
Volcano: An Interactive Sword Generator

Daniele Loiacono
Dipartimento di Elettronica,

Informazione e Bioingegneria

Politecnico di Milano

Milan, Italy

Email: daniele.loiacono@polimi.it

Renato Mainetti
Dipartimento di Informatica

Universitá di Milano

Milan, Italy

Email: renato.mainetti@unimi.it

Michele Pirovano
Dipartimento di Elettronica,

Informazione e Bioingegneria

Politecnico di Milano

Milan, Italy

Email: michele.pirovano@polimi.it

Abstract—In this work, we introduce Volcano, a tool for the
procedural generation of 3D models of swords. Unlike common
procedural content generation tools, it exploits interactive evolu-
tion to reduce as much as possible the effort of the users during
the generation process. Indeed, Volcano allows to forge the desired
type of swords through a rather simple visual exploration of
the design space. The 3D models generated with the tool can
be directly used as game assets or further developed with a
standard modeling software. A prototype of Volcano was tested
by 30 users, including both students and game developers. The
feedbacks received are very positive: tools like Volcano might be
useful both for players, to create user contents, and for developers,
to speed-up the design of game contents.

I. INTRODUCTION

Creating game content is currently among the most expen-
sive and time consuming activity in the game development
process. To deal with this issue, game developers typically
follow two approaches: (i) they exploit procedural content
generation to reduce as much as possible the costs and (ii) they
heavily rely on user generated content. However, procedural
content generation tools might take a lot of trial and error to
actually generate high-quality content; moreover, these tools
are often rather limited to just some specific type of contents,
e.g., terrain, trees, buildings, etc. Finally, user generated con-
tent requires a very dedicated community and the development
of additional software, such as editors or SDKs, that often
are too complex for the average user. A promising technique
to deal with these challenges is the Search-Based Procedural
Content Generation (SBPCG) [1]. In fact, SB-PCG aims at
easing the generation of high-quality game content by means
of a stochastic search algorithm, such as a genetic algorithm.

In this paper, we introduce Volcano, a tool to generate 3D
models of swords. Our tool offers a simple user interface and
allows to forge the desired swords with a very simple and
limited user interaction. In fact, Volcano features a SB-PCG
algorithm to capture the user preferences through the selection
of previously generated content and to search accordingly
the design space. Any model generated with Volcano can be
exported in a standard format to either use it immediately as
a graphical asset or to further develop it in any 3D modeling
software.

We implemented a working prototype of Volcano and
performed a preliminary test with few users. The feedback
we received is very encouraging: users reported that Volcano
was indeed capable of generating new swords based on their
preferences and that they were generally happy with the
quality of the generated swords. Moreover, users appeared

quite interested in using tools like Volcano either to create
user content for games they play or as a design tool for games
they develop.

The paper is organized as follows. First, in Section II
we briefly provide an overview of the related work. Then,
in Section III we describe how we represents swords to
procedurally generate them and in Section IV we illustrate
how Volcano works. Thus, in Section V we discuss the results
of the performed user study. Finally, in Section VI we draw
some conclusions.

II. RELATED WORK

Procedural content generation (PCG) was introduced in the
early 1980s to overcome the limited memory resources: game
content that could not fit the main memory was generated on
the fly. Today, memory is not an issue anymore and PCG is
mainly used to reduce the time and costs necessary to create a
large amount of game content. Notable examples of commer-
cial PCG tools that are widely used in the game industry are
SpeedTree 1, that is specifically devised for generating trees
and plants, and CityEngine 2 that allows the generation of
buildings and cities.

Recently, PCG has also attracted the interest of several
researchers from the field of computational intelligence, due
to the introduction of the search-based procedural content
generation (SB-PCG) [1]. SB-PCG combines search-based
methods — typically evolutionary algorithms — with proce-
dural content generation: the trial-and-error process that PCG
usually requires (e.g., setting parameters values, implementing
heuristics, etc.) is mapped into a search problem and auto-
matically solved. So far, SB-PCG already proved successful
for several type of game content [2]–[11]. Nevertheless, SB-
PCG involves several challenges, the most important being
how to evaluate the generated content to guide the search-
based methods. Several approaches have been proposed in the
literature to deal with these issues (see [1] for an overview). In
this work we follow an approach that is inspired by the field of
interactive evolution [12], a branch of evolutionary computa-
tion that replaced the usual fitness function computation with
an interactive evaluation provided from one or more users.
Interactive evolution has been successful applied to several
domain including fashion design [13], ergonomic design [14],
landscapes [15], images [16], music [17], and art in general.

