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Abstract 

Automatic human activity recognition is an area of interest for developing health, 

security, and sports applications. Currently, it is necessary to develop methods that facilitate 

the training process and reduce the costs of this process. This paper explores a methodology 

to classify human physical activities in a semi-supervised paradigm. With this approach, it 

is possible to reduce the number of labels necessary to train the learning model and the 

complexity of this process. This process begins by deducting the number of micro-movements 

or sub-movements where the data should be grouped and assigning the label through a 

clustering technique. We perform this procedure for a specific group of micro-movements 

whose label is unknown. Later, the classification process starts by using two methods, a 

Support Vector Machine (SVM) that identifies the micro-movements and a Markov Hidden 

Model that detects the human physical activity as a function of sequences. The results show 

that with a percentage of 80 % of the known labels, we achieved outcomes like the supervised 

paradigms found in the literature. This facilitates training these learning models by reducing 

the number of examples requiring labels and reduces the economic costs, which is one of the 

significant limitations of machine learning processes. 

 

Keywords 
Spectral clustering, semi-supervised learning, motion estimation, data fusion, human 

activity recognition. 

 

Resumen 

El reconocimiento automático de la actividad humana es un área de interés para el 

desarrollo de aplicaciones en salud, seguridad y deportes. Actualmente, es necesario 

desarrollar métodos que faciliten el proceso de entrenamiento y reduzcan los costos de este 

proceso. Este trabajo explora una metodología para clasificar actividades físicas humanas en 

un paradigma semi-supervisado. Con este enfoque, es posible reducir el número de etiquetas 

necesarias para entrenar el modelo de aprendizaje y la complejidad de este proceso. Este 

proceso comienza deduciendo el número de micro-movimientos o submovimientos en los que 

deben agruparse los datos y asignando la etiqueta mediante una técnica de clustering. 

Realizamos este procedimiento para un grupo específico de micro-movimientos cuya etiqueta 

se desconoce. Posteriormente, se inicia el proceso de clasificación utilizando dos métodos, una 

Máquina de Vectores Soportados (SVM) que identifica los micro-movimientos y un Modelo 

Oculto de Markov que detecta la actividad física humana en función de secuencias. Los 

resultados muestran que con un porcentaje del 80 % de las etiquetas conocidas, se consigue 

resultados como los paradigmas supervisados encontrados en la literatura. Esto facilita el 

entrenamiento de estos modelos de aprendizaje al reducir el número de ejemplos que 

requieren etiquetas y reduce los costes económicos, que es una de las limitaciones 

significativas de los procesos de aprendizaje automático. 

 

Palabras clave 
Agrupamiento espectral, aprendizaje semisupervisado, estimación de movimiento, fusión 

de datos, reconocimiento de actividad humana. 
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NOMENCLATURE 
 

𝑲𝑰𝑻𝑭 Kinect’s attributes set 

𝑰𝑴𝑼𝑭 IMU’s attributes set 

𝑬𝑴𝑮𝑭 EMG’s attributes set 

Ψ =  [𝒙𝟏 … . . 𝒙𝒍] Kinect joins points vector in cartesian coordinates. 

𝒙𝒍 =  [𝑿𝒍𝒀𝒍𝒁𝒍] Spatial coordinates of the joint points 𝑙 

𝑬𝑴𝑮𝒋 Data delivered by the EMG sensor 𝑗 

𝑰𝒌 =  [𝒂𝒙 𝒂𝒚 𝒂𝒛 𝒂𝒓 𝒂𝜽] Acceleration vector delivered by the movement sensor 𝑘 

𝝆𝒍 =  [𝒓𝒍𝜽𝒍] 
Polar coordinates of the joint points 𝑙 respect to the center of mass 

Ψ 

𝒓𝒍 Radial component of 𝜌𝑙 

𝜽𝒍 Angular component of de 𝜌𝑙 

𝑬𝑲 Feature Vector of primitive motions Kinect – SVM 

𝑬𝑰 Feature Vector of primitive motions IMU –SVM 

𝑬𝑬 Feature Vector of primitive motions EMG - SVM 

𝑬𝑭 
Concatenated Feature Vector of primitive motions Kinect® – EMG 

- IMU 

𝚿̂ Center of mass of Ψ 

𝑲𝑰𝑻𝑭(𝒂) Reduced Kinect’s attributes set 

𝑰𝑴𝑼𝑭(𝒂) Reduced IMU’s attributes set 

𝑬𝑴𝑮𝑭(𝒂) Reduced EMG’s attributes set 

Measurement of 𝑲𝒍 𝑚𝒙 =  
1

3
∑(𝐾𝑖 − Ψ̂)

