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Abstract 

This paper proposes and compares different techniques for maintenance optimization based on 

Genetic Algorithms (GA), when the parameters of the maintenance model are affected by uncertainty 

and the fitness values are represented by Cumulative Distribution Functions (CDFs). The main issues 

addressed to tackle this problem are the development of a method to rank the uncertain fitness values, 

and the definition of a novel Pareto dominance concept. The GA-based methods are applied to a 

practical case study concerning the setting of a condition-based maintenance policy on the degrading 

nozzles of a gas turbine operated in an energy production plant. 

 

1. Introduction 

Multi-state degradation modelling has recently received considerable attention in the domain of 

reliability and maintenance engineering [2], [7], [36], [45], [46], as it pragmatically allows setting 

advanced maintenance paradigms such as Condition-Based Maintenance (CBM) and Predictive 

Maintenance [62], [63]. In practice, the parameters governing the stochastic transitions among the 

states of these models are first estimated, based on the available data; then, the degradation model is 

embedded into the maintenance model to estimate the performance indicators of interest (e.g., 

unavailability [34], [47], profitability [1], quality in production [11], total costs, risk [19], etc.): this 

model is at the basis of the optimization algorithm that identifies the set of optimal maintenance 

settings among which the decision maker selects the preferred solution (e.g., [28], [35]). 

On the other side, the correct processing of the uncertainty in the maintenance models is emerging to 

be a crucial issue for the proper decision on the preferred maintenance solution to apply in practice 

without ‘surprises’. This importance is witnessed by the large amount of literature produced on this 

topic (e.g., [3], [5], [6], [9], [21], [45], [46]). In other words, the maintenance models have to take 

into account the uncertainties affecting their parameters, which usually come from limited evidence 

available in the field. Such epistemic uncertainty (i.e., due to insufficient knowledge) needs to be 

propagated together with the aleatory uncertainty (i.e., due to the inherent stochastic nature of the 
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degradation and failure phenomena), through the maintenance model, onto the considered 

(maintenance) performance indicators. 

Several theoretical frameworks and computational methods have been developed to incorporate 

imprecise parameters into Markov or semi-Markov multi-state degradation models, when the 

imprecision is represented by interval probabilities [15], [29], [50], [55], fuzzy stets [20], possibility 

distributions [3], [6] and probability assignments [5], [9]. However, the problem (undoubtedly 

difficult [17]) of how to optimize maintenance in the setting where the epistemic and aleatory 

uncertainties in the embedded degradation model lead to uncertain objective functions (e.g., 

unavailability, cost, etc.), has not received the necessary attention. In fact, as pointed out in [17] and 

in [49], few approaches have been propounded in the literature to effectively tackle such multi-

objective optimization problems in the presence of uncertain objective functions. These works 

consider different frameworks for uncertainty representation: probability distributions in [17], [23], 

[39], [49], [52], [57] fuzzy sets in [31] and [56], and plausibility and belief functions in [14], [33].  

In this context, the Authors have proposed methodologies in the framework of Possibility Theory 

(PT, [3], [6]) and Dempster-Shafer Theory of Evidence (DSTE, [5], [17]) to represent and propagate 

the uncertainty in multi-state degradation maintenance models, and also to optimize the CBM policy 

based on the model outputs, which are pairs of plausibility and belief functions. Now, the aim of the 

present work is to propose an extension of Multi-Objective Genetic Algorithms (MOGA [14], [27], 

[35], [38], [43]) to tackle the maintenance optimization issue when the epistemic uncertainty in the 

degradation model is represented in the probability theory framework. Namely, the parameters of the 

stochastic model of the degradation mechanisms are supposed to be Maximum Likelihood (ML)-

estimated and the uncertainties in these estimations are represented by probability distributions [4], 

[25], [48]. A double-loop Monte-Carlo approach [61] is used to propagate the uncertainties from the 

model parameters onto the considered performance indicators (i.e., the objective functions of the 

optimization, which represent fitness values of the solutions), which turn out to be probability 

distributions. 

The development of a technique to rank the uncertain fitness values and the generalization of the 

Pareto dominance concept are the two fundamental issues to address in order to extend the application 

of MOGA to the case of uncertain objective functions, being the evolutionary schemes well-

established frameworks in which these innovations have to be embedded. In this work, we propose 

the pairwise ranking technique propounded in [10] and [14], and a Pareto dominance concept based 

on the ranks of the solutions. These concepts are combined with the NSGA-II elitist technique ([16]), 

which relies on the Pareto dominance to effectively divide the evolving populations into non-
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dominated fronts of different ranks, thus allowing for a significant reduction in the computational 

times.  

Finally, the results provided by this technique are compared to those of the CVaR approach [41], [53], 

which condenses the uncertainties in the objective functions into crisp values, representative of the 

associated risk. The comparison of these techniques and of their performances constitutes an 

additional original contribution of the paper.  

The remainder of the paper is organized as follows. Section 2 describes the ranking criterion and the 

Pareto dominance definition; Section 3 takes a glance at the GA advancements considered in this 

work (named extended NSGA-II, hybrid NSGA-II and CVaR measure). A practical case study is 

introduced in Section 4, which concerns the optimization of a CBM policy on the nozzle system of 

gas turbines. The results of the application of the proposed methodologies to the case study are shown 

and discussed in Section 5. Concluding remarks are given in Section 6. 

 

2. Sorting Method 

In the uncertainty setting considered in this work, finding the optimal set that minimizes the objective 

functions (e.g., unavailability and cost) requires developing a method to establish a relation order 

among two probability distributions. To this aim, we consider the algorithm proposed in [10], which 

is briefly recalled in this Section.  

Let us consider two generic random variables 𝐴 and 𝐵. To establish which is the largest, we consider 

the random variable ∆𝐴𝐵= 𝐴 − 𝐵 . Then, the probability that 𝐴  is larger than 𝐵 , referred to as 

“exceedance measure”, is given by 𝑟𝐴𝐵 = 1 − 𝐹∆AB (0), where 𝐹∆AB  is the Cumulative Distribution 

Function (CDF) of ∆𝐴𝐵.  

The relationship between 𝐴 and 𝐵 is obtained by comparing 𝑟𝐴𝐵 to a threshold range [𝑇𝑙, 1 − 𝑇𝑙], 

symmetric around 0.5, and considering the following criteria: 

• If 𝑟𝐴𝐵 ≥ 1 − 𝑇𝑙  , then 𝐴 is larger than 𝐵. 

• If 𝑟𝐴𝐵  ≤  𝑇𝑙 , then 𝐵 is larger than 𝐴. 

• If 𝑇𝑙 ≤ 𝑟𝐴𝐵 ≤  1 − 𝑇𝑙 , then 𝐴 is equal to 𝐵.  

 

In practice, 𝐵 is the largest among the two if the decision-maker judges the probability of 𝐵 being 

larger than 𝐴 ‘large’ enough (e.g., 0.7). A different point of view may be that 𝐴 and 𝐵 are similar as 

long as 𝑟𝐴𝐵 belongs to  [𝑇𝑙, 1 − 𝑇𝑙]. This way, the exceedance measure becomes a similarity measure.  
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This method is similar to that proposed in [18], which also relies on the pairwise comparisons of the 

probability distributions. However, the solution proposed to solve multi-criteria decision problems is 

completely different from that proposed in this work.  

