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ABSTRACT   

Identifying the most relevant determinants of water consuming or saving behaviors at the household level is key to building 
mathematical models that predict urban water demand variability in space and time and to explore the effects of different 
Water Demand Management Strategies for the residential sector. This work contributes a novel approach based on 
feature selection and feature weighting to model the single-user consumption behavior at the household level. A two-step 
procedure consisting of the extraction of the most relevant determinants of users’ consumption and the identification of a 
predictive model of water consumers’ profile is proposed and tested on a real case study. Results show the effectiveness 
of the proposed method in capturing the influence of candidate determinants on residential water consumption, as well as 
in attaining sufficiently accurate predictions of users’ consumption profiles, which constitutes essential information to 
support residential water demand management. 
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1. INTRODUCTION   

Residential water demand nowadays covers a large portion of the public drinking water supply worldwide (Collins et al., 
2009, Kenny et al., 2009) and projections show that urbanization and population increase will further boost such a demand 
(Cosgrove and Cosgrove, 2012). The expansion of supply infrastructures is not always enough to secure demand 
satisfaction, due to water availability and financial constraints (McDonald et al., 2014). Therefore, Water Demand 
Management Strategies (WDMS) are key for water utilities to secure reliable water supply at affordable costs (Gleick et al., 
2013). In turn, the effectiveness of WDMS strongly relies on our understanding of water consumption drivers (Jorgensen 
et al., 2009). Revealing the most relevant determinants of water consuming or saving behaviors at the household level is a 
fundamental step to build predictive models of urban water demand variability in space and time (e.g., Bennett et al., 
2013). By capturing the behaviors of water users, these models allow identifying the variety of users’ consumption profiles 
(Gato-Trinidad et al., 2011) as well as exploring the effects of different WDMS for the residential sector (Anda et al., 2013; 
Fielding et al., 2013), ultimately supporting water utilities and urban planners. The state-of-the-art literature reports a 
variety of users models, which can be classified as:  

• Descriptive models (e.g., Gato-Trinidad et al., 2011) that focus on the analysis of water end-use patterns for targeting 
specific promising areas in designing WDMS (e.g., restriction on irrigation practices in the case where gardening 
represents the dominant end-use);  

• Predictive models (e.g., Bennett et al., 2013) that aim to estimate the water demand at the individual (household) level 
as determined by natural and socio-psychographic factors as well as by the response of water users to different 
WDMS. 

The first class of models allows building users’ consumption profiles based on historical trends. This provides the baseline 
reference for identifying promising areas where water savings and conservation actions may be focused. Yet, they do not 
quantify the expected impact of demand management actions on water consumption and savings, thus limiting their 
suitability to support the design of WDMS. In contrast, the second class of models can be employed to effectively predict 
water consumption at the household level. They are usually composed of two modules: user profiling, which regards the 
identification of the most relevant inputs to explain users’ consumption, and behavioral modeling, which performs structure 
identification, parameter calibration and validation of the predictive model. Many state-of-the-art studies (e.g., Makki et al., 
2013; Fox et al., 2009; Olmstead et al., 2007) reported the presence of correlations between one or more presumed 
consumption drivers and the associated consumption profiles, thus accomplishing the user profiling phase. Yet, the 
number of considered candidate variables is generally limited. In addition, only a few works completed the second phase 
(i.e., behavioral modeling) and provide a quantitative prediction of the water demand at the household level as a function 
of the identified drivers and WDMS, thus representing promising decision-aiding tools for water utilities and urban 
planners.   

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55258181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  E-proceedings of the 36th IAHR World Congress, 
28 June – 3 July, 2015, The Hague, the Netherlands   

 
          

  

2 

This work contributes a novel approach based on feature extraction techniques (Guyon and Elisseeff, 2003) to model the 
single-user consumption behavior at the household level. The approach is based on a two-step procedure: 
1. Identify the most relevant determinants of users’ consumption profiles;  
2. Build a predictive model of water consumption profiles based on the observation of the determinants identified in the 

previous step.  

