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Abstract: Process variations can significantly degrade device perfor-
mance and chip yield in silicon photonics. In order to reduce the design
and production costs, it is highly desirable to predict the statistical behavior
of a device before the final fabrication. Monte Carlo is the mainstream
computational technique used to estimate the uncertainties caused by
process variations. However, it is very often too expensive due to its
slow convergence rate. Recently, stochastic spectral methods based on
polynomial chaos expansions have emerged as a promising alternative, and
they have shown significant speedup over Monte Carlo in many engineering
problems. The existing literature mostly assumes that the random param-
eters are mutually independent. However, in practical applications such
assumption may not be necessarily accurate. In this paper, we develop an
efficient numerical technique based on stochastic collocation to simulate
silicon photonics with correlated and non-Gaussian random parameters. The
effectiveness of our proposed technique is demonstrated by the simulation
results of a silicon-on-insulator based directional coupler example. Since
the mathematic formulation in this paper is very generic, our proposed
algorithm can be applied to a large class of photonic design cases as well as
to many other engineering problems.
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1. Introduction

The silicon photonic technology has emerged as a promising alternative to electrical intercon-
nects due to its ability to achieve higher bandwidth and lower power dissipation [1]. Thanks to
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its ease of integration with the CMOS process, silicon photonics can remarkably reduce fabrica-
tion costs, increase the integration scale and improve the overall system performance [2]. How-
ever, silicon-based optical devices are very sensitive to fabrication process variations, leading
to potentially significant device performance degradations and potential system failures [3–8].

There is a lack of uncertainty quantification techniques for silicon photonics, however some
results have been reported recently for nanometer integrated circuits (IC) [9–12] and micro-
electromechanical systems (MEMS) [13, 14]. The mainstream stochastic simulation technique
in commercial design software is Monte Carlo [15]. Despite some recent improvements [16],
Monte Carlo simulation is still inefficient for most design problems. This limitation is clearly
evident in silicon photonics where reliable Monte Carlo results can be obtained only by per-
forming a large number of simulations, resulting in a very high computational cost.

Generalized polynomial chaos (gPC) expansion techniques have been proposed [17] to ef-
ficiently approximate a stochastic solution dependent on a set of random parameters. Further-
more, they have recently been exploited in the analysis of photonic circuits [18]. Based on
such expansions, fast stochastic spectral methods have been developed [19–21]. Standard spec-
tral methods include an intrusive method we refer to as stochastic Galerkin (SG) [19], a non-
intrusive method called stochastic collocation (SC) [20, 21], and their hybrid variant called
stochastic testing [9–11]. In most existing publications [18, 22–25], the input parameters are
assumed to be mutually independent, or Gaussian-correlated, in which case one can convert
the random variables to a set of independent ones by a linear transform. However, in practical
applications such assumption may not be necessarily accurate.

In this paper, we propose a computational framework to quantify the uncertainties in sili-
con photonic devices caused by non-Gaussian correlated random parameters. Our algorithm is
based on the theoretical results of [26] which has been rarely utilized in practice due to rel-
evant issues faced in its numerical implementation. In our work, we assume that the process
variations are described by a Gaussian Mixture (GM). Gaussian mixture is quite a reasonable
modeling technique for process variations, since it can capture both correlated and uncorrelated
process variations. Based on this assumption, we first develop a numerical scheme to construct
a set of orthogonal basis functions to represent the stochastic solution. We further propose an
implementation of stochastic collocation to compute each of the coefficient associated with
each of the basis functions. Differently from our preliminary conference paper [27], this paper
provides also all the theoretical and numerical details for computing the basis functions and
for implementing stochastic collocation with correlated random parameters. As an example, a
silicon-on-insulator (SOI) based directional coupler is considered and the impact of tolerances
on geometric dimensions is evaluated. Moreover, the accuracy of our proposed algorithm is
compared with Monte Carlo in our numerical experiments.

This paper is structured as follows. In Section 2, we give a brief review of orthogonal ba-
sis functions with respect to a joint probability density measure, as well as some basics about
Gaussian mixture models. Section 3 consists of two parts describing our proposed computa-
tional techniques. The first part demonstrates how to construct the orthogonal bases given a
Gaussian-mixture density function; the second part presents how to implement efficiently a
stochastic collocation scheme to obtain the stochastic solution. In Section 4, we report the sim-
ulation results of a SOI based directional coupler under process variations. Finally, Section 5
concludes this paper.

