
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2022

Evaluation of Distributed Programming Models and Extensions to Evaluation of Distributed Programming Models and Extensions to

Task-based Runtime Systems Task-based Runtime Systems

Yu Pei
University of Tennessee, Knoxville, ypei2@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Numerical Analysis and Scientific Computing Commons, and the Programming Languages

and Compilers Commons

Recommended Citation Recommended Citation
Pei, Yu, "Evaluation of Distributed Programming Models and Extensions to Task-based Runtime Systems.
" PhD diss., University of Tennessee, 2022.
https://trace.tennessee.edu/utk_graddiss/7695

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7695&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Yu Pei entitled "Evaluation of Distributed

Programming Models and Extensions to Task-based Runtime Systems." I have examined the

final electronic copy of this dissertation for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a

major in Computer Science.

Jack Dongarra, Major Professor

We have read this dissertation and recommend its acceptance:

Jack Dongarra, George Bosilca, Michael Berry, Ichitaro Yamazaki

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Evaluation of Distributed Programming Models

and Extensions to Task-based Runtime Systems

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yu Pei

December 2022

© by Yu Pei, 2022

All Rights Reserved.

ii

To my parents Wenhai Pei and Yinbian Fan,

my fiancee Anyi Wang for their love, trust, and support.

iii

Acknowledgments

I would like to thank my advisor, Dr. Jack Dongarra, for giving me the opportunity to join

the Innovative Computing Laboratory (ICL) as a Graduate Research Assistant (GRA). I am

also grateful to Dr. Dongarra for supporting my research. It was a great privilege to work

with him, while his experience and knowledge on many aspects of HPC benefited me greatly.

I would also like to thank my co-advisor Dr. George Bosilca, for believing in me from the

beginning, and his support and guidance throughout this entire time. His vast knowledge

and patience made my study a pleasant experience, and I feel lucky to be working with him

on many projects. The fields of distributed computing and task-based runtime systems is

an active research area and I have learned tremendous amount through working with the

PaRSEC system that he spearheaded.

I am also grateful to Dr. Michael Berry and Dr. Ichitaro Yamazaki for serving on my

dissertation committee. I greatly appreciate their time and invaluable guidance on my

dissertation.

Dr. Piotr Luszczek helped me at the beginning of this journey when I was lost, and he also

graciously offers to improve this draft. I would like to express my appreciation to my current

and former colleagues at ICL, including Dr. Thomas Herault, Dr. Aurelien Bouteiller, Dr.

Anthony Danalis, Dr. Reazul Hoque, Dr. Thananon Patinyasakdikul, Dr. David Eberius, Dr.

Zhong Dong, Dr. Qinglei Cao, Yicheng Li and Jiali Li and others, for their help in debugging

and profiling my programs as well as all the wonderful coffee chats. I will forever cherish

those as timeless memories.

iv

Lastly, I would like to express my deepest gratitude to my parents Wenhai Pei and

Yinbian Fan, and my fiancee Anyi Wang for their love, trust, and unrelenting support. It

was a long and winding journey, and their believe in me motivated me to continue my pursuit

of knowledge.

v

Abstract

High Performance Computing (HPC) has always been a key foundation for scientific

simulation and discovery. And more recently, deep learning models’ training have further

accelerated the demand of computational power and lower precision arithmetic. In this era

following the end of Dennard’s Scaling and when Moore’s Law seemingly still holds true to a

lesser extent, it is not a coincidence that HPC systems are equipped with multi-cores CPUs

and a variety of hardware accelerators that are all massively parallel. Coupling this with

interconnect networks’ speed improvements lagging behind those of computational power

increases, the current state of HPC systems is heterogeneous and extremely complex.

This was heralded as a great challenge to the software stacks and their ability to

extract performance from these systems, but also as a great opportunity to innovate

at the programming model level to explore the different approaches and propose new

solutions. With usability, portability, and performance as the main factors to consider,

this dissertation first evaluates some of the widely used parallel programming models (MPI,

MPI+OpenMP, and task-based runtime systems) ability to manage the load imbalance

among the processes computing the LU factorization of a large dense matrix stored in

the Block Low-Rank (BLR) format. Next I proposed a number of optimizations and

implemented them in PaRSEC’s Dynamic Task Discovery (DTD) model, including user-

level graph trimming and direct Application Programming Interface (API) calls to perform

data broadcast operation to further extend the limit of STF model. On the other

hand, the Parameterized Task Graph (PTG) approach in PaRSEC is the most scalable

approach for many different applications, which I then explored the possibility of combining

vi

both the algorithmic approach of Communication-Avoiding (CA) and the communication-

computation overlapping benefits provided by runtime systems using 2D five-point stencil as

the test case. This broad programming models evaluation and extension work highlighted the

abilities of task-based runtime system in achieving scalable performance and portability on

contemporary heterogeneous HPC systems. Finally, I summarized the profiling capability

of PaRSEC runtime system, and demonstrated with a use case its important role in the

performance bottleneck identification leading to optimizations.

vii

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 Programming Models Evaluations . 3