3

𝑖=1

 

Variance of 𝑲 𝑣𝐾 =  
1

3
∑(𝐾𝑖 − Ψ̂ −  𝑚𝐾)

2
3

𝑖=1

 

Measurement of 𝒂𝑲 𝑚𝑎𝐾 =  
1

3
∑ 𝑎𝐾𝑖

3

𝑖=1

 

Variance of 𝒂𝑲 𝑣𝑎𝐾 =  
1

3
∑(𝑎𝐾𝑖

−  𝑚𝑎𝐾)
2

3

𝑖=1

 

Measurement movement intensity 𝑨𝑰 𝐴𝐼 =  
1

3
∑ 𝑀𝐼𝑘

𝑖

3

𝑖=1

;   𝑀𝐼𝒌 =  ‖[𝑎𝒙 𝑎𝒚 𝑎𝒛]‖ 

Variance of 𝑨𝑰 (𝑽𝑰) 𝑉𝐼 =  
1

3
∑(𝑀𝐼𝑘

𝑖 −  𝐴𝐼)

3

𝐼=1

 

Area of the magnitude of normalized 

signal 𝑺𝑴𝑨 
𝑆𝑀𝐴 =  

1

3
(∑|𝑎𝑥𝑘

𝑖 | + |𝑎𝑦𝑘
𝑖 | + |𝑎𝑧𝑘

𝑖 |

3

𝐼=1

 ) 

Dominant direction eigenvalues 𝑬𝑽𝑨 
Acceleration Covariance Matrix’s eigenvectors through the axes x, 

y, and z of each observation window. 

Average acceleration energy 𝑨𝑨𝑬 

Energy means the sum of the square of the discreet component 

magnitudes FFT of each sensor axis, normalized by the window 

length. 

Average rotation energy 𝑨𝑹𝑬 
Energy mean value through the rotation angles, for this case, only 

𝑎𝑟 and 𝑎𝜃. 
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1. INTRODUCTION 

 

Human physical recognition is a methodology that uses devices and computing algorithms 

to detect what action a person performs in a certain period. Therefore, rehabilitation, medical 

diagnostic, and intelligent surveillance systems, among others, have been implemented in 

sports [1]-[3]. Technological advance has allowed the creation of different devices for 

movement detection. These devices include depth cameras such as Kinect®, Inertial 

Measurement Units (IMU), and Electromyographic signal Sensors (EMG). Kinect® has a 

depth sensor, and an RGB camera inside that tracks the join points of the body; therefore, it 

is used along the classifiers to generate a codebook to identify human body stances and thus 

determine the performing of the physical action [4]−[7]. Some works use the information of 

the stance given by the Kinect® and apply unsupervised algorithms (K-means or Spectral 

Clustering) to generate a codebook with key sub-movements. Later, they use a Hidden 

Markov Model (HMM) to recognize different combinations and thus to identify the activity; 

these methods are known as primitive motions. Although those works have reliable results, 

they present problems if there are lighting changes or some partial occlusions on the object 

or person [8]-[11]. 

The literature recommends opting for data fusion approaches, which use the information 

provided by two or more sensors to improve detection performance and increase robustness 

against partial occlusions and disconnections. Some methods show that combining IMU and 

EMG sensor (first case) or IMU and Kinect® (second case) improved activity estimation 

compared to the use of a single type of modality [11]−[13]. In [12] EMG and IMU sensors to 

achieve great results, but its method shows issues with physical activity when considering 

external objects. On the other hand, [9] and [14] apply a fusion method with Kinect® and 

IMU sensors, achieving better system performance. However, detecting some activities 

presents the same problems when a single sensor measures them. Other works fuse more 

than two sensors and achieve reliable efficiencies greater than 90 % accuracy. An example is 

a work proposed by [1], which uses a multimodal system composed of Kinect®, IMU, and 

EMG sensors and applies a Support Vector Machine to label each activity's set of primitive 

movements. The biggest issue is being a supervised method. Therefore, it is not adaptable 

and requires all samples to be labeled. Also, this method needs a skilled person to distinguish 

two or more sub-movements, which carries classification problems. Another case shown in 

[15] uses K-means clustering to find the stances of each motion but needs SVM to validate it. 

