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Neurorehabilitation effective delivery for stroke is likely to be improved by establishing a mechanistic understanding of how to
enhance adaptive plasticity. Functional electrical stimulation is effective at reducing poststroke foot drop; in some patients, the
effect persists after therapy has finished with an unknown mechanism. We used fMRI to examine neural correlates of functional
electrical stimulation key elements, volitional intent to move and concurrent stimulation, in a group of chronic stroke patients
receiving functional electrical stimulation for foot-drop correction. Patients exhibited task-related activation in a complex network,
sharing bilateral sensorimotor and supplementary motor activation with age-matched controls. We observed consistent separation
of patients with and without carryover effect on the basis of brain responses. Patients who experienced the carryover effect had
responses in supplementary motor area that correspond to healthy controls; the interaction between experimental factors in
contralateral angular gyrus was seen only in those without carryover. We suggest that the functional electrical stimulation carryover
mechanism of action is based on movement prediction and sense of agency/body ownership—the ability of a patient to plan the

movement and to perceive the stimulation as a part of his/her own control loop is important for carryover effect to take place.

1. Introduction

Stroke is one of the leading causes of adult disability [1].
Advances in acute treatment have led to improvements in
survival and so establishing effective rehabilitation strategies
has become even more important. This process is likely to
be facilitated by establishing a mechanistic understanding
of how to use adjunctive therapies to augment standard
rehabilitation approaches.

Functional electrical stimulation (FES) is a commonly
used adjunctive therapy in the rehabilitation of stroke [2].
It is primarily used for the orthotic correction of foot drop,
but a proportion of patients relearn the ability to voluntarily
dorsiflex the ankle without the device [3]. This phenomenon,

referred to as the “carryover effect,” has been observed
in a number of subsequent studies [4, 5]. To date, the
mechanism of this effect is unknown, although it has been
hypothesised that an interaction between volitional effort and
the electrical stimulation of FES results in a neuroplastic effect
on the central nervous system [6-9]. However, the carryover
effect has been observed only in subgroups of neurological
patients and the characteristics of those with and without FES
carryover are not clear.

In this work, we used functional magnetic resonance
imaging (fMRI) to examine the neural correlates of the key
ingredients of FES, namely, volitional intent to move and
concurrent electrical stimulation, in a group of chronic stroke
patients receiving FES treatment for foot drop. We were then



interested to see whether brain activity during movement
or stimulation (or the interaction between the two) before
FES treatment would have any value in predicting whether
individual patients would have a carryover effect on volitional
ankle dorsiflexion after removal of FES.

In healthy subjects, the interaction between volitional
movement and proprioceptive feedback occurs in primary
sensory and motor cortex [9]. We might expect to see
“normal” brain response to the elements of FES in those
with carryover and diminished responses in those without
carryover. However, sensorimotor systems are organised
differently after stroke particularly in primary and secondary
areas. The interaction (or lack of it) between volitional move-
ment and proprioceptive feedback might therefore occur
in nonprimary sensory (secondary somatosensory area, SII,
and posterior parietal cortex) and motor (lateral and medial
premotor cortex) areas. The sensitivity and spatial resolution
of fMRI allow us to make specific conclusions about the
cortical regions active during key elements of FES and to
investigate the likely neural mechanism of the carryover effect
following FES treatment.

2. Materials and Methods

2.1. Participants. Patients were recruited from the outpatient
and inpatient services at the Villa Beretta Rehabilitation
Centre (Costa Masnaga, LC, Italy). All patients had suffered
from first-ever stroke > 6 months previously, resulting in
weakness of at least the tibialis anterior muscle (to <4+ on
the Medical Research Council (MRC) scale [10]). Exclusion
criteria consisted of (i) less than 10° in FES-induced ankle
dorsiflexion; (ii) language or cognitive deficits sufficient to
impair cooperation in the study; (iii) inability to walk even
if assisted; (iv) high spasticity at ankle joint plantar flexor as
measured by the modified Ashworth scale index > 2 [11].

The age-matched control group was composed of healthy
volunteers with no neurological or orthopaedic impairment.
Their results have been fully reported previously [9].

Experiments were conducted with approval from the
Villa Beretta Rehabilitation Centre Ethics Committee and all
subjects gave informed written consent in accordance with
the Declaration of Helsinki.

2.2. Clinical and Instrumental Measures for Impairment
Assessment. Patients’ impairment at the time of recruitment
for this study was evaluated using a battery of clinical
and instrumental tests. In particular, they were evaluated
through a gait analysis test performed following the standard
Davis evaluation protocol [12] along with the correspondent
dynamic electromyography test and the 6-minute walking
test [13]. Moreover, they were scored by the clinician on the
MRC scale index at ankle dorsiflexion.

