

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-811012

Wolfgang Lehner, Richard Sidle, Hamid Pirahesh, Roberta Cochrane

Maintenance of cube automatic summary tables

Erstveröffentlichung in / First published in:

ACM SIGMOD Record. 2000, 29(2), S. 512–513 [Zugriff am: 05.10.2022]. ACM Digital Library.
ISSN 0163-5808.

DOI: https://doi.org/10.1145/335191.335454

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-811012
https://doi.org/10.1145/335191.335454

Maintenance of Cube Automatic Summary Tables
Wolfgang Lehneri

University of Erlangen-Nuremberg
Martensstr. 3, Erlangen, 91056, Germany

wolfgang@lehner.net

Richard Sidle, Hamid Pirahesh, Roberta Cochrane
IBM Almaden Research Center

650 Harry Road, San Jose, CA 95120, USA

{rsidle, pirahesh, bobbiec}@almaden.ibm.com

recomputation. While a deferred AST may be defined by any
SELECT expression, the specification of an incrementally
maintainable AST must adhere to the following rules:

• Grouping expression: The grouping expression may consist
of single grouping columns or any valid combination of
complex grouping expressions like CUBE(), ROLLUP(), or
GROUPING SETS(). The evaluation of the grouping
expression must not result in duplicate grouping
combinations. For example, ROLLUP(a,b),a is not allowed,
since it evaluates to ((a,b),a) = (a,b); ((a),a) = (a); and ((),a) =
(a), resulting in the combination with (a) appearing twice.

• Aggregate functions: The set of aggregate functions is
restricted to SUM and COUNT. Every AST must have a
COUNT(*) column. If a column X is nullable and the AST
computes SUM(X), a named COUNT(X) column is also
required.

• Grouping functions: A GROUPING() function expression is
required for any nullable grouping column that occurs in a
complex grouping expression. This allows the system to
differentiate between naturally occurring NULL-values and
NULL-values that denote (sub-) totals. In the sample AST,
the grouping columns “marital status” and “income range”
are nullable. Since these columns may naturally produce
NULL values, they require a GROUPING function column
in the definition of the AST.

3. INCREMENTAL MAINTENANCE
The advantage of an incremental maintenance strategy is that the
changes in the AST are computed directly from the changes of the
base table. Consider an AST containing a join over several tables.
Incremental maintenance can compute the changes to the AST
using the joins of only the changes of the base tables (deltas) with
all other tables of the AST definition. One unique feature of DB2
UDB’s AST maintenance strategies is that its infrastructure
naturally supports incremental maintenance for complex ASTs
like hierarchical data cubes over a set of tables.

Maintenance of Automatic Summary Tables in IBM DB2/UDB

STEP I: Building the Raw Delta. All local deltas, i.e. the inserted,
updated or deleted rows of all base tables are combined to
generate the global raw delta stream. Multiple local deltas might
be caused within the context of a single statement while
maintaining database semantics, such as enforcing referential
integrity constraints using 'ON DELETE CASCADE’. To
synchronize an AST with an underlying update operation, the
delta consists of the rows before and after the update extended
with a numeric tag.

ABSTRACT
Materialized views (or Automatic Summary Tables—ASTs) are
commonly used to improve the performance of aggregation
queries by orders of magnitude. In contrast to regular tables, ASTs
are synchronized by the database system. In this paper, we present
techniques for maintaining cube ASTs. Our implementation is
based on IBM DB2 UDB.

1. INTRODUCTION
ASTs are a well-known technique for improving the performance
of aggregation queries that access a large amount of data while
performing multiple joins in the context of a typical data
warehouse star schema. Fully exploiting the power of the AST
technique requires support from the database system in (a) picking
the optimal set of ASTs for a specific application scenario and
workload [1], (b) transparently rerouting user queries originally
referencing base tables to those views [4], and (c) maintaining
ASTs, i.e. synchronizing them with the base tables [2]. This paper
focuses on techniques for maintaining cube ASTs.

2. DEFINITION OF ASTs
The example in Figure 1 defines a hierarchical data cube for
location (city,state,country), product (group,lineitem), and time
(month,year) dimensions further categorized according to marital
status and income range of the customer. This example
demonstrates that a complete OLAP scenario, providing data for
144 (4*3*3*4) grouping combinations at different levels of
aggregation, can be specified as a single summary table.

Similar to a regular view, the content of an AST is defined by a
SELECT expression. Additionally, an AST definition may contain
an explicit specification of its physical layout similar to a regular
base table, i.e. it can be partitioned, replicated, indexed, etc.
Finally, each AST has a refresh mode. Declaring an AST as
'REFRESH IMMEDIATE' implies that all dependent ASTs are
automatically synchronized when the underlying base data is
modified. This is done optimally by applying the incremental
maintenance strategy outlined in this abstract. If an AST is
declared 'REFRESH DEFERRED' then no base table changes are
propagated when a base table is modified. In lieu of sophisticated

algorithms [3], refreshing a deferred AST implies full

©2000 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The definitive Version
of Record was published in MOD 2000, Dallas, TX USA. https://
doi.org/10.1145/335191.335454

Final edited form was published in "ACM SIGMOD Record" 29 (2), S. 512–513. ISSN: 0163-5808
https://doi.org/10.1145/335191.335454

1

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

STEP II: Aggregating the Delta. In this step, the delta stream is
aggregated. If the underlying modification is an insertion or
deletion, then the grouping specification contains all the
combinations specified by the AST. For ASTs with complex
grouping expressions, e.g. CUBE(), this step results in a complete
delta cube with 'higher' delta aggregate values for all original delta
changes. If the modification is an update, then the grouping
specification contains all the combinations specified by the AST
extended with the tag column. For updates, the resulting aggregate
values are multiplied with the value of the tag, and a second delta
aggregation step consisting of a simple aggregation over all
grouping columns plus all grouping function columns is added to
eliminate the tag column and compute the net aggregate changes
(i.e. delta value) from the old to the new base table values.