Also, K-means suffers from high dimensionality or when the database is too complex and 

could present partial occlusion problems or lighting changes by only using the Kinect® for 

activity classification. Other approaches use modern methods of machine learning as deep 

learning. Among the more common techniques, it has been highlighted the convulsed neural 

network, learning by reinforcement, etc. These methods have encompassed the identification 

of human physical activity and have achieved reliable results [16]−[18]. However, an 

extensive database is required, which increases the costs of this type of application. Given 

the mentioned difficulties in human activity identification, this work shows a semi-

supervised learning method that reduces the a priori labeling of the data. Besides, the process 

allows inferring the number of primitive motions needed to recognize human physical 

activity. The data is built by the information collected by a multimodal measurement system 

composed of three sensors (Kinect®, IMU, EMG), which apply dimensionality analysis 

techniques, evidencing the joint points of the Kinect® and the IMU and EMG sensors are 

relevant for measurement information. The main contributions and results of the 

research are. 
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− Design, documentation, and validation of a human physical activity classification 

methodology under a semi-supervised learning paradigm. 

− An automatic method that allows inferring the number of sub-activities where the 

data should be clustered.  

− The proposed method suggests that the classifier recognizes 80 % of the labels, and 

we achieved reliable results according to what is written in the literature.  

 

This work is organized as follows. Firstly, a methodological section describes the detail of 

each component and the validation process. Secondly, a section presents how the 

methodology's performance is evaluated and quantified. Lastly, a section describes the 

conclusion and further discussions of this research. 

 

 

2. MATERIALS AND METHODS 

 

The methodology has three stages: search to extract the information from the sensors, 

descriptor calculation about the data, and relevant feature analysis of the compiled 

information. The second stage classifies the activity execution into micro-movements 

(primitive movements), and the last step codifies sequences for activity detection. Figure 1 

shows the methodological process implemented in this work. The methods and instruments 

that conform to the methodology are described as follows. 

 
2.1 Database 

 

For this work, we used the database supplied by [1]. We selected this database because it 

provides a synchronized register of the three-movement measure devices mentioned before 

(Kinect®, EMG, IMU). Also, it allows a comparison with the methods proposed by [1]. This 

database recollects information from 8 users of the different physical and accommodates five 

physical activities where 15 articulated points measure the action (see Figure 2). While the 

Kinect activity is being recorded, samples from the IMU and EMG sensor networks are being 

acquired in parallel. Figure 2 shows the block diagram that resumes the building process of 

the database. The following link: https://sites.google.com/a/utp.edu.co/human-activity-

recognition-database/human-activity-recognition-database-with-kinect-imus-and-emgs. 

 
2.2 Dimensionality Analysis of the Sensors and Joint Points 

 
In this section, we discuss the method to process the data through the statistic descriptors 

to parameterize the information given by each articulated point in a feature set that replaces 

the information recollected by the instruments. It is essential to clarify the new data space 

is redundant. Therefore, a dimensionality analysis is introduced to establish the minimum 

feature set, stabilizing the primitive movement classifier’s performance [19]−[21]. 
 

 
Figure 1. Graphic of the activity recognition process. Source: Created by the authors. 

https://sites.google.com/a/utp.edu.co/human-activity-recognition-database/human-activity-recognition-database-with-kinect-imus-and-emgs
https://sites.google.com/a/utp.edu.co/human-activity-recognition-database/human-activity-recognition-database-with-kinect-imus-and-emgs
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Figure 2. Components of the database. Source: Created by the authors. 

 
2.3 Feature Extraction 

 
For each sensor, the feature set is extracted inside an observation window proposed by [1], 

which has a time of 3 seconds. For the Kinect®, a collection of normalized articulated points 

Ψ is used (i.e. Ψ ̂), then, these are transformed in polar coordinates obtaining the vector Pi. 