From these tests, a set of five outcome measures was
designed to assess different aspects of patients’ functional
condition:

(i) Gait velocity as measured during the gait analysis test.

(ii) Endurance velocity, as calculated during the 6-minute
walking test.
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(iii) Paretic step length as measured during the gait anal-
ysis test.

(iv) Tibialis Anterior Activation Index defined as the ratio
between the activity of the tibialis anterior muscle
between toe off and toe strike and that during the
whole gait cycle [14].

(v) MRC index [10].

Patients were trained 5 times per week for 4 weeks. Each
of these 20 sessions consisted of 30 minutes of walking
supported by a commercial electrical stimulator. Two com-
mercial devices were available at the Villa Beretta Rehabil-
itation Centre: Bioness L300 (Bioness Inc.) and WalkAid
(Innovative Neurotronics). Two stimulating electrodes were
placed superficially along the peroneal nerve to elicit tib-
ialis anterior muscle contraction during the swing phase
of gait. Swing phase was detected online by wireless heel
switches (Bioness) or by accelerometers (WalkAid). The more
suitable commercial device was selected for each patient
depending on his/her best responsiveness to stimulation, best
wearability, and reliability of swing phase detection. Current
stimulation amplitude was selected for each participant at
the beginning of each session so as to be able to elicit ankle
dorsiflexion during gait but at the same time to remain within
the tolerance level.

Impairment was evaluated at the time of recruitment for
this study (¢,: within 5 days before the start of the treatment)
and after the intervention (f,: within 5 days since the end
of the treatment) using the same battery of clinical and
instrumental tests.

The carryover effect was determined using a novel algo-
rithm based on variables minimum detectable change that
combines the outcome measures to obtain a unique parame-
ter, Capacity Score, where a higher Capacity Score indicates
higher residual ability. In particular, for each assessment
session, patients were assigned to a point in an n-dimensional
space, where n corresponds to the number of outcome
measures considered. The n-dimensional space was centred
on the outcome measures derived from healthy subjects, and
therefore the further away the patient is from the origin, the
more impaired he/she is. Moreover, the outcome variables
have been normalized with respect to the corresponding min-
imum detectable change. The difference in the n-dimensional
space between (i) the Euclidean distance of “subject zero” (a
patient that scores zero in all outcome measures, i.e., the most
impaired patient in our space) with respect to the origin (i.e.,
distance of the “subject zero” from the healthy control group)
and (ii) the Euclidean distance of each patient with respect to
the origin (i.e., distance of the “subject zero” from the healthy
control group) is defined as Capability Score. The difference
between Capacity Scores at different timing (i.e., post-pre)
is thresholded to obtain carryover effect assessment. The
algorithm has been validated against clinical evaluation [15].

2.3. Experimental Setup. The experimental setup was com-
posed of 1.5 T MRI scanner (GE Cv/I), a motion capture sys-
tem (Smart pg; BTS), and an electrical stimulator (RehaStim
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proTM; HASOMED GmbH), as previously described and
validated [16, 17].

2.4. Experimental Design. A 2 x 2 event-related fMRI design
was carried out. Experimental factors were (i) volitional
intention to perform ankle dorsal-plantar flexion (ADF) [V:
with the levels “volitional” and “passive”] and (ii) FES [F:
with the levels “present” and “absent”]. Each patient was
instructed to execute the protocol with the plegic ankle.
During a continuous 10-minute scanning session, subjects
performed 20 alternate 9-second OFF and 21-second ON
blocks. The 4 conditions that constituted our factorial design
were performed during the ON blocks in a semirandomized
order: (i) FV: attempted voluntary ADF with concurrent FES-
induced ADF; (ii) FP: FES-induced ADEF, with no attempt
to move the ankle; (iii) V: voluntary ADF without FES; (iv)
P: passive dorsiflexion (by the experimenter) of the subject’s
ankle without FES. Subjects were specifically instructed to
remain completely relaxed during FP and P conditions and to
equally voluntarily contribute during V and FV conditions.
Dorsiflexion was paced every 3.5 seconds (for 6 repetitions
within a block) with an auditory cue (i.e., movement rate
0.3Hz) [18]. The auditory cues were presented through an
earphone. Prior to scanning, subjects practiced the protocol
until being comfortable with the task; the experimenter was
assisting the training to check the correct execution of the
protocol and equate effort across subjects. All subjects were
free to choose the amplitude of their active movement to
preclude fatigue. Indeed, Ciccarelli and colleagues [18] did
not find any effect of movement amplitude (10°-55°) on
magnitude or pattern of brain activity, suggesting that if the
movement does not have any external reference and it is self-
paced, there is no difference due to amplitude in associated
cortical activity. Subjects were instructed to keep eyes closed
and head movements were minimized with rubber pads and
straps. To ensure minimum transmission of movements to
the head, knees were bent with the subject’s legs lying on a
pillow.