2. Background review

This section briefly reviews some background related to orthogonal basis functions [26] and
Gaussian mixture models.
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2.1. Orthogonal basis function construction

Let ξ⃗ = {ξ1, · · · ,ξN} ∈ RN be N random variables with a given joint probability density func-
tion pξ⃗ on the support Ξ:

pξ⃗ (⃗ξ ) = 0, if ξ⃗ /∈ Ξ. (1)

We further denote the marginal probability density function of the i-th random variable by
pi(ξi):

pi(ξi) =
∫

Ξ
pξ⃗ (ξ1, · · · ,ξN)dξ1 · · ·dξi−1dξi+1 · · ·dξN . (2)

Assume that {φ (i)
k (ξi)} are a set of generalized polynomial-chaos bases for ξi [17], where k

denotes the degree of a polynomial. Such basis functions are orthogonal with respect to the
marginal density function pi:

⟨φ (i)
k ,φ (i)

k′ ⟩pi =
∫

R
φ (i)
k (ξi)φ (i)

k′ (ξi)pi(ξi)dξi = ∥φ (i)2

k ∥δkk′ (3)

where ⟨⟩pi denotes an inner product defined by the marginal probability density function pi(ξi).
In [26], it is shown that a set of N-dimensional orthogonal functions for the joint density pξ⃗ (⃗ξ )
can be constructed as

Ψα⃗ (⃗ξ ) =

⎡

⎣ p1(ξ1) · · · pN(ξN)
pξ⃗ (⃗ξ )

⎤

⎦
1/2

φ (1)
α1 (ξ1) · · ·φ (N)

αN (ξN) (4)

where the functionals Ψα⃗ are defined for ξ⃗ ∈ Ξ and α⃗ = (α1, · · · ,αN) ∈ NN is a multi-index.
The proof of orthogonality of {Ψα⃗ (⃗ξ )} is shown in Appendix.

2.2. Gaussian mixture
In this paper, we assume that a Gaussian-mixture model has already been constructed based on
some measurement data, using for instance the Expectation-Maximization (EM) algorithm [28].
We focus here instead on how to predict the effect on the performance of a silicon photonic de-
vice influenced by process variations. In practice, there are correlated and uncorrelated process
variations. In this paper, we aim at developing numerical techniques that can deal with corre-
lated process variations, since there are already many techniques available for simulating design
problems with uncorrelated process variations.

A Gaussian mixture with M mixed terms is the weighted sum of M multivariate Gaussian
densities. Purely for simplicity of exposition of mathematical derivations, we set here N =M =
2. However, all results presented in this paper are valid and can be extended in a straightforward
way to the more general cases where N and M are not equal to 2 and N is not necessarily equal
to M.

With a Gaussian mixture model, the process variations can be described by the following
distribution

[
ξ1
ξ2

]
∼ a ·N (⃗µA,ΣA)+b ·N (⃗µB,ΣB) (5)

with
a+b= 1, 0 ≤ a,b≤ 1
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and
µA =

[
µA1
µA2

]
, ΣA =

[
σ2
A1

ρAσA1 σA2
ρAσA1 σA2 σ2

A2

]

µB =
[

µB1
µB2

]
, ΣB =

[
σ2
B1

ρBσB1 σB2
ρBσB1 σB2 σ2

B2

]

where ξ⃗ can be the geometrical or material parameters of a silicon photonic device. It is well-
known that the marginal probability density function of a multivariate Gaussian is a univariate
Gaussian. Therefore, the i-th random parameter follows a univariate Gaussian-mixture distribu-
tion

ξi ∼ a ·N(µAi ,σ
2
Ai)+b ·N(µBi ,σ

2
Bi), (6)

and its marginal probability density function is

pi(ξi) =
a · exp( (ξi−µAi )

2

−2σ2
Ai

)
√

2πσ2
Ai

+
b · exp( (ξi−µBi )

2

−2σ2
Bi

)
√

2πσ2
Bi

. (7)

3. Uncertainty quantification with non-Gaussian correlated parameters

In this section, we first develop some numerical techniques to build the orthogonal basis func-
tions introduced in Section 2. We then describe how to implement efficiently a stochastic col-
location technique to calculate a stochastic quantity of interest that depends on some correlated
non-Gaussian process variation parameters. This section provides all mathematical details to
construct a stochastic solution based on stochastic collocation, and the flows are summarized
in Algorithm 1 and 2. For readers who are more interested in the applications of the proposed
computational technique, please refer to Section 4 for a directional coupler example.

