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Abstract

The response of cells to their environment is driven by a variety of proteins and messen-ger molecules. In eukaryotes, their distribution and location in the cell is regulated by thevesicular transport system. The transport of aquaporin 2 between membrane and storageregion is a crucial part of the water reabsorption in renal principal cells, and its malfunctioncan lead to Diabetes insipidus. To understand the regulation of this system, I aggregatedpathways and mechanisms from literature and derived models in a hypothesis-driven ap-proach. Furthermore, I combined the models to a single multi-scale model to gain insightinto key regulatory mechanisms of aquaporin 2 recycling. To achieve this, I developed acomputational framework for the modeling and simulation of cellular signaling systems.The framework integrates reaction and difusion of biochemical entities on a microscopicscale with mobile vesicles, membranes, and compartments on a cellular level. The sim-ulation uses an adaptive step-width approach that e�ciently regulates the agent-basedsimulation of macroscopic components with the numerical integration of mass action ki-netics and grid-based �nite diference methods. A reaction network generation algorithmwas designed, that, in combination with a highly-modular modeling approach, allows forfast model prototyping. The analysis of the aquaporin 2 model system rationalizes that thecompartmentalization of cAMP in renal principal cells is a result of the protein kinase A sig-nalosome and can only occur if speci�c cellular components are observed in conjunction.Endocytotic and exocytotic processes are inherently connected and can be regulated bythe same protein kinase A signal.
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DE Diferential equation.
ER eEndoplasmic reticulum.
FIP2 Rab11 family-interacting protein 2.FIP3 Rab11 family-interacting protein 3.
GDP Guanosine diphosphate.GPCR G-protein coupled receptor.GTP Guanosine triphosphate.
NDI Nephrogenic diabetes insipidus.NSF N-ethylmaleimide-sensitive factor.
PDE Phosphodiesterase.PDE4 cAMP-speci�c phosphodiesterase-4D tye 3.PKA Protein kinase A.PKAC Protein kinase A catalytic subunit.PKAR Protein kinase A regulatory subunit.PP Phosphatase.PP2B Serine/threonine-protein phosphatase 2B.PTM Post-translational modi�cations.
RAB11 Ras-related protein Rab-11.RBM Rule-based model.
SDE Stochastic diferential equation.CSK C-terminal Src kinase.SIPA11 signal-induced proliferation-associated 1 like 11.SNAP23 Synaptosomal-associated protein 23.SNARE Soluble N-ethylmaleimide-sensitive factor attachment protein receptor.
TM5 Tropomyosin isoform 5b.
V2R Arginine vasopressin receptor 2.VAMP2 Vesicle-associated membrane protein 2.VAMP3 Vesicle-associated membrane protein 3.
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1.1. Eukaryotic Signaling

Compartmentalization is one of the fundamental principles of eukaryotic life It is es-timated that cellular life emerged about 3.8 billion years ago. The �rst cells were probablysmall enclosed compartments with self-replicating RNA molecules that were able to un-dergo evolutionary processes. After about 1.5 billion years of evolution a group of cellswas able to acquire membrane enclosed compartments inside the cellular envelope. Boththe enclosing cell and the enclosed compartments had an evolutionary advantage that wasbig enough to survive and allowed for their combined evolution. As small as this changemight seem, it allowed for distinct spaces inside the cell, where processes could happenin enclosed environments. Functions could be optimized independently by diferent com-partments and specialization could occur. This separation of space is one of the key dis-tinctions of prokaryotic and eukaryotic live as we know it today. [5]
Positioning and size of molecular systems drove cellular evolution Prokaryotic organ-isms lack a nuclear envelope and other cytoplasmic organelles and eukaryotes are typicallylarger than prokaryotes with a cellular volume that is about 1000-times greater. The or-ganelles of the eukaryotic cells specialized over time, each becoming more e�cient. Butthis gain in e�ciency came with a lack of self sustainability. What started as a loose connec-tion of membrane enclosed compartments was soon not able to sustain its self-replicationwithout the help of the other organelles. Therefore, strategies had to evolve to addresscommunication and transport between organelles. Where previously Brownian motionwas enough to transport and dispersemolecules across 1µm of space, 10 to 100µm couldnot be traversed in a similar amount of time. Famous work by Albert Einstein and MarianSmoluchowski [6] showed that displacement of a molecule due to Brownian motion is notproportional to the elapsed time but to its square root. For example, a molecule of oxygengas can travel a distance of 10nm in about 23ns, a distance 1,000 times farther (10µm -length of a small eukaryotic cell) would take one million times longer (23ms). On a physi-ological scale, difusion alone is therefore not adequate to e�ciently transport molecules.Hence, the evolution of directed transport processes was absolutely necessary for eukary-otes to deal with distances larger than a couple of nanometers. The combination of distinctreaction spaces and the development of directed transport processes allowed cells to de-velop complex behaviors. Increased size and the ability to specialize increase the chancesof survival. Not only did cells develop specialized components, but they also specializedas a whole, to form multicellular organisms and adjust to speci�c external environments.Multicellularity seems to have evolved more than 25 times during evolutionary history, re-sulting from diferent causes [7]. Nevertheless, all complex multicellular organisms had toevolve the ability to exchange information across multiple micrometers of space in a shorttime. So the evolution from distinct reaction spaces, to organelles, and multicellularity allrequired specialized transportation and communication processes: cellular signaling.
The constituents of signaling pathways In prokaryotes, signaling pathways can be cat-egorized in three distinct groups [8]: One-, two-, and three-component systems (see Fig-ure 1.1A). While diferent signaling pathways are able to afect each other, they are lesscoupled than eukaryotic signaling pathways. The major eukaryotic signaling pathways in-volve the components listed in Figure 1.1B. Three separate aspects of the pathways can bedistinguished: the sensing of the stimulus, its processing, and the responses.
Membrane sensors Signals that are processed by cells can be of physical (mechanicalforces, temperature, osmotic pressure), chemical (nutrients, toxins) and biological (hor-
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Figure 1.1.: Signaling types in prokaryotes and eukaryotes. (A) Signaling types in prokaryotescan be generally assigned to one- (top), two- (center) or three (bottom) componentsystems. In one component systems, the signal is perceived by an internal recep-tor protein. Other systems mostly involve a histidine kinase, that is embedded inthe plasmamembrane and directly triggered by the stimulus (two component sys-tems) or by means of an additional receptor protein (three component system).The histidine kinase regulates the response by phosphorylation of their target. (B)Prototypical signaling pathways of multicellular eukaryotes involve more compo-nents and are often afected by feedback loops. The stimulus is sensed by a trans-membrane receptor and activates one or more transducer molecules, usually in-volving post-translational modi�cation. The transducers trigger the production ofadditional messenger molecules and/or phosphorylation cascades that eventuallyactivate the desired actuators and lead to cellular responses. Depending on thestate of the cell, the signal ismodulated and varies in intensity. Cells are also able tolearn from signals by means of transcriptional modi�cations. Adapted from [8, 9]

mones, growth factors) nature. The human genome contains on the order of 6500 receptorproteins [10]. The number is ampli�ed by means of alternative splicing. Sensors can be assimple as ion channels that allow a certain type of molecule to pass into the cell. A more ad-vanced approach is the active transport of large or hydrophilic substances, which is carriedout by transporter proteins. Those kinds of "sensors" only relay the signal from the outsideto the inside of the cell, but they can still be regulated and control which stimulus reachesthe cytoplasmic machinery. The other group of sensors include G protein-coupled recep-tors, as well as membrane coupled kinases and phosphatases. In those cases, an extra-cellular domain binds to the signaling molecule and a subsequent conformational changerelays the signal to the inside of the cell. The signal is hereby transformed into anothermolecular representation that can trigger subsequent processes. [11]

Cytoplasmic transducers and processors The signal that is relayed from sensors has tobe processed by the internal components of the cell. Most of the processing in eukaryotesis done bymeans of small messengermolecules or post-translational proteinmodi�cations[12]. Via phosphorylation cascades, where kinases and phosphatases work in tandem tomodify proteins, distinct signaling pathways are activated or repressed. It is possible toattenuate or amplify signals with feedback loops or bufering systems. Oftentimes, theactivation of a single receptor reaches multiple targets that may vary from cell type to celltype and cellular state. The combination of diferent efects that in�uence initial system isendless [13]. The complexity and interconnectedness of these processing units render thedecoding of speci�c cellular responses such a di�cult undertaking. It is the aim of systemsbiology to �nd positions in cellular signaling cascades, where the chain reaction can bestarted or stopped to get a desired efect.
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Actuators and cellular responses There are immediate and long-term efects of signals.Immediate responses may activate transporters that are able to transport nutrients fromthe outside of the cell to the inside, whereas the activation of transcription factors can in�u-ence the total number of transporters or sensors over time such that a speci�c signal canbe addressed adequately [14]. Evolutionary developmental biology is the prime exampleof eukaryotic signaling interplay at work [15]. Embryonic development are several monthslong signaling cascades, that are only rendered possible by advanced eukaryotic possibilityto interpret and implement molecular signals.
Vesicles are key players in eukaryotic signaling The response of eukaryotic cells to sig-naling molecules in adjacent tissues is a complex interplay of multiple molecular systems[16]. The response is frequently linked to the transport of chemical entities via intracellu-lar vesicles [17]. Vesicles are mobile membrane enclosed compartments that are able tomove inside the cell along �laments of the cytoskeleton [18, 19]. The surface of a vesicle is amosaic of proteins that is responsible to attach vesicles to the correct cytoskeletal �lament,trigger their departure as a response to changes in the surrounding concentrations, andcatalyze reactions. Two famous examples of signaling pathways that involve vesicles are:Neurotransmitters that are stored in vesicles and released upon action potential arrival[20] (see Figure 1.2A and B) and the absence of insulin, which triggers the internalizationof GLUT4 transporters [21] (see Figure 1.2C and D).Vesicular transport is a key cellular activity responsible for molecular tra�c betweenmembrane enclosed compartments as well as outer membranes. Vesicles are the eukary-otic solution to directed transport that was necessary to reap the bene�ts of size and com-plexity. It is however di�cult to consider the interplay between biochemical reactions anddifusion processes and large membrane enclosed compartments. The diameter of intra-cellular vesicles is between 30nm and 100nm [22], on the order of 10 times larger thantypical proteins, and even 100 times larger than small molecules [23]. Furthermore, thephysicochemical processes occur at diferent scales of organization. While vesicles difuseat 0.13µm2 s–1 [24] the important second messenger cAMP has a difusion coe�cient ofabout 32µm2 s–1 [25]. In order to integrate the diferent scales of organization in a sin-gle model, simulation of the diferent components has to be addressed with multiscalemodeling and simulation systems.

1.2. Modeling and Simulation of Cellular Processes

Understanding signaling cascades The ability to understand the interplay of the difer-ent signaling components allows for their purposeful manipulation. Using drugs, signalingcascades can be modi�ed at key points, to restore proper function in genetically �awedpathways. In order to deduce the best approach for a certain disease, the healthy systemhast to be understood �rst [26]. Signaling and cellular information processing are entan-gled in the circuitry of the cellular proteome. Rarely does the same stimuli lead to the samedistinct response. The biochemical state of any cell can be described using genomics, tran-scriptomics, proteomics, and metabolomics [27]. However, having a list of all componentsof a complex system is only the �rst step towards its understanding. To reproduce its be-havior, it would be necessary to also know all interactions of those components. Lastly,to actually predict the behavior of a speci�c cell the position of the components in timeand space, as well as the velocity of all processes is required. New imaging techniqueshave made it possible to observe cells in unprecedented detail, pinpointing location andconcentration of cellular components. It became evident, that especially the location ofkey molecules plays a major role in speci�city and sensitivity to external stimuli [28]. Nev-
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Figure 1.2.: Signaling processes involving vesicles. (A) A schematic depiction of neurotrans-mission at a synapse. (B) A detailed depiction of the neurotransmission process.Calcium enters the axon terminal and triggers vesicles �lled with neurotransmit-ters to fusewith the cellularmembrane in the synaptic cleft. The opposing dendriterecognized the signal and continues the signaling cascade. (C) A schematic repre-sentation of a blood vessel sheathed with cells. (D) A detailed depiction of bloodsugar regulation. Insulin in the blood is recognized by an insulin receptor. A sec-ond messenger molecule is released, that leads to fusion of GLUT4 transportercontaining vesicles. The GLUT4 transporter is able to transport glucose into thecell. (E) A schematic depiction of principal cells in the collecting duct of the kidney.
(F) A detailed view on the processes in collecting duct principal cells in responseto vasopressin. The peptide hormone vasopressin is recognized by a receptor,which triggers the transport of water channel Aquaporin 2 (AQP2) to the opposingmembrane. This results in an increased uptake of water from the primary urine.

ertheless, this poses a problem for all experimental studies. To complicate things further,cells are never fully independent of their environment and signals they receive can overlap.
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Therefore, experimental design of studies involving signaling processes need very de�nedenvironments where cells and researchers are able to "concentrate" on a speci�c processat a time to understand just a fraction of the complex molecular interplay. The process-ing of signals can be traced back to the earliest forms of life and co-evolved with the cellas a whole. It is therefore not surprising that signaling processes are entwined with otherprocesses of metabolism and reproduction. It is a dilemma that the cell can only be un-derstood as a whole, but experiments are generally only able to measure a speci�c partof the cellular response and assumptions of the state of other components have to bemade. Hence, most experimental works on signaling processes focus on a particular path-way and very few works have attempted large scale analysis and the interplay of diferentprocesses [9]. Given the complexity and multitude of scales involved in eukaryotic cellularsingling processes, an attempt to capture multiple aspects of a system is a Herculean task.Two general approaches are available to address the complexity of cellular systems.
Systemic integration of signaling and transport Top-down andbottom-up are two strate-gies to process information or order knowledge. In model building, usually one or theother approach is taken. A top-down approach (also known as decomposition) uses ob-servations of the system resulting from diferent initial conditions as a starting point. Usingreverse-engineering, sub-models are constructed that describe parts of the system. Multi-ple rounds of re�nement are employed to further subdivided and de�ne the models, withthe goal of describing the observations as efectively as possible [29]. The top-down ap-proach has the advantage that models can be constructed rapidly and without a lot of apriori knowledge. Models used in top-down systems biology are often phenomenological,meaning they are not based on molecular mechanisms and do not assume relationshipsbetween molecular components. They describe the correlations between input parame-ters and output but might not overlap with actual mechanisms and the underlying modelis irrelevant to the approach that should be explained with the model [30]. This top-downapproach is typically without alternative, since data or knowledge is too sparse to describethe model in mechanistic detail. On the other hand, bottom-up approaches (also knownas composition) use �rst principles and already established knowledge to integrate theminto a model that captures the behavior of the system and result in predictions that matchthe observations. Bottom-up design relies on multiple key factors [29]:

� Experimental studies that determine system relevant parameters (such as enzymekinetics and difusion rates),
� data on the behavior of subsystems to perturbation,
� models that describe the mechanistic behavior of the subsystems, and
� tools for model analysis and representation.

The resulting models are mechanistic rather than phenomenological. The advantage ofbottom up models is that, if designed properly, sub-models can be reused in other mod-els of similar scope. However, the integration of all relevant mechanisms in conjunctionwith their location in the cell into a complete signaling cascade is an intricate undertaking.Systems biology is challenged with the integration of mechanistic details and rules from dif-ferent studies [31]. A model typically consists of multiple components whose collective be-havior allows the veri�cation or rejection of a hypothesis. The choice of which componentsto integrate in a system is strictly speaking a hypothesis in itself [32]. Hence, when design-ing a bottom up model, the underlying structure of the model should be �exible enoughto allow for the exchange of model parts, whenever new knowledge arises, or simply totest diferent concurrent approaches [33]. The modeling of the vesicular transport system
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is most often tackled by agent-based approaches [34, 35, 36] whereas other intracellulartransport and signaling phenomena are approached via continuous models[37, 38]. Sig-naling cascades that involve vesicles for intracellular transport include phenomena of bothareas. To tackle this problem, I devised a hybrid modeling and simulation approach thatis able to compute the behavior in both worlds in a single simulation. The ability to en-capsulate cellular behavior of diferent scales into independent modules allows integratingnumerous mechanisms and parameters.

1.3. Aquaporin 2 recycling

In eukaryotic cells, the distribution of molecular components is managed by the vesicu-lar transport system. Molecular motors transport proteins and small molecule cargo fromstorage and synthesis sites to areas where they are required for their respective cellularfunctions[39]. The cytoskeletal network of microtubule and actin �laments is a �exible anddynamic scafolding system that not only allows for the directed transport but also for reg-ulation and even interference with signaling cascades [35, 40, 41]. The redistribution of thewater-channel protein AQP2 [42] from intracellular storage vesicles to the membrane is aprominent example of the complexity of the cellular signaling and transport system. Thesignaling cascade that triggers the redistribution of AQP2 is initialized by the antidiuretichormone, arginine vasopressin, that binds to Arginine vasopressin receptor 2 (V2R). Thisactivation causes the production of cAMP by AC and the subsequent cascade that leadsto active PKA, which is able to phosphorylate AQP2 at serine 256 [43]. Other phosphory-lation sites of AQP2 are known (serine 261, 264, and 269) and there are multiple cellularmechanisms involved to archive AQP2 accumulation at its target site: the apical cell mem-brane [44, 45, 46]. The importance and interplay of the phosphorylation sites of proteinsinvolved in this pathway is slowly being unraveled and reviewed elsewhere [47, 48]. Wewould like to highlight key components for this work. Klussmann et al. discovered thatAKAPs are required to translocate AQP2 to the apical membrane [49] and laid the foun-dation for the subsequent interest of Protein kinase A anchoring protein (AKAP) as focalpoints for signal protein localization [50]. Known proteins that act as scafold int the AQP2pathway are AKAP18δ (AKAP-7)[51, 52], AKAP220 (AKAP-11)[53, 54], as well as AKAP-Lbc(AKAP-13)[49, 55] although their expression and mode of action seems to be dependenton renal cell type and location in the kidney[56]. Recently, STUB1 was also found to be in-volved in AQP2 mediating dephosphorylation of AQP2 at serine 261, leading to a decreasein poly-ubiquitination[46]. Based on the scafolding protein a signalosome that consists ofthe proteins to process a signal, accumulates. The scafolding protein plays a major rolein the signaling process and absence or presence of those molecules can make or breakthe signaling process. Which proteins and pathways are afected by a signalosome is vastlydependent on their ability to from localized groups that are able to stay together through-out the signaling process, therefore the AKAP should be the starting point to understand asignaling cascade. The models build in this work focus on AKAP18δ and its involvement inthe recycling process. AKAP18δ provides binding sites for PDE4 [57, 58], Serine/threonine-protein phosphatase 2B (PP2B) [59] and Protein kinase A regulatory subunit (PKAR) [51, 52]in renal principal cells. PDE4 hydrolyzes cAMP to AMP and is therefore able to control PKAactivation and signal termination. Interestingly, this isoform has an increased catalytic ef-�ciency after phosphorylation at serine 54 by PKA [60]. This con�guration allows for anegative feedback loop that was described in a diferent setup [61]. Phosphatase PP2B isable to dephosphorylate AQP2 as well as PKA [59], which allows the protein to in�uence thephosphorylation state of both proteins simultaneously. To evaluate the actual phenotypicefect of the signalosome in the whole cell context, we decided to model the efect of thecascade on exo- and endocytosis systems that regulates the membrane permeability by
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accumulation of AQP2. The fact that both transport directions are regulated in responseto AVP is known though model and experiments [62, 63, 64, 19]. How exactly the phos-phorylation increases the frequency of exocytosis is not fully understood [65, 66]. It seemscertain that an intact actin network is required for the transport from storage sites to theapical membrane [67, 68]. However, the actin cortex at the apical membrane representsa physical barrier and needs to be "softened" for the vesicle to reach and be incorporatedto the membrane [67, 69]. Clathrin-mediated endocytosis is able to internalize AQP2 pos-itive vesicles[70, 64], which are transported on microtubules to storage compartments viaendosomes [19, 71]. AQP2 has become a "model protein" for understanding exocytic andendocytic processes, as well as eukaryotic hormone-regulated signaling mechanisms [48].

1.4. Motivation and Aims

The objective of this thesis is to:

Design a modeling and simulation framework that is able to simulate eu-karyotic signaling cascades.
Aim 1

Top-down models of biological systems are needed to understand novel principles andprocesses. Through iterative re�nement, new knowledge arises, and molecular mecha-nisms can be deduced through thorough experimental research. Bottom-up approachesrecreate phenotypic behavior by combining of existing building blocks. There is however, adiscrepancy between the wealth of empirical and computational data generated throughtop-down approaches and the attempts to systematically integrate the data into a coher-ent framework [9]. Possibly the reason for the ever-increasing amount of data and thelack of models focused on their synthesis is the need to cross diferent realms of researchand focus on the essentials without omitting crucial aspects. A famous warning of ErwinSchrödinger reads as follows:
“I see no other escape from this dilemma (lest our true aim be lost forever) thanthat some of us should venture to embark on a synthesis of facts and theories,albeit with second hand and incomplete knowledge of some of them - and atthe risk of making fools of ourselves.” (cited in [72])

which leads to the �rst question that should be addressed to reach goal 1:

What building blocks are required to describe eukaryotic signalingevents?
Open Question 1

Eukaryotic signaling is inherently tied to the spatial organization of cells. The increasein size and complexity of cells was only possible through the evolution of directed trans-port mechanisms. The emergence of cellular compartments allowed for regions in the cellwhere distinct reaction environments, were possible and isolated processes are allowedto happen to a subpopulation of molecules. In order to understand eukaryotic signalingsystem, models need to be composed that are able to represent the diferent scales of or-ganization. Additionally, the scales in the system need to be coupled and able to in�uenceeach other.
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How can the relevant scales of organization in a eukaryotic signaling sys-tem be linked?
Open Question 2

Molecules and cellular compartments exist on diferent levels of spatial organization.Nevertheless, they in�uence each other during cellular signaling events. It is a challengeto (1) observe the reciprocal interaction in living systems and (2) create a model that en-capsulates both in an adequate environment. There are multiple possibilities to modelthe aspects of cellular behavior, that come with advantages and disadvantages in terms ofdetail and time e�ciency. However, a biological process should not be forced to be mod-eled in a certain way, rather the model should be altered to represent the process in themost suitable and parsimonious manner. To bridge the gap between diferent models, aframework to mediate interactions and exchange of information that is required.

What modeling techniques can be used to represent molecules as wellas cellular compartments and their reciprocal interactions?
Open Question 3

In order to verify that the modeling and simulation system is able to handle complexsignaling pathways in eukaryotes, another aim of this thesis is to:

Characterize the behavior of the PKA signalosome in the context of AQP2recycling.
Aim 2

AQP2 is a water transport protein essential for the mammalian water homeostasis. In itsbasal state, the majority of AQP2 is stored in vesicles in the perinuclear region of the cell.If water is scarce, a signaling cascade is triggered that shifts the dynamic balance of AQP2to the apical membrane such that water can be transported into the cell. The underlyingsignaling system is complex but well described. The cascade involves key vesicular mech-anisms such as endo- and exocytosis, as well as, microscopic regions of condensed cAMPand intricate PKA signaling. To model and simulate a bottom-up model of AQP2 recycling,�ve key aspects are required:
� The components that interact and in�uence the system.
� The mechanisms that drive the phenomenon.
� The parameters that lead to a functioning system.
� Models that combine the previous aspects with the relevant relationships.
� A simulation system that is able to compute the dynamics of the model.

These aspects are however not limited to AQP2 recycling, but can be considered for amanifold of cellular processes. Amodular composition of themodel and clear de�nitions ofthe interfaces can lead to reusability of models of cellular mechanisms for interconnectedphenomena.

Considering the current state of the art, what are aspects that drive AQP2recycling?
Open Question 4
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It was reported that the average concentration of cAMP in cells is about 1.0µM [73, 74].
In vitro measurements unveil that about 100-300nM cAMP is required to half maximallyactivate Protein kinase A (PKA) [75, 76]. The assumption that cAMP is distributed evenlyacross the cell would mean that PKA is always active and is therefore indefensible. MultipleStudies discussed the discrepancy and tried to elaborate on the diferences measured[77, 76, 78]. Interestingly, a similar discrepancy can be foundwhenmeasuring the difusivityof cAMP in vivo and in vitro [79, 25, 80]. Since PKA is activated by cAMP the slow cAMPdifusion was linked to the PKA signalosome. Recently, the relationship was explained as acombination of diferent aspects including cAMP hydrolysis by PDE, bufering of cAMP viaPKAR condensates, and the structure of PKA [81, 82, 166, 80].

What is the relationship of the key proteins PKA, PDE4, PP2B and AKAPin the PKA signalosome?
Open Question 5

1.5. Outline

Background In Chapter 2 approaches to multi-scale modeling are presented and possi-bilities to reduce computational complexity are discussed. The techniques focus on nu-merical and agent based modeling. Reactions as the �rst major aspect of cellular signalingcascades are introduced and the creation of complex reaction networks though reactionnetwork generation is delineated. Additionally, modes of transport of microscopic as wellas macroscopic cellular components are described. Finally, the creation and fusion of in-tracellular transport vesicles is reviewed. In Chapter 3 the relevance of the AQP2 recyclingfor the mammalian water homeostasis is discussed and the molecular mechanisms of theAQP2 recycling cascade are presented. Existing models of AQP2 and PKA signaling aresummarized.
Results and Discussion In Chapter 4 the simulation and modeling framework to ful�llAim 1 is designed. The building blocks of signaling cascades are presented and discussedtogether with their corresponding modeling techniques. The algorithms used to generatereaction networks, and simulate processes involving vesicles are described. The determi-nation of scale-briding elements and numerical error handling is discussed. In Chapter5 the aspects that drive AQP2 recycling are reviewed. Three submodels as well as onecombined systemic model are designed. To reach Aim 2, simulations of the models areperformed, analyzed and discussed. Finally, Chapter 6 concludes the thesis and revisitsthe questions put forward in the beginning.
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2. Modeling and Simulation of
Complex Signaling Pathways
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2.1. Multi-scale Modeling

Despite the ever-increasing computational power, there is no easy way to simulate systemsthat cross a scale gap. In the famous paper "More is Diferent" P.W. Anderson states that:
“At each level of complexity entirely new properties appear, and the under-standing of the new behaviors requires research which I think is as fundamentalin its nature as any other.” [83]

In the hierarchical nature of the sciences, the fundamental laws that govern the behaviorof the system at a lower scale cannot be used to predict the behavior of the system at alarger scale – particle physics cannot be used to describe socioeconomic behaviors. Ofcourse, the closer the scales are in time and space the more compatible models become,but compromises have to be made with any multi-scale system. A delicate balance hasto be found between: the parts of the system can be modeled at a higher scale, and theaspects that need to be modeled at a lower scale. Lower scale systems require handlingof shorter time scales and more interactions between entities to have an impact on higherlevel phenomena. This determines the trade-of between accuracy and predictive poweron the one side and complexity and runtime on the other [84].
2.1.1. Approaches to Multi-scale Modeling

As described previously, the scales at which complex signaling networks work range frommicroseconds tominutes and from nanometer tomillimeter. The communication betweenthe scales can be computationally demanding, and appropriate multi-scale algorithms arerequired to tackle the problem [85]. Generally, these algorithms can be divided into con-tinuum or discrete methods. In continuum methods, the parameters and relationshipsof the model are combined into continuous mathematical equations that are solved withnumerical methods. These methods often take the mean-�eld theoretic point of view, byaveraging the interaction of many underlying components into simpler averaged efects.The result is the reduction of a many-body problem to a one-body problem [86], whichcan be solved at lower computational cost. Discrete methods on the other hand do not at-tempt to aggregate the lower-level interactions, bath rather model them individually. Bothapproaches can be used in diferent set-ups to generate a multi-scale model. Multi-scalemethods must be able to represent phenomena across ranges of time and space with e�-cient computational techniques. These methods are used across multiple �elds of science.
Quasi-continuum Methods The idea behind quasi continuum models this that certainproblems only require the detailed simulation of a small portion of the system, while themajority of the environmental impact can be assumed by continuum mechanics. Thiscoarse-gaining procedure allows for a reduced computational efort, while maintaining ahigh degree of accuracy in the focused region [87]. For example, this method is used inmolecular-dynamics simulations for the in�uence of solvents. It is possible to omit thou-sands of atoms from the simulation while maintaining a good overall accuracy [88].
Equation-free Methods The goal of equation-free multi-scale method is to simulate amacro-scaled phenomenon by using systems that have been modeled on a �ner (micro-scopic) scale. Instead of deriving macroscopic equations from observed macroscopic be-havior, short individual microscopic simulations are performed whenever required to pre-dict another time step of the macroscopic simulation. Generally, a so-called coarse timestepper performs a three-step procedure to simulate the system. First, the initial �ne-scale
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model is initialized using the state of the macroscopic system (called lifting). Next, the sys-tem is simulated for a short time or until a steady state is reached. Finally, the resultsgenerated by the �ne-scale simulation are used to restrict the coarse simulation of thesystem [89].

Agent-based Methods Agent-based model (ABM) are governed by a set of rules and in-teractions that determine the behavior of the components of the system. Most often, theagents are interacting based on their proximity and execute diferent behaviors basedon their state. Multi-scale agent based methods can be divided into three groups [84].Cellular-continuum approaches model �ne-grained scales as a �eld of concentrations thatare assumed to be at steady-state. Spatially-hierarchical approaches represent �ne-grainedscales explicitly as agents, but without separating time-scales. And temporally separatedapproaches consider processes that are simulated at a �ner time-scale and in�uence theagent’s behavior. A disadvantage of agent based approaches can be a high computationalcomplexity. An agent has to check each other agent whether interaction is possible andnecessary, which leads to a quadratic complexity of T (n) ∈ O(n2) (n is the number of agents).Nevertheless, multiple methods can be used to reduce the complexity of the simulationand ABM has become a important modeling paradigm [87].

Multi-numerical Scheme Methods Numerical computation of a target domain is dividedinto a �ne and a coarse mesh. The algorithm can increase computational e�ciency by upto two orders of magnitude if the problem is suitable for the method [90]. The �ne meshis used to compute variables with rapid evolution or high variability, whereas the coarsemesh is used to compute steady variables. Linear interpolation can be used to transfervariables from one grid to the other, if required.

2.1.2. Reduction of Computational Complexity

The reduction of computational complexity can be achieved onmultiple levels during mod-eling and simulation. The �rst level of computational reduction is the choice of which as-pects of the system to simulate and the second is to simulate the chosen aspects as ef-�ciently as possible. The �nal part is the integration of the diferent scaled models into asingle system.

Numerical Methods Numerical methods are used to solve expressions that are too hardor too complex to be solved analytically. Analytical solutions have themajor advantage thatthey are exact and fast to compute. However, �nding the analytical solution to a problemcan be demanding or even impossible. Diferential equations can be solved using bothmethods. Tools for symbolic algebraic manipulation are available, but �nding the alge-braic solution to complex interdependent relationships such as the transformation andtransport of chemical entities in cells ranges from infeasible to impossible. For ordinarydiferential equations numerical solutions converge to the analytical solution by iteratingfrom an initial state of the system for a given time until the desired solution is reached (seeSection 2.2.2). The number of iterations required, depends on the time step used and themethod’s so-called order of convergence. The higher the order of convergence, the widertime steps can be used, and the fewer computations are required to reach the desired so-lution. Furthermore, it is paramount to choose time steps of the right size to again �nd thebest trade-of between accuracy and run time (see Section 4.5). There are many so-calledRunge-Kutta methods available that can be used to solve initial value problems. While the
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transformation of chemical entities during reactions can be modeled using ordinary difer-ential equations, transport phenomena encompass more than one dimension and requirepartial diferential equations. Similar consideration concerning accuracy apply as for ordi-nary diferential equations. The additional spatial dimensions can be discretized using avariety of methods. The three most used methods are the �nite element method, �nitevolume method, and the �nite diference method. All work with the premise of separatingthe space that should be simulated into a �nite number of elements instead of consideringthe continuity of space (see Section 4.2.1).

