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Abstract

The primary focus of this dissertation is to develop a next-generation, state-of-

the-art neutrino kinetics capability that will be used in the context of the next-

generation, state-of-the-art core-collapse supernova (CCSN) simulation frameworks

thornado and Flash-X. thornado is a toolkit for high-order neutrino-radiation

hydrodynamics, which is a collection of modules that can be incorporated into a

simulation code/framework, such as Flash-X, together with a nuclear equation of

state (EOS) library, such as the WeakLib EOS tables.

The first part of this work extends the WeakLib code to compute neutrino

interaction rates from Bruenn (1985) and produce corresponding opacity tables.

The processes of emission, absorption, scattering of neutrinos from nucleons and

nuclei, neutrino–electron scattering, and neutrino pair production and annihilation

are included.

The second part of this dissertation builds the special-relativity-corrected (O(v/c))

neutrino radiation module in thornado, based on the spectral two-moment method.

This part of the work involved studying the accuracy, efficiency, and robustness of

the numerical solver. We propose a special kind of implicit-explicit scheme, PDARSs,

based on efficiency, diffusion accuracy, and physics-preserving (positivity-preserving

and realizability-preserving) requirements. Emission, absorption, scattering of

neutrinos from nucleons and nuclei, neutrino–electron scattering, and neutrino pair

production and annihilation are included as neutrino–matter couplings.

vii



The third part of this work builds interfaces between Flash-X and thornado,

Flash-X and WeakLib, and thornado and WeakLib for simulations with the Flash-

X hydrodynamics module, WeakLib EOS module, and thornado neutrino kinetics

module. This part of the work includes data mapping between finite-volume grids

and finite-element grids, time-step balancing between hydrodynamics time steps and

radiation transport time steps, and GPU enhancement.

The fourth part of this work makes a detailed comparison of the results of a

spherically symmetric simulation performed by Flash-X+thornado with the result

of the Chimera code, which is a sophisticated, mature, and evolving code with

spectral flux-limited diffusion (one-moment) neutrino kinetics and improved input

physics (Bruenn et al., 2020). This part of the work demonstrates the ability of Flash-

X+thornado to perform CCSN simulations and quantifies the potential differences

between the two codes caused by the different neutrino kinetics treatments, as well

as other differences.

Supported by all of the above work, spherically symmetric CCSN simulations with

spectral two-moment neutrino kinetics were performed for three low-mass progenitors

of 9-, 10-, and 11-Solar-mass (M⊙) from Sukhbold et al. (2016).
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Chapter 1

Introduction

“Who by the riverside first saw the moon arise? When did the moon first see a man

by riverside?”

— Zhang Ruoxu (张若虚), 720AD

What are those bright objects in the sky? For how long have they been around?

What is their connection to us? These questions have been pondered in humans’

brains and hearts since there was language. They evoke human emotion and stimulate

learning. Supernovae are among the most brilliant phenomena in the universe, as

gorgeous and mysterious as the Mona Lisa, full of poetry and scientific elegance.

Why and how do they die, give birth to new objects, and shape the Universe? We

are on a mission to learn everything there is to know about them. This is a field

that bridges theories and observations, challenges, and examines the cutting edge of

human knowledge, particularly in fundamental science.

1.1 Core-Collapse Supernova

Core-collapse supernovae (CCSNe) are the dramatic explosions that end the life of

a massive star whose mass is at least 8 M⊙, giving birth to neutron stars and black

holes. The iron cores in such massive stars are surrounded by burning shells of silicon,
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oxygen, carbon, and so on, supported by electron degeneracy pressure. The Si shell

burning continues to grow the iron core until the iron core exceeds a Chandrasekhar

mass (∼ 1.2 M⊙). Once an iron core attains this critical mass, electron degeneracy

pressure is unable to balance the gravity, and unstable gravitational collapse ensues.

The collapse of the iron core accelerates rapidly, and its density and temperature

increases until the central density exceeds the density of nuclear matter, ρnuc ≈ 2 ×

1014 g cm−3 (given by nuclear saturation density 0.16 fm−3). Its mass, which is in

order of solar mass, is 100 km or less in radius. These conditions are not Newtonian

and definitely require a general relativistic model. The strong nuclear force becomes

important at such density, halting the collapse of the inner core and launching a

strong shock wave into the still collapsing outer core. At first, the shock propagates

rapidly through the outer core. Meanwhile, neutrino cools matter behind the shock.

The photodissociation of matter causes the shock to stall at ∼150 km from the center

of the star, and neutrino losses. The whole process that begins with a Chandrasekhar-

mass core and ends with a protoneutron star (PNS) takes only a fraction of a second.

CCSNe have been observed across the electromagnetic spectrum and in neutrinos

by Hirata et al. (1987). When the explosion wave, generated in the stellar center,

reaches the surface of the star, the optical supernova outburst begins. The extreme

conditions in the stellar center make CCSNe one of the few detectable sources of

neutrinos outside the solar system. Observation of CCSNe is also now being devoted

to the observation of the gravitational wave signals of CCSNe.

CCSNe are interesting for many reasons. They are responsible for the elements

heavier than oxygen up to germanium (Ge). They play important roles in many

astrophysical phenomena, such as the chemical evolution of galaxies (Arnett and

Arnett, 1996; Woosley et al., 2002), star formation (Krumholz, 2014), neutron star

and black hole formation (Özel et al., 2010, 2012; Foucart et al., 2015, 2016).

These explosions occur at energies and densities relevant to addressing fundamental

questions in nuclear, particle, and gravitational physics. All these together make

CCSNe one of the most important problems in modern astrophysics.
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With the development of new technology and bigger telescopes, we find several

hundred CCSNe every year, based on the sne website ∗. We know that progenitors of

CCSNe have at least 8 times, but no more than 40 to 50 times the mass of the Sun.

We also know that heavy elements, gravitational waves (suspected), and neutrinos

are produced during the explosion. In the past decade, numerous studies have been

performed regarding CCSN neutrinos (for examples: Scholberg 2012; Kuroda et al.

2017; Khaitan 2018; O’Connor and Couch 2018; Müller 2019; Burrows et al. 2019;

Hansen et al. 2019) and gravitational wave emission (for examples: Ott et al. 2011,

2018; Abdikamalov et al. 2014; Yakunin et al. 2015; Kuroda et al. 2016, 2017; Powell

et al. 2017; O’Connor and Couch 2018; Radice et al. 2019; Mezzacappa et al. 2020a).

However, we do not yet know definitively what determines whether a massive star

will explode (Burrows and Vartanyan, 2021). This is because CCSNe are the epitome

of a “multi-physics” problem. Aspects of stellar structure and evolution, nuclear

and neutrino physics, fluid dynamics, radiation-hydrodynamics, kinetic theory, and

general relativity are combined in it. According to modern CCSN theory (Mezzacappa

et al., 2020a; Burrows and Vartanyan, 2021), neutrino heating powers the shock wave

through the absorption of electron-neutrino and electron-antineutrinos emitted from

the neutrinosphere,

Observational probes have given clues to the explosion mechanism. The kinetic

energy of the supernova explosion observed is ∼ 1051 ergs. ∼ 1053 ergs of energy

in neutrinos and antineutrinos are released from the newly formed PNS after core

bounce. It is roughly confirmed by SN1987A neutrinos observation that ∼ 99% of

the gravitational binding energy released during collapse is carried away by neutrinos.

Neutrino energy deposition is now widely believed (for reviews, see Janka et al. 2016;

Müller 2016, 2020; Mezzacappa et al. 2020a; Burrows and Vartanyan 2021) to be the

major driver of CCSN explosions, except in peculiar cases where rapid rotation is

present and magnetohydrodynamic effects may dominate (Heger et al., 2005; Mösta

et al., 2014, 2015; Coleman et al., 2021).
∗(sne), https://sne.space

3

https://sne.space


1.1.1 Simulation of CCSNe

Direct and immediate information about the supernova "engine" can only be gathered

from observation. These observations include neutrinos emitted from the forming

neutron star, and gravitational waves emitted when the collapse does not proceed

perfectly symmetrically. Numerical simulations are a more active way to study the

explosion mechanism. It provides unique insight into CCSNe deep layer mechanism,

refines theories in weak physics, and shapes our understanding of CCSNe.

However, numerical simulations present a true challenge, as they require com-

prehensive physics, including general relativity, microphysics (which includes nuclear

and particle physics), transport kinetics, hydrodynamics, and electromagnetic mech-

anisms; accurate and stable numerical solvers; and powerful supercomputers.

Starting from the 1960s with the seminal work of Colgate and White (1966),

in which they proposed that core-collapse supernova could be neutrino driven,

many brave and determined researchers have been devoting their lives to CCSNe

simulations. Since then, significant progress has been made, especially the devel-

opment of simulation codes to study the explosion mechanism. It is believed the

delayed neutrino-heating mechanism is emerging as the key driver of supernova

explosions, but there are many issues to address (Burrows and Vartanyan, 2021).

Emphasizing neutrino-driven mechanism aspects, some well-known codes include

Prometheus-Vertex (Rampp and Janka, 2002; Buras et al., 2006; Müller et al.,

2010) and CoCoNut-Vertex (Dimmelmeier et al., 2002, 2005; Müller et al.,

2010; Müller and Janka, 2015) of the MPA-QUB-Monash collaboration, the Aenus-

Alcar code (Obergaulinger, 2008; Just et al., 2015), the fGR1 code (Kuroda et al.,

2012, 2016), the Chimera code (Bruenn, 1985; Bruenn et al., 2013; Lentz et al.,

2015; Bruenn et al., 2016, 2020) of the Oak Ridge-UT-Florida Atlantic-NC State

collaboration, the Fornax code (Skinner et al., 2019) of the Princeton group, and

the latest Flash-X code (O’Connor and Couch, 2018; Harris et al., 2021; Dubey et al.,

2022) (evolved from previous Flash code Fryxell et al. 2000; Dubey et al. 2009). Here
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we describe the key features of these codes, with a focus on their neutrino transport

methods first. The aspects that can be improved will be discussed at the end.

Prometheus-Vertex and CoCoNut-Vertex shared the neutrino transport

scheme Vertex. Vertex employs a three-flavor, fully energy-dependent, two-

moment variable Eddington factor neutrino transport scheme (Rampp and Janka,

2002; Buras et al., 2006) with “ray-by-ray plus” approximation (assume the neutrino

flux direction point along the radial ray). The microphysics in Vertex includes

a number of additional neutrino interactions compared to the “standard” set

in Bruenn (1985). (See Burrows and Sawyer 1998; Hannestad and Raffelt 1998;

Buras et al. 2003; Langanke et al. 2003; Itoh et al. 2004; Marek et al. 2005;

Langanke 2008 for the extension of the standard opacities.) Vertex is coupled to

different hydrodynamic modules, Prometheus (Fryxell et al., 1989), a finite-volume

Newtonian hydrodynamics code, and Coconut (Dimmelmeier et al., 2002, 2005;

Müller et al., 2010), a relativistic hydrodynamics code that employs a high-resolution

shock-capturing finite volume method.

The Aenus-Alcar code is developed to model multi-energy-group neutrino

transport for supernovae and neutron-star mergers. Its hydrodynamics module, which

is provided by Aenus (Obergaulinger, 2008), employs a Godunov-type finite-volume

scheme in spherical polar coordinates with piecewise-parabolic method (Colella and

Woodward, 1984), and the HLLC and HLLE Riemann solvers to solve the equations

of Newtonian hydrodynamics. It uses an effective general relativistic gravitational

potential. It solves fully multidimensional two-moment neutrino transport to O(v/c)

with algebraic closure (Minerbo, 1978). Its neutrino interactions include opacities

in Bruenn (1985); Rampp and Janka (2002).

The fGR1 code is a 3D-GR radiation hydrodynamics code with magnetohydro-

dynamics (Kuroda and Umeda, 2010). It employs general orthogonal coordinates

with adaptive-mesh refinement in multi-dimensions, uses the Arnowitt-Deser-Misner

(ADM) 3+1 formalism, the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formal-

ism for gravity (Shibata and Nakamura, 1995; Baumgarte and Shapiro, 1998), and
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utilizes the HLLE Riemann solver and a standard high-resolution-shock-capturing

scheme. It employs full GR radiation-hydrodynamics. It solves the multi-group

two-moment transport equations with analytical closure (Levermore, 1984; Shibata

et al., 2011). Its neutrino interactions are based on Bruenn (1985); Hannestad and

Raffelt (1998); Rampp and Janka (2002), which include inelastic neutrino–electron

scattering, thermal neutrino production via pair annihilation, and nucleon–nucleon

bremsstrahlung.

The Chimera code is a CCSNe simulation code, which contains modules for the

equations of state, multidimensional compressible hydrodynamics, various neutrino

interactions, neutrino transport, and nuclear reactions. Its hydrodynamics is based

on a dimensionally-split, Lagrangian-plus-remap version of the piecewise parabolic

method (Colella and Woodward, 1984) with a sliding radial grid algorithm in

a spherical coordinate system. The gravity in Chimera approximates the GR

monopole component. Neutrino transport in Chimera is built from the original

formulation in Bruenn (1985), developed to a modified version, and solves with the

“ray-by-ray” approximation and flux limited diffusion. The neutrino weak interactions

in the Chimera code include absorption-emission, scattering and pair-production

opacities in Bruenn (1985); Mezzacappa and Bruenn (1993c); Bruenn and Mezzacappa

(1997); Horowitz (1997); Hannestad and Raffelt (1998); Reddy et al. (1998); Hix

et al. (2003); Langanke et al. (2003); Buras et al. (2006). XNet is a thermonuclear

reaction network code developed by Hix and Thielemann (1999). XNet solves the

nuclear composition when material is not under nuclear statistical equilibrium (NSE)

appropriate conditions.

The Fornax code employs general orthogonal coordinates in multi-dimensions.

It uses the comoving-frame and solves multi-group two-moment transport equations

to O(v/c) with the algebraic closure of Vaytet et al. (2011), and high-order

reconstruction (Skinner et al., 2019). Three neutrino species are followed using

the implicit-explicit (IMEX) scheme. Its neutrino-matter interactions are described
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in Burrows et al. (2006), which includes absorption in Horowitz (2002), ion-ion-

correlations, weak screening, form-factor corrections for neutrino-nucleus scattering,

inelastic neutrino–electron scattering (Thompson et al., 2003; Reddy et al., 1999),

nucleon-nucleon bremsstrahlung and electron–positron annihilation (Thompson et al.,

2000), and correction in the neutrino-nucleon scattering rate in Horowitz et al. (2017).

It also includes weak magnetism and recoil corrections to neutrino-nucleon scattering.

Its hydrodynamics is based on a directionally unsplit Godunov-type finite-volume

method with static mesh, implements the local Lax-Friedrichs, HLLE, and HLLC

Riemann solvers, and approximates general relativistic gravity for the monopole

gravitational term.

Flash-X∗ (Dubey et al., 2022) is a new incarnation of the code derived from

Flash† (Dubey et al., 2009; Fryxell et al., 2000) as part of the US Department

of Energy’s Exascale Computing Project (ECP) project ExaStar, providing a

multiphysics software system used by multiple science communities, the primary

software instrument for ExaStar. Flash-X has a redesigned architecture that provides

performance portability across various platforms, both with and without accelerators.

It leverages adaptive mesh refinement (AMR) via either Paramesh (MacNeice et al.,

2000) and AMReX (Zhang et al., 2019). As an example of the capability of Flash-X: it

is capable of nearly ideal weak-scaling to 10,000 MPI ranks on the Summit computer

at the Oak Ridge Leadership Computing Facility (OLCF) (Harris et al., 2021).

Most notable among the newer and higher-fidelity physics solvers in Flash-X are

Spark (Couch et al., 2021) for magnetohydrodynamics, XNet‡ (Hix and Thielemann,

1999) for nuclear burning, thornado§ (Chu et al., 2019a; Laiu et al., 2021; Endeve

et al., 2022a; Laiu et al., 2022; Endeve et al., 2022b) for neutrino radiation transport,
∗https://github.com/Flash-X/Flash-X
†flash.uchicago.edu/site/index.shtml
‡https://github.com/starkiller-astro/xnet
§https://github.com/endeve/thornado
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and WeakLib¶ (Pochik et al. 2021; Landfield December 2018, and this dissertation)

for tabulated microphysics.

Each code has room for improvement and optimization. Considering the CCSNe

explosion in nature, an ideal code runs three-dimensional, general-relativistic, full-

dimensional radiation-magneto-hydrodynamics with every microphysics and nuclear

reaction. Based on this background, Vertex has sophisticated microphysics and can

have improvement in two-moment neutrino transport; Aenus-Alcar can have im-

provement in relativity; fGR1 has powerful 3D-GR radiation-magneto-hydrodynamics

and sophisticated microphysics, and can have improvement in radiation analytical

closure; Chimera has sophisticated microphysics and nuclear reactions, and can have

improvement in neutrino transport; Fornax has sophisticated microphysics and can

have an improvement in neutrino transport; Flash-X, after upgrading and developing,

will have the ability to make 3D-GR radiation-magneto-hydrodynamics simulations

with sophisticated microphysics and nuclear reaction.

Due to the numerical and physical complexity, these enhancements cannot be

made in a short period. Take neutrino transport for example. The computational

challenge has two parts (Mezzacappa et al., 2020a). First, the kinetic equations, which

govern the evolution of neutrino distributions, need to be mapped onto appropriate

discrete representations. The discrete representations need to be stable, accurate,

and respect physical laws. These include, but are not limited to, lepton number and

energy conservation, and the Fermi-Dirac nature of neutrino as fermion. Second, the

resultant nonlinear algebraic equations need to be solved by efficient, supercomputer-

architecture-aware methods. Mezzacappa et al. (2020a) presents a review of the latest

efforts to meet this challenge. The primary focus of this dissertation is to develop a

next-generation, state-of-the-art neutrino kinetic capability that will be used in CCSN

simulation frameworks thornado and Flash-X in the sense of the above challenge.
¶https://github.com/starkiller-astro/weaklib
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1.2 Motivation

Although significant progress has been made, general relativistic three-dimensional

models with Boltzmann neutrino transport, weak interaction physics that meets

industry standards, and equations of state that meet industry standards have not

yet been produced. A list of the lessons that guide us to improve models of neutrino

transport include: (Mezzacappa et al., 2020a)

1. All three flavors of neutrinos and their antineutrino partners are required.

2. A quantum kinetics description of neutrino transport is required.

3. Simulations must be general relativistic.

4. Simulations must include all the neutrino weak interactions, and the description

of the interactions must be state of the art.

5. Lepton number and energy need to be conserved.

6. The discretization of the Boltzmann equations must accommodate both small-

and large-energy scattering.

7. Realistic EOS for the nuclear, leptonic, and photonic components must be

accommodated by numerical methods.

8. Neutrino transport must be solved in moments approaches until Boltzmann

approaches become feasible.

9. The closures must respect the Fermi-Dirac statistics of neutrinos.

It is a natural and required starting point to use a classical Boltzmann description

when developing a quantum kinetics treatment of neutrino transport. Likewise,

for general relativistic and all neutrino weak interactions requirements, a special

relativistic CCSN model with standard basic neutrino weak interactions (Bruenn,

1985) is the natural and required starting point for the development. All neutrino
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flavors, the moment approaches, lepton number and energy conservation, small- and

large-energy scattering, the proper closure that respects the Fermi-Dirac statistics of

neutrinos, and the proper numerical methods are targeted in this project: Among

the moment approaches, we choose the two-moment approach because it is the

higher order moment approach, compared with the flux-limited approach, and yet

not as expensive as the discretized full-dimensional Boltzmann solver approach. The

discontinuous Galerkin (DG) method (Reed and Hill, 1973; Cockburn and Shu, 2001;

Hesthaven and Warburton, 2008), as one type of finite-element method, is preferred

when model CCSN explosions. First, the DG method can be used to develop

structure-preserving methods for physical-constraint-preserving. Second, the DG

method is easy to leverage in higher order needs. Third, it practices the correct

behavior in the diffusion limit without modification. In addition, the DG method

can be combined with other (such as finite-volume) methods (Klöckner et al., 2009;

Teukolsky, 2016; Adams, 2001; Guermond and Kanschat, 2010). The DG method

has received attention from the astrophysics community recently, and was used in

the latest codes (Radice and Rezzolla, 2011; Radice et al., 2013; Endeve et al., 2015;

Schaal et al., 2015; Wu and Tang, 2016; Teukolsky, 2016). (More reviews for the DG

method can be found in Cockburn and Shu 2001; Hesthaven and Warburton 2008;

Bassi et al. 2013; Shu 2016.)

The implicit-explicit method is targeted as a time integration method for efficiency,

with implicit update for the collision update and explicit update for the advection

term. It avoids a distributed implicit solve, which can be expensive and more difficult

to scale. For weak physics, we use tabulated EOS and neutrino interaction rates, so

that upgrading weak physics can be made in parallel with the other developments,

and is easy to implement.

To sum up, we aim to build a neutrino transport code for a next-generation,

state-of-the-art CCSN simulation capability and use it to investigate the dynamics of

CCSN. The new capabilities of the code include: a. implementing the discontinuous

Galerkin method in spectral two-moment neutrino kinetics in the context of CCSN;
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b. applying an accurate, efficient, physics-preserving implicit-explicit time update

method; c. computational/parallel efficient boosted by GPU; d. easy to incorporate

into other simulation codes/frameworks; e. can be modularly updated in future

development.

This dissertation is organized as follows to address our efforts towards this goal.

Initial work on developing a DG method for spectral two-moment neutrino kinetics is

presented in Chapter 3 for O(1) and simplified neutrino-matter interactions scenario

(which are published in Chu et al. 2019a; Chu et al. 2019b), and Chapter 4 for

an O(v/c) model. The work for developing an accurate, efficient, physis-preserving

time update method is presented in Chapter 3 for our implicit-explicit scheme, and

Chapter 5 for the nonlinear solver (Laiu et al., 2020, 2021). In parallel with the

neutrino kinetics numerical method and code development, we developed WeakLib

for weak physics. The work for WeakLib development is presented in Chapter 5, with

the development of interfaces between WeakLib, thornado, and Flash-X. WeakLib

and thornado module structure, which is rooted in operator splitting, enable

modularly update/development. In addition, effective implementations with graphics

processing units (GPUs) of the weak physics and kinetic update are produced as code

optimization on the Summit supercomputer at the Oak Ridge Leadership Computing

Facility (OLCF) (Harris et al., 2021). We examined the capability and efficiency

of the code by running spherical symmetric (1D) CCSN simulations on Summit.

We leveraged the existing infrastructure of Flash-X for hydrodynamics and gravity,

via the Spark module (Couch et al., 2021). The simulation results are presented

in Chapter 6 for a detailed comparison between Chimera and Flash-X+thornado

using a 9 M⊙ progenitor in spherical symmetry, and Chapter 7 for simulations with

a set of low mass progenitors in spherical symmetry. In this dissertation, we consider

only Newtonian simulations. All our codes are released to the public and serve the

Flash-X users and astrophysics community. In Chapter 8 we give conclusions and a

list of future improvements.
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Chapter 2

Neutrino Radiation Hydrodynamics:

Formalism

In neutrino-driven core-collapse supernova models, neutrino radiation hydrodynamics

involves the movement of matter, the transport of neutrinos, and their interactions.

The subject of neutrino radiation hydrodynamics, including the moment method,

moment realizability, and the closure approach, is presented in this chapter. The

numerical approach for solving the moment equations, including the discretization,

the time integrator, and numerical limiters, will be discussed in Chapters 3 and 4. The

framework in Flash-X + thornado that solves the neutrino radiation hydrodynamics

will be presented in Chapter 5. Throughout, we use a system of natural units, i.e.,

the speed of light c and the Planck constant h are h = c = 1.

2.1 3+1 Formulation of General Relativity

We begin with the fundamental element of general relativity’s “3+1” formula-

tion (Cardall and Mezzacappa, 2003; Cardall et al., 2013; Mezzacappa et al., 2020a).

In this formulation, space and time are separated by foliating spacetime in a series of

spacelike hypersurfaces, Σt, each corresponding to a constant coordinate time t.
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A unit timelike normal four-vector n, satisfying nµn
µ = −1 (using Einstein’s sum-

mation convention), exists at each point of the hypersurface Σt. Here n corresponds

to the four-velocity of the observer at rest with respect to the hypersurface. The

four-vector β describes how the spatial coordinates move within each hypersurface.

It is also known as the “shift” vector. With α being the “lapse” function, αdt gives the

proper time between two hypersurfaces, Σt and Σt+dt. In this foliation of spacetime,

the spacetime metric can be read off from

ds2 = gµνdx
µdxν = (−α2 + βiβ

i)dt2 + 2βidt dx
i + γijdx

idxj, (2.1)

as

gµν =

 −α2 + βiβ
i βi

βi γij

 , (2.2)

where γi j is the metric on the hypersurface Σt. The determinant of gµν is g, and
√
−g = α

√
γ, where √γ is the determinant of the spatial metric γij. The timelike

normal four-vector

nµ =
1

α
(1,−βi) with nµ = (−α, 0), (2.3)

and

γαµ = δαµ + nα nµ, (2.4)

provide timelike and spacelike projections, respectively.

In this chapter, we will elaborate on how we formulate the radiation-hydrodynamics

equations in a form suitable for numerical solutions using the 3+1 slicing of spacetime.
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2.2 Hydrodynamics Equations

We will begin the discussion with the equations of general relativistic hydrodynamics

with radiation coupling, which governs the evolution of matter and neutrino in CCSN

explosions, and end with the Newtonian limit of these equations.

2.2.1 General Relativistic Hydrodynamics Equations

In CCSN models, the stellar fluid is modeled as a perfect fluid. Without including

effects due to electromagnetic fields, the evolution equations are (see, e.g. Rezzolla

and Zanotti (2013) for details)

∇νJ
ν
B = 0, (2.5)

∇νJ
ν
e = −mBQL (fνe , fν̄e , . . .) , (2.6)

∇νT
µν
fluid = −Gµ (fνe , fν̄e , . . .) . (2.7)

Equation (2.5) is the mass conservation equation, where Jν
B is the baryon rest-mass

current density given by

Jν
B = ρuν , (2.8)

where ρ = MBnB gives the baryon rest mass density, with MB being the average

baryon rest mass, and nB being the baryon density, and uν being the fluid four-

velocity. In a nuclear fluid, ρ =
∑

BMBnB sums over all baryon type B with rest

mass MB and density nB, and mass MB is not conserved.

Equation (2.6) expresses the local conservation of electron lepton number, where

the electron density current Jν
e is given by

Jν
e = ρYeu

ν , (2.9)
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with Ye being the electron fraction. The source term on the right-hand side of

Equation (2.6), −mBQL, represents the lepton exchange between the fluid and the

neutrinos.

Equation (2.7) expresses the conservation of four-momentum (energy and momen-

tum conservation), where the fluid energy-momentum tensor T µν
fluid is given by

T µν
fluid = ρhuµuν + pgµν , (2.10)

with h = 1 +
e+ p

ρ
being the specific enthalpy, e being the internal energy density,

and p being the pressure. The source term on the right-hand side of Equation (2.7),

−Gµ, is the four-momentum exchange between the fluid and the neutrinos.

Equations (2.5)–(2.7) are an open system. To close the system, an EOS is needed,

which gives the pressure p, i.e., p = p(ρ, e, Ye) or p = p(ρ, T, Ye). The source

terms, −Gµ and −mBQL, depend on the neutrino distribution functions and the

thermodynamic properties of the stellar fluid. We will discuss these later.

2.2.2 General Relativistic 3+1 Hydrodynamics Equations

We begin with the 3+1 slicing of spacetime form of the hydrodynamics equations.

The fluid four-velocity can be expressed as

uµ = W (nµ + vµ), (2.11)

where W = −nµu
µ is the Lorentz factor, vµ = (γµν u

ν)/W is the fluid three-velocity,

uµ provide timelike projection, and γµν provide spacelike projection. There is a

corresponding spacelike hypersurface to which uµ is the unit timelike normal. And

the timelike basis elements defined by uµ give an orthonormal frame of reference in

which the inertial observer instantaneously comoving with the fluid. This observer

is the generalized Lagrangian observer. Then, we can rewrite the general relativistic

hydrodynamics equations given by Equation (2.5) - (2.7).
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The mass conservation equation, Equation (2.5), is now expressed as

1

α
√
γ

[
∂t(
√
γD) + ∂i

(√
γD

[
αvi − βi

])]
= 0, (2.12)

where D = Wρ, and vi is the fluid three-velocity.

The lepton number conservation equation, Equation (2.6), becomes

1

α
√
γ

[
∂t (
√
γDYe) + ∂i

(√
γDYe

[
αvi − βi

])]
= −mBQL. (2.13)

The normal and tangential projections of Equation (2.7) relative to Σt give the

energy and momentum conservation equations, which are

1

α
√
γ

[
∂t (
√
γτfluid) + ∂i

(√
γ
[
α
(
Si −Dvi

)
− τfluidβi

])]
=

1

α

[
αSikKik − Si∂iα

]
+ nµG

µ, (2.14)

for the energy, where τfluid = E − D, E = ρ hW 2 − p, Si = ρhW 2vi, and Si k =

ρhW 2vivk + p γi k, and Ki k are the components of the extrinsic curvature, and

1

α
√
γ

[
∂t (
√
γSj) + ∂i

(√
γ
[
αSi

j − βiSj

])]
=

1

α

[
Si∂jβ

i +
1

2
αSik∂jγik − E∂jα

]
− γjµGµ, (2.15)

for the momentum.

2.2.3 Newtonian Hydrodynamics Equations

If a CCSN model includes the full PNS with a realistic nuclear EOS and approximate

general relativistic gravity, it can simulate the onset of PNS collapse to a black

hole, if it collapses to a black hole. In such a model, Newtonian hydrodynamic is a

reasonable approximation. It makes Newtonian hydrodynamic a good starting point

for a CCSN simulation code development. As a starting step, we restrict ourselves
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in this dissertation work to the Newtonian limit and the basic Euler equations, and

neglect physics such as magnetic fields or nuclear burning. First, expand W to O(v2)

such that

W =
1√

1− v2
= 1 +

v2

2
+O(v4), (2.16)

and in Newtonian approximation v → 0, W = 1. Newtonian limit also assumes a

weak gravitational field, and the field is near static. These lead to

βi = 0, α = 1. (2.17)

Consequently, D = ρ and Equations (2.12)-(2.15) can be rewritten as

∂ρ

∂t
+

1
√
γ
∂i(
√
γρvi) = 0, (2.18)

∂(ρYe)

∂t
+

1
√
γ
∂i
(√

γρYev
i
)
= −mBQL, (2.19)

∂et
∂t

+
1
√
γ
∂i
(√

γ [ et + p ] vi
)
= −ρ vi ∂iΦ−QE, (2.20)

∂(ρ vj)

∂t
+

1
√
γ
∂i
(√

γ Πi
j

)
=

1

2
Πik ∂jγik − ρ ∂jΦ−QMj, (2.21)

where et = e+ρvivi/2 is the total fluid energy density, Φ is the gravitational potential,

which in Newtonian gravity is related to the mass density ρ by the Poisson equation,

1
√
γ
∂i
(√

γ γij∂jΦ
)
= 4πGρ, (2.22)
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−ρ ∂jΦ and −ρ vi ∂iΦ are gravity sources, Πi
j = ρ vi vj + p δij the fluid stress tensor,

and 1
2
Πik ∂jγik are geometry sources. The other source terms (QL, Q

i
M, QE) modeling

lepton and four-momentum exchange introduced by neutrino-matter interaction will

be discussed in detail in Section 2.4.3.

In this dissertation work, the Flash-X Spark (Couch et al., 2021) hydrodynamics

code solves the Newtonian hydrodynamics equations. A description of the numerical

solver is presented in Section 5.3.

