1999

2 Albrecht, J.; Hümmer, W.; Lehner, W.; Schlesinger, L.: Using
Semantics for Query Derivability in Data Warehouse
Applications, appears in: Proceedings of the 4th International
Conference on Flexible Query Answering Systems (FQAS’00,
Warsaw, Poland, October 25 - 25), 2000

3 Albrecht, J.; Günzel, H.; Lehner, W.: Set-Derivability of
Multidimensional Aggregates, in: Proceedings of the First
International Conference on Data Warehousing and
Knowledge Discovery (DAWAK’99, Florence, Italy, August
30 - September 1), 1999

4 Baralis, E.; Paraboschi, S.; Teniente, E.: Materialized Views
Selection in a Multidimensional Database, in: 23rd
International Conference on Very Large Data Bases
(VLDB’97, Athen, Griechenland), 1997, S. 156-165

5 Cabibbo, L.; Torlone, R.: From a Procedural to a Visual Query
Language for OLAP, in: Proceedings of the 10th International
Conference on Scientific and Statistical Data Management
(SSDBM’98, Capri, Italy, July 1-3), 1998

6 Chen, M. C.; McNamee, L.; Melkanoff, M.: A Model of
Summary Data and its Applications in Statistical Databases,
in: Proceedings of the 4th International Working Conference
on Statistical and Scientific Database Management
(SSDBM’88, Rome, Italy, June 21-23), 1988

7 Chaudhuri, S.; Shim, K.: Optimizing Complex Queries: A
Unifying Approach, Technical Memo HPL-DTD-95-20,
Hewlett Packard Laboratories, Palo Alto, California, 1995

8 Chaudhuri, S.; Shim, K.: Optimizing Queries with Aggregate
Views, in: 5th International Conference on Extending
Database Technology (EDBT’96, Avignon, Frankreich, 25.-
29. März, 1996)

9 Codd, E.F.: Derivability, Redundancy and Consistency of
Relations Stored in Large Data Banks, in: IBM Research
Report RJ 599, San Jose, California, 1969

10 Cohen, S.; Nutt, W.; Serebrenik, A.: Rewriting Aggregate
Queries Using Views, in: 18th Symposium on Principles of
Database Systems (PODS’99, Philadelphia, Pennsylvania,
USA, May 31 - June 2), 1999

MIN(M2) < 7

V2

M N(M2) < 6

MIN(M1) < 6

VR1 VR2

Figure 9: Deriving a HAVING-
restricted table from a HAVING-

restricted table for min values

7 9
8 3

9 8
5 6

7 9
8 3

9 8
5 6

3 5 3 5

3 5 6
7

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

Final edited form was published in "CIKM00: Ninth International Conference on Information and Knowledge Management. McLean 2000", S. 49–56,
ISBN 978-1-58113-323-3

https://doi.org/10.1145/355068.355315
11 Cohen, S.; Nutt, W.; Serebrenik, A.: Algorithms for Rewriting
Aggregate Queries Using Views, in: Proceedings of the
International Workshop on Design and Management of Data
Warehouses (DMDW’99, Heidelberg, Germany, June 14 - 15),
1999

12 Finkelstein, S.: Common Expression Analysis in Database
Applications, in: Proceedings of the International Conference
on the Management of Data (SIGMOD’82, Orlando, Florida,
June 2-4), 1982

13 Gupta, H.; Harinarayan, V.; Rajaraman, A.; Ullman, J.D.:
Index Selection for OLAP, in: Gray, A.; Larson, P.-A.: 13th
International Conference on Data Engineering (ICDE’97,
Birmingham, Großbritannien, April 7-11), 1997

14 Harinarayan, V.; Rajaraman, A.; Ullman, J.D.: Implementing
Data Cubes Efficiently, in: 25th International Conference on
Management of Data, (SIGMOD96, Montreal, Quebec,
Canada, June 4-6), 1996

15 Han, J.; Huang, Y.; Cercone, N.; Fu, Y.: Intelligent Query
Answering by Knowledge Discovery Techniques, in: IEEE
Transactions on Knowledge and Data Engineering (TKDE)
8(1996)3, S. 373-390

16 Hopcroft, J.E.; Ullman, J.D.: Introduction to Automata
Theory, Languages, and Computation, Reading;
Massachusetts, Addison-Wesley, 1979

17 N.N.: IBM DB2 Universal Database Administration Guide,
Version 6, IBM, 1999

18 Kimball, R.: The Data Warehouse Toolkit, second edition,
New York, Chichester, Brisbane, Toronto, Singapur: John
Wiley & Sons, Inc., 1996

19 Larson, P.- A.;Yang, H.Z.: Computing Queries from Derived
Relations, in: Proceedings of the 11th International
Conference on Very Large Data Bases (VLDB’85, Stockholm,
Schweden, August 21-23), 1985

20 Lehner, W.: Modeling Large Scale OLAP Scenarios, to appear
in: 6th International Conference on Extending Database
Technology (EDBT’98, Valencia, Spain, March 23-27), 1998

21 Lehner, W.; Albrecht, J.; Wedekind, H.: Normal Forms for
Multidimensional Databases, in: Proceedings of the 10th
International Conference on Scientific and Statistical Data
Management (SSDBM’98, Capri, Italy, July 1-3), 1998

22 Lenz, H; Shoshani, A.: Summarizability in OLAP and
Statistical Databases, in: 9th International Conferenc on
Statistical and Scientfic Databases, (SSDB’97, Olympia,
Washington, August 11-13), 1997