1http://www.speedtree.com/
2http://www.esri.com/software/cityengine

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55258243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. The different parts of a generic sword.

Recently, interactive evolution has been applied also to
generate game content. Hastings et al. [18] developed Galactic
Arm Race (GAR) [18], a multiplayer shooter game that
features a novel weapon system that evolves during the game
based on players’ actions. Later, Risi et al. [19] developed
a Facebook game, Petalz3, that applies interactive evolution
to breed procedurally generated flowers. Finally, Cardamone
et al [20] introduced TrackGen, a web service that exploits
interactive evolution for the procedural generation of tracks
for a racing game.

III. PROCEDURAL SWORDS

In this section, we describe the parametric model we use in
Volcano to represent and to procedurally generate sword-like 4

shapes. We used a sword as a basis since it is a common,
simple, and varied weapon, which gives us plenty of different
shapes to work with a few simple constraints. We designed a
simplified parametric model through the observation of known
swords, determining what set of parameters would better
describe the shape of the whole weapon in the simplest terms.
We leveraged information on historical sword manufacturing
techniques from online resources [21] to determine these
parameters.

For simplicity, we define a sword as a composition of its
four main different parts: the blade, the guard, the grip, and
the pommel (see Figure 1 for an example). These parts are
connected to each other in a sequential fashion to form a
sword. We model the different parts as tapered curves, thus
identifying for each part (i) an open curve that defines the
overall part shape and direction (spine), (ii) an open curve that
defines the tapering alongside the spine (taper curve), and (iii)
a closed curve that defines the cross-section (section curve).

In order to support many different sword shapes, we param-
eterize the curves of each weapon part. For each part, we define
the spine, taper, and section curves by selecting appropriate
parameters and plausible value ranges that define the chosen
shapes. We restrict parameters to values that produce plausible
results, for example by limiting the grip’s width to a fixed value
and fixing its spine to a straight segment so that all swords can
be wielded. We also provide templates of section curves for
simplicity. We subdivide the blade’s taper into two parts, the
point and the edge, so to define the two independently (see

3http://petalzgame.com/
4Despite our model being mainly focused on classic swords, it also allows

the generation of different kinds of hand-to-hand weapons, such as axes,
knives, spears, etc. However, for the sake of simplicity, in the whole paper
we refer to the contents generated by Volcano simply as swords.

Fig. 2. The spine, taper (point and edge), and section curves for a simple
gladius-like blade. Image taken from Wikipedia.

Fig. 3. The templates used for section parts. From left to right: square,
diamond, and round.

Figure 2). Table I lists all the parameters of the sword model
described above. Note that the parameter groups are for the
most part independent from each other, so that we can switch
a grip with another without affecting the blade, and vice-versa.
We however enforce some slight dependency between a few
parameters: for example, the grip length is constrained to be
larger than the blade’s width to avoid unrealistic weapons. By
default, we fix the composition of the different parts to achieve
a sword-like appearance. However, to increase variation in
the final result, we add a few parameters that allow us to
achieve diverse structures and thus build different weapons.
Table II describes all these additional parameters that control
the number and relative placement of the weapon’s features.

Fig. 4. Two examples of diamond sections. The left section has a curvature
of 0, a symmetry ratio of 1 and a diamond ratio of 0.5. The right section has
a curvature of 1, a symmetry ratio of 0 and a diamond ratio of 0.