3.1. Basis function computation

Let u(x, ξ⃗ ) be the quantity of interest, smoothly dependent on the process variation parameters.
Here u can be for instance the effective phase index, the resonant wavelength or the power dis-
sipation of a silicon photonic device. Vector ξ⃗ could contain for instance the dimensions and/or
the material properties of a device, and x can be the frequency or wavelength. For example, in
order to investigate the uncertainties caused by geometric variations of a directional coupler,
we can set u to be the power coupling coefficient, and ξ⃗ to be the exterior and interior waveg-
uide sidewall position. Meanwhile, x can be set as the operating frequency or wavelength that
also influences the power coupling coefficient. Given the basis functions Ψα⃗ (⃗ξ ) described in
Section 2, we can approximate u as

u(x, ξ⃗ )≈ ∑
∥α⃗∥∞≤⃗t

Cα⃗(x)Ψα⃗(ξ1, · · · ,ξN) (8)

when u has a bounded variance. Here Cα⃗(x) is the coefficient of Ψα⃗(ξ1, · · · ,ξN), α⃗ is a multi-
index which consists of N-tuples, and a full-tensor truncation is used for gPCe. The basis func-
tions are still not known, and thus our first task is to compute them given the Gaussian-mixture
joint density function.

In order to construct Ψα⃗ , we first need to compute the univariate basis functions φ (i)
k (ξi)’s

defined in Eq. (3) for each random parameter ξi. The univariate basis functions can be built us-
ing the three term recurrence relations [29], and the construction of such univariate orthogonal

#226889 - $15.00 USD Received 18 Nov 2014; revised 5 Jan 2015; accepted 7 Jan 2015; published 11 Feb 2015 
© 2015 OSA 23 Feb 2015 | Vol. 23, No. 4 | DOI:10.1364/OE.23.004242 | OPTICS EXPRESS 4246 



polynomials is shown in the following. Since our numerical scheme is applicable to all ran-
dom parameters ξi, the parameter index i in φ (i)

k (ξi) and pi(ξi) will be omitted in the following
derivation.

The three term recurrence relations is

φk+1(ξ ) = (ξ −ak)φk(ξ )+bkφk−1(ξ ), k ≥ 1 (9)

with φ0 ≡ 1 and φ1 ≡ ξ − ⟨1,ξ ⟩p
⟨1,1⟩p . In order to ensure that {φk}k≥0 is an orthogonal set with respect

to measure p, the coefficients ak and bk are defined as

ak =
⟨ξ φk,φk⟩p
⟨φk,φk⟩p

(10)

bk =
⟨φk,φk⟩p

⟨φk−1,φk−1⟩p
. (11)

In order to compute ak and bk, we need to evaluate ⟨ξ φk,φk⟩p and ⟨φk,φk⟩p, ⟨φk−1,φk−1⟩p.
Notice that

⟨ξ φk,φk⟩p =
∫

R
ξ φ 2

k (ξ )p(ξ )dξ (12)

with p(ξ ) defined in Eq. (7). It is non-trivial to obtain Eq. (12) in an analytical way. However,
by letting yi =

ξ−µAi
σAi

and zi =
ξ−µBi

σBi
, the integral in Eq. (12) can be rewritten as

a
∫

R
(µAi +σAiyi)φ

2
k (µAi +σAiyi)

exp( y
2
i

−2 )√
2π

dyi

+b
∫

R
(µBi +σBizi)φ

2
k (µBi +σBizi)

exp( z
2
i

−2 )√
2π

dzi. (13)