1.2.2 STF Improvements and Limitations 4

1.2.3 Communication Avoiding with PTG for Sparse Algorithms 5

1.2.4 Profiling Analysis for Performance Tuning 5

1.3 Dissertation Outline . 6

2 Background and Literature Review of Related Work 7

2.1 Current programming Models . 7

2.1.1 Distributed Memory Programming Models 7

2.1.2 Shared Memory Programming Models 8

2.2 Task-based Runtime Systems . 10

2.2.1 PaRSEC Runtime System . 11

2.2.2 Other Runtime Systems . 13

2.3 Numerical Linear Algebra . 16

3 Parallel Programming Models Evaluation 19

3.1 Overview . 19

3.2 Related Work . 22

3.3 Block Low-Rank Factorization Algorithm . 23

viii

3.4 Required Features . 26

3.5 Implementation with the Programming Models 27

3.5.1 Flat MPI Programming Model . 28

3.5.2 Flat MPI with Charm++/AMPI . 29

3.5.3 OpenMP Task Programming Model 29

3.5.4 PaRSEC DTD . 32

3.5.5 PaRSEC PTG . 35

3.6 Performance Evaluation . 38

3.6.1 Experimental Setup . 38

3.6.2 Experiment Results . 40

3.7 Conclusions . 45

4 Sequential Task Flow Runtime Model Improvements and Limitations 48

4.1 Overview . 48

4.2 User Graph Trimming and Broadcast Operations 50

4.2.1 DTD Model . 50

4.2.2 PaRSEC DTD Tasks and Communications Tracking 51

4.2.3 Graph Trimming . 53

4.2.4 Broadcast Operation . 53

4.3 Evaluation with the Cholesky and QR Factorizations 56

4.3.1 Modifications to the user code . 58

4.3.2 Qualitative Analysis . 61

4.4 Performance Results and Analysis . 62

4.4.1 Description of HPC systems . 62

4.4.2 Broadcast Benchmark Performance 62

4.4.3 Experiment performances . 64

4.5 Conclusions . 69

ix

5 Extension to PTG - Testcase with Communication Avoiding 2D Stencils 70

5.1 Overview . 70

5.2 Related Work . 72

5.3 Background . 73

5.3.1 Stencil Problem Description . 73

5.3.2 Communication Avoiding Approach 75

5.4 Implementations . 75

5.4.1 Standard Implementation with PETSc 75

5.4.2 Task-based Implementation in PaRSEC 77

5.5 Experiments Results . 79

5.5.1 Experimental Setup . 79

5.5.2 Network and Memory Bandwidth Benchmark 81

5.5.3 Tuning of Tile Size for PaRSEC Performance 81

5.5.4 Comparing Strong Scaling Performance 83

5.5.5 Tuning of Kernel Time and Performance Impact of Communication

Avoiding Scheme . 85

5.5.6 PaRSEC Profiling of the Two Versions 85

5.6 Conclusions . 88

6 Profiling Analysis for Performance Tuning 91

6.1 Overview . 91

6.2 Related Work . 92

6.3 Background . 94

6.3.1 TLR Cholesky Factorization Basics 94

6.4 Performance Tools . 95

6.4.1 Trace Collection Framework . 97

6.4.2 PINS: PaRSEC INStrumentation . 98

6.4.3 Dependency Analysis . 99

6.4.4 Trace Conversion Tools . 99

x

6.5 TLR Cholesky Case Analysis . 101

6.6 Conclusions . 105

7 Conclusions and Future Work 106

7.1 Conclusions . 106

7.2 Future Work . 109

Bibliography 111

Vita 128

xi

List of Tables

5.1 STREAM Benchmark Results (MB/s) for NaCl and Stampede2. 82

xii

List of Figures

2.1 Bulk Synchronous Parallel model for parallel execution 9

2.2 Diagram of the main components of PaRSEC runtime system. 12

2.3 The four different kernels from Cholesky and QR respectively, during the 2nd

iteration of kernel executions. 17

3.1 Low-rank matrix factorization and compression algorithms. 25

3.2 Illustration of algorithm updating a low-rank block. 25

3.3 OpenMP task implementation of BLR factorization 31

3.4 PaRSEC DTD implementation of BLR factorization, including insertion of

the tasks in sequential order with the data usage information provided. . . . 33

3.5 PaRSEC PTG specification of the diagonal factorization tasks: defining the

parameter space, data locality, and data dependencies, written in JDF. . . . 36

3.6 Initial block ranks for each test matrix, all have dense tiles near diagonal, but

different off-diagonal low rank patterns . 39

3.7 Test matrices information . 39

3.8 The average wait time of a MPI process in a collective call for the flat MPI

model, shown as percentage of total execution time. Minimum and maximum

shown as well . 41

xiii

3.9 Execution time of each model on different datasets, top) 338ts, middle)

human 4x4, bottom) 1ms. Flat MPI performances on 1 node (28 cores)/4

nodes are used as base to show speed up of the models. They are 317, 221

and 1050 seconds respectively. Both X- and Y-axis are plotted on log2 scale.

PTG speed up over MPI+OMP are 1.23, 1.24 and 1.40 at 16 nodes 43

3.10 Execution stream of the different sections for one selected process, top) Flat

MPI, bottom) AMPI. Most of the BCastPanel time are likely idle time . . . 43

3.11 Top) Computation kernels occupancy summary of all the threads, Bottom)

Detail breakdown of the diagonal factorization task for MPI+OpenMP model 46

4.1 Top: original DTD, each task has a unique key Bottom: send/recv level key.

Grey square represents local task, white square represents remote task. Circle

represents the remote deps structure. In the new scheme, data flow ID is a

combination of sender rank and sequence number to uniquely label each data

transfer. As long as both the sender and the receiver has the dependent tasks

inserted, the data ID will be assigned correctly for the two sides to match the

data transferred. 52

4.2 Two-step broadcast with meta-data transfer as the first, and data payload

transfer as the second. They propagate as two separate flows but data

reception call can only be matched when the meta-data is received and global

ID is known. 55

4.3 The four different kernels from Cholesky and QR respectively. Both runs on

a 2X3 compute grid with 2-D block cyclic distribution. For QR, a super-tiling

of 2 is used on the grid row to reduce cross node P2P communication. 57

4.4 Left, trimmed task graph without broadcast call; Right, explicit broadcast

call to propagate POTRF data. Color scheme and data distribution follows

that from Figure 4.3. Lighter red and purple represent remote tasks, yellow

represents broadcast task. Data dependency between TRSM and GEMM

omitted. 60

xiv

4.5 Since only the TSMQR tasks are of order O(N3), we can insert all the other

tasks in all the nodes while inserting TSMQR only on ranks that are in the

same row or column of the current panel tasks. Figure on the left, shows the

situation for tasks inserted on rank 1, while figure on the right is for tasks on

rank 4. 60

4.6 Benchmark of a broadcast operation for sending a square tile of double

precision floating point values. I tested on two sets of nodes, and varied

the message data size. For comparison, I have the default DTD P2P, the

proposed DTD broadcast and finally the broadcast utilized in PTG (the two

shared the same mechanism). 63

4.7 Performance on Shaheen II, 256 nodes. Left: Cholesky, Right: QR 65

4.8 Performance on Shaheen II, 512 nodes. Left: Cholesky, Right: QR 65

4.9 Performance on Fugaku, 256 nodes. Left: Cholesky, Right: QR 68

4.10 Performance on Fugaku, 512 nodes. Left: Cholesky, Right: QR 68

5.1 Common illustration of the Jacobi update scheme [44]. 74

5.2 The 2D five-point stencil operation using PA1 algorithm on a 10-by-10 grid,

having a step size of 3 as illustrated in the original report [Demmel et al.].

For a single processor with the projected view. Red asterisks indicate remote

values that need to be communicated. 76

5.3 Top) Diagram of the baseline version of the PaRSEC implementation. Three

possible task locations and their data dependencies are shown. Black line

indicates within node data copy while red line indicates remote communi-

cation., Bottom) Diagram of the communication avoiding version PaRSEC

implementation. Three possible task locations and their data dependencies

are shown. Black line indicates within node data copy while red line indicates

remote communication. The boundary tiles will have a bigger ghost region to

accommodate the extra layers of remote data. 78

xv

5.4 Network Performance from NetPIPE on NaCl and Stampede2 with theoretical

peak of 32Gb/s and 100 Gb/s, respectively. 82

5.5 Shared memory PaRSEC base version performance for a given tile size; (top)

NaCl with problem size 20K, (bottom) Stampede2 with problem size 27K. . 84

5.6 Strong scaling speed up over single node baseline PaRSEC; (top) NaCl result

with problem size 23k, tile size 288; (bottom) Stampede2 result with problem

size 55k, tile size 864, running for 100 iterations. Steps size of 15 is used for

CA version. 84

5.7 Tuned kernel performance: (top) NaCl result with problem size 23k, tile size

288; (bottom) Stampede2 result with problem size 55k, tile size 864, running

for 100 iterations. Steps size of 15 is used for CA version. Running on 4, 16

and 64 nodes with squared compute grid. The ratio r indicates the ratio of mb

and nb of tile being operated on, namely r2 of the original number of points

in a tile. Black lines indicate the base PaRSEC with original kernels’ result. 86

5.8 Tuned step size performance: (top) NaCl results with problem size 23k, tile

size 288; (bottom) Stampede2 results with problem size 55k, tile size 864,

running for 100 iterations. Step sizes of 5, 15, 25 and 40 are used. 87

5.9 One node’s profiling result, running on NaCl with 16 nodes, tuned ratio of

0.4, 11 computation threads on a node. (top) baseline PaRSEC; (bottom) CA

PaRSEC. The boundary indicates the tiles that need to exchange data with

remote nodes. 89

6.1 Left, TLR format for matrix A having 4-by-4 tiles of size nb-by-nb. Diagonal

tiles are stored as dense. Off-diagonal tiles, are compressed to have U and

V blocks, each has its own rank, k. Right, the corresponding DAG for TLR

POTRF of the matrix. 96

6.2 Example DOT file entries. 103

6.3 Example HDF5 file entries. 103

xvi

6.4 Time between data is ready and TRSM starts for st-2D-sqexp synthetic

kernel data. Left, without lookahead; right, with lookahead of 5; each point

represents one TRSM; matrix has 100× 100 tiles. 104

xvii

Chapter 1

Introduction

1.1 Motivation

With the latest release of the TOP500 List from June 20221, we have officially entered in the

exascale era with the top machine, Frontier, located at the Oak Ridge National Laboratory,

and supported in part by the Exascale Computing Project (ECP) [71]. The driving force

behind the need of such a powerful machine is the pursuit to enable unprecedented scientific

discovery. The exascale application areas range from chemistry, materials, energy, earth,

and data science. Efficiently running these applications on the fastest machines means faster

scientific discovery and solving problems that were previously intractable. This requires the

software supporting the applications to be able to use the hardware efficiently, and that can

scale to the entire system. Since the top systems can either be CPU-based or heterogeneous

with NVIDIA or AMD GPUs or other types of hardware accelerators, their programming

model needs to be able to extract performance from the different hardware on a given node,

and ensure optimal inter-node communication as well.