2.3 Neutrino Kinetics

Now we move on to the neutrino kinetic equation, which is coupled with the

hydrodynamics. Modelers must choose momentum coordinates. A typical choice is

the inertial frame of reference that is instantaneously comoving with the fluid (Mihalas

and Mihalas, 1984). In this frame, neutrino–matter interactions are most naturally

and easily described. While the description of neutrino–matter interactions is

simplified, additional terms that correspond to relativistic angular aberration and

Doppler shift are introduced. Special care must be taken to address the additional

terms and conservation.

2.3.1 General Relativistic Boltzmann Equation

When the neutrino mean free paths exceed the scale of the PNS, a kinetic description

of the neutrinos is required. Because the neutrinos are not well described as a

component of the fluid by then. Such a description would supply the neutrino

distribution functions f for each species of neutrinos at each phase-space point:

dn = fdxdp. (2.23)

Here dn is the number of neutrinos (at time t) at space point x in a differential

volume element dx, with momentum p in a momentum interval dp, and the
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distribution function f gives the density of such identical neutrinos per phase-space

volume (Pomraning, 2005).

The Boltzmann equation gives the equation for the distribution function. Follow-

ing Cardall and Mezzacappa (2003), it is derived using the Liouville operator L such

that

L[f ] = C[f ], (2.24)

which describes the equation of the flow defined by the neutrino trajectories in phase

space. The Liouville operator is given by

L = pµ̂ Lµ
µ̂
∂

∂xµ
− Γı̂

ν̂ρ̂ p
ν̂ pρ̂

∂

∂pı̂
, (2.25)

where pµ̂ is the neutrino four-momentum components measured by a fluid-comoving

observer, pµ is the neutrino four-momentum components in the coordinate basis, pµ =

Lµ
µ̂ p

µ̂, Lµ
µ̂ is the inverse transformation of Lµ̂

µ. Lµ̂
µ is a composite transformation.

It first takes from the coordinate basis to the orthonormal frame of the Eulerian

observer at rest with respect to the laboratory, then from the Eulerian frame to the

comoving frame via a Lorentz transformation.

The Ricci rotation coefficients, Γı̂
ν̂ρ̂, are defined as (Cardall et al., 2013)

Γρ̂
ν̂µ̂ = Lρ̂

νLµ
µ̂∇µLν

ν̂ . (2.26)

The right-hand side C[f ] denotes the collision term. It describes the neutrino-

matter interactions and depends on the distribution function f . Because of the

comoving momentum coordinates we chose, the collision term C[f ] is relative simple.

We will present a detailed discussion of the collision term in section 2.4.
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A manifestly number conservative reformulation of the Boltzmann equation was

given by Cardall and Mezzacappa (2003). It reads

1√
−g

∂

∂xµ
(√
−gLµ

µ̂p
µ̂f

)
− E(p)

∥∥∥∥det [∂p∂u
]∥∥∥∥−1

∂

∂uı̂

(
1

E(p)

∥∥∥∥det [∂p∂u
]∥∥∥∥Γȷ̂

ν̂ρ̂p
ν̂pρ̂

∂uı̂

∂pȷ̂
f

)
= C[f ], (2.27)

where E = ∥p∥ /c, and µı̂ is the basis in the comoving frame of the fluid four-velocity.

Similarly, a four-momentum conservative formulation reads

1√
−g

∂

∂xν
(√
−gT µν

)
− E(p)

∥∥∥∥det [∂p∂u
]∥∥∥∥−1

∂

∂uı̂

(
1

E(p)

∥∥∥∥det [∂p∂u
]∥∥∥∥Γȷ̂

ν̂ρ̂p
ρ̂∂u

ı̂

∂pȷ̂
Lν̂

νT
µν

)
= −Γµ

νρT
νρ + Lµ

µ̂p
µ̂C[f ], (2.28)

where

T µν ≡ Lµ
µ̂Lν

ν̂p
µ̂pν̂f, (2.29)

is the specific neutrino stress-energy tensor.

2.3.2 General Relativistic Moment Equations

Because solving the Boltzmann equation with sufficient phase-space resolution is

expensive, most supernova models solve approximate equations for angular moments

of the distribution function. In this moments approach, a finite number of angular

moments are evolved, and the hierarchy of moment equations is closed by a closure

procedure that relates higher-order moments to the evolved lower-order moments.
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The first few angular moments, or spectral moments, of the distribution function

f are

N µ =
1

4π

∫
S2
f pµ

dω

ε
, (2.30)

T µν
Rad =

1

4π

∫
S2
f pµ pν

dω

ε
, (2.31)

Qµνρ
Rad =

1

4π

∫
S2
f pµ pν pρ

dω

ε
, (2.32)

where

dω = sinϑdϑdφ, (2.33)

denotes the integral over the sphere of momentum space:

S2 = {ω ∈ (ϑ, φ) | ϑ ∈ [0, π], φ ∈ [0, 2π)}, (2.34)

where ϑ and φ are momentum-space angular coordinates. The four-current density

is

Nµ = 4π

∫ ∞

0

N µε2dε, (2.35)

with ε the particle energy measured by an observer comoving with the fluid. The

stress-energy tensor is

T µν = 4π

∫ ∞

0

T µν
Radε

2dε, (2.36)

and

Qµνρ = 4π

∫ ∞

0

Qµνρ
Radε

2dε, (2.37)
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is the rank three tensor, which is also referred to as the tensor of fluxes, or heat flux

tensor.

If the moment system is truncated at the zeroth moment equation, it results in the

flux-limited diffusion (FLD) method. FLD for neutrino transport was first proposed

by Wilson et al. (1975) and implemented by Bruenn et al. (1978). Similarly, if the

system is truncated at the first moment equation, the approximate method is the

so-called two-moment method, first proposed by Anderson and Spiegel (1972), and

later studied by Thorne (1981) and Cernohorsky and Van Weert (1992). There are

also higher-order moment methods, such as described in Yueh and Buchler (1977).

thornado (Endeve et al., 2022a; Endeve et al., 2022b) currently employs the two-

moment method and is used in this dissertation work.

Two-Moment Model

In the two-moment model, the evolved variables are the spectral neutrino number

density, energy density, and three-momentum density in a coupled manner. The

evolution equation for the spectral neutrino number density can be obtained by

integrating Equation (2.27) over S2 and multiplying by a factor
1

4πε
:

∇νN ν − 1

ε2
∂

∂ε

(
ε2T µν∇µuν

)
=

1

4π

∫
S2
C[f ]dω

ε
. (2.38)

Integrating over energy leads to the balance equation, whose right-hand side leads to

lepton exchange sources and sinks due to neutrino–matter interactions.

In a similar manner, the evolution equation for the neutrino four-momentum

density can be obtained by integrating Equation (2.28) over S2 and multiplying by a

factor
1

4πε
:

∇νT µν − 1

ε2
∂

∂ε

(
ε2Qµνρ∇νuρ

)
=

1

4π

∫
S2
C[f ]pµdω

ε
. (2.39)
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Integrating over energy gives rise to the balance equation whose right-hand side

describes the four-momentum exchange with the fluid. We will present a more detailed

discussion about the source terms in Section 2.4.3.

2.3.3 General Relativistic 3+1 Moment Equations

In the 3+1 approach, Eulerian decompositions are natural to use. It also simplifies

terms appearing in the moment equations. Moreover, Eulerian number density, energy

density, and three-momentum density should be conserved. These make Eulerian

decomposition preferred when deriving evolution equations for modeling neutrino

transport.

Before giving the Eulerian evolution equations, we define primitive angular

moments of the distribution function as

{
D, Iµ,Kµν ,Lµνρ

}
(ε,x, t) =

1

4π

∫
S2
f(ω, ε,x, t) { 1, ℓµ, ℓµℓν , ℓµℓνℓρ} dω, (2.40)

where x are the spatial coordinates,

ℓµp
µ = ε(ℓµu

µ + ℓµℓ
µ) = ε, (2.41)

with ℓµℓ
µ = 1, pµ = ε(uµ + ℓµ). The zeroth and first moments D and Iµ are

the spectral number density and number flux density, respectively, measured by a

Lagrangian (comoving) observer. The second and third moments Kµν and Lµνρ are

rank-two and rank-three tensors of fluxes.

Eulerian Decompositions

First, the Eulerian energy density, momentum density, and stress {E ,Fµ,Sµν} can

be expressed in terms of the corresponding Lagrangian quantities
{
J ,Hµ, K̂µν

}

23



as (Cardall et al., 2013)

E = W 2J + 2WvµHµ + vµvνK̂µν , (2.42)

Fµ = Wvµ (WJ + vνHν) + [δµρ − nµvρ]
(
WHρ + vνK̂νρ

)
, (2.43)

Sµν = W 2J vµvν +Wvν [δµρ − nµvρ]Hρ +Wvµ [δνσ − nνvσ]Hσ

+ [δµρ − nµvρ] [δ
ν
σ − nνvσ] K̂ρσ, (2.44)

where
{
J ,Hµ, K̂ij

}
are expressed by primitive angular moments as

{
J ,Hi, K̂ij

}
= ε

{
D, I i,Kij

}
. (2.45)

The Eulerian decomposition of the stress-energy tensor is

T µν = Enµnν + Fµnν + nµFν + Sµν . (2.46)

Then the Eulerian two-moment evolution equations can be obtained by projecting

Equation (2.39) onto the four-velocity of the Eulerian observer, such that contracting

−nµ with Equation (2.39) and noting that

−nµT µν = Enν + Fν (2.47)

gives

1

α
√
γ

[
∂t(
√
γE) + ∂i

(√
γ
[
αF i − βiE

])]
− 1

ε2
∂

∂ε

(
ε2 (−nµ)Qµνρ∇νuρ

)
=

1

α

[
αS ijKij −F i∂iα

]
+
W

4π

∫
S2
C(f)dω +

vj

4π

∫
S2
C(f)ℓjdω, (2.48)

and contracting γµν with Equation (2.39), and noting that

γjµT µν = Fjn
ν + Sν

j , (2.49)
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gives

1

α
√
γ

[
∂t (
√
γFj) + ∂i

(√
γ
[
αS i

j − βiFj

])]
− 1

ε2
∂

∂ε

(
ε2γjµQµνρ∇νuρ

)
=

1

α

[
Fi∂jβ

i +
1

2
αS ik∂jγik − E∂jα

]
+

1

4π

∫
S2
C(f)ℓjdω +

Wvj
4π

∫
S2
C(f)dω.

(2.50)

In thornado, equations for number density and number flux density are solved (En-

deve et al., 2022b). These can be obtained from Equation (2.38) or by contraction of

Equation (2.39) with −uµ/ε:

1

α
√
γ

[
∂t
(√

γ
[
WD + viIi

])
+ ∂i

(√
γ
[
αI i +

(
αvi − βi

)
WD

])]
− 1

ε2
∂

∂ε

(
ε2T µν∇µuν

)
=

1

4π

∫
S2
C(f)dω

ε
, (2.51)

and contraction of Equation (2.39) with −hjµ/ε:

1

α
√
γ

[
∂t

(√
γ
[
WIj + viK̂ij

])
+ ∂i

(√
γ
[
αK̂i

j +
(
αvi − βi

)
WIj

])]
− 1

ε2
∂

∂ε

(
ε2hjµQ̂µνρ∇νuρ

)
=

1

2
T̂ µν∂jgµν +

1

ε
Q̂µν

j ∇νuµ −N ν∂νuj

+
1

4π

∫
S2
C(f)ℓj

dω

ε
, (2.52)

correspondingly.

2.3.4 O(v/c) Moment Equations

In flat space (α = 1, βi = 0) and dropping terms that depend on v2 and higher,

Equation (2.51) for the Eulerian number density becomes (Mezzacappa et al., 2020a;
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Endeve et al., 2022b)

∂t
(
D + viIi

)
+

1
√
γ
∂i
(√

γ
[
I i + viD

])
− 1

ε2
∂

∂ε

(
ε3

[
Ii∂tvi +Ki

j∇iv
j
])

=
1

4π

∫
S2
C(f)dω

ε
, (2.53)

and Equation (2.52) for the number flux becomes

∂t
(
Ij + viKij

)
+

1
√
γ
∂i
(√

γ
[
Ki

j + viIj
])
− 1

ε2
∂

∂ε

(
ε3

[
Kjk∂tv

k + Li
kj∇iv

k
])

− 1

2

(
Kik + I ivk + viIk

)
∂jγik −

(
Kjk∂tv

k + Li
kj∇iv

k
)
+
(
D∂tvj + I i∂ivj

)
=

1

4π

∫
S2
C(f)ℓj

dω

ε
. (2.54)

In O(v/c) limit, all general relativistic effects in the moment equations are

neglected, and special relativistic effects are kept to O(v/c) limit. In this limit,

blue and red shift of neutrino energies are left out, and special relativistic Doppler

shift of neutrino energies to O(v/c) are included. In CCSN simulation, O(v/c) limit

is acceptable for low-mass progenitors, and is a common starting point. Some CCSN

simulation codes in this limit include Fornax, Aenus-Alcar, Prometheus-

Vertex, CoCoNut-Vertex, and others.

2.3.5 O(1) Moment Equations

We can further simplify the moment equations by taking v = 0 to arrive at the O(1)

limit. In this limit, the evolution equations for the Eulerian number density and

number flux, Equation (2.53) and (2.54) become

∂tD +
1
√
γ
∂i
(√

γI i
)
=

1

4π

∫
S2
C(f)dω

ε
, (2.55)

∂tIj +
1
√
γ
∂i
(√

γKi
j

)
− 1

2
Kik∂jγik =

1

4π

∫
S2
C(f)ℓj

dω

ε
. (2.56)
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In O(1) limit, all relativistic effects in the moment equations are neglected. These

effects include Doppler shift of neutrino energies, blue and red shift of neutrino

energies, angular aberration of neutrino propagation and others. We know that

the CCSN environment is a general relativistic environment, and O(1) (Newtonian)

limit is not a good approximation Bruenn et al. (2001): using O(1) limit in CCSN

simulation leads to dramatic differences in the PNS generated after bounce, the

dynamics, and neutrino radiation Bruenn et al. (2001); neutrino luminosities and

root mean square energies is lower in O(1) limit than in the general relativistic case.

2.4 Neutrino Interactions

What makes neutrinos important to CCSN are the weak interactions between the

neutrinos and the matter. It has been well addressed that the impacts of neutrino

interactions on CCSN simulation include: (1), the impact of the addition of new weak

interaction channels (Bruenn, 1985; Hannestad and Raffelt, 1998; Buras et al., 2003;

Lentz et al., 2012); (2), the impact of improved treatments (Burrows and Sawyer,

1998; Reddy et al., 1998; Müller et al., 2012; Langanke et al., 2003; Hix et al., 2003;

Bollig et al., 2017; Burrows et al., 2018; Just et al., 2018; Kotake et al., 2018); (3),

the impact of uncertainties in the interaction rates (Melson et al., 2015b). A more

comprehensive review for neutrino interactions in CCSN simulation can be found

in Mezzacappa et al. (2020a). Fortunately, we can have the main processes represented

by a standard collision term and start with the industry standard Bruenn 1985 opacity

set.

This section focuses on the collision term C(f). We start with the collision term

in the Boltzmann equation, then move on to the corresponding terms in the moment

equations, and end with how the collision terms couple the transport equations with

the hydrodynamics equations.
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2.4.1 Collision Term in the Boltzmann Equation

The collision term in Boltzmann equation can be written as the sum of four terms

that correspond to the main interactions – emission and absorption, scattering, and

pair production. In this dissertation, we focus on the neutrino interactions given

in Bruenn (1985) and write:

C(fs) = CEA(fs) + CIso(fs) + CNES(fs) + CPair(fs, f̄s), (2.57)

where lower index s denotes neutrino species, f̄s is the distribution function for

antiparticle of neutrino s, CEA(fs) corresponds to neutrino emission and absorption,

CIso(fs) corresponds to iso-energetic scattering on nucleons and nuclei, CNES(fs)

corresponds to neutrino-electron scattering, and CPair(fs, f̄s) corresponds to pair

production and annihilation. These four collision terms represent four categories

of neutrino–matter interactions classified by mathematics form, and not necessary to

be bounded to the physics.

Emission and Absorption

The collision term for neutrino emission and absorption, CEA(f), can be written as

CEA(f) = (1− f) η − χf, (2.58)

where η and χ are the emissivity and absorption opacity. η and χ depend on the

neutrino energy ε, and are assumed to be isotropic in the momentum-space angle.

(1− f) is the blocking factor. It is included to account for the Fermi-Dirac statistics

of neutrinos, which are fermions; i.e. the Pauli exclusion principle. Equation (2.58)

can be rewritten as

CEA(f) = χ̃(f0 − f), (2.59)
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with

χ̃ = (η + χ), (2.60)

which is the so-called stimulated absorption opacity, and

f0 =
η

χ̃
,

is the equilibrium distribution.

Scattering

A general scattering term has the following form:

CScat(f) =

{[
1− f

] ∫
R+

∫
S2
RIn

Scatt

(
ε, ε′, n̂(ω) · n̂(ω′)

)
f(ε′,ω′) ε′ 2 dω′ dε′

−f(ε,ω)

∫
R+

∫
S2
ROut

Scatt

(
ε, ε′, n̂(ω) · n̂(ω′)

) [
1− f(ε′,ω′)

]
ε′ 2 dω′ dε′

}
,

(2.61)

with ω = (θp, ϕp) is a point on the unit sphere given by the solid angle of neutrino

momentum, i.e., p = (ε, θp, ϕp), and n̂(ω) the unit vector along ω, n(ω) · n̂(ω′) the

cosine of the angle between the incident and emergent neutrino with energy ε and

ε′, respectively. And RIn/Out
Scatt are the scattering kernels, which also depend on the

fluid thermal state. Note also the blocking factors in Equation (2.61), (1− f), which

suppress scattering to high-occupancy regions of momentum-space. Both CIso and

CNES are examples of scattering kernels; i.e., CIso, CNES ∈ CScat.

For iso-energetic scattering, the scattering out energy and in energy are the same,

i.e., ε = ε′, and

RIn
Scatt

(
ε, ε′, n̂(ω) · n̂(ω′)

)
= ROut

Scatt

(
ε, ε′, n̂(ω) · n̂(ω′)

)
. (2.62)
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Defining

R0
Iso(ε, n̂(ω) · n̂(ω′)) ≡ δ (ε− ε′)RIso(ε, ε

′, n̂(ω) · n̂(ω′)), (2.63)

CIso(f) can be written as

CIso(f) = ε2
∫
S2
R0

Iso(ε, n̂(ω) · n̂(ω′)) [f(ε,ω′)− f(ε,ω)] dω′. (2.64)

Pair Production

The collision term for neutrino pair processes, CPair(f, f̄), is written as

CPair(f, f̄) =

[
(1− f)

∫
R+

∫
S2
Rp

Pair (n̂(ω) · n̂(ω′), ε, ε′)
(
1− f̄ (ω′, ε′)

)
dω′dVε′

−f
∫
R+

∫
S2
Ra

Pair (n̂(ω) · n̂(ω′), ε, ε′) f̄ (ω′, ε′) dω′dVε′

]
,

(2.65)

where Rp
Pair and Ra

Pair are the neutrino-antineutrino pair production and annihilation

kernels, respectively. The block factors in the production term are (1−f) and (1− f̄).

All the above — χ̃, RIn/Out
Scatt , and Rp/a

Pair — depend on the thermal state of the

stellar fluid (e.g., ρ, T , and Ye for NSE).

2.4.2 Collision Term in the Moment Equations

The collision terms in the moment equations (Equations (2.51) and (2.52)) require
1

4π

∫
S2 C(f)

dω
ε

and
1

4π

∫
S2 C(f)ℓi

dω
ε

. For example, the collision terms on the right-

hand sides of O(v/c) moment equations, Equation (2.53) and (2.54), are

1

4π

∫
S2
C(f)dω

ε
, and

1

4π

∫
S2
C(f)ℓj

dω

ε
, (2.66)

respectively.
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Legendre Expansion Using a Legendre expansion, any scattering/production/an-

nihilation kernel can be written as

R(ε, ε′, α) ≃ C0Φ0(ε, ε
′) + C1Φ1(ε, ε

′)α, (2.67)

with α = n̂(ω) · n̂(ω′). For C0 = 1 and C1 = 1, we have

1

2

∫ 1

−1

R(ε, ε′, α) dα = Φ0(ε, ε
′), (2.68)

3

2

∫ 1

−1

R(ε, ε′, α)α dα = Φ1(ε, ε
′), (2.69)

R(ε, ε′, α) = Φ0(ε, ε
′) + Φ1(ε, ε

′)α. (2.70)

Emission and Absorption

With Equation (2.59) and (2.60), the collision terms for neutrino emission and

absorption in the moment equations are

1

4π

∫
S2
CEA(f)dω = χ̃(D0 −D), (2.71)

1

4π

∫
S2
CEA(f)ℓidω = −χ̃Ii, (2.72)

where D0 =
1

4π

∫
S2 f0dω and

1

4π

∫
S2 f0ℓidω = 0 for the equilibrium distribution f0.
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Scattering

Using the Legendre expansion, Equation (2.70), in the scattering term CScat,

Equation (2.61), we have

1

4π

∫
S2
CScat(f) dω

=
[
1−D(ε)

] ∫
R+

ΦIn
0 (ε, ε

′)D(ε′)dVε′ −D(ε)
∫
R+

ΦOut
0 (ε, ε′)

[
1−D(ε′)

]
dVε′

+ Ii(ε)
∫
R+

[
ΦOut

1 (ε, ε′)− ΦIn
1 (ε, ε

′)
]
I i(ε′) dVε′ , (2.73)

and

1

4π

∫
S2
CScat(f) ℓi dω

=− Ii(ε)
∫
R+

ΦIn
0 (ε, ε

′)D(ε′) dVε′ − Ii(ε)
∫
R+

ΦOut
0 (ε, ε′)

[
1−D(ε′)

]
dVε′

+
1

3

∫
R+

ΦIn
1 (ε, ε

′) Ii(ε′) dVε′ +Kij(ε)

∫
R+

[
ΦOut

1 (ε, ε′)− ΦIn
1 (ε, ε

′)
]
Ij(ε′) dVε′ .

(2.74)

Isoenergetic Scattering For isoenergetic scattering,

1

4π

∫
S2
CIso(f)dω = 0, (2.75)

1

4π

∫
S2
CIso(f)ℓidω = −Ii(ε)

∫
R+

ΦOut
Iso 0(ε, ε

′) dVε′ +
1

3

∫
R+

ΦIn
Iso 1(ε, ε

′) Ii(ε′) dVε′ .

(2.76)
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Pair Production

Combining Equation (2.65) and Equation (2.70), the pair-production collision terms

become

1

4π

∫
S2
CPair(f)dω =

[
1−D(ε)

] ∫
R+

ΦP
0(ε, ε

′)
[
1− D̄(ε′)

]
dVε′

+ Ij(ε)
∫
R+

ΦP
1(ε, ε

′) Īj(ε′) dVε′

−D(ε)
∫
R+

ΦA
0 (ε, ε

′) D̄(ε′) dVε′ − Ij(ε)
∫
R+

ΦA
1 (ε, ε

′) Īj(ε′) dVε′ ,

(2.77)
1

4π

∫
S2
CPair(f)ℓidω =− Ii(ε)

∫
R+

ΦP
0(ε, ε

′)
[
1− D̄(ε′)

]
dVε′

−
[ 1
3
δij −Kij(ε)

] ∫
R+

ΦP
1(ε, ε

′) Īj(ε′) dVε′

− Ii(ε)
∫
R+

ΦA
0 (ε, ε

′) D̄(ε′) dVε′ −Kij(ε)

∫
R+

ΦA
1 (ε, ε

′) Īj(ε′) dVε′ .

(2.78)

2.4.3 Neutrino –Matter Coupling

Next, using conservation principles for lepton number, momentum, and energy,

we can give explicit expressions of the source terms on the right-hand side of

the hydrodynamic equations (Equations (2.19), (2.20) and (2.21)) in terms of

the collision term. These terms are critical when developing a physics-preserving

numerical approach for a hydrodynamics and radiation coupled system. We enforce

these conservation laws in the algorithm for modeling neutrino-matter coupling in

thornado.

Lepton Exchange

We consider electron neutrinos (νe) and antineutrinos (ν̄e) as agents for lepton

exchange. The Eulerian number density and number flux density are given by the

integral of the spectral number density and spectral number flux over the neutrino
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energy. Define the lepton number density and number flux as

Ns = Ds + Isvi, (2.79){
Nν , F

i
N

}
= 4π

∑
s=νe,ν̄e

gs

∫
R+

{
Ns, I is +Dsv

i
}
ε2dε, (2.80)

with gs the corresponding lepton number; i.e. gs = 1 for νe, and gs = −1 for ν̄e,

where the index s indicates the neutrino species. With the hydrodynamics equation

(Equation (2.19)), the radiation equations (Equations (2.53) and (2.54)), and ne =
ρYe
MB

, to preserve total lepton number, we must have

∂t (ne +Nν) +
1
√
γ
∂i
(√

γ
[
nev

i + F i
N

])
= 0, (2.81)

and

QL =
∑

s=νe,ν̄e

gs

∫
R+

1

ε

∫
S2
C(fs)dωε2dε. (2.82)

Energy and Momentum Exchange

Next, we consider energy and momentum conservation. The total neutrino energy

density E, total momentum density F i
E, and total stress tensor Sij are defined as

{
E,F i

E, S
ij
}
= 4π

Ns∑
s=1

∫
R+

{
Es,F i

s,S ij
s

}
ε2dε, (2.83)

with Ns the total number of neutrino species included. With the hydrodynamics

energy conservation equation (Equation (2.20)) and the radiation number density

equation (Equation (2.53)), to preserve total energy, we must have

∂t (et + E) +
1
√
γ
∂i
(√

γ
[
(et + p) vi + FE

i
])

= −ρvi∂iΦ, (2.84)
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and

QE = 4π
Ns∑
s=1

∫
R+

[
1

4π

∫
S2
C(fs)dω +

vj

4π

∫
S2
C(fs)ℓjdω

]
ε2dε. (2.85)

With the hydrodynamics momentum conservation equation (Equation (2.21)) and

the radiation number flux equation (Equation (2.54)), to preserve total momentum,

we must have

∂t
(
ρvj + FEj

)
+

1
√
γ
∂i
(√

γ [ Πi
j + Si

j ]
)
=

1

2

(
Πik + Sik

)
∂jγik − ρ∂jΦ, (2.86)

and

Qi
M = 4π

Ns∑
s=1

∫
R+

[
1

4π

∫
S2
C(fs)ℓi dω +

vi

4π

∫
S2
C(fs)dω

]
ε2dε. (2.87)

2.5 Moment Realizability and Closure Problem

As we mentioned in Section 2.3.2, the two-moment models discussed above are not

closed until a closure procedure is employed. This section focuses on the requirements

of the closure procedure and algebraic closures. Many discussions in this section have

been published in Chu et al. (2019a).

2.5.1 Moment Realizability

To be physically meaningful, the distribution function must satisfy the following

inequality: f ≥ 0. For neutrinos, which are fermions and obey the Pauli exclusion

principle, f ∈ [0, 1]. These limits lead to restrictions on the admissible values for the

moments of f .

We define

R :=

{
f | 0 ≤ f ≤ 1 and 0 <

1

4π

∫
S2
f dω < 1

}
. (2.88)
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Figure 2.5.1: Illustration of the realizable set R (light blue region) defined in
Equation (2.89). The black lines define the boundary ∂R, while the red lines indicate
the boundary of the realizable set R+ (light red region) defined in Equation (2.91).
Published in Chu et al. (2019a).
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The moments M =
(
J ,H

)T are realizable if they can be obtained from a distribution

function f(ω) ∈ R. The set of all realizable moments, R, is

R :=
{
M =

(
J ,H

)T | J ∈ (0, 1) and γ(M) ≥ 0
}
, (2.89)

where we have defined the concave function

γ(M) ≡ (1− J )J − |H|. (2.90)

The inequality, γ(M) ≥ 0, is valid when the distribution function is a step/Heaviside

function. A detailed proof of this condition can be found in Banach and Larecki (2017)

as Theorem 7.1, also Larecki and Banach (2011); Banach and Larecki (2013).

The realizable set R is convex, since any point in R can be represented by two

points in R using a convex combination. Figure 2.5.1 illustrates the geometry of the

convex setR in the (H,J )-plane (light blue region). The boundary ∂R (black curves)

is given by γ(M) = 0. The realizable domain of positive distribution functions, R+

(no upper bound on f), is a convex cone defined by

R+ :=
{
M =

(
J ,H

)T | J > 0 and γ+(M) ≥ 0
}
, (2.91)

γ+(M) ≡ J − |H|. (2.92)

R+ is partially shown as the light red region above the red lines, which mark the

boundary of R+ (denoted ∂R+). The realizable set R is a bounded subset of R+.

When solving the moment equations numerically, ensuring that moments stay in

the realizable set is essential, and the efforts needed to ensure this are non-trivial.

Explicitly, the angular moments, J and H, satisfy the following bounds (Levermore,

1984; Larecki and Banach, 2011; Kershaw, 1976; Shohat and Tamarkin, 1943):

J ∈ [0, 1], (1− J )J − |H| ≥ 0. (2.93)

37



If an algebraic closure method is used, the bounds also apply on the closure. Take the

Eddington factor closure method for an example. The Eddington factor χ is defined

by the Eddington tensor k (Levermore, 1984)

k = K/J , (2.94)

assuming the radiation field is symmetric about a preferred direction ĥ = H/|H|,

such that

k =
1

2

[ (
1− χ

)
I +

(
3χ− 1

)
ĥ⊗ ĥ

]
, (2.95)

and the bounds on the Eddington factor χ are

χmin = max
(
1− 2

3J
, h2

)
≤χ ≤ min

(
1,

1

3J
− J

1− J
h2
)
= χmax, (2.96)

where flux factor h is defined as

h = |H|/J . (2.97)

We call moments satisfying inequality (2.93) realizable moments. Additional

discussion about the realizable set can be found in Chu et al. (2019a). If the moments

become nonrealizable, nonphysical solutions occur. For example, J > 1 changes the

sign of the blocking factor (1−J ) in the collision terms, which indicates a source (or

sink) becomes a sink (or source). When the constraints are violated, nonphysical and

unpredictable results are produced and render the results vulnerable.

One may want to fix the problem by mapping the non-realizable moments

back to the realizable domain before computing the closure function, though the

mapping should be manipulated to preserve the particle number and four-momentum

simultaneously. In Section 3.3, we will discuss our efforts to design a numerical

method to maintain realizable moments, and, in Section 3.6, exactly how we map the

non-realizable moments back to the realizable domain.
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2.5.2 Closure Problem

The moment model given by Equation (2.38) and (2.39) is not closed because of

the appearance of higher-order moments. Taking the O(v/c) two-moment model as

an example, because of the existence of Kij and Lijk in Equation (2.53) and (2.54),

which are not the evolution variables D or I i but rather high-order moments, the

equation system is open. The algebraic closure method is a type of approach for

closing the equation system. In the algebraic closure method, these high-order

moments are expressed in terms of the evolved moments, in closed form, to make

the system of equations solvable. Algebraic moment closures are computationally

efficient, as they provide an algebraic approximation formula. And the accuracy

of an algebraic moment closure is determined directly by how well its algebraic

approximation is. Algebraic moment closures are used in applications where transport

plays an important role, but where limited computational resources preclude the use

of higher fidelity models. For the purpose of this dissertation, we limit ourselves

to a so-called Eddington algebraic closure method and employ a family of algebraic

Eddington factor (AEF) closures in thornado. The expression of the Eddington factor

χ and the Eddington tensor k are given in Equations (2.94)-(2.95).

The two-moment model is then closed once the Eddington factor χ is determined

from J and H. The two-moment closure procedure should satisfy the isotropic limit:

χ(J , h→ 0) =
1

3
, (2.98)

which can be derived assuming an isotropic distribution function. Algebraic moment

closures for the two-moment model are computationally efficient, as they provide the

Eddington factor in closed form expressions. Examples of their use include simulation

of neutrino transport in core-collapse supernovae (Roberts et al., 2016) and compact

binary mergers (Foucart et al., 2015). Algebraic moment closures in the context of

these applications have also been discussed elsewhere (see Janka et al. 1992; Pons

et al. 2000; Smit et al. 2000; Just et al. 2015; Murchikova et al. 2017). We will see
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how the closure affects the two-moment model in our numerical tests in Section 5.6.2.

