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Abstract

Demand for mineral resources is increasing, necessitating exploita-
tion of lower grade and more heterogeneous orebodies. The high
variability inherent in such orebodies leads to an increase in the cost,
complexity and environmental footprint associated with mining and
mineral processing. Enhanced knowledge of orebody characteristics is
thus vital for mining companies to optimize profitability. We present a
pilot study to investigate prediction of geometallurgical variables from
drill sensor data. A comparison is made of the performance of multi-
layer perceptron (mlp) and multiple linear regression models (mlr)
for predicting a geometallurgical variable. This comparison is based on
simulated data that are physically realistic, having been derived from
models fitted to the one available drill core. The comparison is made in
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terms of the mean and standard deviation (over repeated samples from
the population) of the mean absolute error, root mean square error,
and coefficient of determination. The best performing model depends
on the form of the response variable and the sample size. The standard
deviation of performance measures tends to be higher for the mlp, and
mlr appears to offer a more consistent performance for the test cases
considered.

Contents
1 Introduction C210

2 Analytical methodology C211
2.1 Wavelet analysis . . . . . . . . . . . . . . . . . . . . . . . . C212
2.2 garch model . . . . . . . . . . . . . . . . . . . . . . . . . C212
2.3 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . C212
2.4 Settings for simulation studies . . . . . . . . . . . . . . . . C213

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . C213
2.4.2 Setting up the population . . . . . . . . . . . . . . C214
2.4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . C215
2.4.4 Extrapolation . . . . . . . . . . . . . . . . . . . . . C216
2.4.5 Sample size in practice . . . . . . . . . . . . . . . . C216

3 Results and discussion C217
3.1 Exploratory analysis . . . . . . . . . . . . . . . . . . . . . C217
3.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . C218

3.2.1 Features from the garch model (simulation study 1.1) C218
3.2.2 Features from wavelet decomposition (simulation study 1.2) C222
3.2.3 Features from the garch model (simulation study 2) C224

4 Conclusion C226



1 Introduction C210

1 Introduction
The demand for mineral resources is increasing, and companies are mining
lower grade and more heterogeneous orebodies. Such high variability leads
to higher costs, complexity and environmental impacts. So mining compa-
nies need models that can predict processing costs from exploratory drill
core data. Geometallurgy is a multi-disciplinary approach that combines
geological and mineralogical information to create and predict spatial models
aimed at maximising metal recovery, optimising processing efficiency, and
minimising associated management risks. Geometallurgical variables are
those that contain information on any rock or mineral property that carries
economic implications for the business model. Geometallurgical variables
are grouped into primary and responsive variables. Primary variables (e.g.,
grain size, metal grades, mineralogy and other rock properties) are measured
directly, whereas responsive variables are predicted from multiple parameters.
Responsive variables (e.g., metal recovery, grindability and plant throughput)
are key to process efficiency and evaluation of the final cost of mineral ex-
ploitation. It is important to initiate a geometallurgical program at the early
stage of mine development, as a thorough understanding of geometallurgical
variables inherent to the orebody, or parts thereof, can help identify potential
processing issues prior to major capital investment.

Since 2009, when the concept of primary-response framework was first estab-
lished [7], there has been an increasing number of papers using multiple linear
regression models to predict geometallurgical variables. Boisvert et al. [3]
fitted multiple linear regression (mlr) models to reduced dimension data from
the Olympic Dam Mine, South Australia, to predict six sparsely sampled
plant performance variables. They reported correlations between true and
estimated values ranging from 0.533 to 0.9. Hunt et al. [12] used mlr to
predict three comminution variables: the sag power index, Bond Ball Mill
Work Index (bwi), and resistance to abrasion breakage. The results gave
average relative errors between 6% and 12%. Both et al. [5] implemented mlr
to predict ball mill throughput as a function of rock attributes of blended
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materials for the Tropicana Gold Mining Complex in Western Australia. They
found Pearson correlation coefficients ranging from 0.5 to 0.80. Moreover,
Johnson et al. [14] showed that mlr performed the best for gold and copper
recovery models, as well as gold grade, among partial least squares (pls)
regression and deep pls models.