The use of feature selection (i.e., algorithms returning a subset of selected features) and feature weighting (i.e., algorithms 
ranking the features according to their relevance) (Zhao et al., 2010) is motivated by the need to manage a large number 
of potentially relevant factors influencing water consumers’ behaviors along with their redundancy and highly nonlinear 
relationships, which represent major challenges for standard cross-correlation analyses (Galelli et al., 2014).  

In this paper, the proposed approach is applied to a dataset of low-resolution water consumption records associated with a 
variety of demographic and psychographic users data and household attributes collected in nine towns of the Pilbara and 
Kimberley Regions of Western Australia throughout the H2ome Smart project (Anda et al., 2013).  

The rest of the paper is organized as follows: the next section introduces the proposed feature extraction approach, and 
Section 3 describes the case study and the experiment setting. Numerical results are reported in Section 4. Section 5  
summarizes the limitations of the proposed approach and identifies possible improvements for development. 
2. FEATURE EXTRACTION-BASED USER PROFILING  

Feature extraction techniques, mostly developed in the data mining and machine learning research communities, 
represent potentially promising tools to model residential water users behaviors. These methods allow extracting the more 
relevant determinants in describing the consumption profiles of water users out of a large set of candidate drivers. On the 
basis of the selected determinants, a behavioral model predicting the water consumption at the household level can be 
identified. 

The general formulation of a water demand predictive model for a generic user i is the following: 

 yi = f (xi )   [1] 

 
where yi is the consumption profile of the i-th user and xi denotes the set of M determinants influencing his behavior, 
represented by a variety of demographic and psychographic users data (e.g., age, number of house occupants, income 
level, conservation attitude, etc.), household attributes (e.g., house size, type, garden area, etc.) and exogenous factors 
(e.g., temperature, and precipitation, water price, etc.). The union of determinants and consumption data yields a sample 
dataset containing N tuples, one for each user. The i-th tuple (with i=1,…,N) is defined as follows: 

< xi
1 ,xi

2 ,...,xi
M ,yi >              [2] 

 
The construction of the water demand predictive model defined in Eq. [1] relies on the following two-step procedure:  

1. Feature extraction to select from the original dataset X of users’ data a subset X '⊆ X of determinants that are 
relevant to describe the consumption profile Y; 

2. Model learning to predict the water consumption profile as a function of the selected features X’. 

2.1 Feature extraction 

Different approaches can be adopted to perform feature extraction as well as for model learning. In particular, feature 
extraction techniques can be classified in two main categories:  
• Feature selection, namely algorithms that return a subset of features selected from the original dataset as the most 

relevant to describe the considered output variable (i.e., consumption profile); 
• Feature weighting, namely algorithms that rank all the features according to a measure of their relevance, with no 

actual selection of the most relevant variables, which however are identified as the ones in the first positions of the 
ranking. 

Moreover, depending on their structure, they can be distinguished between model-free (or filter) algorithms, when they do 
not include any learning algorithm, or model-based in case they explicitly rely on a learning algorithm (Galelli and 
Castelletti, 2013). Model-based algorithms can be further classified into wrapper models, if they include a predetermined 
learning algorithm, and embedded, if the model construction phase includes feature selection (Zhao et al., 2010). 
Since no single method is best suited to all datasets and modeling purposes a-priori, we implemented and applied 
different algorithms for both feature selection and weighting. In particular, we run the following feature selection 
algorithmsa:  
• Fast Correlation Based Filter (FCBF) (Yu and Liu, 2003); 
• Correlation Feature Selection (CFS) (Zhao et al., 2010); 
• Bayesian Logistic Regression (BLogReg) embedded method (Guyon et al., 2002); 
• Sparse Bayesian Multinomial Logistic Regression (SBMLR) embedded method (Cawley et al., 2007). 

We also tested the following feature weighting algorithms: 

                                                             
a The 2014 version of the ASU feature selection package downloadable at http://featureselection.asu.edu/ was adopted for this study. 
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• CHI-square score (Liu and Setiono, 1995); 
• Information gain (Cover and Thoma, 2012). 

