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Abstract

Small modular reactors (SMRs) are currently at the forefront of the nuclear industry

as potential next stage in nuclear energy production. Implementing a new reactor

technology in a commercial setting contains many challenges in terms of maintaining

safety and regulatory standards since all of the regulatory framework is based on the

traditional PWR design. One benefit of the SMR design is the increased ability to

load-follow to meet the constant changes in grid demand. This type of operational

strategy introduces changes into the system that impacts the operational lifespan of

system components due to increased degradation. Since there are no current SMR

plants in operation along with minimal operational experience for load maneuvering in

the current reactor fleet, any type of system health analysis will have to rely heavily

on simulation data to characterize how the plant systems respond to operational

transients. This work proposes utilizing simulated operational data to assess which

condition monitoring strategies would be suitable for a SMR plant with load following

capabilities by simulating a fault in the feedwater pump. In this work, two of the three

anomaly detection strategies introduced proved capable for identifying the simulated

fault in the load following data.

vi



Table of Contents

1 Introduction 1

1.1 Load Following Operations . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 System Health Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Work Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Model Development 4

2.1 SMR Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Reactor Module . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Balance of Plant . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Modelica/Dymola Model Development . . . . . . . . . . . . . . . . . 7

2.2.1 SMR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 BOP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Power Plant Model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Load Following Capabilities . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Model Development Summary . . . . . . . . . . . . . . . . . . . . . . 13

3 Condition Monitoring for the NPM 16

3.1 Simulating Fault Modes . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Feed water Pump Fault Mode Description . . . . . . . . . . . 17

3.2 Anomaly Detection Methods . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



3.2.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . 20

3.2.3 Auto-Associative Kernel Regression . . . . . . . . . . . . . . . 21

3.2.4 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Anomaly Detection Summary . . . . . . . . . . . . . . . . . . . . . . 22

4 Anomaly Detection Results 24

4.1 Modeling Monitor Performance on Healthy Data . . . . . . . . . . . . 24

4.2 PCA Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 AAKR Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Neural Network Results . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Anomaly Detection Method Comparison . . . . . . . . . . . . . . . . 32

4.6 Anomaly Detection Summary . . . . . . . . . . . . . . . . . . . . . . 35

5 Conclusions and Future Work 36

5.1 Model Development Achievements . . . . . . . . . . . . . . . . . . . . 37

5.2 Anomaly Detection Achievements . . . . . . . . . . . . . . . . . . . . 37

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Vita 41

viii



List of Tables

2.1 Primary System Simulation Data . . . . . . . . . . . . . . . . . . . . 15

2.2 Primary System DCA Data . . . . . . . . . . . . . . . . . . . . . . . 15

ix



List of Figures

2.1 NuScale Power Module Overview . . . . . . . . . . . . . . . . . . . . 6

2.2 NuScale Balance of Plant Overview . . . . . . . . . . . . . . . . . . . 9

2.3 Reactor Model in Dymola Environment . . . . . . . . . . . . . . . . . 9

2.4 BOP Model in Dymola Environment . . . . . . . . . . . . . . . . . . 11

2.5 NPM model in Dymola Environment . . . . . . . . . . . . . . . . . . 11

2.6 Simulated Load Following Scenario in the Dymola Environment . . . 14

3.1 FWP Degradation in Steady-State Conditions . . . . . . . . . . . . . 18

3.2 FWP Degradation in Load-Following Conditions . . . . . . . . . . . . 18

3.3 Data Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Steady-State Model Validation - AAKR . . . . . . . . . . . . . . . . . 25

4.2 Load Following Model Validation - AAKR . . . . . . . . . . . . . . . 25

4.3 Load Following Healthy Data - PCA . . . . . . . . . . . . . . . . . . 27

4.4 Load Following Faulted Data - PCA . . . . . . . . . . . . . . . . . . 27

4.5 Steady-State T2 Test Results - PCA . . . . . . . . . . . . . . . . . . 28

4.6 Steady-State Q Test Results - PCA . . . . . . . . . . . . . . . . . . . 28

4.7 Steady-State SST Test Results - AAKR . . . . . . . . . . . . . . . . 30

4.8 Steady-State SPRT Test Results - AAKR . . . . . . . . . . . . . . . . 30

4.9 Load Follow SST Test Results - AAKR . . . . . . . . . . . . . . . . . 31

4.10 Load Follow SPRT Test Results - AAKR . . . . . . . . . . . . . . . . 31

4.11 Steady-State SST Test Results - NN . . . . . . . . . . . . . . . . . . 33

x



4.12 Steady-State SPRT Test Results - NN . . . . . . . . . . . . . . . . . 33

4.13 Load Follow SST Test Results - NN . . . . . . . . . . . . . . . . . . . 34

4.14 Load Follow SPRT Test Results - NN . . . . . . . . . . . . . . . . . . 34

xi



Chapter 1

Introduction

Small Modular Reactor (SMR) is a new type of reactor design that offers many

advantages in terms of overall cost, operability, and safety. The simplistic and

modular design of the SMR makes it an attractive option for implementation to

a grid especially when coupled with renewable energy sources such as wind and solar.