As a result, a Gauss-Hermite quadrature rule can be used to numerically compute Eq. (13) with
high accuracy. For instance, the two terms in Eq. (13) can be computed as

a
q

∑
j=1

wj(µAi +σAix j)φ
2
k (µAi +σAix j)+b

q

∑
j=1

wj(µBi +σBix j)φ
2
k (µBi +σBix j) (14)

where x j and wj are the j-th well-known Gauss-Hermite abscissa and weight respectively [30]
, and q is the number of quadrature points. The inner products ⟨φk,φk⟩p and ⟨φk−1,φk−1⟩p can
be calculated in a similar way:

⟨φk,φk⟩p =
∫

R
φ 2
k (ξ )p(ξ )dξ ≈ a

q

∑
j=1

wjφ 2
k (µAi +σAix j)+b

q

∑
j=1

wjφ 2
k (µBi +σBix j) (15)

With ak and bk computed with the above procedures, the formula in Eq. (9) can be used to
calculate the basis function for each parameter ξi. Finally, the multivariate basis function Ψα⃗
can be obtained according to Eq. (4).

3.2. Implementation of stochastic collocation
The coefficients Cα⃗(x) in Eq. (8) can be computed based on stochastic collocation, and the
implementation is detailed below.
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Algorithm 1 Univariate basis function construction and Quadrature points computation
1: Initialization: φ0 = 1 ;
2: Compute ⟨ξ φ0,φ0⟩p using Eq. (12) and ⟨φ0,φ0⟩p using Eq. (15) to obtain φ1;
3: for k = 1, · · · , n−1 do
4: Compute ⟨ξ φk,φk⟩p using Eq. (12) and compute ⟨φk,φk⟩p using Eq. (15);
5: Compute ak using Eq. (10) and compute bk using Eq. (11);
6: Construct φk+1 using Eq. (9);
7: end for
8: Construct a n by n matrix J using Eq. (21);
9: Compute the abscissae ξ (i j)

j by solving the eigenvalues of J, and compute the corresponding

weights w(i j)
j using Eq. (22).

Algorithm 2 Compute gPCe coefficients with Stochastic collocation
1: for each dimension j = 1, · · · , N do
2: Compute ξ (i j)

j and w(i j)
j using Algorithm 1;

3: end for
4: Compute ⟨u(x, ξ⃗ ),Ψα⃗ (⃗ξ )⟩pξ⃗

using Eq. (20) and compute ||Ψα⃗ (⃗ξ )||2 using Eq. (27);
5: Compute gPCe coefficient Cα⃗ using Eq. (16).

Since {Ψα⃗} is an orthogonal set for the measure pξ⃗ , we have

Cα⃗(x) =
⟨u(x, ξ⃗ ),Ψα⃗ (⃗ξ )⟩pξ⃗

⟨Ψα⃗ (⃗ξ ),Ψα⃗ (⃗ξ )⟩pξ⃗

=
⟨u(x, ξ⃗ ),Ψα⃗ (⃗ξ )⟩pξ⃗

||Ψα⃗ (⃗ξ )||2
(16)

The denominator is given in Eq. (27), and it can be obtained as a by-product of the three-term
recurrence relation discussed in Section 3.1. The numerator ofCα⃗(x) can be approximated using
some numerical quadrature rules. We first rewrite the numerator in Eq. (16) in the integral form:

∫

Ξ
u(x, ξ⃗ )

⎡

⎣ p1(ξ1) · · · pN(ξN)
pξ⃗ (⃗ξ )

⎤

⎦
1/2

N

∏
i=1

φ (i)
αi (ξi)pξ⃗ (⃗ξ )dξ⃗ (17)

and define

g(x, ξ⃗ ) = u(x, ξ⃗ )

⎡

⎣
pξ⃗ (⃗ξ )

p1(ξ1) · · · pN(ξN)

⎤

⎦
1/2

N

∏
i=1

φ (i)
αi (ξi). (18)

Then, Eq. (17) can be rewritten as
∫

Ξ
g(x,ξ1, · · · ,ξN)p1(ξ1) · · · pN(ξN)dξ1 · · ·dξN (19)

and it can be computed by a Gauss quadrature rule with the weighting functions being the
tensor product of all marginal probability density functions. Specifically, ⟨u(x, ξ⃗ ),Ψα⃗ (⃗ξ )⟩pξ⃗

is
approximated by

q1

∑
i1=1

q2

∑
i2=1

· · ·
qN
∑
iN=1

g(x,ξ (i1)
1 , · · · ,ξ (iN)