In the following, we focus on properties of the algebraic closures that are critical to the

development of numerical methods for the two-moment model of fermion transport.

For the algebraic closures we consider, the Eddington factor in Equation (2.95)

can be written in the following form (Cernohorsky and Bludman, 1994)

χ(J , h) = 1

3
+

2 (1− J ) (1− 2J )
3

Θ
( h

1− J

)
, (2.99)

where the closure function Θ(x) depends on the specifics of the closure procedure.

We consider two basic closure procedures: the maximum entropy (ME) closure and

the Kershaw (K) closure. In the low occupancy limit (J ≪ 1), the Eddington factor

in Equation (2.99) depends solely on h; i.e.,

χ(J , h)→ χ0(h) =
1

3
+

2

3
Θ
(
h
)
. (2.100)

This form of χ yields a moment closure suitable for particle systems obeying Maxwell-

Boltzmann statistics.

Maximum Entropy (ME) Closure

The ME closure constructs an approximation of the angular distribution as a function

of J and H (Cernohorsky and Bludman, 1994; Larecki and Banach, 2011). It assumes

the general form (Cernohorsky and Bludman, 1994)

fME(ω; a, b) =
1

ea+b·ℓ(ω) + 1
, (2.101)

obeying Fermi-Dirac statistics, and finds a distribution fME that maximizes the

entropy functional

S[fME] =

∫
S2

[
(1− fME) log(1− fME) + fME log fME ] dω (2.102)

40



while also subject to the constraints

1

4π

∫
S2
fME(ω) dω = J and

1

4π

∫
S2
fME(ω) ℓ(ω) dω = H. (2.103)

The solution of this problem gives the Lagrange multipliers a and b, then the

distribution fME(ω; a, b), which can be used to compute higher-order moment(s). The

ME distribution function satisfies 0 < fME < 1 intuitively. For the maximum entropy

problem to be solvable, we must have M ∈ R (Larecki and Banach, 2011).

To arrive at an algebraic form of the ME closure, more constraints need to be

given. Cernohorsky and Bludman postulate the closure function Θ is independent of

J but a function of the flux saturation, defined as

x ≡ h/(1− J ). (2.104)

With it, the closure function Θ can be written explicitly in terms of the inverse

Langevin function. Cernohorsky and Bludman (1994) give a polynomial fit (accurate

to 2%) for Θ:

ΘCB
ME(x) =

1

5

(
3− x+ 3x2

)
x2, (2.105)

which we will refer to as the CB closure in the following context and figures. More

recently, Larecki and Banach (2011) have shown that the explicit expression given

in Equation (2.105) is not exact and provide another approximate expression (BL

closure)

ΘBL
ME(x) =

1

8

(
9x2 − 5 +

√
33x4 − 42x2 + 25

)
, (2.106)

which is accurate to within 0.35%. On the interval x ∈ [0, 1], the curves given

by Equations (2.105) and (2.106) lie practically on top of each other. The closure

functions given by Equations (2.105) and (2.106), together with the Eddington

factor in Equation (2.99) and the pressure tensor in Equation (2.95), constitute the
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algebraic maximum entropy closures for fermionic particle systems considered in this

dissertation.

Minerbo Closure In addition, we note that using the closure function given by

Equation (2.105) with the low occupancy Eddington factor in Equation (2.100) results

in the algebraic maximum entropy closure attributed to Minerbo (Minerbo, 1978) (MI

closure):

ΘMI
(
h
)
=

1

5
h2

(
3− h+ 3h2

)
, (2.107)

and

χCB
ME(J , h)→ χMI(h) =

1

3
+

2

3
ΘMI

(
h
)
. (2.108)

Minerbo closure is currently used in simulations of neutrino (fermion) transport in

the aforementioned nuclear astrophysics applications. In a recent comparison of

algebraic closures for the two-moment model applied to neutrino transport around

the PNS, Murchikova et al. (2017) obtained nearly identical results when using the

closures of CB and Minerbo. Moreover, Minerbo closure is less vulnerable to non-

realizable moments, which makes it stand out in situations where realizability cannot

be guaranteed. As will be discussed later, we use Minerbo closure as our primary

closure for our O(v/c) supernova simulations.

Kershaw (K) Closure

Another algebraic closure that we consider is a Kershaw-type closure (Kershaw, 1976),

developed for fermion particle systems in Banach and Larecki (2017). The basic

principle of the Kershaw closure for the two-moment model is derived from the fact
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that the realizable set generated by the triplet of scalar moments

{J ,H,K} = 1

2

∫ 1

−1

f(µ)µ{0,1,2} dµ, (2.109)

is convex when the distribution function satisfies f(µ) ∈ [0, 1], ∀µ ∈ [−1, 1]. The

moments in Equation (2.109) are a set of unique moments obtained from the

moments in Equation (2.40) under the assumption that the distribution function

is axisymmetric about a preferred direction, and µ is the cosine of the angle between

this preferred direction and the particle propagation direction given by ℓ.

For a bounded distribution f(µ) ∈ [0, 1], it is possible to show (e.g., see Banach

and Larecki (2017)) that the second moment satisfies

K ∈ [KL(J , h),KU(J , h)] , (2.110)

where KL = J
(

1
3
J 2 + h2

)
and KU = KL + J (1− J ) (1− x2). By convexity of the

realizable set generated by the moments in Equation (2.109), the convex combination

K(β,J , h) = βKL(J , h) + (1− β)KU(J , h), (2.111)

with β ∈ [0, 1], is realizable whenever (J ,H)T ∈ R. The Kershaw closure for the two-

moment model is then obtained with the additional requirement that it be correct

in the limit of isotropic distribution functions; i.e., that K(β,J , 0) = J /3. One

choice for β, which leads to a strictly hyperbolic and causal two-moment model (and

a particularly simple closure function), is β = (2−J )/3 (Banach and Larecki, 2017).

This gives KK(J , h) = χK(J , h)J , where

χK(J , h) =
1

3
+

2 (1− J ) (1− 2J )
3

ΘK

( h

1− J

)
, (2.112)

and

ΘK(x) = x2. (2.113)
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Realizability of Algebraic Moment Closures

It is not immediately obvious that all the algebraic moment closures discussed above

are suitable for designing realizability-preserving methods for the two-moment model

of fermion transport. The Kershaw closure is consistent with a bounded distribution,

fK ∈ (0, 1), and should be well suited, but the algebraic ME closures are based on

approximations to the closure function. We need to consider if these approximate

closures remain consistent with the assumed bounds on the underlying distribution

function. To this end, we rely on results in Levermore (1984); Larecki and Banach

(2011) (see also Kershaw (1976); Shohat and Tamarkin (1943)), which state that

realizability of the moment triplet {J ,H,K} (with K given by Equation (2.95)) is

equivalent to the requirement for the Eddington factor given by Equation (2.96), i.e.,

χmin = max

(
1− 2

3J
, h2

)
< χ < min

(
1,

1

3J
− J

1− J
h2
)

= χmax. (2.114)

Fortunately, these bounds are satisfied by the algebraic closures based on Fermi-Dirac

statistics. (Note that for J ≪ 1, the bounds in Equation (2.96) limit to the bounds

for positive distributions given by Levermore (1984); i.e., h2 < χ < 1.)

We can see from Equation (2.96) that the bounds on the Eddington factor χ have

dependences on both the occupancy J and the flux factor h (Equation (2.97)). To

better understand the bounds, we plot the Eddington factor χ versus the flux factor

h for the various algebraic closures in Figure 2.5.2 for different values of J ∈ (0, 1):

0.01 (upper left panel), 0.4 (upper right panel), 0.6 (lower left panel), and 0.99 (lower

right panel). The lower and upper bounds on the Eddington factor for realizable

closures (χmin and χmax, respectively) are also plotted. We note that for all closures,

the Eddington factor χ→ 1/3 as h→ 0+.

When J = 0.01, the maximum entropy closures (CB, BL, and Minerbo) are

practically indistinguishable, while the Eddington factor of the Kershaw closure is

larger than the other closures over most of the domain. When J = 0.4, the Eddington

factor for the closures based on Fermi-Dirac statistics (CB, BL, and Kershaw) remain
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close together, while the Eddington factor for the Minerbo closure is larger than the

other closures for h ≳ 0.2. The Eddington factor for all closures remains between

χmin and χmax when J = 0.01 and J = 0.4.

When J = 0.6, the Eddington factor for the closures based on Fermi-Dirac

statistics remain close together and within the bounds in Equation (2.96). The

dependence of the Eddington factor on h for the Minerbo closure differs from the

other closures (i.e., increases versus decreases with increasing h), and exceeds χmax

for h ≳ 0.34. When J = 0.99, the Eddington factor of the CB and BL closures

(indistinguishable) and the Kershaw closure remain within the bounds given in

Equation (2.96). The Eddington factor of the Minerbo closure is nearly flat, and

exceeds χmax for h ≳ 0.006.

We have also checked numerically that for all the algebraic closures based on

Fermi-Dirac statistics (CB, BL, and Kershaw), the bounds on the Eddington factor

in Equation (2.96) holds for all M ∈ R. In this sense, these closures are preferred for

the development of realizability-preserving numerical methods for the two-moment

model of fermion transport.

In Figure 2.5.3, we further illustrate properties of the algebraic closures by plotting

Mab, a normalized sum of two moment sets defined by two distribution states. We

define

Mab ≡ Φ+(Ma,Ka) + Φ−(Mb,Kb), (2.115)

Φ±(M,K) =
1

2
(M± ê ·F), (2.116)

ê ·F =
(
ê ·H, ê ·K

)T
, (2.117)

where ê ∈ R3 is an arbitrary unit vector, for the maximum entropy closures of CB and

Minerbo. As we will see later, this sum is related to the numerical flux term in our

numerical approach. In both panels, we plot Mab constructed from randomly selected

pairs Ma,Mb ∈ R (each blue dot represents one realization of Mab). Results for
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Figure 2.5.2: Plot of the Eddington factor, χ, versus the flux factor, h, for different
values of J and for various algebraic closures: J = 0.01 (upper left panel), J = 0.4
(upper right panel), J = 0.6 (lower left panel), and J = 0.99 (lower right panel). In
each panel, we plot the Eddington factors of Kershaw (solid blue lines), Cernohorsky
& Bludman (CB, solid red lines), Banach & Larecki (BL, dashed orange lines), and
Minerbo (dash-dot purple lines). We also plot χmin and χmax defined in Equation (2.96)
(lower and upper solid black lines, respectively). Published in Chu et al. (2019a).
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the maximum entropy closure of CB are plotted in the left panel, while results for the

Minerbo closure are plotted in the right panel. As expected for the closure, consistent

with moments of Fermi-Dirac distributions (CB), we find Mab ∈ R. For the Minerbo

closure, which is consistent with positive distributions, Mab is not confined to R.

Extending the Closure

In the O(v/c) moment equations Equations (2.53) and (2.54) the rank-three moment

is also included. So we need to extend the closure to rank-three moment to close

the equation system. We extend the closure without assuming the radiation field is

symmetric about a preferred direction, such that

Kij = kijD, (2.118)

and the Eddington tensor is

kij ≡ 1

2

[ (
1− χ

)
γij +

(
3χ− 1

)
n̂i n̂j

]
, (2.119)

where n̂i = I i/I and I =
√
γijI iIj. The Eddington tensor in Equation (2.119)

satisfies the trace condition γijk
ij = 1. The rank-three moment is related to the

number density by

Lijk = qijkD, (2.120)

where the heat flux tensor is approximated as (Just et al., 2015)

qijk =
1

2

[
(h− ζ)

(
n̂i γjk + n̂j γik + n̂k γij

)
+ (5ζ − 3h) n̂i n̂j n̂k

]
, (2.121)

where h is the flux factor (Equation (2.97)), and the heat flux factor is

ζ = n̂i n̂j n̂k q
ijk = ⟨f(n̂iℓ

i)3⟩S2/⟨f⟩S2 . (2.122)
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The rank-three tensor in Equation (2.121) satisfies the trace condition

γij q
ijk = h n̂k. (2.123)

Following Richers (2020), the pressure and third moment of maximum entropy Fermi-

Dirac (MEFD) closure in terms of the flux saturation x = f/fmax can be written as

p(e, x) = [pmax(e)− pdiff (e, 1)] ζp(e, x) + pdiff (e, x),

l(e, x) = [lmax(e)− ldiff (e, 1)] ζl(e, x) + ldiff (e, x),
(2.124)

where the diffusive solution is

pdiff(e, x) = 1/3,

ldiff(e, x) = 3xfmax(e)/5,
(2.125)

and the maximum packing solution is

fmax(e) = 1− e, (2.126)

pmax(e) =
2(1− e)(1− 2e)

3
+

1

3
, (2.127)

lmax(e) = (1− e)
(
1− 2e+ 2e2

)
. (2.128)

Following (Cernohorsky and Bludman, 1994; Richers, 2020), ζl(e, x) can be approx-

imated using the lowest-order polynomial that satisfies the values and derivatives of

the functions in the high-packing and isotropic limits, along with the requirement

that 0 ≤ ζl(e, x) ≤ 1:

ζp(e, x) ≈ x2
(
3− x+ 3x2

)
/5,

ζl(e, x) ≈ x6.
(2.129)
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Substitude Equation (2.125), (2.128), (2.129) to Equation (2.124) to obtain the

explicit expression for CB closure:

p(e, x) =
2(1− e)(1− 2e)(3− x+ 3x2)x2

15
+

1

3
,

l(e, x) = (1− e)
{
[(1− 2e+ 2e2)− 3

5
]x6 +

3x

5

}
.

(2.130)

Vaytet et al. (2011) gives

qM1(h) = 3φ1(h)h+ φ2(h)h
3 (2.131)

where

φ1(h) =
(h− 2 + a)(h+ 2− a)

4h(a− 2)5

[
12 ln

(
h− 2 + a

h+ 2− a

)(
h4 + 2ah2 − 7h2 − 4a+ 8

)
+48h3 − 9ah3 − 80h+ 40ah

]
, (2.132)

φ2(h) =
1

h3(a− 2)5

[
60 ln(

h− 2 + a

h+ 2− a
)
(
−h6 + 15h4 − 3ah4

+15ah2 − 42h2 − 16a+ 32
)

+54ah5 − 465h5 − 674ah3 + 2140h3 + 1056ah− 2112h
]
, (2.133)

and a =
√
4− 3h2. And Minerbo closure gives (Just et al., 2015)

qMI(h) = h
(
45 + 10h− 12h2 − 12h3 + 38h4 − 12h5 + 18h6

)
/75. (2.134)
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Figure 2.5.3: Illustration of Mab, as defined in Equation (2.117), computed with
algebraic maximum entropy closures of Cernohorsky & Bludman (left) and Minerbo
(right). In each panel, Mab was computed using the respective closure, using 106

random pairs (Ma,Mb ∈ R), and plotted as a light-blue point. The solid black
lines mark the boundary of R: γ(M) = 0. Published in Chu et al. (2019a).

50



Chapter 3

Realizability-Preserving DG-IMEX

Method for an O(1) Two-Moment

Model

In this chapter, we design numerical methods to solve a two-moment model that

governs the transport of particles obeying Fermi-Dirac statistics. As the first step in

building a neutrino transport model for CCSNe modeling, we assume the transport

has emission, absorption, and iso-energetic scattering in the neutrino-matter collision

term and is in the Newtonian limit. The numerical method is based on the

discontinuous Galerkin method for spatial discretization and implicit-explicit methods

for time integration. It is designed to preserve certain physical constraints of the

underlying model by considering the spatial and temporal discretization together

with the closure procedure for the two-moment model. The results from this chapter

have been published in Chu et al. (2019a); Chu et al. (2019b).
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3.1 Introduction

In this chapter, we present the numerical methods we have developed to solve the

O(1) two-moment model based on the discontinuous Galerkin method for spatial

and neutrino energy discretization, and on implicit-explicit (IMEX) methods for time

integration. Our method is specifically designed to preserve bounds on the moments

introduced by Pauli’s exclusion principle, as discussed in Section 2.5.1. For an initial

investigation, we limit ourselves to Cartesian geometry and a simplified collision term.

Our simplified analysis will highlight the role of the moment closure in the design of

robust two-moment methods for neutrino transport. It will lay the foundations for a

framework that may help develop robust methods for models with improved physical

fidelity.

Multiple groups have developed numerical methods for solving equations for two-

moment kinetics in core-collapse supernovae (Müller et al., 2010; O’Connor and

Couch, 2015; Just et al., 2015; Kuroda et al., 2016; Roberts et al., 2016; Skinner

et al., 2019).

3.2 Model

In Cartesian coordinates (γ = 1) and with a simplified collision term, i.e. C =

CEA + CIso, the moment equations Equation (2.55) and (2.56) become

∂tD + ∂i I i = χ̃(D0 −D), (3.1)

∂tIj + ∂iKi
j = −χ̃ Ii − 4π ε2 Ii(ε)

[
ΦIso 0(ε)−

1

3
ΦIso 1(ε)

]
, (3.2)

where the i-th component of the number flux given by the equilibrium distribution

f0 is zero, χ̃ is defined in Equation (2.60), and ΦIso 0/1 is given in Equation (2.76).
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We can define the “primitive” moments

M = (D, I i)T , (3.3)

F = (I i,Kij)T , (3.4)

and rewrite Equations (3.1)–(3.2) as

∂tM+∇ ·F =
1

τ
C(M), (3.5)

with τ being the ratio of the particle mean-free path to some characteristic length

scale, and

C(M) = η −DM, (3.6)

where η = (ξf0,0)
T , D = diag(ξ, I), ξ = σA/σT is the ratio of the absorption opacity

σA to the total opacity σT = σA + σS, σS = 4πε2
[
ΦIso 0 − 1

3
ΦIso 1

]
is the scattering

opacity, and I is the identity matrix. Expressed explicitly,
1

τ
= χ̃ + (1/λ)Iso = σT ,

ξ

τ
= χ̃ = σA, where (1/λ)Iso is inverse mean free path due to isoenergetic scattering.

In this chapter, we assume σA ≥ 0. The inequality may not be guaranteed with the

linear correction, as in Chapter 4, but it is valid in this chapter.

3.3 Realizability-Preserving DG-IMEX Method

When solving the moment equations, we need to prevent non-physical states from

developing. Failure to maintain these bounds can lead to an ill-posed closure problem

and loss of hyperbolicity for the moment equations. We will show how to develop

a realizability-preserving discontinuous Galerkin (DG) (Cockburn and Shu, 2001)

implicit-explicit (IMEX) schemes for the two-moment model in this chapter.
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There are three main ingredients for the realizability-preserving DG-IMEX

method:

1. a time step restriction to ensure the cell average is realizable for a forward

Euler step (requires point-wise realizability in each element and a realizability-

preserving closure method; the backward Euler step preserves realizability of the

cell average without a time step restriction); (Section 3.5.5 and Section 2.5.2)

2. a convex-invariant time-stepping method; (Section 3.5.2 and Section 3.5.4)

3. a realizability-enforcing limiter to recover point-wise realizability within the

element (requires realizable cell averages). (Section 3.6.1)

3.4 Phase-Space Discretization

To discretize the moment equations (Equation (3.5)) in phase space, we implement

the high-order discontinuous Galerkin (DG) method (Cockburn and Shu, 2001).

(See Hesthaven and Warburton (2008) for an overview of the DG method.) The

DG method combines elements from both spectral and finite-volume methods. One

of its major advantages is that it achieves high-order accuracy on a compact stencil:

since values in k+1 cells are needed to reconstruct a polynomial of degree k, data only

communicate with their nearest neighbors, regardless of the formal order of accuracy.

This locality in memory access leads to a high computation to-communication ratio

and favors parallel computation (Klöckner et al., 2009). In addition, the DG

method recovers the correct asymptotic behavior in the diffusion limit, without

modification (Larsen et al., 1987; Adams, 2001; Guermond and Kanschat, 2010).

Reed and Hill introduced the DG method in 1973 (Reed and Hill, 1973). It has only

recently received attention from the computational astrophysics community, mainly

to solve the Euler equations for ideal hydrodynamics (Radice and Rezzolla, 2011;

Schaal et al., 2015; Wu and Tang, 2016), the Einstein’s field equations (Teukolsky,

2016) and the neutrino transport problem (Radice et al., 2013; Endeve et al., 2015;
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Chu et al., 2019a; Pochik et al., 2021; Laiu et al., 2021; Endeve et al., 2022a; Endeve et

al., 2022b).

We apply the nodal DG discretization to Equation (3.5) in space x ∈ R3 and

energy ε ∈ R+. We first divide the computational domain D = Dx ×Dε ⊂ R3 × R+

into a disjoint union K of open elements K, where each element takes the form

K = { (x, ε) : xi ∈ Ki := (xiL, x
i
H), i = 1, 2, 3, ε ∈ Kε := (εL, εH) } (3.7)

with ∆xi = xiH− xiL and ∆ε = εH− εL denoting the side lengths of K. For i = 1, 2, 3,

the spatial surface elements in direction xi are denoted as K̃
i
= ×j ̸=iK

j, while

x̃i := {xj ∈ x : j ̸= i} on K̃
i
, and the proper volume of the element VK is

VK =

∫
K

dV, where dV = dx dVε = dx ε2dε . (3.8)

We let the approximation space for the DG method, VNx,Nε , be constructed from

the tensor product of one-dimensional polynomials of maximal degrees Nx and Nε in

space and energy, respectively. Note that functions in VNx,Nε can be discontinuous

across element interfaces. The semi-discrete DG problem is to find Mh ∈ VNx,Nε

(which approximates M in Equation (3.5)) such that

∂t

∫
K

Mh ϕ dV +
3∑

i=1

∫
Kε

∫
K̃

i

(
F̂

i
(Mh)ϕ

∣∣
xi
H
− F̂

i
(Mh)ϕ

∣∣
xi
L

)
dx̃i dVε

−
3∑

i=1

∫
K

(
F i(Mh)

∂ϕ

∂xi
)
dV =

1

τ

∫
K

C(Mh)ϕ dV (3.9)

holds for all function basis ϕ ∈ VNx,Nε and all K ∈ K. Here the numerical flux

approximating the flux on the spatial surface element K̃
i
is denoted as F̂

i
(Mh). In
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this work, we consider the Lax-Friedrichs (LF) flux

F̂
i
(Mh)|xi = fLF,i(Mh|xi,− ,Mh|xi,+)

:=
1

2

(
F i(Mh|xi,−) +F i(Mh|xi,+)− αi (Mh|xi,+ −Mh|xi,− )

)
, (3.10)

where Mh|xi,± = limδ→0Mh|xi±δ are the evaluations of Mh at the immediate

right/left of xi, which thus are functions of (x̃i, ε, t). The parameter αi =

||eig
(
∂F i/∂M

)
||∞ is the largest eigenvalue of the flux Jacobian. For massless

neutrinos, which propagate at the speed of light, we can take αi = 1 (speed of light)

(i.e., the global LF flux).

3.5 Time Integration

Using the DG method, the moment equations are discretized in space and energy.

The moment equations becomes a ordinary differential equations (ODEs), which is

still continuous in temporal and needs to be integrated:

u̇ = T (u) +
1

τ
Q(u), (3.11)

where u = {uK}K∈K are the degrees of freedom evolved with the DG method. For

example, for a test space spanned by {ϕi(x)}Ni=1 ∈ Vk, we let

uK =
1

|K|

( ∫
K

Mh ϕ1 dx,

∫
K

Mh ϕ2 dx, . . . ,

∫
K

Mh ϕN dx
)T

. (3.12)

Thus, for ϕ1 = 1, the first components of uK are the cell-averaged moments. In

Equation (3.11), T is the transport operator, corresponding to the second and

third term on the left-hand side of Equation (3.9), and Q is the collision operator,

corresponding to the right-hand side of Equation (3.9). Equation (3.11) is to be

integrated forward in time with an ODE integrator.
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In CCSN simulation, the duration of the CCSN explosion (∼ O(1) second) is long

compared to the time scales of neutrino interactions with the background (they can

be ∼ O(10−10) second). To model the system fully explicitly, ∼ O(1010) time steps

would be needed, while solving the system fully implicitly would require inverting for

each time step global band-structured matrices whose sizes depend on the phase-space

discretization, which would be expensive. Considering the fact that the fluid and the

neutrinos have comparable propagation speeds for the relativistic setting of a CCSN

explosion, implicit-explicit (IMEX) method can be used to alleviate the challenge in

computation. IMEX methods treat the local stiff collision term implicitly and the

non-stiff convection terms explicitly. The cost of inverting matrices declines, and the

time step for stability is determined by the non-stiff term only. Therefore, IMEX

methods require far fewer time steps compared with a fully explicit method, and the

computation for each step is less expensive compared with a fully implicit method. In

addition, the splitting has some advantages when solving kinetic equations since the

collisional interactions may couple across momentum space, but are local in position

space, and are easier to parallelize then a fully implicit approach. Hence, IMEX

methods are the approach we will use to obtain numerical approximations to the

solution of the ODEs.

3.5.1 Standard IMEX Schemes

Treating the transport operator explicitly and the collision operator implicitly, a

standard s-stage IMEX scheme takes the following form (Pareschi and Russo, 2005):

u(i) = un +∆t
i−1∑
j=1

ãij T (u(j)) + ∆t
i∑

j=1

aij Q(u(j)), i = 1, . . . , s, (3.13)

un+1 = un +∆t
s∑

i=1

w̃i T (u(i)) + ∆t
s∑

i=1

wi Q(u(i)), (3.14)
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where (ãij) and (aij), coefficients of the i-th stage, are elements of matrices Ã and

A, respectively. The matrices Ã and A are lower triangular. (Ã is strictly lower

triangular so that the transport part is explicit.) The vectors w̃ = (w̃1, . . . , w̃s)
T and

w = (w1, . . . , ws)
T are the weights in the assembly step in Equation (3.14). These

coefficients and weights must satisfy certain order conditions for consistency, accuracy,

and other properties.

For second-order temporal accuracy, the following conditions are required:

s∑
i=1

w̃i =
s∑

i=1

wi = 1, (3.15)

s∑
i=1

w̃i c̃i =
s∑

i=1

w̃i ci =
s∑

i=1

wi c̃i =
s∑

i=1

wi ci =
1

2
, (3.16)

where c̃i =
∑s

j=1 ãij and ci =
∑s

j=1 aij.

The IMEX scheme is called globally stiffly accurate (GSA) if the coefficients

satisfy (Dimarco and Pareschi, 2013):

asi = wi and ãsi = w̃i, for i = 1, . . . , s. (3.17)

It results in un+1 = u(s), which is simplifying because the assembly step in

Equation (3.14) is not necessary.

IMEX schemes are further classified by the structure of the implicit matrix A. If

A is invertible, the IMEX scheme is of type A (Pareschi and Russo, 2005). If ai1 = 0

for i = 1, . . . , s, w1 = 0, and the submatrix consisting of the last s − 1 rows and

columns is invertible, the IMEX scheme is of type ARS (Ascher et al., 1997; Pareschi

and Russo, 2005).

3.5.2 Convex-Invariant IMEX Schemes

Since the set of realizable moments is convex, as we have discussed in Section 2.5.1,

convex-invariant schemes, which map the initial values into this set, can be used to
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design realizability-preserving methods for the two-moment model. To construct a

convex-invariant scheme, the coefficients and weights, aij, ãij, w̃i, and wi, should

enable each u(i) in Equation (3.13) to be expressed as a convex combination of

realizable states.

To this end, we rewrite the stage values in Equation (3.13) as

u(i) =
i−1∑
j=0

cij

[
u(j) + ĉij ∆tT (u(j))

]
+ aii ∆tQ(u(i)), i = 1, . . . , s, (3.18)

following Hu et al. (2018), where cij and ĉij ≡ c̃ij/cij are defined in terms of aij and

ãij. For IMEX schemes of type ARS, cij and c̃ij are given by (Hu et al., 2018)

ci0 = 1−
i−1∑
j=2

i−1∑
l=j

ailblj, cij =
i−1∑
l=j

ailblj,

c̃i0 = ãi1 +
i−1∑
j=2

aij b̃j1, c̃ij = ãij +
i−1∑

l=j+1

ailb̃lj,

(3.19)

with

bii =
1

aii
, bij = −

1

aii

i−1∑
l=j

ailblj, b̃ij = −
1

aii

(
ãij +

i−1∑
l=j+1

ailb̃lj

)
. (3.20)

And we must set ci1 = c̃i1 = 0 in Equation (3.19) to have
∑i−1

j=0 cij = 1. For the IMEX

scheme to be GSA, un+1 = u(s).

If cij, c̃ij ≥ 0 and aii > 0, each stage in Equation (3.18) is a convex combination of

explicit Euler steps with time step ĉij∆t, followed by an implicit Euler step. Each of

the explicit Euler steps has a time step condition that ensures its realizability given

by max(ĉij ∆t) ≤ ∆tEx, where ∆tEx is the time step that ensures the explicit update

with the transport operator is admissible. This is the CFL condition of the scheme.

We will elaborate on the condition for ∆tEx in Section 3.5.5.
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3.5.3 Diffusion-Accurate IMEX Schemes

Accuracy in the diffusion limit is another important property to consider when an

IMEX scheme is applied to the two-moment model. Note, beginning from this section

to the end of this chapter, we use {J ,H} to denote the number density and number

flux, instead of {D,I}, to be consistent with our publication (Chu et al., 2019a). In

the diffusion limit, the distribution function is nearly isotropic, so K ≈ 1
3
J I and

H ≈ −1
3
τ ∇J , and the two-moment model is approximately governed by (e.g., Jin

and Levermore (1996))

∂tJ +∇ ·H = 0 and H = −τ ∇ ·K. (3.21)

To interpret the diffusion limit in the context of IMEX schemes, we first write the

stages of the IMEX scheme as

J⃗ = J n e⃗−∆t Ã∇ · H⃗, (3.22)

H⃗ = Hn e⃗−∆t
( 1
3
Ã∇J⃗ +

1

τ
A H⃗

)
, (3.23)

where J⃗ and H⃗ can be the cell averages evolved with the DG method, e⃗ is a vector

of length of J⃗ containing all ones, the divergence operator acts individually on the

components of H⃗, and matrices Ã and A gives the coefficients of the IMEX i-th

stage. In the context of IMEX schemes, the diffusion limit (cf. the second equation

in (3.21)) implies that the relationship A H⃗ = −1
3
τ Ã∇J⃗ should hold. Define the

pseudoinverse of the implicit coefficient matrix for IMEX schemes of type ARS as

A−1 =

0 0

0 Â−1

 .

Then, for the stages i = 1, . . . , s,

H(i) = −1

3
τ e⃗T

i A
−1Ã e⃗∇J n +O(∆t τ 2), (3.24)
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where e⃗i is the ith column of the s × s identity matrix and we have introduced the

expansion J⃗ = J ne⃗ + O(∆t τ). For H(i) to be accurate in the diffusion limit, we

require that

eT
i A

−1Ã e = 1, i = 2, . . . , s. (3.25)

This proof is also given in Chu et al. (2019a). Equation (3.25) implies:

ci = c̃i, i = 1, . . . , s. (3.26)

In Chu et al. (2019a) we have proven that only IMEX schemes of type ARS can be

both diffusion-accurate and convex-invariant. See Appendix C in Chu et al. (2019a)

for the proof.

3.5.4 PD-ARS IMEX schemes

Ideally, the scheme should be high-order accurate, convex-invariant, and work well

in the asymptotic diffusion limit (characterized by frequent collisions and long time

scales). Assuming an algebraic closure, which is based on Fermi-Dirac statistics, is

used (i.e., the Eddington factor satisfies Equation (2.96)), we desire to construct an

IMEX scheme satisfying all the requirements.