Agent-based Methods ABM are used to simulate interactions of the eponymous mod-eled agents. The inherent complexity is quadratic with the number of agents in the sys-tem, but can be reduced by design- and algorithm-driven decisions. The two fundamentalaspects that should be minimized are the number of interactions and the complexity perinteraction. For modeling reasons, multiple kinds of agents are considered and, dependingon the problem at hand, not all agents need to interact with each other. By dividing agentsinto interaction groups, runtime can be reduced to the number of agents in the largestgroup. Furthermore, probabilistic methods can be used that determine the number ofinteractions based on the time step and pick interaction partners based on a prede�nedscheme (e.g. Monte-Carlo based methods). These methods work on an event based timestepping in contrast to classical regular time steps and the exact simulation of every agentin the system. In systems with spatial dimensions, where agents have a perceptive �eld,not all agents have to be considered, but only those that satisfy distance requirements.The determination of which agents are considered to be close is an optimization concernin itself and can be tacked by spatial indexing with tree-based data structures (e.g. quad- oroctrees). The goal is to reduce the querying time for neighboring agents, that again deter-mines the number of interactions that have to be computed. Another, often overlooked,aspect is the actual size of the system that is modeled [91]. The systems dimensions shouldbe big enough, such that the system is modeled accurately, but also not too big to reducecomputational time. The size of the system can be determined by in silico experiments, orby assessing interaction probability, based on interaction radius and time step. Addition-ally, reducing the computation time per interaction is important and can be tackled withconventional computational optimization procedures (i.e. caching or lookup tables). Natu-rally, parallel computing can be used in divide-and-conquer based approach, where spaceor agent populations can be divided into subgroups [92].

Scale bridging Multi-scale models can be homogeneous (all models are based on thesame method) or heterogeneous (models are based on diferent methods). Homoge-neous models generally allow for better error propagation and validation, especially if theyare based on numerical methods, where there is has a strong theoretical foundation [93].However, the freedom to mix models and use the most suitable model for the appropriatesubsystem is a fundamental bene�t that should not be neglected. Sometimes the combi-nation of diferent methods might be the only possibility to model the system at all. Thenecessity for diferent types of models is a consequence of the diferent scales that haveto be conquered. A model that is chosen for a speci�c scale might not be equally applica-ble for another scale. However, if the consequences of a lower scale should be integratedto the higher scale, an element of scale bridging needs to be applied. Diferent types ofscale bridging have been mentioned in conjunction with the approaches to multi-scaledmodeling. Generally, the trajectory of the high level phenomenon needs to be constrainedby processes that occur on a lower scale. Vice versa, the lower level system needs to becontinuously reinitialized with the macroscopic state generated by high level models.
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2.2. Models of Chemical Reaction Networks

The simulation of any system requires multiple building block as described in the motiva-tion and aim chapter. Special care has to be taken when attempting to integrate multipleaspects and scales. In the case of signaling and transport mechanisms in eukaryotic cells,the �rst system that needs to be addressed is that of reaction networks. Reaction networksare a fundamental part of systems biology, and two questions should be considered:
� How can reactions be described and solved mathematically?
� How can reaction networks be generated from existing knowledge?

2.2.1. Reactions and Reaction Rates

The law of mass action is one of the oldest laws in chemistry. Cato M. Guldberg and PeterWaage deduced that the rate of chemical reactions is directly proportional to the product ofthe concentrations of the reactants [94]. In contrast to prevailing assumptions, this meantthat the reaction speed was not only dependent on the chemical substance itself, but alsoon is amount in the reactionmixture. This observation lead to the development of chemicalkinetics, a branch of chemistry, which deals with the speed of reactions. The kinetics of achemical reaction unveils information about the reaction’s mechanism, transition statesand other in�uencing environmental factors. Subsequently, experiments with mixtures ofsubstances quickly lead to the �rst models of processes that occur in solutions. The changeof the concentrations of substrates A and B and products A’ and B’ in reaction
A + B 2A’ + B’

can be described by:
– dc(A)

dt
= –dc(B)

dt
= 1
2
dc(A0)
dt

= dc(B0)
dt

(2.1)
according to the law of mass action, where c(A) is the concentration of substance A. In aclosed system, with constant environmental conditions the reaction rate v can be generallydescribed by

v = 1
s(A)

dc(A)
dt

(2.2)
where s(A) is the stoichiometric coe�cient of substance A. s(A) is negative for substratesof the reaction and positive for products. The rate constant k of the reactionmust be deter-mined experimentally and depends on the reaction mechanism. By measuring v, k can bepredicted and used to calculate the reaction progression from its current concentration:

v = k
Y
i

c(Ri)mi (2.3)
where mi is the partial order of the reactant Ri for this reaction. The partial order is an-other experimentally determined constant and not necessarily mandated by its stoichio-metric coe�cient. Reactions are typically of order one or two. Zero and nth order reactionsare possible, but only under certain conditions and/or assumptions.To model the progression of a chemical reaction, the rate law can be integrated. Thisallows to predict the concentration of a substance A at time t. Using the example given inEquation 2.1 and combining with Equation 2.3
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– dc(A)
dt

= kc(A) (2.4)
can be rearranged to

dc(A)
c(A) = –kdt (2.5)

and upon integration yields: Z c(A)
c(A)0

dc(A)
c(A) = –

Z t

t0
kdt (2.6)

Solving the integral and rearranging further, the concentration of A can be calculatedwith
c(A) = c(A)0e–kt . (2.7)

This analytical solution can only be used if the concentration of A is independent of theenvironment. In most cases, the solution cannot be computed with analytical solutions andhas to be estimated with numerical methods.
Reaction Networks In biological systems, however, the number of reaction that occurconcurrently is immense, and the diferent substances in�uence each other. The �eld ofchemical reaction networks is approaching the modeling and computation of real-worldsystems with a multitude of reactions. The variables of reactants can be combined to avector:

c(t) =
0BBB@

c(A, t)
c(A0, t)
c(B, t)...

1CCCA , (2.8)

and their evolution dc
dt
can be de�ned as

dc
dt

=
0BBB@

dc(A)
dt

dc(A0)
dt

dc(B)
dt...

1CCCA . (2.9)

The resulting system of equations is a dynamical system, that is continuous and au-tonomous. Since the stoichiometric coe�cients of the reactions are constant, they can berepresented by a stoichiometry matrix Γ , where each column contains the net stoichiome-try of the corresponding reaction. The resulting network is �nally represented by:
dc
dt

= ΓV (t, c(t)). (2.10)
The function V represents the kinetics of the reaction and returns the reaction rates.

Assumptions Commonly it is assumed that the concentrations c of Reactant R is c(R) ∈
R≥0 and that the reaction can only occur if c(Ri) > 0 ∀ Ri. Furthermore, no single reac-tion can contain the same reactant on the substrate and product side. For mathematicalreasons, V (c) should be continuously diferentiable.
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2.2.2. Numerical Solutions

Reaction systems as an initial value problem The evolution of the chemical system de-scribed previously can be formulated as an initial value problem. An initial value problemin this case is a set of diferential equations (Equation (2.10)) together with a point (to, c0) inthe domain of V . Ideally, a solution to the initial value problem is a function that satis�es:
V (t0, c(t0)) = c0 (2.11)

As biological networks are complex and contain multiple molecules, it is often impossibleor at least unfeasible to �nd analytical solutions. Numerical integration is a possibility tosolve the equation nevertheless. Numerical methods typically discretize the underlyingequations by de�ning discrete small steps in time dt -→ Dt and space dx -→ Dx insteadof in�nitesimal small steps of ordinary diferential equations. The approximation of thederivative is therefore:
dc
dt
≈ Dc

Dt
= ΓV (t, c(t)), (2.12)

if steps are chosen su�ciently small. A step size Dt is chosen and time steps can bedescribed by tn = t0 + nDt. The state change of the reaction system from t to t + Dt canhence be described as:
c̃Dt(tn+1) = c(tn + Dt) = c(t) + ΓV (t, c(t)) · Dt. (2.13)

Accuracy of numerical methods The numerical solution c̃Dt is an approximation of theactual solution c. In general, there are twoways to ensure su�cient accuracy of a numericalmethod:
� Reduce the step size Dt or
� Increase the methods convergence order p.

The numerical method is of convergence order p, if there is a number H independent of
Dt, such that |c̃Dt – c| ≤ HDt

p (2.14)
for small Dt. The constant H depends on the actual solution of the problem. A decrease inthe time step has a more drastic efect on the accuracy of the solution if p is large. If H isknown, the order of the solution can be determined by evaluating the ratios of the errorsbetween c – c̃Dt and c – c̃Dt/2

log2
���� c̃Dt – cc̃Dt/2 – c

���� = p + O(Dt) (2.15)
A similar approach is used to evaluate the accuracy of methods with unknown H. Thisapproach is progressively comparing diferences at Dt and Dt/2 with Dt/2 and Dt/4, whichalso leads to an estimation of the convergence order p.
Runge-KuttaMethods The simplestmethod to approximate a solution is the Eulermethodas shown in Equation (2.13). The Euler method belongs to the family of Runge-Kutta meth-ods, used for temporal discretization. Runge-Kutta Methods specify an iterative approachto explicitly or implicitly approach a numerical solution. The goal of iterating the solution isto reach a highly accurate solution for each step, while maintaining a large step width, suchthat the function can be approximated with aminimal number of computational steps. TheEuler method (Equation (2.13)) is a so-called �rst order method, which implies that the local
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error of themethod is proportional to the square of the step size and the global error is pro-portional to the step size. The Euler method is prone to numerical instabilities, wheneverthe change in concentration is large in comparison to the step width. The shortcomingcan be overcome by using methods with higher convergence order (such as Cash–Karp[95]) or implicit Runge-Kutta methods. There are ways to improve the performance of theapproximation.The explicit midpoint method (also known as the modi�ed Euler method) is an approachto not only use the value of the current state of the system c(t), but compute candidatesolutions at collocation points and use them to improve the result (see Figure 2.1). Theexplicit midpoint method is given by the formula:

c̃Dt(tn+1) = c(t) + ΓV
0@t + Dt

2 , c(t) + ΓV (t, c(t))| {z }
Eulers method

·Dt2
1A · Dt. (2.16)

Figure 2.1.: Visual intuition of collocation methods. While the Euler method (blue font andlines) uses the current concentration c(t) and slope, a collocation method (greenfont and lines) uses additional collocation points such as c(t + Dt/2) to increase theaccuracy of the result. In an explicit approach the concentrations at the collocationpoints are calculated at each step.
The eponymous midpoint is used to indicate that the slope of the midpoint is used in-stead of the initial concentration. Although themethod requires an additional computation,the local error is O(Dt3) and therefore the error decreases faster as Dt get smaller.A problem that remains is, that equations might not always require one step size thatcan be applied throughout the global approximation of the function. Rather, the step sizemight need to become smaller whenever drastic changes occur and could be allowed tobecome bigger if the system reaches a steady state. This circumstance can be addressedby using adaptive Runge-Kutta methods. Adaptive methods de�ne a threshold the localerror should not exceed. Two methods (one with order p and one with order p – 1) areused in conjunction to estimate the local error at every step (see Equation (2.15)). Duringintegration, the local error is compared to the threshold and the step recomputed at asmaller step size, if necessary. Again, this resolution presents a trade-of between accuracyand run time of the solutionThe simulation and solution of any reaction network requires an explicit speci�cation ofevery relevant reaction that occurs. Solution can be found using numerical integration, butadequate models have to be determined beforehand.
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2.2.3. Reaction Network Generation

In complex biochemical systems, the enumeration of all reactions that might occur canbe cumbersome at least or impossible at worst. Especially, proteins with multiple post-translational modi�cation sites are hard to model with manual enumeration approaches,since a protein with n modi�cation sites can exist in 2n diferent states. The interaction ofprotein complexes with modi�cations further aggravates the number of possibilities andquickly leads to thousands of chemical entities and reactions [96]. Rule-based modelingallows for the speci�cation of so-called reactive motifs to avoid the enumeration of all pos-sible reactions [97]. Several approaches exist that allow the creation of reaction networksusing reaction rules to condense the number of speci�cations that have to be made todescribe the system.
Approaches Three main approaches have been described to develop reaction networks,that can be used to categorize existing tools [98]. Empirical approaches use data from re-action libraries and reverse engineer the reaction that can occur to arrive from the initialcomponents in a solution to the resulting product. This branch of reaction network gener-ation is used in drug discovery and chemical industry for the synthesis of new small organicmolecules fromexisting substrates. Since empirical approaches are limited to the reactionsthat are available in the supplied databases, semiformal approaches have been developed.Using heuristics, reactions are derived from few elementary rules. These approaches canbe more "creative" in their solution to synthesis problems, but their predictions have hadtrouble to be veri�ed experimentally [98]. The formal approach is based on graph theoryand has generated the most tools to tackle organo- and biochemical reactions [4].The generation of reaction networks (see Algorithm 2.1) requires the determination ofisomorphic subgraphs for each reactant and reaction, as well as the determination of con-nected components for each product graph. The subgraph isomorphism problem is anNP-complete problem and therefore solvable in polynomial time. The connected compo-nents problem can be solved in linear time.
Scalability The work from Corey et al. started formal reaction generation algorithms inthe 1970s [99]. The formal approach to enumerate all theoretically possible reaction in-termediates is robust, but scalability quickly became a problem [100]. For applicationsin petroleum re�ning and combustion, where the approaches were originally used, it be-came clear that the number of reactions scales exponentially with the number of sub-strate atoms. Multiple strategies have been used to reduce the number of reactions [101].Most strategies are based on so called "lumping". In partition based lumping, the chemi-cal species are divided in kinetic lumps that are simulated individually. Another stratagemis the so-called total lumping, where reactants are collected into pseudo-species that areused as surrogates for a collection of chemical entities. The large and complex moleculesof living systems must be tackles as lumped species. Nevertheless, the problem of post-translational modi�cations of proteins shifts the problem from the "per-atom-complexity"to a "per-state-complexity" in biochemical reaction networks [102]. A possible strategy toreduce the complexity are heuristics. For example, a concentration sampling approachgrows the network during simulation, by taking into account reaction rates and the result-ing concentration of chemical species. The premise of this approach is that compounds inlow concentrations have negligible impact on the overall system. Other sampling strategiesare available [4].
Reaction Languages and Tools Kappa Platform [103] is a tool box that is able to gen-erate reaction networks and perform their stochastic simulation. The reaction rules are
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Algorithm 2.1: A deterministic reaction network generator (modi�ed from [4]).Using a graph based de�nition of entities transformations are applied to generatenew product graphs. Subgraphs of the reactants have to be generated and testedfor isomorphism.
Input: A list of initial species Ls0, A list of elementary transformations Let
Output: A list of all species of the network Ls, A list of all reactions in the network Lr

1 Ls ← Ls0
2 Lsi–1 ← Ls0
3 Lr ← ∅
4 repeat
5 Lsi ← ∅ . all species considered in this iteration
6 Lri ← ∅ . all reactions generated in this iteration

. generate reactions
7 foreach transformation et in Let do
8 foreach species s1 in Lsi–1 and species s2 in Ls do
9 if et is monomolecular then
10 s2 ← ∅

. generate products
11 LGe ← ∅
12 B(et)← species graphs of the reactants of et
13 E(et)← species graphs of the product (rules) of et
14 foreach subgraph b of s1, such that b is isomorphic to B(et) do
15 generate species graph e, where b is replaced by E(et) in s1
16 if e is not contained in LGe then
17 add e to LGe

. update species reactions
18 foreach graph Ge in LGe do
19 Le ← all connected components in Ge
20 foreach species graph l in LGe do
21 if l is not contained in Lsi then
22 add species graphs l to Lsi
23 r ← (et, s1, s2, Le) . create reaction
24 if r is not contained in LGe then
25 add reaction r to Lri
26 add all elements from Lsi to Ls
27 add all elements from Lri to Lr
28 Lsi–1 ← Lsi

29 until Lsi = ∅ and Lri = ∅
written in the accompanying Kappa language [104]. Biochemical Space [105] is a semifor-mal notation of reaction networks that allows the formulation of reaction rules with accom-panying metadata attached. The approach reduces that complicated notation of reactionrules while being fully translatable to Kappa language and the BioNetGen Language. Themost established tool from a cell signaling perspective is BioNetGen [97]. The BioNetGenapproach allows for the speci�cation of chemical entities, kinetics and rules in a domain-speci�c notation, as well as the subsequent simulation of the generated reaction network.A graph rewriting approach was proposed to track connections and states of the involved
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molecules, with the goal of creating a reaction network with all the required reactions andcomponents [106]. Blinov and colleagues outline this approach and suggest that it can beused to tackle large networks with the de�nition of a few rules.

2.3. Models of Intracellular Transport

2.3.1. Undirected Transport

Undirected transport happens on a molecular level without active participation of the cell.This phenomenon, called Brownianmotion, is driven by a randommotionwhich all particlesin solutions experience. Taking a mean-�eld theoretic point of view, difusion as a resultof Brownian motion is a natural physical process where molecules in liquids disperse fromareas of high concentration towards areas with lower concentrations, efectively eveningout the number of molecules in all parts of a closed system.

Fick’s laws of difusion Adolf Fick posited in 1855 that the �ux of matter in a liquid isproportional to the gradient of its concentration, with a proportionality factor D [107]. Fick’s�rst law can therefore be described with:
J = –D∂c

∂x , (2.17)
where J is the difusion �ux, D is the difusion coe�cient and ∂c/∂x is the concentration gra-dient. With the continuity equation of the law of conservation of mass:

∂c
∂t = – ∂J

∂x (2.18)
and for constant difusion coe�cients, it is possible to derive Fick’s second law:

∂c
∂t = D

∂2c
∂x2 . (2.19)

The coe�cient D, called difusion coe�cient, can be described by the Stokes-Einstein equa-tion [108]. The general form of the equation is:
D = m kBT (2.20)

where:
� m is the mobility or the ratio of the particle’s terminal drift velocity to an applied force,
� kB is Boltzmann’s constant, and
� T is the absolute temperature.

Albeit this equation seems simple, it is very hard to apply it to real world problems. Aswill become apparent, the difusion is not constant in all parts of the cell and the difusioncoe�cient is variable in diferent parts of the cell.
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Dynamic difusivity in the cytoplasm The cytoplasm of the cell is a crowded system thatimposes constraints on moving particles. Early on, it was recognized that the average difu-sivity of molecules was slowed in comparison to unhindered difusion in water [109]. Anymolecule passing through the cytoplasm can be hindered by physical barriers, take part inreaction processes, and bind to other cellular components. Especially cAMP was shown tobe speci�cally imposed by cellular processes and behaved unexpectedly for a molecule ofits size. A study by Richards et al. found that the difusivity of cAMP in cytoplasm of ventric-ular myocytes (32µms–2) was an order of magnitude slower than in water (444µms–2)[25].They experimented with saturating binding sites of cAMP binding proteins and found thatin case of cAMP bufering by proteins seemed to have no accelerating efect on cAMP dif-fusivity. They therefore assume that a large part of the slowing efect results from othersources, and found that a big part of the slowing efect can be attributed to the tortuosityimposed by the many components present in ventricular myocytes. Other studies foundthat cAMP can difuse through diferent cell types with almost no hindrance (270µms–2)[110]. A signi�cant factor is the presence of PDE, a protein degrading cAMP, which wasshown to be able to create micro domains of low cAMP concentration [111, 80]. Recentstudies unveiled that liquid-liquid phase separation plays also a role in the uncommon dif-fusivity of cAMP. Here, a variant of PKAR forms condensate droplets that are able to actas dynamic sponges that recruit cAMP as well as active Protein kinase A catalytic subunit(PKAC) [166]. Furthermore, and contrary to previous studies, recent results suggest thatin the basal state of the cell the majority of cAMP in the cell is bound to binding sites ofproteins and comparatively slow binding and unbinding efects lead to bufered difusion[80]. The diversity of the results shows, that the difusivity of cAMP is heavily dependent onthe cell type, and hence the kind and distribution of small molecules and proteins presentin diferent parts of the cytoplasm. Hence, the aspect of difusion needs to be consideredin detail and parameters and simulation techniques have to be chosen carefully if this phe-nomenon should be represented accordingly.

Reaction-difusion systems Reaction-difusion systems aremathematical models that al-low to describe the movement and transformation of entities in time and space. Naturally,the formalism lends itself to all kinds of applications in physics, chemistry, and biology. It iscommonly assumed that the system is closed and no bulk motion of the entities happens,and Fick’s laws adequately describe the mass transport processes. Furthermore, no crossefects in transport are allowed. However, derivatives and expansions of reaction-difusionsystems exist that have other applications, constraints, and bene�ts [112]. The mean �eldapproach of reaction-difusion equations gives a set of balance equations:
∂ci
∂t = Vi(ci, λ)| {z }reaction

+Dir2
ci| {z }

difusion

(2.21)

where the evolution of the concentration ci of reactant i depends on a set of phenomeno-logical parameters λ (such as reaction rate k or temperature) and its difusivity Di. The reac-tion term is system-dependent and typically nonlinear, as the often used law ofmass actiondescribes the change in product concentration by the product of the substrate concentra-tions. Additionally, feedback loops are possible. On the other hand, the difusion term istypically linear. Reaction-difusion systems can be analyzed and understood by means ofbifurcation and stability analyzes [113]. With at least one spatial degree of freedom, the setof equations is a set of coupled parabolic nonlinear partial diferential equations. Reaction-difusion systems are used to study rhythmic and pattern-forming phenomena in all �eldsof science (e.g. wave fronts, morphogenesis, and synchronization) [114, 115].
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2.3.2. Directed Transport

Vesicles are used by cells for a multitude of tasks surrounding temporary storage. Thedistinct environment is used for metabolism, transport, and storage. While undirectedtransport is able to distribute compounds and transport them across small distances, di-rected transport is needed to traverse distances on the micrometer scale. In the worldof intracellular bulk transport this task is mostly ful�lled by transport vesicles. The cellularprocesses that encapsulate the directed transport of substances are highly complex andcan be roughly separated in endocytosis and exocytosis. Endocytosis is the internalizationof substances and transport into the cell, whereas exocytosis is the process of transportingsubstances to the plasma membrane and cargo out of the cell. This Background Sectionwill focus on clathrin-coated vesicles and their life cycle in the cell.
Vesicle types and budding Vesicles are envelopes of membrane that can carry cargomolecules inside the envelope or embedded in their surface. The outward-facing cytoplas-mic surface of vesicles is covered with so-called coating proteins. The assembly of thesecoating proteins in combinationwith other complex proteinmachinery drives budding frommembrane enclosed compartments [116]. Vesicles can be divided by their coating proteinsinto clathrin-coated, COPI-coated, and COPII-coated vesicles. COPI and COPII are so calledcotamer protein complexes that determine the direction of the transport. COPI-coatedvesicles bud at the Golgi complex and travel to the rough eEndoplasmic reticulum (ER) (so-called retrograde transport). COPII-coated vesicles on the other hand bud at the ER andtravel to the Golgi apparatus (so-called anterograde transport). Clathrin-coated vesiclescan form at the plasma membrane and the trans Golgi network. Speci�c adapter proteinsare able to select the proteins that are to be included in the �nal vesicle. Cargo receptorsbind to cargo molecules and undergo a conformational change that allows the adaptermolecules to bind (see Figure 2.2) [117]. The adapter proteins now allow clathrinmoleculesto connect to a basket like structure that deforms themembrane. Dynamin has both, a reg-ulatory and a mechanochemical role in the maturation process of a clathrin-coated vesicle,ultimately leading to the separation of the vesicle from the membrane (a process calledscission) [118]. The �lamentous actin network at the plasma membrane in combinationwith nucleation promoting factors allow for initial directed boost away from the membranetowards the center of the cell [119, 120]. The clathrin coat is rapidly disassembled after thevesicle leaves the membrane [121].
Vesicle transport Once the vesicle is sectioned of from themembrane it difuses thoughthe cell following the same rules of undirected difusive transport, only on a larger scale.The movement of vesicles along cytoskeletal �laments requires motor proteins, which at-tach to the vesicle and are able to generate a pulling force using ATP hydrolysis. Thereare mainly three kinds of motors: kinesins, dyneins, and myosines. Kinesins mostly pulltowards the plus-ends of microtubules (although there are some family members that pulltowards the minus-end) [122], dyneins are minus-end-directed microtubule motors [123],whereasmyosins are dependent of actin �laments [124]. Generally, multiplemotors attachto a vesicle, attach to a close by �lament, and pull in their innate direction. The speed of themovement depends on the speci�c motor, but is typically several micrometers per second[23]. A less well known aspect is the nature of the motor-cargo interaction: Which motorattaches towhich cargo protein andwhy? Similar to vesicle budding, it is thought that the in-teraction betweenmotor and cargo is mediated by adapter proteins and Post-translationalmodi�cations (PTM), but not necessarily the same that are required for budding [125]. Themotors that have been identi�ed as relevant for the transport of AQP2 are myosin anddynein [65]. Dyneins are composed of large protein complexes: two heavy chains that
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Figure 2.2.: Schema of vesicle budding and clathrin coat formation. Clathrin coated vesiclesare formed by aggregation of clathrin adapter proteins (also called adaptins) bind-ing to the cargo receptor protein. Clathrin molecules assemble to form coatedvesicles, which uncoat again after the scission process in the cytoplasm.

bind to microtubules, hydrolyze ATP, and exert the pulling force; two intermediate chains,four light intermediate and several light chains that are relevant to binding the cargo andregulation [126]. Together with dynactin, which activates dynein and allows the motor totraverse long distances, dynein is involved in the transport ofmembrane-bound organelles,RNA and proteins complexes, especially during the interphase of cell division [127]. A va-riety of myosin genes are found in the genome of eukaryotes, coding for several dozenmotor variants. The common ground on which all myosins are classi�ed is the myosin do-main which has been shown to interact with actin, and hydrolyze Adenosine triphosphate(ATP) to produce movement [128]. Especially Myosin-V (or 5) is involved in the transport ofseveral cargo organelles such as melanosomes and synaptic vesicles [129].
Vesicle tra�cking Depending on the PTM of cargo proteins and an array of adapter pro-teins used for the formation of the vesicle, vesicles are routed to diferent compartments:early endosomes, late endosomes, or vesicle pools [130, 131]. The �rst step of many vesic-ular voyages is the transport to early endosomes, which serve as a sorting hub to separatecargo and prime new vesicles for diferent intracellular locations [132]. The cargo arrivingat endosomes can either enter a recycling pathway or be marked for degradation. For ex-ample, one of the key elements of protein degradation is ubiquitination. This PTM allowsfor a series of ubiquitin-dependent tra�cking steps that lead to the transport of taggedproteins to the lysosome[133]. Recycling on the other hand can be applied for membraneprotein receptors such as growths factors and transporters that should be reused at themembrane. There are fast and slow routes for recycling. Fast recycling involves a directroute back from early endosomes to the membrane, whereas the slower route includesthe endocytic recycling compartment. The endocytic recycling compartment is positionedclose to the nucleus and the microtubule organizing center. An important function of slowrecycling might be the need to prevent degradation or the need to store certain types ofproteins for a release upon a stimulus [134].
Vesicle docking and fusion The �nal step of the vesicular life cycle is the fusion with atarget membrane. The process can be divided into two events that docking (or tether-
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ing) phase, where the correct target membrane is recognized and the fusion phase, wherethe membrane of the vesicle and the target membrane fuse together. The docking phaseis guided by so called SNAREs. SNAREs are present in the vesicle and target membraneand can assemble with complementary SNARE motifs. The SNARE motif is innately un-structured, however when corresponding sets of SNAREs are combined they form remark-ably strong helical core complexes. Based on their amino acid composition the motif isdivided into Qa-, Qb-, Qc-, and R-SNAREs and all four types are required to establish astable four helix bundle [135]. Before docking, SNARE proteins are activated and formsubcomplexes. Afterwards, the binding of complementary SNARE proteins assembles theso-called trans-SNARE complexes that bridges the gap between vesicle and target mem-brane before fusion. After the fusion process, SNARE proteins are regenerated throughthe protein N-ethylmaleimide-sensitive factor (NSF) [136]. Rab GTPases are a family of Ras-like enzymes that mediate interaction and activation of docking factors and fusion relatedproteins [137]. Rab proteins are bound to the membrane and cycle between an inactiveform, where Guanosine diphosphate (GDP) is bound and an active form with Guanosinetriphosphate (GTP) attached. The fusion of exocytic vesicles with the plasma membraneis governed by the exocyst protein complex, whose binding is promoted by Rab GTPases[138]. The exocyst complex is a protein complex that consists of at least 8 subunits andinteracts with multiple other fusion related proteins such as SNAREs and Rab. Additionally,it modulates actin dynamics that are required for the fusion of secretory vesicles [139]. Amultitude of proteins is involved in the docking and fusion process of vesicles, of whichonly some of them have been listed here [116]. The exact order and mechanism of eventsremains unknown [140].

Figure 2.3.: Schema of vesicle docking and fusion. Vesicles are transported to the plasmamembrane with myosin motors that are attached to Rab and Rab efector pro-teins [1]. The actin coretx dissolves locally and allows the vesicle to pass [2]. Theexocyst complex assembles and tethers the vesicle to themembrane [3]. MatchingSNAREs assemble and initialize the fusion process.

Models of directed transport Diferent aspects of directed transport can be modeled.As with all models, it depends on the scale and objective of the research project, whichcharacteristics need to be considered. On the biophysical scale, it is interesting to un-derstand the invagination of the membrane and the formation of vesicles. Some modelsstart at the interface of protein binding and membrane morphology, with molecular dy-namic simulations to study the ensuingmembrane curvature [141]. Computational modelshelp to understand the physical principles behindmembrane budding and use approachesranging from continuum mechanics to the assembly of the multi-component protein coat[142, 143]. The aspects relevant in scale for a whole cell level concern the movement ofchemical entities between compartments and the signaling events for symmetry-breakingbehavior. A selection of models that concern this scale is listed in Table 2.1. The models
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range from transport in the Golgi apparatus and cargo sorting in endosomes to autophagy.The most commonly used types of models are Diferential equation (DE) models and ABM.DE-based models are often used to describe the passing of chemical entities from onecompartment to another or the dependence of vesicle maturation on diferent aspects.However, the spatial aspect and efects of the remaining cellular environment is neglected.It seems that ABM are more suited to integrate space and dynamics of movement, butstandardized methods (such as bifurcation and stability analysis) are amiss. The choice ofmodel scale and method is the critical �rst step when assessing the biological aspects thatare to be analyzed [34].
Table 2.1.: Overview of models for intracellular transport phenomena. Diferent kindsof models (Diferential equation (DE), Stochastic diferential equation (SDE), Rule-based model (RBM), and Agent-based model (ABM)) used for the simulation of in-tracellular transport processes. Diferential equationmodels are used to representthe temporal evolution of the system with the spatial aspect modeled as static dis-crete compartments. Agent-based models represent compartments as dynamicagents in time and space.
Model Method Details Objective
Generation ofcompartmentsduring vesiculartransport [144]

DE model withdiscrete compart-ments
Kinetic model. Budding,fusion, and accumulationof chemical entities inthree compartments.

