
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Doctoral Dissertations Graduate School 

12-2022 

Hardware for Memristive Neuromorphic Systems with Reliable Hardware for Memristive Neuromorphic Systems with Reliable 

Programming and Online Learning Programming and Online Learning 

Ryan Weiss 
rweiss2@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss 

Recommended Citation Recommended Citation 
Weiss, Ryan, "Hardware for Memristive Neuromorphic Systems with Reliable Programming and Online 
Learning. " PhD diss., University of Tennessee, 2022. 
https://trace.tennessee.edu/utk_graddiss/7703 

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee 
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact 
trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7703&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a dissertation written by Ryan Weiss entitled "Hardware for Memristive 

Neuromorphic Systems with Reliable Programming and Online Learning." I have examined the 

final electronic copy of this dissertation for form and content and recommend that it be 

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a 

major in Electrical Engineering. 

Garrett Rose, Major Professor 

We have read this dissertation and recommend its acceptance: 

Nicole McFarlane, Andrew Sarles, Aziz Ahmedullah 

Accepted for the Council: 

Dixie L. Thompson 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Hardware for Memristive Neuromorphic

Systems with Reliable Programming

and Online Learning

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Ryan John Weiss

December 2022



© by Ryan John Weiss, 2022

All Rights Reserved.

ii



Dedicated to my family who have loved and supported me through this journey.

iii



Acknowledgments

I would like to thank my advisor Dr. Garrett S. Rose for his dedication and support

in the completion of my Phd at the University of Tennessee. I would also like to thank

the members of my doctoral committee Dr. Nicole McFarlane, Dr. Andy Sarles, and Dr.

Ahmedullah Aziz for serving on my committee and for their support and time. I could not

have achieved this without the support of the TENN-lab research team. Thank you to

everyone who has helped make this a possibility.

iv



Abstract

Alternative computing technologies are highly sought after due to limitations on transistor

fabrication improvements. Fabricated memristive technology allows for a non-volatile

analog memory for neuromorphic computing. In an integrated CMOS process, the synapse

circuits designed for a spiking neuromorphic system can use memristors to regulate

accumulation in the neuron circuits. Testing the fabricated memristive devices composed

of hafnium oxide and developing a model to represent the key device characteristics lead

to specific design choices in implementing the analog memory core of the synapse circuit.

The circuits I designed for neuromorphic computing in this process take advantage of

the unique capabilities of the memristive device to store a programmable analog memory

reliably and efficiently. I designed the peripheral circuitry required including the circuits

for programming the memristor and for online learning capabilities.
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Chapter 1

Introduction

1.1 Motivation

The computer is a tool to ease human effort in solving difficult problems. The need for a

device that allowed for consistent and quick computation led to the eventual invention

of the modern computer. Advancements in computing have continued to improve their

capabilities and increased the range of possible problems to solve. While the standard

digital computer is capable of solving many problems and continues to improve, varying

limitations are slowing the advancement [62]. The continued increase in the number of

transistors on chip is going to cease as manufacturing smaller transistor feature sizes

becomes increasingly more difficult [74]. The feature sizes of silicon transistors are reaching

physical limitations as manufacturing closes in on the atomic size of silicon atoms. Photo-

lithography, the technique used to produce transistors on silicon, attempts to continue

to reduce feature sizes in silicon, but faces increasing challenges in engineering and cost

[63]. Moore’s law states the transistor count on chip doubling every two years [37]. The

premise of this law implies improvements in computing technology are achieved through

increased transistor count. While increasing available transistors can improve computing,

the effective use of the available electronic devices can also be improved. Continued effort
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in increasing device density will coincide with alternative computing paradigms to enhance

future computing technology.

In conjunction with difficulties in increasing computing performance, potential power

consumption is relatively increasing. Dennard scaling states the power consumption for

smaller technology nodes stays equal to previous technology nodes due to equivalent

decrease in necessary voltage and currents for new technology nodes [11]. This no longer

holds as feature sizes continue to decrease. For continually decreasing transistor sizes,

leakage power is increasing while supply voltage and clock frequency are stagnating.

The increase leakage current is due to effects like reverse bias junction currents, band-

to-band tunneling current, and tunneling into gate oxide [55]. Many of these sources

of leakage become prevalent in deep sub micron processes due to the macro model of

silicon transistors breaking down. The quantum effects of electrons allows currents to

flow unintentionally. The increase in leakage current compounds negative effects due to

increasing the temperature of the devices. Power limitations for advanced nodes have to

thermal runaway into account. One option is slowing down operating frequency. With

the increase in embedded battery powered processors, power is a key factor in improving

computing systems.

The modern computer uses digital memory and logic to implement processing. The von

Neumann architecture that dominates existing computers has a separation of main memory

and the processing unit [82]. The separation of processing and memory requires a data

bus to transfer the information required by the processor from the memory storage system.

Improving computing technology with this architecture requires increased bus performance,

otherwise the data sent across the bus will be a bottleneck for processing. To eliminate

the potential von Neumann bottleneck, computing architectures can implement processing-

in-memory computing. Processing-in-memory computing poses significant challenges in

topological designs. This process of bringing computing to the memory adds additional

difficulty in designing algorithms [64]. Another technique to improve computing capabilities

beyond von Neumann architectures is quantum computing. Quantum computing consists
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of an entirely different paradigm to computing that relies on quantum physics to produce

the correct solution to a problem. Quantum computing requires a set of instructions

using quantum bits to solve problems. The ability to design quantum computers posses

challenges in resilience to environmental noise [16]. These alternatives to the standard

computing architecture posses difficulties in both programming and circuit level design.

An architecture for improving computing technology through bio-mimicry is neuromor-

phic computing. Brain inspiration in computing considers biological processes for naturally

accomplished computing and implements equivalent functions in artificial systems [39].

The biological brain efficiently uses high density of cells for computation [13]. Mimicking

brain functionality has the potential to solve computing challenges with low power cost.

Through the use of neurons and synapses, the brain is a computing system that builds

in features to learn and improve functionality. The adaptability inspired by biological

functions creates possibilities for this architecture to outperform traditional computing

systems [22]. The biological functions performed by the brain are also analog in nature.

Analog computing was overtaken by digital computing due to the lack of precision. The

neuromorphic computing can take advantage of the brain’s nature by build highly efficient

analog circuits.

Alongside improvements to transistor technology, other devices have been developed

for computing. The memristor is a two terminal element that can store information as

a resistance on previous usage [15]. The memristor has potential as a memory storage

element to fit into the neuromorphic framework as an adaptable analog memory unit

[34]. The ideal device would have an infinite life cycle of a continuous analog range of

resistive memory states. Practically, there are challenges with fabricated memristor devices

[33]. As manufacturing technology improves the devices, the circuits that utilize them

can be further optimized and tailored to the devices. For neuromorphic computing the

memristor and similar devices show potential to implement the plasticity of biological

functions. Two of the main components of neuromorphic computing, synapses and neurons,

when implemented using analog circuits have the need for an adaptive analog memory

3



element. For synapses, the memristor can fit in as a direct representation. The synapse

controls the efficiency of communication between neurons, and the memristor can be used

as the representation of that connection. Changes in synaptic efficiency are then directly

correlated with changes in the resistance of the memristor. To implement memristors as

synapses, circuits needed to control and utilize them are needed. The characteristics of

the memristor make them suitable for use in an analog neuromorphic system [79].

1.2 Research Goal

Neuromorphic computing can take advantage of the unique properties of the memristor to

implement analog memory circuits. In this work, I study the key characteristics of the

integration of a hybrid CMOS-memristor VLSI process to develop circuits for neuromorphic

computing. The fabrication of on-chip memristors in-line with a CMOS process allows for

large scale integration of memristive neuromorphic systems-on-chip (SOC). To implement

the memristive neuromorphic SOC, all aspects of the fabrication of the memristors and

their utilization are taken into account. The goal of this research is to build the circuits

for a reliable and programmable integrated memristor-CMOS fabrication process. The

design is grounded in tested results of the devices used.

This work explores the idea of current compliance for programming and implements an

online learning technique that is commonly adapted for these circuits. Table 1.1 shows the

common usage of memristors and similar devices as memory elements in neuromorphic

computing. The methods to program the devices allow for the online learning functionality.

This work utilizes circuitry required for the device’s basic operations to implement the

programming and online learning capabilities seen in this field.

1.3 Research Contribution

The research contributions are enumerated below:

4



Table 1.1: VLSI synapse implementations.

Memory Type Programming Online Learning
This work Memristor Current Compliance STDP
[1] Memristor Pulse Shaping STDP
[77] Memristor Pulse Count STDP
[25] Memristor Pulse Shaping STDP
[30] PCM Pulse Shaping STDP

5



• A simple compact model for the memristor that highlights the relationship of current

and voltage on the device. The model takes into account the device response to

signals that fully change the updated resistive state.

• A memristor circuit using fabricated on-chip memristors that can perform all

necessary functions to use the device as an analog memory. The functions include:

forming, set, reset, and read.

• A low-power, low-complexity read out operation based on current limitation for the

memristor.

• A current control system for implementing current control for both programming

and read out of the memristor.

• A current generating circuit for the memristor to act as a synapse to output current

into a neuron.

• A current steering digital to analog conversion circuit to allow for current

programming of the memristor.

• A reference generation circuit using a memristor to create a range of output currents

for the synapse circuit.

• An online learning circuit to implement spike timing dependent plasticity using the

current control programming of the memristor.

1.4 Dissertation Overview

In this dissertation, I will describe the design of analog neuromorphic circuits using

memristors. The goal of this work is to show circuits that efficiently use the device

technologies available while providing insight into other potential devices and techniques.

The core analog circuits used here for neuromorphic computing are designed to utilize the

6



memristive devices. Testing results from the devices led to particular design choices for

efficient plastic synapse and neuron circuits. I have implemented a particular flavor of

synapse circuit to utilize the devices available. The synapse is designed to take advantage

of the characteristics of the memristor device for simple and reliable programming and

updating. It is also designed for low area and power cost. The programming technique

stems from the physically tested results and is effectively modelled for simulation [36].
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Chapter 2

Background

2.1 Nano Electronic Devices

The motivation of brain inspired computing leads to different technological needs than

standard computing. The potential advantages of neuromorphic computing stems from a

highly dense and interconnected memory system. One long term memory is the synapses

ability to manage the communication of information between neurons. The activity of the

neurons can alter their connected synapses to improve computing performance. The ideal

memory for this system is fabricated at high density, representing the value of synaptic

strength, and is easily adjustable. In implementing neuromorphic computing, stored

values are not required to be digitally precise as neural networks can tolerate a degree of

noise. This allows the use of analog circuits, and specifically analog memory elements to

implement neural circuits. Analog circuits can implement some mathematical functions

efficiently, for example adding to values represented as currents on a wire is accomplished

by connecting the wires together. An analog value can be converted from a digital system

using a digital to analog converter, but this will require area and power to represent

and convert the value. Improving upon this, an analog memory can be created using a

multitude of devices, including standard silicon. A standard silicon process is important

due to the ease of integrating the memory with the processing circuits. Floating gate
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transistors can be used to implement the analog memory in neuromorphic computing

using a standard CMOS process [17]. The need for a highly dense analog memory has

led to the development of alternative types of non-volatile memory devices. Such analog

memory devices for neuromorphic computing include memristors, phase change materials,

spintronics, and ferroelectric FETs [68].

Phase change material, or PCM, offers analog memory storage and updating. PCM are

made of chalcogenide materials, which are made from one chalcogen and one electropositive

element. Chalcogens are in the same family as oxygen in the periodic table of elements. An

example PCM device is a stack of Ag, Ag2Se, and Ge2Se3 [49]. The chalcogenide material

used in these devices changes phase between amorphous and crystalline giving a continuous

range of resistance values [48]. These devices can be used to mimic a synaptic learning

rule, STDP [66]. The temperature effect on the memory of the device adds additional

challenges to efficiently pack in a large amount of synapses on chip [51, 52]. Scaling up the

number of devices on chip is a challenge due to high programming current. The resistance

in the amorphous state is unstable and varies over time. The device endurance is limited

by the number of times the resistance is increased. Systems using this device take in

special considerations to reduce the number of resistance increases, control temperature

and current levels.

Spintronic devices also called magnetic tunnel junctions, MTJ, use a three layer

structure. The layers consist of two magnetic layers with an-oxide layer in between [69].

One magnetic layer is fixed, and the other is free. The free layer can be parallel or

antiparallel magnetization relative to the fixed layer, with each orientation yielding a

different resistance value. These devices have a programmable resistance range and can

achieve synaptic plasticity like STDP. However, the resistance range can be as small as 5Ω

[32]. A small ratio between the highest and lowest resistance states requires more precise

circuitry to detect the different states. These devices require low power to operate, but

have high switching times. They have long endurance because the switching mechanism
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does not require location changes to atoms. However, these devices require improvements

in variability and scalability.

A ferroelectric field-effect transistor, FeFET, is a three terminal device similar to a

metal-oxide-semiconductor field-effect transistor, MOSFET. Unlike a MOSFET, a FeFET

uses a ferromagnetic layer instead of the highly resistive gate-oxide. The properties of

FeFET devices are similar to MOSFET, but the ferromagnetic gate layer allows for a

programmable channel conductivity [45]. These devices show a wide resistance range

and fast programmablity. They have symmetric switching for increasing and decreasing

channel conductivity. They require large area. Decreasing area and improving scalability

generates problems with leakage current, reliability, manufacturing, energy consumption,

and sensing capability. They are charge-based memory and suffer from leakage similar to

DRAM [44].

The transition metal-oxide memristor, or TMO, is a two terminal device consisting of

a switching layer made from a depleted-oxide layer sandwiched between two electrodes.

The device stores analog memory states by growing and rupturing a metallic conductive

filament through the metal-oxide layer. The composition of the switching layer and the

electrodes play a key factor in determining the switching characteristics. A key concern

with TMO devices is the variability due to filament growth and rupture [23, 24]. The

devices are scalable with a high resistance ratio, but improve the variability to a tolerable

level in neuromorphic computing can worsen the switching characteristics. This issue will

be addressed in this work by implementing circuits to operate the device by controlling

filament growth. The goal is to remove variability due to filament growth by actively

controlling the process. The trade off is reducing the resistance range to only filament

formed resistances.