Currently, most of the applications adopt the MPI+X approach with MPI [100] being the

dominant library for cross-node communication and supporting portability across systems

and hardware, and where the “X” can be any of POSIX Threads, OpenMP [89], Kokkos [52],

1https://www.top500.org/lists/top500/2022/06/

1

RAJAs [78], CUDA or other programming languages and library-based software. Porting the

applications from MPI-based and CPU-based to their MPI+X counterparts might be the

most straightforward approach, usually only requiring to convert the performance-critical

kernels to the new accelerators using one of these node level abstractions. But to achieve

good efficiency and scalability, performance tuning such as overlapping communication and

computation is required. And this has to be tuned across the different leadership machines.

As a result, many applications decide to build on the common libraries, e.g., AMReX [120],

so that the burden of providing good performance across these complex systems can be

shifted to the experts developing these libraries.

Task-based runtime systems serving as an alternative approach has been getting traction

in the recent years, both as a way to utilize heterogeneous system efficiently but also

increase productivity. It aims to separate the expression of algorithm from the performance

optimization so that the domain scientists can focus on the scientific problems, while the

runtime is in charge of efficient hardware utilization and message communication. There

are many ways to express the algorithm to the runtime system, but essentially the runtime

system tracks a directed acyclic graph (DAG) of tasks with data dependencies among them.

With concurrent scheduling of computational tasks and the data transfers between them,

this programming model naturally achieves computation and communication overlapping

and is likely to result in performance portability. And there are roughly two ways to express

the task graph: 1) explicit parallel program, where the data dependencies among the tasks

are known – this usually requires the assistance of compilers; and 2) implicit parallel tasking

that depends on dynamic dependence analysis to generate the task graph.

In this dissertation, I evaluated both the programmability as well as the performance of

some of the leading programming models. I implemented two optimizations for the Dynamic

Task Discovery (DTD) interface in PaRSEC [74], which adopts the common task-based

runtime system interface called Sequential Task Flow (STF). The results demonstrated the

benefits and limitations of the STF approach. With the strengths of Parameterized Task

Graph (PTG) [42] interface within the PaRSEC framework [29], I evaluated the possibility of

2

building sparse iterative operations with communication avoiding techniques with PaRSEC

to achieve further performance improvements. The importance of the profiling system for

performance optimization is demonstrated as well.

1.2 Contributions

This dissertation contributes along several aspects of distributed programming models: from

evaluating the programming styles and performance of different models, to optimizations of

the STF model, in particular. I also explored the potential of combining communication

avoiding technique with task-based runtime system in case of sparse solvers. Finally, I

highlighted the key role of the profiling subsystem for performance optimization, and the

flexible scripting approach that I adopted to pinpoint execution bottlenecks.

1.2.1 Programming Models Evaluations

Blocked low-rank LU is an efficient approach to perform matrix factorization by exploiting

the numerical properties of matrices to compress their off-diagonal blocks. At the same

time, from the parallel programming perspective, it is a challenging algorithm, because the

resulting blocks have varing sizes, which creates both computational and communication

imbalance. This in turn requires the programming model to be able to efficiently handle

such situations at runtime. Using it as a test case, I set out to evaluate the performance and

the productivity aspects of different parallel programming models. Starting from an existing

MPI and MPI+OpenMP implementations, I converted and optimized the algorithm for task-

based programming models and provided two implementations: the PaRSEC parameterized

task graph (PTG) and the Dynamic Task Discovery (DTD insert task) implementations.

This process included profiling and performance analysis of the algorithm in a heterogeneous

large-scale setup, while identifying performance bottlenecks as well as pinpointing and

implementing parallel programming constructs critical for performance and scalability, e.g.,

the ability to send variable-sized messages occurring due to the numerical rank differences,

3

which was a new feature that I added into the interface. The novelty of this work is two-

fold: 1) I provided the first efficient implementation of block low-rank LU factorization

using a runtime system, and 2) I identified and quantified critical constructs in task-based

parallel programming paradigms for performance and scalability. My conclusion highlights

the fact that the sequential task flow (STF) model—the base model behind most MPI+X

programming paradigms—can provide good performance and portability across machines,

but it requires further optimizations to remain scalable and efficient.

1.2.2 STF Improvements and Limitations

Sequential task insertion model has been widely adopted and proven to be a user-friendly

approach due to its ease of use. However, the overhead of building the graph of dependencies

between tasks originates from the global knowledge of the distributed execution, and the

lack of collective communications is highly detrimental to the performance and scalability of

the programming model. To investigate different strategies for task dependencies’ graph

construction and their inherent cost and scalability, I modified the PaRSEC runtime,

more specifically the DTD’s Domain Specific Language (DSL), to add two new features:

1) graph trimming, and 2) collective communications. Graph trimming, or the ability

to have a functional algorithm based on carefully-built local information, requires the

availability of correct data dependencies between tasks being expressed, allowing the runtime

to track the task dependencies without uniquely naming each task. Collective operations

in sequential task insertion model is a novel concept. Unlike the MPI model, for which the

communication group is known beforehand, the participants in task-based runtime have only

partial knowledge of the collective operation. As a result, the participants need to rebuild

the collective locally as the operation unfolds. Performance results from the Cholesky and

QR factorizations showed the benefits and limitations of the adding these features at the

runtime level. The goal was to reduce the programming complexity while maintaining the

efficiency and flexibility of the parallel concepts and lower the bar and thus enable a wider

adoption of distributed task insertion models.

4

1.2.3 Communication Avoiding with PTG for Sparse Algorithms

Stencil computations or general sparse matrix-vector products are key components in many

scientific algorithms, but their low arithmetic intensity means that the memory bandwidth

and network latency are the main performance limiting factors. Communication avoiding

(CA) scheme aims to minimize the influence of the network latency in repeated sparse matrix-

vector multiplications by replicating remote work in order to delay the communication that

resides on the critical path. Although CA is a promising numerical technique, it has a

very challenging implementation aspects, especially in the runtime system. Focusing on

minimizing the communication bottleneck in distributed stencil computation, I combined

CA scheme with the computation and communication overlapping that is inherent in

a dataflow task-based runtime system such as PaRSEC to demonstrate their combined

benefits. I implemented a version of the 5-point stencil workload in PaRSEC, that showed

significant performance and scalability benefits (it was up to 57% faster than the second best

implementation).