Unfortunately, coefficients satisfying the order conditions in Equations (3.15)-

(3.16) and the conditions for convex-invariance do not exist for the standard IMEX

scheme in Equations (3.13)-(3.14), unless a small time step is invoked that makes

the scheme essentially explicit. To circumvent this problem, correction steps can be

introduced after the assembly step in Equation (3.14) (e.g., see Chertock et al. (2015)

and Hu et al. (2018)). However, the correction steps can impose time step constraints

for realizability or accuracy in the diffusion limit, which ruin the efficiency gains

expected from the IMEX scheme. Because of this, we sacrifice overall high-order

accuracy, and aim for IMEX schemes that are high-order accurate in the streaming

limit, diffusion accurate, and convex-invariant. Combining these requirements we
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seek GSA IMEX schemes of type ARS with coefficients satisfying the following

constraints (Chu et al., 2019b):

1. Consistency of the implicit coefficients:

s∑
i=1

wi = 1. (3.27)

2. High-order accuracy in the streaming limit:

For second-order accuracy:

s∑
i=1

w̃i = 1 and
s∑

i=1

w̃i c̃i =
1

2
. (3.28)

For third-order accuracy:

s∑
i=1

w̃i = 1,
s∑

i=1

w̃i c̃i =
1

2
,

s∑
i=1

w̃i c̃i
2 =

1

3
and

s∑
i=1

w̃i ãij c̃j =
1

6
. (3.29)

3. Diffusion accuracy:

ci = c̃i, i = 1, . . . , s. (3.30)

4. Convex-invariance:

aii > 0, ci0, c̃i0 ≥ 0, for i = 2, . . . , s,

and cij, c̃ij ≥ 0, for i = 3, . . . , s, and j = 2, . . . , i− 1, (3.31)

with
∑i−1

j=0 cij = 1, for i = 1, . . . , s, and

cSch := min
i=2,...,s

j=0,2,...,i−1

1

ĉij
, (3.32)

with cSch > 0. Note cSch ≤ 1. And the greater the cSch, the larger the time step

can be.
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5. Having less than five stages (s ≤ 4). This is introduced for efficiency

considerations to limit the number of implicit solves.

6. Are globally stiffly accurate: asi = wi and ãsi = w̃i, i = 1, . . . , s.

Fortunately, these IMEX schemes are easy to find. We call the IMEX schemes

satisfying the above conditions PD-ARS (see also Definition 3 in Chu et al. (2019a)),

and we provide two optimal PD-ARS schemes below: PD-ARS2 and PD-ARS3, each

limiting to the optimal second-order and third-order SSPRK schemes from Shu and

Osher (1988), respectively.

PD-ARS2

The optimal 3-stage PD-ARS, denoted PD-ARS2, in the standard double Butcher

tableau form, with explicit tableau (Ã) on the left and implicit tableau (A) on the

right, is given by

c̃ Ã

w̃
=

0 0 0 0

1 1 0 0

1 1/2 1/2 0

1/2 1/2 0

c A

w
=

0 0 0 0

1 0 1 0

1 0 1/2 1/2

0 1/2 1/2

(3.33)

Note that its explicit tableau is SSPRK2. For this scheme, only two implicit solves

are needed per time step, and cSch = 1, which implies that the time step restriction

for preserving moment realizability is only due to the explicit part.

PD-ARS3

The optimal 4-stage PD-ARS, denoted as PD-ARS3, is given in its standard double

Butcher tableau form (explicit tableau on the left and implicit tableau on the right)
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by

c̃ Ã

w̃
=

1 1

1/2 1/4 1/4

1 1/6 1/6 2/3

1/6 1/6 2/3

c A

w
=

0 0 0 0

1 0 1 0

1/2 0 1/4 1/4

1 0 1/6 1/6 2/3

0 1/6 1/6 2/3

(3.34)

Its explicit tableau is SSPRK3. This scheme requires three implicit solves per time

step, and cSch = 1. Since PD-ARS3 is not more accurate than PD-ARS2 in collision-

dominated regions (see our results in Chu et al. (2019b)), it may not offer any practical

advantage over PD-ARS2.

3.5.5 Time Step Restriction

As mentioned in Section 3.5.2, a time step condition needs to be satisfied to ensure the

realizability for each of the explicit Euler steps; namely max(ĉij ∆t) ≤ ∆tEx, where

∆tEx is the time step that ensures the explicit update with the transport operator is

realizability preserving. Using cSch as defined in Equation (3.32), it can be written as

∆t ≤ cSch∆tEx, (3.35)

where cSch is a definite number given by the IMEX scheme, and ∆tEx depends on

the spatial discretization and numerical flux. To be precise, ∆tEx is the time step

condition that ensures the realizability of the explicit update u(j)+ ĉij ∆tT (u(j)) for

the cell average over space for each energy node. It can be proved (see Chu et al.

(2019a) Lemma 7, with Lemma 5 and Lemma 6) that with DG discretization, the

cell average (Equation (3.12) with ϕ1 = 1) is

uK =
∣∣Kk

∣∣ N∑
q=1

ŵquh

(
x̂kq
)
, (3.36)
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and the cell average of T (u), which is the divergence operator in Equation (3.5),

using the LF flux (Equation (3.10)) is

〈
∇ · F

(
u

(j)
h

)〉
K

=
1

|K|

d∑
k=1

∫
K̃

k

(
F̂k

(
u

(j)
h

)∣∣∣
xk
H

− F̂k
(
u

(j)
h

)∣∣∣
χk
L

)
dx̃k, (3.37)

and the time step ∆t to ensure the realizability of the explicit update should satisfy

λkij ≡ ĉij∆t/
(
βkŵN

∣∣Kk
∣∣) ≤ 1. (3.38)

Explicitly, (given by Remark 5 and proved in Chu et al. (2019a)) for the DG-IMEX

scheme to be realizability-preserving, it is sufficient to set the time step such that

∆t ≤ cSch min
k

(
βk ŵN |Kk|

)
, (3.39)

where
∑k

k=1 βk = 1, βk is a set of strictly positive constants, ŵN ∈ (0, 1] is the weight

of the N -th quadrature point within the element, |Kk| is element volume.

3.6 Limiters

As we discussed in the previous section, it is clear that key to the realizability-

preserving scheme is to express the updated cell-averages of the moments as convex

combinations of elements in R. Realizability of the cell-average of the updated

moments is then guaranteed by convexity arguments. Sufficient conditions include:

(i) the polynomial representation of the moments are realizable in a finite set of

quadrature points in each element K, and (ii) the timestep ∆t is restricted by a CFL-

like condition, which is somewhat stricter than that required for stability. Since the

realizability-preserving scheme only guarantees the realizability of the cell-averages,
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polynomial limiting is needed after each timestep (and after each stage in the Runge-

Kutta method) to enforce realizability in the quadrature points. The discussion about

these limiters is presented in this section.

3.6.1 Realizability-enforcing Limiter

First, we use the limiter in Liu and Osher (1996) to enforce the bounds on the zeroth

moment J . If J < 0 for any of the quadrature points, we replace Jh → J̃h, where

the new polynomial representation is given by

J̃h(x) = ϑ1Jh(x) + (1− ϑ1)JK, (3.40)

where the limiter parameter ϑ1 ∈ [0, 1] is given by

ϑ1 ≡ min

{∣∣∣∣ 1− JK

MS − JK

∣∣∣∣ , ∣∣∣∣ JK

mS − JK

∣∣∣∣ , 1} , (3.41)

with

MS = max
x∈S
Jh(x) and mS = min

x∈S
Jh(x). (3.42)

Next, we ensure the realizability of the moments by following Zhang and Shu (2010).

Denote M̃h = (J̃h,Hh)
T. If M̃h lies outside R (defined by Equation (2.89)) for any

quadrature point, i.e., γ(M̃h) < 0 (γ is concave function, defined by Equation (2.90)),

there exists an intersection point of the straight line connecting MK ∈ R and M̃h

evaluated in the troubled quadrature point (denoted M̃q), with the surface of R.

Any point on this line is given by the convex combination

sq(ψ) = (1− ψ)MK + ψM̃q, (3.43)

where ψ ∈ [0, 1], and the intersection point is obtained by solving the equation

γ(sq(ψ)) = 0 for ψ, using the bisection algorithm. We then replace the polynomial
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representation M̃h → M̂h, where

M̂h = θ2 M̃h + (1− θ2)Mh, (3.44)

and θ2 is the smallest ψ obtained in the element by considering all the troubled

quadrature points, such that

θ2 ≡ min
q
ψq (3.45)

This limiter is conservative in the sense that it preserves the cell-average, i.e., M̂K =

M̃K = MK . The proof is described in our published article (Chu et al., 2019a).

The basic key to the realizability-preserving scheme is to express the updated cell-

averages of the moments as positive combinations of elements in R. Realizability of

the cell-average of the updated moments is then guaranteed by convexity arguments.

Sufficient conditions include: (i) the polynomial representation of the moments are

realizable in a finite set of quadrature points in each element K, and (ii) the timestep

∆t is restricted by a CFL-like condition, which is somewhat stricter than that required

for stability.

3.7 Numerical Tests

In this section, we present numerical results to verify the accuracy and realizability-

preserving property of the DG-IMEX methods developed in this chapter. These tests

include numerical accuracy, stability, and realizability tests. The first set of tests

(Section 3.7.1) is desiged to compare the time integration schemes in various regimes.

The test in Section 3.7.2 is designed to demonstrate the convex-invariance of PD-

ARS schemes. These results are also published in Chu et al. (2019a) and Chu et al.

(2019b).
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3.7.1 Smooth Sine Wave Tests

Problems with known smooth solutions are made to examine the accuracy of the

time integration scheme, PDARSs (discussed in Section 3.5.4), in various regimes. (A

version of this problem is discussed in Chu et al. (2019a) for PD-ARS2 and Chu et al.

(2019b) for PD-ARS3.)

These tests are designed to compare the accuracy of these PD-ARS schemes

in streaming, absorption, and scattering-dominated regimes. They are all one-

dimensional. For all tests in this section, we use third order accurate spatial

discretization (i.e., polynomials of degree k = 2) and we employ the maximum

entropy closure in the low occupancy limit (i.e., the Minerbo closure). We compare

results obtained using IMEX schemes proposed here (PD-ARS) with IMEX schemes

from Hu et al. (2018) (PA2), McClarren et al. (2008) (PC2), Pareschi and Russo

(2005) (SSP2332), and Cavaglieri and Bewley (2015) (RKCB2). In the streaming test,

we also include results obtained with second-order and third-order accurate explicit

strong stability-preserving Runge-Kutta methods Gottlieb et al. (2001) (SSPRK2 and

SSPRK3, respectively). The time step is set to ∆t = 0.1×∆x.

To compare the numerical results to analytic solutions, the averaged absolute error

or the averaged relative error are computed in the L1-error norm.

Streaming Sine Wave

The sine wave streaming test is designed to test accuracy in the free-steaming regime;

i.e. σA = σS = 0 for ξ in Equation (3.6). A periodic domain of unit length is used,

and the initial condition is

J0 = H0 = 0.5 + 0.49× sin
(
2π x

)
. (3.46)

We evolve the test until the sine wave has completed 10 crossings of the domain.

Figure 3.7.1 plots the absolute error for the number density versus the number of

elementsN . We see that the errors obtained with SSPRK3 and PD-ARS3 are smallest
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and decrease as N−3, as expected for a scheme combining third-order accurate time

stepping with third-order accurate spatial discretization. For all of the other schemes,

using second-order accurate explicit time stepping, the error decreases asN−2. Among

the second-order schemes, SSP2332 has the smallest error. In the streaming limit,

the PD-ARS schemes reduce to SSPRK schemes — PD-ARS2 to SSPRK2 and PD-

ARS3 to SSPRK3, respectively. Therefore, the absolute errors of PD-ARS schemes

and SSPRK schemes are indistinguishable.

Damping Sine Wave

The next test, adapted from Skinner and Ostriker (2013), is designed for absorption-

dominated regimes, with σS = 0 and f0 = 0, which results in exponential damping of

the wave amplitude. A periodic domain D = {x : x ∈ [0, 1]} and initial condition

J0 = H0 = 0.5 + 0.49× sin
(
2π x

)
, (3.47)

are used. The amplitude of the analytical solution decreases as e−σAt. For σA = 0.1, 1

and 10 we evolve the test until the initial condition has been damped by a factor e−10.

Figure 3.7.2 shows convergence results of the test in the relative error. Results for

σA = 0.1, 1, and 10 are plotted with red, green, and blue lines, respectively. SSP2332

is the most accurate among these schemes for σA = 1 and 10. For σA = 0.1, PD-ARS2

is the most accurate scheme for N = 8 and N = 16. We have seen the same behavior

for the scheme proposed by McClarren et al. (2008) (PC2 in Chu et al. (2019a)). Since

N = 8 and N = 16 are special cases, we do not recommend PD-ARS2 over SSP2332

for the damping problem. Only SSP2332, a second-order accurate scheme, displays a

second-order convergence rate. The PD-ARS schemes are first-order accurate.

Diffusion Sine Wave

The final test with known smooth solutions, adopted from Radice et al. (2013), is the

sine wave diffusion test; i.e. σA = 0 and f0 = 0. A periodic domain D = {x : x ∈
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[−3, 3]} with initial conditions

J0 = 0.5 + 0.49× sin
(π x
3

)
, (3.48)

H0 = −
1

3σS

∂J0

∂x
, (3.49)

are used. The reference diffusion solution is given by

J = J0 × exp
(
− π2t

27σS

)
, (3.50)

H = (3σS)
−1∂xJ . (3.51)

We evolve with σS = 102, 103, and 104, and adjust the end time so that tend/σS = 1, at

which time the amplitude of the sine wave has been reduced by a factor e−π2/27 ≈ 0.694

for all values of σS. Figure 3.7.3 shows the absolute error, obtained using different

values of σS, for various IMEX schemes at t = tend, versus N . Results for σS = 102,

103, and 104 are plotted with red, green, and blue lines, respectively. SSP2332 and

PD-ARS schemes display third-order accuracy for the number density, J , and second-

order accuracy for Hx, and their errors are difficult to distinguish. For σ = 102, the

errors in the number density J do not drop below 10−6 due to differences between the

two-moment model and the diffusion equation used to obtain the analytic solution.

For larger values of the scattering opacity, σ = 103 or 104, the two-moment model

agrees better with the diffusion model, and we observe convergence over the entire

range of N . PD-ARS2 behaves as well as SSP2332 in the diffusion region but requires

33% less implicit solves per time step.

Summary Here are the behaviors we observed:

• In the streaming regime, PD-ARS schemes converge as expected and give

as accurate results as the explicit strong-stability-preserving Runge-Kutta

methods in Gottlieb et al. (2001).
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• In the absorption-dominated regime, PD-ARS schemes converge with a first-

order convergence rate.

• In the scattering-dominated regime, using a third-order DG method for spatial

discretization, PD-ARS schemes display third-order accuracy for the number

density, J , and second-order accuracy for H. In our particular problem, PD-

ARS scheme works as well as Pareschi and Russo (2005) (SSP2332), but PD-

ARS2 requires 33% less calculation. A convergent result was observed with

increasing scattering opacity.

3.7.2 Neutrino Stationary-State Test

In this test, we consider a more “realistic” test: two-dimensional multigroup neutrino

transport with emission, absorption, and isoenergetic scattering through a stationary

background. This test is designed to test the realizability-preserving properties of the

PD-ARS schemes. In the left panel in Figure 3.7.4, we plot the thermal state of the

background, which mimics the conditions in a collapsed stellar core (Messer, 2000):

Mass Density: ρ = 4× 1014 × 7.5

(7.5 + (r/5 km)4)
g cm−3, (3.52a)

Temperature: T = 1.5× 1011 × 1

1 + (r/50 km)2
K, (3.52b)

Electron Fraction: Ye = 0.25×
(
1 +

1

1 + (r/50 km)−12

)
, (3.52c)

where the radius r =
√

(x1)2 + (x2)2 is in kilometers. In the right panel in

Figure 3.7.4 we plot the neutrino opacities, computed by interpolating in a pre-

calculated opacity table based on Bruenn (1985) (Bruenn 1985) and Steiner et al.

(2010) (SFHo) EOS. This test is computed using Cartesian coordinates on a two-

dimensional domain D = {x ∈ R2 : x1 ∈ [0, 200] km, x2 ∈ [0, 200] km}, using a grid of

128 elements in each direction, 10 energy groups covering 0-300 MeV, reflecting inner

boundaries, and outflow outer boundaries. Because we use Cartesian coordinates
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in two spatial dimensions, this problem has cylindrical geometry, and results in an

artificial stratification of the radiation quantities compared to a three-dimensional

model or a spherical symmetry model. We initialize the neutrino number density to

J = 10−99 per phase space volume, the number flux density to H = 0, and evolve

until a thermally and dynamically approximate steady state is reached (t = 5 ms).

The background is kept fixed during the entire run. For this test, we employed both

CB and Minerbo closures. We attempted to run this test with our PD-ARS schemes,

SSP2332 from Pareschi and Russo (2005), IMEXRKCB2 proposed by Cavaglieri and

Bewley (2015), and the IMEX PC2 scheme proposed by McClarren et al. (2008).

Only the PD-ARS schemes produce realizable moments and can evolve to a steady

state with either CB or Minerbo closure. SSP2332 and IMEX PC2 failed after a

few time steps with either CB or Minerbo closure because of the development of

unrealizable moments. Even though IMEXRKCB2 with Minerbo closure can run

through and reach a steady state in this test, its results are different from that

of PD-ARS schemes with CB closure, and there is no guarantee of stability. To

be precise, IMEXRKCB2 with Minerbo closure ends at a same stationary state as

PD-ARS schemes with Minerbo closure. But IMEXRKCB2 with Minerbo closure

has different dynamics with PD-ARS schemes with Minerbo closure. The maximum

relative difference in number density during the evolution is 5% at the outer region

and in the first 1 ms. The difference in the final stationary state is depended on the

closure method other than the time integrator.

Results obtained with the IMEX PD-ARS schemes are plotted in Figure 3.7.5

for various times: t = 0.01 ms (top panels), 0.35 ms (middle panels), and 5.0 ms

(bottom panels). In the left column, we plot the solution in the |H|J -plane. In

the middle column, we show scatter plots of the number density J versus radius for

select neutrino energies: 5 MeV (red lines), 16 MeV (magenta lines), and 93 MeV

(blue lines). In the right column, we plot the flux factor |H|/J versus radius for the

same neutrino energies as in the middle column. In the left panels, each solution point

in the domain is marked as a red dot in the |H|J -plane, and the realizable domain is
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shown as the light blue region. The figures show that all the states in the simulation

with the PD-ARS schemes are realizable. In the middle and right column, we can

see how the neutrinos are generated near the core, stream out, and eventually reach

an equilibrium distribution over the phase space. The oscillations in the flux factor

seen in the right columns are associated with steep gradients in the radiation field, as

the initial transient propagates through the computational domain. Note that we do

not apply any limiters to prevent oscillations in the numerical solution, and these will

likely go away when we implement slope limiters; e.g., as described in Cockburn and

Shu (1998). The fact that we can still evolve the solution to a steady state speaks to

the robustness of the scheme.

3.8 Outlook

We developed a realizability-preserving DG-IMEX scheme for a two-moment model

of fermion transport in Cartesian coordinates, a linear collision operator, and a fixed

material background in this chapter. The scheme employs algebraic closures based

on Fermi-Dirac statistics. It combines a time step restriction, a realizability-enforcing

limiter, and a convex-invariant time integrator to maintain point-wise realizability of

the moments. Two PD-ARS schemes are proposed. In the streaming limit, the

one with SSPRK2 has second-order accuracy, while the other with SSPRK3 has

third-order accuracy, and both have the strong-stability preserving property. Their

accuracy was demonstrated on problems with known smooth solutions in streaming,

absorption-dominated, and scattering-dominated regimes. The neutrino transport

test with emission, absorption, and isoenergetic scattering through a stationary

background was designed to test the convex-invariance of our PD-ARS schemes. The

neutrino stationary state test shows that a method combining an algebraic closure

based on Fermi-Dirac statistics and convex-invariant time integration is promising

for robust CCSN simulation. The realizability of the fermionic two-moment model
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depends sensitively on the closure procedure. This is one of the most important

findings of this chapter.

Curvilinear coordinates, scattering with energy exchange, and relativistic effects

were not included by now. To solve more realistic problems of scientific interest, it

will be necessary to include all the additional physical effects. Nevertheless, adding

these considerations is not simply repeating the derivative with changes in the IMEX

equations. It not only increases the complexity to the model, but also can lead to

unsolvable questions. In addition, simply interpreting the requirements from physics

to the evolved variables are not trivial, such as interpreting the requirement on the

primitive moments to the requirement on the evolved comoving variables. Our efforts

to this end will be presented in the next chapter.
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Figure 3.7.1: Absolute error versus number of elements, N , for the streaming sine
wave test. Results employing various time stepping schemes are compared: SSPRK2
(cyan triangles pointing up), SSPRK3 (cyan triangles pointing down), SSP2332 (green
crosses), PD-ARS2 (light red circles) and PD-ARS3 (light red asterisks). Black
dashed reference lines are proportional to N−2 (top) and N−3 (bottom), respectively.
Published in Chu et al. (2019b).
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Figure 3.7.2: Relative error versus number of elements, N , for the damping sine wave
test. Results for different values of the absorption opacity, σA, employing various
IMEX time stepping schemes, are compared. Errors for σA = 0.1, 1, and 10 are
plotted with red, green, and blue lines, respectively. The IMEX schemes employed
are SSP2332 (+), PD-ARS2 (triangles pointing up) and PD-ARS3 (triangles pointing
down). Black dashed reference lines are proportional to N−1 (top) and N−2 (bottom),
respectively. Published in Chu et al. (2019b).
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Figure 3.7.3: Absolute error for the number density J (left) and the number flux
Hx (right) versus number of elements for the sine wave diffusion test. Results with
different values of the scattering opacity, σS, employing different IMEX schemes, are
compared. Errors with σS = 102, 103, and 104 are plotted with red, green, and
blue lines, respectively. The IMEX schemes employed are: SSP2332 (+), PD-ARS2
(triangles pointing up), and PD-ARS3 (triangles pointing down). Black dashed lines
in the left plot are reference lines proportional to N−2 (top) and N−3 (bottom),
respectively. The black dashed line in the right plot is a reference line proportional
to N−2 . Published in Chu et al. (2019b).

Figure 3.7.4: Left panel: thermal state of the background versus radius in the
neutrino stationary-state test: mass density (solid line), temperature (dashed line),
and electron fraction (dotted line). Right panel: corresponding opacities for select
neutrino energies: absorptivity (σA) and scattering opacity (σS). Published in Chu
et al. (2019b).
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Figure 3.7.5: Results from the neutrino stationary-state test: Moments relative to
the realizable domain (left column, the light blue domain is for f ∈ [0, 1], with the
black-solid-line as its boundary, while the light red domain is for f ≥ 0, with the thin
red solid line as its boundary). The number density J versus radius (middle column),
and the flux factor |H|/J versus radius (right column). t = 0.01 ms, 0.35 ms, and
5.0 ms. For the plots in the left column, each M = (J ,H)T state is marked by a red
dot, which are all inside the light blue region (the realizable domain for fermions).
The results of PD-ARS2 and PD-ARS3 are indistinguishable in these plots. Published
in Chu et al. (2019b). 78



Chapter 4

DG-IMEX Method for the O(v/c)

Two-Moment Model

As we have discussed in Section 1.1, due to fluid motion and spacetime curvature,

CCSNe simulations must include special and general relativistic effects, such as

Doppler and red or blue shifts of the neutrino energy spectra. The simulations must

also include all important neutrino weak interactions. In this chapter, we extend the

numerical method in Chapter 3, which is forO(1) two-moment model with a simplified

collision term for neutrino weak interactions, and develop a numerical method that

solves the O(v/c) two-moment model with a more comprehensive collision term.

In exact terms, we aim to design and implement numerical methods for O(v/c)

two-moment model, which is conservative for lepton number and energy, robust in

the sense that moments remain realizable, able to capture asymptotic limits (e.g.,

diffusion limit), efficient integration of collision terms, integrated into Flash-X for

CCSN simulations, high physical fidelity in microphysics sector by using tabulate

modern opacity set in WeakLib efficient use of GPUs, and can be extend to form

with general relativity. The numerical implementation with the nonlinear solver for

the collision term will be presented in Chapter 5, and we focus on the method design

in this chapter.
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4.1 Introduction

Comparing with Chapter 3, the model in this chapter improves physical fidelity in

both the collision term and the inclusion of relativistic effects. It is also formulated for

curvilinear spatial coordinates. The discretization method and IMEX time integration

scheme are inherited from the O(1) work, while the metric dependency and limiters

are newly designed. The coupled fluid-radiation field update and the implicit solver

will be discussed in the next chapter.

4.2 Model

Our model in the O(v/c) limit is based on the general relativistic moment formal-

ism (Shibata et al., 2011; Cardall et al., 2013), using laboratory-frame coordinate

basis coordinates (x and t), and comoving-frame spherical-polar momentum-space

coordinates (ε, ϑ, and φ).

In curvilinear coordinates and with all collision terms in Bruenn (1985) (see

Section 2.4.2 for collision terms in the moment equations), the moment equations

for the number density and number flux, which are given by Equation (2.53) and

Equation (2.54), with species index s can be written as

∂t
(
Ds + vi Isi

)
+

1
√
γ
∂i
(√

γ
[
Isi +Ds v

i
] )
− 1

ε2
∂ε
(
ε3

[
Isi ∂tvi +Ks

i
k∇iv

k
] )

=
1

4π

∫
S2
Cs(f)

dω

ε
, (4.1)

and

∂t
(
Isj + viKsij

)
+

1
√
γ
∂i
(√

γ
[
Ks

i
j + Isj vi

] )
− 1

ε2
∂ε
(
ε3

[
Ksjk ∂tv

k + Ls
i
kj∇iv

k
] )

=
1

2

(
Ks

ik + Isi vk + vi Isk
)
∂jγik +

(
Ksjk ∂tv

k + Ls
i
kj∇iv

k
)
−
(
Ds ∂tvj + Isi ∂ivj

)
+

1

4π

∫
S2
Cs(f)ℓj

dω

ε
, (4.2)
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respectively. The high order moments, Ksjk and Ls
i
kj, in the above equations are

computed using the closure method, as we discussed in Section 2.5.2.

Equation (4.1) and (4.2) can be written in a compact form, i.e.,

∂tU +
1
√
γ
∂i(

√
γ F i

(U ,v)) + 1

ε2
∂ε( ε

2F ε(U ,v)) = S(U ,v) + C(U ,u), (4.3)

where the solution vector U , and position and energy space fluxes, F i and F ε, include

all Ns neutrino species; i.e., U = {U s}Ns
s=1, F i = {F s

i}Ns
s=1, and F ε = {F s

ε}Ns
s=1, where

U s =

 Ds + vi Isi
Isj + viKsij

 , F s
i =

 Isi +Ds v
i

Ks
i
j + Isj vi

 , and F s
ε = −ε

 Ks
i
k

Ls
i
kj

 ∇iv
k.

(4.4)

Note, the ∂tv terms in F s
ε are dropped. Similarly, the sources on the right-hand side

of Eq. (4.3) are S = {Ss}Ns
s=1 and C = {Cs}Ns

s=1, where

Ss =

 0

1
2

(
Ks

ik + Isi vk + vi Isk
)
∂jγik +

(
Ls

i
kj∇iv

k − Isi ∂ivj
)
 , (4.5)

Ss also drops the ∂tv terms, and

Cs =


1

4π

∫
S2 Cs(f)

dω

ε
1

4π

∫
S2 Cs(f)ℓj

dω

ε

 , (4.6)

Cs depends on fluid thermal state, for example, u = (ρ, T, Ye)
T.

Because of the pair process in the collision term, the moments for neutrinos and

their antineutrinos are coupled. Therefore, for a model with electron neutrinos and

electron antineutrinos, the solution vector U is

U = (D + vi Ii, Ij + viKij, D̄ + viĪi , Īi + vi K̄ij)
T, (4.7)
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with (D, Ii)T = M for electron neutrinos and (D̄, Īi)T = M̄ for electron

antineutrinos. Neutrino–matter interactions allow matter and neutrinos to exchange

lepton number, momentum, and energy. Furthermore, the relativistic effects (Doppler

and red/blue shifts of the neutrino energy spectra ) are fluid-field dependent. As a

result, a fluid–radiation coupled system is formed.

4.3 Phase-Space Discretization

The phase-space discretization is essentially the same as that described in Chapter 3,

but extended to include curvilinear spatial coordinates and special relativistic effects

to O(v/c). The moment equations is discretized in energy-position space using the

DG method. We use VK to denote the proper volume of the element, which is

VK =

∫
K

dV, where dV =
√
γ dx dVε =

√
γ dx ε2dε . (4.8)

The semi-discrete DG problem is to find U h ∈ VNx,Nε that approximates U such that
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K
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+
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i

(√
γ F̂

i
(U h,vh)ϕ

∣∣
xi
H
−√γ F̂

i
(U h,vh)ϕ

∣∣
xi
L

)
dx̃i dVε

−
3∑

i=1

∫
K

(
F i(U h,vh)

∂ϕ

∂xi
)
dV

+

∫
K

(
ε2F̂ ε(U h,vh)ϕ

∣∣
εH
− ε2F̂ ε(U h,vh)ϕ

∣∣
εL

)
dV −

∫
K

F ε(U h,vh)
∂ϕ

∂ε
dV

=

∫
K

S(U h,vh)ϕ dV +

∫
K

C(Uh, uh)ϕ dV, (4.9)

holds for all ϕ ∈ VNx,Nε and all K ∈ K. Similar to in Chapter 3 for the O(1) model,

F̂ i (numerical flux in spatial ) and F̂ ε (numerical flux in energy ) are numerical fluxes

which approximate F i and F ε, respectively, on the surface of element VK . For the
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spatial divergence in Eq. (4.9), with notation

xi,± ≡ lim
δ→0+

xi ± δ, (4.10)

the numerical flux in the i-th spatial dimension, i.e.,

F̂ i(Uh,vh;x
i, z̃i) = f i(Uh(x

i,−, z̃i),Uh(x
i,+, z̃i), v̂(xi, x̃i)), (4.11)

is evaluated using a Lax–Friedrichs-type flux function f i (Endeve et al., 2022b), i.e.,

f i(Ua,U b, v̂) =
1

2

{
F i(Ua, v̂)+F i(U b, v̂)−αi

[
U(Mb, v̂

i)−U(Ma, v̂
i)
] }
, (4.12)

where αi is the largest absolute eigenvalue of the flux Jacobian ∂F i/∂U . The

components of the fluid three-velocity at element interfaces, v̂, are set to the average

of the left and right state

v̂(xi, x̃i) :=
1

2

(
v(xi,−, x̃i) + v(xi,+, x̃i)

)
. (4.13)

Similarly, for the energy divergence in Eq. (4.9), the numerical fluxes on energy

element interfaces are evaluated as

F̂ ε(Uh,vh; ε,x) = f ε(Uh(ε
−,x),Uh(ε

+,x),vh(x)), (4.14)

where the flux function is given by the Lax–Friedrichs-type expression f ε (Endeve et

al., 2022b), i.e.,

f ε(Ua,U b,v) =
1

2

{
F ε(Ua,v) +F ε(U b,v)− αε

[
Mb −Ma

]
,
}

(4.15)

where Ma/b are obtained by solving Ua/b = U(Ma/b,v). In Eq. (4.15), αε is an

estimate on the largest eigenvalue of the flux Jacobian ∂F ε/∂U .
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4.4 Time Discretization

We use the PD-ARS2 IMEX scheme presented in Section 3.5.4 for the development

of IMEX methods for time integration, where fluid flows and neutrino phase-space

advection are integrated with explicit methods, while the neutrino-matter coupling

problem is integrated with implicit methods. In the context of IMEX methods, we

can split the fluid-radiation coupled problem into three subproblems: hydrodynamics

with self-gravity (solved by Flash-X), neutrino phase-space advection, and neutrino-

mattering coupling. In this dissertation, we will discuss methods for solving the

phase-space advection problem in this Section, while the neutrino-matter coupling

problem will be discussed in Section 5.5.