These devices are all under active research. The best candidate for neuromorphic

computing is yet to be determined. All the device types show the minimum requirements,

which are the ability to store an analog memory. Table 2.1 shows the best reported values

for key characteristics, not necessarily from the same exact device, adapted from [81].
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Table 2.1: Nonvolatile memory devices

Device Operating
Voltage

Power Size Resistance
Ratio

Switching
times

Endurance
cycles

Memristor 0.3V 55fj 4nm2 10^6 300ps 10^12
PCM 0.9V 100fj 100nm2 10^5 300ps 10^12
Ferroelectric 0.9V 1fj 25000nm2 10^6 10ns 10^5
Spintronic 1V 1fj 800nm2 <10^1 1ns 10^15
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From this table, there is no clear winner. The devices suffer from different set backs,

including temperature, resistance range, and leakage. To further explore these devices for

neuromorphic computing they must be implemented with the rest of the system. This

includes all the circuits for controlling the synapses, programming, plasticity, connectivity,

and the neurons. The circuits designed for the neuromorphic processor using these devices

take into account their specific device properties to best utilize them. This work focuses

on the hafnium-oxide memristor. The circuit techniques used to create a neuromorphic

component of the device can potentially be applied to other devices if they show similar

properties.

2.2 Memristor Theory and History

The memristor has been termed the fourth basic circuit element among electronic devices

[15]. Resistors, capacitors, and inductors link current and voltage, charge and voltage, and

current and flux, respectively. The theoretical memristor device links flux and charge [15].

The resulting property from this definition creates a controllable state for the resistance of

the device that is built on the history of device operation. The ability to hold information

representing previous usage of the device is why the device is called a memristor, a term

short for "memory resistor". The resulting phenomena of linking flux and charge gives way

to variations of resistance from the history of the applied voltage or current. In a current

versus voltage graph, this is characterized by a hysteresis loop seen in Figure 2.1. The

high and low resistances states, HRS and LRS, go through the origin, and at high and low

voltages, the resistance switches. This idea of a memory in resistance was only theoretical

for many years. The theory of a resistance holding memory based on previously applied

voltages or currents led to the possibility for other devices to exhibit similar properties.

Aside from memristors that can vary in resistance based on previous usage, memcapacitors
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Figure 2.1: An ideal I-V sweep of a memristor showing device symbol, LRS and
HRS.Adapted from [72]
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and meminductors are other possible devices that story a state based on previous usage

[76]. These memory devices pose challenges in fabrication but show potential for circuit

applications.

2.3 Fabricated Hafnium-Oxide Memristors

The memristor was first fabricated in 2008 [65]. Different materials have been used with

varying results for potential memory applications. The transition metal-oxide memristor,

TMO, is one type of memristor which has shown great results and promise for inline

fabrication in CMOS processes. The key characteristics for different applications vary

slightly. For this work, an analog resistive memory is allows for analog computation,

reducing area and power.

The fabricated device used in this process is a made of hafnium-oxide, a transition metal-

oxide memristor. It has characteristics suitable for analog memory [10]. The resistance

of the device can vary from below 10 kΩ to over 100 kΩ [36]. The common operations

for using these devices fabricated in silicon includes forming, setting, and resetting. The

forming operation is a one time requirement to initialize the device [7]. Before forming

the device is in a very high resistive state. Forming generates the conductive filament by

applying a high voltage on the device [21]. The set and reset operations are used to change

the resistance value of an already formed device. The reset operation occurs when a voltage

is applied with the opposite polarity to the forming voltage. The high resistance state,

HRS, achieved through the reset operation has high variability, ranging from 10 kΩ to

1MΩ in some devices [21]. The set process generates a low resistance state, LRS, ranging

from 100Ω to 1 kΩ in those devices [21]. The devices used in this work have shown HRS

ranges from 10 kΩ to 300 kΩ and LRS range from 2 kΩ to 30 kΩ [53]. A binary application

greatly benefits from separating the maximum possible resistance and minimum possible

resistance, as it is detecting the correct state is more likely. Analog applications require

programming into intermediate states, preferable a continuous range from the highest to
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lowest resistances. Achieving specific resistance values and a continuous range between

HRS and LRS is theoretically possible, but presents challenges in accurately hitting target

resistances. The set and reset operations decrease and increase the resistance, respectively.

The reset operation for the fabricated hafnium-oxide memristors can achieve varying

resistance by varying the voltage applied to the device or by varying the time the voltage

is applied [10]. The low resistance state can vary by controlling the current through the

device [36]. The low resistance state is achieved in under 100 ps while the high resistance

state is achieved in 100 ns [10]. The magnitude difference in time required to fully set and

reset the device implies pulses with opposite polarity will not result in equal resistance

changes. The greater time to fully reset allows for incremental pulse based switching,

but those pulses will not work with the set operation. Also, the variability in change per

pulse increases as the resistance increases. Pulse programming works for these hafnium

memristors when in a low resistance state and staying near the low resistance state. The

voltage applied to the memristor during reset also controls the maximum high resistance

state achieved when fully reset. Due to the difference in the set and reset operations, equal

increment and decrement in resistance with opposite polarity voltage pulses is not feasible.

Therefore, the circuit is designed to use one repeatable and consistent resistance change

method.

The method used for this design takes advantage of the low resistance state of the

device and the properties of the set process. During forming and set a transistor is used to

limit the current through the device. Figure 2.2 shows the one transistor one memristor,

1T1R, circuit using a n-type transistor. These memristor circuits sometimes refer to the

device as a ReRAM, hence the R in 1T1R. The voltage Vtop is positive for forming and

set and negative for reset operations. The voltage Vg sets the saturation current, which

limits the voltage through the memristor. For forming and setting the device, the current

limiting transistor is necessary to achieve switching. Unlimited, the memristor can be

permanently stuck in the low resistance state. Since the current limiting transistor is a

necessary, the programming method reuses it to control the resistance. Changing the
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Figure 2.2: One transistor one memristor circuit adapted from [53].
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resistance after forming is achieved by resetting the device into its high resistance state,

and once in the high resistance state, the device is then set into the low resistance state.

The low resistance state is controlled with Vg and can achieve a range of resistance values

[36]. Using a transistor to limit the current, via the saturation current, shows the low

resistance state achieved varies by a few kilo ohms. The current limitation from a transistor

in saturation is accomplished by holding the gate at a specific voltage.

2.4 Alternative Memristors

Aside from hafnium-oxide, other types of transition metal-oxides can be used to create a

memristor. Other TMO memristors include tantalum-oxide, titanium-oxide, and niobium-

oxide [19]. These memristors have different values for properties such as their HRS, LRS,

and switching voltages. One of the drawbacks of the hafnium-oxide memristor is the

asymmetric switching characteristics. The titanium-oxide memristor does not exhibit the

same difference in magnitude between the set and reset switching time [43]. However,

these devices require a higher voltage for switching that is incompatible with deep sub-

micron 65 nm CMOS process. These devices also have lower endurance [43]. Finding the

best material for creating the memristor layer in a CMOS process is an ongoing area of

fabrication research. Ideally the device has high endurance, is CMOS compatible, has a

wide continuous, easily achievable resistance range, and is easily fabricated.

There are other devices to consider for different applications due to their different

properties. Volatile memristors, or second order memristors, are a class of device that

exhibit similar properties to the memristors considered in this work, in that they have

definable states due to previously applied voltage and resistance, but these states decay

fairly quickly over time. Practically, the volatile device can be programmed into a new

state, but will shortly regress to its base condition. This has applications in timing specific

circuits or thresholding circuits [6]. The insulator-metal transition memristor, IMT, is a

type of memristor similar to the non-volatile TMO, except the resistance change is volatile.
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The devices work by Joule heating where heating causes a drop in resistance followed by

a quick cool down over time, resetting the change in resistance. This can be made from

NbO2 or VO2 [80]. Research considering IMT devices show promise for theses devices as

selectors [50] and potentially as neurons [75]. The devices switch from HRS to LRS when a

high voltage is applied due to thermal energy. When the resistance is low, the temperature

cools off and the device goes back to a high resistance state. This can work as a threshold

for a neuron to activate, or a selector for a synaptic array, but is not equivalent to the

nonvolatile TMO for a synaptic device that provides long term memory storage.

The dipole-induced bilayer, DIB, has exhibited properties similar to biological functions

[47, 38]. This device is created by a lipid membrane formed when lipid filled water droplets

are submerged in oil. The lipids have hydrophobic tails that coat the outside of the water

droplet and cause two droplets to not coalesce when brought into contact. Instead the

tails of the lipids form a layer that resembles a cell membrane. The droplets can then

be doped with voltage controlled peptides. The droplet system without any additives

shows a memcapcitive effect due to the change in geometry of the bilayer. The additives

create memristive behavior due to the insertion mechanics of the peptides causing a change

in resistance. These changes in capacitance and resistance are not permanent, but are

also not entirely instantaneous voltage dependant. For both the change in capacitance

and change in resistance properties, there is a timing element, were the devices returns

to its original state after the voltage is removed. This can be used to store the timing

information in synaptic plasticity functions such as spike rate dependent plasticity, SRDP,

or spike timing dependent plasticity, STDP [47]. These devices show promise as low power

synaptic mimics with dynamic resistance changes to stimuli. They have been connected to

an artificial neuron circuit [71]. The circuits have to take into special consideration to not

damage the device and fabrication is not inline CMOS compatible.
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2.5 Neuromorphic Computing Framework

Neuromorphic computing architecture is one of the most effective alternatives to the existing

von-Neumann architecture for certain applications. There are multiple neuromorphic

computing frameworks including Intel Loihi and IBM TrueNorth [8, 18]. These computing

architectures use biological inspired components to achieve high efficiency in implementing

brain-like functions. The advantages of neuromorphic computing are not yet fully

understood, but the systems show promising results for reducing power and resources

needed to solve problems such as constraint satisfaction problems [3]. Neural networks,

the key component to implementing neuromorphic computing, has many flavors. Artificial

neural networks, ANN, such as multilayer perceptrons are a feed-forward network. An

example single layer with a single output is shown in Figure 2.3. The layers consisting of

weighted inputs sum together and activate the output. MLPs are trained with gradient

descent. This type of neural network strays heavily from biology. Spiking neural networks,

SNN, are event based. These neural networks use timing information of activity not present

in ANNs. The computing functionality is realized with two brain inspired components,

neurons and synapses. The functions of these basic cells as they relate to information

processing is a significant unsolved problem. There are a multitude of properties relating

to the biological functions of these cells that provide adaptability and efficient computing.

Neuromorphic computing uses reduced mathematical models of these cells, limiting the

functionality to core components. Biological neurons collect ions to charge their cell

body and ultimately release the ions to the subsequent neurons via the synapse. The

electrochemical nature of the cells can be interpolated with mathematical models that can

then be implemented in digital or analog circuitry. A key factor in the computation is

the efficiency with which neurons deliver electrochemical signals. The pathway between

neurons is defined as the synapse for neuromorphic computing. The synapse holds a weight

value that is a memory of the efficiency of the communication between two neurons. These

two components inspired by biology have a plethora of other possible biological functions

acting on them to implement the plasticity and learning capable of the brain. Hardware
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Figure 2.3: Single perceptron showing weighted inputs, summation, and output activation.
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for neuromorphic computing builds these components with all the functionalities desired

at a lower cost than running the functions through a general computer. The history of the

framework for this project is NIDA, MrDANNA, and the current framework RAVENS[60,

14, 20, 54]. This framework uses an integrate and fire neuron model with connected

synapses. The neuron has a threshold for accumulating inputs via synapses. The synapses

hold weight information and delay the transmission of the information to the neuron.

The setup for defining networks uses a genetic algorithm, evolutionary optimization for

neuromorphic systems or EONS, to optimize the network [60, 61]. Optimization generally

prioritizes accuracy or functionality, followed by low component count and low power cost.

The circuits designed to implement the generated networks need to fulfill the roles given

by the framework. The neuron accumulates inputs from the synapse, and the synapses

transmit information between neurons with specific delay and strength. Other features,

like synaptic plasticity, can be implemented in the framework, and needs to be reflected in

the circuits.

2.6 Synapse and Neuron Circuits

The hardware designed for neuromorphic computing generally follows the biological

inspiration. The inputs and outputs are connected to multiple synapses and neurons.

While building these components out of purely digital circuits is possible, to truly match

the biological nature analog circuits are designed [41]. The use of the term neuromorphic

comes from Carver Mead’s work on silicon VLSI neurons. The silicon neuron shown in

Figure 2.4 is a biologically inspired circuit named after the axon hillock which is the part

of the neuron that generates an action potential [40]. The circuit integrates an input on a

capacitor, Cmem, creating a voltage, Vmem, and generates a pulse output upon crossing the

buffer circuits threshold. Neuromorphic computing continually improved the relationship

with circuits to their biological inspiration. The implementation of neuromorphic circuits

is limited by the understanding of biology [42]. As the understanding of the principles of
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neuromorphic computation improve, the circuits needed to implement the operations will

be realized. Improvements to the computational models will elicit the need for the circuits.

In implementing neuromorphic systems, many analog neurons take an input current

from the synapse [28]. The axon hillock neuron in Figure 2.4 contains the basis for a

silicon neuron. The current into the neuron is integrated and accumulated with the

result being a voltage stored on a capacitor. Analog neurons use the stored voltage with

a comparator circuit to determine the output of the neuron. Some comparator circuit

possibilities include an inverter or op-amp [40, 9]. The output generated when crossing the

comparison threshold resets the voltage stored in the neuron and communicates with the

next neuron through a synapse. Control circuitry is required to communicate and reset

neurons. Synapse circuits respond to the neuron input information and output into the

following neuron. The current generated from the synapse into the neuron is a function of

the synapse’s weight value. For a voltage applied to the synapse an output current can be

generated with a resistance.

The memristor could fit into the synapse directly as the weight memory. However,

memristors as synapses require additional control circuitry to achieve all the desired

synaptic functions. The circuits implementing the neuromorphic functions should be both

power and area efficient to outperform the same functions implemented on a traditional

system. The benefits can be achieved by improving the circuit efficiency for the simplest

models and improving the computing potential of the models used. Including more

biological features can potentially improve the computing results and improving the

circuitry designed to implement those functions will definitely help the neuromorphic

system outperform a traditional counterpart.