1.2.4 Profiling Analysis for Performance Tuning

Profiling is an essential part of evaluating the performance of a parallel application. For the

MPI+X applications that mostly follow the Bulk-Synchronous Parallel (BSP) model, space-

time plots are used to identify performance issues. Task-based runtime on the other hand

explores the task graph dynamically, with tasks’ execution and message communication all

happening concurrently. Its profiling system needs to be able to collect data to understand

task execution sequences from scheduling decisions, message transfers rate for network

utilization, kernel execution time and data allocation time for memory and hardware

utilization. Modern data analysis workflow (e.g. R, Python modules) is a flexible and ideal

choice to analyze and visualize the many aspects of the execution trace and to help pinpoint

performance bottlenecks. Using Tiled low rank (TLR) Cholesky as an example, where the

diagonal tasks are more critical than in the dense case, I demonstrated this flexible approach’s

5

ability to combine information from multiple sources in a novel way to identify the scheduling

deviation from the critical path, which lead to the subsequent performance optimization.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows:

• Chapter 2 provides the background on both the current HPC programming models

and current task-based runtime systems developments. Also I show applications that

adopted task-based approach.

• Chapter 3 uses the block low rank (BLR) LU as a test program to evaluate the

programmability and performance of several programming models.

• Chapter 4 focuses on improving the STF model with graph trimming and collective

operations as well as the limitations of the STF model.

• Chapter 5 adopts the PTG interface and extends it with the communication avoiding

approach for sparse problems, using 5-point stencil in 2D as the test case.

• Chapter 6 provides the details of the PaRSEC profiling subsystem, and shares a case

study focused on understanding the runtime execution by analyzing the outputs.

• Chapter 7 concludes the dissertation and outlines the future directions.

6

Chapter 2

Background and Literature Review of

Related Work

This chapter covers some of the common programming models used in HPC applications,

including both for distributed as well as for shared-memory systems. I then briefly summarize

the actively developed task-based runtime systems. Since my evaluation programs are in the

field of numerical linear algebra, I will also cover some recent developments in this area as

well.

2.1 Current programming Models

2.1.1 Distributed Memory Programming Models

Message Passing Interface (MPI) [100] standard is the dominant programming model used

for inter-node communication in high-performance computing (HPC). And it is widely

expected that MPI will continue to serve that purpose of inter-node communication on

the future HPC systems for most of the applications. MPI itself is a relatively low level

model with APIs for point-to-point message passing, collective operations (blocking and

non-blocking), synchronizations as well as one-sided operations. The application code is

written in a single program, multiple data (SPMD) form where the algorithm writer needs

7

to manage the communications explicitly. And applications written with MPI are very likely

to follow bulk-synchronous parallel (BSP) model [112, 111], whereby a sequence of parallel

execution is followed with a (often global) synchronization to ensure consistency in data and

program state as shown in Figure 2.1. There are many different implementations of the

MPI standard specification either from hardware vendors or open-source community such

as OpenMPI [62], MPICH [124], This ensures portability across underlying hardware, and

constant optimizations of the provided functionalities for resilience, robustness, scalability

and low-latency communication. As a result, it is used as the underlying communication

layer for many of the distributed task-based runtime systems.

Partitioned Global Address Space (PGAS) programming model, such as Chapel [38],

UPC++ [123] and OpenSHMEM [40], is another paradigm used by applications on distributed

memory systems. In this model, a global memory address space abstraction is logically

partitioned, where a portion is local to each process. If implemented as a software library,

the application writer needs to manage the message communication and synchronizations

explicitly, in a similar fashion to MPI codes, but with integration in a programming language,

the PGAS compilers can handle some of the communication details and achieve higher

productivity for the programmer by avoiding common coding mistakes.

2.1.2 Shared Memory Programming Models

For the MPI+X approach, the X usually represents a programming model working in shared

memory space, either for CPU or hardware accelerators or both. In order to achieve

performance and portability for intra-node programming, there are a variety of options.

Among portable, and standard-backed programming models, OpenMP [89] is likely the most

widely used one and is supported by hardware vendors on their platforms but the quality of

the implementation might vary. Through parallel loops or tasking directives multiple threads

can be executed concurrently, and target directive offers support for accelerator offloading.

Kokkos [52] and RAJA [78] provide another alternatives for portable, heterogeneous-node

programming via C++ abstractions. They are designed to work on complex node architectures

8

Figure 2.1: Bulk Synchronous Parallel model for parallel execution

9

with multiple types of execution resources and multi-level cache and memory hierarchies.

Many ECP applications have successfully used Kokkos or RAJA to write portable parallel

code that runs efficiently on GPUs [97]. Some vendor-supported options include CUDA and

OpenACC for NVIDIA GPUs, SYCL/DPC++ for Intel GPUs, and HIP for AMD GPUs.

OpenACC supports accelerator programming via compiler directives across many hardware

platforms. And SYCL provides a C++ abstraction on top of the OpenCL standard, which

itself is a portable alternative to CUDA, lower-level API for programming heterogeneous

devices. Intel’s DPC++ builds on SYCL by adding productivity extensions. HIP from AMD

is an API and set of libraries similar to CUDA software stack. All of these models will

need to work with MPI, resulting in a two-level programming paradigm with a relaxed

synchronization requirement, especially at the node level. Still, combining these two levels

to work efficiently is a challenge in itself [90].

2.2 Task-based Runtime Systems

Task-based runtime systems usually follow the dataflow programming model, where instead

of writing a program as a sequence of local instructions and concurrency controls, we treat

the computation on data as an indivisible task. The input data for this task, and the output

from the task connect to other tasks in order to form the flow of application data and specify

the dependencies among the tasks. A directed acyclic graph (DAG) based on that dataflow

can be scheduled onto the HPC system with the maximum level of concurrency and minimum

level of synchronization, with task-based runtime system acting as a middle layer on top of

multi-threading, accelerators’ management, and MPI communication. They execute tasks

in an asynchronous fashion and break out from the overly constraining bulk-synchronous

programming model. These runtime systems target shared and distributed-memory systems,

possibly equipped with GPU accelerators.

10

2.2.1 PaRSEC Runtime System

PaRSEC [30] (Parallel Runtime Scheduling and Execution Controller) is a generic framework

for architecture-aware scheduling and management of micro-tasks on distributed many-

core heterogeneous architectures whose components are shown in Figure 2.2. The

runtime contains multiple components: programming interface in form of DSLs, schedulers,

communication engines, data interfaces, and a few other modules. PaRSEC uses a modular

component architecture, allowing different modules to be selected, providing different

capabilities to different instances of the runtime (such as scheduling policies, or support

for various accelerators). A clear API for these modules allows interested developers or users

to implement their own application-specific policies. The core components include all the

management required for abstracting a computing resource to an application developer and

is shared by all the interface entry points. At the top, the programming interface specifies the

functionality that PaRSEC provides for developers to express their applications. Currently,

there are 3 different interface options supported by PaRSEC: parameterized task graph

(PTG) [42], Dynamic Task Discovery (DTD) [74], and more recently Template Task Graph

(TTG) [32].

These DSLs create a dataflow model with dependencies between tasks and exploit the

available parallelism present in applications and expressed to PaRSEC. The first historically

and most commonly used DSL is PTG, which allows users to define a parameterized task

graph with syntax known as Job Data Flow (JDF) that specifies the dependencies between

user tasks. As a DSL coder, the user needs to specify the possible task classes, including the

body of each task performing the computational work, the data usage and how they flow

among the various task classes, and finally the affinity of each task, which indicates the rank

to execute a given task. The possible tasks are identified by their name and the parameters

provided to each of the task classes. In this formulation, the task graph is specified a priori

and as a result each node has a global view of the task graph. Due to its flexibility, many

applications have obtained state-of-the-art performance and scaling results [36] [35] [34].

11

Figure 2.2: Diagram of the main components of PaRSEC runtime system.