2.2 Model Learning 

As far as the model learning is concerned, in principle any data-driven model (regressors or classifiers) can be used (see 
Maier et al., 2000; Galelli and Castelletti, 2013). In practice, the selected method should have the following desirable 
features: 

1. Modeling flexibility to approximate strongly non-linear functions, particularly because the relationships between the 
candidate inputs (selected features) and the output (consumption profile) is completely unknown a priori;  

2. Computational efficiency to deal with potentially large data-sets, when considering large number of users;  
3. Scalability with respect to the number of candidate variables to be analyzed, due to the need of testing several 

variables with different domains and variability.  

In the present experiments, we used two different data-driven models: a Naive Bayes Classifier (Duda and Hart, 1973) 
and the J48 java implementation of the C4.5 Decision Tree algorithm (Quinlan, 1993). 

3. CASE STUDY DESCRIPTION 

3.1 The H2ome Smart project 

The following data, collected within the H2ome Smart project, are available:  
• Household water consumption data from meter readings (measured in m3). The maximum number of readings per 

household within the considered period is seven, thus the highest reading resolution is approximately three months; 
• House and occupants attributes: 26 variables describing different features of the users and their house. Table 1 

reports the complete list of data available. 
Data were collected between August 2010 and February 2012 for more than 3000 households in the towns of the Pilbara 
and Kimberley Regions of Western Australia. 

Table 1.  Water consumers' and household features considered in this study. 

NAME DESCRIPTION VARIABLE  
NATURE 

NUMBER OF 
POSSIBLE 

CATEGORIES 
    

TOWN - Categorical  9 
SUBURB - Categorical 21 

YEARS OF OCCUPANCY Years since the house is being occupied 
by the same inhabitants Integer - 

HOUSE RESPONSIBILITY Person responsible for paying bills Categorical 4 
NUMBER OF OCCUPANTS Number of inhabitants in the house Integer - 

RESIDENT TYPE Type of resident in the house Categorical 8 
NUMBER OF TOILETS Number of toilets in the house Integer - 

LAND USE Type of land use destination Categorical 14 
HOUSE TYPE Type of house structure Categorical 5 

WASHING MACHINE TYPE Type of washing machine Categorical 3 
TOILET TYPE Type of flush Categorical 3 

SHOWER TYPE Type of shower Categorical 3 
DISHWASHER PRESENCE Presence of dishwasher Binary - 

GARDEN AREA Area of the house garden [m2] Real positive - 
WATERING METHOD Method used for garden watering Categorical 4 

WATERING TIME Average weekly watering time Integer - 
IRRIGATION SYSTEM Type of irrigation technique Categorical 3 

DRIP IRRIGATION TYPE Type of irrigation technique Categorical 3 
SURFACE IRRIGATION TYPE Type of surfasse irrigation Categorical 3 
DRIP IRRIGATION DURATION Weekly average drip irrigation minutes Categorical 4 

SURFACE IRRIGATION 
DURATION 

Weekly average surfasse irrigation 
minutes Categorical 4 

MULCH USAGE Usage of mulch Binary - 
POOL PRESENCE Presence of pool Binary - 

POOL COVER USAGE Presence of pool chover Binary - 
SPA PRESENCE Presence of spa Binary - 

NATIVE PLANTS PRESENCE Presence of native plants Binary - 
    

 
 

3.2 Data pre-processing 

3.2.1 Data cleaning 

1. Records of users showing data inconsistencies or missing data (i.e., negative consumption rate or no consumption 
rate measures for any reading period) were removed from the dataset; 

2. Empty reading dates fields were filled for as many users as possible with the reading dates of the same accounting 
reading group; 
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3. The average daily water consumption rate in [m3/day] was computed for each water-reading period, for each 
household, given its water consumption data and reading period dates. This operation was useful to obtain 
comparable values of water consumption among different houses, since the duration of reading period was 
heterogeneous in the considered sample;  

4. If information about the number of house occupants was present, the per-capita daily water consumption rate in 
[m3/day] was computed for each reading period. 