2.5. FES Stimulation Paradigm. Functional electrical stim-
ulation was applied to the peroneal nerve through superfi-
cial self-adhesive electrodes, with biphasic balanced current
pulses at 20Hz fixed frequency. The pulse width had a
trapezoidal profile (maximum pulse width 400 us) and the
current amplitude was set subject by subject so as to produce
ADF movement, within the tolerance threshold. Current
amplitude and pulse width were kept the same for both FP
and FV conditions.

2.6. Images Data Acquisition. A GE Cv/I system, operating
at 15T, was used to acquire both Tl-weighted anatomical
images (0.94 x 0.94 x 4 mm voxels) and T2"-weighted MRI
transverse echo-planar images (1.8 x 1.8 x 4 mm voxels, TE =
50 ms) with blood oxygenation level dependent contrast.
Each echo-planar image comprised 22 contiguous axial slices,
positioned to cover the temporoparietal and occipital lobes,
with an effective repetition time of 3 seconds per volume.
Due to technical reasons, it was not possible to acquire

the cerebellum. The first six volumes were discarded to allow
for T1 equilibration effects. A total of 200 brain volumes were
acquired in a single run lasting 10 minutes.

2.7. Kinematic Measures and Analysis. A motion capture
system previously validated for recording during scanning
allowed us to record 3D trajectories of retroreflective markers
to measure the ankle angle during fMRI acquisitions and
to determine the movement onset for event-related fMRI
time series analysis. Two separate acquisition sessions were
performed. The first was a static acquisition performed before
the scanning, but while lying in the scanner, to estimate the
coordinates of the medial and lateral malleoli for both lower
limbs. During the static acquisition, a plate with 3 markers
was placed on each tibia and 4 sticks with two markers each
were placed on the four malleoli. The relative positions of
the malleoli with respect to the plates (i.e., left and right
plates) were computed and the transformation matrices were
estimated under the assumption that tibia and malleoli were
rigidly connected. The second acquisition, dynamic acquisi-
tion, was performed during the fMRI scanning. Only the two
plates on the tibia were used to estimate the tibia 3D position
and the malleoli. Four additional markers were placed over
the four metacarpi. Markers were always visible during ADF
for all different conditions. The sampling frequency was set at
120 Hz.

Markers trajectories were analysed with a custom algo-
rithm running in Matlab (MatlabR2010b) to obtain onsets
and amplitude of ADF movements. In particular, for each
leg, the ADF angle was calculated as follows: the mean points
between the medial and lateral malleoli (mean malleolus) and
between the medial and lateral metacarpi (mean metacarpus)
were calculated. The ADF angle was taken as the angle
between the line passing through the more proximal tibial
marker and the mean malleolus and the line passing through
the mean malleolus and the mean metacarpus [9].

2.8. fMRI Data Preprocessing. Imaging data were analysed
using Statistical Parametric Mapping (SPM8, Wellcome
Department of Imaging Neuroscience, http://www.fil.ion.ucl
.ac.uk/spm/) implemented in Matlab (MatlabR2010b). A skull
stripping procedure, on the structural image for each subject,
was performed to improve the coregistration of functional
and structural images. Participants with right-sided infarcts
(left-leg weakness) were flipped about the midsagittal line,
such that all subjects were considered to have left-sided
infarcts. All fMRI volumes were then realigned and unwarped
to suppress task-related motion artefacts [19]. Realignment
parameters were assessed for excessive motion after unwarp-
ing procedure. A threshold of 4 mm in translation and 5°
in rotation was applied [20]. The skull stripped structural
image was then coregistered to the mean image of the
functional realigned volumes and segmented. The spatial
normalization transformation (to the Montreal Neurological
Institute (MNI) reference brain in Talairach space [21]) was
then estimated using the segmented structural image. The
structural image and functional volumes were normalized
and resampled to 2mm x 2mm X 2 mm voxels. Functional



normalized images were then smoothed with an isotropic
8 mm full-width half-maximum kernel [22]. The time series
in each voxel were high pass filtered at (1/128) Hz during
subsequent modelling to remove low frequency confounding
factors.