12

To enhance the productivity of the application developers, DTD interface adopts the STF

model and provides an API-based implicit parallelism model. Users can write sequential code

and DTD will build the task graph internally. When inserting tasks, a function is provided as

the code body of the task, and the data used with its usage information (Read, Write, Read-

Write) are passed to DTD for analysis. The correctness is guaranteed by the sequentiality of

the data accesses. In distributed-memory systems, all the processes will iterate over the same

task discovery process to ensure consistency among the processes without communication

and without a priori task graph specification. The scalability of this model is a known issue

and several previous research efforts proposed partial solutions to remedy it [4] [50].

The newest interface—TTG—provides a C++ API and extends the idea of PTG by

generalizing the notion of parameters to arbitrary types and enabling data-driven selection

of task dependencies including conditional execution. This is a critical feature for algorithms

with irregular data access patterns since many of them are dependent on the intermediate

data. In a manner similar to PTG, in TTG the user also needs to specify all the possible task

templates, and the connections between the task templates via data-communicating edges

to the different terminals. But with task graph being data dependent, the program specifies

a set of possible DAGs of tasks with the actual executed DAG being dependent on the data

flowing through it.

2.2.2 Other Runtime Systems

In recent years, there were many new and now actively developed runtime systems. I will

summarize the features of the representative ones for both shared memory and distributed

memory systems.

Legion

Legion [25] introduces a concept of logical regions to virtually represent partitioned real data

to infer task dependencies. For each task using any logical regions, users provide coherence

and privilege information, and Legion extracts the parallelism inherent in the presented

13

regions and depending on the provided constraints. Communication among remote nodes

is not required to be expressed explicitly as it is managed by Legion implicitly. It uses

GASNet for inter-node communication and has support for heterogeneous architectures.

Legion showed good performance on both benchmarks and applications [104] [24]. Legion

provides a strong and flexible interface to decompose any data into logical regions to help

in porting applications that exhibit different behavioral parallel patterns. It provides a DSL

called Regent [98] to describe the task graph and at a lower level, and the runtime called

Realm [106], which is in charge of scheduling the tasks.

StarPU

StarPU [7] is a high-level runtime for both shared and distributed system. There are two

approaches for distributed system: (1) allow users to specify communication explicitly, and

(2) infer communication from dataflow implicitly. StarPU has its own data interface to

manage data movement and versioning. For inter-node communication it uses MPI and

has support for heterogeneous architectures. Multiple applications in areas like dense and

sparse linear algebra kernels have showed performance improvement when implemented with

StarPU runtime.

It also adopts the STF programming model allowing users to insert tasks. The runtime

infers the dependencies to order tasks’ execution based on the information provided by the

users regarding the data produced or consumed by each task. StarPU builds the task graph

dynamically during runtime in a manner similar to PaRSEC’s DTD. For distributed memory,

a global view of the task graph is maintained to connect the local and remote tasks. The

global view can be pruned but needs user input. There is no support for building a static

task graph like PaRSEC PTG.

Charm++

Charm++ [82] is a parallel programming framework supported by an adaptive runtime system

that builds on three main concepts: 1) over-decomposition, whereby the work and data are

14

decomposed to many more entities than the total number of physically available processing

elements; 2) asynchronous message-driven execution, whereby a “process”, or chare in the

Charm++ parlance, never wastes the physical resources while waiting on communication’s

completion, by allowing other “processes” to take over the physical cores and continue the

progress on their own work; and 3) migratability, whereby the data and work can move

among the processing elements. Combining these three features provides the potential to

dynamically balance the load and hide the communication overheads. It is a well established

framework with success stores based on results in many different applications.

OmpSs and OmpSs-2

OmpSs [51] is a programming model composed of a set of directives and library routines

that can be used in conjunction with a high-level programming language in order to develop

parallel applications. It uses Nanos++ runtime to manage ordering of tasks. Their initial

proposals for task-based directives were a primary driver for the inclusion of advanced

concepts that allows task-based parallelism in OpenMP. OmpSs uses a different execution

model from that of OpenMP and does not implement fork-join parallelism as OpenMP

does. OmpSs supports heterogeneous memory systems through leveraging native kernel

implementations provided by the user.

Taskflow

Taskflow [79] was motivated by the lack of advances in computer-aided design (CAD) tools

with heterogeneous parallelism to achieve better performance and productivity. Unlike

traditional loop-parallel scientific computing problems, many CAD algorithms exhibit

irregular computational patterns and complex control flow that require strategic task graph

decomposition to benefit from heterogeneous parallelism. This type of complex parallel

algorithms are difficult to implement and execute efficiently. Taskflow provides an expressive

task graph programming model by leveraging modern C++ lambda closures. It supports a

new conditional tasking model that supports in-graph control flow beyond the capability of

15

traditional DAG models that prevail in existing systems. Conditional tasks enable developers

to integrate control-flow decisions, such as conditional dependencies, cyclic execution, and

non-deterministic flows into the task graph of end-to-end parallelism. For applications that

frequently exhibit dynamic behavior, such as optimization with branch-and-bound methods,

programmers can efficiently overlap tasks both inside and outside of the control flow to hide

expensive control-flow costs. Their scheduling algorithm prevents the graph execution from

underutilized threads that is harmful to performance, while avoiding excessive waste of thread

resources when available tasks are scarce. This improves the overall system performance,

including latency hiding, limiting energy usage, and increasing task throughput.

2.3 Numerical Linear Algebra

Numerical linear algebra algorithms are the computational foundations of many scientific

computing applications. Improving the performance of these algorithms can reduce

simulation time and advance the scientific discovery. A family of tiled matrix algorithms

were developed specifically in response to the rising number of processing elements found in

today’s computer systems. Tiled algorithms are structured in such a way that concurrency

is expressed at the algorithmic level. Therefore, a matrix A ∈ Rn×m with n ×m elements

is divided into tiles of size nt ×mt with operations being applied to the individual tiles as

shown in Figure 2.3. At their core, many of these algorithms are structured such that, in

each iteration, the tile on the matrix’ diagonal is updated, followed by an update of a tile row

or column and the update of the tiles in the trailing part of the matrix. By encapsulating the

operations on the tiles in tasks and specifying the data-flow between them, a large amount

of concurrency can be exposed, leading to minimized idle times in the threads executing the

tasks. In many cases, the communication pattern is an irregular many-to-many exchange

of tiles, which is evolving throughout the course of the execution of the algorithm. The

required coordination of the execution of tasks at a global scale is challenging due to the

sheer amount of tasks and the irregular communication pattern. These properties make this

class of algorithms an interesting target for task-based programming models.

16

POTRF

TRSM

SYRK

GEMM

GEQRT

TSQRT

UNMQR

TSMQR

Figure 2.3: The four different kernels from Cholesky and QR respectively, during the 2nd
iteration of kernel executions.

17

Numerous libraries provide dense linear algebra routines. Since its initial release nearly

30 years ago, LAPACK [15] has become the de facto standard library for dense linear algebra

on a single node. It leverages vendor-optimized BLAS for node-level performance, including

shared-memory parallelism. ScaLAPACK [27] was built upon LAPACK by extending

its routines to distributed memory computing with message passing and by relying on

both the Parallel BLAS (PBLAS) and explicit distributed-memory SPMD parallelism and

synchronization. Some attempts have been made to adapt the ScaLAPACK library for

accelerators, but these efforts have shown the need for a new framework. More recently,

the DPLASMA [28] and Chameleon libraries [1] both build a task dependency graph and

launch tasks as their dependencies are fulfilled. This eliminates the artificial synchronizations

inherent in ScaLAPACK’s design, and allows for overlap of communication and computation.