However, non-linear relationships between primary and response geometallur-
gical variables are well documented [e.g., 16], and mlr, even with quadratic
and interaction terms, may not be the best model for predicting geometal-
lurgy. Artificial neural networks (ann), in particular, can be used to capture
non-linearity and there is a considerable number of papers that model ge-
ometallurgical variables using different types of ann models, but there is no
consensus about the best approach. Moreover, the extrapolation issue in this
field is quite new. Multilayer perceptron (mlp) is a basic form of ann which
is commonly used and has been found to give reliable results in industry and
business. In this simulation study, we compare mlr with mlp for predicting
a physical plausible geometallurgical variable, especially for extreme values.

2 Analytical methodology
Drill core data were obtained from a Boart Longyear test site at Brukunga,
South Australia. We applied standard time series analysis to geological
series that are at equally spaced depths (sampled every 10 cm), and are
referred to here as depth series. The first principle component (pc1) based
on three variables, namely the concentrations of potassium (K), uranium (U),
and thorium (Th), is considered. A Generalised Autoregressive Conditional
Heteroskedasticity (garch) model is fitted to the pc1, and used to construct
a study population of 1000 depth series and associated geometallurgical
variables. Samples of depth series are taken from this study population. The
aim is to predict the geometallurgical variables from features of the sample
depth series. These features are either estimates of garch parameters or
summary measures of a wavelet transform.
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2.1 Wavelet analysis

Wavelet analysis is a frequency technique that captures both local spectral
and temporal information. There have been many applications of wavelet
transforms of geophysical log data to identify borehole layers and boundaries.
These studies have shown that the Morlet and Mexican Hat wavelets are
efficient for de-noising and blocking geophysical log data for various types
of mineral deposits [e.g., 8]. Wavelet analysis is one of the best approaches
to detect spatially repeating patterns. For example, the wavelet analysis
performed by Webb et al. [17] using density and susceptibility data from the
Bellevue and Moordkopjie boreholes, South Africa, has demonstrated the
presence of previously unobserved layering on scales.

2.2 garch model

The garch model, developed by Engle and Bollerslev [10], models changing
variability, known as variance volatility [9]. Mathematically, a garch(p, q)
model has the form

yt = φ+ εt , εt ∼ N(0, σ2t) , (1)

σ2t = ω+

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j , (2)

where φ, ω, αi and βj are constants, and εt is an error term which follows
a normal distribution with mean zero and variance σ2t . As variance σ2t is
non-negative, Bollerslev [4] imposed the conditions ω, αi and βj non-negative,
and αi + βj < 1 for i = 1, . . . , q and j = 1, . . . , p.

2.3 Multilayer perceptron

An mlp model is a class of feedforward neural network and is used in this
study with resilient back-propagation and the weight backtracking algorithm.
An mlp consists of at least three layers of neurons: an input layer; one or
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more hidden layers; and an output layer. Each neuron in an mlp is fully
connected with neurons in the next layer. To avoid underfitting or overfitting
of mlp models, it is reasonable to use a trial-and-error test. We compare one
hidden layer with four, three, two, and one neurons, and two hidden layers
with (4, 3), (4, 2), (4, 1), (3, 2), (3, 1) and (2, 1) neurons. Sigmoid functions
are used as activation functions.

2.4 Settings for simulation studies

2.4.1 Overview

The set up of the simulation study is based on an analysis of a depth series
from a single drill core that is considered to be representative of the ore
deposits. A garch model is fitted to the depth series from this core and
plausible distributions for the parameters of the garch model are inferred.
Then N sets of random parameters are drawn independently from these
distributions and assigned to N notional drill cores to make up the study
population. For each notional drill core, a depth series of lengthD is simulated,
using the assigned parameters, and a plausible geometallurgical response y
is calculated as a function of the assigned parameters. So, we have set up a
study population of N drill cores, each with a corresponding depth series and
a response value.