2.9. Statistical Analysis. Statistical analysis was performed in
two stages using the standard summary statistic approach.
In the first stage, functional images were analysed separately
for each patient. We were interested in the analysis of brain
regions active during each condition, (i) FV, (ii) V, (iii)
FP, and (iv) P, as well as (v) their interaction, defined as
(FV-V) versus (FP-P) which identifies regions in which the
effect of FES is modulated by the presence or absence of
volitional intent. From the kinematic measures, two ADF
covariates were defined for each condition: onsets and
amplitude covariates. All ADF onsets belonging to the same
condition were defined as a single event type and modelled as
delta functions in the corresponding stimulus function. The
amplitude covariate was defined as a delta function scaled by
the actual amplitude of each ADF for each condition, and it
was mean corrected and orthogonalised with respect to the
corresponding onset covariate [23]. All onset and amplitude
stimulus functions were then convolved with a canonical
hemodynamic response function, together with its temporal
and dispersion derivatives [23], and used as regressors in
a general linear model of the observed fMRI time series.
Linear contrasts of parameter estimates were generated for
each subject (i.e., contrast images) and used for the creation
of statistical parametric maps at the second (between-subject)
stage.

In the second stage, the following analyses were per-
formed:

(i) One-sample t-tests were performed using appropriate
contrast images for each condition to investigate the
main effects of each condition in the stroke group.

(ii) Two-sample ¢-tests using appropriate contrast images
for each subject were performed to examine the
differences between patients and control subjects
groups for each condition. Conjunction analyses (i.e.,
two separate null hypotheses to be contemporarily
denied) were performed between groups for each
condition to determine common activation.

(iii) Contrast images were entered into a regression analy-
sis with subject-specific values for the carryover effect
to investigate whether there are any areas in which
pretreatment brain activity (in any of the conditions)
correlates with the subsequent carryover effect of each
patient.

Results of all second-stage analyses were thresholded at
p < 0.05 corrected for multiple comparisons within specific
regions of interest (ROIs). Our predefined area of inves-
tigation included the following seven areas bilaterally: leg
primary motor (M1) and sensory (S1) cortices, secondary
somatosensory area (SII), parietal rostroventral area (PR),
supplementary motor area (SMA), premotor cortex (PM),
and angular gyrus (AG). In particular, our predefined area of
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investigation included the following seven areas bilaterally:
leg primary motor (M1) and sensory (S1) cortices, secondary
somatosensory area (SII), parietal rostroventral area (PR),
supplementary motor area (SMA), premotor cortex (PM),
and angular gyrus (AG). Contralateral primary sensorimotor
cortex (i.e., Ml, S1) is the primary site of ADF control, and it
has been shown to be the site of interaction between volitional
intention and FES in healthy controls [9]. In turn, ipsilat-
eral primary sensorimotor cortex has been demonstrated
to be active for poststroke patients while executing simple
motor tasks [24]. The two secondary somatosensory areas
(cSIL, i cSII) have been selectively linked to proprioceptive
processing and integration [25], attention to proprioceptive
stimuli [26], painful and nonpainful stimulus processing
[27], and complex object manipulation [28]. Moreover, the
secondary somatosensory area has been demonstrated to be
active during stimulation nonselectively [9] and selectively
[7] with respect to voluntary effort in controls. PR areas have
been identified as potential sites of sensorimotor integration
[25] by virtue of their anatomical connections with premotor
and primary motor cortices [29]. PR area has been shown
to have an activation pattern similar to SII and so might
have a similar role in processing sensorial stimuli [9, 25].
Bilateral premotor and supplementary motor areas are a
highly consistent finding after stroke during simple motor
tasks execution [30]. Right AG has been demonstrated to
be the site of self-representation of movement [7, 31], and
it has been demonstrated to be more active during passive
than active FES. Moreover, AG has been suggested to be
the recipient of proprioceptive information encoded in the
postcentral gyrus [32].

Based on previous work, ROIs were defined as follows
using the MNI coordinates system. Primary motor (MI) and
primary sensory cortices (S1) were defined as 10 mm spheres
centred, respectively, on [x = 6, y = —28,z = 60] and [x =
+4, y = —46, z = 62] [33]; bilateral secondary somatosensory
cortices (SII) as 10 mm spheres centred on [x = +58; y = —27;
z = 30] [7, 34]; PR as 10 mm spheres centred on [x = +54;
y = —13; z = 19] [25]; SMA and PM were defined as
15 mm spheres centered, respectively, on [+20;-8;64] and
[£8; -6;64] [34]. AG was anatomically defined using the
WFU PickAtlas [35]. Anatomical attribution was performed
by carefully superimposing the maxima of significant effects
both on the MNI brain and on the normalized structural
images averaged across all subjects and then labelling with
the aid of the atlas of Duvernoy [36].