Blade Parameters
Name Type Description
Blade Length float Length of the blade
Blade Width float Width of the blade
Blade Spine Taper float The distance between the swords center point at the hilt and at the point. Determines the angle alongside the swords spine.
Blade Spine Curvature float Determines the curvature of the sword, creating scimitar-like shapes.
Blade Spine Wave Amplitude float Determines the amplitude of waves in the blade alongside the swords length, producing kris-like shapes.
Blade Spine Wave Frequency float Determines the frequency of waves in the blade alongside the swords length, producing kris-like shapes.
Blade Spine End Curvature float An additional parameter that curves the point of the blade to produce.
Blade Point–Edge Ratio float The ratio between the points length and the total blades length. This parameter determines how much of the blade is considered part

of the point, and how much part of the edge.
Blade Edge Taper float Tapering angle of the blades edge.
Blade Edge Curvature float Curvature of the blades edge.
Blade Edge Wave Amplitude float The amplitude of waves in the blades taper.
Blade Edge Wave Frequency float The frequency of waves in the blades taper.
Blade Point Curvature float Curvature of the blades point (notice that the taper angle is automatically computed in order to achieve a pointed tip).
Blade Section Type integer Defines the general shape of the blades section (see Figure 3).
Blade Section Width Ratio float Normalized thickness of the grips section in respect to the Blade Width.
Blade Section Diamond Ratio float Normalized ratio of diamond shape (square) versus simple triangle shape (see Figure 3).
Blade Section Curvature Ratio float Curvature of the section segments (see Figure 4).
Blade Section Symmetry Ratio float Normalized ratio of symmetry of the blades section. A value of 0 defines a single-edged blade, while a value of 1 defines a perfectly

symmetrical dual-edged blade (see Figure 4).
Guard Parameters
Name Type Description
Guard Section Type integer Defines the general shape of the guards section (see Figure 3).
Guard Length float Length of the guard (to the sides).
Guard Height float Height of the guard (the thickness alongside the swords length).
Guard Width float Width of the guard.
Guard Taper Tapering float Tapering of the guards taper.
Guard Spine Tapering float Tapering of the guards spine.
Guard Spine Curvature float Curvature of the guards spine.
Guard Spine Left Curvature float Curvature of the left point of the spine.
Guard Spine Right Curvature float Curvature of the right point of the spine.
Grip Parameters
Name Type Description
Grip Section Type integer Defines the general shape of the grips section (see Figure 3).
Grip Length float Length of the grip.
Grip Width float Width of the grip.
Grip Taper Curvature float Curvature of the grips taper.
Grip Taper Tapering float Tapering of the grips taper.
Grip Section Width Ratio float Normalized thickness of the grips section in respect to the Grip Width.
Pommel Parameters
Name Type Description
Pommel Section Type integer Defines the general shape of the pommels section (see Figure 3).
Pommel Length float Length of the pommel.
Pommel Width float Width of the pommel.
Grip Taper Curvature float Curvature of the grips taper.
Pommel Section Width Ratio float Normalized thickness of the pommels section in respect to the Pommel Width.

TABLE I. ALL THE PARAMETERS THAT DETERMINE THE SHAPE OF THE DIFFERENT SWORD PARTS.

Name Type Description
Guard Enabled boolean Is a guard added to this weapon?
Pommel Enabled boolean Is a pommel added to this weapon?
Axe-like boolean The blade is on the side of the grip, instead of on the top of the grip, similarly to an axe.
Scythe-like boolean If Axe-like is enabled, the blade is also rotated to protrude from the sides instead of pointing upwards, like a scythe.
Double Headed boolean If Axe-like is enabled, the blade is duplicated on the other side of the grip to form a double headed weapon.
Swallow-like boolean The blade is duplicated on the bottom part of the grip. Note that this can be combined with the previous parameters to form a weapon with

4 blades.
Blade Position Ratio float If Axe-like is enabled, this parameter determines the distance alongside the grip, from its tip, where the blade is placed at. This is normalized

along the grips length.

TABLE II. ADDITIONAL PARAMETERS THAT DEFINE THE OVERALL STRUCTURE OF THE WEAPON.

IV. INTERACTIVE SWORD GENERATOR

Volcano consists of three major components: (i) the user
interface that allows the interaction with the user and triggers
the generation of the swords; (ii) the evolutionary algorithm,
that performs the search in the parameters space of the sword;
(iii) the procedural backend, that generates the 3D models of
the swords from the parameters identified by the evolutionary
algorithm. In this section we briefly describe how these three
components work.