STEP III: Pairing the Delta to the AST. After aggregation, the
rows in the delta are paired with the current content of the AST
using a left outer-join (the delta goes left) over the grouping and
grouping function columns of the AST. Thus a delta group either
matches with a single group of the summary table or no group at
all. Delta groups that have matches cause the corresponding row
in the AST to be modified; those that do not have matches are
later added to the AST.

STEP IV: Aggregate Value Compensation. When a delta group
has a corresponding group in the AST, then the new value for the
group must be computed based on the value of the delta and the
current value of the group. Since the AVG aggregation function
can be mapped to an equivalent SUM/COUNT expression, '+' is
the only aggregation value compensation function, required to
support SUM, COUNT, and AVG.

For ASTs with complex grouping expressions (like CUBE(), ...),
the overall summary value, or grand total, evaluates to NULL
even if the number of contributing rows is zero and requires

special treatment. The computation of the aggregate value SUM
for non-nullable columns requires a COUNT(*) column to derive
the new cardinality. If, however, the parameter column of the
aggregate function is nullable, then the new cardinality is derived
from the COUNT-values ranging over that nullable column.

STEP V: Applying the Delta to the AST-- Depending on the
underlying base table operation, the delta stream is applied to the
AST using the following operations:

• Base table insert: Already existing groups in the AST are
updated, new groups are inserted into the AST.

• Base table delete: Groups of the delta with a new
cardinality of zero are deleted, the remaining rows are
updated with the new values of the delta stream. Note that
in the case of ASTs with complex grouping expressions
(like CUBE()), the grand total row is never be deleted.

• Base table update: This case may be considered a
combination of base table insert and deletion resulting in a
sequence of AST update, delete, and insert operation as
described above.

4. FULL REFRESH
Although the incremental maintenance strategy provides an
automatic synchronization for ASTs when the underlying base
tables change, there are scenarios where 'DEFERRED' refresh is
justified. For example, when incremental maintenance is
becoming too expensive due to a high update frequency of the
base tables and/or a high number of incrementally maintainable
summary tables. In this case, ASTs can be fully refreshed.

5. SUMMARY AND FUTURE WORK
This paper outlines the current state-of-the-art in maintaining
ASTs in the IBM DB2/UDB database system. The maintenance
strategies provide a sound basis for a powerful data warehouse
infrastructure within DB2.

6. REFERENCES
[1] Harinarayan, V.; Rajaraman, A.; Ullman, J.:

Implementing Data Cubes Efficiently. In: SIGMOD'96,
pp. 205

[2] Mumick, I.; Quass, D.; Mumick, B.: Maintenance of
Data Cubes and Summary Tables in a Warehouse. In.
SIGMOD' 97, pp. 100-111

[3] Beyer, K.; Cochrane, B. Lindsay, B.; Salem K.: How
To Roll a Join. IBM research paper. In. SIGMOD'2000

[4] Zaharioudakis, M.; Cochrane, R.; Lapis, G.; Pirahesh,
H.; Urata, M.: Answering Complex SQL Queries Using
Automatic Summary Tables. In: SIGMOD'2000

i This work was done while author was visiting IBM
Almaden Research Center.

CREATE SUMMARY TABLE ast_demo AS (
 SELET loc.country, loc.state, loc.city,

pg.lineid, pg.pgid,
c.marital_status, c.income_range
YEAR(t.pdate) AS year, MONTH(t.pdate) AS month
SUM(ti.amount) AS amount,
COUNT(*) AS count,
GROUPING(c.marital_status) AS grp_mstatus,
GROUPING(c.income_range) AS grp_income_range

 FROM transitem AS ti, transaction AS t, location AS loc,
pgroup AS pg, account AS a, customer AS c

 WHERE ti.transid = t.transid AND ti.pgid = pg.pgid
 AND t.locid = loc.locid AND t.acctid = a.acctid
 AND a.custid = c.custid
 GROUP BY ROLLUP(loc.country, loc.state, loc.city),

 ROLLUP(pg.lineid, pg.pgid),
 ROLLUP(YEAR(t.pdate), MONTH(t.pdate)),
 CUBE(c.marital_status, c.income_range)

) DATA INITIALLY DEFERRED REFRESH IMMEDIATE;
Figure 1: Sample AST Definition

Final edited form was published in "ACM SIGMOD Record" 29 (2), S. 512–513. ISSN: 0163-5808
https://doi.org/10.1145/335191.335454

2

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

	ADP5453.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Wolfgang Lehner, Richard Sidle, Hamid Pirahesh, Roberta Cochrane
	Maintenance of cube automatic summary tables