Coating proteins forbudding and SNAREsfor fusion are su�cientto generate stablecompartmentsDegradationof bacteria bymacrophages[145]

DE model withdiscrete compart-ments
Kinetic model. Transportof bacteria between com-partments. Fitted to ex-perimental data.

Description of bac-teriocidal efects anddevelopment of thephagosome to phago-lysosomes.Transport throughGolgi apparatus[146]
DE model withdiscrete compart-ments

Kinetic model. Transportof chemical entities be-tween seven Golgi cister-nae.

Cargo partitioning inthe Golgi. Partitioningbased on abundance,not age.Cargo sorting inendosomes [147] DE model withdiscrete compart-ments
Kinetic model. Trans-port of chemical entitiesbetween membrane andendosomes. Fitted to ex-perimental data.

Exploration of APPL1endosome dynamics.

Autophagic vesicledynamics [148] SDE model withdiscrete compart-ments
Kinetic model. Mecha-nistic integration of trans-port and reaction phe-nomena. Grid search forparameter �tting.

Recreation of vesicledynamics in basal andchemically inducedautophagy.
Transport throughGolgi apparatus[149]

SDE on 1D lattice Kinetic model. Chemi-cal conversion and move-ment of 3 particle types.Rates are composites ofbiophysical rates.

Compare competingmodels for intra-Golgitransport. Explore selforganization of theGolgi complex.Maturation of Golgicisterna [150] RBM with booleanstates Boolean representationof compound presenceand absence in compart-ments and vesicles. Nokinetic considerations.

Sample and explorerules that guide Golgicisternae maturation.
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Model Method Details Objective
Nutrient uptakeduring autophagy[151]

ABM with iterativere�nement Spatio-temporal eventsand autophagic �uximbalace. Agents arecompartments andvesicles. Evolutionaryparameter �tting.

Recreation of the coreautophagy processconsistent with experi-mental models.

Dynamics of mito-chondria [152] ABM with iterativere�nement Spatio-temporal events,mutochondrial fusion,and �ssion. Agents aremitochondria and othercellular compartments.Evolutionary parameter�tting.

Recreate population dy-namics in response tocellular energy demand

Rab proteins incellular transport[153]
ABM Temporal events, distri-bution of Rab, and �ssion.Agents are organelles.Stochastically organellesexchange cargo.

Description of a set ofrules required to gener-ate unidirectional trans-port.
Vesicle transportat the cytoskeleton[35]

ABM with diferen-tial equation reac-tions
Spatio-temporal events,vesicle budding, andfusion. Interaction withprotein coats and cy-toskeleton also modeledas agents.

Description of receptormediated endocytosisand cell polarization.

Mitophagy regula-tion of apoptosis[154]
ABM with diferen-tial equation reac-tions

Spatio-temporal eventsinvolving mitochondria.Simulation of concentra-tions of chemical entitiesusing DE.

Description of deci-sion making betweencell death and con-trolled mitochondrialautophagy (mitophagy).
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3. Aquaporin 2 Recycling in Renal
Principal Cells

50



3.1. The Physiology of Water Homeostasis

Variations in the water balance in the body are regulated by the interplay of hypothalamus,neurohypophysis and the kidneys [155] (see Figure 3.1). The requirement for an adjust-ment of the water balance is initiated by osmoreceptors in the hypothalamus If the sensedplasma osmolality increases above a threshold the peptide hormone AVP is produced inthe neurohypophysis and secreted into the bloodstream. Additionally, high levels of plasmaosmolality trigger thirst. Multiple cells in the kidney express vasopressin receptors on theirbasolateral membranes, that initiate a signaling cascade upon AVP binding. This results inan increased water absorption in the renal collecting duct, increasing the water content inthe bloodstream, and therefor reducing plasma osmolality.

Figure 3.1.: Interplay of factors that regulate water homeostasis through vasopressin. Highplasma osmolality leads to AVP secretion in the neurohypophysis. Subsequently,AVP leads to increased water absorption in the kidneys.
The majority of water is absorbed by so-called renal principal cells in the collecting ductof kidneys. This cell type has evolved a highly-complex and �ne-tuned response mecha-nism as a result to AVP binding. In the nephrons, hydrostatic and osmotic pressure pusheswater and small solutes through a semipermeable membrane. This �rst step of urine for-mation results in a �ltrate that is primarily water, salts, and molecules of up to 4nm in size[156, 157]. Subsequently, the so-called primary urine �ows through renal tubes (see Figure3.2). The loop of Helene is one part of the renal tubing system where the primary urine isconcentrated [158, 159]. Upon entering the loop of Helene through the proximal tube andthe thin descending limb the urine is isotonic (about 300 mOsm/l). As it �ows through thetubular system, ions and other solutes are actively reabsorbed into the cells lining the tubu-lar system. The osmolarity is conserved as water is also absorbed and volume decreasesby about two thirds. The cells lining the thin descending limb get increasingly permeableto water and impermeable to solutes, increasing solute concentration to a maximum of1200 mOsm/l in the reversal point of the loop of Helene [158, 159]. In the ascending partof the loop, cells are becoming increasingly permeable to solutes. Consequently, the urine
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becomes hypotonic until it reaches approximately 100 to 150mOsm/l. The Loop of Heleneabsorbs about 20% of the water and 25% of the ions from the tubular �uid [160]. After-wards, the hypotonic �uid travels through the distal convoluted tube to the collecting duct,regaining an isotonic concentration by further absorption of water and solutes. Finally,the urine is concentrated for secretion in the collecting duct until it reaches an osmolarityof about 1200 mOsm/l, depending on the hydration state of the body. This is primarilyachieved by transporting water through the principal cells in the collecting duct wall (seeFigure 3.2).

Figure 3.2.: Collecting duct system and principal cells. Primary urine is transported throughthe renal tubing system and salts and water are regained through specialized cells.
The �nal urine composition is determined in the collecting duct system, where two celltypes dominate. Interlaced cells primarily contribute to acid-base homeostasis, prevent-ing acidosis and alkalosis. The central role of principal cells is the salt and water transport[161]. The collecting duct system in general, and the principal cells especially, are respon-sible for most of the water resorption. In patients with Nephrogenic diabetes insipidus(NDI) this system is severely impaired. In healthy individuals, AVP triggers the V2R locatedon the basolateral side of principal cells. V2R is a G protein-coupled receptor, where thereleased GαS subunit activates adenylyl cyclase, resulting in an increased cAMP production[158, 159]. A signaling cascade is triggered, which �nally results in the phosphorylation ofAQP2 bound in the membrane of recycling vesicles. In turn, the phosphorylation activatesintracellular tra�cking of the storage vesicles to the apical membrane. AQP2 is constantlyrecycled from the membrane by endocytosis [158, 159]. AQP2 transports water from thelumen side into the cell, where a difusion gradient builds up and moves water from theapical side to the basolateral side. Aquaporin 3 (AQP3) and Aquaporin 4 (AQP4) are ex-pressed constitutively at the basolateral membrane, allowing the permeation of water intothe bloodstream.

3.2. Molecular Mechanisms of the Vasopressin Response

3.2.1. The Vasopressin Receptor

The primary event of the vasopressin response is the binding of AVP to the V2R. The vaso-pressin receptor belongs to the family of G-protein coupled receptor (GPCR), which recruitsG-proteins (also known as guanine nucleotide-binding proteins) for the transmission of thesignal into the cytoplasm. G-proteins are able to bind and hydrolyze GTP to GDP, which in
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turn increase their association rate with speci�c target proteins. Upon AVP binding, theV2R increases the hydrolyzation rate of the associated herterotrimeric G protein. The hy-drolyzation of GTP splits the complex consisting of α-, β-, and γ subunit into the α subunitand the βγ subunit. Both of the resulting membrane anchored subunits as well as the lig-and dissociate from the receptor, which is free to bind again to herterotrimeric G proteinand AVP.The next part of the signaling process involves the activation of themembrane associatedAdenylate cyclase type 6 (AC6) [162]. AC6 forms a complex with the G-protein α subunitbound to GTP which increases the rate of Cyclic adenosine monophosphate (cAMP) catal-ysis from ATP. The second messenger cAMP is the able to difuse into the cytoplasm.
3.2.2. cAMP Regulation of Protein Kinase A

cAMP is a ubiquitous second messenger that mediates the intracellular response to extra-cellular stimuli. After a signal has been recognized by G protein-coupled receptors, Adeny-lyl cyclases (AC) catalyze the conversion of ATP to cAMP. PKA is activated by cAMP. PKAwas one of the earliest kinases to be discovered and was extensively studies ever since[163, 164, 82]. Still today, the mechanism of PKA activation by cAMP and its intricate speci-�city is under ongoing investigation [165, 166, 80, ?]. A part of the solution is the assemblyof so called signalosomes in intact cells [50]. AKAPs are scafolds that organize the localand temporal interaction of proteins involved in a signaling cascade [167]. AKAPs are akey component to the cell type-speci�c response and occur in many isoforms and tissues[168, 51, 169]. The dynamic organization of proteins that cooperate in AKAP-based sig-naling pathways is a basic requisite for the speci�c processing of signals [170]. It is wellknown that PKA in its inactive form is a hetero tetramer consisting of two regulatory (PKAR)and two catalytic (PKAC) subunits. The regulatory subunits inhibit PKAC in their basal stateand dissociate from the catalytic subunits once two molecules of cAMP bind [171]. It wasuncovered that the autophosphorylation at serine 144, which reduced the a�nity for theregulatory subunit, happens in the absence of cAMP and can lead to a positive feedbackloop [172]. The phosphorylated PKAR subunits are rescued by Phosphatases (PPs) whichcan further modify the response and signal dynamics [173, 174]. Probably the most id-iosyncratic properties of PKA activator cAMP is its varying difusion coe�cient [175] whencomparing in vitro and in vivo experiments [77]. Phosphodiesterases (PDEs) are a key com-ponent when considering the movement and dispersal of cAMP. PDEs are e�ciently ableto hydrolyze cAMP to AMP and have been shown to restrict its distribution to certain re-gions of the cell [176]. Nevertheless, when examining experimental and in silico studies[79, 25, 80] cAMP difusion coe�cients vary from 5µm2 s–1 to 780µm2 s–1, and still somemodels are using PDE concentrations beyond physiological ranges to restrict cAMP move-ment accordingly [79]. Latest research has unveiled that a combination of phase separationand cAMP bufering is the root of the phenomenon [?, 80]. The diferent apparent difusioncoe�cients are the result of frequent binding and unbinding events of cAMP, such that thefraction of cAMP that is able to move through the cell is low. Additionally, PDEs are ableto create nanometer-sized domains of reduced cAMP concentrations that are able to �ne-tune the amount of cAMP that is able to bind to relevant PKAR subunits. Taken together,a localized cAMP signal is able to afect a speci�c subpopulation of cAMP efector proteinsdepending on the concentration, localization and composition of the signalosome.
3.2.3. Endo- and Exocytosis

In the basal state of the cell, the amount of aquaporin 2 in the apical membrane is kept con-stant by balanced endocytosis and exocytosis rate [177]. As the previous paragraphs have
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summarized, this behavior is mostly encoded in the phosphorylation and dephosphoryla-tion of AQP2. Only recently, most of the molecular mechanisms involving renal principalcells have been uncovered.
Vesicles with AQP2p256 (AQP2 phosphorylated at Serine 256) are transported to the api-cal storage region of the cell [63]. The vesicles are transported along actin cables by themotor protein myosin 5b which interacts with the vesicle membrane bound Ras-relatedprotein Rab-11 (RAB11) - Rab11 family-interacting protein 2 (FIP2) complex [67, 178]. Howexactly AQP2p256 increases the frequency of this transport is currently not understood[65, 66]. A study suggests that proteins of myosin family 5 are activated directly by secre-tory vesicles’ cargo [68], which would be AQP2p256 in this case. Other work indicates thatCa2+ oscillation, which are also triggered upon vasopressin recognition, was essential forAQP2 exocytosis [179, 180]. Since non-muscle myosin can be activated by Ca2+ [181], thismight be another indirect way to facilitate transport of AQP2p256 vesicles. This indicatesthat phosphorylation of AQP2 simply happens simultaneously to being transported to themembrane and is not conditional for the transport. The resulting observations could beindistinguishable from each other, since AQP2p256 has another regulatory function at theapical actin cortex. It seems certain that an intact actin network is required for the trans-port from storage sites to the apical membrane [67, 68]. However, the actin cortex at theapical membrane represents a physical barrier and needs to be "softened" for the vesicleto reach and be incorporated to the membrane [67, 69]. The actin cortex is stabilized byTropomyosin isoform 5b (TM5). Upon vesicle arrival at the apical cell membrane, AQP2p256is able to bind and detach TM5 from actin �laments, destabilizing the network and allowingthe vesicles to pass though the otherwise impassable actin cortex [69].
The fusion of the vesicle with the apical cell membrane is facilitated by the functional in-teraction of Vesicle-associated membrane protein 2 (VAMP2) and Vesicle-associated mem-brane protein 3 (VAMP3) [182, 183] at the vesicle membrane and Syntaxin 3 [184] as wellas Synaptosomal-associated protein 23 (SNAP23) located in the apical membrane [185].Once AQP2p256 is in the membrane, it seems to be more frequently present in lipid rafts[186, 187]. This fraction of the membrane are less soluble by detergents and also containProto-oncogene tyrosine-protein kinase Src (cSRC) [187], which was recently suggested tobe responsible for another phosphorylation of AQP2 [188]. The introduced phosphoryla-tion at serine 269 results in a decreased endocytosis rate [44]. Interestingly, the AQP2p269form of aquaporin 2 is exclusively found in the apical membrane [189] which substantiatesits role in membrane retention. The mechanism by which this happens has been sug-gested to involve signal-induced proliferation-associated 1 like 11 (SIPA11), which bindsto AQP2p269 and prevents apical actin depolymerization, resulting in inhibition of clathrinmediated endocytosis [190, 191].
AQP2 is generally removed from the membrane by clathrin mediated endocytosis [70,64]. Once enough cargo has been collected in clathrin-coated pits, the pits invaginate withthe help of a multitude of protein complexes [192]. After invagination and scission thenewly formed vesicles experience an abrupt lateral displacement of about 57 nms–1 for 11s [119]. This initial boost is mediated by actin �laments and dynamin [193, 70]. Once thevesicle is inside the cytoplasm, dynein is recruited to the vesiclemembrane to transport it tothe perinuclear storage along microtubules [194, 19]. RAB11 is reused in conjunction withRab11 family-interacting protein 3 (FIP3) to mediate the interaction between the vesicleand the dynein complex [19, 195]. After the vesicles have arrived in the perinuclear storageregion, the fate of the vesicle is based on the vesicles phosphorylation and ubiquitinationstate.
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3.3. Models of Water Transport in Renal Principal Cells

One of the �rst models that considered the water permeability of principal cells was pre-sented by Knepper and Nielsen[62]. They considered that the water transporter was in an"active", "inactive", and "reserve" state and the transition fromone state to another requires�rst-order kinetic reactions. The reaction rates are scaled by presence of vasopressin andsimulated to �t the experimentally measured trajectories. They concluded that vasopressinand by proxy cAMP must regulate both the insertion (activation) and the retrieval (inactiva-tion) of water transporters in order to explain themeasurements. In the spirit of thismodel,describing the phenotype of cell permeability, Fröhlich et al. constructed a more detailedmodel [196]. The roles of the vasopressin receptor, adenylyl cyclases, PKA, and AQP2 wereevaluated. Ordinary diferential equations were used to simulate mass action kinetics. Dif-ferent versions of themodel were devised as in silico experiments to assess the importanceof the internalization of the vasopressin receptor and the PDE activity, among others. Ninereactions were used to describe the most important transitions in the system. They foundthat either a negative feedback loop during PDE hydrolysis of cAMP or the internalizationof vasopressin receptor is required to explain the data. Furthermore, they determined thatthe parameter for endocytosis had the highest impact on the AQP2 concentration in themembrane. Both models considered the whole cell from vasopressin simulation to AQP2membrane accumulation, by compromising the mechanistic details of the individual mech-anisms. Other models that inspired this work are of a more mechanistic nature. Buxbaumand Dudai considered the activation of PKA using two isomorphic cycles [197]. One cycledescribes the dephosphorylated form of PKAR and the other describes its phosphorylatedversion. The addition of cAMP to the system leads to the dissociation of the holoenzymeand the accompanying activation of PKAC. Twelve diferential equations were simulated nu-merically using kinetic parameters from literature, complemented by estimations from theauthors. They could recreate experimentally observed trajectories by systematically vary-ing kinetic parameters and evaluating the necessary changes thoroughly. Multiple modelsexist that consider diferent cell types and mechanisms of cAMP difusion [198]. Feinsteinet al. used the Virtual Cell framework to simulate the spread of cAMP in cells, varying mul-tiple physical and biochemical parameters [199]. Difusion processes and reactions weresolved using a �nite volumemethod and diferential equations. They conclude that the ob-served reduction of difusivity is probably facilitated through high concentrations of cAMPbufers, changes in cytosolic viscosity, and structural impediments. Lastly, I would like tohighlight the model of vesicle transport and cytoskeleton by Klann and colleagues [35]. Ina general agent-based framework, they model vesicles as well as proteins as agents thatare able to move in a 3D environment. Reactions can occur at the membrane surface, thecytoplasm, or inside the vesicle usingmass action kinetics solved by a stochastic integrationscheme. The resulting vesicle model is able to reproduce vesicle budding, transport and fu-sion events determined by the vesicle cargo in amultiscalemanner. They acknowledge thatthe setup is a step towards system-level understanding through a mechanistic approach,and bridging the gap from molecular interactions to cellular phenotype is desirable.
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4. Multi-scale Simulation of Cellular
Signaling Pathways
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4.1. Scale Separation and Bridging

Difusion and reactions on a molecular scale encompass time frames from nano- to mi-croseconds and sizes in the nanometer range. Depending on themodel and size of the ob-served system time steps for difusion basedprocesses are on the nanometer/nanosecondsscale for small, fast-moving compounds. Relevant timescales for reactions are microsec-onds. For example, one of the fastest reactions in the PKA response system is the releaseof cAMP from PKAR binding site B with 2.6× 10–6 s–1 [200]. Macroscopic components ofthe AQP2 pathway are vesicles, cytoskeletal �laments, and membranes that cover the mi-crometer scales. Processes on the macroscopic scale range from 7.1µms–1 (movementspeed for directed transport of vesicles), to the maturation process during clathrin medi-ated endocytosis which takes 70 s. A scale separation map is displayed in Figure 4.1. Thescale separation map after Hoekstra [201] displays the scales involved in the system andvisualizes where bridging methods have to be applied. The focus of this work is the sep-aration of scales between the macroscopic and microscopic entities. This separation wasachieved by using two methods to simulate entities of diferent sizes. Micro-scale entitiessuch as small molecules and proteins are simulated with time-averaged dynamics usingmass action reaction kinetics and a grid-based approach (�nite diference method) for dif-fusion. To achieve that, the simulation space is partitioned into a regular grid, where eachcell is simulated individually and is able to exchange information with its surrounding cells.Macro-scale entities such as vesicles and compartments are simulated using an agent-based approach. Agents are not restricted to the grid and can move freely across the sim-ulation space. To couple both scales, agents are considered dynamic cells and are able tochange their neighboring cells as they move across the simulation space. Additionally, themembrane-associated chemical entities of agents can trigger behavioral change of agentsde�ned by modularized rule sets. For example, proteins anchored on a vesicle are ableto react with other chemical entities in the grid. And depending on the SNARE moleculesin the vesicle surface, a vesicle is able to initiate the fusion process at the correspondingmembrane. Another factor is the partial time overlap between all processes. In order to re-duce computational efort, an adaptive time step approach was chosen that considers thenumerical errors of the micro-scale models and the displacement-based numerical errorsof the agent-based modules. The implementation details of these aspects are given in thefollowing sections. The framework derived in the following sections was implemented andis available as an open-source project at https://github.com/singa-bio/singa. Version0.7.0 was used to simulate the models presented in this work [202].

4.2. Micro-scale Simulation Approach

The processes that are relevant for signaling responses that involve vesicles span diferentspacial and time scales. Considering a mammalian cell, the total amount of entities thatneed to be considered in the simulationwould be on themagnitude of 10 trillion (1013) [23].A variety of approaches and models are available that individually treat chemical entities ina particle-based manner, resulting in accurate predictions [203]. Even considering 10% ofthe entities relevant for a given system would result in 1 trillion entities. Computing theirinteractions has quadratic complexity O(x2), where x is the number of particles, which leadsto a tremendous number of computations, although the complexity can be reduced usingcompartmentalized approaches such as quad- and octrees [204]. In this work, chemicalentities will be represented as pooled concentrations and not individually. This applies totransport and reaction based aspects of the model.The progression of continuous values subject to change is computed using diferential
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Figure 4.1.: Visualization of the scales involved in endocytotic signaling cascades. Reactionsand difusion are connected by the spatial and temporal scale and simulated us-ing numerical integration and �nite diferencemethods. Agent-basedmethods areused to describe the movement of vesicles, as well as endocytosis and fusion phe-nomena. Both kinds of models are separated by a scale gap, but not necessarilyby a time gap.

equations. The so-called initial value problem presents a set of diferential equations to-gether with a given initial state [205]. The analytical solution to such a problem is onlypossible in very few cases and therefore numerical methods are used most often [206].In this work, a variant of the �nite diference methods is applied to discretize the space aswell as the time of the simulation. The simulation space is compartmentalized twice; onceusing a grid based approach and once using biologically imposed boundaries (resultingfrom the positioning of membranes). The compartments that are generated are termednodes. Each node is assigned a set of �oating point quantities that represent the concen-trations of Chemical entity (CE). This adds a spatial component to the simulation that isable to track the transport of CE through the system. Time is discretized using the explicitmidpoint method with a dynamic step width adjustment.In order to allow for the application of this simulation system to other cell types and otherprocesses, the natural processes that are being simulated for this model will be modular-ized. Modularization allows exchanging processes and parameters without compromisingthe overall system. Therefore, modules can be reused and combined freely to allow forthe simulation of diferent systems. This approach will be used to test and create smallersubsystems that can be combined or extended to yield the full recycling model.

4.2.1. Difusion and Discretization of the Simulation Space

The difusion between compartments is a discretized formof Fick’s Second Lawof Difusion.In previous work [207] a difusion was discretized for uniform grid and time steps. Here,the approach is adapted to take into account non-uniform reaction spaces and adjustabletime steps. Additionally, difusivity should be reducible in a subregion of the model andconsider membrane based barriers.
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The �rst of Fick’s laws describes the �ow J proportional and opposite to a concentrationgradient ∂c/∂x.
J = –D∂c

∂x (4.1)
The difusion coe�cient D describes the intensity of the dispersion, due to Brownian mo-tion. The second law describes the spatial and temporal development of a two-dimensionaldifusive system

∂c
∂t = D

�
∂2c
∂x2 +

∂2c
∂y2

� = Dr2
c, x ∈ (0, Lx), y ∈ (0, Ly), t ∈ (0, T ) (4.2)

where c is the concentration of a CE at a point (x, y) and time t.Let
c(x, y, 0) = I(x, y) (4.3)

be the initial-value problem, where the concentration c(x, y, 0) is de�ned by a prescribedfunction I(x, y). The domain of the system W is of rectangular shape with the followingboundary conditions:
J(x, y, t) = 0 ∀(x, y) ∈ W : x = 0 ∨ x = Lx ∨ y = 0 ∨ y = Ly ∀t > 0 (4.4)

The domain is discretized on a uniform Cartesian grid with step width Ds. The set of allgrid points is given by
W := {(x, y) ∈ W : x = iDs + Ds/2 and y = jDs + Ds/2}, (4.5)

where the position of a grid point (x, y) is de�ned by a column i = 0, : : : ,Ni and row j =0, : : : ,Nj. The combinations of i and j enumerate the grid points and (x, y) describes its posi-tion in the grid. Lx and Ly aremultiples of Ds, such that Lx mod Ds = Ni and Ly mod Ds = Nj.All variables can be chosen freely as long as those equations hold.

Figure 4.2.: Visualization of the resulting numerical grid. A rectangular numerical grid con-sisting of Ni columns and Nj rows. The system has a width of Lx and a depth of Ly .Cells are indexed by a pair of integers i and j.
Let Γ ⊂ W be the set of non-difusible grid points, such that J(x, y, t) = 0 ∀(x, y) ∈ Γ. Foreach grid point (x, y) ∈ W a restriction coe�cient ri,j is de�ned, that describes attenuatedmovement of chemical entities through the region described by the grid point.Using a forward diference in time and central diference in space, Equation 4.2 is ap-proximated using a �ve point stencil:

(x – Ds, y), (x + Ds, y), (x, y – Ds), (x, y + Ds) ∈ W. (4.6)
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Moreover, cn
i,j denotes a mesh function that estimates c(xi, yj, tn), such that the discretizedfunction can be written as,

cn+1
i,j – cn

i,j
Dt

:= D

Ds2
�
ri–Ds,j · (cni–Ds,j – cni,j)| {z }

left
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(4.7)
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down

�
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and �nally
c
n+1
i,j = c

n
i,j + DDt

Ds2 f (tn, cni,j) (4.9)
where f (tn, cni,j) denotes the operator that estimates the central diference at cni,j in spaceand time tn.The discretization of the domainW yields the �rst compartmentalization of the simulationsystem. The computation of concentration changes as a result of difusion requires theconcentration in the neighboring grid points, whereas reaction kinetics only consider theconcentrations at a single grid point.
Implementation The proposed gridwas implemented as a lattice graph, where grid pointsare elements in a two-dimensional array and neighborhoods are de�ned by their adjacencyin the array. Each node is assigned an object that represents the region the node belongsto, as a reference to biologically relevant sections of the cell. A regionmay be further subdi-vided by the topological descriptors: inside or membrane. The region in combination withthe topological descriptor can be used to initialize starting concentrations or assign regionspeci�c functions that are applied to the relevant subsections. Furthermore, each node isassigned a polygon that represents the area it occupies. This can be used to calculate thevolume or the surface each node represents, in order to scale reaction and difusion ratesto the required dimensionality. An additional kind of neighborhood needs to be assigned,that addresses, which subsections can be adjacent to each other and whether difusionis reduced. The adjacency is determined by diferences in region between neighboringnodes. If two neighboring nodes are assigned to two diferent regions, a membrane sec-tion is introduced between the two nodes. The edges between two nodes are assigned adifusive reduction, if there is a membrane between both, or if a speci�c module is speci-�ed for the simulation. After all neighborhoods have been assigned accordingly, membranesegments are connected and converted to a macroscopic agent (see Section 4.4.1). Eachnode has a concentration manager that governs the chemical entities and their currentconcentrations in the volume represented by the node. The concentration manager cancontain multiple containers for the diferent subsections of the node, as well as copies ofthe subsections that are used to compute the numerical errors for each node (see Section4.5). Difusion itself is implemented as a function that uses the concentrations of the ad-jacent nodes and calculates the updated concentration of the relevant node, as describedin Equation 4.9.
4.2.2. Reaction Kinetics

The dynamic behavior of chemical entities in the system is further determined by chemicalreactions. The equations are applied at every node, depending on the current concentra-tions at each time step. The ordinary diferential equations are derived from the law ofmass action. The law of mass action describes, that the rate of the reaction is directly pro-portional to the product of the activities of the substrates. The reaction order is de�ned
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by the number of concentrations that in�uence the reaction rate. In general, the resultingreaction is denoted as:
A k P

the appropriate reaction rate v is described by:
v = –1

a
· dc(A)
dt

= 1
p
· dc(P)

dt
= k · c(A) (4.10)

where the stoichiometric coe�cients are described by the lowercase letter of the entity and
dc/dt is its change in concentration. Generally, the resulting reaction rate is experimentallydetermined using a rate constant k whose unit is determined by the reaction order. Inprinciple, all chemical reactions are reversible. Many reactions reach a state of equilibrium,where the rate of production of new products is equal to the rate of products degradingto substrates. The following rate reaction scheme describes reversible reactions:

A k1
k–1 P

Here, the actual reaction rate is a combination of a forward reaction rate k1 and a backwardreaction rate k–1. Therefore, the rate equations are as follows:
v(A) = dc(A)

dt
= –k1 · c(A) + k–1 · c(B) (4.11)

v(B) = dc(B)
dt

= k1 · c(A) – k–1 · c(B) (4.12)
where vA = –vB. Whenever the backwards or forwards reaction rate is negligibly small,the reaction may be assumed to be irreversible and treated with kinetics of n-th order. Aspecial treatment is the Michaelis-Menten rate equation for enzyme kinetics.The Michaelis-Menten kinetics assumes that the �rst step of the reaction of an enzymeand a substrate forms an enzyme-substrate complex according to the law of mass action.Furthermore, the subsequent second reaction is assumed to be efectively irreversible.

E + A k1
k–1 EA k2 E + P

Historically, most publications on the reaction kinetics of enzymes record the key parame-ters Vmax or kcat and km or kd that are associated toMichaelis-Menten kinetics, since they arerelatively easy to measure. Additionally, they can be used for an analytical approximationof the trajectory of the system. For the analytical treatment, the mentioned parametersonly apply in certain situations and are not generally valid if some properties of the systemdon’t match the assumptions. The �rst restriction is that the enzyme concentration in thesolution is much less than the substrate concentration:
dcE � dcA (4.13)

The corresponding reaction rate of the system can be calculated by
v = dcP

dt
= kcat · c(E) · c(A)

kd + c(A) (4.14)
where kcat has the properties of a �rst order reaction rate and describes the capacity ofthe enzyme-substrate complex to produce product P. The Michaelis constant km describesthe a�nity of the enzyme and the substrate km = k–1+k2

k1 .Further, it is assumed that the concentration of the intermediate complex does notchange on the timescale of product formation since all enzymes are bound to a substrate
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molecule (result of Assumption 4.13). This so called quasi-steady-state approximation istherefore only valid if:
cE0

cA0 + km � 1 (4.15)
where cE0 and cA0 are the initial enzyme and substrate concentrations. In situation whereneither of the models are applicable, more complex modeling approaches are taken. Ingeneral, such reactions are split into smaller sub reactions, which are then solved withreversible reaction kinetics. The downside is that more parameters need to be determinedthat are often hard to resolve experimentally. In this work Michaelis-Menten kinetics areonly used if no other alternative could be determined. If applied, the assumptions underwhich Michaelis-Menten treatment is valid are discussed.In general, the change in concentration resulting from reaction r ∈ R and CE e ∈ E isdetermined by

c
n+1
i,j = c

n
i,j + DtX

r∈R
f (r, e, tn, cni,j) (4.16)

where f (r, e, tn, cni,j) is the change in concentration resulting from reaction r regarding en-tity e, at time tn and grid point cni,j.
Implementation A reaction is an object that consists of a kinetic law, a reactant behaviorand a set of concentration conditions. The kinetic law speci�es how the diferent reac-tants are used to calculate the velocity of the reaction. Concrete implementations of thekinetic law are "irreversible" (see Equation 4.10), "reversible" (see Equation 4.12), "Michaelis-Menten" (see Equation 4.14) and "dynamic". Dynamic kinetic laws allow for custom equa-tions. Reactant behavior can be either rule based or static. Rule based reactions are usedduring a reaction network generation as described in the following Section 4.3. A singlespeci�cation of a reaction mechanism or rule can result in multiple actual reactions thatare applied during simulation. For example, a protein kinase might have multiple phos-phorylation targets and can exist in multiple phosphorylation states; a rule based reactioncan specify that once a protein is phosphorylated, a substrate can be processed further.The concrete behavior is speci�ed during the reaction setup. Each reaction is applied toeach node, and concentrations mangers are used to handle numerical calculations basedon the calculated reaction velocities.