There is great potential for SMRs to bring nuclear energy back to the forefront of

the clean energy movement. As with all new reactor technologies however, concerns

revolving around safety and reliability are always brought up to ensure that these

reactors are capable of operating with minimal risk. Reliability and safety analyses

generally rely on historical operational data but unfortunately there are no current

SMR power plant facilities in operation.

The purpose of this work is to demonstrate the viability of using simulation data

for assessing the health of system assets under various operational conditions (i.e.

steady-state, load following) and investigate component monitoring strategies best

suited for load following operation. A model of a SMR reactor module coupled with

a Balance of Plant (BOP) is developed in the Dymola environment based on the

NuScale SMR design. The objective behind this work is to utilize simulation data of

the NuScale Power Module (NPM) to assess component health during steady-state

1



and operational transients (e.g. load-following) through the utilization of anomaly

detection routines.

1.1 Load Following Operations

Load following is an operational strategy where the electrical output of a nuclear

power plant (NPP) is varied in order to meet the electrical demand of the grid.

Typically, NPPs operate at steady-state conditions and other energy sources such as

coal or natural gas help to meet the varying grid demand. However, countries such as

France and Germany perform load following maneuvers with their NPPs to meet the

variances in the electrical demand year round (Lokhov, 2011). This mode of operation

with become essential for NPPs as more renewable energy sources come to market.

This concept is further elaborated by Lazarev et al. (2018) where details on the

different forms of non-baseload operations for NPPs are given along with an analysis

on the feasibility of this type of operational strategy. Ingersoll et al. (2015) describes

the role nuclear power will need to take on as more renewables such as wind and solar

are introduced. Specifically addressing the different strategies a multi-modular SMR

power plant can utilize such as adjusting the reactor power for several units while the

rest operate at steady-state or utilizing the steam bypass for more rapid changes in

the power demand. In the work by Locatelli et al. (2015), a cogeneration strategy

is proposed by pairing a SMR plant with a desalination plant as an economically

feasible method for load following.

Regardless of the strategy implemented, load following will become an essential

aspect of SMR plant operations especially when couple with other renewable energy

sources. That is why this work focuses on this focuses on this mode of operation

when assessing component health. By changing the operating conditions, increased

degradation in system components is to be expected.
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1.2 System Health Analysis

As mentioned previously, load following operations will likely lead to increased

degradation for various components throughout the system. This is why assessing

the system health will be an important consideration for utilities moving forward.

This type of analysis generally relies on historical operational data to characterize

the behavior of assets during operation. However, this presents a significant challenge

without any current SMR based power plants currently in operation to collect data

from. This work proposes the use of simulation data to perform this type of analysis.

In the work by McGhee et al. (2014), an approach is taken where valve degradation

in a Combined Cycle Gas Turbine power station is simulated to develop remaining

useful estimates (RUL) for various run-to-failure events. D’Amato and Patanian

(2016) proposes a similar approach for assessing gas turbine valve degradation using a

combination of physics based simulations and historical operational data to optimize

the feature selection process to improve the overall detection accuracy. There is

substantial work that can be done in this area of prognostics and health management

which is why the purpose of work could be a potential first for adapting this type of

analysis for iPWR plant systems.

1.3 Work Structure

This work provides two major contributions; the development of an iPWR plant

system with load following capabilities and an investigation into anomaly detection

methods suitable for load following operation. In terms of the model development,

the iPWR plant model is developed in the Dymola modeling environment based on

the NuScale SMR design. Data is collected using the model for the anomaly detection

analysis for both steady-state and load following conditions to assess a simulated fault

in the feedwater pump. The results demonstrate the validity of the model developed

and which condition monitoring methods are suitable for load following data.
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Chapter 2

Model Development

This chapter focuses on the development of the Dymola model based on the NuScale

power module as specified in the DCA. The reactor model utilized in this work is

based on the iPWR model developed in the nuclear hybrid energy system (NHES)

Dymola library from Idaho National Laboratory (Frick and Bragg-Sitton, 2020). The

design specifications of the INL reactor model are based on the NuScale design which

allowed for an easier adaptation of the model for the purposes of this work. Further

details on the model development are given in the following sections for both the

reactor module and the BOP.