DPLASMA relies on PaRSEC’s PTG or DTD DSLs to specify and schedule tasks, while

Chameleon [1] can use either StarPU or PaRSEC runtime. And they both support GPU-

based task executions. SLATE [58] is a recent effort to implement the linear algebra

routines in the distributed memory settings with the goal of fully replacing ScaLAPACK’s

functionality and adding new algorithms. It uses modern C++ framework and MPI+OpenMP

model, with support for modern accelerated architectures.

Sparse solvers are entirely different from the dense ones, but they are also a critical part of

many numerical simulations. Usually, no scalable sparse solvers can work for all applications,

nor are there single implementations that work well for all problem sizes. As a result,

the mostly widely used packages for iterative methods’ solvers and optimization, including

PETSc [20] and Trilinos [Trilinos Project Team], provide a wide variety of algorithms and

implementations that can be further customized. In terms of direct solvers that were built on

top of task-based runtime systems, both PaStiX [70] and MUMPS [5] are two of prominent

efforts.

18

Chapter 3

Parallel Programming Models

Evaluation

3.1 Overview

Scientific simulations from many domains utilize high-performance computers to run

in parallel their workloads and speed up obtaining the results and thus contribute to

knowledge discovery. Traditionally, these applications are implemented with the MPI only

model coupled in the vast majority of cases with a static data distribution. A static

mesh partitioning or domain decomposition methods could lead to imbalanced workloads,

especially when the workload can change dynamically. Moreover, the explicit synchronization

introduced in the MPI programming model invariably results in significant idle time under

dynamically imbalanced workloads.

The computational and storage costs of the dense matrix operations can be reduced

significantly using a low-rank format that exploits so called data sparsity that relies on

low numerical rank of the off-diagonal submatrices that physically represent far-range

interactions that tend to have favorable eigen-spectrum and admit reduced-size numerical

approximations. More precisely, Block Low-Rank (BLR) partitions the matrix in 2-D blocks

and compresses the off-diagonal blocks using their low-rank representations, leading to a

19

smaller need for storage space and a lower computational intensity. Thus, the use of a low-

rank format can drastically shorten the factorization time, a highly desirable property for

critical algorithms for as long as the error can be bound a priori. Solutions of a large-scale,

diagonally dominant dense linear system of equations is needed for a number of scientific and

engineering simulations, and BLR format enables simulations at larger scale, which would

not have been practical using the classic dense storage format, either due to the storage or

to the excessive computational costs.

One such application is the LU factorization of a dense matrix stored in the BLR

format [11]. We observed that the geometry-based matrix partitioning compresses the matrix

favorably, leading to many off-diagonal blocks with small or fast decaying numerical ranks,

and therefore this translates into a lower computational cost. In a 2-D block-cyclic dense

distribution, data is mostly evenly distributed across participating processes, leading to

well-balanced—both in terms of memory and computation—factorizations [46]. However,

the compressed format does not inherit the even balancing of the classic dense algorithm,

leading to an algorithm that, while similar to the dense counterpart, is unbalanced and

dynamic in memory needs, communication, and computation. An implementation of this

algorithm using MPI only exacerbates this imbalance due to its tightly coupled nature, where

an explicit synchronization is necessary at each factorization step. It also highlighted that

the accumulated idle time due to the explicit synchronization at each step of factorization

can be significantly greater than the load imbalance in the total local computation time

among the processes.

Moreover, the dynamic nature of each block’s rank during execution makes it difficult

to statically distribute the blocks among the processes to reduce the load imbalance.

Alternative, more dynamic, approaches are necessary to cope with the imbalance, and deliver

efficient executions in distributed memory environments.

In this chapter, I explore the computer science aspects of this highly dynamic problem,

and try to understand how different programming approaches compare when supporting

such an imbalanced application. Looking simultaneously at the metric of programmability

20

and the more objective metric of performance. More precisely, I evaluate five different

programming models for implementing the BLR LU factorization of a dense matrix, arising

from the boundary element analysis of electrostatic field:

1. The Flat MPI (MPI only) model with blocking collective operations, which leads to

synchronization at each step of factorization;

2. The Adaptive MPI (AMPI) model: an implementation of the MPI standard on top

of Charm++ that supports over-decomposition and dynamic load balancing [3];

3. The MPI+OpenMP tasking model, where both the computational and communica-

tion tasks are dynamically scheduled in order to remove the synchronization points of

our flat MPI implementation;

4. The Dynamic Task Discovery (DTD) model [75] where the algorithm is described

sequentially as a series of tasks and the runtime build the data dependency graph

dynamically; and

5. The Parametrized Task Graph (PTG) model where the algorithm has a dataflow

description as a parameterized graph of tasks.

For the DTD and PTG cases, I use the PaRSEC distributed-memory runtime system [30],

that can dynamically move data among processes to satisfy data dependencies and schedule

the available tasks.

I evaluate the programmability of each model, commenting on the experience of

transitioning from the original flat MPI implementation of BLR LU to task-based pro-

gramming models. I then analyze in detail the performance, focusing on the effectiveness

of each programming model to address the load imbalance, overlap of communication

and computation, and, more globally, reduce the factorization time. This work is a

guide for parallel application developers, to provide a path to avoid performance pitfalls

with the MPI+X programming model, while describing a possible path to alternative

programming models. Simultaneously, the data movement patterns and the exposed data

21

dependencies represent the backbone of a large class of algorithms, and can be used by

parallel programming researchers when developing new features on their next-generation

programming models.

3.2 Related Work

In addition to the BLR format, several other low-rank formats have been proposed, including

H-matrix [66] and Hierarchical Off-Diagonal Low-Rank (HODLR) [10] formats, and their

nested variants H2-matrix [67] and HSS [39] formats. There are also multi-level low-rank

formats with the lattice structures [12, 118]. Among those formats, the H-matrix has the

most general low-rank format, leading to the near-linear complexity of the factorization.

However, its irregular hierarchical block structure poses a challenge when parallelizing the

factorization on a distributed-memory computer. To simplify the parallelization and improve

the scalability, BLR abandons the hierarchy, but comes with the price of higher storage and

computational complexities , i.e., O(n1.5) for storage and O(n2) computational complexities

for the BLR factorization of a dense matrix of dimension n [13], respectively. This may

be compared with O(n log n) and O(n log2 n) complexities with the H-matrix format [66],

respectively. Nevertheless, for factorizing a small-scale matrix in practice, e.g., n = O(105),

the BLR and H-matrix formats often have similar costs of factorization in practice.

The BLR’s simpler flat low-rank format brings the potential for higher computational

performance. However, for solving a practical problem with an irregular partitioning of the

matrix, the parallel scalability of the BLR factorization can be greatly limited by the load

imbalance among the processes, even on a small number of processes (e.g., tens or hundreds

of processes). It is then the responsibility of the programming paradigm and its model to

provide developers with the means to efficiently handle such imbalance, either by shifting it

around the participating processes or by overlapping multiple, possibly partially dependent,

iterations.

The BLR format was used for distributed multi-frontal sparse factorization [14]. In

the Hierarchical Computations on Manycore Architectures (HiCMA) library, the StarPU

22

runtime [16] was used to improve the performance of the distributed BLR Cholesky

factorization [8]. And more recently, HiCMA has been ported to use PaRSEC runtime

system, and extensions to include mixed-precisions and sparse tasks graph have been

studied [36] [35] [2]. Previously, load balancing issues in generating and performing the

matrix vector multiply with the H-matrix have been studied [72]. Compared to matrix

generation and multiplication, the factorization has more complex dataflow, and for matrix

multiplication, the numerical ranks of the blocks do not change.