Different neurons follow different mathematical models [28]. The integrate and fire

neuron uses an integrator and a comparator to accumulate inputs and fire outputs [26]. The

axon hillock neuron mimics the axon hillock of a biological neuron [40]. The axon hillock

is the location where the output is first generated in the neuron. All neuron circuits have

these functions: accumulate and store inputs and output upon crossing an accumulation
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Figure 2.4: Original axon hillock neuron circuit [28, 40]

23



threshold. Some neuron circuits look to implement the intricacies of the ion channels

in biological neurons [56]. Other neuron circuits have limited biological representation

and are instead optimized for power consumption [31]. Neurons can also benefit from

memristor. Neurons have been implemented making use of FeFET, IMT, PCM, and MTJ

[35]. Mostly these are integrate and fire neurons.

The synapse can be implemented with transistors and capacitors [28]. These synapse

design work by shaping the spike to achieve different accumulations at the input of the

neuron. Synapses can consist of only a memristor or similar analog memory element. A

common configuration for this is a two dimensional array, where the synapse is a memristor

at the intersection of rows and columns. Rows are pre-synaptic neurons and columns

are post-synaptic neurons. These configurations are crossbar arrays [9, 27, 33, 29]. The

crossbar array has the benefit of a dense connectivity. Synapses connect neurons one to

one, but are activated by row and column neurons. This configuration can have current

flow through memristors not in use, called sneak paths. These memristor circuits use

voltage control to implement both the programming and reading of the memristor. The

neurons apply voltages which control what synapses are activated and for plasticity if

implemented.

In earlier work, two memristors were used to hold the synaptic weight information [58,

57]. One synapse corresponded to the positive weight value and the other the negative

weight value. Weights values came from the model, positive weights allowed for excitation

and cause neurons to fire, while negative allowed for inhibition and stopped neurons

from firing [59]. This synapse was designed to sink or source current from the neuron.

The synapse had STDP functionality using voltage control. Similar to [46, 12] multiple

memristors are used to help alleviate potential issues. For the hafnium-oxide memristors,

one issue identified was asymmetric switching. Special circuit techniques were used to

adjust for the difference in switching speeds.

This work takes into account the variability and asymmetric switching of the memristors

fabricated in a hybrid CMOS process. I address the need for a consistent method of
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programming and updating hafnium-oxide memristors with highly asymmetric switching

properties. This required building all necessary components to implement a fully integrated

system on a hybrid CMOS memristor wafer. The goal is implementing circuits that are

low power and low area to take advantage of the current fabricated memristors. This is

accomplished by using the low resistance state to program the device and taking special

considerations to reduce power and simplify the required circuitry. The final value of the

resistance achieved from the set operation is determined by the current. The current is

controlled with one transistor that is reused to control current during a readout operation.

This allows for a compact programming and memory storage.
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Chapter 3

Memristor Model

To simulate circuits that use a memristive device, a model of the device is needed. The

memristor’s model should include the required characteristics to verify the circuits. The

model accurately responds to the operations to update and read the memristor’s resistance

value. The hafnium-oxide memristor model used here is based on [5, 4]. The device models

for hafnium-oxide memristors can be created from intrinsic characteristics of the materials

used [78] or from fitting physically tested results of the device [53]. For this model, the

characteristics are based on tested results and abstracts possible physiological phenomenon.

The switching properties pertaining to the memristor need to be included in the model.

Its ability to store a resistance and update that resistance state should match the tested

results. The model I implemented for my circuit stems from the tested results of the

device with a transistor and leads to my design choices for programming and updating the

weight. I found in testing the device, updating the device’s resistance is easily achieved

with DC signals and created a model that reflects this idea.

3.1 Experimental Results for Hafnium-Oxide Memristor

The characteristics of the device are measured to understand and model device behavior.

The tests for the memristors are usage-based, including forming voltage and switching
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voltages, and usability of the device, including cycle to cycle variation and lifetime. The on

chip device is part of a one transistor one memristor, 1T1R, test structure seen in Figure

2.2. The connected nodes of the device are the gate Vg and source of the n-type transistor

and the top of the memristor Vtop. The source of the transistor is held at ground and

the gate is held at a DC voltage. At the top of the memristor, Vtop is a specific voltage

applied for different tests. The on chip fabricated devices starts as an unformed device.

The unformed resistance is a high resistance and applying a high positive voltage at Vtop

causes it to form the conductive filament. The device is formed and the resulting voltage

at which it formed is measured. Figure 3.1 shows a current response to voltage on the

unformed device. The method of collection is further explained in Chapter 6. The forming

voltage is temperature dependent, and at room temperature ranges from 1V to 4V, but is

generally close to 2.5V . The forming voltage is a high limiting factor for circuit design.

The need for a high voltage on the unformed device also implies all circuits attached to

those nodes need to be able to handle the high voltage. There are many potential solutions

to this including preforming the device before it is connected to the silicon, changing the

device to lower its forming voltage, or heating up the wafer to lower its forming voltage.

In this work, the forming voltage is a key factor for device consideration at the circuit

implementation and design level. The forming process coincides with the set process. In

this way, after forming the device is in its low resistance state, which implies a filament is

fully formed. A current limitation is needed during this process to reliably reset the device

otherwise the device can be stuck in the low resistance state. Aside from the measured

forming voltage, different applied current limitations are studied to determine the most

reliable forming process.

After forming, the device is in a low resistance state. From here the device is cycled

between high and low resistance states. The key characteristics for switching include set

and reset switching voltages. For the reset process to occur a switching voltage above

−600mV is applied at Vtop. The maximum voltage applied in the reset process affects the

high resistance state achieved, and a high negative voltage has the potential to adversely
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Figure 3.1: Voltage sweep of unformed hafnium-oxide memristor with conductive filament
forming at 2.3V.
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affect the device . The reset process is not instantaneous and requires a high negative

voltage to be applied for around 100 ns. Different high resistance values can be achieved by

either applying varying negative voltages above the switching threshold at Vtop or applying

the voltage for different lengths of time. The pulses must be shorter than the time needed

to fully reset the device to possibly see incremental switching. The pulse programming

method for gradually increasing resistance shows good results during the initial resetting

of the devices [10]. As the devices resistance gets higher, the possibility of the resistance

jumping to a final high resistance value increases. The high resistance state is variable,

and the relationship of pulse incriminating the resistance is consistent at lower resistances.

The set process is similar to the forming process. However the switching voltage for

the set process is constant. It is around 600mV. The time need for the forming and set

process is almost instantaneous at under 100 ps [10]. Due to the fast switching speed, pulse

based incremental switching is near impossible. However, this work takes advantage of the

low resistance state due to its ability to be consistently programmed. This comes about

from another mechanic of the filament forming process. The current limitation needed

to reliably recreate the conductive filament has the effect of adjusting the low resistance

state achieved. For different current limitations, around 100µA, the low resistance state

varies in a range around 5 kΩ. All these possible resistance values are achieved with the

same voltage applied at Vtop. Thus the applied voltage is not the dependent factor, and

the current limitation is causing a different final resistance.

After testing the mechanisms for switching, the reliability of the device is tested. The

main tests for this are the consistency of the device readout, and the longevity of the device.

For the consistency of the readout, the device is programmed to a specific resistance value,

and then the device is measured periodically. Ideally, the device will hold this resistance

value indefinitely and each measurement will be identical. The device has a constant

resistance value and thus is a non-volatile memory device. The readout is consistent over

many read operations over a long time. The other reliability factor is the number of cycles

of set and reset the device can go through and continue to achieve reliable resistance states.
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For these devices, the reliability is a key factor with devices of resistance value changes

with equivalent resistance changing processes.

3.2 Memristor Model

In my model I capture the the ability to reach different high and low resistance states

through DC voltage signals. I do not concern myself with the intricacies of the switching

and simply linearly increase or decrease at a definable specific rate. Figure 3.2 and 3.3

show state diagrams for the hafnium-oxide memristor. The four processes used in the

device include forming, set, reset, and read. The device starts in an unformed state, and

requires a high positive voltage to form the device. The forming voltage parameterized

and is generally above 2V at room temperature. After forming, the device is at a low

resistance and requires a negative voltage with a greater magnitude than the negative

switching threshold to increase resistance. The device’s resistance decreases with a positive

voltage above the positive switching threshold voltage. In any state, the device’s current

state can be determined with a read voltage that is a between the positive and negative

switching threshold voltages. The model encapsulates these different switching capabilities.

For a binary implementation, which only includes a singular high resistance state and a

singular low resistance state, the model can simply jump from the low resistance to the

high resistance state by using a constant positive and negative voltage at Vtop. While the

resistance during switching is intended to be outside the scope of my model, the final

result from a varying voltage at Vtop and Vg should achieve varying resistance levels. To

accomplish this goal, I implemented a bounding system in the model that ends the set

and reset processes. For the set, and similarly forming, the process begins with a positive

voltage above the switching threshold and continues while above another specified voltage.

For the reset process, the process starts with a highly negative voltage and continues while

the current magnitude is above a specified current. This achieves variable low and high

resistance states based on the applied stimuli.

30



Figure 3.2: Flow state diagram of hafnium-oxide memristor.

Figure 3.3: Diagram of hafnium-oxide memristor resistance movement.
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Memristor’s are well understood to have a threshold voltage for switching. A high

positive voltage, 600mV is approximately the positive switching voltage threshold V tp

for the set operation of the hafnium-oxide memristors I tested. I implemented my model

with a second voltage threshold for the set operation. This voltage threshold lower bound

V tpl can be approximated as a linear value, 400mV. However, it is more accurately

represented as a function of the device’s current resistance value, and it increases as the

device decreases. This causes a non-linearity in the relationship between current limitation

and resistance achieved. The lower bound voltage allows for different low resistance values

as a result of different current limitations due to varying Vg. As the resistance of the device

lowers, the voltage across the current limiting transistor increases and the voltage across

the device decreases. For higher transistor saturation currents of the current limiting

transistor the voltage across the device will stay above the lower bound positive threshold

at lower resistances. This coincides with the physical results of a higher gate voltage, or

higher current limitation, resulting in a lower resistance. The memristor model uses the

same idea for implementing the forming process, but uses different voltage thresholds V f

and V fl that match the physically tested results.

3.2.1 Set Operation

The set operation reduces the resistance while above a specific voltage V tpl. If the voltage

applied stays above the lower bound, or has no current limiting device, the device will

reach an absolute minimum resistance. While a linear threshold works to achieve the

correct relationship between the current limiting transistor and the low resistance state,

from device testing, a more accurate relationship can be calculated. The lower bound

voltage can be calculated as the relationship between the current limiting transistors

current multiplied by the final resistance achieved. From testing, the lower bound is

calculated in the model as a function of the resistance. For the low resistance state, as the

resistance decreases V tpl increases. The code snippet below shows the set process in the

Verilog-A model. The lower bound voltage V tpl is calculated with a linear relationship
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to the current resistance. The set process begins with a voltage across the device V mr

above the threshold V tp and activates the start flag. The process then continues until

the voltage is below the lower bound. In the process of switching, the resistance Rm is

lowered linearly at a specified rate td ∗ dRmp. The rate is calculated by the total range

of resistances divided by the positive switching speed, which is 100 ps. If the resistance

reaches the absolute minimum resistance the set process will also end.

1

2 // Define the function for the lower bound

3 //Vtpl = .6; // Constant approximation

4 Vtpl = -0.0001*Rm + 1;

5

6 // Activate flag for set process

7 if (Vmr >= Vtp && Rm > LRS_min) begin

8 Setstart = 1;

9 end

10

11 // Continue set process while flag , voltage , and resistance are high

12 if (Vmr > Vtpl && Setstart == 1) begin

13 Rm = Rm - td * dRmp;

14 if (Rm_tmp <= LRS_min) begin

15 Rm_tmp = LRS_min;

16 Setstart = 0;

17 end

18 end

Simulation results for the set process show a close match to a physically tested device

for the resulting resistance for different transistor saturation currents. Figure 3.4 shows the

resulting resistance after the set process from different applied gate voltages to the current

limiting transistor of a 1T1R circuit. The applied voltage was 1.5V on the memristor and

the gate voltage varied. The current through the device during the set process was
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Figure 3.4: Model vs. Physical tested device set resistance at different currents.
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directly proportional to the voltage at the gate of the transistor. The gate voltage on

the transistor activated the transistor and applied the current limitation at its saturation

current. While the resistance of the memristor is decreasing the voltage across the device

is decreasing. The voltage across the drain to source of the transistor is increasing. Once

the drain to source voltage is high enough, the current through the transistor’s drain to

source current saturates. The lower bound voltage for the set process is the voltage across

the memristor for a given current limitation. This is calculated by multiplying the current

limitation used in the set process and the final resulting resistance. Figure 3.5 shows the

lower bound voltage V tpl for different low resistance states. In the simulation V tpl is fit

to that specific device. While a constant voltage works, the lower bound voltage is fit with

a function of resistance.

3.2.2 Reset Operation

The reset operation requires a negative voltage below the negative switching threshold.

For the hafnium-oxide memristor, the negative voltage at Vtop required to increase the

resistance is approximately −600mV. Like the set process, I implemented my model

to start the reset process upon crossing this voltage threshold. However, unlike the set

process, during the reset process the voltage magnitude across the device is not decreasing

due to the change in resistance. To make an equivalent stopping mechanic in the model,

I instead used the current through the device. I set a lower bound Itpl of 10µA as a

required current to continue the reset process. This resulted in different high resistance

states for the applied voltage. From testing, the lower bound is a function of the resistance.

For the high resistance state, as the resistance increases Itpl decreases. The code snippet

below shows the reset process in the Verilog-A model. The lower bound voltage Itnl is

calculated with a linear relationship to resistance. The reset process begins with a voltage

across the device V mr below the threshold V tn and activates the start flag. The process

then continues until the current is above the lower bound. In the process of switching, the

resistance Rm is lowered linearly at a specified rate td ∗ dRmn. The rate is calculated by
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Figure 3.5: Model vs. Physical tested device calculated voltage across device during set
at LRS.
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the total range of resistances divided by the negative switching speed, which is 100 ns. If

the resistance reaches the absolute maximum resistance the reset process will also end.