2.1 SMR Design Overview

The Nuclear Regulatory Commission (NRC) defines a SMR as a light water reactor

design that produces less than or equal to 300 mega watts electric. What sets SMRs

apart from other reactor designs is its integrated systems where the reactor core,

pressurizer, and steam generator are all housed in a single reactor module. This

integrated design offers inherent design features such as a decreased probability of

a loss of coolant accident (LOCA) from occurring. Along with its overall reduced

size, this allows for greater modularity in which multiple reactor modules can be

implemented in a single site. For example, NuScale plans on implementing up to 12

4



reactor a plant site. Each reactor module is paired with its own balance of plant

(BOP) and referred to as a NuScale Power Module (NPM).

Since NuScale is the only SMR design to receive NRC approval, this work focuses

on their design specifications as described in the design certification application

(DCA) NuScale submitted to the NRC (NuScale LLC, 2020). The following

subsections give a detailed description of the NuScale design for both the reactor

module and the Balance of Plant.

2.1.1 Reactor Module

The NuScale Reactor module contains all of the important components relevant to

the primary coolant system are contained in a single reactor module. Components

such as the steam generator and pressurizer which are traditionally external to the

reactor containment vessel are housed in the reactor module with along with the

reactor core (NuScale LLC, 2020). One key aspect of this design is that it utilizes

natural circulation to transfer heat from the core to the steam generators. This helps

to reduces the likelihood of a LOCA occurring the primary system. The coolant is

heated in the core where it is then forced upward due to natural convection.

The heated coolant is then channeled into the the helical coil once-through steam

generators (OTSG) on either side of the reactor module where it is generates super-

heated steam in the secondary system. The pressurizer is housed above the reactor

core and OTSGs where it maintains a constant pressure in the primary system. The

design layout can be seen in Figure 2.1. Further details on the reactor module design

specifications can be found in the NuScale DCA submitted to the NRC (NuScale

LLC, 2020)

2.1.2 Balance of Plant

The steam and power conversion system, also referred to as the BOP, maintains the

responsibility of channeling the super-heated steam for the OTSGs into the turbine

5



Figure 2.1: NuScale Power Module Overview
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system for the purpose of electricity generation. For the NuScale plant design, each

NPM will be coupled with a corresponding BOP which will be separate from the

other NPMs. The BOP system consists on all the traditional components that are

commonly found in current nuclear power plant steam and power conversion system.

Figure 2.2 provides an overview of the NuScale BOP as described in the DCA (NuScale

LLC, 2020). For the purposes of this work, not all of the components listed in the

DCA are modeled in order to decrease the computational expense of the model. For

example, the three feedwater pumps are represented by a single feedwater pump in

the Dymola model.

2.2 Modelica/Dymola Model Development

Modelica is an object-oriented modeling language useful for modeling large scale

complex systems such as a nuclear power plant. It utilizes a first principles approach

to modeling where each component developed comprises of the physical governing

equations that provide the necessary information for the behavior of that specific

component. Dymola is a graphical user interface (GUI) for the modelica language

where all of the models utilized in this work were developed. There are several

advantages to using Dymola including the greater variety of solvers available that are

not offered in the open source modelica GUI.

The following sections detail the development of both the reactor module and

BOP in the Dymola environment and the control strategies utilized to obtain the

operational parameters listed in the DCA.

2.2.1 SMR Model

The reactor model developed for this work is adapted from the iPWRmodel developed

at Idaho National Laboratory (INL) from the Nuclear Hybrid Energy System (NHES)

library (Frick and Bragg-Sitton, 2020). This SMR model is also based on the NuScale

7



design parameters which allowed for a smooth transition for the purposes of this work.

Only the physical components of the model were transferred over because the control

structure the NHES model utilized would not be well suited for this work. The

reactor model consists of the reactor core, pressurizer, and steam generator along

with necessary piping to allow the coolant to flow based on natural circulation.

All of the initialization parameters set for this model are within the design

criteria listed in the NuScale DCA. Reactor power is determined by simple point

kinetics equations Additions made to this model include the average core temperature

calculation based on the inlet and outlet temperatures of the coolant flow in the core

model. The only input implemented on this level of the model is for reactivity control.

The model connects to the BOP through ports a and b which are the exit steam piping

and the inlet for the feedwater flow from the BOP side. Further information on the

model structure can be found in the work by Frick and Bragg-Sitton (2020).

2.2.2 BOP Model

The BOP model developed in the Dymola environment is a simplified version of the

NuScale BOP described in the DCA (NuScale LLC, 2020). This BOP is a simple

regenerative reheat Rankine cycle consisting of all the important components needed

to accurately represent the behavior of a real SMR plant. Figure 2.4 displays the

BOP model layout in the Dymola environment.

This is based on the BOP model developed the work by Bisson (2021) where more

detailed information on the model structure and equations utilized can be found.