It was previously highlighted the data is normalized concerning the torso. Additionally, 

the average m and standard deviation v are calculated on each set of 𝑖, which allows for 

building the descriptor (1). 

 
𝐊𝐈𝐓𝑖 = [𝜌1 𝜌2 𝜌3 𝑚𝑥 𝑚𝑦 𝑚𝑧 𝑚𝑟 𝑚𝜃 𝑣𝑥 𝑣𝑦 𝑣𝑧 𝑣𝑟 𝑣𝜃]  (1) 

 
Where 𝑖 corresponds to the i-th join point of the Kinect®, therefore, the set of 𝑖 ∈ {1,2 … 𝑖} 

computes the vector KITF as the link of all the 𝑲𝑰𝑻𝑖. Analogously, for each 𝐼𝑘, the physical 

parameter of the human movement and the statistic movements provided by [1] are 

computed. The computation delivers the vector (2). 

 
𝑰𝑴𝑼𝑘 = [𝑚𝑎𝑥 , 𝑚𝑎𝑦, 𝑚𝑎𝑧 , 𝑚𝑎𝑟 , 𝑚𝑎𝑝, 𝑣𝑎𝑥 , 𝑣𝑎𝑦, 𝑣𝑎𝑧, 𝑣𝑎𝑟 , 𝑣𝑎𝑝, 𝐴𝐼, 𝑉𝐼, 𝑆𝑀𝐴, 𝐸𝑉𝐴3×1, 𝐴𝐴𝐸𝑥 , 𝐴𝐴𝐸𝑦, 𝐴𝐴𝐸𝑧 , 𝐴𝐴𝐸𝑟 , 𝐴𝐴𝐸𝑝 , 𝑀𝐼1×3]

1×24
  (2) 

 

Thus, for the set of 𝑘 ∈ {1,2 … 𝑘}, the concatenation provides, as a result, the descriptor 

𝑰𝑴𝑼𝑘 (3). 

 

𝑰𝑴𝑼𝑭 = [𝐼𝑀𝑈1 𝐼𝑀𝑈2 𝐼𝑀𝑈3 𝐼𝑀𝑈4] (3) 
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For the EMG sensors, the physical activity of four human muscles is captured, delivering 

the 𝑬𝑴𝑮𝑗, where j is the j-th sensor. 𝑬𝑴𝑮𝑗 is segmented to distinguish every primitive 

movement. For each primitive motion, we calculate the Wavelet transform, with a 

Daubechies configuration, with thirty-five orthogonal coefficients and six levels, generating 

the descriptor 𝑬𝑴𝑮𝑭. We chose this descriptor because it is the same as the one used in [1], 

the state-of-the-art method we compare ourselves. 

 

2.4 Dimensionality Reduction Analysis 

 

In this stage, the most relevant features are determined to ease the clustering process of 

primitive motion identification. We use the Principal Component Analysis (PCA) and ReliefF 

methods to make this possible. The former reduces the feature space size by selecting the 

attributes with the most critical database information. We find crucial information by 

determining the direction with the highest variance of the sample space [20]. Meanwhile, 

ReliefF is applied to select the most relevant sample. This is done by detecting the conditional 

dependence between attributes. ReliefF is an extension of the Relief algorithm used in 

multiclass classification problems [22], [19].  

These methods are selected by the sturdiness presented in multiclass problems and 

dealing with data at a substantial noise level. Figure 3 shows a block diagram that explains 

the dimension reduction process done by the data provided by the database where 𝐾𝐼𝑇𝐹(𝑎), 

𝐼𝑀𝑈𝐹(𝑎), 𝐸𝑀𝐺𝐹(𝑎), correspond to the reduced space of features. 

 

2.5 Primitive Motion Detection 

 

Activity recognition can be divided into sub-activities or primitive movements. The goal 

is to divide each activity in a time window (establishing the primitive motions), generating a 

sequence that allows building a model for activity recognition. This will enable us to generate 

a unique code that provides a discriminating factor for the classification of the activity, as 

shown in Figure 4. 

 

 
Figure 3. Block diagram of the characteristic dimensionality analysis process 

Source: Created by the authors. 
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Figure 4. Primitive movement and time window. Source: Created by the authors. 