1

2 // Define the function for the lower bound

3 //Itnl = 1e-5; // Constant approximation

4 Itnl = 8e-11*Rm -2.19e-5;

5

6 // Activate flag for reset process

7 if (Vmr <= Vtn && Rm < HRS_max ) begin

8 Resetstart = 1;

9 end

10

11 // Continue set process while flag , voltage , and resistance are high

12 if (Imr <= Itnl && Resetstart == 1) begin

13 Rm = Rm + td * dRmn;

14 if (Rm_tmp >= HRS_max) begin

15 Rm_tmp = HRS_max;

16 Resetstart = 0;

17 end

18 end

Simulation results for the reset process show a close match to a physically tested

device for the resulting resistance for different reset voltages applied. Figure 3.6 shows

the resulting resistance after the reset process from different negative voltages on the

memristor. The applied voltage was 1V to 1.45V on the memristor. The current through

the device during the reset process reduces as the resistance increases. The varying applied

voltages allow for a higher current at higher resistances. The lower bound current for the

set process is the measured current. In the simulation, Itnl is fit to the recorded current

measurements of that device. Figure 3.7 shows the lower bound current Itnl for different

37



Figure 3.6: Model vs. Physical tested device reset resistance at different voltages.
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Figure 3.7: Model vs. Physical tested device calculated current through the device
during reset at HRS.
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low resistance states. While a constant current works, the lower bound voltage is fit with

a function of resistance.

Simulation results for both set and reset for the model show the characteristic hysteresis

loop when sweeping voltage. Figure 3.8 shows the transition between HRS and LRS when

sweeping voltage from −1.5V to 1.5V in both the model and a physically tested device.

The model uses a linear relationship between the resistance and the switching bounding

variables, Itnl and V tpl. Table 3.1 shows the fitting parameters to best approximate the

relationship. This model is used in Chapter 6 to show the change in resistance due to

change in current compliance for the set operation.
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Figure 3.8: Model vs. Physical tested device I-V sweep results.

Table 3.1: Fitting parameters for memristor model.

Slope Offset
Vtnl -0.0001 1
Itpl 8e-11 -2.19e-5
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Chapter 4

Memristive Synapse Circuit

4.1 Analog Synapse with Memristor for Weight Storage

In a neuromorphic system the synapse is the connection between neurons. The neurons

communicate information via the synapse by accumulating charge. The synaptic strength,

referred to as the weight of a synapse, is the amount the synapse can charge or discharge its

subsequent neuron. The network of neurons and synapses instantiate synaptic weights for

all synapses used to solve a given problem. The neuromorphic system can implement weight

changes beyond initial values chosen to improve the effectiveness of the neuromorphic

system. As an electrical component, the synapse requires two terminals to connect the

two neurons, the pre-neuron and post-neuron. Similar to a memristor, the synaptic weight

depends on previous usage. The synapse like a memristor is a two terminal device that

has memory. The memory functions provided by the synapse require the change and

storage of the synaptic weight. Memristors used for the synapse can mimic the plasticity

of the synapse by retaining information an past usage. Non-volatile memristors can

store long term weight changes and follow learning rules for long term change. Volatile

memristors can exhibit short term weight changes. To mimic biological learning rules,

the weight change of the synapse needs complex resistance change based on the activity

it receives. Building a synaptic circuit using solely memristors requires the memristors
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to possess the equivalent resistance change criteria to biological synapses. For fabricated

memristors, achieving similar weight change relationships to neuron activity requires

circuitry surrounding the synapse. The circuitry provides adequate voltages to integrate

the memristor. The synapse control circuitry is required to implement the analog memory.

The control circuitry activates the synapse to read out the weight, programs the memristor

to store a weight value, and implements the intended synaptic plasticity. The read out of

a synapse is a current into the neuron. The synapse is designed as an analog memory cell

using the memristor as the value storage. Implementing the synapse ideally uses low power

and area while reliably outputting a stored value. The synapse circuit and all additional

control circuitry presented here is intended to use the on chip fabricated hafnium oxide

memristor efficiently.

4.2 Synapse Circuit

The block diagram in Figure 4.1 shows the components used in this work to implement

a synapse. The goal of the synapse is to hold an analog memory that controls the flow

of charge in the connected neuron. The current control circuitry used for programming

is reused for read out. The memory is stored on the memristor device in the memristor

cell circuit. The output current is generated with the synapse output current control

circuit. The synapse output is a current intended to charge an integrate-and-fire neuron.

The neuron takes the different synaptic currents due to different resistance values of the

memristor and charges proportionally. The currents of all synapses connected to a neuron

are summed together by directly connecting at the output node.

4.2.1 Memristor Cell

The circuit seen in Fig. 4.2 for the on chip hafnium oxide memristor shows the necessary

transistors required for the four different modes of operation, which are Forming, Set,

Read, and Reset. The size and expected gate voltages of each transistor is seen in
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Figure 4.1: Block diagram of Synapse circuit.

Figure 4.2: Circuit depicting the memristor and transistors directly connected to it.
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Table 4.1. The first action is a one time operation to create a metallic filament by applying

a high voltage across the unformed device called forming. Due to the need for a high

voltage, all transistors that are directly connected to the hafnium oxide memristor will

need to be large transistors able to operate in a high voltage region. These large transistors

control the memristor through the various operations. For a single stand alone memristor

there are seven high voltage transistors. They correspond to four p-type transistors and

three n-type transistors. Each operation has a corresponding p-type transistor. The reset

and read operations have their own unique n-type transistors. The last n-type transistor

is shared for the forming, set, and read operation. For an array of these devices, the

transistors for reading and set, MN1 MN2 MP1 are unique to each memristor, while the

other transistors can be shared. The p-type transistors for set, reset and forming are

shared across a column in a two by two matrix. The n-type transistor for reset is shared

for every row.

The transistor MN1 has three modes of operation. During forming the gate voltage at

MN1 is 1V which corresponds to a 100µA current in saturation. Due to the unformed

device having a high resistance, applying this voltage on the gate of MN1 reduces the

voltage below the memristor to near ground. In the forming process the corresponding

forming transistor MP1 is digitally turned on by bringing the gate voltage from 3.3V to

0V. This causes the upper node of the memristor to be pulled up to 3.3V. Once the

filament forms, the voltage drop across the device reduces, and MN1 goes into saturation.

The current of MN1 in saturation limits the current through the forming path.

After forming, the device is in a low resistance state. The synapse is designed to use the

low resistance state of the device. In order to program the device to a new low resistance

state, the device is first reset to a high resistance. The reset process is digitally controlled

by transistors MP4 and MN3. With all other transistors turned off, activating these two

transistors will bring the top node of the memristor to ground and the bottom node of

the memristor above 1.6V. The voltage drop across the device when resetting should be

above the switching threshold. This is adjustable with the voltage V Reset. The opposite
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Table 4.1: High voltage transistor connected to memristor size and voltage.

Device Size (µm/µm) Gate Voltages (V)
Mn1 5/0.5 0-1.2
Mn2 1/0.5 ∼0.675
Mn3 2/0.5 0-3.3
Mp1 1.5/1 0-3.3
Mp2 8/4 0-3.3
Mp3 0.5/0.5 0-3.3
Mp4 8/4 0-3.3
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polarity of high voltage on the device breaks the filament created in the forming process.

The time and voltage used for reset in the synapse design is long enough to fully reset the

device into a high resistance state. Due to the variability in the high resistance state, it is

not used in the read operation of the synapse.

Once the device is reset into its high resistance state. It is reprogrammed to a low

resistance state with the set operation. The set operation applies a high voltage to the

memristor to activate the switching process. This is adjustable with the voltage V Set.

Similar to the forming operation the set operation uses MN1 to current limit the device.

The current produced when MN1 is in saturation results in different resistances for the

memristor. These low resistance states are current programmed via an adjustable gate

voltage on MN1. The synapse is designed to have a gate voltage range of 0.9V to 1.1V

to allow the use of the low voltage transistors. These gate voltages equate to saturation

currents of 70µA to 200µA. The p-type set transistor MP2 provides the high voltage

necessary to recreate the filament which can be up to 2.5V. In this method, the resistance

of the device is reliably programmed via current control in the range of 3 kΩ to 13 kΩ.

The read operation uses MN2 to create an output current based on the voltage at the

top node of the memristor. The memristor in its low resistance state is supplied a current

through MN1. This current is as low as possible while still able to generate a reliable

output. The values chosen are 600mV at the gate of MN1 resulting in 1 µA current. The

p-type transistor MP3 is chosen for its resistance when READ is 0V. The current from

MN1 through the resistances of the memristor and MP3 sets the voltage at the gate of

MN2. The expected voltage is 600mV to keep MN2 turned on in saturation. The expected

change in voltage at the gate of MN2 is equal to the current set by MN1 and the resistance

range of the memristor. For a 1 µA current and 3 kΩ to 13 kΩ range the voltage change

is 10mV. The output current ranges from 1.11µA to 0.97 µA. This read method differs

from the previous works [57] which relied on voltage control across the device. The power

equation P = IV or written as P = I2R gives the average power usage of the memristor in

this design. Since the current is constant 1µA the power is 5 nW for a resistance of 5 kΩ.
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For the voltage controlled method, the power consumption is P = V 2/R and to achieve

a similar equivalent power requires a voltage control of 1µV. While potentially possible

to implement, the voltage control requires a difficult to produce reference relationship to

achieve similar power at low resistances. Implementing the current read out guarantees

consistent low power even when the resistance is a low value. Implementing the current

limitation to reduce power during read aligns with the transistors used to control current

during programming.

4.2.2 Synapse Output

The synapse outputs a current that is accumulated by a post-neuron when activated by a

pre-neuron. This is handled by the current generator and the output control circuit in

Figure 4.1. The current generator for the memristive device is intended for analog usage

with an integrate and fire neuron. The output of the synapse is a current with a range of

−20 nA to 20 nA in normal operating conditions. The output current from the synapse is

generated by a current mirror circuit shown in figure 4.3 and expects an integrator holding

the output node to a specific virtual DC voltage, 600mV. The current into the current

generator is around 1 µA and is mirrored one-to-one. The synapse uses 3 µA to generate

the output, 1 µA through the memristor, 1 µA through the high voltage transistor output

of the memristor, and 1 µA through the low voltage transistors.

The circuit converts the 3.3V read transistor MN3 in Figure 4.2 to 1.2V transistors.

The usable current range for the neuron is minimized to reduce area in the neuron, thus

an expected output of only −20 nA to 20 nA. Outputs based on the memristor’s resistance

value are transmitted as current to the connected neuron. This circuit takes a reference,

NCMref , that helps define the midpoint, or zero output current point, which allows

output currents to be both positive and negative. The current output uses the virtual

ground set by the neuron’s op amp integrating input to set the voltage between MN3 and

MP3 to mid-rail. The midpoint operation is defined by the memristor characteristics. For

a device with a low resistance range of 2 kΩ to 16 kΩ a midpoint at 7 kΩ is chosen. At a
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Figure 4.3: Synapse output buffer circuit.

49



device resistance of 7 kΩ, the output voltage for the current generator circuit is designed to

produce no output. This results in an output current of 0 nA into the neuron. The range of

outputs is adjusted by this circuit to produce 20 nA when the resistance is minimum, 2 kΩ,

and −20 nA when the resistance is maximum, 16 kΩ. A lower resistance value increases

the voltage at the gate of MN3 in Figure 4.2 which in turn increases the current through

MN3. The increased current lowers the voltage at the p-type gates in the current generator

and increases the output current. The n-type transistor at the output has a constant gate

voltage from the reference, and since the p-type transistor is supplying more current, the

output current is positive. For higher resistance the opposite happens and the output

p-type transistor has less output current. All transistors stay in the same operating region

so the output range is approximately linear for all resistance values of the memristor.

The output of the current generator circuit passes through a transmission gate in

the output control circuit before going to the neuron circuit shown in Figure 4.4. The

transmission gate circuit allows a startup time for the current generator circuit. Due to

the low current used in the read operation and the large high voltage transistor sizes,

the capacitance of the transistors gates need time to charge. When the read process is

initiated, the voltage levels for all the transistors must reach their steady state to have a

valid output. If the output is active before the circuit reaches its DC state, the current

into the neuron will be unintended. To overcome the start up time, the transmission gate

blocks the output for the first half of the clock cycle the read operation is activated. This

limits the speed at which a read needs to be reliable to half a clock cycle. The expected

maximum clock period for this circuit from simulation is 400 ns. The output is only active

for 200 ns. The output current from the read out buffer circuit only reaches the neuron

when the read operation is active and the clock is low. At the maximum clock frequency

the synapse uses under 5 pJ per spike. This is in line with other spiking synapse designs

[2, 73, 25].
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Figure 4.4: Block diagram of the output control circuit.
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4.2.3 Current Control

The focal point for this memristive synapse design is the current control functionality. The

synapse relies on current control for both programming the memristor and reading the

memristor’s resistance value. The current control circuit applies a voltage to the gate of

MN1 in Figure 4.2. This gate voltage imposes a limit on the current through the device

when the transistor is in saturation. The three possible voltage ranges required are a high

voltage for forming or set that allows a high current in saturation, a low voltage for read

allowing a low power and low probability of affecting the resistance stored, and no voltage

when not in use. The digital control signals in the current control circuit are from the

forming, set, and read processes.

Alongside the digital control signals, analog control signals are used to specify specific

values for form, set, and read generated by the circuit in Figure 4.5. The gate voltage

during read is 600mV which turns on the transistor and limits the saturation current

to 1 µA. The low current and low voltage used during the read process help alleviate

the possibility of unintentionally adjusting the resistance of the device. When the device

resistance is initial formed or set into a new value, the gate voltage is much higher. The

gate voltage ranges from 900mV to 1.1V creating a higher current through the device.

These specific gate voltages come from a read reference and a programming reference.

Either the transistors for read are activated with the analog and digital signals, or the

transistors for forming or setting the device are activated. If neither operation is in use

the gate voltage is pulled down to ground. Chapter 6 shows the waveform operation of

this circuit.