The data cleaning process produced the following outputs: a matrix Cdaily containing six readings of daily average water 
consumption rate for N = 1624 households and a matrix CpcDaily containing six values of per-capita daily average 
consumption for N’ = 1560 households. Note that N and N’ are significantly lower than the initial dimension of the dataset, 
which included approximately 3000 households, as water consumption readings were partially or totally missing. 
 

3.3 Class label assignment 

The real values in Cdaily and CpcDaily were converted into three classes representing different water consumption profiles: 
low-consumers, medium-consumer, and high-consumers. Kmeans clustering was used to assign consumption data to 
classes, with k=3 (number of classes) and Squared Euclidean distance settings. It was run over the vectors Ydaily  and 
YpcDaily containing, respectively, the mean of water readings in Cdaily and CpcDaily, for each household. 

3.4 Matrix of users’ and households features  

Two sample datasets Xdaily and XpcDaily were built, respectively for the users whose consumption is included in Ydaily and 
YpcDaily. Each tuple of the datasets has M = 26 user and house features (see Table 1) associated to either Ydaily or YpcDaily.  

The processed datasets Xdaily and XpcDaily consisted, respectively, of N = and N‘ = tuples, one for each user satisfying the 
pre-processing conditions.    

4. TESTING AND VALIDATION  

4.1 Feature selection and feature weighting 

The outputs of the feature selection algorithms are represented in Figure 1, where the user and house features are listed 
on the y-axis and the color indicates the selection frequency of each feature over different algorithms runs. Each feature 
extraction algorithm was run 3 times: both Xdaily and XpcDaily were split into three subsets of equivalent size, and each run 
considered two thirds of the dataset for feature extraction calibration and the remaining third for predictive modeling 
validation (Section 4.3). Dark colored features in Figure 1 are the most relevant as they are always selected across the 
different algorithms runs, while their relevance decreases moving towards gray and white tones. The results of the two 
figures appear to be quite consistent: the number of household’s occupants seems to be the most relevant factor 
impacting average daily residential water consumption Ydaily (left part of the figure), as its selection frequency is higher 

Figure 1. Selection frequency of candidate features over multiple feature selection algorithms runs. Considered predictant: Ydaily (left) 
and YpcDaily (right). 
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than 80%; the number of toilets, the method used for irrigation, the presence of a pool and the land use destination are 
then ranked in the subsequent positions, with a decreasing selection frequency, but still higher than 60%. In addition, the 
geographical position, expressed by the “town” attribute, is also considered relevant in explaining the average per-capita 
daily water consumption YpcDaily (right part of the figure). However, the results obtained considering the average per-capita 
daily water consumption as predictant enforce the relevancy of the number of house occupants as main driver of water 
consumption, since its selection frequency is 100%, while all the other candidate variables do not achieve a selection 
frequency higher than 70%.  

Figure 2 shows the results obtained by running the feature weighting algorithms on Xdaily and XpcDaily, respectively. Again, 
the features are reported on the y-axis, while the x-axis represents the different feature weighting algorithms runs. Colors 
represent the positions of each feature in the weighting ranking: features with dark color were given higher weights by the 
algorithms, meaning they are considered relevant in explaining the output variable, while lighter features are associated to 
lower weights (i.e., less relevant). The two feature weighting algorithms produce consistent results, which are also 
coherent with the ones obtained by the feature selection algorithms, at least for the majority of the top-ranked features. 
The results confirm the existence of clear and strong relationships between the extracted features and the corresponding 
water consumption profiles. 

 

 

4.2 INTERPRETATION OF THE FEATURE EXTRACTION RESULTS 

The set of top-ranked features extracted in the previous section is analyzed in this section to better understand the 
underlying relationships between them and the water consumption profiles. 