 

It is important to note that each window does not obey a posture but a submovement. In 

addition, for sensor modalities where it is impossible to determine the visuality of a body 

posture, as is the case for IMU and EMG sensors, we assign the label based on the 

information provided by the Kinect®’s sensor. This is possible because the sensors are 

synchronized in their capture (See Figure 5). The primitive movements chosen in this work 

are 1- Repose, 2- Half Crouches, 3- Fully crouching, 4- Suspended in mid-air (1/2), 4-Raise 

hand (1/4), 5- Raise hand (3/4), 6- Move right leg forward, and 7- Move left leg forward. 

The micro-movement identification is achieved by combining an unsupervised learning 

technique (Spectral Clustering) with a supervised learning technique (SVM). The fusion of 

the former is done by estimating the labels of the unknown primitive motions, yet they are 

needed to train the supervised model. The latter emulates the codification of the activities. 

It is important to clarify how the primitive movement classification includes an 

instrument that allows for correcting the issues in building the database. In this situation, a 

proportion of the reduced space {𝐾𝐼𝑇𝐹(𝑎), 𝐼𝑀𝑈𝐹(𝑎), 𝐸𝑀𝐺𝐹(𝑎)} does not have any associated 

label {𝐾𝐼𝑇𝐹(𝑛𝑢𝑙𝑙), 𝐼𝑀𝑈𝐹(𝑛𝑢𝑙𝑙), 𝐸𝑀𝐺𝐹(𝑛𝑢𝑙𝑙)}, while the remainder are known 

{𝐾𝐼𝑇𝐹(𝑓𝑢𝑙𝑙), 𝐼𝑀𝑈𝐹(𝑓𝑢𝑙𝑙), 𝐸𝑀𝐺𝐹(𝑓𝑢𝑙𝑙)}, therefore, the features on the simplified plane 

{𝐾𝐼𝑇𝐹(𝑛𝑢𝑙𝑙), 𝐼𝑀𝑈𝐹(𝑛𝑢𝑙𝑙), 𝐸𝑀𝐺𝐹(𝑛𝑢𝑙𝑙)} are processed by an unsupervised model that searches to 

infer the unknown labels, so the Spectral Clustering technique is applied [23]. Notice how 

this paradigm does not require a priori assignation of the labels from the sub-movements. 

Thus, the identification of data groups is performed by the similarity of the 

samples. When the method assigns the distinctive set from 

{𝐾𝐼𝑇𝐹(𝑛𝑢𝑙𝑙), 𝐼𝑀𝑈𝐹(𝑛𝑢𝑙𝑙), 𝐸𝑀𝐺𝐹(𝑛𝑢𝑙𝑙)}, they combine with other known groups, completing the 

training data set for the supervised model (SVM). 

 

 
Figure 5. Block diagram model for primitive movement detection. Source: Created by the authors. 
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2.6 Compute of Clusters Number 

 

In other words, the procedure is explained as follows, in the first place, the number of 

primitive motions (∁) is determined, the physical activities should be divided, and the 

previous process is done by spectral clustering (see Figure 5). 

This process is performed by the data set of the joint points. The goal is to build a similar 

graphic based on the Ng-Jordan-Weiss algorithm for spectral clustering. The algorithm uses 

a Gaussian kernel given by (4) as a scale factor 𝜎2 to calculate an affinity matrix 𝐴 ∈  ℜ𝑛×𝑛 

where 𝐴𝑖𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) with 𝑖 ≠ 𝑗 which 𝐴𝑖𝑖 = 0. Then, from 𝐴 the affinity matrix 𝐿 is built, i.e., 

a place where the inputs are normalized, the data is similar to each other if they are at a 

maximum distance of [−1 1], i.e., the process establishes how similar 𝑥𝑚 is concerning 𝑥𝑑 

evaluating 𝑘(𝑥𝑚, 𝑥𝑑), so if it is close to 1, the data is clustered to its assigned ∁ ; otherwise, 

set us a zero. Measurements 1 and -1 are dimensionless and therefore have no units. 