4.3 Weight Programming

The hafnium oxide memristor requires a current limit during the set operation. This is

accomplished by a transistor in saturation. The current limitation is the maximum allowed

current through the transistor in saturation. To program the memristor, the gate
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Figure 4.5: Current control circuit for read reference generation adjustment.
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voltage used to limit the current through the device is adjusted. Setting the voltage used

for programming the device is handled by a 3-bit DAC circuit shown in Figure 4.6. The

initial current limit used during the forming process will be determined by the voltages

that produces the best results for a specific run of the memristor. Likely a middle point of

100uA at 1V on the gate will be a sufficient for forming. After the device is formed, it

is in a low resistance state. This will result in a resistance near 1 kΩ-10 kΩ. The circuit

that applies the gate voltage is the current control circuit. The 3-bit DAC circuit uses

a scaled digitally controlled current mirror to generate different reference voltages. The

transistors M(p3), M(p5), and M(p7) each double in size. This creates a voltage at the

node labeled bitsum. The output voltage progref is the voltage reference that the current

control circuit uses. This 3-bit DAC circuit can be a shared resource between multiple

memristors. For multiple connections, the transistors Mp9 and Mp10 are instantiated for

each device that needs a connection.

4.4 Reference Feedback Circuit

The output current from the current generator circuit takes a reference to set the midpoint

of the memristor resistance range. This allows the output current to range between

20 nA when the resistance is minimum and −20 nA when the resistance is maximum. The

reference can be externally supplied or internally generated. Since the reference is intended

to determine the distance from the middle value of the resistance range the device can

achieve in the low resistance state, a reference generation circuit using the memristor is

desired. The simple design shown in Figure 4.7 uses a memristor set to a middle resistance

value to generate an output reference. The reference used by each connected synapse sets

the voltage at the current output transistor which relates the resistance of the memristor

in the reference generating circuit to an output of 0 nA in the synapse. Using this scheme

allows for an adjustable reference that is based on the devices that require the reference.

Since the output reference is based on the same memristor devices and equivalent circuity,
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Figure 4.6: Current steering DAC for programming.
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Figure 4.7: Memristor reference generator circuit.
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the reference can readily match the synapses. The reference can also be used to adjust

the output. If only a positive or negative output current is desired, the memristor in

the reference can be set to a maximum or minimum low resistance state. The memristor

reference circuit can be shared across multiple synapse circuits by duplicating the current

output transistors Mp4 and Mp5.

Building upon the memristor reference, a feedback loop can be instantiated in the

circuitry to settle the read into an optimal midpoint for no output current. Figure 4.8 shows

the additional circuitry to the memristor reference circuit required for the feedback loop

variation. The memristor reference for the feedback loop generates the current expected

from a synapse of the same memristor resistance called Iref using the reference voltage

used by the synapses NCM . This additional output is fed into a circuit shown in Figure

4.9. This circuit first takes the output current and converts it to a voltage relative to

mid-rail. It is then compared against a mid-rail reference. Last it adjust the read reference

seen in the current control circuit. Overall this creates a large feedback loop. If the output

current Iref is non-zero, the read reference voltage is adjusted. This works to reduce the

current to zero. A transistor level view is seen in Figure 4.10. The output for this variation

of the reference circuit is not only the reference for the current generator circuit, but also

the read reference for the current control circuit. Like the simple memristor variation,

the output of one reference generation circuit can be copied and distributed to multiple

synapse circuits. Chapter 6 shows the waveform operation of the reference generation

circuit.
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Figure 4.8: Memristor reference generator circuit.

Figure 4.9: Current reference feedback control circuit block diagram.
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Figure 4.10: Current reference feedback control circuit.
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4.5 Online Learning

The online learning for this memristive synapse circuit follows the same general procedure

as the programming. The main difficulty with the online learning using only the set

operation is that the resistance change during set is unidirectional. To allow for both an

increases and a decreases in resistance, the weight update in an online learning system has

three events. First the current value of the memristor is read out and temporarily stored,

second the device is reset, and third the device is set into a new resistance value.

The example online learning rule implemented is the spike timing dependent plasticity,

or STDP, learning rule. STDP uses the relative timing of the activity of the connected

neurons to a synapse to adjust its weight. The pre-neuron is the neuron feeding into the

synapse and the post-neuron is the neuron receiving information from the synapse. The

weight of the synapse is increased if the pre-neuron fires before the post neuron, called

a potentiation, and the weight decreases if the post-neuron fires before the pre-neuron,

called a depression. The magnitude of weight change is an exponential decay as time

between pre-neuron and post-neuron activity increases.

The block diagram for the STDP circuit is shown in Figure 4.11. At the top of the

block diagram, the digital control circuitry takes the memristive synapse through the

three stages used to update the memristor. The read operation, reset operation, and

set operation all occur sequentially after both a pre-neuron and post-neuron activate.

Before the flip flops used to control the synapse operations, there is a digital latch that

activates on a pre-neuron or post-neuron input. The inputs, Pre and Post come from

their respective neurons, and learn is a toggle for the circuit. The two latches for Pre and

Post generate PreH and PostH respectively and both are required to begin the memristor

update sequence. The held values are stored until the process ends and resets the latches

with the signal END.

The degree of the weight update is determined by the blocks in the lower half of Figure

4.11. The internal working of the sample, hold, decay and sum blocks are in Figure 4.12

and 4.13. The circuit determines the weight update by first reading the memristor’s
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Figure 4.11: Block diagram for STDP circuit
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Figure 4.12: Sample and hold circuit.

Figure 4.13: STDP summation circuit.
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resistance state and storing a voltage equivalent to the memristor’s current resistance

value in the sample and hold circuit. This is combined with one of the two voltages stored

on the two time decay circuits. This circuit consists of a capacitor that is charged and

discharged. Given the post-neuron has not activated, and a pre-neuron activates, the

time decay circuit related to the pre-neuron activates. This fully charges a capacitor and

then allows it to discharge. When the post-neuron activates, the capacitor is block off

from discharging. The final voltage on the capacitor gives a time relationship between

the pre-neuron and post-neuron firing. Since the pre-neuron activated first the voltage

has decreased from the fully charged capacitor. This voltage is sent to the summation

circuit, and along with the voltage generated from the read operation, a new voltage for

the current liming circuit is generated. The device is then set using a new gate voltage

on the current limiting transistor. If the post-neuron activates before the pre-neuron,

the corresponding capacitor is discharged and then allowed to charge up. This is the

opposite process of a pre-neuron then post-neuron fire. In the summation circuit, instead

of increasing the voltage, the summation decreases the voltage used at the gate of the

current limiting transistor. The time decay circuit of whichever neuron activated second

is not used in that learning operation. For a potentiation the post-neuron time decay

circuit is held high, and for a depression the pre-neuron time decay circuit is held low.

This guarantees the memristor is either programmed back into its previous state, or a

state that is the correct increase or decrease in resistance. Chapter 6 shows the waveform

operation of this circuit.

4.6 Synapse Conclusion

The synapse circuit provides an output current to a neuron circuit. It sets an output

current by reading a memristor’s resistance level. To accomplish this, the memristor needs

to be initialized, or formed, and programmed. The programming uses only the process

of creating the conductive filament in the memristor, and directly correlates a resistance
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value to a DC input. For the different circuits presented in this section, the area estimates

are shown in 4.2. The components DAC, Reference, and Feedback as well as parts of

STDP can be distributed among many synapses. Table 4.3 the idle power of a circuit

when its not in use, the energy per use of a synapse function, the current for that function,

and the settling time of the function. The slowest settling time determines the fastest

frequency the circuit can operate. For some operations, the max and minimum current is

determined by the memristor’s resistance. The reset operation produces a large amount

of current for a brief moment before the device’s resistance increases. Table 4.4 shows

the expected current and total energy used for different steps in the STDP process. The

idle current and maximum current during depression and potentiation are shown. The

majority of current used in this circuit is setting up the summation circuit to drive the

memristor.
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Table 4.2: Area estimates for synapse components.

Circuit Area (µm2)
Memristor 0.09
Cell 96
Level shifter 144
Synapse Output 50
Current Control 96
DAC 128
Reference 344
Feedback 700
STDP 1446

Table 4.3: Energy usage for synapse circuits.

Structure Idle Power (pW) Energy (pJ) Current (uA) Settling Time (ns)
Memristor Read 18 1.56 1.3 120
Set 337 136

Reset 542
1100 max

68 min
Synapse 494 30.7 21 400

Program 426 27
22 max

5 min
18

Current Compliance 510 109
80 max

50 min
22

Table 4.4: Energy usage for STDP circuits.

Component Idle Current (dep) Current (pot)
Pre 33pA 30pA 505nA
Post 26pA 140nA 400pA
Syn 16pA 20nA 20nA
Sum 20pA 57uA 63uA

Total Energy 151pJ 195pJ
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Chapter 5

Neuron

The neuron is an integral part of neuromorphic computing. The purpose of the neuron

circuit is to accumulate the current inputs from synapses and output a voltage when

the accumulation crosses a threshold. These two functions are captured by an integrate

and fire neuron. This is a simple mathematical model for a neuron that integrates the

input current from synapses, stores the input as a voltage, compares the voltage against

the threshold, fires an output spike upon crossing the threshold, and finally resets the

accumulated voltage after activating. Other neuron models accomplish the same basic

functions. There are adjustable factors in neurons, including dynamic thresholding and

adjustable leakage. Leakage is loss of voltage in the accumulated voltage over time which

yields the leaky integrate and fire neuron. The circuits that create the neuron need to

implement the basic functions of a neuron.

5.1 Integrate and Fire Neuron circuit

The current output from the synapse is the input into the neuron. Creating a consistent

accumulation of voltage is achieved using an integrator. The integrate and fire neuron uses

an op-amp integrator to store the input current as a voltage. The op-amp helps create a

consistent input current to accumulated voltage change. After the voltage storage, the

66



voltage is compared against a threshold. The integrate and fire circuit uses an op-amp as a

comparator to provide a controllable threshold voltage. The output is a digital signal that

is activated when the voltage accumulated crosses the voltage threshold. The capacitor

used to accumulate the voltage is reset when the neuron fires an output spike. The process

of resetting the neuron is called the refractory period.

The integrate and fire neuron shown in Figure 5.1 is my board level design used with

the biomimetic synapse [71]. The input current from the synapse is integrated on the

integrator consisting of Op Amp U1, an LT1793, and the capacitor Cmem. The LT1793

was chosen for its high input impedance. U2 is also a LT1793 since the part was already

available for this circuit. The threshold voltage, Vthr, gives the voltage necessary for

Vmem to cross before the output Vspike goes to a high voltage. When Vspike goes to a

high voltage the p-type transistor at the input is turned off, blocking input current. The

n-type transistor in the feedback of the integrator is turned on allowing current to flow

and discharge the capacitor Cmem. The reset capacitor and resistor, Creset and Rreset,

help define the output spike width and reset voltage at Vmem. When Vspike initially goes

high, the change in voltage is passed through Creset onto Vmem causing Vmem to go farther

below the threshold voltage. Since the path that Rreset is on is open, the voltage Vmem is

discharge back across the threshold in the opposite direction. This causes the voltage Vspike

to return to a low voltage. This voltage change is again passed through Creset causing

the voltage Vmem to return to a voltage above the threshold. This circuit does not have

surrounding digital control logic and builds in the refractory period functionality with

analog components. The on chip integrate and fire used for the MrDANNA and RAVENS

wafer takes advantage of the clocked system to implement the refractory period timing

with clocked flip flops.
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Figure 5.1: Integrate and Fire neuron [71].
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5.2 Axon Hillock Neuron

The Axon Hillock circuit was designed by Carver Meade [40]. I implemented a version of

this circuit shown in Figure 5.2 that takes advantage of the digital signals used on our

on chip wafer [70]. The axon hillock in biology is the connection between the neuron cell

body, or soma, and the axon. The axon hillock is the point where the accumulated charge

in the body generates the output across the axon. This circuit recreates this feature of the

neuron. Unlike the integrate and fire neuron, a floating capacitor is used. This creates

difficulties in keeping the current input unaffected by the accumulated voltage. An ideal

current source as the input into neuron would not cause any difference. The difference

in accumulation does not pose problems in functionality, but a difference in modeling for

high level simulation for application testing. An inverter circuit can be used like in the

axon hillock neuron if the threshold can be constant and device defined.

The axon hillock neuron circuit shown in Figure 5.2 has similar functionality to the

integrate and fire neuron. The voltage Vmem and capacitor Cmem share equivalent roles.

The input current is integrated and stored on Cmem as Vmem and then compared against

Vthr to activate the output. The output is generated with a dynamic inverter circuit

and clocked with a D flip flop. The refractory period is clock cycle defined using p-type

transistors at the input to block input currents, and an n-type to reset the capacitor.

5.3 Neuron Model

In addition to circuit solutions to the neuron, a Verilog A model can be used in place of the

actual circuit design. The model I implemented has two basic purposes. It accumulates

inputs and outputs voltages based on the accumulated input. The code snippet below

shows the accumulation of an internal voltage as a function of input current into the model.

The model has a minimum required current to begin accumulating voltage. The current

into the model must be higher than the minimum for a short period of time to begin

accumulating the current as an internal voltage. Once the accumulated voltage
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Figure 5.2: Synchronous axon hillock neuron [70].
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crosses the specified threshold voltage, the output of the neuron is activated. While

the neuron output is activated, the internal accumulated voltage is reset and inputs are

blocked. This model is used in testing the output of the synapse without instantiating

the circuit implementation of the neuron to speed up simulation time when debugging

synapse neuron interaction. This model is used in Chapter 6 to confirm varying neuron

charge accumulation determined by memristor resistance.

1 // Neuron accumulation upon input above

2 // minimum threshold for a set amount of time

3 @(cross ( $abstime -( nowtime + Tn), +1)) begin

4 if (ttest == 1) begin

5 startacc = 1;

6 end

7 end

8 if ( startacc == 1) begin

9 Vmemnew = Vmem - I(Vin)*1e5;

10 end

11 // Neuron output upon crossing accumulated voltage threshold

12 @ (cross(Vmem - Vthr , -1)) begin

13 Vset = Vs;

14 Vmemnew = Vr;

15 tsamp = $abstime;

16 end

17 @ (cross($abstime - tsamp - Ts , +1)) begin

18 Vset = 0;

19 end

20 Vmem = Vmemnew;

21 V(Vout) <+ transition(Vset);

22 V(Vmread) <+ (Vmem);

23 V(Vin) <+ (Vmid);

71



Chapter 6

Device Testing and Circuit Simulation

6.1 Hybrid CMOS memristor wafer

From the first hybrid CMOS memristor wafer, I tested multiple circuits including my

axon hillock neuron circuit, the memristor forming circuit and the 1T1R memristor test

structure. I found some positive results from my neuron circuit. I learned a great deal

about probe station circuit testing. Unfortunately the intricacies of the testing were not

well understood in the design. I was left with some understanding that the circuit worked,

but without the ability to probe internal nodes I could not determine the exact response

the synapses on this chip had on my neuron circuit. I took this information I learned about

on chip circuit testing in the probe station and applied it to the next wafer. I implemented

multiple structures that should build results to verify piece by piece the circuits I designed.