A. User Interface

Volcano was intended to be used by a single user at once
and it is based on the idea that the content is generated within a
user session. Whenever a user wants to generate one or more
swords, he has to start a new user session through the user
interface (UI) and a set of N swords is immediately generated.
The swords in this set, called current set, are rendered and
displayed by the UI along with an additional set of swords,
called starred set (see a screenshot of the UI in Figure 5).
The starred set is empty when a new user session starts and
cannot contain more than S swords. During a user session it
is possible to perform the following actions:

Fig. 5. A screenshot of the user interface of Volcano.

• star any of the sword in the current set, adding it to
the starred set (the action is possible only when the
stared set does not contain already S swords);

• unstar any of the sword in the starred set, removing
it from the starred set;

• select one or more swords either in the current set or
in the starred set;

• export any of the sword in the current set as an fbx
model;

• adjust the randomness level, a parameter that controls
the stochasticity of the generation process, choosing
among 7 levels ({extremely low, very low,
quite low, moderate, quite high,
very high, extremely high}) encoded as
integer values from -3 to +3;

• generate a new set of swords based on the currently
selected swords;

• stop the current user session and start from scratch a
new one, with the desired parameters setting;

• quit the interactive sword generator.

Before starting a new user session, it is also possible to set
a few parameters that affect either the UI or the evolutionary
algorithm used to generate the swords. In particular, the user
can set the size of the current set (N) and the size of the
starred set (S). The user can also set the parameters μ and σ
of the mutation operator of the evolutionary algorithm (see
Section IV-B). Finally, he can choose a template from a list
(e.g., basic swords, rapier, knife, axe, katana, etc.) to add some
constraints on the type of swords that can be generated by the
system.

B. Evolutionary Algorithm

The evolutionary algorithm used in Volcano to generate
the parameters of the swords is a slightly modified version
of a simple genetic algorithm, where the selection process
is directly controlled by the user. Accordingly, in Volcano

the underlying evolutionary algorithm is triggered only by
some specific actions performed through the user interface:
the request to start a new user session and the request to
generate a new current set. In the following we describe how
the evolutionary algorithm works in Volcano by illustrating the
most important procedures.

Algorithm 1 Start a new user session.

1: procedure START(N , template, μ, σ)
2: for i ← 1, N do
3: current[i] ← init(template, μ, σ) � Generate a

parameter vector
4: end for
5: return current
6: end procedure

START: this procedure (see Algorithm 1) is called to generate
the swords’ parameters of the current set when a new user
session begins. It receives four input parameters: N , the size
of the current set; μ and σ, that are respectively the probability
and the intensity of the mutation operator; template, a vector
that defines the standard values of the sword parameters.
Through the template parameter, the user can focus on the
generation of a specific class of swords, such as classic swords,
knifes, rapiers, katanas, axes, etc; if the user does not want to
choose a specific class of swords, the procedure will be called
setting the template parameter to None. The procedure returns
current, which contains the parameters vectors of N swords
to render and to display as the current set.

Algorithm 2 Generate a random parameters vector of a sword.

1: procedure INIT(template, μ, σ)
2: param ← new parameters vector
3: if template is None then
4: for i ← 1, length(param) do
5: param[i] ← U(MINi,MAXi) � Generate a

value in the range of i-th parameter with a
uniform distribution

6: end for
7: else
8: for i ← 1, length(param) do
9: param[i] ← template[i] � Set i-th parameter

to the default value of template
10: end for
11: mutate(param, μ, σ) � Apply mutation operator

to parameters vector
12: end if
13: return param
14: end procedure

INIT: this procedure (see Algorithm 2) generates a random
parameters vector of a sword. It receives three parameters: μ
and σ, that are respectively the probability and the intensity
of the mutation operator; template, a vector that defines the
standard values of the sword parameters. If template is None,
each parameter of the sword is generated using a uniform
distribution (line 5 in Algorithm 2, where MINi and MAXi

are respectively the lowest and the highest value of the i-th
parameter). Otherwise, each parameter is set to the default
value defined by the template provided and the MUTATE

operator is applied to the resulting vector. At the end, the
generated vector of parameters, param, is returned.

Algorithm 3 Generate a new current set.