Each of these components were developed in the TRANSFORM library at Oak Ridge

National Laboratory (ORNL). In order to increase the thermal efficiency in the cycle,

an open feedwater heater is implemented via a volume model where a portion of

the steam from the turbines is mixed with the condensate flow in order to increase

the inlet temperature into the steam generator. This helps to increase the thermal

efficiency in a manner that resembles a real plant setting.
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Figure 2.2: NuScale Balance of Plant Overview

Figure 2.3: Reactor Model in Dymola Environment
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The primary inputs for this model are for the feedwater pump and the turbine

control valves. In terms of the feedwater pump, the input control the mass flow rate

of the coolant into the steam generator. The input for the turbine control valves

consists of a single input controlling all three valve positions simultaneously. The

control strategies for both of these components are implemented at the top level of

the model where both the reactor and BOP model are connected. Further details on

the equations utilized in this model can be found in the work by Bisson (2021).

2.2.3 Power Plant Model

In order to be able to simulate full plant operations, the reactor module and the BOP

models are combined in a separate model space with the control strategies in place in

order to maintain the operational parameters listed in the DCA. The two models are

connected via ports a and b which transfers the coolant flow information between the

models for either the feedwater flow or the super-heated steam. Figure 2.5 displays

the layout of the plant model along with the control elements in place.

The controllers that are implemented are focused on the reactivity, feedwater

pump mass flow rate, and turbine control valve position inputs. A simple proportional

controller is used for the reactivity input to maintain a constant average core

temperature of 557 Kelvin. The turbine controls valves are controlled via a PID

controller which is set to maintain a constant steam generator pressure of 34 bar.

These two control strategies are meant to help maintain certain system parameters

constant during operational transients.

As for the final control strategy, the primary purpose for controlling the feedwater

pump mass flow rate is to control the reactor power. This is a feed-forward technique

in which by changing the feedwater flow in the steam generator results in a direct

change in the reactor power through the change in the heat transfer of the primary

and secondary coolant. If the feedwater mass flow rate decreases, then the reactor

power proportionally decreases. This strategy is implemented in the model via a

10



Figure 2.4: BOP Model in Dymola Environment

Figure 2.5: NPM model in Dymola Environment
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lookup table. The desired power level can be specified through a user input and

the lookup table with adjust the feedwater flow rate. Load following scenarios are

predefined in a timetable for a specified time period, the following sections provide

greater detail on this matter.

2.3 Model Validation

Now that the model has been fully developed in the Dymola environment, the next

phase is to validate that the model can effectively simulate NuScale plant conditions

at various power levels. The model was tested at each of the reactor power levels

listed in the DCA and the results at each power level can be seen in table 2.1.

The results from table 2.1 can be compare with table 2.2 which contain the data

from the NuScale DCA. These results demonstrate that the Dymola model is able to

effectively simulate the NuScale plant conditions for power levels range from 100% to

15% of the reactor thermal power. All of the simulated temperatures and the primary

coolant mass flow rate are within an agreeable range of 2% of the DCA data. The

only major difference between the model and the DCA is that the thermal power

is approximately 7% lower than what is described in the DCA. With these results,

the model demonstrates its viability for analysis involving operational transients (e.g.

load following).

2.4 Load Following Capabilities

With the model tested at various power level, load following scenarios can now be

simulated with this model. By utilizing the feedwater mass flow rate control strategy,

various load-following scenarios can be developed as an input for the model. This is

done through the use of the timetable block in the Dymola environment where the

load maneuvers are specified at designated time intervals during the simulation. For

the purposes of this work, a two week simulation with various derates to either 90% or

12



80% of the reactor power occur. Figure 2.6 demonstrates the load following scenario

used for the system health analysis portion of this work.

2.5 Model Development Summary

A model of the NuScale Power module was successfully developed in the Dymola

environment. The reactor module is adapted from the INL iPWR model in the NHES

library which is based on the NuScale design parameters. The BOP is based on a

simple regenerative reheat Rankine cycle which is sufficient for simulating real plant

conditions. The control strategies utilized in the model focus of the reactivity, turbine

control valve position, and the feedwater pump mass flow rate which help maintain

system parameters inline with the NuScale DCA. With these control strategies in

place, the model is able to effectively simulate load following conditions for reactor

power levels ranging from 100% to as low as 15%. The model can now be used for

system health analysis involving operational transients.