For example, Figure 1 shows the Probability Density Functions (PDFs) of two variables 𝐴 and 𝐵, 

(left) and the corresponding CDFs (center). The results of the application of the sorting algorithm are 

shown in Figure 1 (right): the CDF of ∆𝐴𝐵 indicates that the exceedance measure 𝑟𝐴𝐵 = 𝑃(𝐴 > 𝐵) =

1 − 𝐹𝐴𝐵(0) = 0.8; this allows concluding that 𝐴 >  𝐵.  

Figure 1 also highlights the drawback of the procedures to sort the probability distributions, which 

rely on points summarizing the distributions (e.g., the approach proposed in [12]). Namely, the 

expected value of 𝐴, (i.e, the middle point of the distribution) 𝐸[𝐴], is larger than that of B, 𝐸[𝐵]. On 

the other hand, the 90th percentile of 𝐴 is smaller than the 90th percentile of 𝐵. This entails that if one 

were to perform the ranking based on the 90th percentile values the conclusion would be that B is 

larger than A, contrarily to what would be happen if the ranking were based on the expected values.  

Figure 1 allows us also underlining the difference between the proposed ranking method and the 

classical definition of stochastic ordering (the so called ‘usual’ stochastic order, e.g., [30], [54]): 𝐵 is 

smaller than 𝐴 if 𝐹A(x) ≤  𝐹B(x), ∀x ∈ ℝ. Namely, the CDFs plotted in Figure 1 (center) intersect, 

and the condition for having one curve dominating the other is not fulfilled. Thus, 𝐴 and 𝐵 need to 

be considered as ‘equal’, although 𝑃(𝐴 > 𝐵) = 0.8. On the contrary, Figure 2 shows the situation 

where 𝐴 ≈ 𝑁(𝜇 = 2.1, 𝜎 = 1)  is larger than 𝐵 ≈ 𝑁(𝜇 = 2, 𝜎 = 1)  in the usual stochastic order, 

although the probability that 𝐴 > 𝐵 is very poor (𝐴 − 𝐵 ≈ 𝑁(𝜇 = 0.1, 𝜎 = √2
2

), and 𝑃(𝐴 > 𝐵) =

0.53).  

The same considerations hold when the third degree stochastic dominance is applied [58]: one can 

establish an order relation between 𝐴 and 𝐵 even if the evidence that 𝐴 is larger than 𝐵 is very small. 

From these considerations, it seems fair to say that the ranking methodology proposed in [10] is more 

capable of capturing the information contained in the CDFs. 

 

  
Figure 1: two PDFs and CDFs comparison 

Finally notice that a ranking technique has been proposed in [49] in support to GA, which establishes 

the order relation based on the comparison of the solutions with an ideal, pre-fixed Dirac delta 
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distribution. It is worth noticing that when the reference Dirac delta is positioned at zero, then the 

method proposed in [49] reduces to sorting the distributions based on their mean values. Then, also 

in this case the CDF sorting is based on points summarizing the CDFs, thus losing the information 

they encode. 

 
Figure 2: two PDFs and CDFs comparison 

The authors in [10] also pointed out that there may be cases in which the pairwise comparisons of 

three generic random variables A, B and C lead to A>B and B>C, but C>A. This is a ‘contradictory’ 

ranking, as the transitive property does not hold. However, it has been proven in [8] that by setting 𝑇𝑙 

smaller than 1/3, such contradictory ranking is avoided and, at most, it can happen that A>B, B>C, 

and C=A. In this case, the three uncertain variables are considered equivalent. 

Notice that the loss of the transitive property for similarity measures is a well-known issue, whose 

raising dates back to the 50’s of the last century [42]: Poincaré emphasized that in the observable 

physical continuum, "equal" means "indistinguishable," and A = B and B = C do not imply A = C 

(i.e., physical equality is a non-transitive relation). These considerations have been formally modelled 

in a number of works (e.g., [37], [22]). Nonetheless, the problem of the ‘contradictory’ ranking did 

not emerge in the works of the literature that propose extensions of GA to treat noisy fitness values 

(e.g., [17], [23]).  

 

2.1. Pareto Dominance 

When sorting of elements concerns multiple attributes, the concept of Pareto dominance is introduced. 

Assume that there are 𝑄 objectives 𝛩1, … , 𝛩𝑄 to be minimized; then, a feasible solution, say 𝑋𝑠, is 

dominated by another feasible solution, say 𝑋𝑗, if for all 𝑞 = 1, … , 𝑄 the corresponding values of the 

objectives, 𝛩𝑠
𝑞
 and 𝛩𝑗

𝑞
, are such that [27], [38]: 

1. 𝛩𝑠
𝑞 ≤  𝛩𝑗

𝑞
, ∀ 𝑞 = 1, … , 𝑄, and  

2. 𝛩𝑠
𝑞 <  𝛩𝑗

𝑞
 at least for one 𝑞 = 1, … , 𝑄.  
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If 𝑋𝑠 dominates 𝑋𝑗, then this is indicated by 𝑋𝑠  ≻  𝑋𝑗. 

A solution is said to be Pareto optimal if it is not dominated by any other solution in the solution 

space. This means that a Pareto optimal solution cannot be improved with respect to any objective 

without worsening at least one other objective. The set of all feasible non-dominated solutions is 

referred to as the Pareto optimal set; the objective function values corresponding to a given Pareto 

optimal set form the Pareto front in the objective space.  

When the exceedance-based sorting method described above is used to establish if 𝛩𝑠
𝑞 ≤  𝛩𝑗

𝑞
, for any 

𝑞 = 1, … , 𝑄, the given definition of Pareto dominance needs to be modified [14]. To prove this, for 

the sake of simplicity we can refer to the case of Q= 2. On one side, one may have that the exceedance 

measure 𝑟𝑠𝑗
1 = 𝑃(𝛩𝑠

1 > 𝛩𝑗
1) ≥ 1 − 𝑇𝑙  and 𝑇𝑙 ≤ 𝑟𝑠𝑗

2 = 𝑃(𝛩𝑠
2 > 𝛩𝑗

2) ≤ 1 − 𝑇𝑙 , which leads to 

conclude that 𝑋𝑠  ≻  𝑋𝑗 ; on the other side, one may have also that 𝑟𝑠𝑗
1 ≥ 1 − 𝑇𝑙 , 𝑟𝑗𝑔

1 ≥ 1 − 𝑇𝑙  and 

1 − 𝑇𝑙 ≥ 𝑟𝑠𝑔
1 ≥ 𝑇𝑙 (i.e., 𝑋𝑠, 𝑋𝑗 and 𝑋𝑔 are of the same rank with respect to the second objective): this 

means that 𝛩𝑠
1 is equivalent to 𝛩𝑗

1, with respect to objective 1, and thus 𝑋𝑠  does not dominate 𝑋𝑗.  

To overcome this issue, the sorting algorithm shown in [8] is first applied to every objective 𝑞 =

 1, … , 𝑄. This algorithm exploits the ranking criterion described above and assigns the same ranking 

position to all the solutions that are equivalent with respect to objective q. For example, if we have 

𝐻 = 4 solutions and the second and third solutions are equivalent with respect to objective q, then 

the final ranking is 1, 2, 2, 4.  