We proved in Chapter 3 (also Chu et al. (2019a); Chu et al. (2019b)) that

realizability (with respect to R) of the cell-averaged primitive moments Mn+1

requires a closure based on Fermi-Dirac statistics, a Courant-Friedrichs-Lewy (CFL)

condition ∆t, a convex-invariant time-stepping method, and a realizability-enforcing

limiter to recover point-wise realizability within the element with simplified collision

term, Cartesian coordinates, and O(1) moment equations. Unfortunately, the

full collision term in Section 2.4, curvilinear coordinates, and O(v/c) correction

render it hard to find sufficient conditions for the realizability of Mn+1. How to

preserve moment realizability in this context is still an open question, but progress

towards this end, in the context of Cartesian coordinates, simplified collisions, and

positive distributions (i.e., with respect to R+ in Equation (2.91)) is currently being

made (Laiu et al., 2022).

In addition, extra requirements are needed to define the positivity limiters.

4.4.1 Positivity Limiters

We need a limiter to preserve realizability. We leverage the realizability-enforcing

limiter in Section 3.6.1 and make adjustments for the positivity limiter.
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In O(v/c) two-moment model, the evolved radiation variables are the conservative

moments, which we denoted as

U =

 D + vi Ii
Ij + viKij

 ≡
 N
Gj

 . (4.16)

Note that we have the following relationship, i.e.,

N =
1

4π

∫
S2
(1 + viℓi)f dω ≡

1

4π

∫
S
g dω, (4.17)

Gj =
1

4π

∫
S2
(1 + viℓi)ℓjf dω ≡

1

4π

∫
S
gℓj dω, (4.18)

with

g ≡ (1 + viℓi)f > 0. (4.19)

Therefore, the positivity requirements on the solution vector are

N > 0, |G| < N , (4.20)

similar as the requirements on the primitive moments. We implement a positivity

limiter on U to ensure the above inequalities.

4.5 Numerical Tests

This section presents a suite of test problems that are designed to analyze the

capabilities of the O(v/c) two-moment neutrino transport method discussed above.

The test to verfy the framework of Flash-X + thornado will be presented in Chapter 5.
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4.5.1 Shadow Casting Test

A advantages of a two-moment scheme over a flux-limited diffusion method (one-

moment scheme) is the ability of an opaque object to generate a shadow. And this

two-dimensional idealized test problem is designed to emphasis this advantages. This

test has also been done before in various other radiative transport codes (Skinner and

Ostriker, 2013; Just et al., 2015; O’Connor and Couch, 2018).

A purely absorbing region (VA) is exposed to near free-streaming radiation

emanating from a source region (VS). And we performed the test both in 2D

cylindrical coordinates and in 2D Cartesian coordinates. An illustration can be found

in Figure 4.5.1a.

Shadow Casting Test in 2D Cartesian Coordinates

In Cartesian coordinates, we follow the 2D shadow test proposed in Just et al. (2015).

The physical domain is x ≡ (x, y) ∈ [0, 15] × [−5, 5] and resolved by Nx × Ny =

300 × 200 linear DG elements. The purely absorbing region VA is a circular region

centered at xA = (11, 0) with radius rA = 2. The source region VS is a circular

region centered at xS = (3, 0) with radius rS = 3/2. The absorption opacity σA and

equilibrium energy density Eeq are defined as follows:

σA(x) =


10 exp

{
− (4 |x− xS| /rS)2

}
, x ∈ VS,

10, x ∈ VA,

0, elsewhere,

(4.21)

Eeq(x) =

10−1, x ∈ VS,

0, elsewhere,
(4.22)

and illustrated in Figure 4.5.1a.
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The model is initialized with a homogeneous distribution of negligibly small energy

densities and zero flux densities. Figure 4.5.1b shows the isotropic luminosity L

emitted by the source which in the two-dimensional geometry is given by L = 2π rc|H|

with rc ≡ |x−xS|. A clear obscured region behind the absorbing region emerges. The

luminosity behind the absorbing region changes continuously within a fan of opening

angle ≈ 0◦ − 30◦. It is because the radiation is emitted from a spatially extended

circle source, causing the flux-factor to be less than 1. In addition, the absorbing

region has a finite σA value and is not perfectly absorbing. As Figure 4.5.1b shows,

our code performs well in this test.

Shadow Casting Test in 2D Cylindrical Coordinates

In Cylindrical coordinates, we follow the 2D shadow test presented in O’Connor and

Couch (2018), which apart from a geometric factor of r, the setups are identical. The

physical domain is x ≡ (r, z) ∈ [0, 12]× [−5, 5] and resolved by Nr ×Nz = 240× 200

DG elements with k = 1, which gives the same resolution as in Cartesian version.

Correspondently, the purely absorbing region VA is a circular region centered at

xA = (8, 0) with radius rA = 2, and the radiation region VS is a circular region

centered at xS = (0, 0) with radius rS = 3/2. Figure 4.5.2 shows the neutrino energy

density multiplied by r2c with rc ≡ |x−xS|. Like in the Cartesion version of this test,

a clear obscured region behind the absorbing region emerges. The neutrino energy

density behind the absorbing region changes continuously within a fan of opening

angle ≈ 20◦ − 30◦. It is because the radiation is emitted from a spatially extended

circle source, causing the flux-factor to be less than 1. Like the previous test, the

absorbing region is not perfectly absorbing. Figure 4.5.2 shows that our code performs

better in cylindrical coordinates than in Cartesian coordinates in this test, and well

in both coordinates.
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(a) Opacity setting for the shadow casting test in Cartesian coordinates. The
background color denotes the opacity rates σA. The source region is a circular
region centered at (3,0) with radius 3/2. The purely absorbing region is a
circular region centered at (11,0) with radius 2.

(b) Isotropic luminosity for the shadow casting test in Cartesian coordinates. The
luminosity behind the absorbing region, centered at (11,0) with radius 2, changes
continuously within a fan of opening angle ≈ 0◦ − 30◦

Figure 4.5.1: Shadow Casting Test in Cartesian coordinates.
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Figure 4.5.2: Neutrino energy density multiplied by r2c for the shadow casting test
in cylindrical coordinates. The neutrino energy density behind the absorbing region,
centered at (8,0) with radius 2, changes continuously within a fan of opening angle
≈ 20◦ − 30◦
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4.5.2 Streaming Doppler Shift

The numerical test we use to test the observer corrections – Doppler shift effect in

neutrino energy spectra – is the streaming Doppler shift problem. This test was

also used in Just et al. (2015); Vaytet et al. (2011). The Cartesian domain covers

x ∈ [0, 1000] and is resolved by 96 equidistant linear DG elements (192 points in

total). The energy space is discretized between ε ∈ [0, 30] using 16 equidistant linear

DG elements (32 points in total). Three velocity field settings, βmax ∈ {0.05, 0.1, 0.3}

where β =
v

c
, are used. We inject a beam of radiation at x = 0 by imposing a fixed

inner boundary:

D =
1

e
ε
3
−3 + 1

, I = 0.999×D. (4.23)

Since
D

|I| ∼ 1, the radiation field is strongly forward peaked, and (D,I)T is very close

to the boundary of the realizable set R. A outflow outer boundary (x = 1000) is used.

Figure 4.5.3a shows the velocity field which has a shape of smoothed step-functions

and is travered by the radiation field. Within regions where β > 0, the redshifted

spectrum of the comoving-frame energy density is given by

Eβ =
s3

e
sε
3
−3 + 1

, where s ≡

√
1 + β

1− β
, (4.24)

with 0 ≤ β ≤ 1. The differences between the spectra in the frames, β = 0 and βmax,

for both our numerical result (cross marker) and the analytic solution (solid line)

are shown in Figure 4.5.3b. The Doppler shift is well captured for the agreement,

especially for low β. For high velocities, βmax = 0.3, the O(v/c) approximation leads

to errors of about 10% with respect to the analytic solution.
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(a) Settings for the Doppler shift test. Three settings, v = 0.05c, v = 0.10c, and v = 0.30c,
for fluid velocity field, are plotted. The fluid field has a “step” like velocity field with zero
velocity at boundaries x = 0 and x = 1000, and the maximum velocity at middle. The
settings are specified by the maximum velocities.

(b) Doppler shift test result in spectra measured at the maximum velocity field region.
The analytic solutions are plotted in lines, and cross marks the numerical solutions. Color
indicates the different settings.

Figure 4.5.3: Plots for the Doppler shift test with the settings in Figure 4.5.3a and
results in Figure fig: doppler shift spectra.
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Chapter 5

Neutrino Radiation Hydrodynamics:

Numerical Implementation

After presenting the neutrino radiation hydrodynamics formalism in Chapter 2, this

chapter describes the numerical implementation; i.e., the code implementation and

numerical tests performed while developing Flash-X+ thornado. The contents are

ordered as follows: in Section 5.1 we present the model; in Section 5.2 we present

details on the development of EOS and opacity tabulation and interpolation in

WeakLib; in Section 5.4 we describe the code interfaces (i.e., between WeakLib and

Flash-X and between Flash-X and thornado); in Section 5.5 we discuss the nonlinear

solver for neutrino–matter coupling in thornado; and the results of our numerical

tests are layed out in Section 5.6. The discussion presented in this chapter is based

on an implementation of the latest O(v/c) transport module in thornado (presented

in Chapter 4).
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5.1 Model

Continuing the discussion in Section 2.3.4 and Section 4.2, the coupled neutrino

radiation hydrodynamics equations can be written in compact form:

∂tu+
1
√
γ
∂i(
√
γ F i(u)) = S(u,Φ) +C(u,U), (5.1)

∂tU +
1
√
γ
∂i(

√
γ F i

(U ,v)) + 1

ε2
∂ε( ε

2F ε(U ,v)) = S(U ,v) + C(U ,u), (5.2)

where the solution vector u, flux vectors F i, the sources due to curvilinear coordinates

S, gravity, and neutrino–matter interactions C are

u =


ρ

ρvj

Ef

ρYe

 , F i =


ρvi

Πi
j

(Ef + p)vi

ρYev
i

 , S =


0

1
2
,Πik ∂jγik

−vj Gj
M

0

 , (5.3a)

and C = −


0

Gj
M

GE

mBQL

 , (5.3b)

respectively, and U = {U s}Ns
s=1, F i = {F s

i}Ns
s=1, and F ε = {F s

ε}Ns
s=1, with

U s =

 Ds + vi Isi
Isj + viKsij

 , F s
i =

 Isi +Ds v
i

Ks
i
j + Isj vi

 , (5.4a)

and F s
ε = −ε

 Ks
i
k

Ls
i
kj

 ∇iv
k, (5.4b)
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where s denotes the neutrino species. Equation (5.1) is the compact form of

the equations for hydrodynamics and electron fraction, Equations (2.18)-(2.21).

Equation (5.2) is the compact form of the equations for the O(v/c) neutrino transport

equations in the two-moment approximation. These equations are coupled through

C(u,U) and F ε(U ,v). A pseudo code, Alorithm 1, explains how Flash-X+ thornado

solves this coupled neutrino radiation hydrodynamics equation system. First, the

fluid equations, Equation (5.1), are closed with a photonic, leptonic, and nuclear

EOS, which is provided in tabular form by WeakLib. Second, the thermodynamic

quantities and electron fraction, such as mass density, temperature, pressure and

specific internal energy, are updated by Flash-X. Third, the updated thermodynamic

quantities and electron fraction are provided to thornado for the radiation (neutrino)

update through an interface. Fourth, the coupled fluid–radiation field are updated

by thornado. Fifth, the interface maps the thermodynamic quantities and electron

fraction back to Flash-X, and be ready for the next update. In the update order,

we will discuss WeakLib, the Flash-X hydrodynamics, the code interfaces, thornado

O(v/c) transport, and then provide the results of numerical tests. And because we

implemented the PDARS2 (and PDARS3) IMEX schemes (developed in Chapter 3),

second-order (and third-order) accuracy in streaming limit, and diffusion accuracy

are expected.

Algorithm 1 An algorithm for Flash-X+ thornado update.

1: Flash-X spark ← WeakLib EOS

2: u∗
FV ← un

FV by Flash-X spark

3: u∗
DG ← u∗

FV by interface

4: (un+1
DG ,U

n+1
DG )← (u∗

DG,Un
DG) by thornado with WeakLib opacities

5: un+1
FV ← un+1

DG by interface
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5.2 WeakLib

The microphysics, including the equation of state and neutrino–matter interaction

rates, is provided in tabulated form by WeakLib, which is publicly accessible:

https://github.com/starkiller-astro/weaklib. WeakLib is a library under

development at the University of Tennessee and Oak Ridge National Laboratory

to provide pre-processed equation of state and neutrino opacity tables for use in

neutrino transport simulations. The WeakLib tables are intended to be usable in

a straightforward manner by Flash-X, thornado, Chimera, and other neutrino

radiation hydrodynamics codes. Using the WeakLib tables, opacity rates are

interpolated from pre-processed opacity rates on a grid of values of density, electron

fraction, and temperature, and the neutrino energy. WeakLib includes a framework to

implement opacity tables in astrophysics simulation codes, as well as a strategy to test

the tables independently of the code using them, by defining simple test cases to allow

troubleshooting (Landfield, December 2018). WeakLib uses pre-tabulated EOS data

from the Compstar Online Supernova Equations of State prepository (CompOSE).∗

It can be used as an external library, and its routines/modules can be called directly.

One of the goals of this dissertation is to enable WeakLib to provide the neutrino

interaction base set given by Bruenn (1985) (Bruenn 1985), which includes emission

and absorption on nucleons and nuclei, isoenergetic scattering on nucleons and nuclei,

neutrino–electron scattering, and neutrino pair production. See Table 5.1 for a

summary. WeakLib also aims to provide more modern weak interaction tables. This

work is currently under development and beyond the scope of this dissertation work.

5.2.1 Code Structure

The hierarchy of the WeakLib framework is shown in Figure 5.4.3. The Distributions

stem is meant to be distributed to users of WeakLib to incorporate in their simulation

codes. It contains the modules for application, such as an IO module, an interpolation
∗https://compose.obspm.fr/
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module, code for building an external library, and unit tests. The UnitTests contains

unit tests for the EOS table and each opacity table, which can also be used as

example usage demonstrations for users. The TableCreator stem contains the codes

for creating the EOS and opacity tables. The creator for building Bruenn 1985

opacity tables, Bruenn85, is separated from the FullWeakPhysics creator, which

contains more comprehensive and state-of-the-art weak physics, e.g., Nucleon-Nucleon

Bremsstrahlung (Hannestad and Raffelt, 1998) and muonization (Fischer et al., 2020).

5.2.2 Table Structures

EOS Tables

A WeakLib EOS table has three main datasets: ThermoState, DependentVariables,

and Metadata. ThermoState stores the information of the three independent

variables; i.e. the number of grid points in each dimension, and the value and

range in density, temperature, and electron fraction. DependentVariables includes

the dependent variables, including pressure in dynes per cm2, entropy per baryon

in kb, internal energy density in erg per gram, electron chemical potential in MeV,

proton chemical potential in MeV, neutron chemical potential in MeV, proton mass

fraction, neutron mass fraction, alpha mass fraction, heavy mass fraction, heavy

charge number, heavy binding energy in MeV, thermal energy in MeV, and Γ1 which

is the first adiabatic index. Metadata stores the table ID tag, lepton EOS link, source

link, table link, code version, and other information relevant to the table creation.

Opacity Tables

WeakLib has three main opacity table types (as defined in wlOpacityFieldsModule.f90).

Type 1; emission and absorption type: with one neutrino energy (ε) depen-

dency and three thermal state dependencies (ρ, T, Ye) (1+3=4 dimensional). Neutrino

emission and absorption on nucleons and nuclei are of this type.
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Type 2; elastic scattering type: with one energy dependency (ε), one Legendre

moment order dependency (l), and three thermal state dependencies (ρ, T, Ye)(

1+1+3=5 dimensional). Coherent scattering of neutrinos on nucleons and nuclei

is of this type.

Type 3; inelastic scattering type: with two energy dependencies (ε, ε′), one

Legendre moment order dependency (l), and two thermal state dependencies (T, η)

(2+1+2=5 dimensional), where

η ≡ µe

kBT
. (5.5)

Neutrino–electron scattering and pair processes are of this type.

Based on the application scenario, WeakLib writes opacities into separate files

based on the table type: 1, one table for neutrino emission and absorption on nucleons

and nuclei; 2, one table for neutrino scattering on nucleons and nuclei; 3, one table for

neutrino–electron scattering; 4, and one table for pair processes. Each opacity table

contains four datasets: Metadata, ThermoState, EnergyGrid, and its corresponding

opacity dataset. Each opacity table can be used independently with its basis EOS

table. The table reader has handlers for each of the four opacities, and makes it easy

to turn on or off a particular opacity. We will expand the discussion of how each type

is tabulated and how to use them in Section 5.2.4.

All WeakLib tables are provided in HDF5 format and are publicly available on

https://code.ornl.gov/astro/weaklib-tables.

5.2.3 Tabulated Equation of State

This part of the work in WeakLib was done by Ryan Landfield, and more details,

including the tabulated variables and the interpolation accuracy, can be found

in Landfield (December 2018). The works presented in this dissertation use the LS220

EOS (Lattimer and Swesty, 1991) or the SFHo EOS (Steiner et al., 2010).
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5.2.4 Tabulated Neutrino Interactions and the Interpolation

Methods

All the neutrino opacities from Bruenn (1985) were implemented in WeakLib by the

author. Due to the wide range of rates, it is most practical to tabulate and interpolate

all the rates using the log10 base. This is how the positive rates are tabulated, and

an offset is added to the whole dataset if its minimum value is non-positive.

The opacity table uses the same thermal grids as the EOS table. The energy

grid is logarithmically spaced between [0.1, 300] MeV, with 40 points. The η (defined

in Equation (5.5)) grid is logarithmically spaned between [10−3, 2.5 × 103], with 60

points. This grid for η is selected so that the majority of the range in η given by the

EOS is covered without loss of accuracy.

We implemented several multidimensional linear interpolation methods in WeakLib,

including 2D, 3D, 4D, 1D3D, 2D2D, and 2D2D-aligned interpolation. In these

notations, ‘D’ denotes the dimension of the array, ‘aligned’ is with the assumption

that the first two interpolation dimensions are aligned with the energy grid used

to discrete the transport equations. For example, 4D is a tetra-linear interpolation

method for (εi, ρi, Ti, Yei) 4-tuples — 4-dimensional arrays for i points. The output

is a one-dimensional array with i points. 1D3D is a 1+3 linear interpolation method

for (εi, ρj, Tj, Yej). It interpolates for εi on each (ρj, Tj, Yej). The output is a two-

dimensional array with size (i,j). 2D2D is a 2+2 linear interpolation method for

(εi, ε′j, Tk, ηk). It interpolates for each εi and ε′j at (Tk, ηk). The output is a three-

dimensional array of size (i,j,k). It can be considered as a collection of bilinear

interpolations. We will give examples of how to use the interpolation methods with

specific opacity tables.

Neutrino Absorption on Nucleons and Nuclei (AbEm)

The neutrino stimulated absorptivity on nucleons and nuclei, which is χ̃ in Equa-

tion (2.60), is expressed as
[
j(ε) + 1/λ(a)(ε)

]
in Bruenn (1985). Given by Equations
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(C13) + (C15) + (C19) + (C20) + (C27) + (C29) in Bruenn (1985), χ̃(ε, ρ, T, Ye) is

tabulated in a four-dimensional WeakLib AbEm table in units of cm−1. To interpolate

on an AbEm opacity with a given energy array (εj) for (ρi, Ti, Yei) state(s), one can

call 1D3D interpolation routine. See Section 5.2.5 for the verification result.

Neutrino Isoenergetic Scattering on Nucleons and Nuclei (Iso)

The 0-th and 1-st order Legendre coefficients of the neutrino isoenergetic scattering

kernel on nucleons and nuclei, RIso 0 and RIso 1, which are given by

RIso 0 =
1

c(2πℏc)3
ΦIso 0(ε) =

1

2c(2πℏc)3
× (C38) +

1

2c(2πℏc)3
× (C44), (5.6)

RIso 1 =
1

c(2πℏc)3
ΦIso 1(ε) =

3

2c(2πℏc)3
× (C39) +

3

2c(2πℏc)3
× (C45), (5.7)

where (C38), (C39), (C44), (C45) are Equations in Bruenn (1985), are tabulated

in a five-dimensional WeakLib Iso table in units of MeV−2cm−1, i.e. RIso 0 =

RIso(ε, 1, ρ, T, Ye), RIso 1 = RIso(ε, 2, ρ, T, Ye).

Therefore, the inverse free mean path (1/λ)Iso is given by −B(1)
IS in Equation (A41)

in Bruenn (1985), such that

(1/λ)Iso =
4πε2

c(2πℏc)3

[
1

3
ΦIso 1(ε)− ΦIso 0(ε)

]
= 4π ε2

[
RIso 1

3
− RIso 0

]
. (5.8)

To interpolate on the Iso opacity with a given εj array for state(s) (ρi, Ti, Yei) for the

inverse free path, one can call 1D3D interpolation routine for each Legendre coefficient

component, RIso 0,1. See Section 5.2.5 for the verification results.

Neutrino-Electron Scattering (NES)

The coefficients for the integral of the functions HI
l and HII

l (l = 0, 1 indicates

the first two Legendre coefficients of the neutrino–electron scattering kernel) over

electron energy Ee in Equation (C50) in Bruenn (1985), see also Equation (43)
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in Mezzacappa and Bruenn (1993c), with all coefficients
1

2c(2πℏc)3
,

3

2c(2πℏc)3
, and

Fe (Ee) [1− Fe (Ee + ε− ε′)], are tabulated in the WeakLib NES table. Expressed

explicitly, they are

HI
l =

1

2

1

c(2πℏc)3
G2

πε2ε′2

∫
dEeFe (Ee) [1− Fe (Ee + ε− ε′)]H I

l (ε, ε
′, Ee) , (5.9)

HII
l =

3

2

1

c(2πℏc)3
G2

πε2ε′2

∫
dEeFe (Ee) [1− Fe (Ee + ε− ε′)]H II

l (ε, ε′, Ee) . (5.10)

NES tables are five-dimensional, with HI
0 = HI

0(ε
′, ε, 1, T, η), HII

0 = HII
0 (ε′, ε, 2, T, η),

HI
1 = HI

1(ε
′, ε, 3, T, η), and HII

1 = HII
1 (ε′, ε, 4, T, η), where η = µe/kBT . Using the

same definition as in Equation (A38) in Bruenn (1985), −B(1)
NES, for the inverse mean

free path and taking zero as the final occupancy (ffinal = 0), we have

(1/λ)NES =
4π

c(2πℏc)3

∫ ∞

0

Φout
0,NES (ε, ε

′) ε′2dε′

≊ 4π

∫ table max

table min

[
(CV + CA)

2HI
l (ε, ε

′) + (CV − CA)
2HII

l (ε, ε′)
]
ε′2dε′.

(5.11)

To compute this rate by interpolating on the NES table using a same energy

array for scatter-in and scatter-out energy, (i.e. εk, ε′j with εj = ε′j), and

state(s) (ρi, Ti, Yei), one needs to interpolate for ηi first. It can be done by

calling LogInterpolateSingleVariable with (ρi, Ti, Yei) for µe,i, then compute ηi by

µe,i/kbTi. Next, interpolate for (HI/II
l )kji with (εk, ε

′
j, Ti, ηi) using 2D2D interpolation

routine, and assemble Φ
In/Out
l,NES using the corresponding coefficients (CV + CA)

2 and

(CV − CA)
2. See Section 5.2.5 for the verification tests.

Neutrino Pair Production (Pair)

In a similar manner, the coefficients for the integrals of the functions J I
l and J II

l ,

with l = 0, 1 of the first two Legendre coefficients of the pair process kernel

with coefficients
1

2c(2πℏc)3
,

3

2c(2πℏc)3
, and [1− Fe (Ee)] [1− Fe+ (ε+ ε′ − Ee)]
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(annihilation coefficient) are tabulated in the WeakLib Pair table; i.e.,

JI
l =

1

2

1

c(2πℏc)3
G2

π

∫ ε+ε+

0

dEe [1− Fe (Ee)] [1− Fe+ (ε+ ε′ − Ee)] J
I
l (ε, ε

′, Ee) ,

(5.12)

JII
l =

3

2

1

c(2πℏc)3
G2

π

∫ ε+ε+

0

dEe [1− Fe (Ee)] [1− Fe+ (ε+ ε′ − Ee)] J
II
l (ε, ε′, Ee) .

(5.13)

Using the same definition as in Equation (A47) in Bruenn (1985) for the inverse mean

free path and taking the final occupancy to zero, we have

(1/λ)TP =
4π

c(2πℏc)3

∫ ∞

0

Φp
0,Pair (ε, ε

′) ε′2dε′

≊ 4π

∫ table max

table min

[
(CV + CA)

2JI
l (ε, ε

′) + (CV − CA)
2JII

l (ε, ε′)
]
e−(ε+ε′)/kBT ε′2dε′.

(5.14)

Similar as interpolating for NES, one needs to interpolate for ηi before interpolating on

the Pair table for state(s) (ρi, Ti, Yei). Then, interpolate for (JI/II
l )kji with (εk, ε

′
j, Ti, ηi)

using 2D2D interpolation routine, and assemble Φl,Pair using the corresponding

coefficients (CV + CA)
2 and (CV − CA)

2. See Section 5.2.5 for the verification tests.

5.2.5 Opacity Rates Tests

To verify the opacities and interpolation routines provided by WeakLib, we compared

WeakLib’s opacities with those provided by others. First, we performed a comparison

at select thermal states adopted from Bruenn (1985). Then, we compared the opacity

rate given by WeakLib and Agile-Boltztran. The second comparison uses a post-

bounce snapshot from a real supernova simulation.

Thermal states from Bruenn (1985) Two thermal states from Bruenn (1985)

are adopted for the comparison, as shown in Figures 5.2.1 and 5.2.2, where the inverse
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mean free path for each of the four opacity types given in Section 5.2.4. We used

the SFHo EOS for this comparison. Despite the potential differences caused by using

different EOSs, the plots show fairly good agreement with results plotted in Bruenn

(1985).

Post-bounce snapshot The profile used for this test is a 100 ms post-bounce

snapshot of a 25 M⊙ progenitor (Woosley and Heger, 2007) supernova simulation

obtained using Chimera with the Lattimer-Swesty equation of state (Lattimer and

Swesty, 1991) LS220 (provided by Stephen Bruenn, private communication). It is

presented in Figure 5.2.3. The same profile is used for the stationary state test, which

is described in Section 5.6.3. In Figure 5.2.4 and 5.2.5, we plot the comparison for each

opacity channel for radii spanning 0 km to 300 km, and neutrino energies spanning

0.1 MeV to 300 MeV, using the same energy grid for two codes. The final distribution

function used in defining NES and Pair inverse mean free paths is the stationary

distribution function given by Agile-Boltztran. We see that WeakLib has fairly good

agreement with Agile-Boltztran for electron neutrino/antineutrino isoenergetic

scattering opacities. For emission, absorption, neutrino–electron scattering, and

neutrino pair production process, we see a good agreement inside PNS (r<150 km).

Outside PNS, differences in emission and absorption inverse mean free path for high

energy groups are observed.

5.3 Hydrodynamics Solver: Flash-X Spark

The compressible hydrodynamics solver used in this dissertation is provided by

Spark (Couch et al., 2021; Dubey et al., 2022). Spark uses a finite-volume

discretization, high-order spatial reconstruction, strong stability preserving Runge-

Kutta time integration, leveraging adaptive mesh refinement via both Paramesh and

AMReX. It can be used in 1-, 2-, or 3-dimensional simulations. Details regarding

Spark’s parallel performance for both CPUs and accelerators can be found in Couch
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(a) ρ = 1011 g cm−3, T = 1.604× 1010 K, Ye = 0.4 (b) For same thermal state from Bruenn (1985)

Figure 5.2.1: Neutrino opacities for a thermal state adopted from Bruenn (1985) Fig.
36 ( ρ = 1011 g cm−3, T = 1.604×1010 K, Ye = 0.4)): solid lines are for neutrinos and
dashed lines are for antineutrinos. The neutrino–electron scattering and pair creation
and annihilation opacities were computed with the neutrino and antineutrino number
densities set to zero, as Bruenn did in Bruenn (1985). The EOS used for WeakLib
plot in Figure 5.2.1a is SFHo. Figure 5.2.1b is adapted from Bruenn (1985) Fig.
36 with manually colored for comparison. The color on the left and right matches
besides magenta on the right for the pair process, while black on the left. Note that
the right figure has more detailed categories, which can be combined in the left figure.
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(a) ρ = 1011 g cm−3, T = 4.11× 1011 K, Ye = 0.3 (b) For same thermal state from Bruenn (1985)

Figure 5.2.2: Neutrino opacities for a thermal state adopted from Bruenn (1985) Fig.
37 (ρ = 1011 g cm−3, T = 4.11 × 1011 K, Ye = 0.3): solid lines are for neutrinos and
dashed lines are for antineutrinos. The neutrino–electron scattering and pair creation
and annihilation opacities were computed with the neutrino and antineutrino number
densities set to zero, as Bruenn did in Bruenn (1985). The EOS used for WeakLib
plot in Figure 5.2.2a is SFHo. Figure 5.2.2b is adapted from Bruenn (1985) Fig.
37 with manually colored for comparison. The color on the left and right matches
besides magenta on the right for the pair process, while black on the left. Note that
the right figure has more detailed categories, which can be combined in the left figure.
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et al. (2021). Spark has more than one option for both spatial reconstruction and

Riemann solver. It default setting uses fifth-order weighted essentially non-oscillatory

(WENO) spatial reconstruction, and the HLLD approximate Riemann solver. We use

the default settings for this dissertation.

5.4 Code Interfaces

In this section, we discuss how the interfaces between Flash-X+ WeakLib, and Flash-

X+ thornado, were built.

5.4.1 Flash-X+ WeakLib Interface

WeakLib is included in Flash-X as an external library (Flash-X/lib/weaklib).

A unit test designed for the Flash-X + WeakLib interface is an adiabatic collapse

test using the WeakLib EOS table. This test uses a progenitor profile, such as

S15 from Woosley and Weaver (1995), to initialize the radial grid in spherical

coordinates, with a reflecting inner boundary and an outflowing outer boundary.

The setup syntax, parameter file, progenitor profile, and initialization code are

under source/Simulation/SimulationMain/CCSN_WL/. This adiabatic collapse is

leveraged from the existing Flash-X unit test using other EOS options for an adiabatic

collapse simulation. We confirmed the Flash-X+ WeakLib interface by running the

adiabatic collapse using WeakLib and other EOS options to shock formation and until

shock leaves the domain.

5.4.2 Flash-X+ thornado Interface

With the EOS and after the hydrodynamics update made by Flash-X Spark,

thermodynamic quantities are ready to be provided to thornado. For thornado to

have the fluid density, temperature, electron fraction, specific internal energy, entropy

per baryon, pressure and et al., an interface is needed.
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thornado is included in Flash-X as an external library (Flash-X/lib/thornado).

The main function of the Flash-X+ thornado interface is to map data between the

thornado DG grid and the Flash-X finite volume (FV) grid. Inspired by Dumbser

et al. (2014), we consider DG elements as comprising FV subcells. We implement

subcell projection and reconstruction to move between DG and FV representations.

When the FV variables are represented on a subgrid with the same number of degrees

of freedom as the DG representation, we can move between representations without

loss of information. For the Flash-X+ thornado interface, the default setting is

even Flash-X cell with first-order DG thornado grid (k = 1, degree of freedom per

dimension = 2) so that the total number of degrees of freedom remains the same.