13



Figure 2.6: Simulated Load Following Scenario in the Dymola Environment
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Table 2.1: Primary System Simulation Data

Flow-rate Core ∆T CL Temp Avg. Temp HL Temp
Percent MWth Percent (kg/s) (K) (K) (K) (K)

100% 1.48e+08 100% 573.1 49.3 533.1 557.1 582.4

75% 1.12e+08 90% 517.1 41.3 537.2 557.8 578.5

49% 7.25e+07 78% 446.3 31.1 542.4 557.9 573.5

15% 2.21e+07 51% 295.1 14.4 550.9 558.1 565.3

Table 2.2: Primary System DCA Data

Flow-rate Core ∆T CL Temp Avg. Temp HL Temp
Percent MWth Percent (kg/s) (K) (K) (K) (K)

100% 1.60e+08 100% 587.0 52.0 531.3 557.2 583.2

75% 1.20e+08 89% 521.6 44.0 535.3 557.2 579.2

50% 8.00e+07 76% 443.7 34.6 539.9 557.2 574.5

15% 2.40e+07 48% 280.2 16.5 549.0 557.2 565.5

15



Chapter 3

Condition Monitoring for the NPM

One strategy utilized in system health analysis is the condition monitoring of system

components. Condition monitoring is a method for determining if an operating

component is a healthy or unhealthy state based on historical operational data. This

can be achieved through various methods either through threshold monitoring or

machine learning algorithms. It allows for operators to determine when maintenance

needs to be performed. There are various methods for performing condition

monitoring which can involve machine learning methods such as auto-associative

regression models or even support vector machines as demonstrated in the work by

Agarwal et al. (2021).

3.1 Simulating Fault Modes

As previously mentioned, there is no historical operational data for an iPWR type

power plant which means that further system health analysis will involve utilizing

simulation data. This section describes the development of the simulated faults in

the NPM model in the Dymola environment. These simulated fault modes represent

the general impact of the faults on the entire system. There is no way to simulate

an exact type of degradation mechanism occurring in the model component in the
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Dymola environment but the behavior of the component can be adjusted to simulate

the effect of degradation over the course of a simulation.

For the NPM model, fault modes are simulated in components such as the

feedwater pump (FWP) and the turbine control valves (TCV). Both fault modes are

simulated for both steady-state and load following conditions. In order to validate

that the data generated in the model is suitable for further system health analysis,

anomaly detection methods are utilized to determine if the faults are detectable using

the data generated in the simulation.

3.1.1 Feed water Pump Fault Mode Description

Since there is no way to model the specific degradation mode in the component model,

the strategy utilized in this work involves adjusting the output of the feedwater pump

mass flow rate in order to simulate the degradation effect. This is done by adding

in a gain past the feed water pump to cause the flow rate to gradually decrease over

time starting at a specified time. Degradation is simulated for both steady-state and

load following conditions.

Figures 3.1 and 3.2 demonstrate the rate of degradation the feed water pump

experiences throughout the duration of the two week simulation. Since degradation

in a component can occur over the course of days to months in a real plant setting,

the degradation represented in the model describes a gradual degradation resulting in

a steady decline in the flow rate of the FWP. The simulation demonstrating this fault

mode is for two weeks of plant operation where the data is collected for both healthy

and unhealthy conditions which can then be analyzed using the anomaly detection

methods.
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Figure 3.1: FWP Degradation in Steady-State Conditions

Figure 3.2: FWP Degradation in Load-Following Conditions
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3.2 Anomaly Detection Methods

In order to determine if the data generated in the Dymola model is suitable for further

system health analysis, anomaly detection methods are utilized to determine if the

simulated fault can be detected using the data generated. The FWP degradation is

the primary focus for the anomaly detection descibed in this section. The methods

utilized include regression algorithms such as Principle Component Analysis (PCA),

Auto-Associative Kernel Regression (AAKR), and a neural network auto encoder. By

training these models with the healthy data, statistical methods can be applied to

assess the unhealthy data to determine the state of the system. These methods are

applied to both the steady state and load following conditions. The following sections

give a detailed description of the data used and of each anomaly detection method

utilized.

3.2.1 Data Selection

The output of the Dymola simulation consists of hundreds of variables across every

component in the model so selecting the appropriate data for this analysis can be a

challenge. Since the focus is on the FWP degradation, variables in the BOP model

were selected moving forward. They were selected based on their correlations with

one another which can be seen in figure 3.3. The following variable were selected:

• Steam Generator Temperature (K)

• Steam Mass Flowrate (kg/s)

• Low Pressure Turbine Output (Watts)

• High Pressure Turbine Output (Watts)

• Feedwater Pump Mass Flowrate (kg/s)

• Condenser Inventory (kg)
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• Turbine Control Valve Controller Response

• Total Electrical Output (Watts)

3.2.2 Principal Component Analysis

Modeling using PCA reduces the dimensionality of the data by transforming the data

into the PC variable space. The data is divided up into individual PCs in which each

contain a specified amount of information. PCs can be compared by analyzing the

relationship between the PC scores and loadings where scores show the relationship

between observations and loadings show the relationship between variables. This is

helpful in determining which PCs are valuable to keep in the analysis and which ones

are not likely to contribute much at all.