Then, the following definition of Pareto dominance is introduced to identify the Pareto front:  

𝑋𝑠  ≻  𝑋𝑗 if 𝜌𝑠
𝑞 ≤  𝜌𝑗

𝑞
 for all 𝑞 = 1, … , 𝑄 and 𝜌𝑠

𝑞 <  𝜌𝑗
𝑞
 for at least one 𝑞 = 1, … , 𝑄. 

where 𝜌𝑠
𝑞
 and 𝜌𝑗

𝑞
 are the ranking positions of the solutions 𝑋𝑠 and 𝑋𝑗 with reference to objective q, 

respectively. 

Finally, notice that the approach proposed in [49] to implement the NSGA-II algorithm also relies on 

the ranking positions of the solutions in a population. However, the definition of the rank in [49] is 

different from that given in this work. Rather, it resembles the ranking method proposed in [44], 

which applies the Monte Carlo sampling method to estimate, for every solution Xh, the probabilities 

of occupying the H positions in the ranking. The final ranking of the solution Xh is the average value 

of its ranking positions. 

 

3. Multi Objective Genetic Algorithm (MOGA) for Optimization 
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GA is the most commonly known evolutionary algorithm for optimization, which uses techniques 

inspired by natural evolution to allow a population of solutions (also called, individuals), candidates 

to solve the (multiobjective) optimization problem, to evolve, i.e., move toward the best solution. 

The evolution usually starts from a population of randomly generated individuals, which change at 

each iteration, called a generation. In each generation, the fitness (the values of the objective 

functions) of every individual in the population is evaluated, and the most fitting individuals (those 

with largest or smallest objective functions values, depending on whether the aim is maximization or 

minimization, respectively) are selected. Each individual is modified by mating and a new, more 

evolved, generation of candidate solutions is formed. 

Commonly, the algorithm terminates when either a pre-set maximum number of generations has been 

produced, or a satisfactory fitness level has been reached in the population. 

In this Section, the general procedure of the MOGA developed in our work is given as follows [27], 

[38] (see Figure 3): 

Step 1. (Initialization) 

Set 𝑡 = 1. Randomly generate H solutions to form the first population 𝑋𝑡=1 = {𝑋1, … , 𝑋𝐻}. 

In the specific case of the maintenance optimization problem, a solution is generally a vector of 

decision variables such as the time interval between two successive inspections, the type of 

maintenance action to be performed, etc.  

 

Step 2. (Fitness Evaluation) 

Evaluate the fitnesses of the solutions in  𝑋𝑡  for every objective 𝛩1, … , 𝛩𝑄 , and assign the 

corresponding rank value by applying the sorting algorithm shown in [8]. In the uncertainty setting 

considered in this work, performing this step requires running the double loop Monte Carlo (MC) 

approach for propagating the uncertainty related to every solution 𝑋ℎ ∈ 𝑋𝑡, ℎ = 1, … , 𝐻. That is, the 

following procedure is implemented:  

 An external loop samples the values of the parameters of the multistate model from a normal 

distribution centred in the MLE values, with the estimated covariance matrix [25] [48].  

 For every set of sampled parameters, an internal MC loop propagates the aleatory uncertainty 

into the maintenance model, and estimates the values of all the objectives 𝛩1, … , 𝛩𝑄. These 

values are collected to infer the CDFs of the fitnesses at Step 3. 

 At the end of the double loop procedure, all the collected estimations are used to infer the 

empirical CDFs of the objective functions 𝛩1, … , 𝛩𝑄. 
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 The algorithm proposed in [8] is applied to get the rank position 𝜌ℎ
𝑞
 of the solution 𝑋ℎ ∈ 𝑋𝑡, 

with respect to the objective q, ∀ ℎ = 1, … , 𝐻, ∀ 𝑞 = 1, … , 𝑄. Finally, the definition of Pareto 

dominance given in Section 2 is used to identify the set 𝑃𝑡 of non-dominated solutions in the 

population 𝑋𝑡. 

 

Step 3. (Breeding). 

Generate an offspring population 𝑊𝑡 = {𝑊1, … , 𝑊𝐻} as follows: 

I. Selection 

Choose two solutions 𝑋𝑠 and 𝑋𝑙 from 𝑋𝑡. This choice is usually based on the ranking values, 

and heavily influences the performance of the GA, which is typically evaluated in terms of 

effectiveness and efficiency. In this work, we apply the dominance depth criteria 

characterizing the NSGA-II [16], which is one of the most efficient evolutionary algorithms 

to solve multi-objective optimization problems [41]. The main characteristic of NSGA-II is 

the Fast Non Dominated Sorting (FNDS) function, used for the selection phase, which allows 

grouping a population into different non-domination levels. That is, all non-dominated 

individuals in the current population are identified. These solutions are assigned the rank 1. 

Then, they are virtually removed from the population and the next set of non-dominated 

individuals are identified and assigned rank 2. This process continues until every solution in 

the population has been ranked. The selection procedure is then based on this ranking: 

individuals are randomly selected from the same rank class (Figure 3). The rationale of this 

choice is that every individual belonging to the same rank class can be considered equivalent 

to any other of the class, i.e., it has the same probability of the others to be selected as a parent 

and survive the replacement. 

II. Crossover 

Using a crossover operator, generate offsprings and add them to 𝑊𝑡. 

III. Mutation 

Mutate each solution {𝑊1, … , 𝑊𝐻}  with a predefined mutation rate. This means that the 

genomes of the individuals are randomly changed, to favour the genetic diversity. 

IV. Fitness assignment 

For every solution 𝑊ℎ  in  𝑊𝑡 = {𝑊1, … , 𝑊𝐻} , estimate the values of the objective 

functions 𝛩1, … , 𝛩𝑄  and the rankings of the solutions with respect to the objectives, by 

applying to 𝑊𝑡 the procedure described at Step 2. 

V. Replacement 
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An archive of vectors is introduced, which contains the non-dominated solutions and the 

corresponding fitness values. This archive represents the current Pareto optimal set, which is 

dynamically updated at the end of each generation. That is, the solutions in 𝑃𝑡 unite those 

already stored in the archive 𝐴𝑡, where 𝐴1 = ∅. This means that 𝐴𝑡+1 = 𝐴𝑡 ∪ 𝑃𝑡. Then, the 

solutions in 𝐴𝑡+1  are again sorted with respect to every objective to get the dominance 

relationships. The following archival rules are implemented:  

• The dominated members are removed from 𝐴𝑡+1; 

• otherwise: 

▪ if the archive is not full, 𝐴𝑡+1 is stored as it is, and it will be used at the next 

iteration.  

▪ if the archive is full, the solutions most similar to solutions already existing 

in the archive are removed from 𝐴𝑡+1. In this respect, an appropriate concept 

of distance is that of the Euclidean distance based on the values of the fitness 

of the chromosomes normalized to the respective mean values in the archive. 