1: procedure EVOLVE(N , selection, template, μ, σ, ρ)
2: μ ← μ · kρ � Adjust μ and σ based on randomness

level ρ
3: σ ← σ · kρ
4: for i ← 1, N do � Create a new current set of

swords based on selection
5: if selection is empty then � If user did not

select any sword, a new random set of swords
is generated

6: current[i] ← init(template, μ, σ)
7: else � Else the new set is based on selections
8: parent1 ← random element from selection
9: parent2 ← random element from selection

10: current[i] ← crossover(parent1, parent2)
11: current[i] ← mutate(current[i], μ, σ)
12: end if
13: end for
14: return current
15: end procedure

EVOLVE: this procedure (see Algorithm 3) is called as soon
as a request to generate a new current set of swords is
received from the user interface. The procedure receives as
input the parameters N , μ, σ, and template, described before.
In addition, it receives as input selection, a set that contains
the parameters vectors of all the swords selected by the
user in the UI before requesting the generation of a new
current set. Finally, the procedure receives as input also the
parameter ρ, that encodes the desired randomness level: the
seven possible values introduced in Section IV-A are mapped
to an integer value in the range [−3,+3] (e.g., extremely
low is mapped to ρ = −3, moderate is mapped to ρ = 0,
and extremely high is mapped to ρ = +3).

The EVOLVE procedure works as follows. At the beginning
(see line 2– 3 of Algorithm 3) the mutation parameters μ and
σ are adjusted by multiplying them to Kρ, where K is a
constant5; accordingly a randomness level below moderate
(ρ < 0) would result in decreasing the values of μ and σ,
while a level above moderate would result in increasing
them 6. Then, a new set of N parameters vectors is generated.
If the user did not select any swords in the current set, i.e.,
selection is an empty set, the new parameters vectors are
generated from scratch by using the INIT procedure (line 6
in Algorithm 3). Otherwise, the new parameters vectors are
generated as follows (line 8–11 in Algorithm 3): at first, each
one of the new parameters vector is generated as the result
of the CROSSOVER operator applied to two parent vectors,
randomly chosen from selection; finally, MUTATE operator
is applied to this parameters vector just generated. All the
parameters vectors so generated are included in current that is
returned by the procedure.

MUTATE: this procedure (see Algorithm 4) implements a stan-
dard mutation operator; it has three input arguments: param is

5We set K to 1.35 based on an experimental analysis.
6We decided to introduce ρ instead of letting the users to adjust directly μ

and σ to keep the user interaction as simple as possible.

Algorithm 4 Mutate operator.

1: procedure MUTATE(param, μ, σ)
2: for i ← 1, length(param) do � Each parameter is

mutated with probability μ
3: if rand() < μ then
4: if param[i] is boolean then � Flip mutation

is applied to boolean parameters
5: param[i] ← notparam[i]
6: else if param[i] is integer then � Uniform

mutation is applied to integer parameters
7: δ ← (MAX −MIN) · σ/2
8: param[i] ← Uint(param[i] −

δ, param[i] + δ)
9: else � Gaussian mutation is applied to float

parameters
10: param[i] ← N(param[i], (MAX −

MIN) · σ/6
11: end if
12: end if
13: end for
14: end procedure

the parameters vector to mutate; μ and σ are respectively the
probability and the intensity of the mutation. Each parameter of
the sword is mutated with probability μ (line 3 in Algorithm 4).
Depending on the parameter, a different type of mutation is
applied: if the parameter is boolean a flip mutation [22] is
applied (line 5 in Algorithm 4); if it is an integer, uniform
mutation [22] is applied (line 7 in Algorithm 4) with an interval
size computed as σ · (MAXi − MINi), where MAXi and
MINi are respectively the lowest and the highest values of the
i-th parameter; if it is a float, gaussian mutation [22] is applied
(line 10 in Algorithm 4) with standard deviation computed as
σ · (MAXi −MINi)/6.

Algorithm 5 Crossover operator.