T 2 = tiλ
−1tTi = xiPλ−1P TxT

i (3.1)

The way fault detection is performed using PCA is through two statistical

methods, the Hotelling’s T2 statistic and the Q statistic. The primary purpose

of the Hotelling’s T2 statistic is that it measures the variance within the model

whereas the Q statistic measures the variance outside the model. The Hotelling’s T2

statistic measures how far an observation is from the center of the PC model using the

normalized sum of the squared scores. Equation 3.1 demonstrates how T2 statistic

utilizes the t score vector and eigen values matrices.

The Q statistic evaluates the model by measuring the distance a point falls from

the PC model. This method shows how well the predicted observation is explained

by the model. Equation 3.2 represents the quantitative form of the Q statistic which

is the sum of squares of each row of the error matrix

Qi = ϵiϵ
T
i = xi(I − PkP

T
k )x

T
i (3.2)
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Utilizing both of these statistical methods, thresholds can be set for both methods

to determine if there is a fault present in the data. This is dependent upon the number

of PCs used and the confidence interval established in which for this analysis was set

to 95%.

3.2.3 Auto-Associative Kernel Regression

This next method of fault detection utilizes an Auto Associative Kernel Regression

model (AAKR) which is a method of error correction used for process monitoring.

The model is initially trained with the healthy data in order to predict what the

measurements should result in. These predictions can then be used to compare the

non-healthy data to determine is there is anomalous behavior. Kernel Regression is

one type of Auto Associative algorithm used for developing the model, where equation

3.3 represents the quantitative form of the AAKR.

x̂q =
ΣxmK(xm, xq)

ΣK(xm, xq)
(3.3)

The AAKR method requires establishing a bandwidth for the algorithm to

efficiently predict the outputs in which for this analysis a bandwidth of 0.10 is used.

Performing the fault detection using this method is based on monitoring the system

residuals. This is done via two different methods: Simple Signal Thresholding (SST)

and Sequential Probability Ratio Test (SPRT). The threshold for each of these tests

is 3% of the mean of the training data which should help to differentiate the inherent

signal noise with the fault. Simple Signal Thresholding (SST) is a straightforward

test which simply applies the threshold to the non-healthy data’s residuals. The

Sequential Probability Ratio Test (SPRT) is a hypothesis test that determines if a

series of values is more likely from a normal or faulted distribution.
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3.2.4 Neural Network

This final anomaly detection method involves utilizing a neural network for training

the model and using the same statistical tests as the AAKR to identify the unhealthy

data. An autoencoder built into the MATLAB environment which maps the input

data to a hidden representation via an encoder and a decoder tries to map the

representation to the original data, more information on the autoencoder can be

found in reference. The use of the neural network is only applied to the load following

scenario to determine if it is a suitable anomaly detection method for load following

data. An example of this method can be found in the work by Pathirage et al. (2018)

where an autoencoder is utilized for structural damage identification.

3.3 Anomaly Detection Summary

Anomaly detection methods can help to verify that the data generated in the Dymola

environment is suitable for further system health analysis for the NPM. This analysis

also helps to determine which anomaly detection routines would be suited for SMR

based power plants with load maneuvering capabilities. By simulating a fault in the

FWP, the data collected from the model can then be tested with anomaly detection

routines which utilize PCA, AAKR, and Neural Network models for both steady-state

and load following conditions.
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Figure 3.3: Data Correlation
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Chapter 4

Anomaly Detection Results

The results presented in this section demonstrate each methods capability to detect

the fault occurring for both the steady state and load following conditions. Each of

the fault detection methods present different degrees of success in correctly identifying

the fault occurring in the FWP except for the PCA method with did not work well

with the load following data. The following sections describes the results of the PCA,

AAKR, and neural network anomaly detection. These results provide insight into

which anomaly detection methods are best suited for load following conditions.

4.1 Modeling Monitor Performance on Healthy

Data

Before testing each of the detection methods with the faulted data, each method was

first tested with healthy data to validate that they are suited for both steady-state

and load following conditions. This primarily helps to determine which methods are

suitable for the load following data where the models should recognize new healthy

load following data as fault free. This is demonstrated in figures 4.1 and 4.2 for the

AAKR SST test in both the steady-state and load following cases.
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Figure 4.1: Steady-State Model Validation - AAKR

Figure 4.2: Load Following Model Validation - AAKR
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Similar results were obtained for the Neural Network method as well so these two

methods were selected moving forward. The PCA results were inconclusive when

tested with the load following data which is likely due to the changing correlations

in the data at each of the various power levels. PCA is just not able to effectively

capture the nonlinearities in the load following data and distinguish between healthy

and unhealthy data. This can be seen in figures 4.3 and 4.4 which compare the results

for the Q statistical test for both the healthy and unhealthy data.