Finally, these values are normalized by computing the matrix 𝛹 , and then, the matrix is 

represented in a graphic. Therefore, the number of primitive motions suggested for the data 

is visualized. Calculating 𝜎2 is inferred, as shown in [23]. It is important to clarify that giving 

a complete explanation of the Jordan-Weiss is too extensive for this article. Therefore, the 

reader could search in [24] and [23] for more details. 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (
−‖𝑥𝑚 − 𝑥𝑑‖2

2𝜎2
) (4) 

 

2.7 Activity Recognition 

 

For activity recognition, shown in Figure 2, we put a data fusion module that centralizes 

the information supplied by primitive motion detection. A Hidden Markov Model (HMM) is 

applied as an activity classifier. This methodological instrument is shown in Figure 6. 

 

2.7.1  Data Fusion 

 

In this stage, the labels that model the activity for each sensor modality are fused. It is 

important to note the information measured by the sensors is found in different frequencies. 

Hence, it is necessary for a module that gathers the data before applying the HMM.  

 

 
Figure 6. Physical activity recognition block diagram. Source: Created by the authors. 
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To sum up, a feature vector EF is generated to linearly concatenate the set of labels 

delivered by the support vector machine during an observation window of 3 seconds, shown 

in the following structure (5). 

 

𝐸𝐹 =  [{𝐸𝐾1 𝐸𝐾2 … . . 𝐸𝐾20 } {𝐸𝐼1 𝐸𝐼2 … … 𝐸𝐼24}{𝐸𝐸1 𝐸𝐸2 … … 𝐸𝐸27}] (5) 

 

2.7.2  Hidden Markov Model Classifier 

 

The HMM training uses 24 states and 32 centroids to build the codebook, and this process 

chooses the best-performing model after achieving 100 iterations. To evaluate the 

performance of the trained model, we use a cross-validation strategy, which divides the 

database into 70 % for training and 30 % for evaluation in 100 iterations of Montecarlo 

experiments. The average, variance, confusion matrix, and index calculation compute the 

statistics acquired by the experiments. For every test, the success percentage average will be 

reported for each class defined by this paper. 

 

2.8 Experiments 

 

The experiments achieved in his work are approached from different parts. First, the joint 

points are analyzed by applying ReliefF and PCA, allowing the most relevant information of 

the sensor coordinates to be inferred (a color diagram is used as a representation scale 

graphic). This enables unlabeled samples to be grouped through similarity analysis and is 

represented graphically. We perform this procedure graphically by analyzing the values of 

the covariance function defined in (4), assuming the value 𝜎2as an initial value of 0.3. When 

the number of appropriate sets for the data is identified, we evaluate the percentage of 

supervised labels required by primitive movement detection. 

Then, we proceed with a cross-validation experiment to measure the SVM performance 

by changing the portion of a priori labels (from 10 % to 100 %), i.e., we change the 

participation of the known labels vs the unknown labels. Therefore, the model performance 

of the primitive movement classification is evaluated. It is essential to clarify the test seeks 

to establish the number of known stances by the SVM to divide the primitive motions 

properly. This process is done by calculating the average success concerning the number of 

samples classified a priori by the SVM, i.e., we establish the model capacity to recover the 

unknown labels by evaluating the accuracy for a different proportion of the unlabeled data. 

These results will be displayed in bar charts and tables for different sensors used in this 

work. Also, we include the performance results by considering the different sensor 

modalities. These results are shown in confusion matrices using color diagrams. For physical 

activity In Recognition, the results are similarly displayed. 

However, we compute the impact by fusing different modes for physical activity 

identification. The results are compared to those presented in [1]. To make the SVM training 

clear, we set a Gaussian kernel with a radio of (𝜏) 1 ×  10−4 and the model is trained by a 

Sequential Minimal Optimization (SMO) algorithm [25]. On the other hand, we clarify the 

value 𝜏 corresponds to an initial value [26], which is defined by a searching grid through a 

Montecarlo experiment. 
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3. RESULTS AND DISCUSSION 

 

Figures 7 and 8 show the relevant distribution graphic for each joint point sampled by the 

Kinect®, IMU, and EMG sensors, according to the ReliefF and PCA techniques. The yellow 

points bring the most relevant information (100 %), while the blue points give the least 

relevant information (0 %). Figure 7 exposes that using the ReliefF technique, the main 

features are stored in the arms and hands, while the PCA technique (Figure 8) shows the 

relevant information presented in the legs. Finally, we establish ReliefF technique offers 

better results than PCA by bringing reliable information and using fewer joint points. 