1: procedure CROSSOVER(parent1, parent2)
2: cut ← Uint(2, length(parent1)) � Chose the cutting

point for crossover.
3: for i ← 1, length(parent1) do
4: if i < cut then
5: param[i] ← parent1[i]
6: else
7: param[i] ← parent2[i]
8: end if
9: end for

10: return param
11: end procedure

CROSSOVER: this procedure (see Algorithm 5) implements a
simple single point crossover. The operator receives as input
two parameters vectors, parent1 and parent2, that will be
mixed together to generate a new sword. First (see line 2 in
Algorithm 5), a cut point is chosen by selecting a random
position in the vector (except the first one). Then, a new
parameters vectors, param is initialized as follows: each
element of param in a position before the cut point is set
to the the corresponding element of parent1; instead, from
the cut point position to the end of the vector, each element of
param is set to the corresponding element of parent2. The

Fig. 6. A blade created with our blender plugin. On the left, the parameters
can be altered, and on the right a simple render of the resulting blade is shown.

Fig. 7. A set of our procedurally generated weapons shown in real-time as
virtual physical objects inside a Unity3D scene.

resulting parameters vector, param, is finally returned by the
operator.

C. Procedural Backend

The procedural backend of Volcano is the component in
charge of generating the actual 3D models of the swords as
well as rendering them to images so that they can be displayed
in the UI. In particular, we implemented the backend as a
plugin for the Blender3D suite 7 that can be called either from
the evolutionary algorithm or from the UI to generate and/or
to render a 3D model from a given parameters vector. When
the plugin is called, the parameters vector (see Section III for
a detailed description of the parameters) is used as input to
create three 2D polylines for each weapon part (the spine,
taper, and section curve). The polylines are then used as input
to a tapering algorithm, which uses the taper curve and the
section curve to extrude the spine curve and thus achieve a
3D representation. Thus, we convert the curve representation
to 3D meshes and generate both normals and UV coordinates,
we assign textures and materials to the various weapon parts,

7https://www.blender.org/

we define lights and a centered camera view, and we render the
result to an image file. It is also possible to export the resulting
mesh as .obj or .fbx files alongside the resulting baked textures
to use them as game assets (see an example in Figure 7) or to
import them in other modeling tools.

Finally, using Blender’s python API, we also developed
a GUI-based plugin that integrates with Blender to provide
a visual user interface that allows manual modification of
all sword parameters through sliders paired with a real-time
update of a sword mesh, rendered in the 3D viewport (see
Figure 6).

V. USER STUDY

To assess the usability of Volcano, we carried out two
different user studies. The first study was performed during an
Open Day at our university and consisted of 22 user sessions
with 22 distinct users (18-22 years old student, mostly male).
Before starting each session, we collected few information
about the users (i.e., age, gender, gaming habits, etc.) and
briefly explained them how the UI of Volcano works. Then,
we left them free to play with the tool for as long as they
want. Finally, we asked them three simple questions:

Q1. Would you use a tool like Volcano to create contents
for the games you usually play?

Q2. Are you happy with the swords generated with Vol-
cano during your session?

Q3. Were the swords generated by Volcano consistent with
your choices (i.e., the selected swords)?

Each user had to answer choosing among a list of options:
{Yes, Maybe, No, Don’t know} were the possible answers for
the first questions, while {Definitely yes, More yes than no,
More no than yes, Definitely not} were the possible answers
for the second and third questions. Results (see Figure 8)
suggest that players actually like the idea of generating their
own game content. In fact, Figure 8a shows that 16 out of
22 users would use tools like Volcano (i.e., they answered
Yes) and also the remaining 6 users might give it a try (i.e.,
they answered Maybe). When it comes to evaluate the quality
of generated swords, the performance of Volcano was pretty
solid; in fact, none of the users reported a negative answer, i.e.,
more no than yes or definitely not; the most common answer
was more yes than no and 8 users answered definitely yes
(see Figure 8b) Similar results were obtained also about the
capabilities of Volcano to generate swords that are consistent
with the users preference (see Figure 8c): 9 users answered
definitely yes, 12 users answered more yes than no and only
one user answered more no than yes.

Then, we analyzed how the users interacted with Volcano
to generate the swords. First of all, the smallest number of
swords’ sets generated per user session was 5, the largest
one was 26, and the median number of generated sets was
9 per session — suggesting a rather good user engagement.
Figure 9 shows how the average number of selected swords
and of starred ones changes during the user session. Despite,
the size of collected dataset is rather small 8, it is still possible

8Please notice, that in Figure 9 we show the statistics only for the first 9
generated sets, i.e., the median number of sets generated by the users.