See Figure 5.4.1 for an example in two spatial dimensions, k = 1. On the subgrid,

the representation is given by cell averages, which are used to reconstruct the nodal

values on the DG node points.

The thornado time stepping module is part of the interface. It feeds the PDARS2

scheme with data that in Flash-X block size and converted to thornado manner (grid

and unit). In Figure 5.4.2, the standard procedure of how Flash-X calls thornado is

represented. In general, the transport update requires a smaller time step ∆tT than

the hydrodynamics update allows ∆tH . We allow multiple updates from radiation

within a hydrodynamics update to gain efficiency.

The unit tests for the Flash-X+ thornado interface include a streaming sine wave

test for advection, a streaming Doppler shift test for observer corrections, a relaxation

test for the collision term, and a deleptonization wave test for all the above.

Subcell Reconstruction and Projection

Consider an element K ⊂ Rd where the DG representation is denoted uh(x, t) ∈ Vk,

where Vk is constructed from the tensor product of one-dimensional polynomials of

maximal degree k

uh(x, t) =

(k+1)d∑
j=1

uj(t) Φj(x). (5.15)
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Next, consider dividing the element K into a subgrid S of (k + 1)d nonoverlapping

FV cells Sj, S = ∪(k+1)d

j=1 Sj, so that K \ S = ∅. On the subgrid, the representation is

given by piecewise constants (cell averages)

vh(x, t) =

(k+1)d∑
j=1

χ(Sj) vj(t), (5.16)

where vj(t) is the cell average in subgrid cell Sj and the χ(Sj) is the indicator function

on Sj.

FV to DG Representation (Reconstruction) Knowing the cell averages vj (we

suppress time dependence from here on), we reconstruct the DG representation uh

by requiring that

1

|Si|

∫
Si

uh(x) dx =
1

|Si|

∫
Si

vh(x) dx = vi,∀ Si ∈ S. (5.17)

With the definition in Equation (5.15), this gives

R−1 u = v, (5.18)

where u = (u1, . . . , u(k+1)d)
T , v = (v1, . . . , v(k+1)d)

T , and the components of the (k +

1)d × (k + 1)d inverse reconstruction matrix are

R−1
ij =

1

|Si|

∫
Si

Φj(x) dx. (5.19)

The reconstruction step amounts to inverting Equation (5.18) to find

u = R v. (5.20)
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DG to FV Representation (Projection) Knowing the DG representation uh(x),

we can easily compute the cell averages for the finite volume representation

vi =
1

|Si|

∫
Si

uh(x) dx =
1

|Si|

(k+1)d∑
j=1

∫
Si

Φj(x) dxuj, (5.21)

which can be written as

v = P u, (5.22)

where the components of the (k + 1)d × (k + 1)d projection matrix P are

Pij =
1

|Si|

∫
Si

Φj(x) dx. (5.23)

From the definitions above, it is obvious that RP = I; i.e., we do not lose any

information when switching between DG and FV representations.
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Figure 5.2.3: Thermal state at 100 ms after bounce given by the Chimera simulation
for S25. This profile is used in WeakLib opacity test (Section 5.2.5), the relaxation
problem (Section 5.6.1), and the deleptonization wave problem (Section 5.6.3).
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(a) AbEm (b) Iso

(c) NES (d) Pair

Figure 5.2.4: Opacity comparison between results obtained by WeakLib and
Agile-Boltztran for Bruenn (1985) electron-neutrino interactions using the LS220
EOS and a 25 M⊙ 100 ms post-bounce profile.
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(a) AbEm (b) Iso

(c) NES (d) Pair

Figure 5.2.5: Opacity comparison between results obtained by WeakLib and
Agile-Boltztran for Bruenn (1985) electron-antineutrinos interactions using the
LS220 EOS and a 25 M⊙ 100 ms post-bounce profile. Same as Figure 5.2.4 but
for electron-antineutrinos.
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Figure 5.4.1: Using a 2D grid as an example of Flash-X+ thornado FV-DG mapping.
Division of a DG element into a subgrid of FV cells in two spatial dimensions using
DG polynomials of maximal degree k = 1.

Figure 5.4.2: Flash-X+ thornado interface procedure. The Flash-X+ thornado
interface is called to map data between Flash-X FV grid and thornado DG grid
at the beginning and end, as the blue and orange slices indicate. In general, the
radiation transport update requires a smaller time step ∆tT than the hydrodynamics
time step ∆tH . We allow multiple radiation updates within a hydrodynamics update
to gain efficiency. The pink blocks represent the transport updates. Between each
transport update, MPI syncs the whole computation domain, as the yellow slices
represent.

112



Figure 5.4.3: WeakLib module hierarchy. The major modules used in this dissertation are listed in bold.
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Table 5.1: Summary of Neutrino Opacities.

Category Weak Interaction in Moment Equations in WeakLib References

Absorption and
emission νe + n ⇄ e− + p Section 2.4.2 Section 5.2.4 Bruenn (1985)

ν̄e + p ⇄ e+ + n χ̃ = (η + χ) χ̃(ε, ρ, T, Ye)

νe +A ⇄ e+A′

Coherent
isoenergetic
scattering

ν +A→ ν +A Section 2.4.2 Section 5.2.4 Bruenn (1985)

ν +N → ν +N − 4πε2

c(2πℏc)3
[
ΦIso 0(ε)−

1

3
ΦIso 1(ε)

] 1

c(2πℏc)3
ΦIso(ε, l, ρ, T, Ye)

Non-isoenergetic
scattering ν + e− ⇄ ν + e− Section 2.4.2 Section 5.2.4 Bruenn (1985)

− 4π

c(2πℏc)3
∫∞
0 Φout

0,NES (ε, ε
′) ε′2dε′

Cl

c(2πℏc)3
C1H

I/II
l (ε′, ε, l, T, η)

Mezzacappa
and Bruenn
(1993c)

Pair creation and
annihilation e− + e+ ⇄ ν + ν̄ Section 2.4.2 Section 5.2.4 Bruenn (1985)

− 4π

c(2πℏc)3
∫∞
0 Φp

0,Pair (ε, ε
′) ε′2dε′

Cl

c(2πℏc)3
C2J

I/II
l (ε′, ε, l, T, η)

where ν = νe,µ,τ , ν̄e,µ,τ , νe,µ,τ = electron, muon, tau neutrino, ν̄ = antiparticle of particle ν, n = free neutrons, p = free protons,
N = free neutrons or protons, A = nuclei, e− = electrons, e+ = positrons, and Cl =

2l+1
2 , with l the order of Legendre coefficients,

C1 =
G2

πε2ε′2
∫ +∞
0 dEeFe (Ee) [1− Fe (Ee + ε− ε′)], C2 =

2G2

2π

∫ ε+ε+

0 dEe [1− Fe (Ee)] [1− Fe+ (ε+ ε′ − Ee)]
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5.5 Solver for Neutrino–Matter Coupling

Neutrino–matter coupling solver is the most expensive part of a CCSN simulation,

not only because it is called the most, but also because it needs the most information,

on the fluid field, the radiation field, and on the weak interactions. The main cost

of weak interactions comes from energy-exchanging interactions, such as neutrino-

electron scattering and neutrino pair production and annihilation. The interpolations

for energy-exchanging interactions increase in O(N2
ε ) with energy grid size Nε, other

than the O(Nε) of non-energy-exchanging (single-energy-dependent) interactions. In

addition, because neutrino–matter coupling solver updates both the fluid field and

the radiation field, any achievement in improving efficiency or accuracy is explicit.

We present the development of our neutrino–matter coupling solver in this section.

With the vector of ‘collision invariants’ which we define as U(U ,u) = ( ρ, Fj, E, N )T,

with the total momentum Fj = ρvj + FEj, energy E = Ef +E = ρϵf +E, and lepton

number N = ne +N , and using the same notation as in Equation (5.1) and (5.2), we

can write the neutrino-matter coupling equations as

∂tU = C(U ,u), (5.24)

∂tU = 0. (5.25)

We solve the above nonlinear equations, together with corresponding equations

for the matter, which is updated by enforcing preservation of the collision invariants.

The nonlinear system solver we employ is an extension of the nested fixed-point

iteration scheme presented in Laiu et al. (2021). Other useful references are Laiu

et al. (2020); Endeve et al. (2022a); Endeve et al. (2022b). Given implicit time

integration, Equations (5.24) and (5.25) become to solve

Un+1 = Un +∆ tC(Un+1,un+1), (5.26)

U(Un+1,un+1) = U(Un,un). (5.27)
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The unknown fluid variables in the collision solve are ρ, vj, Ef , and Ye, so that

Equation (5.25) gives

ρn+1 = ρn = ρ, (5.28a)

ρvn+1
j + F n+1

E j = ρvnj + F n
E j, (5.28b)

ρϵn+1
f + En+1 = ρϵnf + En, (5.28c)

ρ Y n+1
e +Nn+1 = ρ Y n

e +Nn, (5.28d)

with the following quantities dependent on the primitive moments

F n+1
E j = FE j(Mn+1,vn+1), (5.29a)

En+1 = E(Mn+1,vn+1), (5.29b)

Nn+1 = N(Mn+1,vn+1), (5.29c)

while the radiation momentum, energy, and lepton number densities depend on the

primitive moments and fluid three-velocity. The radiation variables are updated

implicitly as

U(Mn+1,vn+1) = U(Mn,vn) + ∆ tC
(
Mn+1, ρ, T (ϵn+1

f ), Y n+1
e

)
. (5.30)

Equations (5.28) and (5.30) can be solved as a fixed-point problem, such that

Mn+1 = G(Mn+1, zn+1), (5.31)

zn+1 = g(Mn+1, zn+1), (5.32)

z = (v, ϵf , Ye), (5.33)

where G(M, z) is the operator corresponding to Equation (5.30), g(M, z) is the

operator corresponding to Equations (5.28), and we write z = g(M, z), z is a subset

of u.
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5.5.1 Picard iteration

A procedure for generating a sequence of functions that approximate the solution is

Picard iteration. Picard iteration applied to Equations (5.31) and (5.32), given the

initial guess M0 and z0, which are from the initial state or the previous step, and

iterate

Mk+1 = G(Mk, zk), (5.34)

zk+1 = g(Mk, zk), (5.35)

for k = 0, 1, ... until a convergent solution is found. The convergence requires

operators G and g be contraction maps, i.e.,

|Mk+1 −Mk| ≤ LM |Mk −Mk−1|, LM ≤ 1, (5.36)

and

|zk+1 − zk| ≤ Lz|zk − zk−1|, Lz ≤ 1. (5.37)

This is the issue with applying Picard iteration to Equation (5.34) and (5.35) – the

convergence is not guaranteed. Besides, the realizability of numerical solutions for

primitive moments M requires choosing the update operator G carefully.

5.5.2 Nested algorithm

A modification to the fixed-point problem given by Equation (5.28) and (5.30) is a

nested algorithm. In a nested algorithm, the problem is solved in four steps.

• Step 1: Compute opacities using (zn,Mn) = (zk,Mk) (k = 0 for the initial

iteration).

• Step 2: Find a M∗ that is the limit of Ml+1 = G(Ml, zk), l = 0, 1, 2, ...
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• Step 3: Find zk+1 such that zk+1 = g(M∗, zk).

• Step 4: Check for convergence. If zk+1 is not converged, go back to Step 1 with

Mk+1, zk+1 = M∗, zk. Otherwise, exit and set (zn+1,Mn+1) = (zk+1,M∗).

Step 2 for finding M∗ is in an inner loop, while Steps 3 and 4 for zk+1 and

Step 1 for evaluating the opacities are part of the outer loop. Fixed-point iteration

is relatively easy to implement and extend when opacities are added. The nested

structure provides additional flexibility to reduce computational costs by reducing

expensive opacity evaluations. Fixed-point iteration avoids the Jacobian matrix

constructions and dense linear systems, though its convergence rate can be low (Laiu

et al., 2021). In thornado, Anderson acceleration (Anderson, 1965) is applied

separately to the outer and inner loops to accelerate the convergence of the fixed-

point method (Laiu et al., 2021). More details about its code implementation,

convergence properties, efficiency, comparison with other methods in the context of

CCSN simulations can be found in Laiu et al. (2021); Laiu et al. (2022); Endeve et

al. (2022b).

5.6 Numerical Test

This section presents a suite of test problems designed to verify the framework of

Flash-X+ thornado. These tests use realistic opacities provided by WeakLib.

5.6.1 Relaxation Test

To further examine the collision term, we performed a relaxation to equilibrium test.

This test only includes the update from the collision term, and the transport operator

is not included. The purpose of this test is to determine if the code can maintain at

the theoretical equilibrium state numerically.

We adopt matter profiles for mass density, temperature, and electron fraction

obtained with the Chimera code using a 25 M⊙ progenitor from Woosley and Heger
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(2007) and the Lattimer-Swesty LS220 EOS (Lattimer and Swesty, 1991) (profiles

are provided by Stephen Bruenn, private communication). The fluid velocity is set

to zero. See Figure 5.2.3 for the fluid state plot. Electron flavor neutrino emission

and absorption on nucleons and nuclei, and isoenergetic scattering on nucleons and

nuclei, are included in this test. The initial number density of neutrinos is set to be

the thermal equilibrium distribution given by the Fermi-Dirac distribution function

feq(ε) =
1

e(ε−µνe )/kBT + 1
, (5.38)

where µνe is the νe-neutrino chemical potential. If the system remains in the Fermi-

Dirac equilibrium state, the code has computed the correct equilibrium distribution.

Ten energy groups, ranging from 1.0 to 100 MeV, with a spatial element size of

0.625 km, spanning 0 to 300 km are used. We run the test for 1 s. The difference

between the final state and the initial state is small, and proportional to the spatial

resolution and number of time steps. An comparison between the initial state and the

final state is presented in Figure 5.6.1, where the number densities at the initial state

are plotted in solid lines, and the number densities at the final state are in dotted

lines. Color represents neutrino energy.

The result indicates that Flash-X+ thornado is able to maintain at the theoretical

equilibrium state numerically.

5.6.2 Homogeneous Sphere Problem

To further examine the coupling between the collision term and the advection term

in transport, we performed a homogeneous sphere problem. This test was also

used to test the Flash-X+thornado interface by performing within the thornado

environment and repeated using Flash-X+thornado. A version of this test problem

is discussed in Bruenn (1985); Messer (2000); Endeve et al. (2018) and Chu et al.

(2019b). It mimics a static (v = 0) stellar core of radius R surrounded by a tenuous

atmosphere. The idea is to set the absorption opacity and equilibrium distribution
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Figure 5.6.1: Result of the number density for the relaxation test. The initial
conditions, given by Equation (5.38), are plotted in colored solid lines, and the final
state after 1 s evolution is plotted in colored dotted lines. Color represents neutrino
energy, as the legend marks. The two line types overlap because the radiation field
remains at equilibrium.
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function to constant values inside the sphere, and the other opacities to zero. Outside

the sphere, the absorption opacity is close to zero. Here we present a spectral

version of the test in 1D spherical coordinates. We impose reflecting inner boundary

conditions and outflowing outer boundary conditions in space. The two runs, within

the thornado environment and using Flash-X +thornado, are performed, and give

the same result to machine accuracy.

The steady state solution of this problem can be obtained by solving the steady

state transport equation in spherical symmetry (Smit et al., 2000):

fA(r, µ) = f0
(
1− e−χ0s(r,µ)

)
, (5.39)

where f0 is the equilibrium distribution,

s(r, µ) =


rµ+Rg(r, µ) if r < R, µ ∈ [−1,+1]

2Rg(r, µ) if r ≥ R, µ ∈
[
(1− (R/r)2)

1/2
,+1

]
0 otherwise,

(5.40)

and g(r, µ) = [1− (r/R)2 (1− µ2)]
1/2.

We take the one-dimensional spherical coordinates domain to D = {r ∈ R+, θ ∈

[0, π], φ ∈ [0, 2π) : r ∈ [0, 500] km, θ = π
2
, φ = π} and R = 100 km. The edge of the

core is sharp, and we use a geometrical mesh so that the transition from the interior

values to the exterior values happens in a ∼1 km radial zone. In addition, we impose

a slope limiter to improve accuracy. We use 20 geometrically spaced energy groups

covering [1, 150] MeV, with a zoom of 1.7; i.e.,

(∆ε)n+1 = 1.7× (∆ε)n. (5.41)

(This setting gives convergent luminosity and root-mean-square energy values when

computed to the results obtained with 64 geometrically spaced energy groups covering
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[0.1, 300] MeV.) The opacities are given by the WeakLib Bruenn 1985 tables using

SFHo EOS.

Three thermal states for r ∈ [0, R] km are assumed, as listed in Table 5.2. Model A

represents a high-density, hot core. Model B represents a low-density, relatively cold

core. Model C represents a low-density core at a temperature intermediate between

model A and model B. The corresponding opacities, χ, are plotted versus energy in

Figure 5.6.2. The radiation field is initialized using the analytic solution, computed

using fA in Equation (5.39). We run the test for t=10 ms till a stationary radiation

field is achieved (i.e. until the change in radiation variables is zero).

Figure 5.6.3 compares the difference in the neutrino and antineutrino luminosities

between the analytical values and the values given by thornado using the CB closure,

where we define the radial luminosity as

Lr = (4πr)2
∫
R+

Hrε
3dε. (5.42)

We see that the performance of thornado is problem-dependent, but has some

common features. First, thornado consistently yields lower luminosities. Second,

the maximum relative difference is inside the core. Third, the minimum difference

between the analytical and computed results occurs outside the core and is maintained

to the edge of the domain. For model A, thornado computes approximately 80% less

neutrino luminosity inside the core and 4.5% less luminosity outside the core, and 25%

less antineutrino luminosity inside the core and 5% less luminosity outside the core.

For model B, thornado computes 30% less neutrino luminosity inside the core and

2% less luminosity outside the core, and 28% less antineutrino luminosity inside the

core and 4% less luminosity outside the core. For model C, thornado computes 45%

less neutrino luminosity inside the core and 3% less outside the core, and 35% less

antineutrino luminosity inside the core and 3% less luminosity outside the core. We

will see later how the algebraic closure approximation affects the numerical solutions.
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Table 5.2: Thermal states used in the homogeneous sphere tests.

Model A Model B Model C

ρ = 1013 g cm−3, ρ = 3× 1011 g cm−3, ρ = 1011 g cm−3,
T = 16 MeV, T = 4 MeV, T = 8 MeV,

Ye = 0.14 Ye = 0.2 Ye = 0.15

(a) Electron neutrino absorption opacity (b) Electron antineutrino absorption opacity

Figure 5.6.2: Absorption opacities for the homogeneous sphere test. Color indicates
the different thermal state. See Table 5.2 for details of each model.

123



Figure 5.6.4 shows the root-mean-square (RMS) energies of the emitted neutrinos,

defined as

εRMS =
√
⟨ε2⟩ =

√∫
R+ J ε

5dε∫
R+ J ε3dε

. (5.43)

We see the problem-dependent performance again. However, the agreement with the

analytical values is very good, with a maximum difference 0.5%, which is in model B

for the antineutrino RMS energy and is maintained to the edge of the domain.

Closure Comparison

The purpose of this section is to compare the results obtained using the different

algebraic closures discussed in Section 2.5.2 and to understand how the choice of

closure affects the result. Other closure comparison work can be found in Smit et al.

(2000); Vaytet et al. (2011); Just et al. (2015); Murchikova et al. (2017); Pan et al.

(2019); Richers (2020). Here, we use the abbreviations for difference closures: CB for

Cernohorsky and Bludman (1994), MI for Minerbo (1978), KE for Kershaw (1976);

Banach and Larecki (2017), and LE for Levermore (1984).

In this work, we focus on the electron-neutrino luminosity and compare the results

obtained using different closures, which are presented in Figure 5.6.5. The left panels

show the whole domain, and the right panels show a zoom-in at the core center, where

the largest difference from the analytic values occur. For model A, the list of closures

based on their performance from best to worst is CB, KE, MI, LE. For model B, the

list is the same: CB, KE, MI, LE. For model C, the list is CB ≈ MI, LE, KE.

The impact different closures have on neutrino luminosity is 15% at the inner

region and 4% at the outer region. For example, consider model B, the results for

different closures have the maximum difference of 27%(CB) to 42%(LE), and the

minimum of 6%(LE) to 2%(CB).
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(a) Neutrino luminosity for model A (b) Neutrino luminosity for model B

(c) Neutrino luminosity for model C

Figure 5.6.3: Electron neutrino and antineutrino luminosities for the results of the
homogeneous sphere problem using thornado with CB closure. Results for electron-
neutrino are plotted in solid line and dashed lines for electron-antineutrino. Analytic
solutions are plotted in black, and numerical solutions given by thornado using CB
closure are plotted in blue. See Table 5.2 for details of each model.
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(a) Neutrino RMS energy for model A (b) Neutrino RMS energy for model B

(c) Neutrino RMS energy for model C

Figure 5.6.4: Electron neutrino and antineutrino RMS energy for the homogeneous
sphere problem using thornado with CB closure. Results for electron-neutrino are
plotted in solid line and dashed lines for electron-antineutrino. Analytic solutions are
plotted in black, and numerical solutions given by thornado using CB closure are
plotted in blue. See Table 5.2 for details of each model.
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(a) Model A (b) Model A zoom in

(c) Model B (d) Model B zoom in

(e) Model C (f) Model C zoom in

Figure 5.6.5: Result for electron-neutrino luminosities from solving the multi-group
homogeneous sphere problem with the DG(2)+PDARS method using 144 spatial
elements and 20 energy groups. Analytic solutions are plotted in black, and numerical
solutions given by thornado using different closures are plotted in color.
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We can see why closures make this difference by plotting the Eddington factor

they predict. Eddington factor is defined as

k =
K
J
, (5.44)

where K is the scalar value of the second-order moment K. The analytic values

computed using distribution function in Equation (5.39) are plotted in solid line in

Figure 5.6.6. The CB closure, which gives the best result in all three models, has

a maximum 30% less Eddington factor k around the sphere, which is presented in

dash line. A smaller Eddington factor results in advection from the core, since less

pressure around the sphere. The core loses more neutrinos at the beginning and

reaches a steady state with lower luminosity later. We indeed observed that when

the accuracy of the closure method improves, the outcome spontaneously improves.

In all three models, the biggest difference between numerical solution and analytic

value in k is at the transition region for the low energy group. The biggest challenge

for the closure is that it cannot follow the non-monotone behavior at the transition

edge, r = 100 km. Despite these differences, the CB closure gives correct value at

the diffusion limit at the center, and behavior good at streaming limit at the outer

region.

5.6.3 Deleptonization Wave Test

The deleptonization wave test has the most sophisticated settings that a CCSN

simulation requires. It includes WeakLib tables and interpolation, Flash-X Spark

hydrodynamic, the interfaces between Flash-X and thornado, and thornado’s O(v/c)

transport. It is designed to investigate the performance of the code in a realistic

setting. We adopt the matter profiles for mass density, temperature, and electron

fraction obtained using the Chimera code in a CCSN simulation for a 25 M⊙

progenitor. See Figure 5.2.3 for the initial condition.
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(a) Model A (b) Model B

(c) Model C

Figure 5.6.6: Result for Eddington factor in homogeneous sphere problem using
thornado with CB closure on selected energy groups. The numerical solutions are
plotted in dash line. The analytic values computed using distribution function in
Equation (5.39) are plotted in solid line. The color indicates the energy group.
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We use the density, temperature, and electron fraction from the profile, with zero

fluid velocity, to initialize the fluid field, and include the electron-flavor neutrino

interactions in Bruenn (1985) to our model. The radiation quantities are also

initialized using the Chimera radiation profile (provided by Stephen Bruenn, private

communication). A plot for the initial radiation filed measured by neutrino RMS

energy (Equation (5.43)) and averaged flux factor, i.e.,

H̄x =

∫∞
0
J ε3dε∫∞

0
Hxε3dε

, (5.45)

is presented in Figure 5.6.7.

Comparison of Steady States Due to the difference in neutrino transport, the

radiation state given by Chimera is not necessary to be the stationary state in

thornado using the two-moment method with different closures. To investigate the

difference different transport and the closure method can make, we run a steady state

with a stationary (“frozen”) fluid field. The closures we considered here include: CB

for Cernohorsky and Bludman (1994), BL for Banach and Larecki (2013), MI for

Minerbo (1978), KS for Kershaw (1976); Banach and Larecki (2013), and LE for

Levermore (1984). For each closure we considered here, we relaxed the radiation field

till a steady state was reached. Results for this process are presented in Figure 5.6.8

with the initial (Chimera) condition in black, and thornado results in color: the

results of the CB closure are in blue, red for the BL closure, yellow for the KS closure,

purple for the LE closure, and green for the MI closure. The results given by thornado

using different closures are almost identical in this setting for both neutrino RMS

energies and averaged flux factors. thornado has lower electron-neutrino and electron-

antineutrino RMS energies, and higher electron-neutrino and electron-antineutrino

averaged flux factors. These differences are caused by the different Chimera’s one-

moment method and thornado’s two-moment method.
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Figure 5.6.7: Initial radiation condition for the deleptonization wave test. The
settings for electron-neutrino are plotted in solid lines, and dashed lines for electron-
antineutrino. Neutrino RMS energies are plotted in blue based on the left y-axis, and
neutrino averaged flux factors are plotted in red based on the right y-axis.
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Figure 5.6.8: Steady radiation field with stationary fluid field in deleptonization
problem for all closures. The black lines represent the initial (Chimera) state, and
thornado results in color: the results of the CB closure are in blue, red for the BL
closure, yellow for the KS closure, purple for the LE closure, and green for the MI
closure.
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Comparison of Deleptionization with Different Closures The deleptoniza-

tion test was run for 10 ms from the initial settings, and the result was compared

against the initial setting. The evolution of the electron fraction is illustrated in

Figure 5.6.9a for the Minerbo closure, and in Figure 5.6.9b for the CB closure.

The dynamic of the two evolutions is very close, in both deleptonizing rates and

deleptonization over the whole domain. The biggest difference is around 10 km,

where the opacities change rapidly (Figures 5.2.4–5.2.5), CB closure leads to more

electron loss at transiting to the high opacity region (4− 20 km). Another difference

is at the finial state, which is compared to cross all closures in Figures 5.6.10

and 5.6.11. Figures 5.6.10 plots the results obtained using the exact same radiation

initial (Chimera) states, while Figure 5.6.11 plots the results obtained using the

steady state for each closure (as shown in Figure 5.6.8). Overall, the difference in the

final state obtained using difference closures is small and only noticeable around the

transition region. And the difference between the results obtained using different

closures can be slightly affected by the initial condition. Considering the rapid

radiation evolution in CCSN simulation, especially around bounce, the difference

caused by the closure method is subtle compared to the impact from the transport

moment method.

5.7 Conclusion

The development of WeakLib is ongoing in order to include more state-of-the-art

set of neutrino interactions and nuclear corrections. The work done in WeakLib

for this dissertation was established the fundamental functions and code framework

for the basic neutrino interaction set of Bruenn (1985) and is extensible to a more

comprehensive set of weak interactions. The Flash-X–thornado interface was tested

for accuracy and efficiency, using several numerical tests. Three numerical tests were

performed to verify the framework of Flash-X+ thornado. The relaxation test shows

Flash-X+ thornado is able to arrive and maintain at the theoretical equilibrium
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(a) Minerbo Closure

(b) CB Closure

Figure 5.6.9: Electron fraction evolution in deleptonization wave test with different
closures for 10 ms duration initiated at the same radiation condition (Figure 5.6.10).
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Figure 5.6.10: Comparison of electron fraction profiles in the deleptonization wave
test after 10 ms deleptonization obtained with different closures. The initial electron
fraction profile is plotted in black, while the results after 10 ms deleptonization are
plotted in color. The result for the CB closure is plotted in blue, while red for the
BL closure, yellow for the KS closure, purple for the LE closure, and green for the MI
closure. Two radiation initial conditions were used. The results for the exact same
radiation condition for different closure settings are presented in Figure 5.6.10. The
results for using individual steady radiation conditions for each closure setting are
presented in Figure 5.6.11.
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Figure 5.6.11: Comparison of electron fraction profiles in the deleptonization wave
test after 10 ms deleptonization obtained with different closures. The initial electron
fraction profile is plotted in black, while the results after 10 ms deleptonization are
plotted in color. The result for the CB closure is plotted in blue, while red for the
BL closure, yellow for the KS closure, purple for the LE closure, and green for the
MI closure. Two radiation initial conditions were used. The results for the exact
same radiation condition for different closure settings are presented in Figure 5.6.10.
The results for using individual steady radiation condition for each closure setting are
presented in Figure 5.6.11.
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state numerically. The homogeneous sphere problem shows Flash-X+ thornado is

able to simulate a steady radiation with a realistic radiation setting, and has a

good agreement with analytic solution. The result of the deleptonization wave test

suggests that the numerical implementation for Flash-X+ thornado has successfully

been benchmarked and the code is ready to be used in CCSN simulations.
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Chapter 6

CCSN Simulation in Spherical

Symmetry: A Comparison with

Chimera

Supernova codes are complex objects that execute the numerical solution of equations

for radiation-hydrodynamics. Their radiation-hydrodynamics are supplemented by

equations of state, neutrino transport with multiple sources of opacities, nuclear

transmutations, and relativistic gravity. Different numerical techniques each have

their own advantages and disadvantages. When simulating a nonlinear system

with such uncertainty, it is important to validate code. The study in this chapter

is intended to test our neutrino radiation-hydrodynamics implementations and to

provide a basis for comparison and verification of Flash-X+ thornado to be used in

the future.

6.1 Introduction

Code verification is an essential step for new code development. For example,

Bruenn et al. (2020) performed code comparison (Chapter 9) for comparison between
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Chimera, Agile-Boltztan, and Prometheus-Vertex. For another example,

Just et al. (2018) performed code comparison for comparison between Aenus-Alcar

and Prometheus-Vertex. More publications for CCSN code comparisons can be

found in Bruenn (1985); Mezzacappa and Bruenn (1993a,b,c); Yamada et al. (1998);

Messer et al. (1998); Burrows et al. (2000); Bruenn et al. (2001); Calder et al. (2002);

Rampp and Janka (2002); Liebendörfer et al. (2005); Buras et al. (2006); Ott et al.

(2008); Just et al. (2015); Skinner et al. (2016); Richers et al. (2017); O’Connor et al.

(2018); Just et al. (2018); Glas et al. (2019); Pan et al. (2019); Bruenn et al. (2020).

This chapter describes a comparison designed to verify the capability of Flash-

X+ thornado to perform supernova simulations. The code we compare with is

Chimera (Messer et al., 2008; Bruenn et al., 2020), which was developed by the

UT-ORNL led CCSN collaboration. It is a CCSN code that incorporates sophisti-

cated neutrino transport, three-dimensional hydrodynamics, realistic neutrino–matter

interactions and nuclear, leptonic, and photonic EOS, nuclear reaction network.

Chimera has been used to study the role of different aspects in CCSN simulation,

such as hydrodynamic instabilities, neutrino radiation, and various input physics in

the explosion mechanism, as well as compute gravitational radiation (Bruenn et al.,

2006, 2009; Yakunin et al., 2010; Bruenn et al., 2013; Yakunin et al., 2015; Lentz

et al., 2015; Bruenn et al., 2016; Yakunin et al., 2017; Harris et al., 2017; Messer

et al., 2018; O’Connor et al., 2018; Raphael Hix et al., 2019; Mezzacappa et al., 2020b,

2022). Chimera comparisons with other codes have been documented in O’Connor

et al. (2018) and in Bruenn et al. (2020). We compare Flash-X+ thornado

and Chimera in the context of a spherically symmetric CCSN simulation, and

carefully control the initial conditions and input physics to ensure a meaningful and

informative comparison. We aim to demonstrate the ability of Flash-X+ thornado

to simulate CCSNe by comparing our Flash-X+ thornado result with that obtained

with Chimera for a given progenitor, input physics (neutrino opacities and equation

of state). To be precise, we compare electron-flavor spectral two-moment neutrino

transport in thornado and multi-group flux-limited diffusion neutrino transport in
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Chimera in spherically symmetric. We compare the early evolution of a 9 M⊙

progenitor, including central fluid parameters, shock radius, neutrino luminosities

and RMS energies (Equation 5.43) from both codes. Given the diversity of neutrino

transport, the resolution, and non-NSE treatment, we find good agreement in many

critical quantities, including the thermal states at the core bounce, PNS radius, and

RMS energy.