 

Step 5. (Stopping criterion) 

If the stopping criterion is satisfied, terminate the search and return to the current population, else, set 

𝑡 = 𝑡 + 1 and go back to Step 3. In this respect, notice that there are many stopping criteria (e.g., 

[38]). In this work, the algorithm terminates when the number of simulation reaches a pre-fixed 

threshold. 

Notice that along with convergence to the Pareto-optimal set, it is also desired that an evolutionary 

algorithm maintains a good spread of solutions in the obtained set of solutions. In NSGA-II, this is 

achieved through the crowding-distance computation [16], which guides the selection process at the 

various stages of the algorithm toward a uniformly spread-out Pareto optimal front. The crowding-

distance computation requires sorting the population according to each objective function value in 

ascending order of magnitude. This is done by applying the sorting algorithm summarized in Section 

2. 

A final consideration concerns the loss of the transitive property introduced by the sorting methods 

that rely on similarity measures: the problem of the ‘contradictory’ ranking did not emerge in the 

works of the literature that propose extensions of GA to treat noisy fitness values (e.g., [17], [23]). 

This situation is due to the fact that assigning different ranking positions to solutions with equal 

fitness values does not significantly affect the effectiveness of the Single Objective GA search of the 

optimal solution; rather, the GA efficiency (i.e., speed of convergence) may be weakened. For 

example, assume that the fit-fit approach is considered in the reproduction phase [38], and that there 
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are n solutions with equal fitness values. When we sort them in the corresponding ranking positions 

i, i+1,…, i+n-1, each solution occupies a rank, which depends on the sorting algorithm, or even on 

the particular run of the algorithm (e.g., the Quicksort algorithm may randomly choose the pivot 

element [26]). Now, the fit-fit algorithm selects and mates members of these n solutions. This is a 

locally hybrid reproduction approach, which is between the fit-fit and random selection approaches, 

in the sense that, for those n positions, and at most the two neighborhoods in positions i-1 and i+n, 

there is a random facet behavior entering the selection of the parents. This may be even beneficial for 

GA, as it combines the speed of the fit-fit technique with the capability of preserving genetic diversity, 

typical of the random selection method (see [38] for references). However, the systematic study to 

assess the impact that such local-hybridization of the selection algorithm has on efficiency and 

effectiveness is outside the scope of this work. 

 

3.1. Hybrid NSGA-II and CVaR measure  

In this work, the NSGA-II paradigm is also combined with the  𝐶𝑉𝑎𝑅𝛼 method [41]. 𝐶𝑉𝑎𝑅𝛼 is a 

coherent measure of the risk associated to an uncertain function of interest, which has been broadly 

used in financial portfolio optimization to either reduce or minimize the probability of incurring in 

large losses [40]. 

The definition of the 𝐶𝑉𝑎𝑅𝛼 risk measure is derived from that of value at risk ( 𝑉𝑎𝑅𝛼). Namely, let 

𝑋 be a random variable representing the uncertain losses in a given time horizon, and let its CDF 

be  𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥) ; then, 𝑉𝑎𝑅𝛼(𝑋)  is the α-percentile of the random variable  𝑋 . That is, 

𝑉𝑎𝑅𝛼(𝑋) represents the smallest value of losses such that the probability of having losses exceeding 

𝑉𝑎𝑅𝛼(𝑋) is smaller than 1 − 𝛼 (Figure 4). 

𝑉𝑎𝑅𝛼 is commonly used in many engineering areas involving uncertainties, such as military, nuclear, 

material, aerospace, finance, etc. [53]. In the case addressed in this work, the losses concern the 

unavailability and cost. That is, 𝑉𝑎𝑟𝛼
1 and 𝑉𝑎𝑟𝛼

2 are the α-percentile of the unavailability and costs, 

respectively, associated to the CBM policy in a given time horizon 𝑇. These values have a clear 

interpretation by the maintenance decision maker: the probability of having losses in availability 

larger than 𝑉𝑎𝑟𝛼
1 is smaller than 1 − 𝛼; the same holds for money losses. 
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Figure 3: Flow Diagram of NSGA-II algorithm 
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The  𝐶𝑉𝑎𝑅𝛼  [53] of 𝑋  with confidence level 𝛼 𝜖 (0,1)  is the mean of the generalized α-tail 

distribution: 

 

     𝐶𝑉𝑎𝑅𝛼(𝑋) =  ∫ 𝑥
+∞

−∞
𝑑𝐹𝑋

𝛼(𝑥) 

 

where 

 

𝐹𝑋
𝛼(𝑥) =  {

0 𝑤ℎ𝑒𝑛 𝑥 <   𝑉𝑎𝑅𝛼(𝑋) 

𝐹𝑋(𝑥) − 𝛼

1 − 𝛼
 𝑤ℎ𝑒𝑛 𝑥 ≥  𝑉𝑎𝑅𝛼(𝑋)

 

  

In turn, we consider the 1 − 𝛼 -tail CDF, which represents the risk beyond the 𝑉𝑎𝑅𝛼. Then,  𝐶𝑉𝑎𝑅𝛼 

represents the mean value of this tail. Figure 4 shows the representation of both  𝑉𝑎𝑅𝛼 and  𝐶𝑉𝑎𝑅𝛼  

risk measures.  

Also, 𝐶𝑉𝑎𝑅𝛼 has a clear engineering interpretation. For example, 𝐶𝑉𝑎𝑟𝛼
1(𝑈) ≤  𝑈− ensures that the 

average of (1−α) % highest losses in availability does not exceed 𝑈−. 

From these definitions, it comes out that the 𝑉𝑎𝑅𝛼 and 𝐶𝑉𝑎𝑅𝛼 risk measures have different meanings 

and, then, mathematical properties. The problem of the choice between  𝑉𝑎𝑅𝛼  and  𝐶𝑉𝑎𝑅𝛼  has 

received increasing attention, especially in financial risk management [53]. Anyway, in our case we 

consider the  𝐶𝑉𝑎𝑅𝛼 risk measure, because it is more conservative than 𝑉𝑎𝑅𝛼, which is particularly 

important when safety is a concern in the application. In particular, following [41], we modify the 

definition of the objective functions and take a convex combination of the average values of the 

objectives and their 𝐶𝑉𝑎𝑅𝛼. That is, we introduce two new objective functions: 

 

- 𝛩1 = 𝛽 × 𝐸[𝛩1] + (1 − 𝛽) × 𝐶𝑉𝑎𝑟𝛼
1      (1) 

- 𝛩2 = 𝛽 × 𝐸[𝛩2] + (1 − 𝛽) × 𝐶𝑉𝑎𝑟𝛼
2      (2) 

 

This allows considering different scenarios; that is: 

- In case we set β = 0, then we conservatively aim at minimizing the risk of having 

large unavailability and costs. 

- In case of β = 1, the objectives we want to minimize are the mean cost and mean 

unavailability of the nozzle system. 

- In case of β = 0.5, the objective functions are an equal compromise between the 

corresponding two values above. 
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 Figure 4: difference between VaR and CVaR  

To conclude this Section, it is worthy stressing that also the CVar Method summarizes the information 

bring by a CDF in a point, as other works of the literature (e.g., [49]). Nonetheless, the CVar point 

has a clear engineering interpretation, which directly relates to the final decisions. 