As a training set for the simulation, samples of n cores are drawn from the
population of N cores, at random without replacement. An mlp model and
mlr models for predicting y from features of the depth series are fitted. The
models are then tested against the remaining N−n cores. Summary statistics
of prediction errors are then calculated. The draw of n from N is repeatedM
times, allowing for a mean and standard deviation of summary statistics to
be calculated. We set N = 1000 , M = 100 , and consider five values of n
between 800 and 30.
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2.4.2 Setting up the population

Depth series along the single drill core are available for concentrations of three
elements: K, U and Th. We consider the pc1 rather than choose a single
element. In general, there is no reason why the pc1 should be associated with a
response [e.g., 11], but in practice it often is, as in applications of multivariate
statistical process control [e.g., 15]. Also, use of the pc1 considerably reduces
the influence of spikes at zero concentration in the single element depth series.
The pc1 calculated using the correlation matrix accounts for 68% of the
variability in the original data, which is not unusual for geochemical data.
For example, Zuo [18] reported that the pc1 accounts for 52% of the total
variability in stream sediment concentration data for Cu, Pb, Zn and Ag.
A garch(1, 1) was fitted to the pc1 of the K, U, Th depth series and has
the form

yt = φ+ εt where εt ∼ N(0, σ2t) , (3)
σ2t = ω+ αε2t + βσ

2
t . (4)

Lognormal distributions are chosen as plausible distributions for the parame-
ters. This is because of non-negatively constraints and high skewness, which
facilitate the prediction performance of the mlp in terms of extrapolation.
For each coefficient a lognormal distribution of plausible values is set up.
This is equivalent to assuming the logarithm of a coefficient has a normal
distribution with mean and variance, respectively,

µ = log

(
µ2X√
µ2X + σ

2
X

)
, σ2 = log

(
1+

σ2X
µ2X

)
,

where µX and σX are the mean and standard error of the estimates of co-
efficients returned from the garch(1, 1) model fitted to the first principal
component. A population of N = 1000 drill cores is set up by making
1000 independent random draws from the distributions of ψ, ω, α and β,
subject to the constraint that α+ β < 1 . For each drill core a depth series
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is simulated of length D = 6381 to match the length of the observed depth
series. In addition, values of two plausible geometallurgical response variables
are calculated and scaled to the interval [0, 1] to facilitate fitting of the mlp
(see Algorithm 1 for details).

2.4.3 Simulation

For a given value of n, a random sample of n from N drill cores was drawn
without replacement to form a training set. A garch(1, 1) model and a
wavelet decomposition was fitted to the depth series for each drill core in
the sample. An mlr and mlps were fitted to both y ′

1 and y ′
2 using the four

estimated garch(1, 1) coefficients as predictor variables. Similarly, an mlr
and an mlp was fitted to both y ′

1 and y ′
2 using four features extracted from

the wavelet decomposition as predictor variables.

Values of n are chosen as 800, 500, 200, 50 and 30, corresponding to sample
fractions of 80%, 50%, 20%, 5% and 3%, and are used as training sets. The
fits of the models are evaluated using adjusted R2 on the training sets, defined

Algorithm 1: Setting for plausible populations for simulation.
1 for i in 1 : N do
2 Random draw deviates (φi,ωi, αi, βi) from distributions of the

coefficients for the garch model;
3 Define a plausible metallurgical variable:
4 Simulation 1: y1i = eφi+ωi+αi+βi+φiαi+φiβi ;
5 Simulation 2: y2i = sin[6π(φi +ωi + αi + βi + φiαi + φiβi)];
6 Simulate a depth series of length n to represent observations from the

drill core
7 end
8 Define y ′

1 =
y1−min(y1)

max(y1)−min(y1)
, y ′

2 =
y2−min(y2)

max(y2)−min(y2)
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as

Adjusted R2 = 1−
(∑n

i=1(yi − ŷi)
2

n− p

)(∑n
i=1(yi − ȳ)