3. Results

3.1. Participants. The healthy control group was aged
between 22 and 61 years [mean (standard deviation): 36 (14)
years], comprising 8 male and 9 female subjects. Fourteen
poststroke patients were recruited [range: 19-64 years, mean
(standard deviation): 44 (14)], comprising 8 male and 6
female subjects. There was no significant difference between
the groups in terms of age (p = 0.15). Patient characteristics
along with the degree of functional recovery at the time of
scanning as measured by the selected outcome measures are
listed in Table 1.
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FIGURE I: The site of cerebral infarction as determined from the T1-weighted structural MRI. *: patient with FES carryover (responder); *:

patient with no FES carryover (i.e., nonresponder).

For eight patients, stroke resulted in left hemiparesis and
for six in right hemiparesis. The site of cerebral infarction was
determined from the T1-weighted structural MRI (Figure 1).

The carryover effect was not predicted by age, sex, side of
the lesion (i.e., right/left), time since stroke acute event, the
baseline impairment, and the type of device used for training,
as determined by multiple linear regression.

Ten out of the fourteen patients completed the FES-
based rehabilitation treatment, receiving the same dosage of
therapy, and so we were able to assess the carryover effect
in only a subgroup of participants (Table1). A follow-up
assessment was planned for all patients one month after
the end of the treatment to check for long-term effects of
carryover. Six patients were available for this extra visit, and
the carryover effect presence/nonpresence was demonstrated
to be stable for all patients but for one where the effect was
no longer present [15]. The patients that did not complete
the treatment/assessment were outpatients, and they discon-
tinued the treatment for personal reasons, mainly linked to
difficulties in logistically managing an everyday treatment in
clinic or managing a further travel.

3.2. Kinematic Measures. Mean ADF amplitude across sub-
jects along with its standard deviation for V condition was
18°+ 11°, for FV condition 20°+ 11°, for FP condition 18°+ 11°,
and for P condition 21"+ 13°. All ADF angles for all subjects
were within the 10°-70° interval [18].

3.3. Images Analysis. All controls and patients were able to
perform the task adequately. No subjects displayed mirror
movements at bedside observation or when performing the
motor paradigm outside the scanner. However, a number
of patients did exhibit synergistic contralateral ankle dor-
siflexion during motor paradigm execution in the scanner
(Table 1). However, a linear regression analysis with mirror
movements (i.e., present/absent) as independent categorical
variable and carryover effect as dependent variable demon-
strated the independence of the two elements (p value =
0.4860).

Realignment parameters were assessed for excessive
motion after unwarping procedure, and the maximum trans-
lational displacement was 0.27 mm in all directions and the
maximum rotational displacement was 0.0029°.
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FIGURE 2: Activation maps for the experimental conditions. Regions active during each experimental condition (i.e., V, FV, FP, and P) in
the controls and patients groups separately, as well as the conjunction analysis, and comparison between patients and controls. Statistical
parametric maps (thresholded at p < 0.001, uncorrected for display purposes) showing regions activated in the four conditions using a
maximum intensity projection format.

Figure 2 shows brain regions active during each condition (i) Patient group: as reported in Table 2, patients show
(i.e., V, FV, FP, and P) in the controls and patients groups sep- task-related activation in primary and secondary
arately, as well as the conjunction analysis, and comparison sensorimotor areas, in contralateral paracentral lob-

between patients and controls: ule [37], bilateral frontal cortex, cingulate gyrus,
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FIGURE 3: Brain responses in controls and patients groups in angular gyrus (AG). P: passive experimental condition; FP: FES passive
experimental condition; c: contralateral; i: ipsilateral.

precuneus, and supramarginal gyrus. AG area is only (iii) Prediction of carryover effect in patient group: in

activated by patients, ipsilaterally in FP condition, and
contralaterally shows an interaction between design
factors (i.e., volitional intention and FES).