4.3. Rule-based Reaction Network Generation

The work of Blinov [106] and Lok and Brent [208] was used as a basis and inspiration for amodi�ed approach of reaction network generation. Mainly, two considerations drove thechoice for an adaptation.I wanted to explicitly distinguish between transport and reaction phenomena to improvemodularization of a system. BioNetGen [97] uses states in reaction rules to representtransport between diferent compartments in a system. The de�nition of compartments inan explicitly spacial system that were used in this work is not captured by the state basedapproach. Reactions were strictly de�ned as the structural transformation of one entity toanother. Transport on the other hand only considers movement of structurally identicalchemical entities and is performed by dedicated modules. The compartmentalization isdone in another step of the modeling process, and therefore untangling both levels resultsin higher degree of reusability and encourages the design of faithful models. Furthermore,the reaction network becomes less complex since additional compartments do not resultin additional rules and generated reactions. This strategy requires a more mechanistic
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approach to modeling, which can be troublesome for poorly understood systems, but alsoprovides the possibility to increase understanding by elevating some complexity.Another consideration is the de�nition of binding sites and molecule states. Moleculesvery rarely have diferent states, if they have the same structure. In the approach pre-sented in this work, states are represented as the actual addition or removal of a CE (forexample phosphorylation reactions adds phosphate to a CE). Again, this reduces model-ing ambiguity and encourages mechanistic approaches. This leads to more complex graphstructures, but removes states and therefore reduces the complexity of the actual repre-sentation. Furthermore, it provides �exibility when designing binding sites. During reactionde�nition, it is possible to specify a binding site, or let the network generation automaticallyassign a binding site.In conclusion, the modi�ed rule-based de�nition of reactions abolishes states of chem-ical entities, and provides a more �exible way to de�ne and modify systems of rules. Al-though it is possible to gain computational e�ciency by removing states, it comes at thecost of more complex chemical entities that need to be considered.
4.3.1. De�nition of the Data Model

Molecules that are part of reactions are represented by their functionally relevant parts.The de�nition of those parts is model speci�c. For example, a kinase might be representedby its binding sites for a phosphorylation target and a post-translational modi�cation site.Those components are called fundamental entities.
De�nition 4.3.1 (Fundamental Entity). Let a fundamental entity be a triple V = (B,O, F), where
B is a set of labels and O : B 7→ {0, 1} is a function. The elements in B represent the binding sites,
and the function O maps to each binding site whether it is occupied 1 or free 0 to interact. A
fundamental entity has an additional unique label that can be used to identify it and an optional

set of features F.

The label is used during the modeling process to refer to a speci�c fundamental entity, ifnecessary. Additionally, features may be assigned to a fundamental entity that describe at-tributes that are relevant for simulation, such as difusivity. Features also include two �ags:
small and membrane-bound. Small entities are considered to have one binding site andcan be only bound to one molecule at a time. If a reaction involves any membrane-boundfundamental entity currently associated to a membrane subsection, the resulting complexentity will be also considered membrane bound, if not explicitly speci�ed otherwise. Fun-damental entities are the nodes of molecular graphs.
De�nition 4.3.2 (Molecular Graph). Let amolecular graph be a triple G = (V, E, F), whereV is a

set of fundamental entities that are connected via labeled undirected edges E. Two fundamental

entities V ∈ V are allowed to be connected by an edge e ∈ E if they have two compatible binding

sites. Binding sites are called compatible if they have the same label. If an edge e is added between

two vertices v it is assigned the compatible label.

4.3.2. Design of Rule Based Reactions

The addition or removal of edges in the molecular graph is done by so-called reactors.These represent basic reactions such as the binding of a substrate to a kinase or the sub-sequent phosphorylation of a phosphorylation site.
De�nition 4.3.3 (Reactor). Let a reactor be a triple R = (C, T ,G+). Where the reaction function
T : G 7→ G∗ maps a set of substrate molecular graphs G to a set of product molecular graphs.

The cardinality of both sets is in the range of [0, 2]. The set C is a set of conditions that specify
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Figure 4.3.: De�nition of reaction rules. Reactions can be speci�ed by a description of thereaction process. Basic reactors are concatenated to chains that are processedduring the reaction network generation. Additionally, conditions allow for furtherspeci�cation of the reaction process. The network generation process results inall reactions that can happen in the system.
whether a reactor can be applied to a graph G. Additionally, a reactor can be assigned a set

of static G+ entities that can be added to the set of products G∗ = G∗ ∪ G+, depending on the
implementation of T.

The basic reaction functions T are:
� BIND, add an edge between a binding site b ∈ B1 from G1 ∈ G and a binding site
b ∈ B2 from G2 ∈ G, resulting in one product graph G1–2 ∈ G∗.

� RELEASE, remove an edge betweenbinding site b ∈ B1 fromG1–2 ∈ G and the bindingsite b ∈ B2 also in from G1–2, resulting in two product graphs G1 ∈ G∗ and G2 ∈ G∗.
Furthermore, two additional reaction functions can be de�ned, that assume the ubiqui-tous presence of a fundamental entity or the irrelevance of a byproduct.
� ADD, add an edge between a binding site b ∈ B1 from G1 ∈ G and a binding site
b ∈ B2 from G2 ∈ G+, resulting in one product graph G1–2 ∈ G∗. The graphs G2 ∈ G+
is prede�ned, such that the conditions C are only applies to the G1. In this context,the conditioned graph can be called primary graph Gp and the other graph is calledstatic Gs.

� REMOVE, remove an edge labeled with binding site b from G1–2 ∈ G, resulting in oneproduct graphs Gp ∈ G∗. A disconnected subgraph algorithm is used to determinethe two subgraphs after edge removal. The disconnected subgraph that matched thecondition for the static graph GsG+ is deleted and the other graph Gp is added to theresults.
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Each reactor has a set of conditions that can be implicit or explicit. The implicit condi-tions vary depending on the reactor type. For example the BIND, reaction require two initialmolecular graphs that contain fundamental entities speci�ed in the reaction de�nition. Fur-thermore, it is required, that both fundamental entities G1 and G2 posses an unoccupiedbinding site b1 = b2 = b where O(b) = 0. This �ltering is done in a fail fast procedure toreduce the necessary comparisons. A full list of implicit conditions can be found in Table4.1. Explicit conditions are de�ned by the user and are used to describe the model.To create most reactions, more than one modi�cation has to be performed in a step.For example, the catalysis of the phosphorylation reaction transforms a molecule of ATP toADP and adds a phosphate group to a modi�cation site. Reaction rules are combinationsof basic reactors in so-called called reactor chains.
De�nition 4.3.4 (Reactor chain). Let a reactor chain be a sequence RC = (R1, : : : ,Rn). Where the
elements Ri are reactors that are applied to sets of molecular graphs Gi. Whereby, the substrate

set of reactor Ri is the product set of reactor Ri–1. The initial set of molecular graphs G0 is
predetermined by the initial conditions. The resulting set Gn is the result of the reaction chain.

Reactor chains de�ne the elementary changes that happen in each reaction. The initialset of molecular graphs G0 is determined by the entities that are de�ned in a starting setof chemical entities. While ADD, BIND, and REMOVE reactors can be concatenated freely,
RELEASE is always a terminating reactor, since there are two resulting products. Two re-sulting products require the de�nition of additional reaction chains to handle the productsseparately. Before its application, a set of implicit and explicit �lters is applied to the can-didate molecules to determine which candidates participate in the reaction (for a moredetailed description, see Table 4.1). Additionally, explicit conditions describe hypothesesfor requirements of each reaction to occur. For example, in order to phosphorylate AQP2,PKAC needs to be bound to AQP2. To describe reaction chains, the so-called step-wisebuilder pattern was employed and implemented. Step-wise builders are a design patternthat allow to shift some expression validation from run time to compile time. Efectively, thestep-wise builder describes a formal grammar for the generation of reactions. The gram-mar restricts the number of possible combinations of words, provides feedback upon def-inition, and with modern development environments even guides the process of creation(for an example see Figure 4.3). The de�nition of rules should only involve fundamentalchemical entities. This allows for the network generation algorithm to process all moleculegraphs that contain the fundamental entity. Interactions should be added as explicit condi-tions. It is possible to invert reaction chains to handle reversible reactions. The inversion ofthe chain �rst requires the inversion of the order the reactors are applied in. Additionally,BIND reactors are converted to RELEASE reactors and vice versa. The same is done forADD and REMOVE reactors. The entirety of de�ned reaction chains are used to generatea reaction network.
4.3.3. Automated Generation of Reaction Networks

During network generation, a reaction chain takes froma set of candidate reactants, appliesthe next reactor and creates an intermediate product. The following reactors only usethe intermediate products and apply additional �lter criteria to further specify a reaction.To generate the full reaction, the substrates and intermediate products are gathered ina set of double-ended queue data structures, called reaction tracks. A track representsthe transformations necessary to produce a certain product and is used to determine thereactions that result from a reactor chain. The entities that are on top of the queue arethe �nal products of the reactant, the entities at the bottom are the �nal substrates. Theproducts of each reaction are added to the pool of candidates for the next application ofthe network generation. See Fig. 4.4 for a visualization.
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Table 4.1.: Description of the modi�cation operations and their applied implicit conditions.The entities row describeswhether candidates evaluated during network generationor prede�ned entities are used. The conditions row describes implicit �lter criteriathat are used to determine whether an entity is a candidate. The modi�cations rowdescribes the creation andmodi�cation of the candidate graphs to get to the prod-uct graphs.
BIND
entities primary secondary
conditions has primary entityhas unoccupied binding site forsecondary

secondary entityhas unoccupied binding site for pri-marymodi�cations create new graph from copy of �rst and second candidatedetermine nodes with unoccupied binding sites in both candidatesadd edge between previously determined nodes
ADD
entities primary static
conditions has primary entityhas unoccupied binding site forstatic

prede�ned

modi�cations create new graph from copy of �rst and static candidatesdetermine nodes with unoccupied binding sites in both candidatesadd edge between previously determined nodes
RELEASE
entities primary static
conditions has primary entityhas secondary entityhas occupied binding site for static

prede�ned

modi�cations create two new graphs from copy of candidateremove edge for binding sitefrom one graph remove subgraph including the primary entityfrom one graph remove subgraph including the secondary entity
REMOVE
entities primary static
conditions has primary entityhas secondary entityhas occupied binding site for static

prede�ned

modi�cations create new graph from copy of candidateremove edge for binding siteremove nodes that are in one subgraph with the static entity
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Figure 4.4.: Visualization of the reaction network generation procedure. Reactions can bespeci�ed by a description of the reaction process. Basic reactors are concatenatedto chains that are processed during the reaction network generation. Additionally,conditions allow for further speci�cation of the reaction process.

The network generation algorithm (see Algorithm 4.1) is used to generate all reactionsthat might occur in a system, given a set of initial entities. If binding sites are not speci�edexplicitly, the algorithm will determine the possible binding sites from the description ofthe rules. This assumes that if a bind reaction is de�ned for two fundamental entities V1and V2, both are assigned a binding site B1–2. The process results in a set of reactions.The de�nition of reaction rules allows to further modify a set of reactions that result fromreaction chains. It is possible to add static products that arise during the reaction but arenot modeled explicitly during the reaction. Furthermore, the kinetics that determine therate law and the relevant parameters are assigned.In conclusion, the rule based reaction creation allows specifying reaction chains thatdescribe the interactions of molecules in graph form. This algorithm in particular allowsfor a mechanism based speci�cation of reactions without the requirement to enumerateall chemical species that might occur during the reaction process. The approachmakes themodel more �exible since further constraints can be easily added to a single rule, withoutthe need to reconsider manually designed reactions. This approach was used to specify allreactions used in the models that were implemented during this work.

4.4. Macro-scale Simulation Approach

Most cells not only deploymicroscopic processes that include chemical reactions and shortrange transport of chemical entities [209]. During evolution, a major factor for the transi-tion from the microscopic into the macroscopic domain were lipid membranes; able tocompartmentalize the cells’ interior and shield it from external in�uences [210]. Further-more, cells have developed unique strategies for the targeted transport over long dis-tances. These strategies that involve the formation of membrane enclosed vesicles for thetransport of cargo molecules along �laments and the fusion of the vesicles with anothermembrane are known as exocytosis and endocytosis [17, 192]. The number ofmembranes,�laments, and vesicles in a cell is several orders of magnitude lower than the number of
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Algorithm 4.1: Processing reaction chains that have been generated from reac-
tion rules. Assigns possible binding sites to complex entities. Furthermore, gen-erates all individual reactions from reaction chains. Similar to Algorithm 2.1 graphbased entities are used. Here nodes of graphs do not represent atoms, but relevantfunctional subunits such as proteins, small molecules, and modi�cations (e.g. phos-phorylation). Selection of candidate graphs and reaction rule matching is furtherrestricted by constraints to reduce the complexity of each iteration. Repeats untilno new reactions are generated or a maximal number of iterations is reached.
Input: All reaction chains RC, All molecule graphs G0
. determine possible binding sites

1 foreach reaction chain RC in the set of reaction chains RC do
2 foreach reactor R in the reaction chains RC do
3 if R involves binding site b in conjunction with V then
4 add b to B for entity V

. generate reactions
5 stable← false
6 repeat
7 np ← previous number of reactions

. process each reaction chain
8 foreach reaction chain RC in the set of reaction chains RC do
9 T ← a new, empty set of reaction stacks
10 foreach reactor R in the reaction chains C do
11 collect candidate graphs that ful�ll the conditions CR
12 apply TR to the candidate graphs
13 foreach reaction stack t in T do
14 if t has top most element equal to GR (substrates) then
15 push G∗

R
(products) to track t

16 else
17 create a new track t
18 push GR (substrates) to track t
19 push G∗

R
(products) to track t

20 add t to T
21 candidate entities← all distinct products from all reactions
22 convert reaction chains to reactions
23 nc ← current number of reactions
24 if np = nc then
25 stable← true

26 until stable

chemical microscopic components in the cell. The agent based approach to modeling isfrequently and successfully used in this domain of natural systems [203, 35]. Entities, calledagents, are able to move through the simulation space and interact with each other.

4.4.1. Agent-based Simulation of Discrete Entities

In agent-based modeling, agents are entities that sense their environment and react in re-sponse to what they perceive [211]. In biology, this reaction can be the result of chemical or
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physical phenomena. In this work agents that move are distinguished from agents that arestatic. Furthermore, the shape of an agent is paramount for its existence in the simulation.A generalized approach was taken to the de�nition of agents and de�ne four prototypicalagents that can be extended to represent actual biological entities within the cell. The fourtypes of agents are: sphere-like, line-like, surface-like, and volume-like. The introduction ofmacroscopic components requires further compartmentalization of the system to accountfor chemical entities carried by vesicles or associated to membranes.

Figure 4.5.: Components of the simulation. First, the simulation space (1) is tiled into a regulargrid, used for numerical calculation and spatial indexing. Next, the membraneagents (2) determine the compartments (3) of the simulation. Each cell of the gridis assigned a concentration of chemical entities. Finally, �laments (4) and vesicles(5) are placed in the simulation. All agents are implementations of abstract agenttypes (6).
The continuous space that is used to simulate agents is generated from the two-dimensionalgrid that is used for numerical calculations (see Figure 4.5). A third dimension is added bysetting the height of the system to Ds. Each grid point therefore describes a unit cube witha side length of Ds. The volume of the unit cube can be used to scale the concentration ofchemical entities to a number of molecules, and vice versa. Furthermore, it is used to de-termine the surface area of surface-like agents as well as the volume of volume like agents.The agent space Θ can be de�ned by

Θ := {(x, y, z) ∈ Θ : x ∈ (0, Lx) and y ∈ (0, Ly) and z ∈ (0, Ds)} (4.17)
where Lx ∈ R is the length of the system in x direction and Ly ∈ R is the width of thesystem in y direction.

Sphere-like agents Sphere-like agents are de�ned by a position p, a radius r, a state s ∈ Sand two topological descriptors for surface and volume. The position is a point p = (x, y) ∈ Wand is not tied to the grid points de�ned by the previous compartmentalization. The centerof the sphere is always at z = Ds/2. The position of the sphere in agent space is therefore
pΘ = (x, y, Ds/2). The state s has in�uence on the behavior of the sphere-like agent. Theso-called topological descriptors de�ne two diferent compartments that contain chemicalentities similar to grid points. Those compartments are also subject to chemical transfor-mations and transport processes. To determine kinetics that happen at the surface of the
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agent, the neighboring grid points as well as the amount of chemical entities exposed tothose grid points are determined. To achieve this, parts of the surface of the sphere areassociated to grid points from W (see Figure 4.6). The algorithm 4.2 describes the asso-ciation of surfaces to the grid points by determining spherical triangles that result fromintersection with the unit cubes. The determined neighboring grid points represent theconcentration based environment the agent can perceive.

Figure 4.6.: Visualization of sphere surface association. The sphere surface of the agent issplit based on the numerical grid. The intersections of the grid lines and edgesare used to construct spherical triangles that are subsequently used to determinehow much membrane surface is exposed to each grid cell.
Three versions of the sphere like agent are implemented. The vesicle is a sphere-likeagent that is able to move through the simulation space by an application of displacement-based modules. Additionally, endocytotic pits were designed for the simulation of clathrin-mediated endocytosis. Endocytotic pits are unable to move and always associated to amembrane. The microtubule organizing center is the third implementation of sphere-likeagents that is also static and used to initialize line-like agents. Any sphere-like agent canperceive other agents in a perceptive radius rp. The perceptive radius can vary dependingon the displacement-module that is applied to the agent.

Line-like agents Line-like agents are de�ned by a state s ∈ S and a sequence of posi-tions P = {(x1, y1), : : : , (xn, yn)}, whereby two consecutive positions (xi, yi), (xi+1, yi+1) repre-sent a line segment. Line-like agents have no topological descriptors and therefore also nocompartment with associated chemical entities. Line-like agents are used as guides for dis-placement basedmodules that move vesicles along cytoskeleton �laments. The agents areinitialized using a 2D adaptation of the microtubule growth algorithm as presented by [40].The algorithm initializes �laments using a point (x1, y1) and a unit vector ~u, and grows it byadding a new position pi = (xi+1, yi+1) to the sequence of line segments until a terminatingcondition is encountered. If s = grow a new position is calculated by
pi+1 = pi + (1 – rd) · rhead + rd · u|(1 – rd) · rhead + rd · u| (4.18)

71



Algorithm 4.2: Vesicle indexing and surface area assignment. For each agent andgrid point, the intersections between the 2D projection of the sphere-like agent onthe grid is calculated. Afterwards, the intersecting surface is determined and as-sociated to the grid point. The corresponding amount of chemical entities on therepresented membrane surface is able to react the chemical entities in the reactiongrid.
Input: All sphere-like agents A, All grid points (x, y) ∈ W

1 foreach agents a in the set of vesicles A do
2 foreach grid point (x, y) in set of grid points W do

. determine rectange that represents the region of (x, y)
3 R← (x – Ds2 , y – Ds2 ), (x – Ds2 , y + Ds2 ), (x + Ds2 , y + Ds2 ), (x + Ds2 , y – Ds2 )
4 if sphere position p of a is inside R then
5 foreach vertex q of rectangle R do
6 calculate distance d(p,q) between sphere a and vertex q

. determine whether the sphere overlaps with a corner q

7 if distance d(p,q) < sphere radius rs then
. the sphere intersects four polygons

8 calculate projection p(q, v) of q onto sphere surface of v
9 determine vertical intersections qN,qS ← (qx,p(q, s)y , 0)
10 determine horizontal intersections qE ,qW ← (p(q, s)x,qy , 0)
11 determine top intersection qT ← (qx,qy ,p(q, s)z)
12 setup spherical triangle TNE for qN,qE ,qT
13 setup spherical triangle TNW for qN,qW ,qT
14 setup spherical triangle TSE for qS,qE ,qT
15 setup spherical triangle TSW for qS,qW ,qT
16 calculate surfaces of the spherical triangles
17 associate surface areas with respective grid points to s
18 continue with next sphere

. (else) check if c intersects with exactly two regions
19 calculate total surface of sphere S
20 foreach edge e of R do
21 calculate intersections I between sphere a and edge e
22 if |I| = 2 then
23 calculate height h of the sphere cap de�ned by i1, i2 ∈ I

24 calculate surface Scap of the sphere cap
25 associate surface area S – Scap to current grid point
26 associate surface area Scap to neighboring grid point
27 continue with next vesicle

. (else) vesicle is fully contained
28 associate surface area S to current grid point

where rd is a small number (0.025 in [40]), determining the correlation between twoconsecutive elements. The vector rhead = pi – pi–1 is the vector between the previouslyadded segments, u is a random unit vector and | · | is the Euclidean norm. The state
s is set to stagnant, if the growth would result in a collision with any other agent or if
pi+1 /∈ W. The line-like agents are generated before the actual simulation starts, duringthe setup routine. A user de�ned number of line-like agent seed fragments is generatedand simulated until all �laments are stagnant. Filament seed fragments can be spawned at
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a microtubule organizing center (sphere-like agent). Here a number of randomized seedpositions is determined on the surface and the �rst additional �lament is spawned facingaway from the centroid of the agent.Line-like agents in this model are used to guide vesicles to a destination using the re-spective displacement modules. There are two implementations of the line-like agent: mi-crotubules and actin �laments. The implementation determines the type of motor proteinthat has to be present in the surface compartment, for a vesicle to attach to the �lament.
Surface-like agents Surface-like agents do not have a state but, similar to line-like agents,are de�ned by a sequence of positions P = {(x1, y1), : : : , (xn, yn)}, whereby two consecutivepositions (xi, yi), (xi+1, yi+1) represent a surface segment. The area of a surface segment canbe determined by multiplying the length of the segment (xi, yi), (xi+1, yi+1) with the spatialstep width Ds. Surface segments must be de�ned at the interface of two neighboring gridpoints and therefor along the edges of the spacial representations of grid points. It followsthat the set of positions P is constrained by the vertices that arise from all grid points.The vertices of rectangular region representation of each grid point (x, y) are de�ned by(x – Ds/2, y – Ds/2), (x – Ds/2, y + Ds/2), (x + Ds/2, y + Ds/2), (x + Ds/2, y – Ds/2). The set of possiblesurface positions is therefore: S := {(xs, ys) ∈ S : x±Ds/2 and y±Ds/2 ∀ (x, y) ∈ W}. A position
pi = (x, y) ∈ S must be unique in P. Additionally, it is required that pi+1 = (xi ± δs, yj ± δs). Amembrane may be de�ned as closed, if (x1, y1) = (xn±δs, yn±δs). A grid point is adjacent toa membrane segment if any edge of its rectangular region representation and any surfacesegment (xi, yi), (xi+1, yi+1) are identical. The concept has been visualized in Figure 4.7.

Figure 4.7.: Visualization of a possible con�guration of a surface like agent. The relevant po-sitions of the point sequence P are given, and adjacent grid points are highlightedgreen.
Membranes are the only implementation of surface like agents considered in this work,but other implementations such as growth medium or inert parts of the environment arefeasible. In biological systems, proteins and small molecules are often tethered to mem-branes. Each grid point that is adjacent to a membrane receives an additional compart-ment for membrane-bound chemical entities. Chemical entities associated to the samegrid point, but diferent compartments in the same grid point are able to react with eachother. The product entities are added to the target compartment of the reaction. Speci�c
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target compartments can be assigned manually during the reaction de�nition. By default,the target compartment is speci�ed by the membrane-bound �ag of simple chemical enti-ties. If at least one node of a product complex is �agged as membrane bound, the complexentities is added to the membrane compartment.The setup of the simulation system including membranes can be initialized by a pixelbased image. Each pixel represents a grid point, and diferent colors represent diferentregions of the cell. At the border between two regions, a membrane is added.Membranes are important factors in the compartmentalization of cells. They con�ne the�ow of chemical entities, protecting the cell from foreign and potentially toxic compounds.Some chemical compounds on the other hand can be bene�cial for the cell and are activelytransported inside the cell via channel or transporter proteins. These processes are micro-scale processes. In the context of this work, such processes are encapsulated intomodulesthat apply updates to the system.

Volume-like agents Volume-like agents are stateless and de�ned by a set of points P =
{(x1, y1), : : : , (xn, yn)}. The points de�ne the vertices of a polygon and two consecutive posi-tions (xi, yi), (xi+1, yi+1) represent a volume border segment. Additionally, the starting point(x1, y1) and (xn, yn) are always connected. Volume-like agents specify areas of the simulationsystem where a distinct set of modules or features should be applied. For example, thecell cortex can be de�ned as a volume-like agent close to the cell membrane. Modulesare used to recognize vesicular movement into the volume, and a speci�c action for theentering vesicle can be assigned. Volume-like agents de�ne no compartments.

4.4.2. Modules for Displacement-based Behavior

Displacement-based modules are used to change the position of sphere-like agents. Amodule m ∈ M is a function applied to an agent a ∈ A and results in a change in position
m(a, Dt) = Dp(a, Dt) scaled to the current time step Dt. The state and/or the concentrationof chemical entities in the compartment associated to agent a can be used to determinethe displacement. The next position pn+1a = p(a, tn+1) of agent a ∈ A is determined bysummation of all displacements Dp(a, Dt) denoted as DpDta .

p
n+1
a = p

n
a + X

m∈M:m(a,Dt)>0
Dp

Dt
a (4.19)

· denotes the Euclidean norm. The displacement must not be too large, otherwise the sim-ulation could experience numerical instabilities whenever concentrations change rapidly.Similar to the numerical error, a displacement based error is calculated, and the time stepis adjusted if necessary.

Vesicle difusion The difusion of vesicles is modeled as described by Klann [35]. Theposition of the vesicle changes, scaled by its difusivity:
Dp

Dt
a = p2Dv · ~ξ (4.20)

where the change in position Dp(Dt) is calculated by a randomGaussian vector ξ withmean 0and variance 1. The difusion coe�cient can be determined from literature [24]. A volume-like agent can be used to add collision boundaries to the collision detection algorithm andtherefore hinder the difusion of the vesicle.
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Directed guided transport Directed vesicle transport happens at line-like �lament agents.The displacement delta is calculated by:
Dp(Dt) = vm · û (4.21)

where vm is the average velocity of the attached molecular motor and û is a unit vector thatpoints in the direction speci�ed by the pulling motor, along the line-like agent �lament.Whether the vesicle is attached to a �lament is determined by a qualitative state-changingmodule. This module sets the state of the vesicle and the line segment (xi, yi), (xi+1, yi+1) itwill be attached to. The calculation of Dp(Dt) is described in Algorithm 4.3.
Algorithm 4.3: Sphere-like agent movement along line-like agents. As requiredby the transport of vesicles along the cytoskeleton, sphere-like agents are allowedto follow along line-like agents. Depending on the target direction of the attachedmotor, the directional vector û is determined by the sequence of line segments.
Input: An sphere-like agent SLA attached to a line-like agent LLA
Output: The displacement DpDtSLA of SLA

1 piLLA ← the position in the line-like agent the vesicle is attached to
2 pSLA ← the position of the sphere-like agent
3 if target direction = MINUS then
4 if pi

LLA
= p0

LLA
then

. this is the first segment
5 return DpDtSLA ← (0, 0)
6 else
7 û← pi–1LLA–pSLA

pi–1LLA–pSLA
8 else
9 if pi

LLA
= pn

LLA
then

. this is the last segment
10 return DpDtSLA ← (0, 0)
11 else
12 û← pi+1LLA–pSLA

pi+1LLA–pSLA
13 return DpDtSLA ← vm · û

Directed unguided transport Similar to the directed guided transport, the directed un-guided transport calculates the directed displacement of a sphere-like agent (see Equation4.21). The transport speed is scaled by a number of speci�ed molecules present in thecoat of the vesicle. The actin boost vesicles experience after they have been scissioned byclathrin-mediated endocytosis [119] was implemented using directed unguided transport.In this implementation, the unit vector û points orthogonal to the membrane segment thevesicle spawned from. The velocity vm is calculated by vm = vb · cs, where s is the scalingentity and vb is the base velocity given in [space]/[time] · [concentration].
Collision detection The �nal position p(t + 1) is accepted, if the target position is not al-ready occupied by other agents, and if no membranes need to be crossed to arrive at thatposition. Three diferent methods can be used to determine the updated position if anycollision should happen: a ballistic re�ection, a recalculation (if there is a randomized com-ponent to any update the calculation can be repeated until a valid position is found), or
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simply discarding the update by setting pt+1 = pt . It was found that the diferent methodsproduce only marginally diferent outcomes [212] in sparse setups. For this work, the lastmethod was chosen, and the collision detection has been implemented as described inAlgorithm 4.4. To increase the e�ciency of the collision detection algorithm, only local in-teraction partners are considered. This can be achieved using a spatial indexing approach.A spacial grid has already been created using the primary micro-scale tiling as de�ned inSection 4.2.1. This indexing will also be used to reference vesicles to the respective regionsin the simulation system and vice versa. Algorithm 4.2 performs indexing and additionallyde�nes, which amount of surface area is associated with each grid point. The association isrepeated in each time step, after the displacements have been calculated. The procedureis only valid, if the radius r of any vesicle a is smaller than the spatial step width Ds.
Modules for Qualitative Behavior

State changing modules An agent is able to change its state if,
1. its position is close to another agent,
2. concentration of a CE reaches a threshold, or
3. by chance.