N )w(i1)
1 · · ·w(iN)

N (20)
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Fig. 1. The cross section of a SOI-based directional coupler with nom-
inal width W0, nominal gap g0, height H0, and refractive indices nSi =
3.48,nSiO2 = 1.445.

where ξ (i j)
j ’s and w(i j)

j ’s are the abscissae and corresponding weights for the quadrature rule
in the jth dimension (i.e., for parameter ξ j), and q j is the number of quadrature points used
for dimension j. To obtain the quadrature points and weights for each marginal distribution pi,
we use Golub and Welsch algorithm [29], where {ξ (i j)

j } are the eigenvalues of the symmetric

tridiagonal matrix. According to the Golub and Welsch algorithm, {ξ (i j)
j }i j=1,...,n are obtained

as the eigenvalues of the symmetric tridiagonal matrix

Jmk =

⎧
⎨

⎩

am−1, if k = m, m= 1, . . . ,n√
bm−1, if k = m−1, m= 2, . . . ,n√
bm, if k = m+1, m= 1, . . . ,n−1

(21)

and the corresponding weight is computed as

w(i j)
j = µ j

(
v(i j ,1)j

)2
(22)

with µ j =
∫

R
p j(ξ j)dξ j and v(i j ,1)j being the first component of the normalized eigenvector

corresponding to eigenvalue ξ (i j)
j [31].

4. Directional coupler example

4.1. Benchmark description
Due to the high refractive index contrast between silicon and silica, silicon photonic devices
are extremely sensitive to variations in the geometry, for instance in waveguide width. Such
geometrical variations can cause significant fluctuations in the effective phase index (neff) and
can further lead to performance degradations in many photonic devices such as directional
couplers and ring resonators.

In practical fabrications, due to tolerances of the fabrication process, the fabricated waveg-
uide width (denoted asW ) and the gap (denoted as g) between two waveguides of a directional
coupler (as shown in Fig. 1) are different from chip to chip and wafer to wafer. Here, we assume
that exterior and interior waveguide sidewall position, ∆We and ∆Wi, are correlated random pa-
rameters. The two coupled waveguides are assumed identical for simplicity and ∆Wi is assumed
to be different from ∆We because of the typical proximity effects in the etching process. The
fabricatedW and g are related to the originally designed width (W0) and (g0) as

W =W0 +∆We+∆Wi, g= g0 −2∆Wi (23)

Therefore, the total variation of width ∆W is ∆We+∆Wi and the total variation of gap ∆g is
2∆Wi. The quantity of interest for a directional coupler is its power coupling coefficient and
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output phase difference. The power coupling coefficient K(z) is a sinusoidal function of the
coupler’s length z

K(z) = sin2(δ z) (24)

where δ is the field coupling coefficient and it is equal to the effective phase index difference
between the symmetric mode and the asymmetric mode of a coupler times a factor π/λ , where
λ is the wavelength of concern. On the other hand, the output phase difference is always π/2
due to the assumed symmetry. Note that exact density functions for ∆We and ∆Wi can be ex-
tracted by measuring a large set of practical chips. However, in this paper, for the purpose
of algorithm verification, we assume ∆We and ∆Wi are correlated, since there are already ex-
tensive techniques for the non-correlated process variations. Under the above assumption, our
computational methods developed in Section 3 can be employed to analyze how such geomet-
ric uncertainties affect the power coupling coefficient. According to Eq. (24), it will be more
convenient to approximate δ using gPC, since we can compute K(z) for any length z with δ
at hand. Specifically, we approximate δ (λ ,∆We,∆Wi) by a linear combination of a set of or-
thogonal functions {Ψα⃗(∆We,∆Wi)}, where λ is the wavelength. When computing Cα⃗(λ ), we
need to evaluate δ for each multidimensional quadrature point in Eq. (20). For each sample, a
finite difference mode solver is called to solve for δ with the given value (∆We,∆Wi,λ ) using
Eq. (23).