4.2.1 OCCUPANTS  

The first considered feature is the number of occupants of the house, which is always ranked in the first position by all the 
algorithms. As shown in Figure 3, not surprisingly the median daily water consumption increases with the number of 
occupants. Yet, the median per-capita consumption decreases with the increasing of the number of occupants. The 
reason for that can be twofold: the first reason might be that some end-uses represent a sort of fixed-cost, which is shared 
among the occupants. For example, the water used for irrigation or in a pool is shared among the occupants and, 

Figure 2. Weighting ranking of candidate features over multiple feature selection algorithms runs. Considered predictant: Ydaily (left) 
and YpcDaily (right). 
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therefore, the individual cost (i.e., consumption) decreases for increasing number of inhabitants. The second reason might 
be that when the number of occupants increases, some kind of economies of scale and social pressure develop. As a 
consequence, water use is better balanced among the inhabitants and wastes are less frequent (Beal et al., 2011). 

 

 

 

 

 

 

4.2.2 TOILET NUMBER  

Figure 4 analyzes the number of toilets, where both the median daily and median daily per-capita water consumption level 
increase with the number of toilets in the house. Since the number of toilets generally increases with the size of the house 
(and thus with the number of household’s occupants), it is reasonable that the daily water consumption increases with the 
number of toilets. In contrast with the previous case, also the median per-capita consumption increases, probably because 
with a higher number of toilets there is less “competition” for using the resource (i.e., the toilet).  

 
 
 
 
 
 
 
 
 
 

 

 

  

 

 
 

Figure 3. Median daily water consumption and median  per-capita daily water consumption for different numbers 
of house occupants. 

Figure 4. Median daily water consumption and median  per-capita daily water consumption for houses with 
different number of toilets. 
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4.2.3 IRRIGATION  

The relationship between water consumption and the type of irrigation is shown in Figure 5: households where irrigation is 
performed by hand consume (on average) less water than those houses where irrigation is performed with automatic 
irrigation systems or both by hand and automatically. This evidence can be explained by relating the water consumption 
levels to the area of the garden to be irrigated (right y-axis). Houses equipped with automatic irrigation systems generally 
have a wide garden and high water consumption for irrigation. On the contrary, small gardens are irrigated by hand, 
resulting in a lower consumption. Reasonably, in houses with a medium-size garden and medium consumption levels, 
irrigation can be either manual or automatic. 

 

 

 

4.2.4 TYPE OF HOUSE 

Figure 6 shows how the consumption level increases with the size of the house. This phenomenon can be probably 
explained as bigger houses generally are occupied by a higher number of inhabitants and, also, they have a higher 
number of toilets or very likely larger gardens. In turn, the per-capita water consumption flattens for the same reasons 
previously discussed about the relationship between the number of occupants and their associated per-capita 
consumption. 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 5. Median daily water consumption and median  garden area for households adopting 
different irrigation techniques. 

Figure 6. Median daily water consumption and median  garden area for different types of house 
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4.3 FORECASTING USERS’ WATER CONSUMPTION PROFILE 

The second step of our procedure aims at identifying a model having the features extracted in the previous section as 
input, and the predicted water consumption profile of the users as output. This second step is fundamental in order to 
properly support the design of Water Demand Management Strategies, as well as assess their effectiveness. Indeed, the 
first step of feature extraction provides indications of potentially relevant water consumption drivers, thus supporting the 
empirical design of WDMS with a description of the status quo of users’ behaviors. In turn, a predictive model able to 
forecast consumers’ profile based on relevant attributes enables quantifying changes in household water consumption due 
to modifications in natural and socio-demo-psycho-graphic drivers, thus supporting utilities and planners by anticipating 
the effect of WDMS.  
In particular, working on low-resolution consumption data, our model allows classifying users to the three consumption 
profiles introduced in Section 3.3, namely low-, medium-, high-consumers. Among the available data-driven models, we 
employed Naive Bayes Classifier and Decision Tree algorithm (see Section 2.2) which are particularly suitable for these 
classification experiments. In order to minimize the risk of overfitting the model over the calibration data, we run a k-fold 
cross-validation, with k=3, by randomly splitting the dataset into k mutually exclusive subsets of equivalent size. Each time 
the predictive model is validated on one of the k folds and calibrated using the remaining k–1 folds, on which the feature 
extraction algorithms are run. Table 2, Table 3 and Figure 7 report the resulting average models accuracy across the k-
fold cross-validation, measured in terms of percentage of correct assignments of users on the basis of their features to 
their actual consumption profile. Results show that both the models allow attaining a sufficiently good accuracy in 
predicting the consumption profiles of the users, both when users are classified according to the total consumption of their 
house or the per-capita consumption level. Moreover, although Figure 7 shows that the prediction accuracy slightly varies 
when the number of features considered in the model increases, feature extraction algorithms succeeded in identifying the 
smallest subset of most relevant features, allowing for a sufficient level of prediction accuracy. The proposed method 
hence shows the potential to effectively capture urban water demand variability with respect to users psychographics and 
house characteristics data, thus representing promising decision-aiding tools for water utilities and urban planners. 
 