 

 
Figure 7. Performance for each sensor modality using ReliefF method. 

Source: Created by the authors. 

 

 
Figure 8. Performance for each sensor modality using PCA method. Source: Created by the authors. 
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The results of the similarity analysis are shown in Figure 9 (a, b, c) for each kind of sensor 

(Kinect®, IMU, EMG). The Kinect®’s Graphic (Figure 9 (a)) presents the information 

clustered in different sets, where this could build 5, 6, or 7 clusters, but it is unknown which 

cluster gives the most reliable classification results.  

The same happens with the IMU sensor network (Figure 9 (b)). Finally, the sampled data 

by the EMG sensors (Figure 9 (c)) displays complete overlap, which generates a hypothesis 

that the data capture was inaccurate or required more EMG sensors to track the primitive 

motions correctly. 

Given the last situation where the number of clusters is uncertain, cross-validation, the 

process with the SVM is performed by changing the number of sets and calculating the 

average performance for 200 iterations of Montecarlo. The results of this testing show that 7 

clusters have the best performance (see Figure 10). The previous test is based on the low 

dispersion and more competitive average performance against the other settings. It is crucial 

to notice the goal is to compute the number of sets that enhance the performance of the 

primitive motions classifier because they suggest a searching restricted space automatically 

inferred and not being defined by a prior or by an expert. 

 

 
(a) (b) (c) 

Figure 9. Similarity graph. a) Kinect® b) IMU y c) EMG. Source: Created by the authors. 

 

 
Figure 10. SVM’s Classification performance with 5, 6, and 7 clusters. Source: Created by the authors. 
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Figure 11 shows the results of the accuracy percentage calculation and standard deviation 

for a Montecarlo experiment by considering seven clusters. This proves by adding more 

supervised labels, the system is stabilized, and the dispersion is decreased (see Figures 11 

(a) and (b)). 

The previous process allows us to infer a suitable percentage of labels happens when the 

standard deviation is stable, so the recognition process requires 80 percent of a priori samples 

for Kinect® and IMU modalities. Meanwhile, the EMG sensors require using 100 % of labels, 

i.e., they need a supervised method for this kind of modality (see Figure 11 (c)). Then, the 

primitive movement detection performance is verified. 

Figure 12 shows the success percentage for seven primitive motions by choosing 80 % of 

the supervised labels. It shows a reliable performance for primitive motion detection, 

comparable with state-of-the-art methodologies. However, the EMG sensor only reaches an 

efficiency of 58.57 % ± 20.15 % despite having 100 % of the a priori labels. This behavior 

happens for the overlap of the samples in comparison with the other kind of sensor. 

Since the performance of primitive movements is consistent, we perform physical activity 

recognition using the HMM. The set of labels 𝐸𝐹 are computed by the models that emulate 

the primitive movement codification (see Figures 10 and 12). Figure 13 presents the physical 

activity classifier’s performance along with the fusion sensors modality, Kinect®, IMU, and 

EMG, assuming seven primitive movements have better results than 6 (see Figure 10). Also, 

the Kinect® sensor has better average performance for classes 1, 3, and 4. IMU Sensor has 

high average efficiency for classes 2 and 5. Besides, it shows the best total performance 

average. 

Figure 14 displays the activity classification results considering all fusion modalities: 

Kinect®+IMU, IMU+EMG, Kinect®+EMG, and Kinect®+IMU+EMG. In Figure 14, we show 

the sensor modality, Kinect®+IMU, delivers the best average performance for class 1 (along 

with the modality, Kinect®+IMU+EMG), 2, 3, and 5; also, it has the best total average. 

Meanwhile, IMU+EMG fusion only has the best average performance for class 4. 

The results in Figure 14 suggest uncertainty levels greater than 5 %. This phenomenon 

occurs due to the variability induced by the EMG modality (see IMU+EMG and 

Kinect®+EMG). In both fusions, the classifier is confounded (see Figure 14). Although EMG 

reduces classifier performance, note how the fusion method improves the performance 

provided by electromyography. This implies that sensor fusion helps to strengthen the 

individual weakness of each modality and increases classification performance. The above 

indicates that the EMG modality should not be included since the variability of the fusions 

is less or similar for the Kinect® and the IMU (comparing the standard deviation of 

classes 1, 2, and 5). 