2

n− 1

)−1

, (5)

where yi is an observation in the training set, ŷi is the fitted value, ȳ is the
mean value of the training set, and p is the number of parameters fitted. The
prediction performances of the models are tested on the remaining N−n drill
cores (the test set), using mean absolute error (mae), root mean square
error (rmse), and R2 = 1− rmse2/var(y) where y is the response variable
in the test set. For each value of n the random draw was repeated M = 100
times, allowing us to calculate both the mean and standard deviation of the
performance measures.

2.4.4 Extrapolation

For each of the four parameters, we define a low value as zero and a high
value as the upper 0.001 quantile of its distribution. We then consider all
24 = 16 combinations of high and low parameter values. If α + β > 1 ,
α and β are reduced by the same factor so that their sum is reduced to 0.999.
These 16 parameter combinations are taken to define outlying drill core values
(out-of-ensemble) and corresponding values of y1 are calculated. The fitted
mlp and mlr models are then used to predict y1 for these drill cores using
the parameter values as predictors.

2.4.5 Sample size in practice

In a real situation, 800 drill cores is a very large number, even for a large,
complex deposit. Early exploration campaigns will have anywhere from
6 to 20 drill holes, advanced exploration maybe ten times that, and deposits
approaching jorc-approved resource reporting and production perhaps a few
hundred drill holes. Only giant deposits containing billions of tonnes of ore
will be explored by 1000 or more drill holes.
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3 Results and discussion

3.1 Exploratory analysis

Summary statistics of the data are given in Table 1. Observations that lie
below the minimum detection point of measurement are recorded as zero.
The pc1 = −0.609Ks+ 0.549Us− 0.572Ths , where Ks, Us, Ths represent the
standardised variables with mean zero and variance of one. The depth series
plot of the pc1 is shown in Figure 1, and displays volatility and outlying
values (red lines represent mean± 3 standard deviations) which are typical
of geological depth series.

Table 1: Summary statistics of the data (length D = 6381 observations).

Variables Prop. 0s Mean Maximum sd Skewness Kurtosis
K 27% 2.825 24.434 2.986 1.250 1.863

U 37% 0.001 0.018 0.001 1.622 5.389

Th 55% 0.002 0.052 0.003 3.110 25.482
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0 2000 4000 6000
Depth (0.1 m interval)

P
C

1

Figure 1: The depth series plot of the pc1.



3 Results and discussion C218

3.2 Simulation study

The estimates of φ, ω, α, β are 0.0014, 0.1382, 0.1025 and 0.8316, re-
spectively, with standard errors 0.013, 0.041, 0.012 and 0.029, respectively
(equations (3) and (4)). Two simulation studies are performed (Algorithm 1).
For the simulation study using features from the garch model, we also
examine the performance of mlp and mlr for extrapolation. Figure 2 is a
boxplot of the scaled response variables (range [0, 1]).

3.2.1 Features from the garch model (simulation study 1.1)

The mlr models are fitted with five parameters (one intercept + four co-
variates) and 15 parameters (one intercept + four linear + six two-way
interactions + four quadratic). An mlp with lowest rmse is chosen which
consists of two hidden layers with two and one neurons, respectively, this

0.00
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0.50

0.75

1.00

y1 out−of−ensemble y2
Response variable

V
al

ue

Figure 2: Boxplots of the response variables.
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gives an mlp with 15 parameters (8+ 2+ 1 weights and 2+ 1+ 1 bias). The
mlr(5), mlr(15) and mlp(15) are used to represent theses three models.