23 Levy, A.Y.; Mendelzon, A.O.; Sagiv, Y.; Srivastava, D.:
Answering Queries Using Views (Extended Abstract), in:
Proceedings of the 14th Symposium on Principles of Database
Systems (PODS '95, San Jose, Ca., USA, May 22-25), 1995

24 Nutt, W.; Sagiv, Y.; Shurin, S.: Deciding Equivalence among
Aggregate Queries, in: 17th Symposium on Principles of
Database Systems (PODS’98, Seattle, Washington, USA, June
1-3), 1998

25 N.N.: Oracle8i Tuning, Systems Manual, Oracle Corporation,
1999

27 Selinger, P.G.; Astrahan, M.M.; Chamberlain, D.D.; Lorie,
R.A.; Price, T.G.: Access Path Selection in a Relational
Database Management System, in: Bernstein, P.A. (Hrsg.):
Proceedings of the 1979 ACM International Conference on
Management of Data (SIGMOD’79, Boston, Massachusetts,
Mai 30 - June 1), 1979

28 Sato, H.: Handling Summary Information in a Database:
Derivability, in: Proceedings of the 1981 ACM International
Conference on Management of Data (SIGMOD’81, Ann
Arbor, Michigan, USA, April 29-May 1), 1981

29 Shim J.; Scheuermann, P.; Vingralek, R.: Dynamic Caching of
Query Results for Decision Support Systems, in: Proceedings
of the 11th International Conference on Scientific and
Statistical Database Management (SSDBM’99, Cleveland,
Ohio, USA, July 28-30)

30 Srivastava, D.; Dar, S.; Jagadish, H.V.; Levy, A.Y.: Answering
Queries with Aggregation Using Views, in: Proceedings of
22th International Conference on Very Large Data Bases
(VLDB’96, Mumbai (Bombay), India, September 3-6), 1996

31 Sun, X.-H.; Kamel, N.; Ni, M.N.: Solving Implication
Problems in Database Applications, in: Proceedings of the
1989 ACM SIGMOD International Conference on
Management of Data (SIGMOD’89, Portland, Oregon, USA,
May 31 - June 2), 1989

32 Ullman, J.D.: Principles of Database and Knowledge-Base
Systems, Volumes I and II, Computer Science Press, Rockville,
1988/89

33 Yan, W.P.; Larson, P.A.: Eager Aggregation and Lazy
Aggregation, in: Dayal, U.; Gray, P.M.D.; Nishio, S. (Hrsg.):
Proceedings of the 21st International Conference on Very
Large Data Bases (VLDB’95, Zürich, Switzerland, September
11-15), 1995

34 Yu, C.T.; Sun, W.: Automatic Knowledge Acquisition and
Maintenance for Semantic Query Optimization, in: IEEE
Transactions on Knowledge and Data Engineering (TKDE)
1(1989)3
8

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	Abstract
	1 Introduction
	1) Under which circumstances is an aggregate query derivable from one or more materialized views?
	2) How must the query be rewritten in order to make use of the materialized views?
	3) If there are several possibilities to use materialized views, which is least expensive?

	2 Motivation
	Figure 1:� Sample conceptual schema of a retail store chain
	Figure 2:� Tables of the scenario and SQL query
	1) the applied aggregation function in view 1 and view 2 is SUM and SUM is additive,
	2) the granularity, i.e. the aggregation level, of view 2 is finer than the requested one and thu...
	3) the union of the regions “G-North” and “G-South” yields whole “Germany”,
	4) Turnover can generally be computed as Turnover�=�Qty�·�Price,
	5) the already summarized value of Qty in view 2 can still be used to compute the Turnover at hig...
	6) Price, although given at granularity (Article, Quarter), can be used at any finer granularity ...

	Figure 3:� Possible query plans for the sample query.

	3 Related Work
	Preconditions for Derivability
	First Definitions of Derivability
	Semantic Query Optimization and Derivability
	Derivability using Aggregation Lattices

	4 Aggregate Views
	1) Measures are uniquely identified by their names. This does not actually restrict the class of ...
	2) All joins are lossless. Otherwise the join might eliminate tuples unnoticedly and it would not...
	4.1. Dimensions
	4.2. Simple Aggregate Views and Queries
	Figure 4:� Sample product hierarchy
	Figure 5:� Multidimensional view of the quantity fact table

	4.3. Operations on Simple Aggregate Views
	4.4. Joins of Aggregate Views
	4.5. Multiplexable Measures and Aggregation Types
	Figure 6:� Multiplexing of a value-per-unit measure which is defined at granularity L.Country to ...

	4.6. Composite Measures
	Table 1: Resulting aggregation types for composite measures. Empty fields signal that the formula...

	5 Derivability of Simple Aggregate Views
	Special Cases of Derivability for Composite Measures
	Table 2: Derivability of composite measures
	Figure 7:� Deriving a sum from sum values
	Figure 8:� Deriving a product from sum values

	6 Future Work
	Figure 9:� Deriving a HAVING- restricted table from a HAVING- restricted table for min values

	7 Summary
	References
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	27
	28
	29
	30
	31
	32
	33
	34

	Query Optimization by Using Derivability in a Data Warehouse Environment
	J. Albrecht, W. Hümmer, W. Lehner, L. Schlesinger
	Department of Database Systems, University of Erlangen-Nuremberg, Martensstr. 3, 91058 Erlangen, ...

	{albrecht,�huemmer,�lehner,�schlesinger}@immd6.informatik.uni-erlangen.de

	ADPC09C.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	J. Albrecht, W. Hümmer, W. Lehner, L. Schlesinger
	Query optimization by using derivability in a data warehouse environment