These conditions have been implemented as qualitative modules. State changing modulesare initialized with a list of states where the module is applied and the test criteria thatspeci�es the condition that should be met. The calculation of the closeness depends onthe type of agents that interact with each other. In case of line-like or surface-like agents,the closest distance is calculated to a point of any segments. A state change by chance isalso interesting. For example, when a vesicle is transported along a cytoskeletal �lament,the vesicle can spontaneously detach from the �lament. The possibility of a state changehappening is given as a frequency per time and is scaledwith the time step. If the probabilitythat the event happens in a single time step is larger than 1 the time step is reduced andrecalculated.
Endocytosis Clathrin-mediated endocytosis was implemented for the application in thiswork. The algorithm implemented for endocytosis can be reviewed in Algorithm 4.5. Themodule manages the creation of clathrin-coated pits, an implementation of sphere-likeagents. Furthermore, it manages the creation of clathrin-coated vesicles, after the pitpasses a concentration checkpoint and maturation. Initially, a pit formation rate kp pit for-mation rate in 1/[time] · [space]2 determines how often clathrin-coated pits are spawned.In each time step cargo molecules are added to the pit with a cargo addition rate ka fromassociated membranes using a concentration-based module.The cargo absorption module is a specialized reaction. The addition of cargo to the pitis scaled by inhibiting and catalyzing chemical entities. The actual cargo addition rate iscalculated by:

kc = ccat
ccat + cinh · kb, (4.22)

where ccat is the concentration of the catalyzing entity, cinh is the concentration of the in-hibiting entity and kb base cargo addition rate. It follows that the maximal applicable ratemax(kc) = kb and decreasing amounts of the catalytic entity or increasing amounts of theinhibiting entity scale the applicable rate linearly. The amount of cargo that is moved fromthe membrane associated to the pit is calculated by Dcn+1cargo = kc · cncargo.The assembling pit exists until a maximal time tcp that is determined upon vesicle cre-ation. If the pit does not reach the required concentration ccp of speci�ed cargo entities Ec
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Algorithm 4.4: Agent collision detection and position updates. Positional efectson each sphere-like agent are summarized, and the target position is calculated. Thecollision detection prevents agents from assuming positions where the boundariesof two agents would intercept, or the agent would move out of simulation bounds.
Input: all sphere-like agents A, all membranes M, the simulation extend Lx and Ly

1 foreach sphere-like agent a in the set of sphere-like agents A do
. determine positions for tn+1

2 pn+1a = pna + P
m∈M DpDta

3 foreach sphere-like agent a1 in the set of sphere-like agents A do
. check collision with other sphere-like agents

4 r1 ← radius r of a1
5 foreach sphere-like agent a2 in the set of sphere-like agents A do
6 if a1 6= a2 then
7 r2 ← radius r of a2
8 d ← dR(pn+1a1 ,pn+1a2 ) . distance between both agents
9 if d < r1 + r2 then

. radii of both agents intersect
10 pn+1a1 ← pna1
11 break

. check collision with membrane segments m

12 foreach membrane segment m in in membrane M do
13 la ← pn+1a1 – pna1 . line segment between pn+1

a–1 and pna1
14 lm ← mend –mstart . membrane segment between points mstart and mend

15 ia ← (mstart – pa1t )× lm
la×lm

16 im ← (pa1t –mstart)× la
la×lm

17 if (lm × la 6= 0) ∧ (0 ≤ ia ≤ 1) ∧ (0 ≤ im ≤ 1) then
. constructed line segments intersect

18 pn+1a1 ← pna1
19 break

. check collision with simulation border
20 xp ← pn+1a1 x

21 yp ← pn+1a1 y

22 if (0 ≤ xp ≤ Lx) ∧ (0 ≤ yp ≤ Ly) then
. no collisions detected, keep new position

23 else
. outside the simulation box

24 pn+1a1 ← pna1

until this time, the pit is aborted and the entities in the pit aremoved back to the associatedmembrane. Otherwise, the pit reaches the required cargo concentration and enters amat-uration phase that ends at time tm. Afterwards, a new vesicle is created, with the previouslytransferred cargo molecules, and a set of prede�ned additional cargo molecules includingthe clathrin coat.

77



Algorithm 4.5: An algorithmic model of clathrin-mediated endocytosis. Pools ofclathrin coated pits are maintained and monitored during simulation. Based on thecargo in the pit and the already passed life-time, pits mature. Finally, pits are eitheraborted if not enough cargo was accumulated or form vesicles otherwise.
1 P×a pits that are marked for assembly
2 Pa pits that currently assembling
3 P×m pits that are marked for maturation
4 Pm pits that currently maturing
5 P×c pits that are marked for cancellation
6 P×

d
pits that are turned into departing vesicles

. Determine if new pits will form during this time step
7 foreach membrane segment m in in membrane M do
8 lm ← (xi, yi), (xi+1, yi+1) . the line segment associated to m

9 am ← lm · Ds . the mebrane area assigned to m

10 P(m) = kp · am · Dt
11 ξ is an evenly distributed random value between 0 and 1
12 if ξ ≤ P(m) then
13 create new pit p
14 assign spawn site on m, assign checkpoint time t + tc to pit p
15 add pit to P×a

. check checkpoints for assembling pits
16 foreach pit pa in Pa do

. sum concentrations of relevant cargo
17 if cargo concentration of pa ≥ threshold concentration then
18 move pa to P×m
19 if checkpoint time of pa ≤ current simulation time then
20 move pa to P×c

. check if maturing pits are ready for departure
21 foreach pit pm in Pm do
22 if target maturation time ≤ current simulation time then
23 move pm to P×

d

. apply changes
24 if timestep was accepted then
25 foreach pit pa in P×a do
26 move pa to Pa
27 foreach pit pm in P×m do
28 move pm to Pm
29 foreach pit pd in P×d do
30 create vesicle at pit spawn site
31 move concentrations from pit to vesicle
32 clear P×c
33 else
34 clear P×a , clear P×m, clear P×d
35 foreach pit pd in P×d do
36 move pd back to Pm
37 foreach pit pc in P×c do
38 move pc back to Pm
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Fusion The procedure implemented for fusion can be reviewed in Algorithm 4.6. Parame-ters that in�uence this module are the fusion time tf , attachment distance da, two chemicalentities, one for the Q-SNARE SQ and one for the R-SNARE SR, as well as the minimal num-ber of snare pairs np. The fusion time tf is used to determine the total length of the fusionprocess until the vesicle fully fuses and transfers its contents. The attachment distanceis the minimal distance between vesicle and membrane that is required to initiate the fu-sion process. If a vesicle is close enough to any membrane, it is checked if np fusion pairscan be formed from the Q-SNARES in the target membrane and R-SNARES in the vesiclemembrane.
Algorithm 4.6: An algorithmic model of SNARE-based vesicle fusion. Pools of fus-ing vesicles are maintained and monitored during simulation. If a vesicle is ready tofuse, at the right distance to a membrane segment, and contains a matching set ofSNAREs to the target membrane SNAREs, it is marked for fusion. After the fusiontime has passed, the chemical entities transported by the vesicle are transferred tothe membrane segment and the vesicle looses its agent identity.
1 V×t vesicles that are marked for tethering
2 Vt vesicles that are currently tethered
3 V×

f
vesicles that are marked for fusion

. check targeted fusion times
4 foreach vesicle vt in Vt do
5 if target fusion time ≤ current simulation time then
6 move vt to V×f

. check whether new vesicle can start fusion
7 foreach vesicle v in V do
8 if vesicle is not in a fusion ready state then
9 continue with next vesicle

10 M←membrane segments referenced to associated nodes of v
11 foreach membrane segment m in M do

. check distance
12 dmv ← distance between membrane segment m and vesicle v
13 if dmv ≤ da then
14 nm ← number of molecules of Q-SNARES in the target membrane
15 nv ← number of molecules of R-SNAES in the vesicle membrane
16 if nm ≥ np and nv ≥ np then
17 move v to V×t

. apply changes
18 if timestep was accepted then
19 foreach vesicle vf in V×f do
20 add all chemical entities in vesicle membrane to target membrane
21 add all cargo molecules to compartment opposite of the membrane
22 clear V×

f

23 foreach vesicle vt in V×t do
24 determine targeted fusion time of vh by adding tf to current time
25 add np complexes of Q- and R-SNARES to target membrane
26 remove np entities of Q- and R-SNARES from vesicle membrane
27 move vh to Vt
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4.5. Modularization and Error Estimation

4.5.1. Determination of the Numerical Error

To improve the convergence of the proposedmodel, themidpoint method with embeddedstep width adjustment was implemented. Usage of an embedded method allows estimat-ing the local truncation error at each numerical step and provides a means to control thelocal error with an adjustment of the step width.The Midpoint method is a simple Runge-Kutta method, a family of methods that increaseaccuracy of the solutions by considering an estimated slope at subintervals of the currenttime step. In general, the consideration of more subintervals increases the convergenceorder, but results in more function evaluations per time step. The midpoint method isde�ned as follows:
c
n+1
i,j = c

n
i,j + f

�
tn + Dt

2 , cni,j +
Dt

2 f (tn, cni,j)
�
. (4.23)

The error of the �rst order approximation D1cDt
i,j = f (tn, cni,j) (Euler’s method) can be esti-mated by comparing it to the secondorder approximation D2cDt

i,j = f (tn+Dt/2, cni,j+Dt/2f (tn, cni,j)).Since both approximations need to be calculated regardless, no additional function evalu-ation is necessary. The resulting adaptive Butcher tableau is:
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During calculation, the local truncation error en+1
local

can be determined at every step:
e
Dt

local
= D

1
c
Dt
i,j – D2cDti,j (4.25)

The concentration at each grid point (i, j) ∈ W is subject to change. This change can bethe result of chemical reactions, transport and difusion processes. Furthermore, vesiclesmove across Lx × Ly and carry chemical entities at their surfaces. This changes the con-centration of key molecules that are able to react in each grid point and time step, andeven introduces reaction that would not occur otherwise. Concentration-based modulesencapsulate the concentration change that results from any process that creates and/orconsumes chemical entities. Each module calculates DcDt
i,j for a CE involved in the process.Furthermore, the local error is evaluated for each module individually. Since the changesspan diferent timescales, the error is not evaluated absolutely as described in Equation4.25 but relatively:
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�����| (4.26)
Increasing divergences between the solutions of D1cDt

i,j and D2cDt
i,j result in values largerthan 0. A user de�ned threshold con�nes the accuracy of the solutions. The local error willbe calculated for every grid point (i, j) ∈ W and CE involved in the process. After all errorsare calculated, the largest local error is determined:
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e∈Em,(i,j)∈W ε
Dt

local
(e, i, j) (4.27)
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The error of module m ∈ M is the maximal error for each grid point (i, j) ∈ W and entity
e ∈ Em referenced in the module. A local numerical error is acceptable, if it is smaller thana user de�ned threshold τlocal. Hence, the time step is decreased, if ∃m(εDt

local
(m) > τlocal).Further, a module is de�ned as critical, if εDt

local
(m) > τlocal · θlocal, where θlocal < 1 is the localtolerance. Whenever ∀m(εDt

local
(m) < τlocal · θlocal) the time step is increased to decreasecomputation time. A maximal local error of 5% can be achieved by setting the toleranceto τlocal = log(0.05). A tolerance θlocal = 0.5 would result in an increased time step, if thecomputed local error εDt

local
(m) is smaller than 2.5%. In addition to the local εDt

local
(m) error, thetotal error εDt

total
(m) is evaluated. The total error is determined by transferring the previousidea of error calculation. Instead, determining the error based on the module, the totalin�uence of all modules on the concentration of an entity is evaluated. Therefore, the localerror is optimized �rst and the total change in concentration is calculated per entity andgrid point.

Dtotalc
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Dt
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Using the reasoning from the midpoint method, a scafold concentration is calculatedthat can be used to determine the in�uence of the time step
c
n+ 12
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n
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2DtotalcDti,j (e) (4.29)
Henceforth, cn+ 12

i,j (e) is used to calculate cn+1
i,j (e) by determining DtotalcDti,j (e) at tn+ 12 . The re-sulting total truncation error is
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The total error is calculated using the same approach as chosen for the local error:
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A total numerical error is acceptable, if it is smaller than a user de�ned threshold τtotal.Hence, the time step is decreased, if ∃m ∈ M : εDt

total
(e) > τtotal. Further, a module is de�nedas critical, if εDt

total
(e) > τtotal · θtotal, where θtotal < 1 is the local tolerance. Whenever ∀m ∈

M : εDt
total

(e) < τtotal · θtotal the time step is increased to decrease computation time. Thisprocedure is time-consuming, since four function evaluations are required per time step.Two for the initial computation of the local error and two more for the computation ofthe total error. In practice, the total error is primarily required in the beginning of thesimulations, when there are large diferences in concentration which as a consequenceof difusion or fast reactions. Two approaches were designed to reduce the number ofcalculations required.The �rst approach considers the type of parallelization and optimization of local errors.The computation is parallelized onmodule level. At each time step, eachmodule computesits local updates and errors individually. If any module encounters εDt
local

(m) > τlocal thecomputation is interrupted. The interrupting module keeps requesting decreases in thetime step. With each request the new εDt
local

(m) is calculated, but only for the grid point(i, j) where the error originally occurred, until εDt
local

(m) < τlocal. The non-interrupting modulesclean their previously calculated deltas. After Dt was determined, all modules run again withthe decreased time step. Again, if any module is above the error threshold, it is optimizedindividually. This procedure, prevents unnecessary optimization of non-critical modulesand additionally saves time by only optimizing the most critical grid point at a time. This
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approach is valid if two conditions are satis�ed. First, a decrease in time step leads to anincrease in accuracy. If the most inaccurate module is optimized, accuracy of the othermodules improves as well. Second, the optimization of the most critical region leads toa proportional accuracy gain in less critical regions. If the most critical region is belowthe error threshold, less critical regions would be as well. To keep both assumptions, thefunctions implemented by each module need to be continuous and diferentiable.A second concept implemented to decrease calculations per time step is total error skip-ping. The total error is said to be negligible, if it is smaller than the negligibility threshold:
εDt
total

(e) < ν � τtotal, whereby ν is small in comparison to τtotal. If this is the case, calculationof the global error will not be performed until the following criteria are met:
� The time step was increased as a result of step width optimization, or
� A number of time steps have been performed since the last total error was calculated.

The calculation of the local error is performed at any time step, regardless of the globalerror. If the time step decreases during local error calculation, the already small global errorwould decrease even more and computation is not necessary. Alternatively, if the localerror calculation allows for an increased time step the global error needs to be consideredagain. As a backup, the total error is additionally computed after a �xed amount of timesteps without evaluation. Empirically, it was determined that the global error is primarilyrelevant for the initial time steps. Concentration changes are rapid in the beginning of thesimulation, depending on the initialization of the system. After some equilibration time,the global error decreases and does not afect the time step. Nevertheless, negligibilitythreshold should be chosen with care. In practice, a default value of ν ≈ τtotal/10, 000provides a good trade-of between computation time and secured accuracy.
4.5.2. Modularization of Concentration-based Events

Each concentration-based module is assigned a scope and a speci�city.
Scope of modularized functions The scope of a module determines its requirementsfor the concentration of neighboring grid cells. Additionally, the scope then determinesthe concentration storage behavior used during numerical calculation and the order inwhich deltas are computed. This in�uences the complexity of the module and the typeof applied discretization scheme [213]. Dependent modules require the concentrationsof all neighboring grid points. To calculate the intermediate times step, the states of theneighboring nodes are required, therefore the intermediate step concentrations (resultingfrom this particular function) of all nodes in the graph are calculated �rst. Afterwards allintermediate deltas are determined and further all errors are calculated. To optimize theerror, the largest resulting error for all calculations is determined and treated as describedbefore. The process of difusion is an example of the neighborhood-dependent updatescope. Independent modules require the integer state of one grid point at a time. Thiskind of module has no spatial component, and each grid point is treated separately. There-fore, the change for the current node can be calculated and promptly be compared withthe associated intermediate step delta. Each node can be processed in parallel withoutneeding to consider the state of neighboring nodes. Semidependent functions requirethe integer state of a subset of nodes. For example, membrane based transport mighthappen between a membrane enclosed vesicle and another part of the simulation system,therefore at least two nodes are changed during calculation. Intermediate step deltas canbe calculated independently, but to calculate the numerical error multiple changes needto be considered, and each error has to be evaluated.
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The determination of the scope of a function allows choosing the parallelization of thesimulation. For independent functions the whole process of applying updates can be par-allelized by node, whereas semidependent updates require consideration of the errors ofmultiple nodes, and �nally dependent functions are better handled by parallelizing com-putation of the calculation stage, and therefore on the level of the functions. Furthermore,the "fail-fast" approach to system design can be applied. As soon as any function reachesan error that is too large, the system requires a reduction in time step and all functionsneed to be recalculated to keep the time step uniform across functions. Hence, the er-ror is calculated as soon as possible for each node and calculation of other functions areintercepted in case the error was too large.
Speci�city of modularized functions The speci�city of any function determines how �ne-grained the updates are that will be applied. Three diferent degrees of speci�city can beapplied in the implementation of this system. The most detailed computations have to bedone for entity speci�c functions, where the change for every entity, in every compartment,and every node has to be computed. Difusion is an entity speci�c process that is diferentfor each of the three degrees of detail. Reactions on the other hand can be computed
compartment speci�c, since the reaction speed is calculated once and all reactants areupdated in proportion to the velocity. Functions are grid speci�c, if the calculated updatescan be applied for all compartments of a node. Membrane transport processes for ex-ample calculate the displaced amount of substance and the same change is added in onecompartment and removed from the other compartment. Additionally, conditional appli-cation can be assigned to each function, which allows for more e�cient computation. Forexample, reaction with membrane associated chemical entities only need to be calculatedat grid points that have a membrane compartment. The consideration of the speci�cityof a function allows preventing iterations that are not necessary and provide a generalspeed-up to the system.
Implementation In object-oriented modeling, the strategy pattern [214] allows for theimplementation of both aspects of functions. A micro-scale or concentration based up-date module changes its behavior of applying updates based on which combination ofscope and speci�city is applied. The scope is responsible to store the intermediate stepconcentrations that are necessary and de�nes the order of calculations that have to beperformed. The speci�city then processes each update chunk it receives and evaluatesthe resulting error.

4.5.3. Determination of the Displacement-based Error

The displacement of sphere like vesicles must not be too large, otherwise the simulationcould experience numerical instabilities whenever concentrations change rapidly. Orwholegrid points could be bypassed, if the displacement of a sphere-like agent in one time stepis lager than Ds. A similar concept to the numerical error is used to determine if the dis-placement is appropriate. The total displacement determined by:
Dtotalp

Dt
a = X

m∈M:m(a,Dt)>0
Dp

Dt
a (4.32)

should also not be too small to ensure e�cient computation. Hence, a reference distance
dref is used to evaluate the displacement. This reference distance is usually given as afraction of the spatial step width Ds.
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The deviation of the displacement is calculated by:
D(a) = log10

�
Dtotalp

Dt
a

dref

�
(4.33)

and compared to two thresholds, θ+
disp

and θ–
disp

. The time step is decreased, if ∃a ∈ A :
D(a) > θ+

disp
and increased if ∀a ∈ A : D(a) < θ–

disp
.
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5. Aquaporin 2 Recycling Model and
Simulation
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The Aquaporin 2 recycling model is composed of the following sub models:
� regulation of AQP2p256 phosphorylation,
� cAMP compartmentalization,
� exocytosis of AQP2 positive vesicles, and
� endocytosis of AQP2 positive vesicles.

The models will focus on the immediate response of this cell type to vasopressin andneglect long term adaptation such as gene expression and translation. A detailed summaryof each model can be found in the following sections. A general overview of the modules inSystems Biology Graphical Notation is depicted in Appendix B. Where ever possible, I optedto use experimentally supported in vivomeasurements or models for the closest biologicalrepresentation of the process in humans. Modeling was performed based on literaturestudy. Models were created that include the entities that have been proven signi�cant forthe system and evaluated their role in it. Furthermore, I took care to keep reactions aselementary as possible and strictly separate transport phenomena. This approach resultsin models that can be incrementally re�ned to include other cellular components, whilesimultaneously reducing the requirements to manually modify existing parts.Each model is prefaced by a paragraph that explains the biological background that leadto the design decisions, followed by details of the simulation conditions. All modules (re-actions, transport processes, etc.) that were used in the model are listed in the modulestable. The type column references the module implementation from the SiNGA framework[202] with a short description. A single module may consist of multiple reactions that havebeen generated by the same reaction rule. Features, referenced in the subsequent featuretable, are parameters that determine the concrete behavior of the module (such as reac-tion rates). Evidence for modules indicate literature sources where the process itself wasdescribed, or applicable reaction equations are given. Chemical entities are representedas graph structures and for the sake of textual display node have been printed in alpha-betical order separated by hyphens. Literature is referenced for each feature. Additionally,the simulated variations are given in the last table of each model subsection.

5.1. Model of Allosteric PKA Phosphorylation

5.1.1. Model Design

Phosphorylation of S256 triggers vesicle departure AQP2 is stored in vesicles close tothe nucleus of the cell [71, 19, 215] in the basal state of principal cells. AQP2 has multiplephosphorylation sites [63, 216, 189], out of which Serine 265 seems to play the most sig-ni�cant role for the exocytosis of the vesicles to the apical membrane [63, 217, 218]. Howexactly S256 increases the frequency of this transport is currently not fully understood[65]. A study suggests that proteins of the myosin family 5 are activated directly by secre-tory vesicle cargo [68]. Other work indicates that Ca2+ oscillations, which are also triggeredupon vasopressin recognition, were essential for AQP2 exocytosis [179, 180]. Additionally,the ratio between phosphorylated and unphosphorylated AQP2 seems to play a signi�cantrole [219]. It was proposed that the phosphorylation of three monomers in a tetrameteris essential for its positioning in the apical membrane [219].
PKA is regulated by allostery The phosphorylation of S256 is introduced by protein ki-nase A catalytic subunit (PKAC) [217], which in its holoenzyme form is tightly bound to the
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Figure 5.1.: PKA regulation and efect on AQP2 and PDE4 phosphorylation. The network ofpossible reactions during signal processing as a response to cAMP is displayed.Black arrows indicate preferred and fast reactions, gray arrows show slow but stillsigni�cant reactions, gray and dotted arrows are considered negligible in their fre-quency. The following reactions in each row from top to bottom: PKA and substrateassociation, substrate phosphorylation, substrate dissociation, phosphatase andsubstrate association, and PP2B phosphorylation and release. Substrates are onlydisplayed once and considered implicitly row and column wise. PKAC is only re-leased upon binding of a second cAMP to the regulatory subunit. A negative feed-back loop is present, where the released PKAC phosphorylates PDE4, leading to anincreased PDE4 activity which decreases the cAMP concentration. Abbreviations:protein kinase A type II regulatory subunit (PKARII), cAMP binding site A/B at PKARII(RII:A/B), protein kinase A catalytic subunit (PKAC), A-kinase anchoring protein 18variant δ (AKAP18δ), Serine/threonine-protein phosphatase 2B (PP2B), aquaporin2 (AQP2), phosphodiesterase 4D (PDE4D)

protein kinase A regulatory subunit II (PKAR) [51]. The regulatory subunit is associated tothe A-kinase anchoring protein 18δ (AKAP) [52], which is bound to the AQP2 vesicle mem-brane [220]. Additionally, AKAP provides binding sites for PDE4 [58] and PP2B [59]. Theactual mechanism of PKA activation and regulation has been subject to lots of researchand scienti�c debate[82]. The current consensus that was modeled is shown in Figure 5.1.The regulatory subunit PKAR binds to the complex of PKAC and ATP [221] which catalyzesautophosphorylation. PKAR is further able to bind two cAMP molecules, whose bindingsites have about the same association rate [222], but so-called site A has a higher disso-ciation rate (6.3 ·10–2 s–1) in comparison to site B (2.6 ·10–6 s–1) [200]. Additionally, site Ais only accessible after site B is occupied [200, 171]. Strikingly, the complex of phosphory-lated PKAR and PKAC-ADP only dissociates whenever both cAMP binding sites are occupied

87



[171]. Consequently, in the basal state, the overwhelming majority of PKAC is bound to it’salready phosphorylated regulatory subunit [171]. Upon exposure to su�ciently large con-centrations of cAMP, the catalytic subunit is released and able to phosphorylate furthertargets. Walker-Gray et al. also found that PKAC stays close to the membrane via myristoy-lation [223], which con�nes the area of action for PKAC and keeps the response to cAMPvery localized. The phosphorylation slows rebinding of PKAC to PKAR even if no cAMP isbound [221]. Dephosphorylation of PKA is performed by PP2B [224], the phosphatase as-sociated with AKAP. The concentration of the regulatory subunit of PKA was found to beup to 17-fold higher than the catalytic subunit [223]. This ensures e�cient restraining ofPKA subunits close to their origin of release.
Simpli�cations and estimations The phosphorylation site S256 was included as the onlyphosphorylation site of AQP2. The consensus regarding this phosphorylation is currentlythe largest among all the phosphorylation sites of AQP2 [64, 63, 43, 218]. AQP2 phosphory-lated at Serine 256 is referred to as AQP2-P. If the ratio of AQP2-P to total AQP2 surpasses3/4, the vesicle is able to attach to cytoskeletal �laments [219]. The initial concentration ofAQP2 was estimated as described in Table 5.4. In short, I used the permeability and area ofthe cell membrane to determine the number of AQP2 in the cell membrane of resting andactivated principal cells. I conclude that about 4800 AQP2 monomers would be presentin inactive and, 11400 monomers would be present in active 1.6 µm2 apical membrane.Furthermore, this requires about 10 vesicles with 650 monomers each [225] to fuse withthe apical membrane to reach themeasured permeability. The basal AQP2-P to AQP2 ratiowas determined to be around 0.46 and was used to calculate the initial amount of AQP2 invesicles [219]. Since the binding of cAMP at site A exposes the phosphorylation and PKACbinding site [221], PP2B was assumed to preferably bind to this open variant [59]. ADP wasnot modeled explicitly a product of phosphorylation, as well as phosphate as a product ofdephosphorylation, since they are only end products in this model. Furthermore, ATP wasnot modeled since it is not considered a rate limiting substrate [226, 221]. All the compo-nents of the AKAP signaling complex are considered membrane bound [227, 58, 59, 220].The degradation of cAMP by PDE was modeled explicitly, since its phosphorylation by PKA[228] and its localization at vesicles [58] is critical for this pathway. The detailed modelsetups and parameter variations are listed in tables 5.1, 5.2, and 5.3.
Table 5.1.: Modules used in the phosphorylation model. Modules that have been usedto simulate the phsosphorylation of AQP2 and PKA. Multiple reactions might belisted, if alternative substrates that satis�ed the reaction generation conditionswere present. The features column refers to the Feature Identi�er the subsequentfeatures table. The evidence column lists publications where the penomenon wasdescribed and details of the modules were derived.
ID Type Features Evidence
M001 Reaction F01, F02 [229],[221]

PKA activation: PKAR PKAC binding and phosphorylationPKAC + AKAP CAMP PKAR AKAP CAMP P PKAC PKARPKAC + AKAP PKAR AKAP P PKAC PKARPKAC + AKAP CAMP CAMP PKAR AKAP CAMP CAMP P PKAC PKAR
M002 Reaction F03 [230],[221]

PKA activation: PKAC PKAR releaseAKAP CAMP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
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ID Type Features Evidence
M003 Reaction F04, F05 [171]

PKA activation: PKAR-P PKAC bindingPKAC + AKAP CAMP P PKAR AKAP CAMP P PKAC PKARPKAC + AKAP CAMP CAMP P PKAR AKAP CAMP CAMP P PKAC PKARPKAC + AKAP P PKAR AKAP P PKAC PKAR
M004 Reaction F06, F07 [171],[222],[200]

PKA activation: PKAR CAMP pocket B bindingCAMP + AKAP PKAR AKAP CAMP PKARCAMP + AKAP P PKAR AKAP CAMP P PKARCAMP + AKAP P PKAC PKAR AKAP CAMP P PKAC PKAR
M005 Reaction F06, F08 [171],[222],[200]

PKA activation: PKAR CAMP pocket A binding and PKAC releaseCAMP + AKAP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
M006 Reaction F06, F08 [171],[222],[200]

PKA activation: PKAR CAMP pocket A bindingCAMP + AKAP CAMP P PKAR AKAP CAMP CAMP P PKARCAMP + AKAP CAMP PKAR AKAP CAMP CAMP PKAR
M007 Reaction F09, F10 [60],[43],[231],[232]

PKA phosphorylation: PKAC AQP2 bindingAQP2 + PKAC AQP2 PKAC
M008 Reaction F03 [43],[231],[232]

PKA phosphorylation: PKAC AQP2 phosphorylation and releaseAQP2 PKAC AQP2 P + PKAC
M009 Reaction F11, F10 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 bindingPDE + PKAC PDE PKAC
M010 Reaction F03 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 phosphorylation and releasePDE PKAC P PDE + PKAC
M011 Reaction F12, F13 [235],[197],[224]

PP2B dephosphorylation: PP2B PKAR bindingAKAP CAMP CAMP P PKAR + PP2 B AKAP CAMP CAMP P PKAR PP2 B
M012 Reaction F14 [236],[197],[224]

PP2B dephosphorylation: PP2B PKAR dephosphorylationAKAP CAMP CAMP P PKAR PP2 B PP2B + AKAP CAMP CAMP PKAR
M013 Reaction F12, F13 [235],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P bindingAQP2 P + PP2 B AQP2 P PP2 B
M014 Reaction F14 [236],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P dephosphorylationAQP2 P PP2 B PP2B + AQP2
M015 Reaction F15, F16 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4

CAMP PDE AMP
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ID Type Features Evidence
M016 Reaction F17, F18 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4-P

CAMP P PDE AMP
M017 Reaction F19 [199]

cAMP regulation: cAMP in�uxCAMP

Table 5.2.: Parameters used in the phosphorylation model. Features that have been usedto parameterize the simulation of AQP2 and PKA phosphorylation in the presenceof the PKA signalosome. The type column refers to the SiNGA implementation ofthe feature and indicates the use of the parameter. The evidence column lists pub-lications where the phenomenon was described and details of the modules werederived.
ID Type Content Unit Evidence
F01 SecondOrderForwardsRateConstant 2.1 l/(s·µmol) [221]

PKAR binding PKAC

F02 FirstOrderBackwardsRateConstant 3.0× 10–4 1/s [221]
PKAR releasing PKAC

F03 FirstOrderForwardsRateConstant 5.0× 101 1/s [230]
PKAC substrate release after conformation change

F04 SecondOrderForwardsRateConstant 3.8× 10–2 l/(s·µmol) [221]
PKAR-P binding PKAC

F05 FirstOrderBackwardsRateConstant 2.6× 10–4 1/s [221]
PKAR-P releasing PKAC

F06 SecondOrderForwardsRateConstant 5.0× 10–2 l/(s·µmol) [222],[197]
cAMP binding to PKAR for both pockets A and B

F07 FirstOrderBackwardsRateConstant 2.6× 10–6 1/s [200],[197]
PKAR releases cAMP from pocket B

F08 FirstOrderBackwardsRateConstant 6.3× 10–2 1/s [200],[197]
PKAR releases cAMP from pocket A

F09 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC AQP2 binding

F10 FirstOrderBackwardsRateConstant 7.7× 10–2 1/s [231],[232]
PKAC substrate release

F11 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC PDE4 binding

F12 SecondOrderForwardsRateConstant 2.5× 10–2 l/(s·µmol) [235],[197]
PP2B substrate binding

F13 FirstOrderBackwardsRateConstant 1.0× 10–2 1/s [235],[197]
PP2B substrate release

F14 FirstOrderForwardsRateConstant 5.0× 10–1 1/s [236],[197]
PP2B substrate dephosphorylation and release
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ID Type Content Unit Evidence
F15 MichaelisConstant 5.9 µmol/l [77]

PDE4 a�nity of cAMP

F16 TurnoverNumber 4.5× 10–2 1/s [77]
PDE4 turnover of cAMP

F17 MichaelisConstant 1.2 µmol/l [77]
PDE4-P a�nity of cAMP

F18 TurnoverNumber 2.3 1/s [77]
PDE4-P turnover of cAMP

F19 ZeroOrderForwardsRateConstant 1.0× 10–2 µmol/(s·l) estimation
CAMP in�ux

F20 InitialConcentration 1.0× 10–1 µmol/l [77]
of entity CAMP in cytoplasm

F21 InitialConcentration 2.0× 10–1 µmol/l [223]
of entity AKAP-P-PKAC-PKAR in vesicular membrane

F22 InitialConcentration 2.0 µmol/l [223]
of entity AKAP-P-PKAR in vesicular membrane

F23 InitialConcentration 2.0× 10–1 µmol/l [77]
of entity PDE in vesicular membrane

F24 InitialConcentration 1.0× 10–1 µmol/l estimation
of entity P-PDE in vesicular membrane

F25 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity PP2B in vesicular membrane

F26 InitialConcentration 5.9 µmol/l [225],[219]
of entity AQP2 in vesicular membrane

F27 InitialConcentration 2.7 µmol/l [225],[237]
of entity AQP2-P vesicular membrane