Interpolation: Table 2 shows negligible differences between the mlp(15),
mlr(5) and mlr(5) for all summary statistics for large training sizes. As we
decrease the training size, the performance of these models are distinguishable,
and the mlp(15) is somewhat more erratic than the mlrs for small training
sizes. Both the mlp(15) and the mlr(5) perform well in prediction with
features from the garch models as predictor variables, as shown by the
comparison between rmse and standard deviation of the response variable
(sd(y ′

1) = 0.066). Even though the mlr(5) gives relatively lower rmse than
the standard deviation of the y ′

1, and the highest adjusted R2 (train), it is not
suitable in this case. This is because the mlr(5) tends to over-fitting for small
training sizes, as R2 (test) is 0.177 for a training size of 30. Moreover, the
adjusted R2 (train) for the mlp(15) is decreasing, and the standard deviations
of the statistics are relatively large compared to the other two models when the
training size is smaller than 200. The mlp(15) is not suitable for predicting y ′

1

when the training size is small.

Extrapolation: Figures 3 and 4 show three randomly chosen realisations
of the predicted values against the actual values, and suggests that neither
the mlp(15) nor the mlr(5) provides useful predictions for values of y ′

1 above
around 0.3 (the purple lines represent the perfect fit). For observations that
are greater than 0.3, the predicted values are too low although the correlations
between predicted and actual values are quite high (around 0.75). Linear
trends tend to be more reliable for extrapolation than non-linear trends, but
even so, extrapolation outside the ranges of the fitted predictor variables
are unreliable and should be restricted to small proportions of the ranges.
Figures 3 and 4 show that the predicted values returned from the mlp(15)
are more variable and even less accurate than the mlr(15) values. The
limitation of using mlps for extrapolation was shown by Balabin and Smirnov
[1] and Bishop [2].
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Table 2: Average mae, rmse, adjusted R2 (train) and R2 (test), and their
associated standard deviations (in parentheses), for the interpolation study
using features from the garch model (Section 3.2.1). The standard deviation
of y ′

1 is 0.066.

Size of training set 800 500 200 50 30

adjusted mlp(15) 0.798 0.795 0.857 0.810 0.704

R2 (train) (0.052) (0.086) (0.084) (0.136) (0.354)
mlr(5) 0.794 0.791 0.849 0.867 0.895

(0.051) (0.088) (0.105) (0.125) (0.109)
mlr(15) 0.798 0.807 0.844 0.903 0.929

(0.057) (0.088) (0.120) (0.087) (0.066)
mae (test) mlp(15) 0.014 0.014 0.015 0.022 0.023

(0.002) (0.001) (0.003) (0.009) (0.009)
mlr(5) 0.013 0.013 0.014 0.015 0.017

(0.002) (0.001) 0.001 (0.004) (0.010)
mlr(15) 0.014 0.014 0.015 0.020 0.024

(0.002) (0.001) (0.002) (0.014) (0.016)
rmse (test) mlp(15) 0.031 0.032 0.034 0.042 0.042

(0.015) (0.008) (0.004) (0.024) (0.020)
mlr(5) 0.031 0.031 0.032 0.033 0.035

(0.015) (0.008) (0.004) (0.004) (0.012)
mlr(15) 0.031 0.032 0.034 0.041 0.048

(0.016) (0.008) (0.002) (0.026) (0.033)
R2 (test) mlp(15) 0.786 0.775 0.734 0.431 0.479

(0.142) (0.077) (0.085) (1.381) (1.194)
mlr(5) 0.788 0.781 0.770 0.746 0.686

(0.144) (0.082) (0.034) (0.105) (0.486)
mlr(15) 0.782 0.769 0.736 0.411 0.177

(0.146) (0.080) (0.047) (1.746) (2.388)
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(a) Training size of 30.
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(b) Training size of 50.
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(c) Training size of 200.
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(d) Training size of 500.

Figure 3: Three realisations of predicted values against actual values for test
sets, by the training set size, for mlr, mlr15, and mlp models. Figure 4
provides the key.
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(a) Training size of 800.

Figure 4: Three realisations of
predicted values against actual
values for test sets, by the train-
ing set size, for mlr, mlr15,
and mlp models. Figure 3 uses
the same key.