Table 2. Naive Bayes Classifier prediction accuracy based on feature selection (FS) algorithms outputs 

FS algorithm  
AVERAGE NAIVE BAYES 
CLASSIFIER ACCURACY  

ON Ydaily [%] 

 AVERAGE NAIVE BAYES  
CLASSIFIER ACCURACY  

ON YpcDaily [%] 
   FCBF 62.11 ± 2.80 80.45 ± 7.75  

CFS 63.22 ± 2.91 80.45 ± 7.75 
BLOGREG 62.48 ± 3.83 80.45 ± 7.75 

SBMLR 63.03 ± 3.11 80.45 ± 7.75 
   

 

 

Table 3. J48 Decision Tree prediction accuracy based on feature selection (FS) algorithms outputs. 

FS algorithm  
AVERAGE J48 DECISION  

TREE ACCURACY  
ON Ydaily [%] 

AVERAGE J48 DECISION  
TREE ACCURACY  

ON YpcDaily [%] 
   FCBF 63.46 ± 1.99 80.64 ± 7.89  

CFS 64.94 ± 2.71 80.64 ± 7.89 
BLOGREG 61.92 ± 0.85 80.00 ± 7.35 

SBMLR 62.91 ± 1,72 81.15 ± 7.84 
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5. CONCLUSIONS 

A novel approach based on feature extraction techniques to model the single-user consumption behavior at the household 
level has been presented in this paper. A two-step procedure consisting of the extraction of the most relevant 
determinants of users’ consumption profiles and the identification of a predictive model of water consumers’ profile was 
proposed and tested against a dataset containing low-resolution water consumption records associated with a variety of 
demographic and psychographic users’ data collected within the H2ome Smart project, in Western Australia.  

Results show overall consistency among the feature extraction techniques applied. The analysis of the results allows 
understanding the relationships between the selected features and the consumption profiles, demonstrating the suitability 
of such techniques as tools for capturing the influence of candidate determinants on residential water consumption. The 
development of predictive models of users’ behavior attains sufficiently high accuracy in predicting the household water 
consumption as a function of the user features, which constitutes essential information to support residential water 
demand management strategies. 

Further analysis will focus on assessing the robustness of these results and test the influence of the different steps of the 
proposed method on the overall quality. For instance, preliminary tests show that the clustering technique used for the 
construction of the users’ consumption profiles impacts on the final results of the predictive model. Moreover, we will 
assess how the overall procedure accuracy might vary when moving from low-resolution billed data on water consumption 
to high-resolution smart-metered data, which would allow the definition of more detailed user profiles on the basis of 
disaggregated end-use patterns. Finally, since the psychographic users data and the house characteristics were collected 
via survey with no guarantees that all the relevant determinants of users’ behaviors are observed, the entire user profiling 
process would benefit from the use of alternative methods for direct interaction with the users for data gathering as well as 
for providing personalized feedbacks.  
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Figure 7. Predictive models accuracy based on feature weighting (FW) algorithms 
outputs. The following FW algorithm – predictant are represented: Ydaily and Information 

gain FW (top-left),  YpcDaily and Information gain FW (top-right), Ydaily and Chi-square 
score FW (bottom-left),  YpcDaily and Chi-square score FW (bottom-right). 
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