Table 5.3.: Variations used in the phosphorylation model. Variations of key parameters thatwere used to explore the behavior and stability of the AQP2 and PKA phosphory-lation simulation. Values were typically chosen to estimate viability of the literaturederived values and explore their in�uence on the whole system.
ID Values Unit Σ

F01 1.05e+00, 2.10e+00, 4.20e+00 l/(s·µmol) 3F06 1.00e-03, 1.00e-02, 7.00e-02, 2.00e-01 l/(s·µmol) 4F09 7.50e-01, 1.50e+00, 3.00e+00 l/(s·µmol) 3F11 7.50e-01, 1.50e+00, 3.00e+00 l/(s·µmol) 3F12 5.00e-03, 1.00e-02, 5.00e-02, 1.00e-01 l/(s·µmol) 4F18 1.17e+00, 2.34e+00, 4.68e+00 1/s 3F19 1.00e-02, 5.00e-02, 1.00e-01, 2.00e-01 µmol/(s·l) 4
Total variations 5184
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Table 5.4.: Aquaporin 2 concentration estimation. Literature values were used to estimatethe number/concentration of AQP2 molecules in the apical and vesicle membranein the inactive and active state of the cell.
Value Inactive state Active state Unit Evidence
total membrane permeability 0.0095 0.0226 cm/s [237]permeability of a single monomer 3.3 × 10–14 cm3/s [225]AQP2 monomers in the membrane 2879 6848 1/µm2
total vesicle permeability 0.03 cm/s [225]AQP2 monomers per vesicle surface 9091 1/µm2
radius vesicle 0.05 µmsurface vesicle 0.03 µm2
AQP2 monomers per vesicle 650 [225]
nodes 15node scale 0.33 µmmembrane area per node 0.11 µm2
total simulation area 1.66 µm2
AQP2 monomers in membrane 4797.98 11414.14
number of vesicles 7.38 17.56 vesiclesmonomers from inactive to active 6616fusions from inactive to active 10.18 vesicles
total apical surface area 360 µm2 [238]fraction of simulation 216 timestotal AQP2 in membrane 1.04× 106 2.47× 106total number of vesicles 1594.41 3793.01 vesiclesmonomers from inactive to active 1.43× 106vesicles from inactive to active 2198.60 vesicles
Concentration in membranevolume per node 0.0370 µm3
[AQP2] node 5.31× 10–22 1.26× 10–21 mol[AQP2] node 14.34 34.12 µmol/l
membrane proteins per surface 50.000 1/µm2 [239]fraction of aquaporin of total 5.76 13.70 %
Concentration in vesicle[AQP2] vesicle 1.08× 10–21 mol[AQP2] vesicle 29.14 µmol/lfraction of aquaporin of total 41.38 %
[AQP2-P] fold increase 2.00 [216]ratio ([AQP2-P]/[AQP2]) 0.46 1.70 [219][AQP2] vesicle 19.96 10.78 µmol/l[AQP2-P] vesicle 9.18 18.36 µmol/l
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5.1.2. Simulation Results and Discussion

The group of Susan Taylor [171, 221, 227] systematically explored the mechanisms of PKAactivation. New models are already starting to include and explore this mechanistic knowl-edge [172]. I implemented the most recent model for the activation of PKA and includedthe subsequent phosphorylation of AQP2 and PDE4 (see Figure 5.1). The most interestingobservation in recent years is, that the active subunit of PKA, PKAC, binds to the regulatorysubunit PKAR with a high a�nity and phosphorylates it. In principal cells, the regulatorysubunit that regulated PKA response at vesicles is PKAR IIβ [51]. The phosphorylation willprevent binding of further PKA, but the PKA that phosphorylated the PKAR is trapped in thebound state until twomolecules of cAMP bind to PKAR. This leads to an interesting dynamic,where the PKAC/PKAR complex is disbanded, if enough cAMP is available and needs to bedephosphorylated to return to its basal state. Since this model does not include adenylylcyclases, a steady cAMP in�ux was modeled to emulate their activation. I explored the re-action parameter space of this phosphorylation model, by observing the phosphorylationratio of AQP2 and the PKA activity in 5184 diferent settings for �ve minutes each.
Initial PKA activation is bufered and underlies a positive feedback loop The simula-tions show, that PKA activity is highly sensitive to the in�uence of cAMP (see Fig 5.2B). cAMPcauses PKAC to be released from its regulatory subunit, and subsequently free PKAC is ableto phosphorylate PKAR, reducing its a�nity to PKAC [221]. This positive feedback loop in-creases the amount of unbound PKAC. Since PKAR is available in excess [223] and twomolecules cAMP are required to release PKAC, PKAR is able to bufer some cAMP and theamount of unboundPKAC is initially small. Nevertheless, the bufering of cAMP is not able tosigni�cantly alter the process of PKA activation once enough cAMP is available. The processmight be required to attenuate volatile cAMP concentration in the cell to inhibit prematureactivation of the positive feedback loop. As the cAMP amount in the system increases, PKACis released and the positive feedback loop further reduces the rebinding rate. PDE4 is ableto mitigate this process by removing cAMP from the system and competing with PKAR forcAMP.
Hydrolysis of cAMP decreases PKA activation Phosphorylation of PDE4 has the possi-bility to initiate a negative feedback loop by increasing cAMP hydrolysis [60], subsequentlyreducing the PKA activation level. In this model and with parameters varying around phys-iological conditions, a negative feedback loop could be observed. PDE4 activation and hy-drolysis rate had a big impact on PKA activity (Fig.5.2C), but played a secondary role whenconsidering AQP2 phosphorylation. Further, PKA activity is heavily in�uenced by the cAMPin�ux and the PKAR binding rate (see Fig. 5.2B). About 75% of the AQP2 molecules phos-phorylated at S256 are su�cient to trigger the departure of the vesicles to the apical mem-brane [219]. Therefore, this threshold was used to evaluate whether the phosphorylationis su�cient for the propagation of the signal. An in�ux of 200 nMs–1 cAMP resulted in a suf-�cient phosphorylation ratio in all simulations where cAMP binding rate was 0.07 µM–1 s–1or greater.
cAMP and Ca2+ are cooperative The binding rates of PKAC and PP2B to AQP2 are thedeciding factors for the ratio of AQP2 phosphorylation. High binding rate of PKAC and lowbinding rate of PP2B lead to an increased AQP2 phosphorylation ratio at similar PKA activ-ity levels. PKAC is able to phosphorylate PKAR, PDE4 and AQP2 in this model and probablyadditional targets in vivo. This competitive binding was considered by using two reactionsfor binding and phosphorylation, essentially trapping a small amount of PKAC in each timestep. Decreasing the binding rate of PKAC to AQP2 therefore increases the amount of PKAC
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Figure 5.2.: Simulation results of PKA and AQP2 phosphorylation Simulations with diferentparameter combinations were run for 5 minutes and the resulting phosphoryla-tion ratios and have been measured. Basal phosphorylation (0.46) and thresholdAQP2 phosphorylation ratio (0.75) are shown as gray dashed lines. cAMP in�uxdescribes the cAMP concentration entering the system every second produced byadenylyl cyclases. a: High cAMP in�ux (indicated by color) is a major determinantfor phosphorylation. Low PP2B binding rate (increasing from top to bottom) leadsto an increased concentration of PKAC in the simulation and higher phosphoryla-tion rate, whereas high PKAR-cAMP binding rate (increasing from left to right) leadsto a high phosphorylation rate nearly independent of the cAMP in�ux. Horizontallines are drawn in the background density estimates at 25%, 50%, and 75% quan-tiles. b: cAMP in�uence factor is calculated by log(cAMP in�ux · cAMP binding).High cAMP in�uence on the simulation leads to high PKA activation and subse-quent AQP2 phosphorylation. Physiological parameters for PKA activity should beable to reach AQP2 phosphorylation required (0.75), but still be sensitive to shiftsin cAMP concentration. c: cAMP hydrolysis mediated through PDE4 signi�cantlyin�uences PKA phosphorylation, depending on the cAMP in�ux and PKAR-cAMPbinding rate. Abbreviations: protein kinase A regulatory subunit (PKAR), protein ki-nase A catalytic subunit (PKAC), serine/threonine-protein phosphatase 2B (PP2B),aquaporin 2 (AQP2), phosphodiesterase 4D (PDE4D)

available to phosphorylate other components. The variation of all binding a�nities to PKACin a sensible physiological range was of little consequence in this model. The variation wasunable to produce an efective diference in PKAC concentration, and therefor has minorimpact on PKA behavior. PP2B is activated by calcium ions and calmodulin. Calcium playsexiting roles in the activation of the considered pathway [179, 180]. It is currently beingdebated if the pathway via cAMP and Ca2+ can be triggered independently and result incomparable AQP2 distributions [240, 241, 188]. I argue that there must be some degreeof overlap between the responses and that they modulate the reaction in diferent com-plementary ways. The fact that both secondary messengers are coupled in their responseis known [242]. From this model, it is possible to conclude that the binding rate of PP2Bhas signi�cant in�uence on AQP2 phosphorylation when binding rates are su�ciently high,reversing both AQP2 phosphorylation and PKAR phosphorylation (see Fig. 5.2A). PP2B is in-directly activated by Ca2+ via calmodulin. Since the calmodulin pathway was not consideredin this model, the parameter variation in PP2B binding rate is used as a proxy to determine
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the in�uence of Ca2+. High PP2B binding rates were able to reduce AQP2 phosphorylationin somemodels, but high cAMP in�ux was able to overcome this efect for nearly all setups.I speculate, that phosphorylation is primarily triggered via cAMP signals and is able to over-come dephosphorylation triggered by Ca2+. By uncoupling both responses, the pathway isable to be regulated on diferent time scales. Initially, cAMP is able to activate the primaryPKA response, which is after some delay reverted by dephosphorylation. Therefore, bothsecond messenger molecules are cooperative, with the one regulating activation and theother deactivation of the response. Another indication for this claim is the existence ofcAMP producing adenylyl cyclases, that are inhibited by Ca2+ [243]. It would be very inter-esting to extend the model with the calmodulin pathway to evaluate the cross regulationand interaction of phosphorylation and dephosphorylation by both messengers.
5.1.3. Conclusions

In conclusion, the model is able to represent multiple aspects of PKA activation. The ex-cess of PKAR and two cAMP binding sites prevent premature activation. An initial positivefeedback loop, where PKAR phosphorylation reduces PKAC binding, leads to a switch-likeactivation of all phosphorylation targets of PKA. The subsequent negative feedback loopinvolving PDE4 is able to e�ciently reduce cAMP concentration in the vicinity of PKA. Thedephosphorylation via PP2B in�uences the response of PKA, and the concrete involvementof calcium ions on this signaling cascade remains to be investigated.

5.2. cAMP Compartmentalization in the Vesicle Storage Region

5.2.1. Model Design

cAMP signaling is compartmentalized The amplitude, duration and localization of a re-sponse to a signal is determined by several proteins that manage the synthesis and degra-dation of messenger molecules [244]. The vasopressin response mainly revolves aroundthe second messenger cAMP which activates PKA. The basal average cAMP concentrationis about 1 µmol l–1 and the reported concentration to half-maximally activate PKA in vitrois about 200 nmol l–1 [77]. This relationship suggests that PKA should be constantly activeand unable to respond to signals. However, measurements in vivo determined the sensi-tivity of PKA to be about twenty times lower. Diferent explanations can be found for thisphenomenon [77]. A promising hypothesis for the apparent low sensitivity is the highlyregulated cAMP abundance in compartmentalized pools [245, 246, 164]. Multiple factorscontribute to the compartmentalization of cAMP [199]. First, phosphodiesterases havebeen shown to control local cAMP concentration for the regulation of PKA [176]. Diferentisoforms of PDE are varying in localization, speci�city, and rate of cyclic nucleotide degrada-tion [77]; the variant that is located close to AQP2 vesicles is PDE4 [233]. The work by Stefanet al. shows that AKAP18δ directly interacts with PDE4, tethers it to AQP2 bearing vesicles,and even co-translocates with the vesicles. Interestingly, a phosphorylation at Ser54 byPKA causes an increase in its activity [60]. The concentration of PDE4 in cells is in the samerange as catalytic subunits of PKA µmol l–1, further substantiating their co-dependence. An-other large factor to achieve e�cient compartmentalization of PKA is the reduction of thedifusivity of cAMP. The difusivity of cAMP in cytoplasm of myocytes was determined to be32 cm2 s–1, which is about a magnitude slower than in water [25]. Richards and collegesalso determined that the low difusivity is primarily contributed by tortuosity, which is theobstruction of an objects’ path due to physical barriers (such as other molecules, �laments,and organelles) in �uids. Other studies have shown that the location and surrounding ofcAMP in the cell has major in�uence on the difusivity of cAMP [247, 175]. The bufering
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of cAMP due to binding enzymes also in�uences the concentration of cAMP that is dis-tributed throughout the cell [175]. Computational and experimental studies have shownthat depending on cell type and signaling cascade, the diferent factors vary in intensity[79, 246, 248, 198].
Simpli�cations and estimations PKA and cAMP are known to be involved in �ne-tunedspatial signaling complexes [50]. However, it is unclear how PKA is able to maintain a highspeci�city while being so sensitive to cAMP [77]. Therefore, I wanted to explore the be-havior of this signaling in diferent spatial environments. Two setups were developed thatare used to observe cAMP compartmentalization in restricted and unrestricted environ-ments. Ubiquitous phosphodiesterase were modeled implicitly by choosing a low basalcAMP difusion rate [25]. This accounts for the steady degradation of cAMP in the cyto-plasm of the cell. The cAMP gradient was calculated by [cAMP]basal – [cAMP]storage, PKAactivity was calculated by [PKA]free/([PKA]free + [PKA]bound), similar to the AQP2 phospho-rylation ratio [AQP2-P]/([AQP2] + [AQP2-P]). Bufering is explicitly considered by the PKAregulation mechanism. Additional sources of cAMP bufering were not considered. Anarea of restricted difusion was introduced to consider localized reduction of cAMP difu-sivity close to vesicles stored in the perinuclear region [233]. The reduced difusivity can bea result of transitional binding, molecular crowding, or dense cyto�laments [175]. Thesefactors have been combined to a permeability coe�cient. Additionally, some regions ofthe cell are restricted by impassible membrane-enclosed organelles. The difusive restric-tion can therefore be altered by increasing the number of obstacles that block access tovesicles. Hence, a spatial setup was designated, where the storage region of vesicles is iso-lated from the cytoplasm using amembrane-based barrier. The number of passages in thebarrier is varied and used to model the in�uence of diferent degrees of restricted access.This reduces the total accessible area of originally 3.1 µm2, to about 0.4, 0.3, and 0.2 µm2
evenly distributed across 4, 3, and 2 access points, respectively. Total simulation time was5 minutes. The detailed model setups and parameter variations are listed in tables 5.5, 5.6,5.7, and 5.8.
Table 5.5.: Modules used in the cAMP compartmentalization model. Modules that havebeen used to simulate the compartmentalization of cAMP in the presence of thePKA signalosome. Multiple reactions might be listed, if alternative substrates thatsatis�ed the reaction generation conditions were present. The features columnrefers to the Feature Identi�er the subsequent feature tables. The evidence col-umn lists publications where the phenomenon was described and details of themodules were derived.
ID Type Features Evidence
M001 Reaction F01, F02 [229],[221]

PKA activation: PKAR PKAC binding and phosphorylationPKAC + AKAP CAMP PKAR AKAP CAMP P PKAC PKARPKAC + AKAP PKAR AKAP P PKAC PKARPKAC + AKAP CAMP CAMP PKAR AKAP CAMP CAMP P PKAC PKAR
M002 Reaction F03 [230],[221]

PKA activation: PKAC PKAR releaseAKAP CAMP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
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ID Type Features Evidence
M003 Reaction F04, F05 [171]

PKA activation: PKAR-P PKAC bindingPKAC + AKAP CAMP P PKAR AKAP CAMP P PKAC PKARPKAC + AKAP CAMP CAMP P PKAR AKAP CAMP CAMP P PKAC PKARPKAC + AKAP P PKAR AKAP P PKAC PKAR
M004 Reaction F06, F07 [171],[222],[200]

PKA activation: PKAR CAMP pocket B bindingCAMP + AKAP PKAR AKAP CAMP PKARCAMP + AKAP P PKAR AKAP CAMP P PKARCAMP + AKAP P PKAC PKAR AKAP CAMP P PKAC PKAR
M005 Reaction F06, F08 [171],[222],[200]

PKA activation: PKAR CAMP pocket A binding and PKAC releaseCAMP + AKAP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
M006 Reaction F06, F08 [171],[222],[200]

PKA activation: PKAR CAMP pocket A bindingCAMP + AKAP CAMP P PKAR AKAP CAMP CAMP P PKARCAMP + AKAP CAMP PKAR AKAP CAMP CAMP PKAR
M007 Reaction F09, F10 [60],[43],[231],[232]

PKA phosphorylation: PKAC AQP2 bindingAQP2 + PKAC AQP2 PKAC
M008 Reaction F03 [43],[231],[232]

PKA phosphorylation: PKAC AQP2 phosphorylation and releaseAQP2 PKAC AQP2 P + PKAC
M009 Reaction F11, F10 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 bindingPDE + PKAC PDE PKAC
M010 Reaction F03 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 phosphorylation and releasePDE PKAC P PDE + PKAC
M011 Reaction F12, F13 [235],[197],[224]

PP2B dephosphorylation: PP2B PKAR bindingAKAP CAMP CAMP P PKAR + PP2 B AKAP CAMP CAMP P PKAR PP2 B
M012 Reaction F14 [236],[197],[224]

PP2B dephosphorylation: PP2B PKAR dephosphorylationAKAP CAMP CAMP P PKAR PP2 B PP2B + AKAP CAMP CAMP PKAR
M013 Reaction F12, F13 [235],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P bindingAQP2 P + PP2 B AQP2 P PP2 B
M014 Reaction F14 [236],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P dephosphorylationAQP2 P PP2 B PP2B + AQP2
M015 Reaction F15, F16 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4

CAMP PDE AMP
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ID Type Features Evidence
M016 Reaction F17, F18 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4-P

CAMP P PDE AMP
M017 Reaction F19 [199]

cAMP regulation: cAMP in�uxCAMP
M018 Difusion F20, F21, F22, F24 [25]

cAMP cytoplasm difusion

Table 5.6.: Quantitative parameters used in the cAMP compartmentalization model. Fea-tures that have been used to parameterize the simulation of cAMP compartmen-talization. The type column refers to the SiNGA implementation of the feature andindicates the use of the parameter. The evidence column lists publications wherethe value was given or restricted.
ID Type Content Unit Evidence
F01 SecondOrderForwardsRateConstant 2.1 l/(s·µmol) [221]

PKAR binding PKAC

F02 FirstOrderBackwardsRateConstant 3.0× 10–4 1/s [221]
PKAR releasing PKAC

F03 FirstOrderForwardsRateConstant 5.0× 101 1/s [230]
PKAC substrate release after conformation change

F04 SecondOrderForwardsRateConstant 3.8× 10–2 l/(s·µmol) [221]
PKAR-P binding PKAC

F05 FirstOrderBackwardsRateConstant 2.6× 10–4 1/s [221]
PKAR-P releasing PKAC

F06 SecondOrderForwardsRateConstant 5.0× 10–2 l/(s·µmol) [222],[197]
cAMP binding to PKAR for both pockets A and B

F07 FirstOrderBackwardsRateConstant 2.6× 10–6 1/s [200],[197]
PKAR releases cAMP from pocket B

F08 FirstOrderBackwardsRateConstant 6.3× 10–2 1/s [200],[197]
PKAR releases cAMP from pocket A

F09 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC AQP2 binding

F10 FirstOrderBackwardsRateConstant 7.7× 10–2 1/s [231],[232]
PKAC substrate release

F11 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC PDE4 binding

F12 SecondOrderForwardsRateConstant 2.5× 10–2 l/(s·µmol) [235],[197]
PP2B substrate binding

F13 FirstOrderBackwardsRateConstant 1.0× 10–2 1/s [235],[197]
PP2B substrate release

F14 FirstOrderForwardsRateConstant 5.0× 10–1 1/s [236],[197]
PP2B substrate dephosphorylation and release
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ID Type Content Unit Evidence
F15 TurnoverNumber 4.5× 10–2 1/s [77]

PDE4 turnover of cAMP

F16 MichaelisConstant 5.9 µmol/l [77]
PDE4 a�nity of cAMP

F17 TurnoverNumber 2.3 1/s [77]
PDE4-P turnover of cAMP

F18 MichaelisConstant 1.2 µmol/l [77]
PDE4-P a�nity of cAMP

F19 ZeroOrderForwardsRateConstant 1.0× 10–2 µmol/(s·l) estimation
CAMP in�ux

F22 Permeability 1.0× 10–1 [175]
reduced difusion of cAMP in storage region

F23 MembraneDifusivity 4.3 µm²/s [249],[250]
lateral difusivity of membrane bound entities

F24 ConcentrationDifusivity 3.2× 101 µm²/s [25]
cAMP difusivity in cytoplasm

F25 SpatialDifusivity 1.5× 10–6 µm²/s [24],[251]
difusivity of macroscopic entities

F26 InitialConcentration 5.0× 10–1 µmol/l [77]
of entity CAMP in cytoplasm

F27 InitialConcentration 1.0× 10–1 µmol/l [77]
of entity CAMP in restricted region

F28 InitialConcentration 2.0× 10–1 µmol/l [223]
of entity AKAP-P-PKAC-PKAR in vesicle membrane

F29 InitialConcentration 2.0 µmol/l [223]
of entity AKAP-P-PKAR in vesicle membrane

F30 InitialConcentration 5.0× 10–2 µmol/l [77]
of entity PDE in vesicle membrane

F31 InitialConcentration 5.0× 10–2 µmol/l estimation
of entity P-PDE in vesicle membrane

F32 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity PP2B in vesicle membrane

F33 InitialConcentration 2.0× 101 µmol/l [225],[219]
of entity AQP2 in vesicle membrane

F34 InitialConcentration 9.8 µmol/l [225],[219]
of entity AQP2-P in vesicle membrane
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Table 5.7.: Qualitative parameters used in the cAMP compartmentalization model. Fea-tures that have been used to parameterize the simulation of cAMP compartmen-talization. The type column refers to the SiNGA implementation of the feature andindicates the use of the parameter. The evidence column lists publications wherethe value was given or restricted.
ID Type Content Evidence
F20 Cargoes [CAMP]

entities that are subject to difusion

F21 AfectedSection cytoplasm
section that is afected by difusion

Table 5.8.: Variations used in the cAMP compartmentalization model. Variations of key pa-rameters that were used to explore the behavior and stability of the compartmen-talization of cAMP. Values were typically chosen to estimate viability of the literaturederived values and explore their in�uence on the whole system.
ID Values Unit Σ

F06 1.00e-02, 5.00e-02, 1.00e-01 l/(s·µmol) 3F12 2.50e-02, 5.00e-02 l/(s·µmol) 2F17 2.34e+00, 4.68e+00, 9.48e+00 1/s 3F19 1.00e-02, 5.00e-02, 1.00e-01, 2.00e-01 µmol/(s·l) 4F22 1.00e-02, 1.00e-01, 1.00e-00 3Setups restricted (2, 3, and 4 passages), unrestricted 4
Total variations 864

5.2.2. Simulation Results and Discussion

One of the most well known second messengers, cAMP is compartmentalized frequentlyin signaling pathways [245, 246, 164]. For this to occur, various chemical and physical pre-requisites have to be met [199]. The phenomena that in�uence the compartmentalizationof cAMP can be condensed to three major factors: The hydrolysis of cAMP by phosphodi-esterase, the apparent low difusivity of the cytoplasm in vivo, and transient or permanentchemical interactions [79, 246, 248, 198]. These factors were modeled and assessed by avariation of kinetic parameters and environmental setup. The reduced difusivity of cAMPmolecules in the cytoplasm can be caused by multiple factors, which will be referred toas cytoplasmic permeability or permeability for short. To model this, a base difusivity ofcAMP of 32µm2 s–1 [25] is used and scaled in certain regions of the cellular model with thepermeability coe�cient. Further, the in�uence of macroscopic objects that block access tothe areas where PKA was assessed (see Figure 5.3). The hydrolysis of cAMP was explicitlymodeled and binding a�nities to all relevant components were systematically explored. Toevaluate the importance of cAMP for the actual regulation of the AQP2 pathway, both thedeveloping cAMP gradient and the resulting PKA activity need to be considered.
cAMP compartmentalization only develops in regions with reduced permeability Themost important factor for the emergence of gradients is permeability (see Fig. 5.3B). It ispossible to observe compartmentalization efects in all simulations, however with no difu-sive restriction (storage permeability of 1) the compartmentalization is very low. Diferenceson the scale of 10-fold reduction as suggested by [78] are only obtained with low perme-ability and high cAMP hydrolysis rates. Simulations without any obstacles and permeability
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Figure 5.3.: Simulation of cAMP difusion were performed in diferent environments and withmultiple parameter sets. a: Schematic representations of restricted environmentalsetups with andwithout barriers around a vesicle storage region. b: cAMP gradientover time, depending on the number of passages (dashed lines) and cAMP in�ux(color). Simulations without permeability reduction (decrease in difusivity) are un-able to maintain efective gradients of 100 nM or more. c: In�uence of PDE4Dhydrolysis rate and number of passages on concentration in diferent compart-ments after �ve minutes of simulation. Circle size indicates cAMP in�ux, whereascolor shows permeability. Only the combination of difusive restriction and lowpermeability was able to create signi�cant diferences in concentration, indicatedby circles far away from the dashed lines. d: Shown is the AQP2 phosphorylationratio and PKA activity development during simulation starting from basal value.After an initial increase, a negative feedback loop �rst slows and subsequently de-creases phosphorylation rates. High PDE4 hydrolysis rate (increasing from topto bottom) leads to lower cAMP concentration in the vesicle region, leading to alower activity. High cAMP in�ux (yellow lines) allows overcoming the phosphoryla-tion threshold of 0.75. Abbreviations: protein kinase A (PKA), aquaporin 2 (AQP2),phosphodiesterase 4D (PDE4D)

of one were unable to attain a signi�cant cAMP gradient, even when considering highly po-tent phosphodiesterases and bufering (see Fig. 5.3C). Another consideration is that withhigh permeability, the cAMP in the whole system decreases, resulting in a nearly uniformdistribution across compartments. Others have also observed these efects in experimentand simulation in neonatal cardiac myocytes [111, 79], dendrites of neurons [252, 248]and other cell types [199, 253]. In all these examples, PDE in combination with diferentparameters that afect difusion act as a barrier to con�ne high cAMP concentration to acompartment and PDE is tethered to the same compartment where cAMP is created. Itwas suggested that it might be possible to develop cAMP sinks that have locally reducedcAMP concentration in contrast to high global concentration [176]. Stephan and collegesobserved this efect with cAMP/PKA-dependent insertion of the water channel AQP2 [233]in renal principal cells. Since cAMP is produced at the basolateral membrane and vesicles
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are stored close to the apical membrane, cAMP needs to travel through the cytoplasm. Itseems feasible that a locally reduced cAMP concentration is required to prevent prematureactivation of PKA as a response to the basal cAMP concentration [77]. After the cellularconcentration of cAMP increases due to activation by AVP, the actual response pathwayis triggered. The components for this to take efect are all coupled to the AQP2 vesicle[59, 58].
The creation of cAMP sinks is a delicate balance between multiple factors PDE con-stantly degrades cAMP in the storage region since it is attached to vesicles. A high hydrolysisrate leads to low cAMP concentrations close to the vesicles. The creation of cAMP sinks is adelicate balance between the amount of cAMP that is produced, the turnover rate of PDE,and the reduced access of cAMP to relevant regions of the cell (see Figure 5.3C). The cAMPin�ux is not su�cient to compete with the degradation by PDE for permeabilities of 0.1 orhigher, leading to a globally reduced cAMP concentration and no compartmentalization.Physiologically, increasing the cAMP in�ux seems ine�cient, since large amounts of energywould be required to produce cAMP, only to degrade it moments later. Yang et al. [79]also determined that the amount of PDE required would far exceed physiological ranges.A higher difusive restriction in the vesicle area is an elegant solution to compromise bothfactors. Fewer cAMP molecules reach the vesicles and whenever the in�ux exceeds thedegradation capacity of PDE, they result in the activation of PKA. The competition of PKAwith PDE for cAMP, could be one of the reasons why the binding rate of PKA is so high invitro [77]. Other factors gain in�uence, if permeability is 0.1 or less. All three factors in-�uence the compartmentalization of cAMP slightly diferently: The cAMP hydrolysis mainlyafects the cAMP concentration in the vesicle region, the difusive reduction maintains thecytoplasm concentration of cAMP, and the cAMP in�ux has impact on both cytoplasm andstorage compartments. I used the phosphorylation state of AQP2 to discriminate sinks thatare able to respond to signals. Phosphorylation levels of AQP2 surpass the 75% thresh-old, if the cAMP hydrolysis rate is low enough and cAMP in�ux is su�ciently high (see Figure5.3D). The curved shape of the trajectories can be explained by the activation of PDE. FewercAMP molecules bind PKAR, resulting in PKAC binding to their regulatory counterparts.The permeability required to create gradients was nevertheless higher than expected.Whereas some gradient could be observed for all permeabilities, efective sinks (on thescale of 10-fold reduction) were only consistently obtained for permeabilities ≥ 0.01, con-sidering that the cAMP hydrolysis rate should remain in a physiological range. The basaldifusive value of cAMPwas set to 32 cm2 s–1 as determined by [25] after taking into accountthe hydrolysis through omnipresent PDE. Further efects that lead to a difusive slowdownare a result of the cytoplasmic matrix (such as actin and microtubule �laments), cellularcrowding and arbitrary binding interactions [254, 255, 175]. The efect of the excluded vol-ume results in a four to six-fold reduction [255], considering that about 18% of the volumeis blocked [256]. This efect was con�rmed in simulation by Klann et al., where a perme-ability is considered a function depending on blocked volume, tracer size and molecularcrowding [212]. If these factors are able to create another order of magnitude diferencein efective permeability is debatable. The model was set up, such that 10 vesicles werepresent in each sink, each containing their contingent of relevant proteins. If more vesiclesare present per sink, the concentration of PDE4 would be higher, which could compensatecAMP in�ux. It would be interesting to observe the number and distribution of vesicles inprincipal cells to gain insight into this possibility to generate cAMP sinks.
Bufering efects play a minor role in compartmentalization Bufering was also pro-posed to have efect on cAMP compartmentalization. cAMP bufering is the capacity ofproteins and other cAMP binding molecules to temporarily or permanently �xate cAMP
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rendering it unavailable to the pool of free cAMP. In this setup, bufering is mostly per-formed by PKAR subunits that are able to bind two cAMP molecules. Since PKAR is alsoavailable in excess, it is able to bind a signi�cant amount of cAMP (twice the concentra-tion of PKAR in the system). PDE4 bufers a negligible amount just before catalysis. Asdiscussed in the phosphorylation model, bufering is able to create short term reductionof the cAMP and therefore �ne tune and stabilize small �uctuations in the sink. Especially,since two cAMPmolecules are required for activation, there is some leeway for PKAR to ab-sorb cAMP without response. However, binding to PKAR is also required to activate PKAC.Therefore, cAMP bufering at PKAR can not be viewed as a means to generate cAMP gra-dients that result in a specialized response. PKAR and PDE are probably only a part of thepossible binding partners of cAMP. It would be interesting to analyze the amounts of cAMPthat contribute to speci�c (creating a response) and unspeci�c binding to gain more insightas to how unspeci�c bufering contributes to permeability.
cAMP sinks might be able to regulate subsequent cAMP signals The reduction of cAMPin the sink seems to work at a capacity for a certain cAMP concentration. Virtually everyadditional cAMPmolecule that enters the compartmentalized region directly activates PKA.As a consequence, further PDE4 is activated, which in turn leads to an increase in the sink’scapacity as well as further phosphorylation of the signaling target AQP2. Furthermore,the sink remains at a high capacity until PDE and PKA are dephosphorylated. If the cAMPsignal decreases, the cAMP levels at the sink will decrease even faster because of the largefraction of phosphorylated PDE4. This might regulate the transport initiation for vesiclesthat remain in the sink, acting as a desensitization of the pit. If another signal arrives ashort time after, a large part of the cAMP will be hydrolyzed without having any additionalin�uence on the sink’s capacity or phosphorylation rate.
5.2.3. Conclusions

Taken together, the prime factor to create cAMP compartmentalization in this model waspermeability. Hydrolysis by cAMP and reduction of the accessibility are able to �ne tunethe ratio inside and outside the vesicle storage region. The explicit bufering modeled inthis study did not contribute signi�cantly to sustainable compartmentalization.