3.2.2 Features from wavelet decomposition (simulation
study 1.2)

In this section, we aim to predict a geometallurgical variable y ′
1 using features

from wavelet decomposition of simulated depth series. To keep the same
structure of models, we calculated four features from Morlet wavelet decom-
position. The four features were calculated for each frequency, then means
over frequencies were calculated and used as predictor variables. The four
features are Tsallis entropy [6], stability (variance of the means), lumpiness
(variance of the variances), and the number of observations within a depth
series that cross the median line [13]. The mlr models are fitted with five
parameters and 11 parameters (one intercept + four linear + six two-way
interactions).

Table 3 shows that the mlp(15) outperforms the mlrs in terms of predictions,
regardless of training size. However, the standard deviations of the summary
statistics of the mlp(15) for training size of 30 are higher than the other two
models, which is consistent with the simulation study using features from
the garch model (Section 3.2.1). The adjusted R2 (train) for the mlp(15) is



3 Results and discussion C223

Table 3: Average mae, rmse, adjusted R2 (train) and R2 (test), and their
associated standard deviations, for simulation study using features from
wavelet decomposition (Section 3.2.2). The standard deviation of y ′

1 is 0.066.

Size of training set 800 500 200 50 30

adjusted mlp(15) 0.680 0.679 0.691 0.548 0.374

R2 (train) (0.038) (0.059) (0.073) (0.210) (0.313)
mlr(5) 0.416 0.428 0.456 0.512 0.557

(0.042) (0.066) (0.101) (0.122) (0.137)
mlr(11) 0.446 0.466 0.506 0.579 0.628

(0.050) (0.075) (0.111) (0.134) (0.167)
mae (test) mlp(15) 0.024 0.024 0.026 0.031 0.034

(0.002) (0.002) (0.003) (0.005) (0.007)
mlr(5) 0.033 0.033 0.033 0.036 0.038

(0.003) (0.001) (0.001) (0.004) (0.005)
mlr(11) 0.032 0.032 0.033 0.042 0.056

(0.003) (0.001) (0.002) (0.009) (0.019)
rmse (test) mlp(15) 0.041 0.043 0.045 0.050 0.053

(0.014) (0.009) (0.009) (0.009) (0.015)
mlr(5) 0.053 0.052 0.053 0.057 0.063

(0.014) (0.007) (0.003) (0.006) (0.009)
mlr(11) 0.053 0.055 0.059 0.083 0.131

(0.014) (0.007) (0.009) (0.029) (0.070)
R2 (test) mlp(15) 0.622 0.572 0.508 0.405 0.281

(0.189) (0.230) (0.333) (0.377) (0.772)
mlr(5) 0.406 0.385 0.362 0.237 0.081

(0.117) (0.070) (0.051) (0.184) (0.318)
mlr(11) 0.378 0.327 0.192 −0.806 −4.032

(0.172) (0.107) (0.306) (1.737) (7.417)
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decreasing with decreased training size, whereas the adjusted R2 (train)
is increasing for the mlrs. The mlp(15) is more erratic than the mlrs.
Performance using features from the wavelet decompositions as predictors
is not as good as using features from the garch models. This is what we
expect, because we set the physically plausible geometallurgical variable as a
non-linear combination of the four features from the garch models.

3.2.3 Features from the garch model (simulation study 2)

The results from Section 3.2.1 show the accuracy of predictions using the
mlp and the mlrs have negligible differences. This may be due to the
mild non-linear function that we use to set up y1, so that the mlrs also
capture the relationships. A sine function is used for the second simulation
study (Algorithm 1). It performs three cycles over possible combinations of
parameter values, but as most parameter values are relatively close to their
means and parameters are combined randomly and independently, quadratic
terms suffice to predict the majority of y ′

2. Nevertheless, outlying values of
parameter values will lead to y ′

2 that are badly predicted by any combination
of linear and quadratic terms.