(a)

(b)

(c)

Fig. 8. Answers provided by the users to Q1 (a), Q2 (b), and Q3 (c).

to see some trends. Figure 9a shows that the average number
of selected swords slightly increases at the beginning and then
decreases as more sets of swords are generated. Perhaps, the
users starts by exploring more possibilities but soon focus on
just one or two swords they like more. More interestingly, the
number of starred swords (Figure 9b) keeps increasing with
the generation of more sets of swords. This might suggest that
the larger the number of swords generated by the tool, the
better is the quality of the swords generated.

The users provided also useful suggestions that allowed us
to make some improvements to the UI. In particular, a very
common suggestion was to add something that could allow the

(a)

(b)

Fig. 9. User interactions with Volcano: (a) number of selected swords per
generation and (b) number of starred swords per generation. The plot reports
the average values along with the standard error.

user to control the degree of variety in the generated swords.
Based on this suggestion, we introduced the randomness level
control described in Section IV-A, that was not included in the
tool at the time of this first test.

Few weeks later, we performed a second user study at
an independent game developers festival. The test involved 8
users among developers and game designers. The feedback
was similar to the one received from the previous test: all the
users evaluated positively the generated swords (we collected
5 definitely yes and 3 more yes than no answers to Q2);
similarly, the evaluation of the consistency with respect to the
user actions was very good (we collected 6 definitely yes and
2 more yes than no answers to Q3). Moreover, when asked
whether they would use a tool like Volcano for creating the
content for their own games 9, the answers were promising (5
answered yes and 3 answered maybe). In particular, designers
and developers pointed out that a tool like Volcano might be

9In this second user study question Q1 was modified as: “Would you use
a tool like Volcano to create contents for the games you develop?”

valuable even if not capable to generate assets that can be
directly used in games. This kind of tools might be useful to
perform a quick exploration of the design space and to generate
a set of preliminary assets that a 3D artist can further develop
with a modeling software.

Finally, we collected a lot of interesting suggestions to im-
prove Volcano, such as supporting modular content generation
(e.g., working only on the blade while keeping fixed the grip
and the guard), clustering the generated set based on visual
similarity, and allowing to browse back the history of generated
swords.

VI. CONCLUSION

In this work we introduced Volcano, a tool for procedural
generation of swords that learns the user’s preferences: instead
of requiring a long session of trial-and-error parameters setting,
Volcano exploits interactive evolution [12] to generate new
swords based only on a selection of the ones previously
generated. Therefore, it allows to perform a visual exploration
of the design space and to generate novel game content with
a very limited effort.

We implemented a prototype of Volcano, which includes
a plugin for Blender to actually generate usable 3D models
of the generated swords. We also tested our prototype with
30 users, among students and game developers. The result of
these tests was very encouraging: users reported to be rather
happy concerning both their interaction with the tool and the
generated swords; moreover most of the users expressed high
interest for the possibility of using a tool like Volcano to create
game content either as players (i.e., to create user-generated
content) or as designers. (i.e., to simplify the development
process).

Future works include improving the user interface of
Volcano following some suggestions received from the user
tests (e.g., adding a browsable history, clustering generated
swords based on visual similarity, etc.), support the generation
of modular game content (i.e., allows the generation of only
some parts of the swords at once), and implementing an on-line
system to collect more user experiences.

REFERENCES

[1] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation,” in EvoApplications (1), ser.
Lecture Notes in Computer Science, C. D. Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcázar, C. K. Goh, J. J. M. Guervós,
F. Neri, M. Preuss, J. Togelius, and G. N. Yannakakis, Eds., vol. 6024.
Springer, 2010, pp. 141–150.

[2] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Optimization of
platform game levels for player experience,” in AIIDE, C. Darken and
G. M. Youngblood, Eds. The AAAI Press, 2009.

[3] K. Compton and M. Mateas, “Procedural level design for platform
games,” in AIIDE, J. E. Laird and J. Schaeffer, Eds. The AAAI Press,
2006, pp. 109–111.