(ii) Patients versus healthy controls: controls show clear

activation in all conditions in motor and somatosen-
sory areas known to be involved in ADF execu-
tion and in accord with previous studies [7, 9, 18],
as expected. Patients and controls primarily show
common activation in bilateral sensorimotor (all
conditions) and supplementary motor (for conditions
where volitional intention is present: FV, V) areas.
However, compared to the control group, patients
tend to overactivate right AG when there is no
volitional intention to move (i.e., FP, P conditions)
and left intraparietal sulcus during passive movement
(Figure 3).

those patients with carryover after FES, contralat-
eral SMA was more active during stimulation and
voluntary conditions (FV, V, and FP conditions),
and ipsilateral M1 was more active during voluntary
movement (V condition). In those without carryover
effect, we saw a greater interaction between factors,
that is, (FV-V) > (FP-P) in contralateral AG. By look-
ing at the response for the peak voxel for cSMA, iM],
and cAG areas (Figures 4(a)-4(c)), it can be seen that
patients who experienced the carryover effect have
responses in SMA and Ml that correspond to healthy
controls, whilst responses in these regions in patients
without carryover are diminished. Conversely, the
interaction between factors in contralateral AG is
seen only in those without carryover but not in those
with carryover or healthy controls. In other words,
we see quite consistent separation of those with and
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FIGURE 4: Separation of patients with and without carryover effect on

CE

the basis of the brain responses. Response for the peak voxel for

c¢SMA (a), cAG (b), and iMI(c) areas in patients who experienced/did not experience the carryover effect. (d) 3D representation of the

responders/nonresponders groups on the basis of brain responses. CE:

patients group with FES carryover (responders); non-CE: patients

group with no FES carryover (nonresponders); FV: FES with volitional contribution; INTER: interaction contrast; V: volitional ankle

dorsiflexion; SMA: supplementary motor cortex; M1: primary motor cor

without FES carryover on the basis of the brain
responses in these regions (Figure 4(d)). In particular,
those with FES carryover appear to have “normal”
responses, whilst those without do not.

4. Discussion

A prolonged carryover effect from FES is a desirable
rehabilitation outcome. Knowing who is most likely to

tex; AG: angular gyrus; c: contralateral; i: ipsilateral.

achieve this and how would be useful in a stratified rehabil-
itation strategy. The motivation for this study was therefore
to explain how a peripheral stimulus can facilitate long-term
motor relearning (i.e., FES carryover) after a lesion in the
central nervous system [6, 38]. It has been suggested that the
mechanism of FES carryover is central in origin [6], but this
has never been tested in neurological patients. In this study,
we have used functional brain imaging to examine brain
responses to key components of FES (electrical stimulation
and attempted volitional movement, both separately and
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TABLE 2: Brain regions activation.
MNI coordinates Z Side ROI
x y z
(i) Patients group
-2 =2 46 4.24" i Cingulate g.
2 -18 70 3.32"° i SMA
V>Rest 0 -16 70 3310 cfi SMA
-4 =24 74 3317 c Parac. lobule
4 -20 62 2.98° i M1
-6 -4 50 5.06"° c SMA
FVsRest 4 4 24 3.88" ¢ Caudate nucleus
-20 -36 70 3.34" c Postcentral g.
-4 =20 72 3.09" c Parac. lobule
24 18 36 3.81" i Sup. front. g
FP>Rest 48 -66 40  3.29° i AG
52 —62 36 3.16° i AG
2 =52 32 412" i Cingulate g.
10 =55 22 3.40" i Precuneus
16 26 52 3.66" i SMA
P>Rest  _j0 _40 58 3477 ¢ s1
-6 24 54 3.46" c Parac. lobule
-2 =30 54 3.28° C M1
0 -28 54 3.23° c/i M1
0 -62 40 441" /i Precuneus
INTER  —42 -64 40  330° c AG
-44 58 36 3.20" C AG
10 -54 28 3.20" i Precuneus
(ii) Conjunction between patients group
and healthy control group
2 4 46 4.62" i SMA
2 -16 66 4.07*° i SMA
VeRest 4 20 6 3927 i MI
0 -22 64 3.76° c/i Ml
0 -4 46 326" cfi Cingulate g.
0 -12 54 3.23° c/i SMA
2 -14 64 436" i SMA
6 -12 64 3.85° i PM
6 -20 64 3.83° i M1
FV > Rest -2 =20 64 3.80: C M1
2 4 46 3.74 i SMA
—4 -6 50 3.69"° C SMA
-14  -36 66 3.56" c Parac. lobule
64 22 28 3.30° i SII
P > Rest -2 -4 68 3.13:0 c Parac. lobule
-4 =24 62 3.11 C M1
-2 =30 54 3.78"° C M1
0 -28 56 3.73° c/i Ml
P > Rest 4 -24 58 3.38™° i M1
-10 -40 58 3.35"° C S1
-4 =22 68 3317 c Parac. lobule
INTER 0 -60 40 3.26°  cli Precuneus
(ii) Patients group > healthy control group
-4 44 22 3.73" c Cingulate g.
FV>Rest —28 -74 46  3.65" c Supramarg. g.
-8 =70 44 3.48" c Precuneus

Neural Plasticity

TaBLE 2: Continued.