 

4. Case Study 

In this paper, we consider a real practical case study concerning the maintenance optimization of a 

gas turbine nozzle system affected by different degradation mechanisms. The degradation of the 

nozzles is modelled as a four-state degradation model, in which the transitions can occur from one 

degradation state to the next degraded state only, and the stochastic transition times between the states 

obey Weibull distributions. 

Recall that the scope of the case study is to investigate the potential of the proposed techniques in 

optimizing the condition Based Maintenance (CBM) policy applied to the nozzle system, while giving 

due account to the uncertainty in the parameter estimates. For this, we consider a case study derived 

from a real industrial application faced by the authors, but with arbitrarily chosen values of the 

maintenance model parameters. 

The data available to estimate the parameters of the stochastic model are the outcomes of 

opportunistic, non-periodic, visual inspections of the turbine nozzles. That is, upon inspection, the 

maintenance experts disassemble the turbine and check the nozzles health states to qualitatively 

classify them into ‘Good’, ‘Light’, ‘Medium’ and ‘Heavy’ (Figure 5). In particular, every nozzle 

system is made up of 𝑁 = 22 nozzles.  
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Figure 5: Scheme of the degradation mechanism 

These data are used to estimate the parameters 𝛼𝑘 , 𝛽𝑘 of the Weibull distribution of the transition 𝑇𝑘 

from state 𝑆𝑘 to state 𝑆𝑘+1, 𝑘 = 1, … ,3, together with the corresponding uncertainties. For simplicity, 

we assume that such epistemic uncertainty in the parameter values is represented by normal 

distributions centered on the parameter ML estimates and with a given standard deviations. The 

general methodology to estimate these quantities can be found in [13]. 

 
𝜶𝟏 𝜷𝟏  𝜶𝟐 𝜷𝟐  𝜶𝟑 𝜷𝟑 

Value Σ Value σ Value σ Value σ Value σ Value σ 

1.38 
0.014 

0.71 
0.007 

12.73 
0.016 

0.16 
0.029 

6.18 
0.014 

0.65 
0.017 

0.084 0.053 0.097 0.045 0.083 0.047 

Table 1: values of the Weibull parameters for the transitions between helth states. 

In particular, to test the potential of the proposed GA advancements in treating uncertain fitnesses, 

we consider two numerical settings, with different amount of uncertainty affecting the estimates 

(Table 1). Namely, for every parameter in Table 1, the first column reports the MLE, whereas two 

different values of the standard deviations of the corresponding ML estimators are reported in the 

rows of the second column. 

The CBM approach applied to the nozzle system under study is based on the continuous monitoring 

of the turbine efficiency by processing the information provided by sensors which trace physical 

variables such as pressure, temperature, etc. When the efficiency value drops below a given threshold 

TE, then the nozzle system is replaced. Replacement makes the system unavailable for 𝑈𝑅 = 2 days. 

The cost of the consequent business interruption is given by the product of the duration of the 

unavailability period times the annual income I, which is defined as the income corresponding to one 

year of turbine continuous, full capacity operation. In this paper 𝐼 = 20𝑀 € . Thus, the total cost CR 

associated to a replacement action upon the achievement of TE is the sum of the business interruption 

cost due to system unavailability and the cost 𝐶𝑆 = 3𝑀 € of replacing the nozzle system. 

The nozzle system is also periodically inspected, with period Π. Every inspection is performed by 

one maintenance operator, who takes 𝑇𝑖𝑛𝑠𝑝 = 8 days for carrying out the machine disassembling and 

re-assembling operations necessary to check the health state of the nozzles. Obviously, larger values 

of Π steer the policy towards a full exploitation of the components and avoid ineffective machine 

Light 
Mediu

m 
Heavy Good 
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stops. On the contrary, smaller values of Π allow the machine operation in better health conditions 

with larger efficiency values. For this reason, Π is an influential decision variable to optimize the 

maintenance policy. 

The duration 𝑡(𝑆𝛾) of the preventive maintenance action performed on component γ depends on the 

degradation state 𝑆𝛾 in which it is found (Table 2). More precisely, fixing nozzles in degradation state 

𝑆2 requires one operator working for 0.5 day; 1 day is needed for a maintenance operator to repair 

nozzles in degradation state 𝑆3. Finally, if a nozzle is heavily degraded (i.e., in degradation state 𝑆4), 

then a maintenance operator takes 3 days to repair it.  

Notice that a simplifying assumption is made in this study: independently on the degradation state 

where the nozzles are found (light, medium, heavy), these are always repaired upon inspection (i.e., 

not replaced), and their conditions after maintenance are always considered as good as new (AGAN). 

  

 𝒕(𝑺𝜸)[𝒅𝒂𝒚𝒔] 

𝑺𝜸 =  𝑺𝟐 0.5 

𝑺𝜸 =  𝑺𝟑 1 

𝑺𝜸 =  𝑺𝟒 3 
Table 2: values of the duration of the maintenance actions 

From this, it appears that the preventive maintenance time 𝑇𝑀 required for repairing all the N nozzles 

is given by: 

𝑇𝑀 =  𝑇𝑖𝑛𝑠𝑝 +  ∑ 𝑡(𝑆𝛾)

𝑁

𝛾=1

 

Obviously, the system is unavailable during inspections and repairs. This causes a business 

interruption, whose cost is given by the part of the annual income I that the maintenance actions 

prevent from being gained. Thus, reducing the amount of time spent in repairing the nozzle system 

has a beneficial effect on the maintenance costs. In this respect, a larger number of maintenance 

operators 𝑵𝒎𝒐 can be involved in repairing actions.  

The effect on the time reduction is given by: 

𝑻𝑴 =  𝑻𝒊𝒏𝒔𝒑 +  
∑ 𝒕(𝑺𝜸)𝑵

𝜸=𝟏

𝑵𝒎𝒐
 

 

On the other side, reducing maintenance time has its own cost, as maintenance operators must be paid 

for their work. We assume that their daily cost is 𝐶𝑂 = 2000 
€

man
.  

Then, 𝑁𝑚𝑜 is another decision variable that enters the optimization of the CBM policy. 
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Generally speaking, nozzle degradation entails loss in turbine efficiency, whose magnitude depends 

on the degradation state. In this work, we assume that when the generic nozzle γ enters degradation 

state 𝑆2, it causes a loss 𝑙𝐸(𝑆𝛾 =  𝑆2) = 0.2% in turbine efficiency. An additional drop of 0.3% is 

associated to each component in degradation state 𝑆3  (i.e.,  𝑙𝐸(𝑆𝛾 =  𝑆3) = 0.3%), whereas each 

nozzle in state 𝑆4 brings about a further, large loss of 0.5% (i.e., 𝑙𝐸(𝑆𝛾 =  𝑆4) = 0.5%). 