On the other hand, the performance of the Kinect®+IMU and Kinect®+IMU+EMG 

fusions is interesting because it improves the stability in the classification, allowing all 

classes to present detection with greater than 89 % accuracy. Note that the fusion of the three 

types of sensors does not show the best hit performance due to the instability presented by 

the EMG modality. This implies that future research is required, in which other forms of 

description are explored, as well as the inclusion of an EMG sensor network with more 

sensing points. Although this research is required, the results demonstrate the fulfillment of 

our hypothesis. This focuses on the primitive motions classification without labels and the 

competitive performance of the method with other developments in the literature. Finally, 

we compare the results of this work with another state-of-the-art methodology, such as [1]. 
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(a) 

 
(b) 

 
(c) 

Figure 11. (a) Kinect’s Performance, (b) IMU’s performance, and (c) EMG’s performance for percentage 

variation of samples a priori labeled by the SVM. Source: Created by the authors. 
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Figure 12. Primitive movement recognition. Source: Created by the authors. 

 

 
Figure 13. Physical activity recognition. Source: Created by the authors. 
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Figure 14. Effectiveness of the fused sensors and their tolerance 

Source: Created by the authors. 

 

We chose this work because it uses a supervised classification strategy for primitive 

motion detection, which allows us to test the performance and hypothesis of this 

research. Table 1 shows that the supervised method performs similarly to the unsupervised 

method. However, the supervised system evidence is in lower deviation; this is observed in 

the mergers, IMU+EMG, Kinect®+EMG, and Kinect®+IMU+EMG. The above information 

suggests that the overlap between the EMG database samples hinders the performance of 

the semi-supervised learning methodology for labeling activities. Although our method has 

lower performance, its hit rate is competitive, which makes it attractive for this type of 

application. 

Also, Table 1 evidence the difference in the standard deviations between both 

methods. Note that merging with EMG results in lower accuracy of the semi-supervised 

algorithm in labeling the activities. This is due to the uncertainty built in each Montecarlo 

experiment cycle to evaluate the performance of the unsupervised learning technique 

because it implies changing the selection of the 80 % of the labels in each test, developing 

fake classifications of micro-movement that impact the physical activity detector’s 

Performance (HMM). Although the result is lower, the Kinect + IMU and Kinect+IMU+EMG 

mergers present competitive results, demonstrating the usefulness of this method. The 

previous is an advantage for the field since fewer labels are required to classify the same 

activities, translating into less time to train the model and possible costs in labeling the 

database. 

 
Table 1. Performance comparison of physical activity recognition between the semi-supervised  

and supervised learning models. Source: Created by the authors. 

Sensor mode KINECT+ IMU IMU + EMG KINECT+ EMG KINECT+ IMU + EMG 

Semi-supervised 

learning model 
(96.69±5.02) % (89.16±15.29) % (91.19±11.96) % (95.91±6.14) % 

Supervised 

learning model 
(98.03±2.32) % (97.60±2.55) % (95.14±3.59) % (98.04±2.31) % 
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4. CONCLUSIONS 

 

This work presents a methodology that classifies human physical activity through a semi-

supervised learning approach; this process defines an automatic method that allows 

computing the number of micro-movements where the physical activity should be divided 

and looking at the results from Figure 10. This parameter affects the performance and 

stability of the SVM. On the other hand, the results in Figure 11 show the robustness of the 

SVM method for the primitive motions classification when the percentage of known labels is 

close to 80 %. The previous process is due to the average performance, and uncertainty is 

similar to a supervised learning approach, i.e., the performance is statistically overlapped.  

The results in Table 1 suggest a supervised learning procedure is more stable concerning 

unsupervised learning due to the lower dispersion, and this behavior prevails for all the 

sensor modalities presented in this article. However, the results from the fusion of 

Kinect+IMU and Kinect+IMU+EMG show similar behavior for both strategies. This suggests 

that the semi-supervised approach is competitive for physical human activity classification 

against the unsupervised one under these modalities. These results are shown in Figure 14, 

where the fusion from some sensor modalities (Kinect+IMU) achieves high average 

performance and stabilizes the uncertainty values for action recognition. 
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