In our numerical experiments, we focus on synchronous couplers where the nominal width
W0 is 0.4 µm and the nominal gap g0 is 0.2 µm. The waveguides height are fixed to 0.22 µm,
the refractive index of silicon and silica are 3.48 and 1.445 respectively, and the wavelength of
interest is 1.55 µm. The simulated δ with nominal width and gap is 0.11. All simulations are
performed using a personal computer with a intel-xeon CPU X5650 and 24G of RAM.

4.2. Numerical results
In order to validate our computational methods, we use the following Gaussian mixture for
simulation:

[
∆We
∆Wi

]
∼ 0.6 ·N (⃗µA,ΣA)+0.4 ·N (⃗µB,ΣB)

with
µA =

[
9
6

]
nm, ΣA =

[
6 0
0 3

]
nm2

and
µB =

[
8
7

]
nm, ΣB =

[
5 1
1 4

]
nm2.

With a proper Gaussian mixture, we can approximate any measured distribution. For sim-
plicity we have included only two terms in the Gaussian mixture here. The numbers in the
mean and covariance matrix are picked to have the total variations of coupler’s width (∆W ) and
gap (∆g) range from around 0 to 25 nm, as shown in Fig. 2. The chosen numbers are reason-
able numbers in current fabrication process tolerance. To show our algorithm’s capability of
dealing with correlated parameters, the weights a and b are chosen close to 0.5, and the exact
values are 0.6 and 0.4 respectively. Note also that the choice of different distributions for ∆We
and ∆Wi here allows taking into account the proximity effect that occurs in the gap during the
fabrication.

Our algorithm constructs an approximation of the parameter-dependent δ in the form of
Eq. (8), and then computes K(z) using Eq. (24). By doing so, we can easily evaluate its den-
sity function without calling the expensive mode solver every time in Monte-Carlo simulation.
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Figure 3 shows the probability density function of δ at λ = 1.55 µm. The solid line repre-
sents δ obtained from our stochastic collocation with level m⃗ = (5,5). Here m⃗ = (5,5) means
that a 5-level Gauss-Hermite quadrature rule is used for both parameter dimensions to evaluate
Eq. (20). For parameter ξi, the level mi is determined as

qi = 2mi−1 (25)

where qi is the number of quadrature points used for ξi. Therefore, 9 quadrature points are used
in each dimension to obtain the results in Fig. 3, i.e. q1 = q2 = 9 in Eq. (20). Note that to avoid
aliasing error in the gPC coefficient, the relation between m⃗ and t⃗ in Eq. (8) is t⃗ = 2m⃗− 2.
In order to verify the accuracy of our approach, the simulated probability density function
from standard Monte Carlo with 104 samples is also plotted as a dashed line in Fig. 3. The
result from our stochastic collocation is consistent with that from Monte Carlo method. The
nominal value of δ for W0 = 400 nm and g0 = 200 nm is 0.11, while the analysis shows an
expected value asymmetrically distributed around δ = 0.102. With the pdf of δ at hand, we can
compute K(z) using Eq. (24), and the result is shown in Fig. 4. Figures 4(a) and 4(b) show the
simulated probability density functions of the power coupling coefficient at z= 7.1376µm and
z = 2.9250µm, which are the lengths that correspond to K0 = 0.5 and K0 = 0.1 respectively.
K0 is the nominal power coupling coefficient for the nominal width W0 = 400 nm and gap
g0 = 200 nm. From Fig. 4, it is clearly seen thatK deviates from its original desired values under
process variations. Notice that with the choice of the parameters in our example (W0 = 400 nm
and g0 = 200 nm), the coupler coefficients are on average smaller than designed (K0 = 0.5,
and K0 = 0.1). This can be explained by looking at the average waveguide width and gap in
our example: the waveguide width are always larger than the nominal values (around 15 nm
in average) while the gap is always smaller (around 12.5 nm in average). For example, the
computed K(z = 7.1376µ m) with W = 415 nm and g = 187.5 nm is around 0.44, which is
smaller than the designed value 0.5 and complies the simulated results in Fig. 4(a). Similar
results can be obtained for the case of K(z= 2.9250µ m) withW = 415 nm and g= 187.5 nm.