The T2 test presented similar inconclusive results as the Q statistical test when

tested with the healthy and unhealthy data for the load following case. PCA still

works well with the steady-state data but it is not a suitable method to utilize moving

forward since the focus of this work is on operational transients.

4.2 PCA Results

As mentioned previously, PCA is not suited for load following data but it is able

to handle steady-state conditions. For the steady-state case, a total of 8 PCs were

created but in order to reduce the dimensionality of the data, only the PCs containing

at least 90% of the information are kept in which for this case it was the first seven

PCs. With the selected PCs, the model was trained and then utilized to detect the

fault in the non-healthy data. Both the Hotelling’s T2 statistic and the Q statistic

test detect the fault based on the null hypothesis criteria. Figure 4.5 shows the

results of the T2-test when analyzing the non-healthy simulation data. The T2-test

demonstrates a clear distinction between the normal and degraded data in this case.

Similarly, the Q test is able to identify the fault precisely when it occurs at the

12 hours mark as seen in figure 4.6. This verifies that this method would be suitable

for an iPWR system in steady-state conditions.
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Figure 4.3: Load Following Healthy Data - PCA

Figure 4.4: Load Following Faulted Data - PCA
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Figure 4.5: Steady-State T2 Test Results - PCA

Figure 4.6: Steady-State Q Test Results - PCA
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4.3 AAKR Results

The AAKR model coupled with an anomaly detection routine (SST or SPRT)

performed an anomaly detection analysis with the same data used in the PCA and

produced similar results for the steady-state case. As can be seen in figure 4.7, the SST

fault detection test detects the fault, although there is a considerable delay compared

to the PCA detection results. The SPRT method however is more definitive in its

classification of the faulty data as shown in figure 4.8. The SPRT method is able to

identify the fault as it happens but there are a significant amount false alarms in the

section of the data where it should classify as healthy.

These anomaly detection methods demonstrate that they are suitable for steady-

state conditions however the focus of this work is on load following operation.

Using the same methods utilized for the steady-state case, the results for both the

SST and SPRT demonstrate the anomaly detection methods ability to capture the

nonlinearities in the data. As seen in figure 4.9, the SST detects the continuous fault

occurring in the data. There are continuous false negatives that persist which can be

resolved by optimizing the model.

Similarly, the SPRT test demonstrated this method’s ability to clearly identify

the fault precisely when it occurs which can be observed in figure 4.10. The SPRT

method demonstrates an improvement over the SST method with the reduced amount

of false negatives however there is still the issues of the false positives that occur at

the start. This is likely due to the sensitive nature of the SPRT test which can be

improved either through further optimization of the model or implementing a type of

confusion matrix to reduce the misclassifications.

4.4 Neural Network Results

The Neural Network method utilizes the same anomaly detection routines (SST

and SPRT) as the the AAKR method mentioned previously. Same as the previous
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Figure 4.7: Steady-State SST Test Results - AAKR

Figure 4.8: Steady-State SPRT Test Results - AAKR
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Figure 4.9: Load Follow SST Test Results - AAKR

Figure 4.10: Load Follow SPRT Test Results - AAKR
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methods, the neural network is tested with both the steady-state and load following

conditions. A threshold of 3.5% of the mean of the training data is established as the

optimal threshold for this data set. Figure 4.11 and 4.12 demonstrate this methods

ability to clearly identify the fault in steady-state conditions. From an observation of

the results, it can be seen that there is a delay in the detection of the fault with the

SST method whereas the SPRT is able to clearly identify the fault far earlier.

In terms of the load following data, both the anomaly detection routines

demonstrate the ability to identify the fault to a certain degree. The results can

be observed in figure 4.13 and 4.14 which show that a continuous fault is occurring

in the given data. A threshold of 3.5% is utilized in the SST method whereas a

threshold of 7% is utilized in the SPRT method to account for the sensitivity of

test. This method of course can be improved through the optimization of the neural

network and perhaps further evaluation of the data to determine which features would

be best suited for this method could also help to increase the detection accuracy.