Table 4 shows only the results using features from the garch models as
predictors for interpolation because the wavelet features do not provide better
predictions. The prediction performance of the mlp(15) shows higher accuracy
in terms of mae and rmse, but is more erratic. The mlrs can only model
sinusoidal responses if the predictor variables include sinusoidal functions at
the same frequency. The mlps are better able to model a sinusoidal response
without stating that explicit relationship. From these results, we conclude
that neither mlp nor mlr is suitable for predicting y2 with small training
size.
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Table 4: Average mae, rmse, adjusted R2 (train) and R2 (test), and their
associated standard deviations, for simulation study using features from
garch model (Section 3.2.3). The standard deviation of y ′

2 is 0.229.

Size of training set 800 500 200 50 30

adjusted mlp(15) 0.732 0.664 0.672 0.591 0.470

R2 (train) (0.213) (0.265) (0.268) (0.337) (0.439)
mlr(5) 0.057 0.060 0.065 0.104 0.155

(0.009) (0.018) (0.034) (0.121) (0.193)
mlr(15) 0.695 0.704 0.729 0.804 0.855

(0.020) (0.044) (0.066) (0.119) (0.117)
mae (test) mlp(15) 0.071 0.083 0.087 0.128 0.154

(0.035) (0.042) (0.045) (0.055) (0.067)
mlr(5) 0.172 0.172 0.172 0.178 0.189

(0.008) (0.004) (0.004) (0.011) (0.019)
mlr(15) 0.084 0.084 0.087 0.106 0.139

(0.006) (0.003) (0.006) (0.018) (0.050)
rmse (test) mlp(15) 0.114 0.130 0.135 0.196 0.232

(0.042) (0.050) (0.052) (0.069) (0.106)
mlr(5) 0.223 0.225 0.226 0.240 0.256

(0.012) (0.007) (0.005) (0.014) (0.024)
mlr(15) 0.130 0.135 0.147 0.199 0.258

(0.019) (0.013) (0.014) (0.040) (0.099)
R2 (test) mlp(15) 0.719 0.631 0.599 0.175 −0.246

(0.227) (0.287) (0.328) (0.608) (2.340)
mlr(5) 0.044 0.039 0.020 −0.104 −0.270

(0.042) (0.024) (0.028) (0.137) (0.253)
mlr(15) 0.672 0.650 0.584 0.215 −0.462

(0.089) (0.064) (0.080) (0.322) (1.647)
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4 Conclusion
The mlp offers a versatile modelling strategy which can emulate the mlr and
so we would expect the mlp to generally outperform the mlr for interpolation.
However, geological variables have highly skewed distributions so predictions of
geometallurgical variables will sometimes rely on extrapolation. Extrapolation
is unreliable with the mlr and arguably more so for the mlp. This study
included a comparison of the prediction performance of the mlr and the mlp
for outlying values of geological variables used as predictors, which showed
the limitations of both models. Nonetheless, the mlp shows its advantages in
predictions using wavelet features, but results are more erratic. Additionally,
the mlp is preferable in modelling conceptual relationships; that is, without
assuming a mathematical formula. In general, the prediction performances
of the mlps are better than the mlrs but are more erratic, although mlrs
do perform in some cases. But this simulation study shows the limitations
of using mlrs and mlps for predicting physically plausible geometallurgical
variables for small sample sizes. Other methods, such as support vector
machine and partial least squares, or other types of artificial neural networks,
could also be included for comparison once we have data from multiple drill
cores and the associated geometallurgical variables.

In practice, a plausible scenario is that 40 drill cores are taken from a deposit
and indicate that mining is viable. Mining begins and values of metallurgical
variables associated with drill cores will be available sequentially. Prior models
for predicting these geometallurgical variables can be modified by adaptive
least squares as the response variable becomes available. We recommend
linear mlp and mlr models, and quadratic terms and interactions should
be considered at the start of mining operations. As mining continues more
weight should be placed on the model with minimum mean squared error.
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