6.2 Initial Models, Codes, and Methodology

6.2.1 Models

For the first code verification and comparison, we perform a CCSN simulation in

spherical symmetry (1D), initiated with a low-mass pre-collapse progenitor previously

modeled throughout all stages of stellar evolution: a 9 M⊙ progenitor from Sukhbold

et al. (2016), denoted as S9. The initial condition is displayed in Figure 7.2.1.

Newtonian compressible hydrodynamics and gravity (Flash-X) are coupled with

O(v/c) neutrino transport (thornado). The Flash-X hydrodynamics solver is based

on a finite-volume implementation, and the gravitational potential is computed using

a multipole Possion solver. Electron-type neutrinos and antineutrinos are evolved.

The industry-standard SFHo EOS and the “standard” opacity set in Bruenn (1985)

are used. Since the initial conditions and input physics are carefully set to be the

same, the main difference between the two codes for this comparison will stem from the

neutrino transport method used, non-NSE treatment at large radius, and potentially

difference in grids, et cetera.

6.2.2 Methodology and Code

Weak Physics The WeakLib tables provide the SFHo EOS to both codes and the

Bruenn 1985 opacity rates to Flash-X+ thornado. Chimera is an evolving code,
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and the results used in this chapter were obtained using its “F-Series” setting, Bruenn

1985 opacities, and including the non-NSE regime in the EOS.

Gravity and Hydrodynamics The hydrodynamics in both codes are Newtonian.

We ran Flash-X+ thornado using Spark’s default HLLD approximate Riemann

solver with Newtonian monopole gravity. Chimera’s hydrodynamics were evolved

with a Lagrangian-plus-remap version of the Piecewise Parabolic Method (PPMLR)

extended to include multi-species advection, multidimensional gravity, neutrino

coupling, and with radial grid movement (Bruenn et al., 2020).

Transport Flash-X+ thornado was run with the O(v/c) spectral two-moment

neutrino transport in thornado, which is a higher-order moment method (second-

order) than the flux-limited diffusion (first-order) method used in Chimera. Both

thornado and Chimera use Eddington factor closure, which is an algebraic closure,

to represent higher angular moments and to close their corresponding systems of

moment equations.

6.2.3 Detailed Settings

Flash-X + thornado: Flash-X+ thornado used 16 geometrically-spaced, first-order,

DG energy elements (giving 32 energy nodes) spanning the range from 0.1 to 300 MeV

with the first element width being 2.172 MeV and the last element width being

61.74 MeV. The spatial domain [0, 3000] km is divided into 4096 DG elements,

uniformly in radius, giving ∆r=0.732 km per element. The mesh is (uniformly)

fixed through the simulation.

Chimera: Chimera used a geometrically spaced energy grid with 20 zone-centered

energies from 4–250 MeV, the first cell center at 2.57 MeV, and the last cell center

at 251.97 MeV. It was performed using 720 adaptive radial zones. As the simulation

progressed past bounce, Chimera zones moved with the fluid and were adjusted
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to maintain an good resolution – an approximately constant ∆r/r with limiting the

maximum value of ∆ρ/ρ. So that Chimera can maintain a good resolution at the

surface of the PNS. This setting leads to the spatial domain [0, 21600] km being

adaptively meshed with ∆rmin ∼0.07 km during core bounce. (The adaptive mesh

will be seen in the plots discussed below.)

6.3 Results

Each simulation produces significant data. We start with a comparison across the

different phases of evolution: i.e., pre-bounce, bounce, and post-bounce evolution.

We plot the fluid quantities, i.e., the rest-mass density, the electron fraction, and the

specific internal energy, along with the fluid radial velocity, entropy per baryon, and

temperature, all as a function of both the radius and the enclosed baryon mass. We

present selected quantities as functions of time; e.g., the trajectories of the position

of the shock, the conditions at the core center, the neutrino luminosities and RMS

energies sampled at a fixed 500 km radius, and the net mass accretion rate sampled

at a fixed 350 km radius. The key neutrino transport quantities we choose to plot

are the neutrino luminosity and RMS energy profiles as measured in the fluid rest

frame. In both runs, the physical time is synchronized at bounce (tpb = 0). When the

central density reaches a local maximum immediately before the shock is formed, we

consider the bounce is formed, tpb = 0. Instances before core bounce therefore have

negative values. The maximum of the infall velocity is used to define shock position.

6.3.1 Infall

In Figure 6.3.1, we plot the evolution of the central entropy per baryon and central

electron fraction during infall: the top (bottom) panel shows the evolution of the

matter entropy per baryon (electron fraction) in the innermost zone. Before a shock

forms (ρc < 4×1014g/cm3), the central entropy rises and the central electron fraction
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decreases. The evolution given by the two codes is similar, with a slightly lower

value in both central entropy per baryon and central electron fraction for Flash-

X+ thornado. The decline in central electron fraction indicates the core is losing

electrons, or deleptonizing or neutronizing. During the evolution, if neutrinos are

formed at high densities, which are at or near the center, it is harder for them to escape

than if they are formed at lower density. Hence, neutrinos are trapped in the inner

stellar core during infall, which leads to a trapped degenerate sea of electron neutrinos.

For a short time, the neutrino trapping is complete. Soon after, the neutrinos and

electrons establish an equilibrium. Through detailed balance, the electron capture

and neutrino absorption rates are related in equilibrium, and the final Ye becomes

a function of the local electron chemical potential, which is assumed by the EOS.

That is why the central electron fraction is flatted out at larger density, since the

electron chemical potential is insensitive at these times, and EOS, the input physics,

and initial conditions define the evolution. Because the same nuclear EOS and initial

progenitor were used, the starting values and evolution are close, as expected. We see

that trapping occurs almost simultaneously for Chimera and Flash-X+ thornado. A

slightly higher entropy per baryon and lower electron fraction in Flash-X+ thornado

was observed compared to Chimera. And a “jump” in entropy for densities exceeding

1014 g/cm3 is observed in Flash-X+ thornado. It happens coincidentally with a

temperature jump in the inner-most-core around core bounce. The origin of this

anomalous behavior requires further investigation.

The evolution of pre-bounce states at certain central densities during collapse is

presented in Figures 6.3.2 and 6.3.3. Excellent agreement between the two codes

is observed, with the exception of the entropy per baryon and temperature in the

innermost zone. This issue remains unresolved at this time. More investigations are

needed to address the cause of this difference. In addition, lower entropy per baryon

and specific internal energy, higher pressure was observed near the outer boundary

in Flash-X+ thornado. These differences are in the non-NSE region. Chimera

determines whether a zone is in NSE based on an empirically-determined expression.
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It assumes a linear relationship between the NSE transition temperature TNSE and

the density (Equation (7) in Section 3.4 from Bruenn et al. (2020)):

TNSE(ρ) =

C1ρ+ C2 if ρ < 2× 108 g cm−3

6.5× 109 K otherwise,
(6.1)

where C1 ≡ 5.333 K g−1cm3 and C2 ≡ 5.433 × 109 K. Any non-NSE zone for which

T ≥ TNSE is transitioned to NSE at the beginning of a global time-step. This generally

includes the iron core during collapse and moves outward with the shock once it forms.

More details can be found in Section 3.4 from Bruenn et al. (2020).

6.3.2 Bounce

In Figures 6.3.4 and 6.3.5, the fluid quantities at core bounce, as functions of radius

and enclosed mass, are presented, where Chimera results are plotted in black and

Flash-X+ thornado in green. We define the bounce as the moment when the central

density reaches the maximum density, and the fluid velocity is about to change the

sign behind the shock and form a shock. The agreement between the results of both

simulations is excellent at this time: the shock is formed at the same location (velocity

plot in Figure 6.3.4); the density profiles are nearly indistinguishable; the entropy per

baryon, electron fraction, and specific internal energy have the overall good agreement

aside from some local differences. Because of the definition of bounce, and the

dramatic change that happens about it, we see differences in the velocity profiles in

the inner-most core (upper left plot in Figure 6.3.4). The infall velocities in the outer

core agree well. We observe a difference in temperature at the core center (bottom

left plot in Figure 6.3.4). A jump in the electron fraction at an enclosed mass of

0.72 M⊙ occurs in the Flash-X + thornado simulation, but not in Chimera (bottom

middle plot in Figure 6.3.4). This jump in the Flash-X+ thornado simulation appears

before core bounce, as can be seen from Figures 6.3.2 and 6.3.3. It is a feature that

has evolved during infall by Flash-X+ thornado but disappears soon after bounce –
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it is not seen at 3 ms, as can be seen in Figure 6.3.12. Meanwhile, the entropy per

baryon and temperature are coincidentally also higher in Flash-X+ thornado than

in Chimera at the jump. More testing is required to determine the causes of this

behavior. Another difference, the specific internal energy in the outer core, occurs

in the non-NSE region. It is caused by the different EOS treatments in the two

codes in this region. Flash-X+ thornado uses one tabulated SFHo NSE EOS table.

Chimera treats the NSE and non-NSE region differently. In NSE, Chimera uses

the SFHo table, as does Flash-X + thornado, while in non-NSE, Chimera evolves

the nuclear composition using the XNet thermonuclear reaction network code given

the density, temperature and electron fraction. To be more precise, in Chimera’s

non-NES treatment, the thermodynamic state depends on the isotopic composition,

density and temperature. Its electron fraction is calculated using Ye =
∑

i ZiYi, where

Zi is the proton number of an isotope, and Yi is the molar abundance of that isotope.

The practical effect of this is that Flash-X + thornado assumes the average atomic

mass is ∼ 60 in the silicon shell, twice the correct value. This results in the number

density of nuclei in the silicon shell being half the correct value, impacting the pressure

slightly, but the entropy greatly, since the entropy contains a large contribution from

the non-degenerated nuclei. Most of these differences are introduced during the last

0.5 ms before bounce. The profiles are in excellent agreement before that.

Again, despite these differences, the overall agreement at core bounce between

Chimera and Flash-X+ thornado, as shown in both radius in Figure 6.3.4 and in

enclosed mass scale in Figure 6.3.5, is very good.

6.3.3 Comparisons as a Function of Time

Figure 6.3.6-6.3.10 compare the shock trajectories, mass shell trajectories, PNS

radius, neutrino RMS energies at 500 km, neutrino luminosities at 500 km, and net

mass accretion rates at 350 km computed by the two codes as a function of time from
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bounce to 180 ms post-bounce. The luminosity is obtained by computing

Lν = 4πr2
2πc

(hc)3

∫
Hε3dε, (6.2)

where H is the number flux. In Figure 6.3.6, the number of each mass shell trajectory

indicates the enclosed mass in M⊙, with Flash-X+ thornado mass shell trajectories

plotted in green, and Chimera trajectories plotted in black. The solid lines trace the

position of the shock for each code. The difference in the shock trajectories is initially

not very large, especially for the first 3 ms. (See Figures 6.3.11and 6.3.12 for the

snapshot comparison plots at 3 ms.) The biggest difference in the shock trajectories is

about 100 ms. (See Figure 6.3.14 for snapshot plots at 100 ms, which will be discussed

in detail later.) This sharp increase in the shock trajectory for Chimera is due to

the passage of the shock into the silicon layer, with its associated drop in density (see

Figure 7.2.1 for the density at around 1200 km) and reduction in the inwardly directed

ram pressure on the shock. Both the Flash-X+ thornado and Chimera shocks

exhibit this change of slope due to the shock passage into the silicon layer at about

100 ms after bounce, but the change is much less dramatic for Flash-X+ thornado. It

should be noted that after 70 ms, the shock exits the region ρ > 2× 108g/cm3, which

is covered by the SFHo EOS in both Flash-X + thornado and Chimera, and enters a

region where the EOS is treated differently. (Refer to Equation (6.1) for the Chimera

NSE/non-NSE EOS transition condition.) When this transition takes effect, it makes

the comparisons problematic. The Chimera shock trajectory is 25 km above Flash-

X+ thornado when t = 75 ms and the transition take effect. Then the difference

in shock trajectories increases dramatically, to a maximum 55 km at 100 ms. The

divergence is affected by both the NSE/non-NSE EOS transition and shock passage

through the progenitor density profile, as we will see in Figure 6.3.10. The divergence

also suggests that non-NSE treatment is important.
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The PNS radius evolution is plotted in Figure 6.3.7 for both codes. The results

are very similar: both PNS radii decrease from around 90 km to around 70 km by

180 ms post-bounce at the same rate, as the core cools down and deleptonizes.

The neutrino RMS energies and luminosities sampled at a fixed radius of 500 km

are shown in Figures 6.3.8 and 6.3.9, respectively. The two simulation results

are qualitatively similar. One noticeable difference is that Flash-X+ thornado

luminosities and RMS energy exhibit a higher electron-neutrino burst peak and larger

electron-neutrino and electron-antineutrino luminosities thereafter, reflecting its more

rapid shock retraction. At the burst, thornado has the peak in RMS energy around

20 MeV, while Chimera has the peak ∼6 ms later, around 15 MeV. The largest

deviation in RMS energy after the burst is in electron-antineutrino RMS energy at

most 17% around 20 ms. At the burst, thornado has the peak around 670 B/s,

while Chimera has the peak ∼6 ms later, around 373 B/s. The largest deviation in

electron-antineutrino luminosity after the burst is at most 50% around 20 ms, while in

electron-neutrino luminosity is 30% around 60 ms. These differences result from the

difference in neutrino radiation method. Chimera one-moment method assumes an

isotropic propagation for each neutrino, while thornado two-moment method allows

the neutrino to be polarized in angular distribution. So that the burst in thornado

result was observed earlier and stronger than in Chimera result at 500 km – a location

distant from the major neutrino source. The different radiation methods lead to a

late consequence of the deleptonization differences during the neutrino burst.

The net mass accretion rates computed by two codes at a fixed potion of 350 km

are present in Figure 6.3.10. The net mass accretion rate is defined as

Ṁ(r) = 4πr2ρ(r)v(r). (6.3)

Again, the two results are close to each other for the first 70 ms. Then a dip happens

in the Chimera result, followed by Flash-X+ thornado around 10 ms later. This

drop is associated with the drop in density that also affected the shock trajectory.
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The shock passes through the EOS switch region in Chimera at almost the same

time, which enhances the drop in accretion rate over the drop in thornado result.

6.3.4 Post-Bounce: 3 ms

The time slice at 3 ms post-bounce captures the launch of the electron neutrino burst.

This moment is captured in Figures 6.3.11 and 6.3.12. At this time, the results of

both simulations are still similar. With the exception of the difference in the outer

core in entropy per baryon and specific internal energy, and the difference at the core

in temperature.

6.3.5 Comparisons at 70 ms after Bounce

The time slice at 70 ms post-bounce captures is presented in Figure 6.3.13. The

electron fraction profile has a good agreement: two codes have the same feature

around 12 km and around PNS surface (70 km). Difference in inner core for Flash-

X+ thornado, higher temperature and higher entropy, are still observed, which is

rooted in the earlier difference around bounce (Figures 6.3.4 and 6.3.5). Flash-

X+ thornado has a stronger shock at an inner location compared to the result of

Chimera. At this time, the shock exists in the region ρ > 2 × 108g/cm3, see the

density plot at the top central panel, and the temperature is relative low (lower left

panel), which is covered by the SFHo EOS in Chimera and enters a region where the

EOS is treated differently by each code: Chimera implements a non-NSE treatment

(Equation (6.1)) for the outer layer. And the difference between two codes, in shock

trajectory and accretion rate, is exaggerated from now on.

6.3.6 Comparisons at 100 ms after Bounce

The time slice at 100 ms post-bounce captures is presented in Figure 6.3.14. Again,

the electron fraction profile has a good agreement: two codes have the same feature

around 12 km and around the PNS surface. And Flash-X+ thornado has more
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electron loss at PNS surface (≈ 70 km). The shock trajectory of the two codes

has the biggest difference at this moment, and the shock in Chimera is about to

stall and even move inward. (Figure 6.3.6) This difference, that Chimera shock is

about to move inward, and Flash-X+ thornado shock stands, can be explained by

the shock velocity difference and density difference behind and ahead of the shock

(Figure 6.3.14): Flash-X+ thornado has a relative larger running pressure. The

difference in temperature and entropy at the inner area, and the difference around

shock, are the same as those at 70 ms.
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Figure 6.3.1: Comparison with Chimera in central entropy per baryon (upper panel)
and central electron fraction (bottom panel) for evolution before core collapse. The
Flash-X+ thornado results are plotted in green and marked as ’thornado’, while the
Chimera results are plotted in black and marked as ’Chimera’.
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Figure 6.3.2: Comparison with Chimera in fluid quantities versus radius at certain snapshots during collapse, as the
legend indicates. Chimera results are plotted with solid lines, while Flash-X+ thornado results are plotted with dotted
lines. Line color indicates different collapse times, as indicated by the central density.

151



Figure 6.3.3: Comparison with Chimera in fluid quantities versus enclosed mass at certain snapshots during collapse,
as the legend indicates. Chimera results are plotted with solid lines, while Flash-X + thornado results are plotted with
dotted lines. Line color indicates different collapse times, as indicated by the central density.
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Figure 6.3.4: The fluid quantities – fluid velocity (upper left), density (upper middle), entropy (upper right), temperature
(bottom left), electron fraction (bottom middle), and pressure (bottom right) – at core bounce are plotted as functions of
radius.
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Figure 6.3.5: The fluid quantities – fluid velocity (upper left), density (upper middle), entropy (upper right), temperature
(bottom left), electron fraction (bottom middle), and pressure (bottom right) – at core bounce are plotted as functions of
enclosed mass.
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Figure 6.3.6: Comparison of Chimera and Flash-X+ thornado shock radii (both
panels) and mass shell trajectories (upper panel) as a function of time after bounce.

155



Figure 6.3.7: Comparison of Chimera and Flash-X + thornado PNS radii as a
function of time after bounce.

Figure 6.3.8: Comparison of Chimera and Flash-X + thornado neutrino RMS
energies sampled at 500 km as a function of time after bounce. thornado has the
peak around 20 MeV. Chimera has the peak ∼6 ms later, around 15 MeV.
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Figure 6.3.9: Comparison of Chimera and Flash-X+ thornado neutrino luminosities
sampled at 500 km as a function of time after bounce. thornado has the peak around
670 B/s. Chimera has the peak ∼6 ms later, around 373 B/s.

Figure 6.3.10: Comparison with Chimera in net mass accretion rate sampled at
350 km as a function of time.
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Figure 6.3.11: The fluid quantities – fluid velocity (upper left), density (upper middle), entropy (upper right), temperature
(bottom left), electron fraction (bottom middle), and pressure (bottom right) – at 3 ms post-bounce are plotted as functions
of radius.
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Figure 6.3.12: The fluid quantities – fluid velocity (upper left), density (upper middle), entropy (upper right), temperature
(bottom left), electron fraction (bottom middle), and pressure (bottom right) – at 3 ms post-bounce are plotted as functions
of enclosed mass.
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Figure 6.3.13: The fluid quantities – fluid velocity (upper left), density (upper middle), entropy (upper right), temperature
(bottom left), electron fraction (bottom middle), and pressure (bottom right) – at 70 ms post-bounce are plotted as
functions of radius.
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Figure 6.3.14: The fluid quantities – fluid velocity (upper left), density (upper middle), entropy (upper right), temperature
(bottom left), electron fraction (bottom middle), and pressure (bottom right) – at 100 ms post-bounce are plotted as
functions of radius.
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6.4 Summary and Discussion

This comparison study demonstrates the ability of Flash-X + thornado to perform

CCSN simulations. Most of the results from Chimera and Flash-X+ thornado are

in qualitative agreement. The quantitative differences are to be expected, given the

different treatments of neutrino transport (one-moment versus two-moment closure),

the different numerical methods employed, the different resolutions achieved, and in

some respects the different input physics (e.g., the different treatments of non-NSE

material). Our results provide a starting point to extend the comparison to higher

spatial dimensions, more comprehensive modern weak physics, and general relativity.
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Chapter 7

CCSN Simulations in Spherical

Symmetry: Low-Mass Progenitors

This chapter describes the simulations of core collapse, bounce, shock propagation

and stagnation of the core of a series of low-mass progenitor stars of 9, 10, and 11 M⊙

(S9, S10, S11) from Sukhbold et al. (2016), and in the case of S9 simulations with

different physics inputs. All three progenitors are nonrotating, non-perturbed, have

Solar metallicity, and have been evolved in 1D. We evolved the progenitors from the

onset of collapse with Flash-X + thornado.

7.1 Introduction

Only stars more massive than ∼8.0 M⊙ ends as CCSN. And approximately ∼50% of

the mass function of massive stars above ∼8.0 M⊙ lies below ∼13.0 M⊙. Therefore,

understanding the mechanism and character of explosions in this modest mass range

is important. We limit ourselves to Solar-metallicity models and do not consider low-

mass progenitor models with 10−4 or zero metallicity. All in all, we choose a series of

low-mass progenitor stars, S9, S10, and S11 from Sukhbold et al. (2016), which are
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also used in Radice et al. (2017); Burrows et al. (2019); Couch et al. (2020); Stockinger

et al. (2020).

The material in this chapter is organized as follows. We discuss the evolution

common to all of our progenitors using S9 in Section 7.3, the impact of different initial

progenitor structure in Section 7.4, comparing the results obtained with S9, S10 and

S11, then quantification of how different input physics can affect the core evolution

in Section 7.5, including leaving out neutrino interactions and tuning scattering.

7.2 Simulation Setup

Physics The SFHo EOS (Steiner et al., 2010) and Bruenn (1985) opacity rates are

provided by WeakLib tables. The SFHo EOS is consistent with all known nuclear

and astrophysical constraints (Tews et al., 2017), while the Bruenn 1985 opacity set

is the minimal set of neutrino interactions considered in core-collapse simulations.

Emission and absorption from nuclei and nucleons, isoenergetic scattering on nuclei

and nucleons, and neutrino-electron scattering (and pair creation and annihilation

processes) are included for electron neutrino and electron antineutrino. The

Newtonian hydrodynamics equations with a monopole approximation to gravity is

solved by the Flash-X Spark module.

Grids and Domain Sixteen geometrically spaced linear DG energy elements

(giving 32 energy groups) span the range from 0.1 to 300 MeV, with the first

element width being 2.172 MeV and the last element width being 61.74 MeV. We

used uniformly mesh spatial grid, with ∆r ≈ 0.73 km. The outer spatial boundary

for each progenitor is determined by the WeakLib EOS table boundary, which has

lower bounds of ∼1.66×103 g/cm3 in density, ∼1.16×109 K in temperature, ∼0.01

in electron fraction, ∼-1.39×1017 erg/g in internal energy, ∼5.10×1021 dyn/cm2 in

pressure, and ∼1.49×10−3 kB in entropy. To be precise, we used 3000 km with ∆r =
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0.73 km for model S9, 3700 km with ∆r = 0.72 km for model S10, and 4000 km with

∆r = 0.74 km for model S11.

In radius, we apply an inner reflecting boundary and a ghost cell with fixed

conditions as the outer boundary condition. Although the constant density inflow is

not ideal regarding shock revival, the retained outer boundary is a better treatment

than “free-flow”, which leads to mass flux increasing inflow. (In the “free-flow” outer

boundary condition, the material outside the computational domain is treated as

having the same speed as the material at the outer boundary. But the material

at the outer boundary actually flows quicker than the material further out but the

density falls off as well.)

The future development of Flash-X will include more realistic prescriptions for

nuclear combustion, which will allow us to run with more than one EOS and keep

zones in the original model to the oxygen shell and beyond. After that, we can enlarge

the computational domain and evolve the model to later time.

Initial Condition The initial conditions are displayed in Figure 7.2.1 for all three

progenitors. They are similar overall, especially for S10 and S11. S9 has a slightly

sharper density profile, wider and faster infalling speed, and bigger nucleon rich region.

The initial neutrino number density across all energy groups and species is 10−20 per

phase space, and the initial number flux is zero per phase space.

7.3 Result 1: Standard Evolution – S9

We begin with the core of the 9 M⊙ model, S9, which has a mass of 1.382 M⊙ and a

radius of 3000 km. All plots in this section are based on simulation results obtained

with Minerbo closure. The S9 model has a 1.32 M⊙ iron core, which is surrounded

by a silicon shell of 0.06 M⊙. See Figure 7.2.1 for the initial density, temperature,

electron fraction, and velocity versus radius, and Figure 7.3.1 for the initial density,

temperature, electron fraction, velocity, A and Z for the SFHo EOS, versus enclosed
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(a) Density profiles in g/cm3 (b) Electron Fraction

(c) Velocity in cm/s (d) Temperature in K

Figure 7.2.1: Initial conditions for the three low-mass progenitor models
from Sukhbold et al. (2016). We used 3000 km with ∆r = 0.73 km for S9, 3700 km
with ∆r = 0.72 km for S10, and 4000 km with ∆r = 0.74 km for S11. The solid lines
represent the initial condition in the computation domain, while the dotted lines are
for the available data from Sukhbold et al. (2016).
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mass. We run the simulation until the SFHo EOS is invalid – i.e., where the EOS

fails to provide a unique thermal state for each spatial node on the domain.

To obtain a bird’s-eye view of the evolution, we present in Figure 7.3.2 the mass

shell trajectories, as well as the electron fraction along each trajectory for the duration

of the run. The background color of Figure 7.3.2 encodes the electron fraction.

The upper red dotted line marks the 1.382 M⊙ shell, which is the total enclosed

mass on the computation domain initially. The second upper red dotted line marks

the 1.3758 M⊙ shell, which traces the first-order discontinuous point in the initial

density profile at 2378 km. The other red dotted lines mark the corresponding

mass shells. The black line follows the shock position. Three additional crucial

lines are plotted. The red line tracks the proto-neutron star (PNS) radius, which is

defined by the density 1011 g/cm3. The dashed black line and the dotted black line

track the mean electron-neutrino–sphere and the mean electron-antineutrino–sphere,

respectively. The neutrino sphere is the radius at which the neutrino optical depth

equals 2/3:

τ̄x ≡
∫ r

∞
dr′/λx = 2/3, (7.1)

where λx is the neutrino-energy-dependent mean free path per species x, x =

νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ , i.e., for each x,

τ̄ =

∫ r

∞ dr′
∫∞
0
χJ ε3dε∫∞

0
J ε3dε

, (7.2)

where ε is neutrino energy, J is neutrino number density, χ is neutrino total opacity.

In our model, electron-neutrinos and electron-antineutrinos are included, and the

corresponding sphere radii are plotted in Figure 7.3.2. As the background color

indicates, the outer layer is electron-rich, while the inner layer is relative electron-poor

and losing electrons. This deleptonization occurs through electron-neutrino emission

during stellar core collapse, and continues via neutrino diffusion after core bounce.

The outer layers compress to the core, as the mass shell indicates. The mass shell
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Figure 7.3.1: Initial A and Z profiles for model S9 using the SFHo EOS.
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Figure 7.3.2: Radial mass shell trajectories on an electron-fraction color map for
model S9. The upper red dotted line tracks the 1.382 M⊙ shell, which is the total
enclosed mass on the computational domain initially. The second upper red dotted
line tracks the 1.3758 M⊙ shell, which traces the discontinuous point in the initial
density profile at 2378 km. And the other red dotted lines track the corresponding
mass shells. The black line tracks the shock position. The red line marks the density
1011 g/cm3, which is often used to define proto-neutron star radius. The dashed black
line and the dotted black line represent the mean electron-neutrino sphere and the
mean electron-antineutrino sphere, respectively. The background color indicates the
electron fraction.

169



trajectories bend as they pass through the shock, and their infall is decelerated. The

shock launches at 0.78 M⊙ (≈13 km), propagates to ∼1.15 M⊙ (≈132 km) at 7 ms,

and eventually to a radius of 229 km (≈ 1.368 M⊙) at 208 ms. The PNS comprises

the hot shocked mantle. As it cools and contracts, it radiates neutrinos of all types

from its cold, unshocked inner core. The shock recedes with time, as the PNS cools,

which eventually leads to a neutron star or black hole formation. The mean electron-

antineutrino–sphere is always below the mean electron-neutrino–sphere. We will give

a more detailed discussion later.

In Figure 7.3.3, the evolution of density, entropy, electron fraction, and velocity

versus radial position at various central densities during collapse and at later times is

displayed. As one can read off of the color bar, the blue-colored lines mark the pre-

bounce states. The gray lines indicate the state at core bounce. And the red-colored

lines mark the post-bounce states. During collapse, the central density increases from

O(1011 g/cm3) to O(1014 g/cm3), the central electron fraction decreases from ∼0.4

to ∼0.3, and the inward velocity develops a negative peak with maximum absolute

value at ∼0.23 c. Core bounce occurs at a central density of 4.0×1014 g/cm3 and a

central electron fraction of 0.31, and a shock forms. As shown in Figure 7.3.3d by the

red lines, positive velocity for outflowing matter is exhibited behind the shock. The

location of shock formation is evident in all four plots. As one can see, each of these

quantities has a sharp discontinuity at 13 km (gray lines). We can see both from

Figure 7.3.2 and from Figure 7.3.3c, the pre- and post-bounce deleptonization due

to electron-neutrino emission. The discontinuity in velocity in Figure 7.3.3d, which

is the location of shock, is traced by the shock radius in Figure 7.3.2. After shock

breakout at the electron-neutrino sphere, at around 7 ms, the shock (at ∼132 km)

has been transformed into an accretion shock. Figure 7.3.3d shows that the velocity

right behind the shock becomes negative at this time. This transition corresponds to

the first peak, at around 7 ms, in the shock radius in Figure 7.3.2. A deep trough

in electron fraction directly behind the shock, shown in Figure 7.3.3c, also formed

due to the electron-neutrino burst. As the simulation continues, this trough grows
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(a) Density profiles (b) Entropy profiles

(c) Electron fraction profiles (d) Velocity profiles

Figure 7.3.3: Evolution of model S9. The lines with the same color show the core
properties at the same moment indicated by the color bar. The blue-colored lines
mark the pre-bounce states. The gray lines indicate the state at core bounce. And
the red-colored lines mark the post-bounce states.
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deeper. Then it reaches a minimum electron fraction of 0.0828 by the last time slice at

208 ms. Meanwhile, after the shock initially stalls, the post-shock velocities steadily

become more negative. The shock continues to move out due to accretion through it.

As shown in both Figure 7.3.2 and Figure 7.3.3d, the shock has a maximum radius of

∼229 km at 208 ms for S9 which tends to increase as time passes. The high entropy

stays well below the shock, and expands during the time, as Figure 7.3.3b shows.

Figure 7.3.4 is plotted to present the evolution of entropy during the simulation.

The lines in the figure are the same as those in Figure 7.3.2 with the background color

encodes the entropy per baryon. One can read that the high entropy region below

the shock (red area), which is the gain region, expands as time goes. The gain region

is collection energy when the simulation ends.

To trace the evolution at the core center, we plot Figure 7.3.5. The top/bottom

panels show the evolution of the matter entropy/lepton number fraction in the

innermost zone. The left panels show entropy and lepton number fraction versus

central density for pre-bounce evolution. The right panels show the post-bounce

evolution versus post-bounce time. The evolution of these three properties is

determined by the implementation of the nuclear EOS and the progenitor. We

presented a detailed comparison for this evolution using the same EOS and progenitor

with Chimera’s result in Chapter 6. We can read that before trapping, the entropy

rises and the electron fraction decreases due to the emission of electron neutrinos.