In order to show the convergence of our algorithm, we gradually increase the level numbers
and compare the truncation error of δ (λ ,∆We,∆Wi). We use the 104 samples Monte Carlo
simulation result as the reference solution and plot the L2-norm of the error as a function of the
level parameter. The result in Fig. 5 shows that the error decreases when more basis functions
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Fig. 2. Top plot: Histograms of ∆W in the example. Bottom plot: Histogram
of ∆g in the example.
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Fig. 3. The simulated PDF of δ (λ ,∆We,∆Wi) with λ = 1.55 µm. The solid
line is the Stochastic Collocation (SC) result, whereas the dash line represents
Monte Carlo (MC) result. The nominal value of δ is 0.11.
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(b) z= 2.9250 µm

Fig. 4. The simulated pdf of power coupling coefficient K(z). The solid line
is the Stochastic Collocation (SC) result, whereas the dash line represents
Monte Carlo (MC) result.
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Fig. 5. The truncation error in terms of the level m.

Table 1: Performance summary of Stochastic Collocation and Monte Carlo simulation

Monte Carlo Stochastic Collocation
Number of Samples 100 1000 10000 81 Quadrature points

Mean value 0.102156 0.102074 0.102055 0.102083
S.t.d. value 0.003314 0.003152 0.003097 0.003096

CPU time (sec.) 58 580 5800 105

and more Gauss quadrature points are used. In addition, to quantitatively show the accuracy
of our solver, Table 1 compares the mean value and standard deviation of the simulated δ
from Monte Carlo and from our technique. It clearly shows that Monte Carlo result converges
towards that from our proposed solver as the number of samples increases. Moreover, to achieve
a similar level of accuracy in the mean and standard deviation of δ , Monte Carlo uses 104

samples and 97 minutes of CPU time, whereas our method consumes about 1 minute and 45
seconds when 9 quadrature points are used in each dimension. This clearly shows the superior
efficiency of our technique over Monte Carlo simulation, and the speedup factor is about 55.
Remark: In our implementations, we have observed slower convergence rates for some cases

even when the δ is smoothly dependent on the process variations parameters ∆We and ∆Wi. The
slow convergence rate is caused by the theoretical limitations of the basis functions proposed
in [26]. Observing Eq. (4), we note that the basis functions Ψα⃗ (⃗ξ ) might be highly non-linear
when the parameters are correlated. Thus, for some cases many basis functions are needed to
approximate a smooth quantity of interest (which is δ in our example), resulting in a slower
convergence rate for the solution. In order to improve the convergence rate, we are working
on a whole new set of basis functions which can potentially achieve high accuracy with much
fewer basis functions.

5. Conclusions

In this paper, we have developed a stochastic collocation scheme to simulate silicon photonic
devices with non-Gaussian correlated parameters described by a Gaussian-mixture joint prob-
ability density function. The numerical techniques for constructing a set of orthogonal basis
functions and for implementing stochastic collocation are presented. The proposed numerical
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method is applied to analyze the process variations in a directional coupler. The simulation
results of the δ and K are consistent with Monte Carlo. Our technique has achieved a 55×
speedup factor over standard Monte Carlo.

Appendix

The orthogonality of {Ψα⃗ (⃗ξ )} can be shown by computing the inner product of Ψα⃗ (⃗ξ ) and
Ψγ⃗ (⃗ξ ):

⟨Ψα⃗ ,Ψγ⃗⟩pξ⃗
=

∫

Ξ
Ψα⃗ (⃗ξ )Ψγ⃗ (⃗ξ )pξ⃗ (⃗ξ )dξ⃗ . (26)

Substituting Eq. (4) into Eq. (26), one can obtain

〈
Ψα⃗ (⃗ξ ),Ψγ⃗ (⃗ξ )

〉

pξ⃗

=
N

∏
i=1

∫

R
φ (i)

αi (ξi)φ
(i)
γi (ξi)pi(ξi)dξi

=
N
∏
i=1

∥∥∥φ (i)
αi (ξi)

∥∥∥
2

δαiγi

=
∥∥∥Ψα⃗ (⃗ξ )

∥∥∥
2

δα⃗γ⃗ .

(27)

Here, δα⃗γ⃗ is a Delta function defined as below:

δα⃗γ⃗ =

{
1, if α⃗ = γ⃗,
0, otherwise. (28)
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