[4] N. Shaker, G. N. Yannakakis, and J. Togelius, “Towards automatic
personalized content generation for platform games,” in Proceedings
of the Sixth AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE 2010, October 11-13, 2010, Stanford,
California, USA, G. M. Youngblood and V. Bulitko, Eds. The AAAI
Press, 2010. [Online]. Available: http://aaai.org/ocs/index.php/AIIDE/
AIIDE10/paper/view/2135

[5] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic track gen-
eration for high-end racing games using evolutionary computation,”
Computational Intelligence and AI in Games, IEEE Transactions on,
vol. 3, no. 3, pp. 245 –259, sept. 2011.

[6] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Interactive evolution
for the procedural generation of tracks in a high-end racing
game,” in Proceedings of the 13th annual conference on Genetic
and evolutionary computation, ser. GECCO ’11. New York,
NY, USA: ACM, 2011, pp. 395–402. [Online]. Available: http:
//doi.acm.org/10.1145/2001576.2001631

[7] J. Dormans and S. Bakkes, “Generating missions and spaces for adapt-
able play experiences,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 3, no. 3, pp. 216–228, 2011.

[8] J. Dormans, “Adventures in level design: generating missions and spaces
for action adventure games,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games. ACM, 2010, p. 1.

[9] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and G. N.
Yannakakis, “Multiobjective exploration of the starcraft map space,” in
Proceedings of the IEEE Conference on Computational Intelligence and
Games (CIG), 2010, pp. 265–272.

[10] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi,
“Evolving interesting maps for a first person shooter,” in Proceedings
of the 2011 international conference on Applications of evolutionary
computation - Volume Part I, ser. EvoApplications’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 63–72. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2008402.2008411

[11] P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps for
match balancing in first person shooters,” in 2014 IEEE Conference
on Computational Intelligence and Games, CIG 2014, Dortmund,
Germany, August 26-29, 2014. IEEE, 2014, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/CIG.2014.6932901

[12] K. Sims, “Interactive evolution of dynamical systems,” in Toward a
practice of autonomous systems: Proceedings of the first European
conference on artificial life, 1992, pp. 171–178.

[13] H.-S. Kim and S.-B. Cho, “Application of interactive genetic
algorithm to fashion design,” Engineering Applications of
Artificial Intelligence, vol. 13, no. 6, pp. 635 – 644,
2000. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V2M-41TN609-3/2/f36f199cd3de20d072879d123e3a04ff

[14] A. Brintrup, J. Ramsden, H. Takagi, and A. Tiwari, “Ergonomic chair
design by fusing qualitative and quantitative criteria using interactive
genetic algorithms,” Evolutionary Computation, IEEE Transactions on,
vol. 12, no. 3, pp. 343 –354, Jun. 2008.

[15] P. Walsh and P. Gade, “Terrain generation using an interactive genetic
algorithm,” in Evolutionary Computation (CEC), 2010 IEEE Congress
on, Jul. 2010, pp. 1 –7.

[16] J. Secretan, N. Beato, D. B. D’Ambrosio, A. Rodriguez, A. Campbell,
J. T. Folsom-Kovarik, and K. O. Stanley, “Picbreeder: A case study in
collaborative evolutionary exploration of design space,” Evolutionary
Computation, vol. 19, no. 3, pp. 373–403, 2011. [Online]. Available:
http://dx.doi.org/10.1162/EVCO a 00030

[17] B. Xu, S. Wang, and X. Li, “An emotional harmony generation system,”
in Evolutionary Computation (CEC), 2010 IEEE Congress on, Jul.
2010, pp. 1 –7.

[18] E. J. Hastings, R. K. Guha, , and K. O. Stanley, “Automatic content
generation in the galactic arms race video game,” IEEE Transactions on
Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 245–263,
2009.

[19] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley,
“Combining search-based procedural content generation and social
gaming in the petalz video game,” in AIIDE, M. Riedl and G. Suk-
thankar, Eds. The AAAI Press, 2012.

[20] L. Cardamone, P. L. Lanzi, and D. Loiacono, “Trackgen: An
interactive track generator for TORCS and speed-dreams,” Appl.
Soft Comput., vol. 28, pp. 550–558, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.asoc.2014.11.010

[21] [Online]. Available: http://www.myarmoury.com/feature properties.
html

[22] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013, available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