MNI coordinates

V4 Side ROI
X y z
26 18 40 450" i Sup. front. g.
10 =50 42 4.49% i Precuneus
2 =22 40 4.46" i Cingulate g.
-42 =52 46 415" c Supramarg. g.
FP>Rest 50 38 36 371" i AG
28 34 34 3.61" i Middle front. g.
20 34 30 3.53" i Sup. front. g.
56 24 38 3.42° i Inf. front. g.
38 -64 44 3417 i AG
-28 -58 58 3.34" c Sup. parietal g.
-46 52 44 3.31° c Supramarg. g.
6 —40 36 5.26" i Cingulate g.
P>Rest —4 32 30 4.68" c Cingulate g.
50 -66 36 3.94" i AG
-34 -64 34 3.77° [ AG
16 -54 26 3.60" i Precuneus
INTER —50 18 36 3.52" ¢ Middle front. g.
-40 -22 40 344" c Postcentral g.
-18 28 46 3.39" c Sup. front. g.
(ii) Healthy control group > patients group
FV>Rest -32 -44 60 3.81" c Sup. parietal g.
(iii) Responders > nonresponders
-6 -4 50 3.62"° [ SMA
V>Rest _p3 38 66 3.62° ¢ Postcentral g.
10 =20 64 3.15° i M1
FV>Rest -4 -6 52 370" ¢ SMA
FP > Rest -2 -10 66 3.81"° [ SMA
-34 48 14 3.36" ¢ Middle front. g.
P>Rest 46 -10 18 3.45" i Rolandic operc.
30 -42 50 3.74" i Supramarg. g.

(iii) Nonresponders > responders
-40 -62 36 432" [¢ AG

-20 -24 64 3.24" c Precentral g.

10 -16 68 3.47" i SMA
INTER  -36 0 48 4.53" c Precentral g.
22 6 46 3.69" i Sup. front. g.
-10 -2 52 3.38" [ SMA
-16 -6 70 3.58" i Sup. front. g.
-32 -26 46 3.62" c Postcentral g.

°Significant activation at Familywise Error (FWE) corrected p < 0.05
within predefined regions of interest. *Significant activation at uncorrected
p < 0.001. ROL region of interest; FV: fMRI protocol condition, attempted
voluntary movement with concurrent FES; V: fMRI protocol condition, vol-
untary movement without FES; FP: fMRI protocol condition, FES-induced
movement, with no attempt to move the ankle; P: fMRI protocol condition,
passive movement (by the experimenter) of the subject’s ankle without FES;
c: contralateral side; i: ipsilateral side; g.: gyrus; parac.: paracentral; sup.:
superior; front.: frontal; supramarg.: supramarginal; inf.: inferior; operc.:
operculum; SMA: supplementary motor area; M1: primary motor cortex; AG:
angular gyrus; SI: primary somatosensory cortex; PM: premotor cortex; SII:
secondary somatosensory cortex.



Neural Plasticity

in combination) that characterise those who exhibit the
carryover effect. These characteristics might be considered
as biomarkers for successful FES-based rehabilitation after
stroke.

Our results point to supplementary motor area (SMA)
and angular gyrus (AG) as key regions involved in mediating
the carryover effect, since they are differentially active during
the key components of FES in those patients with and without
carryover. It is first worth considering the normal roles
of SMA and AG in sensorimotor tasks. SMA is linked to
movement preparation and planning and is often noted to be
overactive compared to controls during attempted movement
in chronic stroke subjects [39]. Indeed, in our patients,
SMA is bilaterally active during conditions where volitional
intention is present (i.e., FV, V), as expected. In turn, AG
appears to be a recipient of proprioceptive information and a
specific area for somatosensory calculation of the reach vector
during upper limb reaching [32]. AG processes discrepancies
between intended action and movement consequences in
such a way that these will be consciously detected by the
subject. It has been suggested that AG is activated during
intersensory conflicts that may result in a loss of body
ownership [31, 40]. On the other hand, damage to AG results
in altered awareness of voluntary action [41].