In terms of comparing programming models, [18] compared UPC++ with the Partitioned

Global Address Space (PGAS) implementation of direct linear solvers for sparse symmetric

matrices with two state-of-the-art ones and showed favorable results. Direct comparisons

between several task-based runtime systems using a set of benchmarks to help application

developers made informed decisions on the transition from MPI+X models [77]. However, all

of these efforts dealt with regular and certainly less dynamic applications, and this study will

complement their findings using a BLR factorization. More recently, a more comprehensive

benchmarking suite comparing multiple parallel programming approaches was proposed [99].

With a unified framework for testing the scalability, imbalanced workload and runtime

overheads, it provided many great insights for runtime optimizations.

3.3 Block Low-Rank Factorization Algorithm

To store the matrix in BLR format, our implementation uses a geometric-based partitioning

algorithm [80] (to obtain high compression rate of the matrix) and tolerance-based

recompression [83, 26] during the factorization, for all the low-rank off-diagonal blocks. For

the application of interest, namely the LU factorization, when the matrix is properly ordered

and partitioned, many of the off-diagonal blocks can be well approximated using small ranks.

As a result, when n is the dimension of the coefficient matrix, BLR has the potential to reduce

the storage and computational complexities of factorization to O(n1.5) and O(n2) from O(n2)

and O(n3), respectively, when using the dense matrix format [13]. All diagonal blocks are

stored in the dense format and treated as dense with regard to computations.

23

At each step of factorization, BLR algorithm first computes the LU factorization of the

leading dense diagonal block using the LAPACK subroutine dgetrf. Then, the off-diagonal

blocks aligned with the leading block’s row and column, commonly known as panels, are

factorized using the BLAS triangular solve DTRSM. with the lower- and the upper-triangular

factors of the diagonal block, respectively. These panel blocks are then used to update the

trailing submatrix block by block. Figure 3.1(a) shows the resulting factorization algorithm.

In BLR format, the off-diagonal blocks can be either low-rank or dense. Thus, when

updating the trailing blocks Bi,j on Figure 3.1(a), each of the three blocks involved, Bi,j,

Li,k, and Uk,j can be either dense or low-rank, giving eight potential configurations for the

updating kernel. We update these blocks according to the approach that would minimize

the floating-point operation (FLOP) count (see Figure 3.2 for an illustration). When a

dense block Bi,j is updated using two low-rank blocks, Li,k = Vi,kY
T
i,k and Uk,j = Vk,jY

T
k,j,

we first compute the small matrix T := Y T
i,kVk,j. We then multiply T with either Vi,k or

Y T
k,j, depending on the required FLOP counts. Finally, Bi,j is updated with the low-rank

matrix, i.e., Bi,j := Bi,j − Vi,k(TY
T
k,j). Similarly, to update a dense block using a low-

rank block and a dense block, we first merge the dense block into the low-rank block, i.e.,

Bi,j := Bi,j−Vi,k(Y
T
i,kBk,j). On the other hand, if Bi,j is a low-rank block, we can then directly

merge the low-rank representation of the update with the original low-rank representation

of Bi,j, i.e., Bi,j := V̂i,jŶ
T
i,j, where V̂i,j = [Vi,j,−V̄i,j] and Ŷi,j = [Yi,j, Ȳi,j], and Vi,jY

T
i,j is

the original low-rank representation of Bi,j before the update, while −V̄i,jȲ
T
i,j is its low-

rank update to be applied. Compared with the dense-block update that requires O(ninjnk)

FLOPs, the low-rank update only requires O(ninj min(ri,k, rk,j)) FLOPs, where ri,k and rk,j

are the respective numerical ranks of the blocks Li,k and Uk,j, and nk is the dimension of

the k-th diagonal block. As a result, when the blocks have small ranks, i.e., ri,k, rk,j ≪ nk,

low-rank compression can significantly reduce the FLOP count.

To avoid the increase in the numerical rank while maintaining the user-specified accuracy,

we use Adaptive Cross Approximation (ACA) [83, 26] to recompress the low-rank block after

each update. As shown in Figure 3.1(b), at each step of ACA, we compute the pivot row (and

24

for k = 1, 2, . . . , nt do
//Factorize diagonal block
[Pk, Lk,k, Uk,k] := LU(Bk,k)
for i = k + 1, . . . , nt do

//Compute blocks in panel column

Li,k := Bi,kU
−1
k,k

end for
for j = k + 1, . . . , nt do

//Compute blocks in panel row

Uk,j := L−1
k,kPkBk,j

end for
for i = k + 1, . . . , nt do

for j = k + 1, . . . , nt do
//Update trailing block
Bi,j := Bi,j − Li,kUk,j

end for
end for

end for

(a) LU factorization, where nt is the
numbers of the blocks in the matrix row
or column.

Πrow = ∅, Πcol := ∅, r := 0, π1 := 1
while not converged do

// increment numerical rank
r := r + 1
// generate pivot row
y:,r := bT

πr,:
− y:,1:r−1vT

πr,1:r−1

// pick pivot column
πr := argmaxj(|yj,r| : j ̸∈ Πcol)
Πcol := Πcol ∪ {πr}
// generate pivot column
v:,r := b:,πr − v:,1:r−1yT

πr,1:r−1

// pick pivot row
πr := argmaxi(|vi,r| : i ̸∈ Πrow)
Πrow := Πrow ∪ {πr}
// convergence check
∥E∥ := ∥V:,1:r∥∥Y:,1:r∥
if r == 1 then ∥A∥ := ∥E∥
if ∥E∥ ≤ τ∥A∥ then break;

end while

(b) ACA compression to compute
a low-rank V Y T form of a block
B.

Figure 3.1: Low-rank matrix factorization and compression algorithms.

Figure 3.2: Illustration of algorithm updating a low-rank block.

25

column) by multiplying the corresponding row of Ŷi,j (and V̂i,j) with V̂i,j (or Ŷ
T
i,j). Thus, we

do not explicitly form the dense representation of the whole low-rank block. The algorithm

terminates when the user-specified accuracy of the approximation is obtained. As a result,

the numerical rank of each block may change at each step of the factorization.

Our LU implementation seeks pivots only within the diagonal block, ignoring the

potential pivots outside the diagonal blocks. This pivoting scheme (combined with the

matrix balancing) was sufficient to maintain the numerical stability of the factorization for

matrices arising from the applications we were interested in.

3.4 Required Features

I highlight some of the most critical features needed in order to implement an efficient

BLR factorization algorithm. Most of these requirements are generic enough to be applied

regardless of the programming model, but some are particular to task-based models.

1. Mitigate the load imbalance at each step due to variable task granularities (different

sizes of blocks whose numerical ranks change dynamically).

2. Allow dynamic reallocation of the data that define the dependencies among the tasks

(to store the low-rank block whose numerical rank changes, e.g., the numerical rank

could increase).

3. Handle the dynamically changing size of the data to be sent or received (to send the

low-rank block whose numerical rank is known only at run time).

4. Provide the means to overlap communication with computation (e.g., using a

communication thread). A fork–join programming model (e.g., with MPI + OpenMP)

without dedicated communication tasks or threads may not be sufficient.

5. Enable the ability to specifically highlight the critical path of the algorithm, and

prioritize its execution.

26

6. Define task or data dependencies at runtime (e.g., depends on the input matrix due to

empty blocks, though the dependencies are not changed during the factorization).

7. Support heterogeneous systems (e.g., the ability to offload work to GPUs) and manage

devices’ tasks automatically.

Most of the target programming models have some level of support for these features, even

if in some instances the burden of handling concurrency (or potential parallelism) is on the

developer. All MPI-based approaches (flat-MPI, MPI+OpenMP, and AMPI) claim support

for asynchronous, or non-blocking, communication and for collective communication. In

addition, AMPI supports load balancing via migration of computations to a less busy peer

and communication-computation overlap by maintaing a highly oversubscribed state in their

approach, but behaves in the same way as MPI for other features.