And after the onset of neutrino trapping, the matter entropy and the electron fraction

remain relatively constant.

The RMS energies (Equation(5.43)) and the neutrino luminosity (Equation (6.2))

sampled at a fixed radius 500 km as a function of time after bounce are presented in

Figure 7.3.6 and Figure 7.3.7, respectively. When the shock propagates outward, it

encounters the electron-antineutrino sphere, and then the electron-neutrino sphere at

∼1 ms after bounce. The mean electron-antineutrino sphere is always below the mean

electron-neutrino sphere because electron-antineutrinos have weaker interactions with

matter. The electron antineutrinos escape from a deeper core region with higher
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Figure 7.3.4: Radial mass shell trajectories superimposed on an entropy color map
for model S9. The lines are defined as in Figure 7.3.2: the red dotted lines track
the corresponding mass shells; the black line tracks the shock position; the red line
marks PNS radius; the dashed black line and the dotted black line represent the mean
electron-neutrino sphere and the mean electron-antineutrino sphere, respectively.
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Figure 7.3.5: The evolution of central entropy and lepton number for model S9. In
the left (right) panels are the pre-bounce (post-bounce) values of the central entropy
(top) and electron fraction (Ye) and total lepton fraction (YL = Ye+Yν) (bottom).
The pre-bounce evolution is plotted versus the central density, while the post-bounce
evolution is plotted versus time.
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temperature, which results in higher RMS energy. Because the PNS contracts

with time, the neutrino sphere temperatures increase, increasing the RMS energies.

When the shock passes the electron-neutrino sphere, the electron-neutrino luminosity

increases markedly as the electron-neutrinos produced by electron capture on protons

escape, producing a peak in the luminosity plot. The increase of electron-antineutrino

luminosity is slower than in electron-neutrino luminosity due to the degeneracy

of the electrons. It is because a large electron chemical potential implies a large

negative positron chemical potential. The production of electron-antineutrinos

through positron absorption is suppressed. The production of electron-antineutrinos

through the pair processes is also suppressed by a large chemical potential of electron-

neutrinos.

The neutrino burst can be viewed more clearly in Figures 7.3.8 and 7.3.9, in

which a color map for electron-neutrino luminosity and a color map for electron-

antineutrino luminosity are plotted, respectively. The red band is the luminosity peak.

The white dotted line along the luminosity peak is the reference line for propagation

outward at light speed. The burst is generated when the shock passes through the

electron-neutrino sphere. A tremendous number of neutrinos are generated around

the PNS surface due to neutrino emission from the nucleons, and are released after the

shock passes the trapping region. Both electron-neutrino and electron-antineutrino

are generated and released, and leave the hot PNS mantle have electron and positron.

Electron-antineutrinos have a deeper trapping radius – electron-antineutrino–sphere.

The degeneracy of the electrons causes the increase in the electron-antineutrino

luminosity to be slower than the increase in the electron-neutrino luminosity. The

electron degeneracy is lifted in the hot shocked mantle of the PNS.

Figure 7.3.10 shows the net neutrino heating rate due to emission and absorption

of electron-neutrinos and electron-antineutrinos. The net neutrino heating rate is

computed using
dϵ

dt
= −

∑
s

∫
R+ χs(feq,s −Ds)ε

3dε

4πρ
, (7.3)
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where ρ is the matter density,
∑

s is a sum over all species s (which is νe and ν̄e

in here), feq,s is the equilibrium distribution of the species s, and Ds is the specie s

number density in the Lagrangian frame,

Ds =
1

4π

∫
S2
fsdω. (7.4)

The heating region is marked in red, while the cooling region is in blue. Behind the

shock, the matter cools for the first 60 ms. Meanwhile, the gain region is steadily

expanding in radius, as consistent with the expanding region of high entropy seen in

Figure 7.3.3b and Figure 7.3.4. After 100 ms post bounce, the matter behind the

shock is consistently heated. Outside the shocked region, the neutrinos stream freely,

and the matter has a low cooling rate.

7.4 Result 2: Impact of Different Progenitors

To understand how the core evolution differs with progenitor mass, we ran simulations

using two other low-mass progenitors, S10 and S11. All the progenitors have evolved

to the point of core-collapse, as defined by the moment when their radial infall velocity

has reached 1000 km/s. All results presented in this section are obtained using the

same input physics as in the previous section, except for the initial progenitor.

Figure 7.2.1 provides the collection of initial condition. S9 is at the lower end of the

mass function and has a steeper mass density profile with radius above 1000 km than

S10 and S11. All three progenitors have a unique structure in density: the S9 density

profile has the most apparent slope change around 2500 km with enclosed mass around

1.376 M⊙, while the slope change for S10 occurs at 1700 km and 1.437 M⊙, and the

slope change for S11 occurs at 1550 km and 1.423 M⊙. In the S10 progenitor profile,

there is a small density inversion, which would be Rayleigh-Taylor unstable, and is

not expected to be present in nature (Radice et al., 2017). The initial condition of

model S9 also differs from S10 and S11 by temperature, electron fraction and velocity.
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Model S9 is cooler than models S10 and S11, and has less electron fraction at inner

most regions, and larger nucleon rich (electron fraction lower than 0.5) regions. Model

S9 also has a slightly larger velocity peak standing at the larger radius. Model S10

and S11 are relatively similar. The difference in electron fraction between the S10

and S11 throughout the iron core is less than 0.005. The temperature and velocity

structure of S10 and S11 are similar. The difference between model S10 and S11 is

most noticeable around 2000 km, where model S11 has a slight bigger drop in density,

a bigger increase in electron fraction, and a bigger discontinuous in temperature.

A first glance of the results is presented in Figure 7.4.1, where the shock radii

for all three models versus post-bounce time are presented: blue line for S9, green

line for S10, and yellow line for S11. Same as observed in other work (Radice et al.,

2017), none of the progenitors exploded in 1D simulations. All three models have

"waves" within the first 50 ms. Within this time window, shock of model S9 pushed

relatively farther than that for S10 and S11, and S10 and S11 had almost identical

shock trajectories. Later than that, the shock speed of model S9 was accelerated

around 82 ms after bounce. The shock for model S10 and S11 had almost the same

shock radii till to 108 ms. Then the shock of S11 accelerates and reached 250 km

at 126 ms. The shock of S10 accelerates last, around 140 ms. The analysis of the

accretion rate can provide insight into the reason for the different evolution.

In Figure 7.4.2, the net mass accretion rates (defined by Equation (6.3)) sampled

at a fixed radius 500 km for the three models are plotted. Each of them has a

step in the accretion rate: 72 ms for S9, 140 ms for S10, and 100 ms for S11.

The sequential order is the same as the “acceleration” order observed in the shock

trajectory plot, Figure 7.4.1. These steps are corresponded to the changes in each

initial density profile, see Figure 7.2.1a. The sudden growth of the accretion rate of

model S10 around 140 ms is due to the small density inversion present in the initial

density profile. A steep drop in the accretion rate at early times, when the neutrino

luminosities are still large, is required for a successful explosion in 1D. Apparently,

none of these accretion rates dropped quickly enough.
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The evolution of entropy is presented in Figure 7.4.3 for model S10, Figure 7.4.4

for S11, same as Figure 7.3.4 for model S9. One can clearly see that the high entropy

bands followed each “weak explosion” behind the shock, such as around 150 ms for

S10. And the high entropy area emergent later expanded with time. We will see this

heating region growth again in the net heating rates. The different mass shell, as

the red dotted lines mark in the figures, is a direct consequence of the initial density

profile difference. Same as in Figure 7.3.4, the PNS radii and neutrino sphere radii

are also plotted in Figures 7.4.3 and 7.4.4. The location and behavior of the changes

of these three lines for each model are similar, which play a main role in determining

radiation properties. These similarities indicate similar PNSs and envelopes around

the PNSs, and lead to similar radiation properties, as we will see below.

Though the dynamics below 500 km, a radius the shock never reaches in these

simulations, are different for different progenitors, the radiation properties at 500 km

have relatively similar behavior. The neutrino luminosity and neutrino RMS energy

sampled at a fixed 500 km radius are plotted in Figure 7.4.5 and 7.4.6, respectively,

for the three models considered here. And a snapshot of neutrino luminosity at

150 ms post-bounce versus radius is plotted in Figure 7.4.7. The results for model

S9 is colored blue, while green for S10 and yellow for S11. The radiation properties

– RMS energy and luminosity – of the three models are relatively similar in terms of

the fluid properties. This is because neutrinos are mainly generated around the PNS

surface, which among the three low-mass models has similar properties and size, as

we mentioned earlier in Figures 7.3.4, 7.4.3, and 7.4.4. Because of the accelerated

contraction rate of the PNS, all RMS energies increase. Despite the similarity in

the RMS energy and luminosity evolution at a fixed 500 km radius, a difference

in luminosity at 150 ms versus radius is observed, Figure 7.4.7. The luminosity of

the three models diverges outside the PNS radii. S10 had the highest luminosity at

150 ms around the shock, because its shock was pushing outwards at fastest speed,

Figure 7.4.1.
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Net heating rates (defined in Equation (7.3)) for the three models considered here

are also plotted: Figure 7.3.10 for S9, Figure 7.4.8 for S10, and Figure 7.4.9 for

S11. Red region is heating and blue region is cooling. They have the same cooling

to heating transition behind shock and same heating region expansion between the

shock and gain radius (the while band separating blue cooling region and red heating

region) before the shock receded.

7.5 Result 3: Impacts of Neutrino-Matter Interac-

tion Set – S9

The results presented in this section are the result of numerical experiments with the

spherically symmetric neutrino radiation hydrodynamics code Flash-X+ thornado

to examine the effects of altering the neutrino–matter interactions. The first set

compares the results obtained with reduced neutrino opacities versus our fiducial

set of opacities. The second set examines the sensitivity of spherically symmetric

CCSN simulation to variations in the treatment of isoenergetic scattering. All results

presented in this section use S9 progenitor as initial conditions.

7.5.1 Set 1: Reduced Neutrino Opacities

The first set of neutrino opacities we considered here contains three settings that

vary the fidelity of opacities. Setting A, electron-neutrino and electron-antineutrino

emission, absorption and iso-energetic scattering on nucleon and nuclei are included,

labeled as ‘EmAb + Iso’. Setting B adds neutrino-electron scattering to setting A, and

is labeled ‘EmAb + Iso + NES’. Setting C further adds neutrino pair production and

annihilation, and is labeled as ‘EmAb + Iso + NES + Pair’. All else, including closure,

physical domain, resolution, and limiters, is the same as in Section 7.3. Setting B

corresponds to the opacities used in Sections 7.3 and 7.4.
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In Figure 7.5.1, the evolution of central entropy, electron fraction and lepton

fraction is plotted, with setting A in cyan lines, setting B in blue lines, and setting

C in yellow lines. Like Figure 7.3.5, the left panels show entropy and lepton number

fraction versus central density for pre-bounce evolution, and the right panels show

the post-bounce evolution versus post-bounce time. While the setting B and setting

C models have similar evolution, the result of setting A is separated from them.

Setting A, which omitted NES, has less central entropy pre-bounce, higher entropy

around and post-bounce, and more electron in the PNS. This occurs because NES is

the key neutrino–matter interaction at bounce for neutrino trapping. Without NES,

neutrinos escape more quickly, and are less likely to be captured by neutrons at core,

leading to less deleptonization. It demonstrates, as we mentioned earlier, that the

evolution of central properties is determined by the implementation of the nuclear

EOS and neutrino interactions.

The shock trajectories for all three settings versus post-bounce time are presented

in Figure 7.5.2, with setting A marked by a dotted cyan line, setting B in dashed blue

line, and setting C in yellow solid line. The results of setting A are very different from

the results of setting B and setting C, which are almost identical. It demonstrates

the importance of including neutrino-electron scattering (NES) in a CCSN simulation,

since NES dramatically impacts the dynamics.

The neutrino luminosity and neutrino RMS energy sampled at a fixed 500 km

radius are plotted in Figure 7.5.3 and 7.5.4, respectively, for the three opacity settings.

The results of setting A are marked by dotted cyan lines, while setting B are dashed

blue lines, and setting C are yellow solid lines. Setting A had the highest luminosity

and RMS energy, in both electron-neutrino and electron-antineutrino, at pulse and

during later evolution. Setting B had the second high luminosity and RMS energy

at neutrino pulse. Setting B has similar luminosity and RMS energy during later

evolution to setting C. The difference between setting A, setting B and setting C

tends to decrease as time passes, when the PNS is relatively steady.
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A snapshot of properties comparison for the three opacity settings at bounce is

presented in Figure 7.5.5 for density, temperature, electron fraction, entropy, pressure

and velocity versus enclosed mass. The result of setting A is marked by a dotted cyan

line, while setting B in blue lines, and setting C in yellow lines. A excellent agreement

between setting B and setting C is observed. The result of setting A had shock at

the outer area, with a slight stronger shock and higher electron fraction at the center

core. Other than that, the features in the fluid properties between the three settings

are the same.

The evolution of electron fraction with the mass shell trajectories for setting A is

presented in Figure 7.5.6 to compare with the result of setting B, which is presented

in Figure 7.3.2. (Setting C had almost identical history as setting B, and is omitted

here.) The first difference is the deleptonization behind the shock around the bounce.

Because setting A had stronger shock and less “obstacle” ahead of the shock, due to

omission of NES, its shock “over-shoot” is larger and had more deleptonization up

to 200 km around 10 ms as the background color marks. In addition, because of

the “over-shot” shock, the mass shells, specifically 1.23 M⊙ and 1.28 M⊙, crossed the

shock radius sooner.

Figure 7.5.7 shows the net neutrino heating rate due to emission and absorption

of electron neutrinos and antineutrinos for setting A, comparable to Figure 7.3.10

for setting B. Because of the absence of NES, the matter that ahead of shock was

more transparent to the neutrino and had less heating/cooling rate. Setting A also

had a larger and consistent heating region behind the shock compared to setting B.

Therefore, NES plays an important role in the dynamics at bounce and during the

late time evolution. NES is essential to be included in a CCSN simulation.
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Figure 7.3.6: Neutrino RMS energies at 500 km as a function of time since the onset
of collapse for model S9. Solid line marks result for electron-neutrinos and dashed
line for electron-antineutrinos.
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Figure 7.3.7: Neutrino luminosities at 500 km as a function of time since the onset of
collapse for model S9. Solid line marks result for electron-neutrinos and dashed line
for electron-antineutrinos.
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Figure 7.3.8: Electron-neutrino luminosity evolution map for model S9. The white
dotted line along the luminosity peak (red band) is the reference line for propagation
outward at light speed. The other lines are defined the same way as in previous
plots. The background is colored based on the neutrino luminosity, as the color bar
indicates.
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Figure 7.3.9: Electron-antineutrino luminosity evolution map for model S9. The while
dotted line is the reference line for propagation outward at light speed. The other
lines are as defined in the previous plots. The background is colored based on the
neutrino luminosity, as the color bar indicates.
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Figure 7.3.10: Net heating rates from emission and absorption of electron-neutrinos
and electron-antineutrinos, and neutrino–electron scattering at various post-bounce
times for model S9. The black line tracks the shock position. The green line marks
the density 1011 g/cm3, which is often used to define proto-neutron star radius. The
dashed black line and the dotted black line represent the mean electron-neutrino
sphere and the mean electron-antineutrino–sphere, respectively.
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Figure 7.4.1: Shock radii for all three models considered here versus post-bounce
time. Blue line marks result for S9, while green line for S10, and yellow line for S11.

Figure 7.4.2: Accretion rates for three models considered here. Blue line marks result
for S9, while green line for S10, and yellow line for S11.
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Figure 7.4.3: Radial mass shell trajectories superimposed on color maps of entropy
for model S10. The red dotted lines track the corresponding mass shells. The black
line tracks the shock position. The red line marks the PNS radius. The dashed black
line and the dotted black line represent the mean electron-neutrino sphere and the
mean electron-antineutrino sphere, respectively.
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Figure 7.4.4: Radial mass shell trajectories superimposed on color maps of entropy
for S11. The red dotted lines track the corresponding mass shells. The black line
tracks the shock position. The red line marks the PNS radius. The dashed black line
and the dotted black line represent the mean electron-neutrino sphere and the mean
electron-antineutrino sphere, respectively.
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Figure 7.4.5: Comparison of neutrino luminosity versus post-bounce time for all three
models considered here. Solid lines mark results for electron-neutrino and dashed lines
for electron-antineutrino. Blue lines mark result for S9, while green lines for S10, and
yellow lines for S11. At neutrino pulse, model S10 has the strongest peak in both
electron-neutrino luminosity and electron-antineutrino luminosity, then S11 and S9,
with the largest relative difference ∼10%.
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Figure 7.4.6: Comparison of neutrino RMS energy versus post-bounce time for all
three models considered here. Solid lines mark results for electron-neutrino and
dashed lines for electron-antineutrino. Blue lines mark result for S9, while green
lines for S10, and yellow lines for S11. At neutrino pulse, model S10 has the strongest
peak in both electron-neutrino RMS energy and electron-antineutrino RMS energy,
then S11 and S9,with the largest relative difference ∼2%.
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Figure 7.4.7: Comparison of neutrino luminosity at 150 ms post-bounce as a function
of radius for all three models considered here. Solid lines mark results for electron-
neutrino and dashed lines for electron-antineutrino. Blue lines mark result for S9,
while green lines for S10, and yellow lines for S11.
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Figure 7.4.8: Net heating rates for model S10 as a function of radius and time. The
black line tracks the shock position. The green line marks the PNS radius. The dashed
black line and the dotted black line represent the mean electron-neutrino sphere and
the mean electron-antineutrino sphere, respectively.
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Figure 7.4.9: Net heating rates for model S11 as a function of radius and time. The
black line tracks the shock position. The green line marks the PNS radius. The dashed
black line and the dotted black line represent the mean electron-neutrino sphere and
the mean electron-antineutrino sphere, respectively.
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Figure 7.5.1: The evolution of central entropy and lepton number in reduced opacity
comparison for model S9. In the left (right) panels are the pre-bounce (post-bounce)
values of the central entropy (top) and electron fraction (Ye) and total lepton fraction
(YL = Ye+Yν) (bottom). The pre-bounce evolution is plotted versus the central
density, while the post-bounce evolution is plotted versus time. Cyan lines mark
result for setting A, labeled “EmAb + Iso”. Blue lines mark result for setting B,
labeled “EmAb + Iso + NES”. And yellow lines mark result for setting C, labeled
“EmAb + Iso + Pair”.
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Figure 7.5.2: Shock radii for all three opacity settings considered here versus post-
bounce time. Cyan lines mark result for setting A, labeled “EmAb + Iso”. Blue lines
mark result for setting B, labeled “EmAb + Iso + NES”. And yellow lines mark result
for setting C, labeled “EmAb + Iso + Pair”.
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Figure 7.5.3: Comparison of luminosity across simulations with different opacity sets,
for the S9 model. Solid lines mark results for electron-neutrino and dashed lines for
electron-antineutrino. Cyan lines mark result for setting A, labeled “EmAb + Iso”.
Blue lines mark result for setting B, labeled “EmAb + Iso + NES”. And yellow lines
mark result for setting C, labeled “EmAb + Iso + Pair”. At neutrino pulse, setting A
has the strongest peak in both electron-neutrino luminosity and electron-antineutrino
luminosity, then setting C and setting B, with the relative difference between setting
A and setting B be ∼50%.
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Figure 7.5.4: Comparison of RMS energy across simulations with different opacity
sets, for the S9 model. Solid lines mark results for electron-neutrino and dashed lines
for electron-antineutrino. Cyan lines mark result for setting A, labeled “EmAb + Iso”.
Blue lines mark result for setting B, labeled “EmAb + Iso + NES”. And yellow lines
mark result for setting C, labeled “EmAb + Iso + Pair”. At neutrino pulse, setting A
has the strongest peak in both electron-neutrino luminosity and electron-antineutrino
luminosity, then setting C and setting B, with the largest relative difference ∼ 40%.
Electron-antineutrino has higher RMS energy than electron-neutrino in result for
setting A, while electron-neutrino has higher RMS energy for setting B and setting
C.
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Figure 7.5.5: Plots of velocity, density, entropy, temperature, electron fraction, and pressure at core bounce across three
models with different input physics. Cyan lines mark result for setting A, labeled “EmAb + Iso”. Blue lines mark result
for setting B, labeled “EmAb + Iso + NES”. And yellow lines mark result for setting C, labeled “EmAb + Iso + Pair”.

199



7.5.2 Set 2: Sensitivity to Variations in Isoenergetic Scatter-

ing

In this section, we focus on investigating the sensitivity of the model to variations

in the isoenergetic scattering cross section. This study was inspired by Melson

et al. (2015a), where they showed that introducing a factor (moderate strangeness-

dependent contribution) in the axial-vector coupling constant could cause an non-

exploding model to explode. The modification is in the direction of current experi-

mental results and reduces the neutral-current scattering opacity of neutrons (Melson

et al., 2015a). In Melson et al. (2015a), this change increased luminosities and mean

energies of all neutrino species, and strengthened the neutrino-energy deposition in

the heating layer.

We chose the S9 progenitor to perform this test, because S9 has the steepest

density profile among three progenitors, a characteristic conducive to explosion. All

else, including closure, physical domain, resolution, and limiters, is the same as in

Section 7.3.

Following Horowitz (2002); Langanke and Martinez-Pinedo (2003); Melson et al.

(2015a), the axial-vector coupling constants, ca, with a strange-quark contribution to

the nucleon spin can be expressed as

ca =
1

2
(±ga − gsa) , (7.5)

where the plus sign is for νp scattering, and the minus sign is for νn scattering. The

cross section for isoenergetic scatting is

σt
0 =

∫
4π

dΩ
dσ0
dΩ

(1− cos θ) =
2G2

Fε
2

3π

(
c2v + 5c2a

)
, (7.6)

where GF is Fermi’s constant. With negative gsa, the cross section increases for νp-

scattering and decreases for νn-scattering. We define the cross section change ratio
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Figure 7.5.6: Electron fraction evolution map for reduced opacity comparison for
model S9 using setting A. Same as in Figure 7.3.2 for setting B, the red dotted
lines track the corresponding mass shells. The black line tracks the shock position.
The red line marks PNS radius. The dashed black line and the dotted black line
represent the mean electron-neutrino sphere and the mean electron-antineutrino
sphere, respectively.
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Figure 7.5.7: Net heating rates in reduced opacity comparison for model S9 using
setting A. Same as in Figure 7.3.10 for setting B, the black line tracks the shock
position. The green line marks PNS radius. The dashed black line and the
dotted black line represent the mean electron-neutrino sphere and the mean electron-
antineutrino sphere, respectively.
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as

The cross section change ratio =
σt′
0

σt
0

=

(
c2v +

5

4
(±ga − gsa)

2

)
(
c2v +

5

4
g2a

) , (7.7)

with +ga for νp scattering and −ga for νn scattering. And in Figure 7.5.8, the cross

section change ratio versus gsa with ga = 1.21 is plotted, from which one can read that

gsa = −0.2

The shock radii obtained with various gsa values are plotted in Figure 7.5.9.

In Melson et al. (2015a), they found, for a 20M⊙ progenitor, adding gsa = −0.2

to the axial-vector coupling constant ga ≈ 1.26 can turn an unsuccessful three-

dimensional explosion model into a successful explosion model. We adopted their

setting, gsa = −0.2, as well as some other settings, in our one-dimensional models, all

using the S9 progenitor. Here gsa = 0.0,−0.2,−0.4, and −1.0, corresponding to that

νn decreasing ratio (defined by Equation (7.7) with −ga) be 1.0(no change), ∼0.73,

∼0.51, and ∼0.15, respectively, as shown in Figure 7.5.8. Figure 7.5.9 shows that

none of our simulations exploded by the end of the simulation. Neither different gsa
led to different shock behavior, since all shock trajectories were overlapped.

Besides the shock trajectories, the radiation properties – neutrino luminosities

and RMS energies – sampled at a fixed 500 km radius versus post bounce time are

also plotted, in Figure 7.5.10 and Figure 7.5.11, respectively. Same as seen in shock

trajectory (Figure 7.5.9), the simulations with different gsa yield the same radiation

properties, in both neutrino luminosities and neutrino RMS energies. In conclusion,

our one-dimensional model is not sensitive to differences in gsa in both shock radius

and radiation field quantities. It can be understood by relating with the result in the

previous section, Section 7.5.1, that NES plays a more crucial role than iso-energetic

scattering in our models.
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Figure 7.5.8: Following the definition in Melson et al. (2015b), plots the ratio
change in the total transport cross section Equation (7.6) versus gsa with ga = 1.21.
Blue line marks the change in νp cross section, and red line for νn cross section.
gsa = 0.0,−0.2,−0.4, and −1.0, corresponding to that νn decreasing ratio (defined by
Equation (7.7) with −ga) be 1.0(no change), ∼0.73, ∼0.51, and ∼0.15, respectively.
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7.6 Summary and Discussion

We presented a series of CCSN simulations in spherical symmetry obtained using

Flash-X+ thornado. Starting with the simulation using a 9 solar mass progenitor,

we discussed the 1D CCSN simulation results in detail, with discussion of the infall,

bounce, and post-bounce evolution, and of critical fluid and radiation quantities as a

function of time, as well as the physics involved. Then we compared the simulation

results obtained using three different progenitors – S9, S10, and S11. Not surprisingly,

we found that the progenitor structure can affect the evolution, but none of the three

models exploded by the end of our runs. And the 1D supernova models for the S9,

S10 and S11 progenitors do not behave monotonically. Others observe similar results:

Radice et al. (2017) used the same three progenitors and came to the same conclusions.

However, S9, S10 and S11 models do explode in 3D using Fornax (Burrows et al.,

2019). This is evidence that CCSNe need to be simulated in multi-dimensions.

After the progenitor comparison, we presented two sets of simulations with different

neutrino–matter interactions using S9. The results demonstrate the importance of

including a comprehensive set of neutrino–matter interactions in CCSN simulations.
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Figure 7.5.9: Comparison isoenergetic scattering opacity simulations in shock radii
for model S9, with different gsa and ga = 1.21. The blue line marks the result for
gsa = 0.0, red for -0.2, yellow for -0.4, and green for -1.0.
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Figure 7.5.10: Comparison isoenergetic scattering opacity simulations in luminosity
for model S9, with different gsa and ga = 1.21. The solid lines mark the result for
electron-neutrino, and the dashed lines for electron-antineutrino. The blue line marks
the result for gsa = 0.0, red for -0.2, yellow for -0.4, and green for -1.0.
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Figure 7.5.11: Comparison isoenergetic scattering opacity simulations in RMS energy
for model S9, with different gsa and ga = 1.21. The solid lines mark the result for
electron-neutrino, and the dashed lines for electron-antineutrino. The blue line marks
the result for gsa = 0.0, red for -0.2, yellow for -0.4, and green for -1.0.
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Chapter 8

Summary, Conclusions and Outlook

This chapter concludes this dissertation by summarizing the key research findings in

relation to our research aims — developing a next-generation, state-of-the-art neutrino

kinetics simulation capability for the CCSN community. It discusses the value and

contribution of this dissertation, reviews the limitations of the study, and proposes

opportunities for future research. The context is presented in the above order.

8.1 Summary and Conclusions

The primary focus of this dissertation is to develop a next-generation, state-of-the-

art neutrino kinetics (transport) capability in the combined core-collapse supernova

simulation frameworks Flash-X + thornado. Flash-X is a composable software system

that delivers a flexible, high-performance platform and can be used to simulate

physical phenomena in several scientific domains. thornado is a framework/toolkit

that aims to provide numerical solution methods with applications to relativistic

astrophysical systems, such as core-collapse supernova. thornado transport is a

next-generation, state-of-the-art neutrino kinetics capability based on two-moment

neutrino transport and discontinuous Galerkin methods. A detailed description of

the equations solved by thornado transport in the Newtonian gravity, O(v/c) limit

was presented in Chapter 2, as well as the weak physics included and the closure
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method used. We also clearly explained the importance of preserving realizability, the

conservation of lepton number, and the conservation of four-momentum (momentum

and energy). Our effort to develop numerical methods for two-moment neutrino

transport satisfying these requirements was presented in Chapter 3 for O(1) transport

and Chapter 4 for O(v/c) transport. We started with the relatively simple O(1) two-

moment neutrino transport, designed the PDARS IMEX schemes with a realizability-

enforcing limiter, and tested the methods with several numerical tests for their

accuracy, efficiency, realizability-preserving properties, and adherence to the diffusion

limit. Then, we enhanced the numerical method by upgrading the model from

O(1) to O(v/c), no gravity in the transport equations, and added a comprehensive

set of neutrino–matter interaction terms. We explained the difficulty of preserving

realizability with special relativity correction terms added, proposed a modified

numerical method with positivity-preserving limiter, and used the limiters in code

verification tests and scientific simulations. The O(v/c) two-moment neutrino

transport was tested in pure transport problems – numerical tests with updates from

transport only. Then we presented the Flash-X+ thornado numerical implementation

in Chapter 5, including WeakLib for tabulated opacity rates and table interpolation,

the interface for Flash-X+ thornado coupling, and the iteration method for the

nonlinear solver for the collision term. WeakLib code validation and the Flash-

X+ thornado framework validation were also presented. The incorporated framework

was tested in realistic settings. These tests include: (a), the relaxation test for

maintaining the theoretical equilibrium state, (b), the homogeneous sphere problem

for static radiation and the difference the closure method can make, and (c), the

deleptonization wave test for the coupling of the frameworks. In Chapter 6, the

ability of Flash-X+ thornado to perform CCSN simulation is demonstrated by

performing a detailed comparison of CCSN simulation results obtained with Flash-

X+ thornado and Chimera, a well-known CCSN simulation code, for the S9

progenitor and assuming spherical symmetry, including only electron-type neutrinos

and antineutrinos using the industry-standard SFHo EOS and neutrino-matter
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interactions from Bruenn (1985). Good agreement was observed in both the fluid

variables and the radiation variables during core collapse, at core bounce, and

after core bounce. After verifying the capability of Flash-X+ thornadoto perform

core collapse supernova simulations under the assumptions made, we performed a

series of CCSN simulations under the same assumptions with low-mass progenitors

from Sukhbold et al. (2016) and presented our results in Chapter 7. The collapse,

bounce, and late-time evolution of three different progenitors — S9, S10, and S11 —

have been simulated. The dynamics and neutrino observables for all three models are

similar. The S9, S10, and S11 progenitor models do not result in an explosion during

the first 250 ms, 320 ms, and 350 ms after core bounce, respectively. We not only

detailed the evolution of the core in these three cases, but also discussed the impact

different progenitors and weak physics have on the evolution.

8.2 Contributions

The author’s contributions include

1. Enabled neutrino opacity in WeakLib.

2. Helped understand the importance of realizability of moment and developed

realizability-preserving DG IMEX scheme for two-moment neutrino transport.

3. Built, helped optimize, and tested Flash-X+ thornado.

4. Made a code comparison between Flash-X+ thornado and Chimera.

5. Made a serial of 1D CCSN simulations using Flash-X+ thornado on Oak Ridge

Leadership Computing Facility (OLCF) – Summit supercomputer.
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8.3 Outlook

While the development of thornado transport documented here is a significant step

forward for reasons discussed, realistic CCSN simulations will require the following:

1. thornado transport must include heavy-flavor neutrino species.

2. WeakLib must be extended beyond the interaction rates from Bruenn (1985)

to include state-of-the-art weak physics, such as that discussed in Hannestad

and Raffelt (1998); Thompson et al. (2000, 2003); Rampp and Janka (2002);

Horowitz (2002); Hix et al. (2003); Buras et al. (2006); O’Connor (2015);

Horowitz et al. (2017).

3. thornado transport must be general relativistic.

4. The Flash-X+ thornado interface must be developed to enable mesh refinement

and GPU acceleration.

5. A 3D CCSN simulation is demanded.

Development of thornado, as well as Flash-X, continues to include new features

and other enhancements will be reported in the future.
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