Our results show that those with and without FES
carryover have opposite patterns of activity in SMA and AG.
In particular, those who have FES carryover exhibit SMA
activation during concurrent FES and volitional movement
(i.e., FV condition), but they do not show an interaction
between FES and volitional movement in AG. In both
instances, the neural responses to key elements of FES are
more like a normal healthy subject, whereas those without
carryover have “abnormal” responses in both SMA and AG
(Figure 4). We therefore suggest that the carryover effect
is mediated through movement prediction (SMA area) and
sense of agency/body ownership (AG area). Specifically, the
concept of sense of agency appears to be neuroanatomically
associated with primary [31] and secondary [42] sensori-
motor areas. The prediction of the sensory consequences
of a self-generated action is compared against the actual
sensory consequences, where stronger correspondence is
associated with a stronger experience of agency (i.e., self-
generated action). In other words, those with FES carryover
correctly plan the movement when executing the movement
with concurrent volitional intention and FES, and as a
consequence movement is perceived as self-generated. By
doing so, the patient correctly updates the motor control
loop [43] that likely enhances a long-term potentiation effect
following Hebbian principles. Indeed, the combination of
volitional effort and the perception of a “normally” completed
movement provides somatosensory feedback that facilitates
Hebbian-like plasticity [44]. This is in line with the sugges-
tion that gradual motor learning/adaptation might be also
mediated by extracerebellar mechanisms [45] and that the
generalization of learning (in particular adaptive learning) is
improved when the nervous system assigns errors to “self”
rather than the environment [46] or, in this case, the device.

In healthy control subjects, the interaction between
volitional intent to move and proprioception was mediated

1

by primary motor and somatosensory areas [9]. In our
poststroke patients, bilateral primary sensorimotor cortices
are active under all conditions but are not differentially acti-
vated by our experimental factors. The function of primary
sensorimotor cortices role in mediating the FES effect might
therefore be supported by secondary areas, representing a
plasticity mechanism that exploits available resources [47]. In
fact, it has been repeatedly shown that normal input/output
processes of primary sensorimotor cortices are impaired in
many neurological patients, with consequent recruitment of a
complex network that includes primary and secondary areas
to generate even simple motor tasks [34, 48].

The other predefined areas of investigation do not appear
to be crucial nodes for mediating FES carryover. In particular,
although premotor areas are known to be overactive in many
stroke patients [46], they do not appear to be crucial for our
patients during ADF, being only ipsilaterally active in FV
condition. It has been suggested that the human SI and SII
cortices may be sequentially activated within one hemisphere,
whereas SII ipsilateral to the stimulation may receive direct
input from the periphery, at least when normal input from
SI is interrupted [49]. In our control group, bilateral SII
was active for the FES conditions (i.e., FV, FP), possibly
as the direct recipient of the stimulus [8, 50]. In patients,
we observed only ipsilateral SII activation, which preserves
its presumed role of processing electrical stimulation as in
healthy controls [9, 49, 50]. On the other hand, we suggest
either that contralateral SII is not primarily involved in
somatosensory information processing or that contralateral
stimulus processing is impaired in our group of patients.

An important limitation of this study was the inability to
collect data from the cerebellum due to technical constraints.
We tried to overcome this limitation as far as we could, by
training the subjects outside the scanner so that they were
familiar with the stimulus during FES conditions. However,
the cerebellum is thought to be part of the motor control loop,
and it has been shown to be differentially involved during FES
supported and nonsupported by volitional contribution [7].
Moreover, computing predictions of sensory consequences
is seen in the literature as a major role of the cerebellum
(together with the parietal cortex) within the sensory-motor
control loop [51]. Further, the focus of this work was compar-
ing the patients who show carryover effect against those who
do not after the identical treatment based on FES. In this view,
a group of patients with no treatment was not included as this
was beyond the purpose of the current study. The number
of recruited patients was limited, but nevertheless the results
reported are statistically robust and point towards a biological
basis for the carryover. Further larger prospective studies are
recommended to explore those aspects.

5. Conclusions

In conclusion, we suggest that the mechanism of action
of FES carryover is based on movement prediction and
sense of agency/body ownership. In other words, the ability
of a patient to plan the movement and to perceive the
stimulation as a part of his/her own control loop is important
for the FES carryover effect to take place. Although we
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point to abnormal responses in SMA and AG as indicators
that FES carryover effect is unlikely, it might be that in
future a behavioural questionnaire devoted to the evaluation
of self/non-self-perceived FES-induced movement might be
useful in predicting the carryover effect in routine clinical
settings.
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