Aside from testing my neuron circuit, I tested the memristor synapse forming circuit on

the wafer. I found the circuit did not yield the results I expected. I had trouble debugging

the forming circuit, and believe the difficulties I faced are a result of certain uncontrollable

circuit parameters. The memristor forming circuit includes a current mirror intended to

limit the current through the memristor during forming. This current limiting circuit

is not adjustable, and possibly designed to a current that is too low to produce reliable

forming in the memristor. Despite this, I tested the memristor test structure, the 1T1R,
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and found profound results on the device characteristics including, forming, high and low

resistance characteristics.

6.1.1 Hafnium Oxide testing and results

The hafnium oxide memristor testing followed the general steps outlined in Chapter 3.

These tests used a 1T1R setup to limit the current directly on chip. The current limiting

could be performed off chip, but would require an inline component like a transistor. The

time needed to activate the current limiting features of equipment like a sourcemeter is

not fast enough to properly limit the current through the device. For these tests I wrote

a python code to control a sourcemeter to measure current and voltage while applying

voltages. This provides sufficient analysis for DC measurements. I have written code for

high speed analysis using the oscilloscope and wave form generator. These tested results

come from sourcemeter measurements on the device under DC voltage or current supplies.

This is intentional to match the usage in my memristive synapse.

6.1.2 Forming

For the forming process I had varying results. Figure 3.1 shows the current and voltage

relationships recorded during the forming test. The gate voltage of the transistor is held at

a DC 1.2V while the voltage on the memristor is swept up to 4V and down to ground. On

the sweep up initially the current is very low due to the high resistance of the unformed

memristor. When the device forms at about 2.5V in the test shown, the current jumps

up to the current limited by the transistor. I tested forming at different temperatures.

Temperature relationships seen in Figure 6.1 for a few test structures for one wafer showed

the expected temperature relationship. The average forming voltage required increases

as temperature decreases. What is interesting here is the lower forming voltage at room

temperature and above. This shows promising results to utilize high temperature to lower

the forming voltage to reduce the size of transistors needed near the memristor.
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Figure 6.1: Averaged forming voltage at different temperatures.
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6.1.3 Switching characteristics

After forming, the next test validates the switching characteristics of the device. DC

Voltage sweeps shown in Figure 6.2 are applied to allow the device to set and reset. The

voltage for set and reset are generally much lower than the forming voltage and thus the

sweep is between −1.5V and 1.5V. The same jump in current in the positive voltage

sweep aligns with the forming process, setting the device in to a low resistance state. For

this device, the set voltage is around 0.5V. The negative voltage sweep shows the reset

process. The resistance increases after the reset voltage is crossed, at around −0.5V.

Unlike the set process, the reset process does not have the pronounced jump in resistance.

The high resistance is the flat, horizontal line passing through the origin and the low

resistance is the sloped, vertical line. After the set process the current is limited by the

transistor, which is why the current does not continue to increase and instead saturates at

150µA.

6.1.4 Cycle Variability

Once the switching characteristics of the device are verified via a voltage sweep, the next

test applies singular voltages for set, reset, and read. In this test, the cycle to cycle

variability of the device in the low resistance state is shown in Figure 6.3 and the high

resistance state is shown in Figure 6.4. The device resistance is measured after every

set and reset. The set is performed with 1.5V applied to the memristor. The reset is

performed with −1.5V applied to the memristor. The resistance is read using a −200mV

pulse. The gate voltage remains constant throughout the test. Initial tests had the gate

voltage static at 1.2V. For the device shown, the test shows a large consistent gap between

the high and low resistances. the low resistance is around 5 kΩ for the low resistance and

40 kΩ for the high resistance. The process of gathering these results consisted of applying

voltage pulses above and below the positive and negative switching thresholds and read

pulses in between. While variation occur in both states, the variation in high resistance is

75



Figure 6.2: I-V sweep for set and reset operations.
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Figure 6.3: Cycles of low resistance states.

Figure 6.4: Cycles of high resistance states.
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one factor that led to my synapse design. From this test the average resistance for the low

resistance state

is 4.3 kΩ with a standard deviation of 620. The low resistance state had a maximum

resistance of 9.1 kΩ and minimum resistance of 3.4 kΩ. The high resistance state had an

average of 23 kΩ with a standard deviation of 73000. The high resistance state had a

maximum resistance of 540 kΩ and minimum resistance of 34 kΩ.

The synapse design uses the low resistance state because consistent resistance levels can

be achieved with identical voltage pulses from controlling the current limitation. The reset

process can utilize both pulse width and magnitude shaping to achieve analog resistance

states. For both the set and reset process, the device relies on different mechanics for

adjusting the resistance level. Designing a circuit to implement consistent resistance

changes using one method will reduce control circuitry needed. For this reason, I chose the

low resistance state because controlling the current limitation to achieve specific resistance

values within a certain range uses the same voltage pulses. Ignoring the high resistance

state as an analog memory device reduces the range of resistances achievable. However,

the inconsistency in switching given the voltage pulses, would reduce the reliable range of

analog memory. As the resistance increases, the likelihood of a large resistance jump that

takes the device to its highest resistance state increases. Consistent changes in resistance

from the same voltage pulse only applies while the device is near the low resistance state.

The usable range for controllable analog memory states using both the high and low

resistance programming methods has a comparable resistance range. With a comparable

range, the low resistance values and limited range of values is less of a detriment and the

simplicity of current control with a singular consistent voltage pulse for resistance change

should prove advantageous over the high resistance state which need pulse control.

A continuation of the cycle to cycle variability test using a static gate voltage is testing

with incremental change in gate voltage. Figure 6.5 shows the low resistance state from

a device when the gate voltage on the transistor increases from 1V to 1.5V in 50mV

increments. There is a clear relationship between the change in gate voltage and the
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Figure 6.5: Increasing current limitation to achieve multiple low resistance states.
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resistance value measured. As the gate voltage increases, the saturation current the

transistor allows increases. The currents during the set process seen in orange increase

from 50 µA to 350µA. This allows the memristor to set into a different low resistance state.

For this device the average resistance went from 5.7 kΩ to 2.2 kΩ from the minimum to

maximum current with a noticeably different average for every saturation current. Figure

6.6 shows another change in current limitation but instead of sweeping from 1V to 1.5V

in 50mV increments, this test sweeps from 1.1V to 1.5V in 1mV increments. For a

similar test on a different device, the average resistance value vary when looking at the

gate voltage, but the resistances achieved are closer when looking at the actual saturation

current the current limiting transistor imposed. For example, at the saturation current of

96 µA the device from Figure 6.5 had an average resistance of 4.34 kΩ while at a similar

current saturation, the device from Figure 6.6 had an average resistance of 4.51 kΩ. The

currents ranged from less than 60 µA to over 300µA on the device from Figure 6.5 while

the device in Figure 6.6 range from 83µA to over 129 µA. While the overall range of

currents differs, in their overlap similar resistances are achieved. This helps validate the

notion of a current limit based programming. However, this also indicates the need for

highly uniform transistors for the current limitation in the design.

Another key aspect of the synapse design is the current read system. From the 1T1R

test structure, I tested the feasibility of the current read. While the method is not exactly

the same, I was able to read different low resistance states using a current read signal. For

all tests on the device so far, a read operation was performed with a voltage signal. The

test in Figure 6.7 gathered the resistances achieved using a current from a sourcemeter and

measuring the resulting voltage. For a read operation the gate voltage of the transistor

was reduced to 600mV resulting in approximately 1 µA of saturation current. Then the

memristor is supplied with 1µA of current and the resulting voltage is read to determine

the resistance state. Similar applying voltage and reading the current, this system for

applying current and reading voltage shows varying low resistance states. In this test the

low resistance state matches the changes seen in Figure 6.5.
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Figure 6.6: Higher precision increasing current limitation to achieve almost continuous
low resistance states.

Figure 6.7: Current based read for low resistance states.
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The resistances in Figure 6.8 are generated from increasing the high voltage applied

to reset the device. Every ten cycles the voltage applied decreases by 5mV from −1V

to −1.45V. This was performed with set operations with increasing gate voltage seen

in Figure 6.6. The high resistance states show a relationship to the voltage applied. As

the voltage increases in magnitude the high resistance state achieved increases. The high

resistance appears to vary greatly. However, this method could be used to program the

device to high resistance states.

6.2 Circuit simulation

The second fabricated memristor run uses the same hafnium oxide memristive devices.

On this wafer, my synapse circuit design and variations of the design will be tested.

I implemented test structures that build up the design to validate each component

sequentially. I will start with reevaluating the 1T1R structure that makes up the base of

my synapse, and build up from there. Aside from building up the required components,

different versions of the test structures are implemented. Specifically, the read reference

generation is implemented with transistors, resistors, and separate memristors. I have a

number of synaptic test structures to be tested. My synapse design is implemented in a

core comprised of multiple synapses and one neuron. These tests will more heavily rely

on digital communication in and out of the wafer. Testing all the circuits will utilize the

same test equipment and have codes to automate tests.

6.3 Test structures

The circuits on the test structure are as listed:
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Figure 6.8: High resistance states from variable reset voltages.
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1. One transistor one memristor (1T1R)

2. Memristor cell

3. Memristor cell with 1.2V to 3.3V converters and current generator

4. Full memristive synapse with 3 bit DAC

5. Synapse with feedback reference

6. Synapse with STDP

From this variation of a 1T1R circuit, there are three main tests to run. The first is

to check the saturation currents during a set. The intended voltages at the gate of this

transistor during form and set should allow usable currents for set programming. The

gate voltages of 0.8V to 1.2V should result in a saturation current of 50µA to 300 µA

as seen in Figure 6.9. The DAC circuit and learning circuits should stay within 0.8V to

1.2V. Alongside checking the set saturation current limits, the lower current limit for

read is checked. A gate voltage of 600mV should result in a 1 µA current. The maximum

expected output voltage generated from the memristor is dependent on the current limiting

transistor. If the current limiting transistor is at too low or too high of a gate voltage the

output will not be noticeably. Figure 6.10 shows the maximum expected voltage range

for different sized pull up transistors at the optimal gate voltage for the current limiting

transistor. In addition to testing the current limiting features, the last important test for

the 1T1R circuit is the ability to reset the memristor. The reset operation on previous

test structures relied on a negative voltage. In this test structure a positive voltage will be

applied to the node between the memristor and the current limiting transistor and the top

of the memristor will be held at ground. This should be equivalent to previous tests using

a negative voltage to reset the device.

The next test structure continues on from the 1T1R by adding in the control transistors

for each operation. The output current through the read transistor will be measured to

determine the memristor’s state. The high voltages for set and reset will pass through
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Figure 6.9: Expected current from gate voltage in 1T1R in Memristor Cell.

Figure 6.10: Maximum output voltage range at best case voltage for different widths.
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a transistor to be applied to the memristor. The next structure further builds upon the

memristor cell. This will take 1.2V instead of 3.3V. In addition the current generator

circuit will create a current output. Using a sourcemeter to hold the output node at

mid-rail, the measured output current should range from −20µA to 20µA for different

resistance states at the middle read reference voltage. These test structures should verify

the operations of the memristor. The forming, set, reset, and read operations are directly

measurable with the available pads.

The next test structure finalizes the basic synapse circuitry needed. This is a single

memristor circuit, but includes all circuitry for a group of memristors. There is the DAC

and current control circuitry to program and read the device, and the output control

circuitry to guarantee the proper output. This circuit also has a second output. A voltage

based output is generated using diode connected transistors to double check the read

operation is working. The nodes for the DAC and the current control are able to be

probed. This allows for the new critical components in the system to be verified. Figure

6.11 shows the expected voltages for the current control circuit. The output CC should

be low when not in use. It will be high for either a set or a form, and at mid-rail for a

read. Figure 6.12 shows the increasing current control gate voltage for increasing low bits.

After testing the DAC with the memristor, the next test structure uses the DAC to

program both the synapse memristor and a feedback reference memristor. Figure 6.13

shows the voltages and currents expected when running the circuit. The output is a direct

pad and does not feed into a neuron. The reference generation should create a zero output

current point based on the memristor in the reference generator. The output current

measured should be positive or negative depending on if it is above or below the reference

memristor’s resistance level. The internal nodes for the feed back loop are able to be

probed.

The last test structure to be tested is the STDP online learning test structure. This test

structure also does not have neurons attached on chip, but requires external signals to start

the learning process. The signals, Pre and Post activate the STDP circuitry. Depending
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Figure 6.11: Simulation showing the different expected voltages for the current control
circuit.
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Figure 6.12: Simulation showing the different expected voltages for the 3 bit DAC.

Figure 6.13: Simulation showing the voltage time relationships of the reference generator
working with a synapse and neuron.
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on the order, a potentiation or depression will occur. The potentiation function occurs

when the signal Pre occurs before the signal Post shown in Figure 6.14. This results

in a decrease in the memristors resistance which in turn increases the output current.

The depression function occurs when the signal Post occurs before the signal Pre shown

in Figure 6.15. This results in an increase in the memristors resistance which in turn

decreases the output current. The polarity and the magnitude of change is a function of

the time difference between Pre and Post. Figure 6.16 shows the decrease in change of

memristor resistance as the signals Pre and Post occur further away.

6.4 Test Cores

The wafer also includes to analog synapse based test cores. Theses cores consist of sixteen

synapses and one neuron each. There are two flavors of cores. Both use an integrate and

fire neuron. There is one difference in the synapses for each core. One core uses an off

chip reference for the current generator circuit, while the other uses an on chip memristor

based reference. This is not the full feedback reference. Ideally, between the two cores, one

will approximate the other. The off chip reference will be used to test the dynamic range

of the current generating circuit. The best reference for the current generator should be

achievable with the memristor reference circuit. The memristor reference version should

show a direct relationship between the memristors on chip. From these cores, different

neuron output rates should be achievable with different input patterns and weights at the

synapse. Figure 6.17 shows the full wafer where this circuit is implemented. The bottom

right corner blocks are the two synaptic cores. The bottom left corner contains the test

structures for the synapse circuits.
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Figure 6.14: Simulation showing the voltage time relationships for a potentiation.