 𝒍𝑬(𝑺𝜸) 

𝑺𝜸 =  𝑺𝟐 0.2% 

𝑺𝜸 =  𝑺𝟑 0.3% 

𝑺𝜸 =  𝑺𝟒 0.5% 
Table 3: values of the loss of efficiency 

Thus, the loss LE in turbine efficiency in a cycle (i.e., the time between two maintenance actions) is 

given by: 

𝐿𝐸 =  ∑ ∑ 𝑙𝐸(𝑆𝛾 =  𝑆𝑘+1)(𝑇𝑠𝑡𝑜𝑝 − 𝑇𝑘+1
𝛾

)

3

𝑘=1

𝑁

𝛾=1

 

where 𝑇𝑠𝑡𝑜𝑝 is the end of the cycle (i.e., the inspection time at the end of the interval Π or the time in 

which the turbine efficiency reaches the threshold 𝑇𝐸, whichever comes first), 𝑇𝑘
𝛾

 is the stochastic 

transition time 𝑇𝑘 of component γ, from state 𝑆𝑘 to state 𝑆𝑘+1 

Notice that the simplified scheme considered in this work entails that the worst condition (i.e., the 

N=22 nozzles are all in degradation state 𝑆4) determines a total loss in turbine efficiency of at most 

22*(0.2+0.3+0.5) % = 22%. 

Turbine inefficiency entails a cost, which is due to the production loss with respect to the full capacity 

production conditions. This is given by the part of the annual income that inefficiency prevents from 

being gained. That is, 𝐼𝐶 =  𝐿𝐸 ∙ 𝐼 is the inefficiency cost in a cycle. 

To sum up, the maintenance model described allows estimating the values of cost and unavailability 

corresponding to a triplet of decision variables 𝑇𝐸 , 𝑁𝑚𝑜 and Π.  

As mentioned before, a double Monte Carlo algorithm has been implemented to propagate the 

uncertainty from the degradation model parameters to the maintenance performance indicators, where 

the internal Monte Carlo loop simulates the life process of the turbine nozzles over a fixed time 

horizon (i.e., the aleatory uncertainty), whereas the external loop is used to sample the parameters of 

the degradation model (i.e., epistemic uncertainty). 

Finally, for clarity, all the parameters and variables of the case study, with relevant explanations, 

values and formulas, are summarized in Table 4. 
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Symbol Description Value 

𝑪𝑶 Maintenance operator daily cost 2000 € 

𝑪𝑺 Cost for replacing the nozzle system 3000000 € 

𝑪𝑹 
Total Cost for replacing the nozzle 

system 
𝐶𝑆 + 𝑈𝑅 ∙ 𝐼 

𝑰𝑪 Inefficiency cost in a cycle 𝐿𝐸 ∙ 𝐼 

I Annual Income 20000000 € 

Π Inspection Interval Decision variable 

𝒍𝑬(𝑺𝜸 =  𝑺𝒌 ) 
Loss in turbine efficiency when 

component γ enters degradation state  
𝑆𝑘 

See Table 3 

𝑳𝑬 

Loss in turbine efficiency in a cycle 
𝐿𝐸 =  ∑ ∑ 𝑙𝐸(𝑆𝛾 =  𝑆𝑖  )(𝑇𝑠𝑡𝑜𝑝 − 𝑇𝑖

𝛾
)

3

𝑖=1

𝑁

𝛾=1

 

 

𝑵 
Number of similar components in the 

system 
22 

𝑵𝒎𝒐 
Number of maintenance operators 

involved in repairing actions 
Decision variable 

𝒑 
Number of preventive maintenance 

interventions 
Random variable, which depends on the 

simulated Turbine hystory 

𝑹 
Number of replacements during 𝑇𝐻 Random variable, which depends on the 

simulated Turbine hystory 

𝑺𝒌 k - th degradation state 𝑘 = 1, … ,4 

𝑺𝜸 
Variable indicating the degradation state 

of component γ 
𝛾 = 1, … ,3 

𝒕(𝑺𝜸 =  𝑺𝒌 ) 
Time to repair nozzle γ when it is found 

in state 𝑆𝑘 
See Table 2 

𝑻𝑬 Efficiency Threshold Decision Variable 

𝑻𝑯 Time Horizon 10 years 

𝑻𝒊𝒏𝒔𝒑 Duration of inspections 8 days 

𝑻𝒌
𝜸

 
Stochastic transition time 𝑇𝑘 from 𝑆𝑘 to  

𝑆𝑘+1 experienced by component γ 
 

𝑻𝒔𝒕𝒐𝒑 

Time instants at which the cycle ends Either the inspection time at the end of 
the interval II or the time in which the 

turbine efficiency reaches the threshold 
TE, whichever comes first 

𝑻𝑴 
Duration of preventive maintenance 

actions 𝑇𝑀 =  𝑇𝑖𝑛𝑠𝑝 +  
∑ 𝑡(𝑆𝛾)𝑁

𝛾=1

𝑁𝑚𝑜
 

𝑼𝑹 
System Unavailability owing to the 

replacement task 
2 days 

𝑼 
System Unavailability (objective 

function) 
𝑈 = 𝐸 [

𝑝 ∙ 𝑇𝐸 + 𝑅 ∙ 𝑈𝑅

𝑇𝐻
] 

Table 4: Case study parameters and variables 

 

5. Results 

In this Section, the extended NSGA-II algorithm proposed in Section 3 is applied to optimize the 

CBM policy described in Section 4. That is, we are looking for the set of combinations of the three 

variables Π, 𝑇𝐸 and 𝑁𝑚𝑜 that minimizes the cost and system unavailability over a time horizon of 10 

years. Table 5 summarizes the characteristics of the search space in which the optimal solution is 

sought, where the number of bits indicates the number of points in which the search intervals are 

divided (2𝑛_𝑏𝑖𝑡𝑠). 
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Decision Variable Search Space Number of bits 

Π [inspection period, years] [5,10] 6 

𝑻𝑬 [% efficiency] [10,20] 5 

𝑵𝒎𝒐 [number of operators] [15,23] 3 
Table 5: Genetic algorithm search space 

 

First, the extended NSGA-II algorithm has been run in case of small uncertainty in the degradation 

model parameters, in the setting summarized in Table 6. The results relative to a run of 10 generations 

are summarized in Appedix A, which reports the values of the decision variables corresponding to 

the optimal Pareto set.  

 

Genetic algorithm parameters Search setting 

Population size H 80 

Number of Generations 10 

Selection Binary Tournament Selection 

Replacement Random 

Mutation Probability 0.2 

Crossover Probability 1 

Number of Mc Simulation 200x500 
Table 6: NSGA-II search setting 

 

The solutions in Appendix A are all characterized by large values of the numbers of operators 

𝑁𝑚𝑜 performing the maintenance actions. This means that setting such decision variable to smaller 

values entails a significant worsening in the maintenance policy performance, due to large system 

unavailability.  

Moreover, the solutions found by the algorithm can be grouped into two different classes: 

1) The first class, rows 1-4, sets the preventive inspection at five years (i.e., half time horizon) 

and uses the threshold to monitor the efficiency of the plant. This setting consistently reduces 

the costs, but entails larger unavailability values (bottom-right part in Figure 6). 

2) The second group (remaining rows) relies on the efficiency threshold 𝑇𝐸  to stop the turbine, 

only. In fact, Π is fixed to almost 10 years, which entails that the turbine is never inspected. 

Contrarily to the first solutions, this consistently reduces the unavailability, but leads to larger 

costs. 