5.3. Clathrin-mediated Endocytosis

5.3.1. Model Design

In the basal state of the cell, vesicles are located in the storage region until they are trans-ported to the membrane for fusion. New vesicles are created at the apical membrane viaclathrin-mediated endocytosis, depending on cSRC phosphorylation [188, 70]. A constantlyshifting imbalance of exocytosis and endocytosis is the major driver behind the water re-absorption of principal cells in the kidney. An increased endocytosis shifts the majority ofAQP2 to the storage region, whereas increased exocytosis leads to high AQP2 concentra-tions in the apical membrane. The increase in exocytosis is mediated by the pathways thatwere explored in the previous models. The frequency and regulation of endocytosis is thefocal point of the endocytosis model. The detailed model setups and parameter variationsare listed in tables 5.9, 5.10, 5.11, and 5.12.
AQP2 is retrieved by Clathrin-mediated endocytosis AQP2 is concentrated in clathrincoated pits [70], indicating that clathrin-mediated endocytosis is the preferred mode of
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internalization and recycling. In the process of clathrin-mediated endocytosis, nucleationpoints initialize pit formation at the membrane. Speci�c adapter proteins are added thatbind both the cargo and clathrin molecules. It was found that phosphorylation of AQP2at Serine 269 inhibits the binding of the adapter protein, blocks endocytosis [191, 257],and generally alters interactions with other proteins of the endocytosis machinery [64].Serine 269 is phosphorylated in response to vesopressin [44] and only found in the apicalmembrane [189]. Another mechanism that afects vesicle internalization of AQP2 is thephosphorylation of Proto-oncogene C-terminal Src kinase (CSK) [188]. The exact mecha-nism is not fully understood, but it is speculated that cSRC phosphorylation of Dynamin isrequired for vesicle scission. Its inhibition leads to AQP2 retention [188]. The connectionbetween PKA and cSRC can be made via CSK [258]. cSRC has two phosphorylation sites:Tyrosine 416 for autophosphorylation and activation of the kinase and Tyrosine 527 for in-hibition [259]. PKA phosphorylates CSK at Serine 364, which in turn phosphorylates cSRCat 527. Therefore, an activation of PKA in the apical region of the cell would also lead to adecrease in vesicle formation and therefore AQP2 accumulation. Loerke et al. discerneddistinct subpopulations of clathrin coated pits that correspond to aborted intermediatepits and vesicle-forming, long-lived pits [117]. They also found that the addition of cargodetermined whether a pit would be aborted after a certain time or matured to become avesicle. After the vesicle is detached from the membrane, it experiences an abrupt lateraldisplacement [119].

Simpli�cations and estimations Endocytosis is primarily designed after the model byLoekre at al. [117]. Seeds for clathrin-coated pits were assumed to form randomly on themembrane surface. During their lifetime, clathrin-coated pits successively pass two stages:collection and maturation. During the collection phase, pits gather chemical entities fromtheir surrounding membrane. After a prede�ned checkpoint time the concentration of akey cargo entities is checked and if it surpasses a threshold value the vesicle enters thematuration stage. If the threshold was not reached, the pit enters the abortion stage andthe accumulated chemical entities pass back to themembrane. Aftermaturation time, eachpit forms a clathrin-coated vesicle. The endocytotic pit formation rate was converted to aprobability, that a vesicle would spawn in a givenmembrane segment and time step. Loekreand colleagues observed three subpopulations of pits: two short-lived and one long-lived.In this model, early-abortive and late-abortive subpopulations are not distinguished. Onlythe late abortive population was considered, since not enough information on the factorsthat drive their distinction is available.In the apical cell membrane, cSRC regulates the endocytosis of AQP2 positive vesicles[188]. The exact mechanism is still under speculation, but it is proposed that active cSRC isrequired for the Dynamin mediated scission of pits to form vesicles. Another possibility isthat phosphorylation of key cargo proteins inhibits the binding of adapter proteins such asSIPA11 [191] or the AP2 adapter complex [117]. In this model, the ratio of inhibited cSRCkinase and active cSRC kinase was used to scale the cargo accumulation rate, such that in-hibited cSRC kinase leads to an increase in abortive pits. The inhibition of cSRC is mediatedby a phosphorylation of Tyrosine 527, which is performed by activated CSK [259]. CSK itselfcan be activated by PKA via phosphorylation of Serine 364 [260]. Therefore, an activationof PKA leads to an inactivation of cSRC and subsequently to AQP2 retention in the apicalmembrane. This pathway coincides with the observations of Cheung et al., who found outthat an inhibition of cSRC is su�cient to cause AQP2 accumulation in the membrane [188].PKA not only activates the transport from intracellular storage, but also indirectly inhibitsAQP2 removal from the membrane. After endocytotic pits have fully matured, they arescissioned and experience an abrupt lateral displacement [119] with an average speed of57 nms–1 for about 11 s.
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Table 5.9.: Modules used in the endocytosis model. Modules that have been used to simu-late the in�uence of the PKA signalosome on endocytosis. Multiple reactions mightbe listed, if alternative substrates that satis�ed the reaction generation conditionswere present. The features column refers to the Feature Identi�er the subsequentfeature tables. The evidence column lists publications where the phenomenon wasdescribed and details of the modules were derived.
ID Type Features Evidence
M001 Reaction F01, F02 [229],[221]

PKA activation: PKAR PKAC binding and phosphorylationPKAC + AKAP CAMP PKAR AKAP CAMP P PKAC PKARPKAC + AKAP PKAR AKAP P PKAC PKARPKAC + AKAP CAMP CAMP PKAR AKAP CAMP CAMP P PKAC PKAR
M002 Reaction F03 [230],[221]

PKA activation: PKAC PKAR releaseAKAP CAMP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
M003 Reaction F04, F05 [171]

PKA activation: PKAR-P PKAC bindingPKAC + AKAP CAMP P PKAR AKAP CAMP P PKAC PKARPKAC + AKAP CAMP CAMP P PKAR AKAP CAMP CAMP P PKAC PKARPKAC + AKAP P PKAR AKAP P PKAC PKAR
M004 Reaction F06, F07 [171],[222],[200]

PKA activation: PKAR CAMP pocket B bindingCAMP + AKAP PKAR AKAP CAMP PKARCAMP + AKAP P PKAR AKAP CAMP P PKARCAMP + AKAP P PKAC PKAR AKAP CAMP P PKAC PKAR
M005 Reaction F08, F07 [171],[222],[200]

PKA activation: PKAR CAMP pocket A binding and PKAC releaseCAMP + AKAP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
M006 Reaction F08, F07 [171],[222],[200]

PKA activation: PKAR CAMP pocket A bindingCAMP + AKAP CAMP P PKAR AKAP CAMP CAMP P PKARCAMP + AKAP CAMP PKAR AKAP CAMP CAMP PKAR
M007 Reaction F09, F10 [60],[43],[231],[232]

PKA phosphorylation: PKAC AQP2 bindingAQP2 + PKAC AQP2 PKAC
M008 Reaction F03 [43],[231],[232]

PKA phosphorylation: PKAC AQP2 phosphorylation and releaseAQP2 PKAC AQP2 P + PKAC
M009 Reaction F09, F11 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 bindingPDE + PKAC PDE PKAC
M010 Reaction F03 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 phosphorylation and releasePDE PKAC P PDE + PKAC
M011 Reaction F12, F13 [235],[197],[224]

PP2B dephosphorylation: PP2B PKAR bindingAKAP CAMP CAMP P PKAR + PP2 B AKAP CAMP CAMP P PKAR PP2 B
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ID Type Features Evidence
M012 Reaction F14 [236],[197],[224]

PP2B dephosphorylation: PP2B PKAR dephosphorylationAKAP CAMP CAMP P PKAR PP2 B PP2 B + AKAP CAMP CAMP PKAR
M013 Reaction F12, F13 [235],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P bindingAQP2 P + PP2 B AQP2 P PP2 B
M014 Reaction F14 [236],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P dephosphorylationAQP2 P PP2 B PP2 B + AQP2
M015 Reaction F09, F10 [188],[260]

Src phosphorylation: PKAC CSK bindingCSK + PKAC CSK PKAC
M016 Reaction F03 [188],[260]

Src phosphorylation: PKAC CSK phosphorylation and releaseCSK PKAC CSK P + PKAC
M017 Reaction F15, F16 [261],[259],[262]

Src phosphorylation: CSK SRC bindingSRC + CSK P CSK P SRC
M018 Reaction F17 [261],[259],[262]

Src phosphorylation: CSK SRC phosphorylation and releaseCSK P SRC P SRC + CSK P
M019 Reaction F18, F19 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4

CAMP PDE AMP
M020 Reaction F20, F21 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4-P

CAMP P PDE AMP
M021 Reaction F22 [199]

cAMP regulation: cAMP in�uxCAMP
M022 EndocytoticPitAbsorption F23, F24, F25 [117]

endocytosis: pit cargo collection

M023 ClathrinMediatedEndocytosis F25, F26, F27, F31,F32, F33, F34, F35, F36 [117],[193]
endocytosis: aqp2 vesicle endocytosis

Table 5.10.: Quantitative parameters used in the endocytosis model. Features that havebeen used to parameterize the in�uence of the PKA signalosome on endocytosis.The type column refers to the SiNGA implementation of the feature and indicatesthe use of the parameter. The evidence column lists publications where the valuewas given or restricted.
ID Type Content Unit Evidence
F01 FirstOrderBackwardsRateConstant 3.0× 10–4 1/s [221]

PKAR releasing PKAC
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ID Type Content Unit Evidence
F02 SecondOrderForwardsRateConstant 2.1 l/(s·µmol) [221]

PKAR binding PKAC

F03 FirstOrderForwardsRateConstant 5.0× 101 1/s [230]
PKAC substrate release after conformation change

F04 FirstOrderBackwardsRateConstant 2.6× 10–4 1/s [221]
PKAR-P releasing PKAC

F05 SecondOrderForwardsRateConstant 3.8× 10–2 l/(s·µmol) [221]
PKAR-P binding PKAC

F06 FirstOrderBackwardsRateConstant 2.6× 10–6 1/s [200],[197]
PKAR releases cAMP from pocket B

F07 SecondOrderForwardsRateConstant 1.0× 10–2 l/(s·µmol) [222],[197]
cAMP binding to PKAR for both pockets A and B

F08 FirstOrderBackwardsRateConstant 6.3× 10–2 1/s [200],[197]
PKAR releases cAMP from pocket A

F09 FirstOrderBackwardsRateConstant 7.7× 10–2 1/s [231],[232]
PKAC substrate release

F10 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC AQP2 binding

F11 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC PDE4 binding

F12 FirstOrderBackwardsRateConstant 1.0× 10–2 1/s [235],[197]
PP2B substrate release

F13 SecondOrderForwardsRateConstant 1.0× 10–2 l/(s·µmol) [235],[197]
PP2B substrate binding

F14 FirstOrderForwardsRateConstant 5.0× 10–1 1/s [236],[197]
PP2B substrate dephosphorylation and release

F15 FirstOrderBackwardsRateConstant 7.0× 10–1 1/s [262]
CSK substrate release

F16 SecondOrderForwardsRateConstant 1.0 l/(µmol·s) [262]
CSK substrate binding

F17 FirstOrderForwardsRateConstant 2.0 1/s [262]
CSK substrate phosphorylation and release

F18 MichaelisConstant 5.9 µmol/l [77]
PDE4 a�nity of cAMP

F19 TurnoverNumber 4.5× 10–2 1/s [77]
PDE4 turnover of cAMP

F20 MichaelisConstant 1.2 µmol/l [77]
PDE4-P a�nity of cAMP

F21 TurnoverNumber 2.3 1/s [77]
PDE4-P turnover of cAMP

F22 ZeroOrderForwardsRateConstant 3.0× 10–1 µmol/(s·l) estimation
CAMP in�ux
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ID Type Content Unit Evidence
F24 CargoAdditionRate 4.0× 10–2 1/s estimation

rate at which relevant cargo is added to the pit

F26 VesicleRadius 5.0× 10–2 µm [119]
radius of AQP2 positive vesicles

F28 InitialConcentration 1.0× 10–1 µmol/l [119]
of entity CLA in vesicle membrane

F29 InitialConcentration 8.3× 10–3 µmol/l [263]
of entity DYN in vesicle membrane

F30 InitialConcentration 1.7× 10–2 µmol/l [67]
of entity MYO in vesicle membrane

F31 PitFormationRate 5.0× 10–2 1/(s·µm²) [119]
rate at which new pits form

F33 EndocytosisCheckpointConcentration 6.5× 102 molecules [117]
a pit matures, if this number of cargo molecules is reached

F34 EndocytosisCheckpointTime 3.0× 101 s [117]
time after pit formation that determines if a pit matures

F36 MaturationTime 7.0× 101 s [117]
the average time of the endocytotic maturation process

F37 MembraneDifusivity 4.3 µm²/s [249],[250]
lateral difusivity of membrane bound entities

F38 ConcentrationDifusivity 3.2× 101 µm²/s [25]
cAMP difusivity in cytoplasm

F39 InitialConcentration 5.0× 10–1 µmol/l [77]
of entity CAMP in cytoplasm

F40 InitialConcentration 5.0× 10–1 µmol/l [225],[219]
of entity AQP2 in apical plasma membrane

F41 InitialConcentration 1.0× 101 µmol/l [225],[237]
of entity AQP2-P in apical plasma membrane

F42 InitialConcentration 1.9× 10–1 µmol/l [223]
of entity AKAP-P-PKAC-PKAR in apical plasma membrane

F43 InitialConcentration 1.0× 10–2 µmol/l [77],[223]
of entity PKAC in apical plasma membrane

F44 InitialConcentration 2.0 µmol/l [223]
of entity AKAP-CAMP-P-PKAR in apical plasma membrane

F45 InitialConcentration 1.0× 10–1 µmol/l estimation
of entity PDE in apical plasma membrane

F46 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity P-PDE in apical plasma membrane

F47 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity PP2B in apical plasma membrane

F48 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity CSK in apical plasma membrane
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ID Type Content Unit Evidence
F49 InitialConcentration 1.0× 10–1 µmol/l estimation

of entity SRC in apical plasma membrane

F50 InitialConcentration 1.0× 10–1 µmol/l estimation
of entity P-SRC in apical plasma membrane

Table 5.11.: Qualitative parameters used in the endocytosismodel. Features that have beenused to parameterize the in�uence of the PKA signalosome on endocytosis. Thetype column refers to the SiNGA implementation of the feature and indicates theuse of the parameter. The evidence column lists publications where the value wasgiven or restricted.
ID Type Content Evidence
F23 ScalingEntities [SRC, P-SRC] estimation

the entities that in�uence cargo addition rate

F25 Cargoes all membrane bound entities estimation
other cargoes

F27 InitialConcentrations F28, F29, F30 estimationF32 AfectedRegion apical inner plasma membrane (GO:0016324) estimation
region where endocytotic pits are able to from

F35 PrimaryCargoes all entities in complex with AQP2 [191]
the entities that are the relevant cargo for this vesicle

Table 5.12.: Variations used in the endocytosis model. Variations of key parameters thatwere used to explore the in�uence of the PKA signalosome on endocytosis. Val-ues were typically chosen to estimate viability of the literature derived values andexplore their in�uence on the whole system.
ID Values Unit Σ

F16 4.00e+00, 8.00e+00, 1.60e+01 l/(µmol·s) 3F17 1.00e+00, 2.00e+00, 4.00e+00 1/s 3F22 1.00e-02, 5.00e-02, 1.00e-01, 2.00e-01 µmol/(s·l) 4F24 2.50e-03, 5.00e-03, 1.00e-02, 2.00e-02 1/s 4F31 1.00e-02, 5.00e-02, 1.00e-01, 5.00e-01 1/(s·µm²) 4Total variations 576

5.3.2. Simulation Results and Discussion

AQP2 is retrieved from the apical storage membrane via clathrin-mediated endocytosis. Inthe basal state of the cell, vesicles are located in the storage region until they are trans-ported to the membrane for fusion. New vesicles are created at the apical membrane viaclathrin-mediated endocytosis, depending on SRC phosphorylation [188, 70]. A constantlyshifting imbalance of exocytosis and endocytosis is the major driver behind the water re-absorption of principal cells in the kidney. An increased endocytosis shifts the majority ofAQP2 to the storage region, whereas increased exocytosis leads to high AQP2 concentra-tions in the apical membrane. The increase in exocytosis is mediated by the pathways Iexplored in the previous models. The frequency and regulation of endocytosis is the focalpoint of the endocytosis model.
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Figure 5.4.: Distribution of abortive and productive endocytotic pits. a: Lifetime of endo-cytotic pits across all simulations at varying cargo addition rates. The �rst peakindicates abortive pits that did not enter maturation phase, the second peak in-dicates pits that matured to vesicles. b: The number of abortive and productivepits after �ve minutes. High cargo addition rate leads to high number of produc-tive pits. After a substantial amount of AQP2molecules are transferred to vesicles,no new productive pits are able to form. The central line represents the median,lower and upper box boundaries correspond to the �rst and third quartiles (the25th and 75th percentiles). The whiskers extend to the largest/smallest value, nofurther than 1.5 time the interquartile range. Data beyond the end of the whiskers(outliers) are plotted individually. c: Number of productive pits at varying param-eters, colored by average SRC phosphorylation ratio. Low cAMP in�ux leads tohigher number of productive pits, given a su�cient pit formation rate. Horizontallines are drawn in the background density estimates at 25%, 50%, and 75% quan-tiles. High SRC phosphorylation ratio results in fewer productive pits. Abbreviation:non-receptor tyrosine kinase Src (SRC)

Endocytosis is mediated by PKA activation and AQP2 concentration Endocytotic pits,the precursors of clathrin-coated vesicles, emerge spontaneously on the apical membranesurface and the maturation from pit to vesicle is correlated to key cargo molecules [117].The rate of endocytotic pit formation as well as the cargo collection speed was determinedfrom the approximate number of AQP2 molecules per vesicle [225] and parameter varia-tion. Furthermore, a regulation mechanism involving cSRC to model the AQP2 accumula-tion observed in active cells [188] was implemented. The model to evaluate the parame-ters for this process imitates an apical membrane section with a surface of one µm2 thatcontains the expected molecules after cAMP stimulation. Knowledge from the phospho-rylation and compartmentalization models was used to constrain the parameters of theendocytosis model.

Pit emergence and cargo addition are coupled parameters A low cargo addition rateresults in a high number of abortive pits, since the threshold for successful maturationcannot be reached in time (see Fig 5.4A). Furthermore, high pit formation rates lead toa high number of abortive pits (see Fig 5.4B). There is an upper threshold to the num-ber of productive vesicles that are able to form, imposed by the total number of AQP2 inthe membrane. After a signi�cant amount of cargo has been transferred to vesicles, nomore productive pits are able to develop. If many pits form in parallel, the available cargomolecules are distributed across all pits in the membrane. Hence, not enough cargo canbe accumulated in each pit and the number of productive pits remains low.
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Model of SRC inhibition is able to reduce productive pit count In this model, the ratio ofinhibited and active SRC was used to scale the cargo accumulation rate, such that inhibitedSRC leads to an increase in abortive pits. The inhibition of SRC is mediated by a phosphory-lation of tyrosine 527, which is performed by activated CSK [259]. CSK itself can be activatedby PKA via phosphorylation of Serine 364 [260]. Therefore, an activation of PKA leads toan inactivation of cSRC and subsequently to AQP2 retention in the apical membrane. Thein�uence of cSRC phosphorylation can be seen in Fig. 5.4C. The decrease in efective cargocollection rate resulting from cSRC phosphorylation is able to qualitatively reproduce theobservations made by Cheung et al.[188]. A high cAMP in�ux rate is associated with fewerproductive pits. Inversely, a high number of productive pits can be observed in systemswith low cAMP in�ux, as a result of inactive PKA and dephosphorylated cSRC.
5.3.3. Conclusions

The model of Clathrin-mediated endocytosis was modeled using the hypothesis that thenumber of cargo molecules present in an endocytotic pit determined its maturation speed[117]. Additionally, the regulation of the pit maturation by SRC was incorporated. Bothconstraints allow for a regulation of vesicle generation that is based on PKA signal. Anactivation of the AQP2 signaling cascade via cAMP was able to reduce the number of AQP2transported from the membrane to the storage region.

5.4. Intracellular Transport and Recycling

5.4.1. Model Design

The recyclingmodel includes the previously re�nedmodels in addition to intracellular trans-portmechanisms to allow vesicle tomove between storage compartments andmembrane.The detailedmodel setups and parameter variations are listed in tables 5.13, 5.14, and 5.15.As a spatial setup, a 23 x 15 grid with a width of 7.6 µm and a height of 5 µm was used.Two membranes were de�ned that represent the apical cell membrane and a membraneseparating a vesicular storage region. The systemwas initialized with total 14 vesicles in thestorage region, 7 actin �laments and 14 microtubules. Two regions of restricted difusionwere de�ned for the storage region and the cellular cortex close to the apical membrane.The system was simulated for a total of 60 minutes.
AQP2 vesicles translocate to the apical membrane Actin �laments in�uence the vaso-pressin response at multiple points during the signaling cascade. In the unattached state,vesicles are able to difuse into the cytoplasm [264]. Myosin Vb motor and the Rab11-FIP2adapter protein facilitate the attachment of AQP2 vesicles to �laments and their transportto the apical membrane [67, 190]. The average speed of the vesicle during transportationis 710 nms–1 [265]. Upon arrival at the actin cortex, the vesicle is tethered to the actincortex [68]. Here, myosin II seems to manage transport at and through the cortex [266].Another study has found that the actin cortex is able to regulate the passage of the AQP2vesicle [69]. The phosphorylation at Serine 256 seems to decrease the stability and there-fore increase permeability of the actin cortex.
Vesicle fusion is mediated by SNARE proteins Vesicle fusion is mediated by a complexarray of molecular machinery. A critical component are SNARE proteins [136]. SNARE com-ponentsmediate fusion through spontaneous connection, one part of the complex residesin the target membrane and acts as an adapter. The vesicle contains the remaining part
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of the complex that connects to the adapter part, tethering it to the membrane. In thecase of AQP2 vesicles, the fusion is accomplished by the interaction of VAMP2 and VAMP3[182, 183] at the vesicle membrane and Syntaxin 3 [184] as well as SNAP23 located in theapical membrane [185]. The work of Donovan and Bretscher compiles a timeline for theexocytosis of secretory vesicles [17]. Vesicles remained attached for 18 seconds beforevesicle and target membrane were connected.
Vesicle transport at microtubules The transport from the membrane back to the perin-uclear region is accomplished by microtubules [19] and dynein [194]. Rab11, potentiallyin complex with FIP3 [195], mediates interaction with the dynein light intermediate chain1, creating a complex for directed transport to the centrosomal region. The speed of thismovement is about 800 nms–1 [123]. In current theory, early endosomes arise from thefusion of primary endocytotic vesicles (such as the AQP2 bearing vesicles) while tra�ck-ing across the cell on microtubules to the perinuclear region [131]. The sorting and re-constitution of vesicle cargo is an important step to be pondered. It was suggested thatdephosphorylation of S256 occurs during vesicular routing [267].
Simpli�cations and estimations Vesicles are triggered to leave the storage region afterAQP2 concentration passes a threshold. These vesicles will be attached to actin �laments[67, 266], if they have the required myosin transporter complex in their membrane andthe vesicle is in proximity to the actin �lament. Subsequently, directed vesicle transport isinitiated, leading the vesicle along the actin �lament. The �laments are generated using anadapted version of the �lament growth algorithm by [40]. After the vesicles traversed thedistance from storage to apical membrane, they are tethered to the actin cortex [268, 264].The actin cortex wasmodeled by adding a thin volume-like agent in front of themembrane.Whenever a vesicle enters this volume-like agent, its state changes, and it is allowed to dif-fuse throughout the area with reduced difusivity. This process of actin remodeling was notexplicitly modeled. It would be interesting to inspect the actin cortexmore closely, to evalu-ate the possible connections of tropomyosin [69], SRC kinase [269] and Myosin-V [68]. Theprocess requires the correct SNARE molecules to be present in the apical membrane andthe vesiclemembrane [136]. The corresponding SNAREmolecules form a complex, and thevesicle is tethered to its current position at the membrane for an average of 18 seconds[17]. The completion of the fusion process leads to the addition of the chemical entitiesfrom the vesicular membrane compartment to the apical membrane compartment. Afterendocytosis, vesicles are propelled into the cytoplasm, where they attach to microtubules,if they are close enough and contain the protein machinery to do so. Upon arrival in thecentrosomal region, they detach from the actin �lament. For the purposes of this model,the sorting in early endosomes and recycling endosomes omitted. The global model wasevaluated , and this step did not seem crucial in the current model, since only one cargomolecule (AQP2) wasmodeled. Nevertheless, this would be an interesting interface to eval-uate the efectmultiple cargomolecules and temporary storage compartments have on therecycling of vesicles.

112



Table 5.13.: Modules used in the full recycling model. Modules that have been used to simu-late the exocytosis/endocytosis cycle of AQP2. Multiple reactions might be listed,if alternative substrates that satis�ed the reaction generation conditions werepresent. The features column refers to the Feature Identi�er the subsequent fea-ture tables. The evidence column lists publications where the phenomenon wasdescribed and details of the modules were derived.
ID Type Features Evidence
M001 Reaction F001, F002 [229],[221]

PKA activation: PKAR PKAC binding and phosphorylationPKAC + AKAP CAMP PKAR AKAP CAMP P PKAC PKARPKAC + AKAP PKAR AKAP P PKAC PKARPKAC + AKAP CAMP CAMP PKAR AKAP CAMP CAMP P PKAC PKAR
M002 Reaction F003 [230],[221]

PKA activation: PKAC PKAR releaseAKAP CAMP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
M003 Reaction F004, F005 [171]

PKA activation: PKAR-P PKAC bindingPKAC + AKAP CAMP P PKAR AKAP CAMP P PKAC PKARPKAC + AKAP CAMP CAMP P PKAR AKAP CAMP CAMP P PKAC PKARPKAC + AKAP P PKAR AKAP P PKAC PKAR
M004 Reaction F006, F007 [171],[222],[200]

PKA activation: PKAR CAMP pocket B bindingCAMP + AKAP PKAR AKAP CAMP PKARCAMP + AKAP P PKAR AKAP CAMP P PKARCAMP + AKAP P PKAC PKAR AKAP CAMP P PKAC PKAR
M005 Reaction F008, F007 [171],[222],[200]

PKA activation: PKAR CAMP pocket A binding and PKAC releaseCAMP + AKAP CAMP P PKAC PKAR PKAC + AKAP CAMP CAMP P PKAR
M006 Reaction F008, F007 [171],[222],[200]

PKA activation: PKAR CAMP pocket A bindingCAMP + AKAP CAMP P PKAR AKAP CAMP CAMP P PKARCAMP + AKAP CAMP PKAR AKAP CAMP CAMP PKAR
M007 Reaction F009, F010 [60],[43],[231],[232]

PKA phosphorylation: PKAC AQP2 bindingAQP2 + PKAC AQP2 PKAC
M008 Reaction F003 [43],[231],[232]

PKA phosphorylation: PKAC AQP2 phosphorylation and releaseAQP2 PKAC AQP2 P + PKAC
M009 Reaction F009, F011 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 bindingPDE + PKAC PDE PKAC
M010 Reaction F003 [60],[233],[234]

PKA phosphorylation: PKAC PDE4 phosphorylation and releasePDE PKAC P PDE + PKAC
M011 Reaction F012, F013 [235],[197],[224]

PP2B dephosphorylation: PP2B PKAR bindingAKAP CAMP CAMP P PKAR + PP2 B AKAP CAMP CAMP P PKAR PP2 B
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M012 Reaction F014 [236],[197],[224]

PP2B dephosphorylation: PP2B PKAR dephosphorylationAKAP CAMP CAMP P PKAR PP2 B PP2 B + AKAP CAMP CAMP PKAR
M013 Reaction F012, F013 [235],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P bindingAQP2 P + PP2 B AQP2 P PP2 B
M014 Reaction F014 [236],[197],[59]

PP2B dephosphorylation: PP2B AQP2-P dephosphorylationAQP2 P PP2 B PP2 B + AQP2
M015 Reaction F009, F010 [188],[260]

Src phosphorylation: PKAC CSK bindingCSK + PKAC CSK PKAC
M016 Reaction F003 [188],[260]

Src phosphorylation: PKAC CSK phosphorylation and releaseCSK PKAC CSK P + PKAC
M017 Reaction F015, F016 [261],[259],[262]

Src phosphorylation: CSK SRC bindingSRC + CSK P CSK P SRC
M018 Reaction F017 estimation

Src phosphorylation: dephosphorylation of CSKCSK P CSK
M019 Reaction F018 [261],[259],[262]

Src phosphorylation: CSK SRC phosphorylation and releaseCSK P SRC P SRC + CSK P
M020 Reaction F019 estimation

Src phosphorylation: dephosphorylation of SRCP SRC SRC
M021 Reaction F020, F021 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4

CAMP PDE AMP
M022 Reaction F022, F023 [60],[77]

cAMP regulation: cAMP to AMP catalysis by PDE4-P

CAMP P PDE AMP
M023 Reaction F024 [236],[235],[197]

PKA phosphorylation: PDE4 dephosphorylationP PDE PDE
M024 Reaction F025 [199]

cAMP regulation: cAMP in�ux activeCAMP
M025 Reaction F026 [199]

cAMP regulation: cAMP in�ux basalCAMP
M026 Difusion F027, F028, F029 [233],[25]

cAMP cytoplasm difusion
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M027 LateralMembraneDifusion F030, F031 [250]

lateral membrane difusion

M028 VesicleCon�nedDifusion F032, F033 [268],[270]
storage: prevent vesicles from leaving storage region

M029 VolumeLikeAgentContainment F032, F034, F033 [270]
storage: set state of endocytotic vesicles upon entering storage

M030 ConcentrationStateChange F035, F036, F037, F038 [63],[219],[217]
storage: trigger vesicle departure by aqp2 phosphorylation

M031 VesicleCytoplasmDifusion [24],[203]
exocytosis: vesicle difusion

M032 LineLikeAgentAttachment F039, F040, F041, F042 [67]
exocytosis: attach vesicle to actin �lament