Figure 6.15: Simulation showing the voltage time relationships a depresion.
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Figure 6.16: STDP curve showing decrease in magnitude change for neuron activity
spacing.
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Figure 6.17: Layout image of full RAVENS wafer.
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Chapter 7

Summary

Neuromorphic computing can increase computing capabilities. Analog circuits designed

to directly implement the neuromorphic functions can increase the efficiency in resource

constrained systems. Memristors can be used to implement the memory used in

neuromorphic systems. Creating analog neuromorphic circuits using memristors poses

unique challenges for different devices. The synapse designs take advantage of specific

qualities of the fabricated hafnium oxide devices. The design trades off the potential full

resistive range of the devices for a narrow range that has better analog memory capabilities.

This paradigm creates challenges with power consumption and signal differentiability. The

designs reuse transistors if possible to minimize the need for large transistors. The designs

take advantage of the devices available while maintaining the benefits of analog computing.

The presented work can be summarized as follows:

• A simple compact model with all operations for the memristor that highlights the

relationship of DC current and DC voltage limitations on the switching characteristics

of the device.

• A circuit consisting of a fabricated on-chip memristor that can consistently achieve

programmable analog values to be used as an analog memory.
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• A low-power, low-complexity read operation based on the same current limitation

circuit used to update the device resistance.

• An implementation for current control for both programming and reading the

memristor’s resistance.

• A circuit that allows for the memristor to sink or source current into a neuron.

• A current programming of the memristor through a lightweight digital to analog

converter.

• A memristor based reference generation circuit to match the expected output current

of the synapse with other devices on chip.

• Unidirectional system for spike timing dependent plasticity using the current control

update capabilities.

Table 7.1 shows a comparison of energy per spike for different memristive synapse

circuits and different resistance values of the memory device used. The other works in the

table utilize high resistance states and higher frequency. For this design, taking advantage

of a DC programming routine using low resistance conductive filament growth, the power

consumption is comparable to the state of the art in this field.

7.1 Future Work

Testing my circuits after fabrication will lead to potential improvements. The next wafer

will have more device options that can be used as replacements for the current memristor

where applicable. After studying the devices, if their functionality is equivalent, but show

improvements in areas or usability or reliability, my designs can be fit for the use of other

current controllable memristors. Other types of functional memristors will be included

were their properties help in implementing neuromorphic computing. This will likely take

place in the neuron and the plasticity of the synapse. Future fabrications can use
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Table 7.1: Energy comparison for synapse circuits.

Energy (pJ/Spike) speed (MHz) Resistance Range (kΩ)
This work 1.58 2.5 3-12
[77] 0.85 100 0.2-200
[30] 100 200 1-1000
[25] 14.6 2000 0.07-0.67
[1] 1.45 100 5-50
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memristors were applicable to more efficiently create the learning rules used in this work.

Aside from new memristors, the current hafnium oxide memristor and their control circuits

can be further improved. While the high resistance state is variable, this may be desired

for some applications. Using the same unilateral programming ideology and three step

process for online learning. A synapse bypassing the low resistance state and only using

the high resistance state is conceivable. This would require a DAC applying a voltage a

the reset voltage. The DAC would need to operate at a high enough voltage to reliably

reset the device into different states. In addition to a similar single sided use, the high

resistance programming could be used in conjunction with the low resistance. This would

have added difficulties in the continuous range were the highest low resistance and lowest

high resistance meet. Ultimately this work provides a framework for unilaterally current

controlled memristor devices. The method for programming and reading can be applied

to other similar devices. The method for online learning can work with different types of

DAC inputs. Future designs for the neuromorphic synapse will build upon the circuits

designed and tested here.
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Appendix A

Abbreviations

CMOS Complementary Metal Oxide Semiconductor

DANNA Dynamic Adaptive Neural Network Arrays

DC Direct Current

DIB Dipole Induced Bilayer

DRAM Dynamic Random Access Memory

EONS Evolutionary Optimization of Neuromorphic Systems

FET Field Effect Transistor

HRS High Resistance State

LIF Leaky Integrate-and-Fire

LRS Low Resistance State

MSB Most Significant Bit

MTJ Magnetic Tunnel Junction

NIDA Neuroscience-Inspired Dynamic Architecture

PCM Phase Change Material

SOC System on Chip

STDP Spike Timing Dependent Plasticity

TMO Transistion Metal Oxide

VLSI Very-Large-Scale Integration
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Appendix B

Test Structures

B.1 Test Structure Procedures

There are five test structure pads on the RAVENS wafer. Four of the five pad frames

contain synapse circuits while the fifth contains a neuron circuit. The four synapse circuits

will be described here for testing the components described in this work.

The pad frame for the test structures is twelve by two. The test structures use the

twenty four pins to operate and probe the circuits. The layout of the pad frame is seen

in Figure B.1. The pads are 60µm square with 40µm between pads and between rows.

Either a twenty four pin probe card or two twelve pin probes are required to test all

circuits. Due to a limited number of pins, pads are reused between different circuits in the

first test structure.

B.1.1 First Test Structures

The first test structure seen in Figure B.2 consists of three memristors circuits. It is

approximately 70 µm by 30 µm. There is a single memristor connected to a single n-type

transistor, memristor3, in the Table B.1. Building onto this is a single memristor cell,

memristor2, consisting of all high voltage transistor needed and including an output

transistor for current, like Figure 4.2. The final addition of memristor circuitry, using
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Figure B.1: Pad frame for test structure circuits.

Figure B.2: Test structure 1 circuit layout image.

109



Table B.1: Pad frame for test structure 1 pad names.

Pin Number Pin Name Pin Type Pin Description
1 Mtop Analog Output Memristor1 top electrode
2 Vst Analog Reference Set voltage applied across memristors
3 Vrst Analog Reference Reset voltage applied across memristors
4 Vcc Analog Input Current control node for memristor1
5 Synout Analog Output Current output from memristor1
6 Read Digital Input Read memristor1 output current enabled
7 Reset Digital Input Reset memristor1 0V-1.2V enable
8 Set Digital Input Set memristor1 0V-1.2V enable
9 Form Digital Input Form memristor1 0V-1.2V enable
10 Vncm Analog Reference Reference for synapse output current
11 VDD1v2 Power 1.2V power
12 VDD3v3 Power 3.3V power
13 Mbot Analog Output Memristor1 bottom electrode
14 Mtop3 Analog Input Memristor3 top electrode
15 Vcc3 Analog Input Current compliance for memristor3
16 Out2 Analog Output Memristor2 output current
17 Reset2 Digital Input Rest memristor2 0V-3.3V enable
18 SetB2 Digital Input Set memristor2 3.3V-0V enable
19 ResetB2 Digital Input Reset memristor2 3.3V-0V enable
20 Mbot2 Analog Output Memristor2 bottom electrode
21 Mtop2 Analog Output Memristor2 top electrode
22 FormB2 Digital Input Forming memristor2
23 Vcc2 Analog Input Current compliance for memristor2
24 GND Power Ground
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memristor1, on this test structure adds the current generation circuit in Figure 4.5. The

circuit with memristor3 also includes level shifters and the current generating circuit seen

in Figure 4.5. The test circuit with memristor2 uses the same reference voltages as the

test structure with memristor3 for set and reset. Pins 2 and 3 will be near 2V to allow

the memristor to set and reset and will be determined via testing the device. The digital

signals for the first and second memristors apply the analog reference voltages to the

devices. There is pad access to the top and bottom nodes of the memristor. Access to

these nodes is critically important to evaluate the voltages achieved at the memristor. The

testing procedure for this test structure flows from testing memristor3 then memristor2

and finally memristor1. Testing device memristor3 will be equivalent to testing previous

memristor test structures. The device will be formed using a high voltage at pin 23. The

voltage at pin 23 is directly applied to the memristor. While forming the device, pin 22

controls the current through the memristor. After forming, applying a negative voltage

at pin 23 should reset the device, and applying a positive voltage should set the device.

Expected voltage used for pin 22 is around 1.2V. For pin 23 during forming voltages up to

3.3V should form the device. For set and reset applying 1.5V and −1.5V should switch

the device. The current through this pin is measured to determine the overall change in

resistance. The device will be tested with different current compliance voltages on pin

22 during forming and set. Different magnitudes of voltage at pin 23 will be tested to

determine the possible values for pin 2 and 3. Pins 2 and 3 are shared between memristor2

and memristor1. For both test structures, direct access to the memristor top and bottom

electrode is available, but the intent is to measure the voltages produced during set and

reset. Since the memristor switching is critically important, these nodes need to achieve

the correct magnitudes to induce switching.

For memristor2 the voltages for forming, set, and reset are applied through transistors

that are digitally activated. The corresponding signal and transistor should allow the

memristor to reach voltage levels at its electrodes to allow for switching. Applying the

enable voltages on pins 15, 18, 20, and 19 for forming, reset, and set while controlling
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current through pin 14 should operate the device equivalently to memristor1. In addition

to transistors applying switching voltages, memristor2 has an output transistor and output

current on pin 21. The output transistor should produce different output currents based

on the resistance of memristor2. There is not a dedicated read enabling transistor, so

the read voltage is applied through the top electrode, pin 16. The current compliance

voltage and voltage at the top electrode should produce a voltage at the bottom memristor

electrode, pin 17, that is high enough to activate the output transistor and produce an

output current. For memristor2, pins 15, 18, 19, and 20 are digital control signals for

form, reset, and set. Pins 16 is an analog input during read, the voltage will likely be

between 0.6V and 1.2V, or an analog output during form, reset, and set. Pin 14 is used to

control current during forming, set, and read. The voltage at pin 14 during read should be

0.6V and during forming and set it should be near 1.2V. Pin 17 will be an analog output

during all memristor2 operations. Pin 21 is an analog output during read operations,

equivalent to Iout in Figure 4.2. Pin 21 should be a positive voltage, with a measured

current. For testing at DC, apply 0.6V to 1.2V and measure current. This internal node

in the full synapse should be about 0.7V. Additionally, the output current should be

measured with an off chip resistor with a high voltage applied. An oscilloscope measuring

the voltage drop across the resistor will give timing information on the current during the

read operation. The voltage at the output node should be equivalent to the tests at DC,

likely 0.6V to 1.2V is applied to the resistor. The size of the resistor should give a voltage

drop at the expected current levels that is visible on the measuring oscilloscope. Other

test structures will also use an off chip resistor to measure current.

The final device on this test structure uses 1.2V logic and uses level shifters to activate

the high voltage transistors. Pins 6, 7, 8, and 9 control the read, reset, set, and forming

operations. Current compliance is handled through pin 4 with similar voltage to the

previous test circuits. This circuit has a reference voltage for generating the output

synapse current. Unlike the circuit with memristor2, memristor3 has a push-pull synapse

output which allows for by directional current output. The reference voltage on pin 10
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sets the pull down current for the output synout on pin 5. The voltage at pin 10 should

be 0.6V or slightly lower. The output current should be measure similarly to the previous

test structure. The difference here is the output voltage should be held at a constant 0.6V.

Measuring current for different memristor resistances should provide correlating currents.

This test circuit is used to find the reference voltage for the cores with off chip references.

Ultimately the goal of this test structure is to determine the memristor characteristics

have not changes. Switching occurs with positive and negative voltages applied after the

initial forming. The output current can be adjusted by changing the device resistance.

The output current can be bidirectional with the right reference voltage.

B.1.2 Second Test Structures

The second test structure seen in Figure B.3 consists of one memristor circuit which is an

entire synapse circuit from Figure 4.1 with some addition output circuitry. Table B.2 shows

the pin location and type for this test structure. It is approximately 220µm by 10µm.

This test structure has one test circuit with four main points to test. The first critically

testing point, like the previous test structure is the ability for the memristor device to

switch. Pins 7, 8, and 9 are used to reset, set and form by applying 1.2V digital signals.

During these operations current compliance is no longer determined by an external pin. It

is internally generated and the value is determined by the 1.2V digital signals on pins 21,

22, and 23 which controls a circuit as seen in Figure 4.6. Changing the bits on these pins

should result in different resistance values when running the set process after a reset on a

formed device. The MSB is pin 21 and a higher value results in more current and thus a

lower resistance when setting the device. The values can be read out using the normal

operation of the synapse, but pins 1 and 4 give direct access to the memristor. This setup

consists of all circuitry used for the base synapse circuit seen in the cores. The references

on pins 2 and 3 come from the values used in the first test structure that give the best

results for switching. The reference on pin 10 also comes from the first test structure. Pin

16 in this test structure is an internal node that is also present in the first test structure.
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Figure B.3: Test structure 2 circuit layout image.
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Table B.2: Pad frame for test structure 2 pad names.

Pin Number Pin Name Pin Type Pin Description
1 Mtop Analog Output Memristor top electrode
2 Vst Analog Reference Set voltage applied across memristors
3 Vrst Analog Reference Reset voltage applied across memristors
4 Mbot Analog Output Memristor bottom electrode
5 synout Analog Output Current output from memristor
6 Read Digital Input Read memristor output current enabled
7 Reset Digital Input Reset memristor 0V-1.2V enable
8 Set Digital Input Set memristor 0V-1.2V enable
9 Form Digital Input Form memristor 0V-1.2V enable
10 Vncm Analog Reference Reference for synapse output current
11 VDD1v2 Power 1.2V power
12 VDD3v3 Power 3.3V power
13 OUT<2> Digital Output Output current level digitized
14 OUT<1> Digital Output Output current level digitized
15 OUT<0> Digital Output Output current level digitized
16 PGR Analog Output Voltage node after memristor cell
17 Vcc Digital Input Current control node
18 CLK Digital Input Clock for synapse control
19 SYNOUT Digital Output Clocked synapse output
20 readref Analog Reference Reference voltage determining

read current compliance
21 DACV<2> Digital Input Bit for set/form current compliance
22 DACV<1> Digital Input Bit for set/form current compliance
23 DACV<0> Digital Input Bit for set/form current compliance
24 GND Power Ground
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The voltage here is equivalent to Out2 in the first test structure. The read out uses a

reference from pin 20 that generates the current compliance. The voltage used on this pin

should be close to 0.6V. When running a read operation, the memristor top and bottom

nodes should be equivalent to the first test structure. The output on pin 5 should be

equivalent to the output of memristor1 on the first test structure. The current can be

read similarly by applying a 0.6V source and measuring current or attaching a resistor to

a high voltage source. Pin 5 activates with the read signal, while pin 19 is only activated if

clock is low. The clock, pin 18, is used only to gate the output in this circuit. In the cores,

the read signal will be connected to the clock, but here these signals can be controlled

independently. The circuit should be tested at a frequency of 1MHz. The maximum

speed can be determined by the time it takes for pin 5 to reach steady state after the read

signal is activated. The time this takes multiplied by two is the minimum clock period.