In Figure 6, the Optimal Pareto Front is reported: horizontal and vertical lines represent the range 

between the fifth and ninety-fifth percentiles of the CDFs of unavailability and cost, respectively, 

whereas the line crosses identify the means of the two distributions. 
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Figure 6: NSGA-II Optimal Pareto Front: horizontal and vertical lines are the 5-th and 95-

th percentiles of the unavailability and cost distributions.  

 

In the second uncertainty setting, i.e., with larger standard deviations (Table 1), the algorithm 

provides the results reported in Appendix B. 

 

Comparing these solutions with those in Appendix A, it emerges that larger uncertainty values 

increase the cardinality of the Pareto Optimal Set. This is an expected result; roughly speaking, larger 

uncertainties lead to more ‘lengthened’ CDFs (e.g., larger ranges between the fifth and ninety-fifth 

percentiles of cost and unavailability), and thus increase the number of non-dominated solutions. This 

result also highlights the added value of considering optimization algorithms that give full account to 

uncertainty. That is, these algorithms give the possibility of considering among the Pareto optimal 

set, solutions that would have been otherwise discarded.  

Figure 7 reports the Pareto front corresponding to the Pareto set in Appendix B, with the 90% 

confidence intervals. Notice that, the bands describing the uncertainty in the costs are larger in 

correspondence of smaller values of unavailability. This is due to the larger variability of the repair 

costs when the turbine is periodically inspected, owing to the variability of the degradation state in 

which the nozzles can be found. On the contrary, when the turbine is stopped based on 𝑇𝐸 , the health 

conditions of the nozzles are similar to each other in the different stochastic simulations. 
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Figure 7: NSGA-II Optimal Pareto Front, in case of larger epistemic uncertainty. 

Finally, a comment seems in order about the choice of stopping the optimization algorithm at G=10 

generations. In this case study, such choice is justified by the fact that the solutions found by the 

extended NSGA-II algorithm belong to the two classes described above, which are the same provided 

by the CVaR method. This makes us confident that even if the results do not belong to the actual 

optimal Pareto set, they are not far from it.  

More generally, setting the value of G or adopting a different stopping criterion remains a critical 

issue, especially in the light of the findings of [57], where the authors showed that to reduce the 

computational times, investing on a large number of generations (i.e., “evolution” [57]) is to be 

preferred to performing a large number of Monte Carlo runs (i.e., “accuracy”). This issue has not 

been answered by this work, and will be tackled in future research works. A possibility is to adapt the 

hyper-volume stopping criterion [32] to the case of uncertain fitness values (i.e., stop the evolution 

when the shape of the Pareto front remains constant) or perform a cluster analysis on the Pareto front 

[60], or analyse the influence of increasing G on the search to derive a novel stopping criterion. 

5.1. Hybrid NSGA-II and CVaR measure  

In this Section, the 𝐶𝑉𝑎𝑅𝛼 risk measure is introduced in the objective functions of the NSGA-II 

algorithm. Specifically, we use Equations (1) and (2) as objective functions with three different values 

of the parameter β: 0, 0.5, 1, and percentile α=0.7. Also in this case, we first consider the numerical 

setting in which the parameters are affected by a small amount of uncertainty. The setting of the 

remaining parameters of the NSGA-II are reported in Table 6.  

Appendix C lists the solutions of the Pareto optimal set and the corresponding objective function 

values, whereas Figure 8 shows the Pareto optimal fronts for the different values of β. 
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Figure 8: Pareto Optimal Front relative to β = 0, 0.5 and 1, in case of smaller epistemic uncertainty. 

 
From Figure 8, it emerges that the larger the value of β the smaller the costs. This is due to the fact 

that smaller values of β drive the multi objective optimization to focusing on the expected values of 

the objectives, whereas larger values of β put emphasis on the level of risk ( 𝐶𝑉𝑎𝑅𝛼) associated to 

the solutions. This result cannot be appreciated on the unavailability objective function, as its 

variability is very small.  

On the other side, whichever the value of β is, the solutions provided by the CVaR measure are always 

belonging to the same two groups identified by the NSGA-II algorithm. This result also holds when 

we have an increase in the values of the variance of the estimators of the degradation model 

parameters, as it can be easily seen from Appendix D and Figure 9, which show the Pareto optimal 

set and the corresponding Pareto optimal front. However, although the investigated algorithms give 

similar solutions, there are significant differences between them: the NSGA-II proposed in this work 

gives full account to the uncertainty in the objective functions, as it handles directly the CDFs 

describing such uncertainty. On the contrary, the CVaR technique summarizes the CDFs in single 

points, i.e., the average values of the risky parts of these distributions, with consequent loss of 

information. On the other side, this simplification allows for a significant improvement in the 



22 
 

interpretability of the results of the algorithm: the maintenance decision maker knows that the optimal 

solutions provided by the algorithm correspond to a given risk level of having poorer unavailability 

and cost performances, which is also set by himself/herself. In this respect, different algorithms can 

be applied to help the decision maker in making the final choice when the hybrid NSGA-II and CVaR 

approach is adopted [59], which cannot be easily applied when using the extended NSGA-II, as they 

rely on the geometrical properties of the Pareto front. The development of methods to apply the 

concept of geometrical distance to the Pareto fronts depicted in Figure 7 will be the focus of future 

research work. 

Moreover, the fact that the solutions obtained for β = 0 (i.e. pure  𝐶𝑉𝑎𝑅𝛼) and β = 1 (i.e. , average 

fitness values) are similar to each other may lead to conclude that there is no added value in 

considering the uncertainty in the fitnesses. However, this conclusion is generally wrong; in fact, 

there are optimization problem in which the Pareto optimal sets are different in correspondence of 

different values of β values [41]. In this respect, notice also that the comparison of Figure 8 and 

Figure 9 highlights a change in the shape of the Pareto front: the front appears to be more swollen in 

case of larger values of the variance of the ML estimators. This is due to the fact that larger uncertainty 

in the model parameters moves the CVaR values of the solutions toward larger values. 

Yet, to compare the extended NSGA-II method with the hybrid NSGA-II and CVaR approaches, we 

also consider their computational times (Table 6), relevant to 10 generations of 80 individuals. From 

Table 7, it emerges that using the CVaR to summarize the uncertainty in the fitnesses allows for 

smaller computational times, as we have to look at a single value rather than to the entire distribution.  

Notice also that the computational times are very large because we need applying the computational 

burdensome double-loop Monte Carlo procedure for every individual at any generation, and also the 

time-consuming ranking procedure proposed in Section 2. 
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Figure 9: Pareto front relative to β = 0, 0.5 and 1, in case of larger epistemic uncertainty. 

 

Algorithm Computational Time 

NSGA-II 20 hours 

CVaR 6 hours 

Table 7: Computational Time for the methods applied, on an Intel Core I7 CPU, 1.8GHz, machine 

 

6. Conclusion 

In this work, two techniques based on the Multi Objective Genetic Algorithms have been proposed 

to solve the problem of CBM affected by uncertainty, which both rely on an innovative algorithm for 

sorting probability distributions and on a new definition of Pareto dominance. The first technique is 

based on the NSGA-II algorithm, whereas the second is a combination of NSGA-II and CVaR index. 