M033 VesicleTransport F043, F044 [67]
exocytosis: transport vesicle along actin �lament

M034 VolumeLikeAgentContainment F045, F046, F047 [266],[68],[69]
exocytosis: con�ne tethered difusion to cortex

M035 VesicleCon�nedDifusion F045, F047 [266],[68],[69]
exocytosis: vesicles entering cortex are tethered

M036 VesicleFusion F048, F049, F050, F051,F052 [17],[182]
exocytosis: vesicle fusion

M037 Reaction F053 [119]
endocytosis: clathrin release from vesicle surfaceCLA

M038 EndocytoticPitAbsorption F054, F055, F056 [117]
endocytosis: pit cargo collection

M039 ClathrinMediatedEndocytosis F057, F058, F059, F060,F054, F061, F065, F066,F067
[117],[193]

endocytosis: aqp2 vesicle endocytosis

M040 EndocytosisActinBoost F068, F069 [119],[193]
endocytosis: aqp2 vesicle boost

M041 LineLikeAgentAttachment F070, F071, F072, F073 [194]
endocytosis: microtubule attachment

M042 VesicleTransport F074, F075 [123],[194]
endocytosis: microtubule based transport

115



Table 5.14.: Quantitative parameters used in the full recycling model. Features that havebeen used to parameterize the exocytosis/endocytosis cycle of AQP2. The typecolumn refers to the SiNGA implementation of the feature and indicates the useof the parameter. The evidence column lists publications where the value wasgiven or restricted.
ID Type Content Unit Evidence
F001 FirstOrderBackwardsRateConstant 3.0× 10–4 1/s [221]

PKAR releasing PKAC

F002 SecondOrderForwardsRateConstant 2.1 l/(s·µmol) [221]
PKAR binding PKAC

F003 FirstOrderForwardsRateConstant 5.0× 101 1/s [230]
PKAC substrate release after conformation change

F004 FirstOrderBackwardsRateConstant 2.6× 10–4 1/s [221]
PKAR-P releasing PKAC

F005 SecondOrderForwardsRateConstant 3.8× 10–2 l/(s·µmol) [221]
PKAR-P binding PKAC

F006 FirstOrderBackwardsRateConstant 2.6× 10–6 1/s [200],[197]
PKAR releases cAMP from pocket B

F007 SecondOrderForwardsRateConstant 1.0× 10–2 l/(s·µmol) [222],[197]
cAMP binding to PKAR for both pockets A and B

F008 FirstOrderBackwardsRateConstant 6.3× 10–2 1/s [200],[197]
PKAR releases cAMP from pocket A

F009 FirstOrderBackwardsRateConstant 7.7× 10–2 1/s [231],[232]
PKAC substrate release

F010 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC AQP2 binding

F011 SecondOrderForwardsRateConstant 1.5 l/(s·µmol) [231],[232]
PKAC PDE4 binding

F012 FirstOrderBackwardsRateConstant 1.0× 10–2 1/s [235],[197]
PP2B substrate release

F013 SecondOrderForwardsRateConstant 1.0× 10–2 l/(s·µmol) [235],[197]
PP2B substrate binding

F014 FirstOrderForwardsRateConstant 5.0× 10–1 1/s [236],[197]
PP2B substrate dephosphorylation and release

F015 FirstOrderBackwardsRateConstant 7.0× 10–1 1/s [262]
CSK substrate release

F016 SecondOrderForwardsRateConstant 1.0 l/(µmol·s) [262]
CSK substrate binding

F017 FirstOrderForwardsRateConstant 2.0× 10–1 1/s estimation
CSK dephosphorylation (constant)

F018 FirstOrderForwardsRateConstant 2.0 1/s [262]
CSK substrate phosphorylation and release

F019 FirstOrderForwardsRateConstant 1.0× 10–1 1/s estimation
SRC dephosphorylation (constant)
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F020 MichaelisConstant 5.9 µmol/l [77]

PDE4 a�nity of cAMP

F021 TurnoverNumber 4.5× 10–2 1/s [77]
PDE4 turnover of cAMP

F022 MichaelisConstant 1.2 µmol/l [77]
PDE4-P a�nity of cAMP

F023 TurnoverNumber 2.3 1/s [77]
PDE4-P turnover of cAMP

F024 FirstOrderForwardsRateConstant 1.0× 10–1 1/s estimation
PDE dephosphorylation

F025 ZeroOrderForwardsRateConstant 3.0× 10–1 µmol/(s·l) estimation
CAMP in�ux

F026 ZeroOrderForwardsRateConstant 2.0× 10–2 µmol/(s·l) estimation
CAMP in�ux

F028 Ratio 1.0× 10–3 [175]
reduced difusion of cAMP in storage region

F038 Ratio 1.3 [219]
of AQP2-P to AQP2 on the vesicle surface, triggering exocytosis

F040 AttachmentDistance 5.0× 10–2 µm [271]
distance from the vesicle surface to the �lament

F044 MotorMovementVelocity 7.1× 10–1 µm/s [265]
average velocity of myosin driven transport

F048 AttachmentDistance 5.0× 10–2 µm [272]
distance from the vesicle surface to fusion membrane

F051 FusionTime 1.8× 101 s [17]
average time per fusion event

F052 SNAREFusionPairs 8.0 [273]
average number of snares involved in a fusion event

F053 ZeroOrderForwardsRateConstant 2.4× 10–1 µmol/(s·l) [119]
vesicle uncoating rate

F055 CargoAdditionRate 4.0× 10–2 1/s estimation
rate at which relevant cargo is added to the pit

F058 VesicleRadius 5.0× 10–2 µm [119]
radius of AQP2 positive vesicles

F059 PitFormationRate 5.0× 10–2 1/(s·µm²) [119]
rate at which new pits form

F060 EndocytosisCheckpointTime 3.0× 101 s [117]
time after pit formation that determines if a pit matures

F062 InitialConcentration 2.7 µmol/l [119]
of entity CLA in vesicle membrane

F063 InitialConcentration 2.2× 10–1 µmol/l [263]
of entity DYN in vesicle membrane
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F064 InitialConcentration 4.5× 10–1 µmol/l [67]

of entity MYO in vesicle membrane

F066 EndocytosisCheckpointConcentration 2.9× 101 µmol/l [117]
a pit matures, if this concentration is reached

F067 MaturationTime 7.0× 101 s [117]
the average time of the endocytotic maturation process

F069 ActinBoostVelocity 5.0× 10–2 µm/s [119]
the average velocity of the anterograde displacement after endocytosis

F071 AttachmentDistance 7.0× 10–2 µm [126],[271]
distance from the vesicle surface to the �lament

F075 MotorMovementVelocity 8.0× 10–1 µm/s [123]
average velocity of dynein driven transport

F076 MembraneDifusivity 4.3 µm²/s [249],[250]
lateral difusivity of membrane bound entities

F077 ConcentrationDifusivity 3.2× 101 µm²/s [25]
cAMP difusivity in cytoplasm

F078 PixelDifusivity 1.5× 10–6 µm²/s [24],[251]
difusivity of macroscopic entities

F079 InitialConcentration 2.0× 10–1 µmol/l [77]
of entity CAMP in cytoplasm

F080 InitialConcentration 1.0× 10–1 µmol/l [77]
of entity CAMP in cytoplasm

F081 InitialConcentration 1.0× 10–1 µmol/l [77]
of entity CAMP in cytoplasm

F082 InitialConcentration 2.0× 10–1 µmol/l [223]
of entity AKAP-P-PKAC-PKAR in vesicle membrane

F083 InitialConcentration 2.0 µmol/l [223]
of entity AKAP-P-PKAR in vesicle membrane

F084 InitialConcentration 1.5× 10–1 µmol/l [77]
of entity PDE in vesicle membrane

F085 InitialConcentration 1.5× 10–1 µmol/l estimation
of entity P-PDE in vesicle membrane

F086 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity PP2B in vesicle membrane

F087 InitialConcentration 2.0× 101 µmol/l [225],[219]
of entity AQP2 in vesicle membrane

F088 InitialConcentration 9.8 µmol/l [225],[219]
of entity AQP2-P in vesicle membrane

F089 InitialConcentration 6.7× 10–1 µmol/l [274]
of entity VAMP2 in vesicle membrane

F090 InitialConcentration 1.0× 10–1 µmol/l [223]
of entity AKAP-P-PKAC-PKAR in apical plasma membrane
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F091 InitialConcentration 1.0 µmol/l [223]

of entity AKAP-P-PKAR in apical plasma membrane

F092 InitialConcentration 5.0× 10–2 µmol/l [77]
of entity PDE in apical plasma membrane

F093 InitialConcentration 2.5× 10–2 µmol/l estimation
of entity P-PDE in apical plasma membrane

F094 InitialConcentration 1.0× 10–1 µmol/l estimation
of entity PP2B in apical plasma membrane

F095 InitialConcentration 1.4× 101 µmol/l [225],[237]
of entity AQP2-P in apical plasma membrane

F096 InitialConcentration 1.0 µmol/l [185]
of entity SNAP23-STX3 in apical plasma membrane

F097 InitialConcentration 1.0× 10–1 µmol/l estimation
of entity SRC in apical plasma membrane

F098 InitialConcentration 1.0× 10–1 µmol/l estimation
of entity P-SRC in apical plasma membrane

F099 InitialConcentration 2.0× 10–1 µmol/l estimation
of entity CSK in apical plasma membrane

Table 5.15.: Qualitative parameters used in the full recyclingmodel. Features that have beenused to parameterize the the exocytosis/endocytosis cycle of AQP2. The type col-umn refers to the SiNGA implementation of the feature and indicates the use ofthe parameter. The evidence column lists publications where the value was givenor restricted.
ID Type Content Evidence
F027 Cargoes [CAMP] estimation

entities that are subject to difusion

F029 AfectedSection cytoplasm estimation
section that is afected by difusion

F030 Cargoes all membrane bound entities estimation
entities afected by lateral membrane difusion

F031 AfectedRegion apical inner plasma membrane (GO:0016324) estimation
region afected by lateral membrane difusion

F032 AppliedVesicleState STORAGE estimation
vesicle state set, if conditions are met

F033 ContainmentRegion perinuclear region of cytoplasm (GO:0048471) [219],[43]
region, where vesicles are contained during storage

F034 BlackListVesicleStates [MICROTUBULE, ACTIN, EXOCYTOSIS] estimation
vesicles in these states are ignored during module execution

F035 AppliedVesicleState EXOCYTOSIS estimation
vesicle state set, if conditions are met

F036 Cargoes [AQP2-P, AQP2] [219]
entities that regulate the departure of the vesicle from the storage region
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F037 RequiredVesicleState STORAGE estimation

vesicle state set, if conditions are met

F039 AttachedFilament ACTIN [67]
agent that facilitates movement

F041 AttachedMotor MYO [67]
entity that facilitates movement

F042 MotorPullDirection + [67]
direction of the vesicle movement relative to the �lament

F043 AppliedVesicleState ACTIN estimation
vesicle state set, if conditions are met

F045 AppliedVesicleState TETHERED estimation
vesicle state set, if conditions are met

F046 BlackListVesicleStates [TETHERED, PROPELLED, FUSION] estimation
vesicles in these states are ignored during module execution

F047 ContainmentRegion cell cortex (GO:0005938) [268],[69]
region, where vesicles are tethered before fusion

F049 MatchingQSnares [SNAP23-STX3] [185],[184]
required snares in membrane

F050 MatchingRSnares [VAMP2] [182],[183]
required snares in vesicle

F054 Cargoes all entities part of the signalosome estimation
other cargoes

F056 ScalingEntities [SRC, P-SRC] estimation
the entities that in�uence cargo addition rate

F057 PrimaryCargoes all entities in complex with AQP2 [191]
the entities that are the relevant cargo for this vesicle

F061 InitialConcentrations F062, F063, F064 estimationF065 AfectedRegion apical inner plasma membrane (GO:0016324) estimation
region where endocytotic pits are able to from

F068 BoostMediatingEntity CLA estimation
the entity the determines if a vesicle is displaced and how fast

F070 AttachedFilament MICROTUBULE [19]
agent that facilitates movement

F072 AttachedMotor DYN [194]
entity that facilitates movement

F073 MotorPullDirection - [194]
direction of the vesicle movement relative to the �lament

F074 AppliedVesicleState MICROTUBULE estimation
vesicle state set, if conditions are met
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5.4.2. Simulation Results and Discussion

For the recycling model, the previous models were used to set up a spatio-temporal modelof the vesicular recycling system of renal principal cells. Themodel represents a subsectionof the cell that includes a vesicular storage region as well as the apical cell membrane.As our previous models have shown, difusion restricted regions are required to achievecAMP compartmentalization. Therefore, two regions are de�ned that reduce the difusivityof cAMP (see Figure 5.5A). Agent based modeling is used to simulate the dynamic behav-ior of vesicles. Two exemplary setups are used to evaluate the behavior shown by themodel: activation and recycling. The �rst activation model exhibits behavior close to that ofnatural principal cells. In the recycling model, SRC and CSK dephosphorylation have beenincreased, which allows observing exocytosis as well as endocytosis in action.Both models exhibit a distinct increase in exocytosis. Vesicles are able to move alongactin �laments to the apical region of the cell whenever the phosphorylation threshold isreached. Once the vesicle is in proximity to the apical membrane, fusion commences [17].The initiation of this cascade is regulated by PKA, as demonstrated in previous results. Thediscrete increases in permeability (see Figure 5.5B) are the result of individual vesicle fu-sion events. cAMP produced by adenylyl cyclases is simulated by cAMP in�ux at nodesindicated in Figure 5.5A. In both models, cAMP is created at 400 nMs–1 for each of thefour cAMP in�ux grid points for the �rst 5 minutes and at 200 nMs–1 up until 15 minutes.For the rest of the simulation, a basal cAMP in�ux of 50 nMs–1 is assumed. Initially, cAMPconcentration in the cytoplasm and at the apical membrane increase steadily (see Figure5.5C) and the amount of active PKA rises in conjunction. cAMP in the storage region �uctu-ates signi�cantly, driven by movement and departure of vesicles. After an initial decreasewhere cAMP binds to PKAR and PDE4 in large amounts, the average cAMP concentrationincreases slowly. In this model, the access to the vesicular storage region is decreasedby membranes, whereas the apical membrane is more exposed. The resulting efect isan efective decreased cAMP hydrolysis whenever a major part of the PDE4 concentrationis in the storage region. Less cAMP is able to reach PDE4 and fewer cAMP production isrequired to keep basal cAMP levels stable. Vice versa, the exposure of PDE4 to cAMP isincreased whenever vesicles at the apical membrane, decreasing the cellular cAMP storesfaster. This mechanism increases the efectiveness of the negative PDE4 feedback loopalready present in the initial phosphorylation model and was not explicitly implemented inthe model. This is further underlined by the quick deactivation of PKA in the apical mem-brane, even with signi�cantly increased cAMP concentration (see Figure 5.5D).In the recycling model, PKA and SRC phosphorylation rise similarly as in the activationmodel. The increased CSK and SRC dephosphorylation lead to a quick reversal of SRC ac-tivity. The increased concentration of AQP2 in the membrane as well as the reactivationof SRC lead to an increased endocytosis rate. Vesicles are then transported to the storageregion usingmicrotubule based transport [19]. In the activationmodel with slower dephos-phorylation rates, endocytotic events only produce aborted pits and the concentration ofAQP2 in the membrane stays constant.

Increase in exocytosis and decrease in endocytosis are entwined cAMP in�uences notonly the exocytosis of AQP2 positive vesicles, but also their endocytosis. In the basal stateof the cell, the majority of AQP2 is kept in storage compartments in the center of the cell.A two pronged approach ensures that the efort of transportation is efectively utilized.The maturation of endocytotic pits is reliant on the cargo concentration in endocytotic pits,hence an increase in AQP2 in the membrane leads to an increase in endocytotic events.The regulationmechanism in place is modeled by SRC inhibition. The actual quantitative in-�uence of SRC to inhibit pit maturation is speculative. It would be interesting to investigate

121



Figure 5.5.: AQP2 transport activation and recycling. Two setups of the AQP2 transport fullmodel showcase 40 minutes of activation (left) in opposition to recycling (right)when using accelerated SRC and CSK dephosphorylation. a: Schematic represen-tation of the environmental setup. The perinuclear storage region contains AQP2-positive vesicles that are transported to the apicalmembrane along actin �laments.Endocytosis is able to form productive pits in the recycling model, leading to vesi-cles that are transported to the storage region. b: Membrane permeability esti-mated from AQP2 concentration in the apical membrane. Permeability increasesand stays high if endocytosis is suppressed. c: cAMP concentration in diferent cellregions. cAMP in�ux decreases during simulation. Free cAMP in the storage regionis quickly bufered and able to active PKA, leading to AQP2 phosphorylation andvesicle departure. d: Relative activity levels of selected phosphorylation targets.PKA shows similar activation behavior in activation and recycling models. Fasterreactivation of SRC after inactivation by the PKA/CSK/SRC cascade recovers abil-ity to produce productive pits. Abbreviations: protein kinase A (PKA), aquaporin 2(AQP2), non-receptor tyrosine kinase Src (SRC), C-terminal SRC kinase (CSK)

the actual kinetic in�uence SRC has on pit maturation and/or vesicle scission experimen-tally. Other mechanisms have been identi�ed that can contribute to the decrease in inter-nalization [191], therefore it is unlikely that SRC is the only determinant for the inhibitionof endocytosis.
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Molecular condensates can explain localized responses The difusive restriction of cAMPand coherence of all molecular components are requirements for a regulated and distinctsignal response. The difusive reduction falls within a regulated margin: If no reductionis present, cAMP renders PKA always active, even at basal cAMP levels. Since endocyto-sis is also reliant on indirect cAMP based activation of SRC kinase, the system transitionsto a state where AQP2 concentration in the apical cell membrane is always high. On theother hand, systems with high restriction are slow to respond to signals, since few cAMPmolecules are able to reach the cAMP storage region at a time, delaying PKA activation.Furthermore, AQP2 does not remain in the membrane, since endocytotic events occur fre-quently. The decrease in difusive restrictionwould therefore be associatedwith chronicallyincreased membrane permeability, whereas increased restriction would lead to polyuria.All components associated with the AQP2 response are associated in a PKA signalosome.If any of the components would remain in the storage region or at the apical membrane,they accumulate and alter the signal response over time.
Deviations between model and phenotype The original response of principal cells ismostly measured by the water permeability of the apical membrane [275, 237]. There-fore, I converted the concentration of AQP2 to permeability of water as described in Table5.4. The majority of the activation happens in the �rst minutes. This is consistent with thepreviously observed mode of PKA activation, where a positive feedback loop is present.The measurements of Deen and colleagues [237] show that permeability doubled after 10minutes and tripled after about 30 minutes when compared to the basal rate. These ra-tios are also present in the results, but the measured progression in experiments is closerto a linear gradient. This derivation may have multiple potential origins. The model de-scribes one storage area and subsection of the cell. Measurements in experimental datawere not taken from a single cell, but from a cell culture. Potentially, multiple storage sitesthat are triggered at diferent times can contribute to a more evenly distributed permeabil-ity increase. Furthermore, the simulation is initialized with vesicles that contain a uniformnumber of molecules. It is probable that the vesicular response is altered depending onwhether the vesicle was recently recycled or in storage for some time [46]. Additionally, allthe aspects that play a role in the vesicular tra�cking were modeled. For example, the roleof Ca2+, the other phosphorylation sites distinct from S256, and diferent AKAPs in�uencethe recycling process and alter the speci�c response [189].
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6. Conclusion
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Diferential equations and agent-based modeling were combined to gain insight into thevesicular recycling systemof renal principal cells. Both approaches complement each otherby modeling diferent aspects of the vesicular system. Especially, the combination of mi-croscopic and macroscopic aspects of clathrin-mediated endocytosis requires the combi-nation of chemical reactions and agent-based modules. Additionally, it was required towork out a viable model of clathrin-mediated endocytosis, extend existing models of PKAregulation, and estimate parameters to link the involved processes.

6.1. Modeling and simulation approach

Vesicular transport is a key cellular activity responsible for molecular tra�c between mem-brane enclosed compartments and outer membranes. Vesicles are the cell’s solution todirected transport that was necessary to reap the bene�ts of eukaryotic size and com-plexity. It is however di�cult to consider the interplay between biochemical reactions anddifusion processes and large membrane enclosed compartments. The diameter of intra-cellular vesicles is between 30nm and 100nm [22], on the order of 10 times larger thantypical proteins, and even 100 times larger than small molecules [23]. Furthermore, thephysicochemical processes occur at diferent scales of organization. While vesicles difuseat 0.13µm2 s–1 [24] the important second messenger cAMP has a difusion coe�cient ofabout 32µm2 s–1 [25]. In order to integrate the diferent scales of organization in a sin-gle model, simulation of the diferent components has to be addressed with multiscalemodeling and simulation systems.In order to tackle the �rst aim of this thesis, a hybrid model was devised, which allowsde�ning agents as well as reactions in a hypothesis driven approach. The building blocksthat are required for the simulation of complex chemical systems can be divided into twocategories. Microscopic components, which involve individual chemical entities such assmall molecules and proteins, and aggregates of the microscopic building blocks such asvesicles and membranes (see Figure 4.5). On the microscopic scale, the reaction and dif-fusion of chemical entities are required for the transmission of the initial signal in the cell,the processing of post-translational modi�cations, as well as simple reaction based trans-formations [12]. The possibility for combinations of post-translational modi�cations andaggregation of proteins to complexes requires reaction network generation [13, 97]. Onthe macroscopic scale, a general approach to possible three-dimensional shapes that oc-cur in cells was required to describe the complexity of the cellular components. The de-scription of entities as abstract shapes allows implementing domain speci�c agents thatare relevant for a biological system. The description of vesicles, membranes, and cellular�laments as sphere-like, surface-like, and line-like agents respectively, was able to recreatethe behavior of those entities in the cell. The possibility to specify the behavior of agentsas modules enables the representation of simple interactions such as vesicles attaching to�laments, as well as complex processes such as endocytosis and fusion. The spatial gapbetween both scales was addressed by choosing a heterogeneous modeling approach.Macroscopic agents can contain chemical entities and react depending on their concen-tration and composition. Additionally, the possibility for entities to associate and dissociatebetween agents and their surrounding environment allows for transport and aggregationphenomena to occur. The modularization of behaviors on both scales allows de�ning phe-nomena in a hypothesis driven approach, where competing approaches can be tested eas-ily. The computational error is computed for each module and used to validate the timestep size. Since both systems run on similar overlapping time scales, an adaptive time stepapproach was chosen that ensures that the most critical module governs the minimal stepsize.The continuous modules of the model are calculated on a reservoir-like grid using mass
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action kinetics. Difusion of chemical entities between the reservoirs is possible and wasimplemented using a �nite diference method, although other methods are possible (e.g.�nite element method). Agents can also contain reservoirs that are able to exchange infor-mation and react with the nearby underlying grid. Whenever agents move, the overlappingregions of agent and grid are calculated and updated. The numerical error resulting fromthe calculations is observed on a per-reaction basis as well as for the whole system. Thisallows to determine critical reactions that govern the time step size in an adaptive stepwidth approach. The resulting adaptive system considers smaller time steps during criticalperiods of the simulation and speeds up if numerical errors are negligible. Computationalcost therefor scale with the fastest reaction in the system (requiring the most time steps tocompute to a su�cient accuracy). The computation of one real-time hour of the full recy-cling model with a single parameter set requires about 100 hours of run time on a desktopcomputer with an 8-core CPU and 16 GB of RAM. Naturally, the framework presented inthis work is not as re�ned as established approaches, it is however capable of capturingthe diverse aspects of vesicular transport and signaling.

6.2. Insights into the AQP2 recycling model

The second aim of the thesis was to characterize the behavior of PKA signaling in relationto the AQP2 recycling. I categorized the major �ndings resulting from the models in thefollowing three groups: support for previous �ndings, new insights, and topics that remainto be explored.
Support for previous �ndings Our model con�rms that PKA activity can be tightly reg-ulated by a controlled local association and dissociation of PKAC and PKAR controlled bycAMP as suggested by Zhang and colleagues [221]. I veri�ed that PKA needs to be tetheredto the vesicle and to the other components of the signalosome for it to have a distinct efect[223]. Components which are not bound to the vesicular storage region difuse into thecell and render the response unspeci�c. The PKA signalosome plays a role in multiple cel-lular processes, depending on its composition [50]. In renal principal cells at least AKAP18,PDE4, PKAR, PKAC, and PP2B are essential for the cellular response and the formation ofcondensates seems an important factor in reducing permeability of cAMP.The phosphorylation of PDE4 initiates a negative feedback loop [61] in order to restorebasal PKA activity. It is being debated if the pathway via cAMP and Ca2+ [179, 180] canbe triggered independently and result in comparable AQP2 distributions [240, 241, 188].I argue that there must be some degree of overlap between the responses since PP2B isalso regulated by Ca2+ indirectly and that they modulate the reaction in diferent comple-mentary ways. The fact that both secondary messengers are connected is known [242].Nevertheless, two largely uncoupled pathways allow for the regulation on diferent timescales and/or use cases.The simulations con�rm, that PDE4 concentrations or a�nities would need to be beyondphysiological ranges [79, 253] also when viewed in conjunction with the PKA pathway in or-der to be efective for the generation of CAMP gradients. It turned out that cytoplasmicpermeability and, as a result, the ability of cAMP to reach PDE in the PKA signalosome, isthe most critical component that allows for the buildup of cAMP gradients. Nevertheless,no efect in isolation is able to create CAMP gradients; the interplay of all efects is requiredto regulate this phenomenon. The permeability required to create gradients was never-theless higher than expected. While some gradient can be observed for all permeabilities,efective compartmentalization (on the scale of 10-fold difusivity reduction) was only con-sistently obtained for permeabilities ≤ 0.01. Efects that lead to a difusive slowdown can
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be the result of the cytoplasmic matrix, cellular crowding, and weak binding interactions[254, 255, 175]. Whether these factors are able to create another order of magnitude dif-ference in efective permeability is debatable. A promising explanation comes in the formof liquid phase separated compartments, also known as biological condensates [276]. Bi-ological condensates have the ability to reduce difusion [277, 278] of the involved compo-nents. Molecules that experience weak and strong binding efects tend to cluster togetherand promote phase separation. These binding efects can be observed for the majority ofproteins involved in the phosphorylation cascade [50, 223, 81, 58, 59]. Our study supportsthis view, that challenges the textbook model of local degradation of cAMP as the majordriver of compartmentalization. Furthermore, it could explain the substantial diference incAMP required for the activation of PKA in vivo vs in vitro [77].The regulation of either endocytosis or exocytosis has little efect on AQP2 accumulation.Both pathways are self-regulating to an extent, and only the combination of increased ex-ocytosis and decrease endocytosis is able to initiate a distinct response [62].
New insights Themodeling and simulation process unveiled that PKAR excess decreasessubstrate speci�city [279], simply by reducing the probability of PKAC encountering andengaging with other substrates, which could contribute to the apparent 10-fold reductionof the activation constant [78]. In connection to this, I found, that diferent a�nities forPKA phosphorylation targets PKAR, PDE4 and AQP2 had no signi�cant impact on the signalresponse. Using high PP2B activity as a proxy for calcium in�uence indicates that Ca2+ doesnot signi�cantly alter the course of the PKA/AQP2 phosphorylation pathway as well. Whilethe PP2B lowered the basal phosphorylation rate of AQP2, it was not able to efectivelycounteract the PKA response. The bufering efects of PKARbound to the AKAP complex arenegligible for long term gradient generation and only able to attenuate small �uctuationsof cAMP.All three factors in�uence the compartmentalization of cAMP slightly diferently (see Fig-ure 5.3C): The cAMP hydrolysis rate mainly afects the cAMP concentration in the vesicleregion. The difusive reduction maintains the cytoplasmic concentration of cAMP, and thecAMP in�ux impacts both cytoplasm and storage compartments. This allows for a largelyindependent control of diferent spatially distinct cAMP sinks in the cell by using diferentvariants and concentrations of the components that are part of the signalosome. As a re-sult, the combination of components in each cell type is able to determine the speci�cityand diversity of responses. Furthermore, the apparent e�ciency of cAMP hydrolysis is de-creased whenever PDE4 is in the storage region. The transport of the PKA signalosome inconjunction with the vesicles exposes PDE4 to the cytoplasm and apical membrane, wherePDE4 is exposed to higher concentrations of free cAMP. This increases the efectivenessof the negative PKA feedback loop. This activation of the universal kinase PKA leads to adistinct response, whereas the down regulation can be regulated by more speci�c compo-nents such as CSK and SRC.The cargo addition rate to an endocytotic pit as well as the emergence of new pits needto be balanced to support formation of productive pits. The cascade of PKA/CSK/SRC phos-phorylation proved to be a suitable model to inhibit AQP2 vesicle endocytosis and subse-quent accumulation of AQP2 in the apical membrane.
Unresolved phenomena The in�uence of the calmodulin pathway and the concrete roleof Ca2+ remain elusive. I speculate, that cAMP is responsible for the activation of the PKA-based response and Ca2+ is able to counteract it through PP2B, as well as trigger it inde-pendently. Themodeling of Ca2+ would encompass cAMP producing adenylyl cyclases, thatare inhibited by Ca2+ [280, 243], as well as calmodulin [224, 179], and Myosin [281]. An-other pathway involving Short transient receptor potential channel 3 [282] is a promising
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candidate to explore for apical AQP2 accumulation.Howexactly the apparent low cytoplasmic permeability close to the vesicle storage regionis maintained is not fully understood. Biological condensates seem to play a major role increating these phase separation efects. Very recently, this phenomenon was found to becritical for PKA regulatory subunit RIα [166]. Even if in our setup PKA RIIβ was unsuitableto e�ciently regulate cAMP bufering, the diferent treatment of cAMP difusion close tovesicles was necessary and lead to distinct PKA activation.It is becoming more clear that the isolated observation of components in vitro can be abad proxy for their actual behavior in vivo [77]. With the concept of biological condensatesin mind, the determination of the individual components rate constants is not enough. Itis therefore crucial to determine the in�uence of "signalosome partner proteins" to createreliable models. The models lead to the conclusion that the phenomena of cAMP compart-mentalization and PKA activation are tightly coupled and need to be viewed in conjunction.Even though this model includes major aspects of the AQP2 transport pathway, it is byno means complete. During the modeling process, I encountered processes that providesubstance for further research: Experimental evidence is required for the regulation ofvesicle maturation during endocytosis in the context of signaling cascades. How does thecargo concentration in�uence the vesicle maturation process[68]? How do cSRC [188] andSIPA11 [191] contribute to themembrane accumulation of AQP2? This and other questionscan aid the incremental formulation of a whole cell model of renal principal cells.
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Framework The implementation of the framework can be retrieved from the GitHubrepository https://github.com/singa-bio/singa and as a static snapshot from https:
//doi.org/10.5281/zenodo.4045596. The framework is implemented in Java and dis-tributed using Maven https://mvnrepository.com/artifact/bio.singa.
Tools Additional repositories contain tools to work with the SiNGA framework:

� https://github.com/singa-bio/singa-doc For the documentation.
� https://github.com/singa-bio/singa-exchange To generate JSON-based trajec-tories and simulation setup �les.
� https://github.com/cleberecht/singa-simulation-runner To run simulationson distributed systems.
� https://github.com/felixErichson/singa-simulation-visualization To visu-alize simulation trajectories online.
� https://github.com/cleberecht/singaEvaluate To evaluate simulation data us-ing R and Tidyverse packages [283].
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