At this speed the output on pin 19 should be valid during the entire time clock is low. In

addition to the normal synapse output currents, this test structure also has some current

comparators to digitize the output current. Pins 13, 14, and 15 use a current comparator

similar to [67] to digitize the current generated from different memristor resistances. The

three outputs use different comparison thresholds and should activate sequentially upon

higher output current. Ultimately this test structure should provide the basis that the

synapse circuits used in the cores will function properly. They are programmable with

pins 21, 22, and 23 and the current is constant and consistent on pin 19 for different

programmed values.

B.1.3 Third Test Structures

The third test structure seen in Figure B.4 consists of two memristors to create one system.

Table B.3 shows the pin location and type for this test structure. It is approximately

315µm by 25 µm. This test structure has two memristors, one used as a reference as seen

in Figures 4.8 and 4.9. The other memristor is in a synapse circuit with a programming
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Figure B.4: Test structure 3 circuit layout image.
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Table B.3: Pad frame for test structure 3 pad names.

Pin Number Pin Name Pin Type Pin Description
1 Vmid Analog Reference Midrail voltage reference 0.6V
2 Vst Analog Reference Set voltage applied across memristors
3 Vrst Analog Reference Reset voltage applied across memristors
4 Prog Analog Output Voltage generated from DACV values
5 setref Digital Input Set reference memristor 0V-1.2V enable
6 formref Digital Input Form reference memristor 0V-1.2V enable
7 read Digital Input Read memristor 0V-1.2V enable
8 reset Digital Input Reset memristor 0V-1.2V enable
9 set Digital Input Set memristor 0V-1.2V enable
10 form Digital Input Form memristor 0V-1.2V enable
11 VDD1v2 Power 1.2V power
12 VDD3v3 Power 3.3V power
13 SYNOUT Analog Output Clocked synapse output
14 refread Analog Reference Reference voltage determining

read current compliance
15 Iref Analog Output Internal feedback voltage from reference
16 Vcc Analog Output Current control node
17 readref Digital Input Read reference memristor 0V-1.2V enable
18 NCMref Analog Output Reference for synapse output current
19 resetref Digital Input Reset reference memristor 0V-1.2V enable
20 CLK Digital Input Clock for synapse control
21 DACV<2> Digital Input Bit for set/form current compliance
22 DACV<1> Digital Input Bit for set/form current compliance
23 DACV<0> Digital Input Bit for set/form current compliance
24 GND Power Ground
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circuit like in the second test structure. This test structure has one additional test points to

the synapse and programming circuits, pin 4. Pin 4 is a voltage based on the combination

of values on pin 21, 22, and 23. This circuit has additional memristor control signals for

the memristor reference circuit. Pins 5, 6, 17, and 19 are for the memristor reference

and are used equivalently to pins 7, 8, 9, and 10 which is for the synapse memristor. To

activate the reference generation circuit, pin 17 must be 1.2V. When pin 17 is enabled,

pins 14, 15 and 18 are valid. The voltages on these pins are determined by the reference

memristor’s resistance. They setup the references for the synapse such that when the

memristors have an equal resistance the synapse will give no output current. There should

be no output current when both memristor’s are programmed to the same value and pin

13 is at 0.6V. The voltages at pins 14, 15, and 18 should all be relatively close to 0.6V

when the reference memristor is in a low resistance state and pin 17 is enabled. Beyond

testing operating point, this circuit should enable and run at a 1MHz clock frequency.

The clock signal on chip only controls the output enable and correlating signals must be

handled off chip. Since the reference uses feedback signals, the output needs to be checked

for ringing and oscillation upon enabling and disabling pin 17. Determine when a valid

current output on pin 13 occurs after enabling pin 19 and followed by pin 7. Varying both

the synapse memristor resistance and the reference memristor resistance to determine all

possible output currents.

B.1.4 Fourth Test Structures

The fourth and final test structure seen in Figure B.5 consists of two memristors to

create one system. Table B.4 shows the pin location and type for this test structure.It is

approximately 130µm by 55µm. This test structure has one memristor used in a synapse

with STDP control, Figures 4.11. The control circuits for the synapse are used equivalently

to the signals on the previous test structures. Pins 8, 9, and 10 are for the memristor

manual switching operations, set, reset, and form. Pin 7 is the equivalent to read. To

enable an STDP event, pin 1 needs to be enabled. When this pin is enabled and both pins
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Table B.4: Pad frame for test structure 4 pad names.

Pin Number Pin Name Pin Type Pin Description
1 Learn Digital Input STDP learning control 0V-1.2V enable
2 Vst Analog Reference Set voltage applied across memristors
3 Vrst Analog Reference Reset voltage applied across memristors
4 SYNOUT Analog Output Clocked synapse output
5 Vcc Analog Output Current control node
6 Vncm Analog Output Reference for synapse output current
7 Pre Digital Input Read memristor 0V-1.2V enable
8 reset Digital Input Reset memristor 0V-1.2V enable
9 set Digital Input Set memristor 0V-1.2V enable
10 form Digital Input Form memristor 0V-1.2V enable
11 VDD1v2 Power 1.2V power
12 VDD3v3 Power 3.3V power
13 Mbot Analog Output Memristor bottom electrode
14 Prog Analog Output Voltage generated from DACV values
15 readref Analog Reference Reference voltage determining

read current compliance
16 Vlearn Analog Output Summed voltage for update programming
17 PGR Analog Output Voltage node after memristor cell
18 Mtop Analog Output Memristor top electrode
19 Post Digital Input Reset reference memristor 0V-1.2V enable
20 CLK Digital Input Clock for synapse control
21 DACV<2> Digital Input Bit for set/form current compliance
22 DACV<1> Digital Input Bit for set/form current compliance
23 DACV<0> Digital Input Bit for set/form current compliance
24 GND Power Ground
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Figure B.5: Test structure 4 circuit layout image.
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7 and 19 have been enabled an STDP learning event will occur. During this event, each

operation on the memristor needs a clock cycle to activate. During the last of the three

clock cycles pin 16 is valid. The voltage at this pin should correspond to the resulting

memristor’s resistance. To test this circuit enable pin 1 and vary the time between enabling

pin 7 and pin 19. This should be timed with a corresponding clock running. Validate the

change in pin 16 with different time differences and the resulting memristor resistance.
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Appendix C

Verilog-A Code for Memristor and

Neuron Model

The complete verilog-a codes described in Chapters 3 and 5 for the memristor and neuron

are presented.

C.1 Memristor Model

1 // VerilogA for memristor model

2

3 ‘include "constants.vams"

4 ‘include "disciplines.vams"

5

6 module Memr_model(p,n);

7

8 inout p; // positive pin

9 inout n; // negative pin

10 electrical p, n;

11

12 // memristor parameters
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13

14 parameter real Vtp = 0.75;

15 // positive threshold voltage

16 parameter real Vtn = -0.75;

17 // negative threshold voltage

18 parameter real tsw_p = 1e-8;

19 // time to switch under +V bias

20 parameter real tsw_n = 1e-6;

21 // time to switch under -V bias

22 parameter real delR = 40e3;

23 // resistance change rate

24

25 // max/min LRS/HRS values

26 parameter real HRS_max = 1e6; // maximum HRS

27 parameter real LRS_min = 100; // minimum LRS

28

29 // forming parameters

30 parameter real form = 0; // Memristor model include forming = 1

31 parameter real Rf = 1M; //Pre forming resistance

32 parameter real Rinit = 5k; // Initial formed resistance

33 parameter real Vf = 2.1;

34 parameter real Vfl = 1.2;

35 parameter real Tf = 2m;

36

37

38 // local variables

39 real td; // simulation time step

40 real Rm; // memristance

41 real Rm_tmp; // temp memristance variable

42 real time_last; // previous simulation time reading
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43 real Vwr; // input voltage

44 real Iwr; // input current

45 real Vtpl; // negative threshold voltage

46 real Itnl; // end reset process

47 real dRm; // resistance change rate

48

49 // forming variables

50 real f;

51 real tmp = 0;

52 real c = 0;

53 real formend = 0;

54

55 // Set and Reset variables

56

57 real Setstart = 0;

58 real Resetstart = 0;

59

60 analog begin

61

62 @ ( initial_step or initial_step("dc") ) begin

63 td = 0;

64 time_last = 0;

65 f = form;

66 tmp = 0;

67 formend = 0;

68 if (f == 0)

69 Rm = Rinit;

70 else

71 Rm = Rf;

72 Rm_tmp = Rm;
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73 end

74

75 td = $abstime - time_last;

76 time_last = $abstime;

77 Vwr = V(p,n);

78 Iwr = Vwr/Rm;

79 dRmp = delR/tsw_p;

80 dRmn = delR/tsw_n;

81

82 // Vwr , voltage across device

83 // Vf, forming voltage to initiate the forming process

84 // Vfl , forming voltage threshold to end forming process

85 // Tf, forming delay , this indicates how long a high

86 // voltage has to be applied to the device before

87 // beginning the forming process

88 // c, holds timing data for Tf check

89 // tmp , flag to begin forming process

90 // formend , flag to end forming process

91 // Rm, current device resistance

92 // Rm_tmp , fufture device resistance

93

94

95

96 if (f == 1) begin

97 // The variable f determines if the device has

98 // undergone the forming process

99 if (Vwr < Vf && formend == 0) begin

100 // Check if the device has received enough voltage

101 // to initiate the forming process

102 c = 0;
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103 tmp = 0;

104 end

105 else if (Vwr >= Vf && formend == 0)begin

106 // Check if the high voltage has been applied

107 // for long enough to initiate forming process

108 c = c+ td ;

109 if (c >= Tf)begin

110 tmp = 1;

111 end

112 end

113 if (Vwr >= Vfl && tmp == 1) begin

114 // Checking for the conditions to start and continue

115 // lowering resistance

116 Rm = Rm - td * dRmp;

117 // linear decrease in resistance

118 if (Rm_tmp < LRS_min) begin

119 Rm_tmp = LRS_min;

120 f = 0;

121 end

122 formend = 1;

123 end else begin

124 Rm_tmp = Rm;

125 end

126 if (formend == 1 && Vwr < Vfl) begin

127 // Exit condition for forming process

128 f = 0;

129 Rm_tmp = Rm;

130 end

131 end

132
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133 // Functions to define set and reset process end

134 Vtpl = -0.0001*Rm + 1;

135 Itnl = 8e-11*Rm -2.19e-5;

136

137 // Switching processes

138 if (f == 0) begin

139 if (Vwr >= Vtp && Rm > LRS_min) begin

140 Setstart = 1;

141 end

142 if (Vwr > Vtpll && Setstart == 1) begin

143 Rm = Rm - td * dRmp;

144 if (Rm_tmp <= LRS_min) begin

145 Rm_tmp = LRS_min;

146 Setstart = 0;

147 end

148 end

149 else

150 Setstart = 0;

151

152 if (Vwr <= Vtn && Rm < HRS_max ) begin

153 Resetstart = 1;

154 end

155

156 if (Iwr <= Itnll && Resetstart == 1) begin

157 Rm = Rm + td * dRmn;

158 if (Rm_tmp >= HRS_max) begin

159 Rm_tmp = HRS_max;

160 Resetstart = 0;

161 end

162 end
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163 else

164 Resetstart = 0;

165

166 end

167

168

169 Rm = Rm_tmp;

170

171 I(p,n) <+ Vwr / Rm;

172 end // end analog

173

174

175

176 endmodule

C.2 Neuron Model

1 // VerilogA for neuron

2

3 ‘include "constants.vams"

4 ‘include "disciplines.vams"

5

6 module Neuron(Vin , Vout , Vmread );

7 inout Vin;

8 output Vout , Vmread;

9

10 electrical Vin , Vout , Vmread;

11

12 parameter real Vs = 1.2;

129



13 parameter real Vr = 600e-3;

14 parameter real Tn = 1e-8;

15 parameter real Ts = 1e-6;

16 parameter real Cmem = 1e-9;

17 parameter real Vthr = 550e-3;

18 parameter real Imin = 1e-12;

19 parameter real Vmid = 600e-3;

20

21 real Vmem;

22 real Vmemnew;

23 real tsamp;

24 real Vset;

25 real nowtime;

26 real startacc;

27 real ttest;

28

29 // branch (Vin) insamp;

30

31 analog begin

32

33 @ ( initial_step or initial_step("dc") ) begin

34

35 Vmem = Vr;

36 tsamp = 0;

37 Vset = 0;

38 nowtime = 0;

39 startacc = 0;

40 ttest = 0;

41

42 end
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43

44 // accumulate input current upon crossing input current threshold

45

46 if (startacc == 0) begin

47 Vmemnew = Vmem;

48 end

49

50 @(cross ( $abstime -( nowtime + Tn), +1)) begin

51 if (ttest == 1) begin

52 startacc = 1;

53 end

54 end

55

56 if ( startacc == 1) begin

57 Vmemnew = Vmem - I(Vin)*1e5;

58 end

59

60 if ( Vset == Vs ) begin

61 Vmemnew = Vmem;

62 end

63

64 @(cross(I(Vin)-Imin , +1)) begin

65 nowtime = $abstime;

66 ttest = 1;

67 end

68

69

70 @(cross(I(Vin)-Imin , -1)) begin

71 startacc = 0;

72 ttest = 0;
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73 end

74 // Output voltage spike upon crossing threshold

75

76 @ (cross(Vmem - Vthr , -1)) begin

77 Vset = Vs;

78 Vmemnew = Vr;

79 tsamp = $abstime;

80

81 end

82

83 @ (cross($abstime - tsamp - Ts , +1)) begin

84 Vset = 0;

85 end

86

87 Vmem = Vmemnew;

88

89 V(Vout) <+ transition(Vset);

90 V(Vmread) <+ (Vmem);

91 V(Vin) <+ (Vmid);

92 end

93

94 endmodule
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