4.5 Anomaly Detection Method Comparison

Each of the anomaly detection methods tested demonstrate various strengths and

weaknesses. The PCA method displays a rapid response in detecting the fault the

steady-state case which demonstrates how the PCA method works well with linear

data. However, this presents as a weakness when load following data is introduced to

the PCA method due to the nonlinearities in the system resulting from the changing

conditions in the BOP. As for the AAKR method, it demonstrates its ability to

capture both the linear and nonlinear features in the data however its response time

to detecting the fault is somewhat delayed. In terms of the neural network, the

autoencoder is not constrained by any linearities or nonlinearities in the data, however

the response time to detect the fault is slightly more delayed when compared to the

AAKR method.
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Figure 4.11: Steady-State SST Test Results - NN

Figure 4.12: Steady-State SPRT Test Results - NN
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Figure 4.13: Load Follow SST Test Results - NN

Figure 4.14: Load Follow SPRT Test Results - NN
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4.6 Anomaly Detection Summary

PCA, AAKR, and a Neural Network are all used to determine if the data generated

in the Dymola model is suited for further system health analysis. A fault is simulated

in the feedwater pump over the course of 2 weeks of operation. Data is collected

consisting of features originating in the BOP and utilized in each of the anomaly

detection methods. Each method is first tested with healthy data in both operational

cases to validate the models before evaluating the faulted data. This resulted in the

AAKR and Neural Network being selected for further analysis involving the load

following data. The PCA method however could not capture the nonlinearities in the

data resulting in inconclusive results when the healthy data was introduced.

When assessing the faulted data, both the the AAKR and Neural Network were

able to detect the fault in the data through anomaly detection routines (SST and

SPRT) for both the steady-state and load following cases. However, there is still

a need further optimization of these methods in order to achieve greater detection

accuracy. Overall, this anomaly detection analysis validates that the data collected

from the Dymola model is suitable for further system health analysis.
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Chapter 5

Conclusions and Future Work

Small modular reactors will face many challenges before the first SMR based power

plant will brought online. This is especially true in the area of prognostics and health

management. One contributing factor is that there is no historical operational data

for a SMR type plant currently available. The purpose of this work is to demonstrate

that simulation data a of a SMR type plant can be utilized to perform system health

analysis specifically during operational transients (e.g. load following).

The operational flexibility of SMRs provide greater incentive for the implemen-

tation of this reactor technology in the energy markets. However, this mode of

operation introduces new challenges in ensuring system reliability. By maneuvering

the entire system through various power levels, there is a risk of increased degradation

developing in various assets throughout the system. To address these challenges, a

model of an iPWR plant system based on the NuScale designe was developed with

load following capabilities in this work. Then to validate that the model is suitable

for system health analyses, a fault is simulated in the FWP where the model data

can then be tested using anomaly detection routines. The following sections detail

the primary achievements of this work.
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5.1 Model Development Achievements

Since the focus of this work has been for load following operation of a SMR type plant,

the first challenge was developing a full plant model with load following capabilities

in the Dymola modeling environment. The reactor module was adapted from the INL

SMR model library developed in the Dymola environment which also is based on the

NuScale design. A simple regenerative reheat Rankine cycle BOP was also developed

to simulate the steam and power conversion system paired with the reactor module.

With control strategies developed to maintain reactivity, the feedwater pump mass

flow rate, and the steam generator pressure, the model successfully simulates load

following scenarios while maintaining system parameters at the various power levels

consistent with the NuScale DCA NuScale LLC (2020).

5.2 Anomaly Detection Achievements

With the fully capable SMR plant model developed, the data generated in the model

is tested to determine if the model is suitable for further system health analyses. A

fault is introduced in the model to simulate a degrading feedwater pump. Methods

such as PCA, AAKR, and Neural Networks are all utilized to detect the fault for

both steady-state and load following conditions. This analysis also demonstrates

which anomaly detection methods are best suited for load following data.

Each of the methods were successful in identifying the fault for the steady-state

case however only the AAKR and Neural Network were successful in identifying the

fault in the load following data. The PCA model failed to capture the nonlinearities

in the data resulting in inconclusive results when the faulted data was introduced.

Through this analysis, the data generated in model is validated for use in further

system health analyses and both AAKR and Neural Network anomaly detection

routines prove to be potential candidates for condition monitoring for SMR type

power plants that plan on performing load following operations.
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5.3 Future Work

In terms of future work, there are multiple pathways for this work to continue on.

Currently, different fault modes, such as turbine control valve degradation, are in

the process of being integrated into the Dymola model. Other components of interest

include the control rod drive mechanism and components in the the condenser system.

With these multiple fault modes integrated into the model, prognostics methods can

then be developed to provide remaining useful life estimates for multiple fault modes

integrated into the system.

This analysis could then lead to a method for determining the overall system

remaining useful life based on the health status of individual system components.

Another area requires further development is the optimization of the AAKR and the

Neural Network anomaly detection methods in order to increase detection accuracy.

Along with the optimization of the current methods in place, investigations can be

made to find other anomaly detection methods suitable for the load following data.
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