These methods have been applied to a practical case study, providing similar results. Nonetheless, 

there are significant differences between these approaches: the NSGA-II gives full account to the 

uncertainty in the objective functions, as it handles the CDFs describing such uncertainty; on the 

contrary, the CVaR technique summarizes the CDFs in single points, i.e., the average values of the 

risky parts of these distributions. On one side, the simplification introduced by the CVaR algorithm 

leads to a loss of information. On the other side, this allows for a significant simplification of the 
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algorithm and provides the maintenance decision maker with more easily understandable results, as 

he/she knows that the optimal solutions provided by the algorithm correspond to a given risk level, 

also set by the decision maker.  

Additional findings of the work are: 

 The Pareto optimal set depends on the uncertainty in the model parameters. That is, the larger 

the uncertainty the more swollen the Pareto front. 

 The computational times of the hybrid NSGA-II and CVaR method are considerably better 

than those of the extended NSGA-II. 

Future research works will focus on investigating the effects of the number of generations G on the 

results of the search, and devising different stopping criteria. 
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8. Appendix 

 

A. Pareto Optimal set of NSGA II 

 

Π 𝑻𝑬 𝑵𝒎𝒐 

5.0000 15.6250 22 

5.0000 17.8125 22 

5.0000 19.0625 22 

5.0781 19.0625 22 

9.7656 14.3750 21 

9.7656 14.6875 21 

9,8438 13.4375 21 

9.8438 14.0625 21 

9,9219 12.5000 20 

9.9219 12.8125 19 

9.9219 12.8125 20 

9.9219 13.1250 18 

9.9219 13.1250 19 

9.9219 13.4375 21 

9.9219 14.3750 16 

9.9219 14.0625 20 

9.9219 19.1250 19 

 

 

B. Pareto Optimal set of NSGA-II with high uncertainty 
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Π 𝑻𝑬 𝑵𝒎𝒐 

5.0000 15.6250 22 

5.0000 17.8125 22 

5.0000 19.0625 22 

5.2344    17.5000 22 

5.3125    17.5000 22 

5.3125    18.7500 22 

9.8438    13.7500 22 

9.8438    14.6875 22 

9.8438    15.0000 22 

9.9219    12.5000 22 

9.9219 12.8125 21 

9.9219 12.8125 22 

9.9219    13.1250 21 

9.9219    13.1250 22 

9.9219 13.4375 22 

9.9219    13.7500 21 

9.9219    13.7500 22 

9.9219    14.0625 22 

9.9219 14.3750 21 

9.9219 14.3750 22 

9.9219 14.6875 22 

9.9219 15.0000 22 

9.9219 15.3125 18 

9.9219 15.3125 22 

 

C. NSGA-II & CVaR, in case of smaller epistemic uncertainty. 

 

Value of β Π 𝑻𝑬 𝑵𝒎𝒐 𝒇𝟏 𝒇𝟐 

β = 0 

5.0000 19.0625 22 0.005119 1.15725e6 

5.0781 17.5000 21 0.005158 1.15566e6 

5.1562 15.9375 21 0.005165 1.15336e6 

9.4531 12.8125 19 0.004606 4.42799e6 

9.6093 12.1875 22 0.004228 6.82013e6 

9.6875 14.3750 22 0.004906 2.18279e6 

9.6875 14.6875 22 0.005011 1.92226e6 

9.7656 12.8125 15 0.004442 4.46420e6 

9.7656 12.8125 19 0.004278 4.48690e6 

9.8437 12.1875 20 0.004121 6.89112e6 

9.8437 14.0625 20 0.004750 2.47483e6 

9.9218 14.3750 19 0.004865 2.22316e6 

β = 0.5 

5.0000 15.9375 22 0.005091 1.13765e6 

9.5312 14.0625 22 0.004875 2.36447e6 

9.6875 14.0625 19 0.004861 2.37491e6 

9.6875 14.0625 20 0.004816 2.39103e6 

9.7656 14.6875 22 0.004925 1.85614e6 
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9.8437 12.5000 16 0.004185 5.17130e6 

9.8437 12.8125 18 0.004189 4.23272e6 

9.8437 13.1250 22 0.004215 3.59780e6 

9.8437 13.4375 18 0.004506 3.06899e6 

9.8437 13.7500 20 0.004547 2.70590e6 

9.9218 13.4375 18 0.004419 3.09173e6 

9.9218 14.0625 17 0.004757 2.40321e6 

β = 1 

5.0000 16.5625 22 0.005063 1.12333e6 

5.0000 19.3750 22 0.005063 1.12324e6 

9.4531 13.4375 21 0.004708 2.94671e6 

9.4531 14.6875 22 0.005052 1.78782e6 

9.6093 13.7500 20 0.004720 2.57789e6 

9.6875 13.4375 17 0.004626 2.97766e6 

9.6875 14.6875 20 0.005001 1.81776e6 

9.8437 13.1250 22 0.004151 3.40217e6 

9.8437 14.0625 17 0.004754 2.32436e6 

9.9218 12.5000 22 0.003921 4.86657e6 

9.9218 12.8125 21 0.004005 4.03651e6 

9.9218 12.8125 22 0.003976 4.07308e6 

9.9218 14.6875 21 0.004816 1.82957e6 

  

D. NSGA-II & CVaR results, in case of larger epistemic uncertainty 

 

Value of β Π 𝑻𝑬 𝑵𝒎𝒐 𝒇𝟏 𝒇𝟐 

β = 0 

5.1563    16.2500 22 0.00514    1.16926e6 

5.0781    17.1875 22 0.00514    1.17448e6    

5.2344    16.2500 22 0.00471  2.91378e6 

5.2344    18.1250 22 0.00515    1.15717e6 

9.9219        13.4375    19 0.00448 3.36976e6 

9.9219    13.7500    17 0.00471 2.91378e6 

9.9219    12.8125 16 0.00431 4.63619e6 

9.9219    13.4375 22 0.00437 3.39289e6 

9.9219    12.8125 22 0.00410 4.70493e6 

9.9219    13.7500 17 0.00472 2.91378e6 

9.9219    13.7500 18 0.00467 2.96845e6 

9.8438    14.3750 22 0.00484 2.26309e6 

β = 0.5 

5.1563 14.6875 22 0. 00511 1.17841e6 

5.2344 19.0625    22 0.00511 1.14263e6 

9.5313 14.6875 22 0.05085 1.89593e6 

9.6875 14.6875 20 0. 00505 1.92952e6 

9.7656 13.1250 20 0.00436 3.69015e6 

9.7656 13.4375 20 0.00451 3.15427e6 

9.7656 13.7500 22 0. 00457 2.74118e6 

9.8438 13.1250 22 0.00424    3.69549e6 

9.8438 14.3750 19 0. 00488 2.16130e6 

9.9219    12.8125 22 0.00404 4.41210e6 

9.9219 14.0625 21 0. 00462 2.43571e6 

β = 1 

5.0781 19.3750 22 0.00506 1.12285e6    

9.6094 13.7500 22 0.00465    2.57382e6    

9.6875 13.1250 19 0.00441    3.41215e6    
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9.6875 14.6875 22 0.00493    1.79697e6    

9.9219 12.5000 21 0.00394    4.95016e6   

9.9219 13.1250 19 0.00418    3.42029e6    

9.9219 14.3750 21 0.00469    2.00797e6   
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