At the current stage, PaRSEC supports all but (3), where on the receiver a fixed size

temporary buffer is used. In addition, I did not use feature (2) in the current PaRSEC

implementations of BLR factorization (we only send the required data, but need a larger

buffer). Thus, current PaRSEC implementation requires two additional parameters for

specifying the maximum numerical rank of each block, and setting the size of the buffer

(i.e., the minimum rank rmin and the ratio rrate with respect to the block sizes such that

the maximum rank for the (i, j)-th block is given by max(rmin, rrate ·min(ni, nj))). While

these parameters could have been the target of an autotuning campaign, I selected in this

study the default values based on the input data; they might not be optimal but they should

be relatively close. In the experiments, the maximum rank is set such that it is larger than

the ranks chosen during the factorization, leading to a larger memory requirements for the

PaRSEC implementation compared with the other implementations.

3.5 Implementation with the Programming Models

In the following sections, I describe the design and distributed-memory implementations of

an optimized version of the BLR LU algorithm using different programming models. First,

27

I explore an MPI-based version based on the Flat MPI model, and then extend it with the

integration of OpenMP – the MPI+OpenMP model. To facilitate the handling of the load

imbalance and minimize the waiting time, I also explored an oversubscribed resources model

for the Flat MPI approach using Charm++ AMPI as the implementation layer.

3.5.1 Flat MPI Programming Model

To parallelize the BLR LU factorization on distributed-memory computers, my first

implementation follows the ScaLAPACK LU implementation and is based on the Flat MPI

programming model. I arrange the MPI processes on a 2-D grid of dimensions p-by-q

and distribute the blocks in a Two-Dimensional Block-Cyclic (2DBC) fashion among the

processes (each block is stored in a contiguous memory region called a tile). Then, to

factorize the matrix, each process updates and factorizes only its local blocks.

To gather the non-local blocks that are needed to update the local blocks from another

process, each process creates two MPI sub-communicators: one for the processes in the

same column of the process grid and the other for the processes in the same row. Then,

at each factorization step, the blocks in the current panel are broadcast using these two

sub-communicators.

Since the numerical rank of a low-rank block can change after each update, the processes

involved in the broadcast must be informed of the size of the data prior to the broadcast,

so the communication of the low-rank block is divided into two messages: the first message

propagates the current numerical rank, and the second message the low-rank block data.

The LU factorization with local pivoting is relatively simple to implement in the

Flat MPI programming model especially with the 2DBC distribution. However, the

collective communication required for the panel update that executes within the panel sub-

communicators introduce a synchronization at each factorization step. When load imbalance

exists among the processes at each factorization step (e.g., for the trailing submatrix update

due to the different sizes and types of the blocks), many processes would idle while waiting

for the slowest process at these synchronization points, leading to a significant performance

28

loss. My evaluation of the effects of standard techniques for algorithmic optimization

(e.g., lookahead, accumulated update with multiple panels, balanced block sizes) showed

no significant benefits.

3.5.2 Flat MPI with Charm++/AMPI

AMPI provides an MPI implementation that is built on top of the Charm++ framework.

It uses user-level threads instead of OS processes to allow several MPI processes on a

single physical core, providing the benefits mentioned above to the MPI code. It has been

shown that AMPI can improve the performance of the Flat MPI implementation for many

imbalanced applications and benchmarks [3] [19].

Porting the Flat MPI implementation to use AMPI requires minimal effort. We only need

to change the name of the main routine to mpi main, and to switch the compiler and linker

to the ones required by AMPI. Setting the over-subscription factor could be challenging, but

in our case the load imbalance was reproducible and relatively enough to allow us to tune

the over-subscription parameter manually. The expectation was that the over-subscription

would be highly beneficial, as the MPI processes are spending a significant amount of their

execution time blocked on MPI Bcast, and thus another process on the same node could

then utilize the physical core for computations—thus reducing the idle time of the core.

3.5.3 OpenMP Task Programming Model

In order to manually remove the synchronization points, the second implementation relies on

the OpenMP task programming model. Then, at run time, the OpenMP scheduler executes

both computational and communication tasks of the factorization as their dependencies are

resolved. In this implementation, I cannot use the memory pointers to the required data

to track the data dependencies among tasks because the compressed blocks are dynamically

freed and reallocated as their numerical ranks change after each update. Instead, I used a

separate nt-by-nt integer array to keep track of the task dependencies.

29

With this implementation, the OpenMP runtime manages the dependency graph of

only the local tasks, and does not form the global dependency graph of the factorization.

Hence, the tasks are scheduled for the execution once all the local dependencies are resolved.

However, when the task needs to communicate blocks with other processes, the thread will

call MPI Bcast either to send the local block (its current numerical rank and then the data)

or to receive the non-local block. Thus, these tasks may block until the corresponding

communication task is scheduled on other processes, contributing to the idle time of the

local CPU core.

In order to reduce the number of tasks that are blocked due to the call to MPI Bcast and

are keeping the core idle, a nested parallelization was implemented. In this implementation,

a single task updates all the blocks in one block column, but once it is scheduled to

execute the update, it launches the child tasks, each of which updates one of the blocks

in the column. To integrate nicely and maximize the performance of MPI in a multi-

threaded environment, I applied a selection of the techniques described in a report about

multithreaded MPI implementations [91]. I created a separate communicator for each thread

(to minimize the cost of MPI’s tag matching and the potential for message overtaking) and

I used the communicators in a round-robin fashion on the block columns at each step of

the factorization. I placed a higher priority on factorizing the panel column and updating

the next panel column since all the tasks updating the trailing matrix blocks depend on

these panel columns as shown in Figure 3.3. I used the depend clause to specify the data

dependencies among the tasks, where A.getTile(k, k) returns the pointer to keep track of

the (k, k)-th block. Line 10 is a blocking call that factors the diagonal and broadcast the

data to panel row/column. The calls to lookaheadUpdateA() and remainingUpdateA() have

similar structure, where we create an OpenMP task for updating the column. In that task,

we solve the panel for obtaining the values in the U factor, broadcast it down the column,

then create nested tasks to compute individual updates.

In order to factorize a large matrix, the MPI buffers used to store the non-local blocks

needed to be deallocated once all the tasks that require the blocks have completed. Thus,

30

1 #pragma omp parallel

2 #pragma omp master

3 {

4 // start pipeline (factor 1st panels)

5 factorPanel (0, A);

6 for (int k = 1; k < A.getNt (); k++) {

7 lookaheadUpdateA(k-1, A);

8
9 // factor next panel

10 factorPanel(k, A);

11
12 // update remaining submatrix

13 // using current (k -1) th panel

14 remainingUpdateA(k-1, A);

15 }

16 }

(a) BLR factorization with OpenMP.

int *tileA = A.getTile(k, k);

int *tileB = k == 0 ? A.getTile(k, k) : \

A.getTile(k-1, k);

#pragma omp task priority (1) \

depend(in:tileB [0:1]) \

depend(inout:tileA [0:1])

{

// factor diagonal

if (A.isLocalRow(k) || A.isLocalCol(k)) {

A.factorDiagBlock(k);

}

// compute off -diagonal L

if (A.isLocalCol(k)) {

for (int i = k+1; i < A.getMt (); i++) {

if (A.isLocalRow(i)) {

#pragma omp task priority (1)

{

A.computeL(i, k);

}

}

}

#pragma omp taskwait

if (!A.isLocal(k, k)) {

A.freeBuffer(k, k);

}

}

// broad cast tiles in panel along the rows

A.iBcastL(k);

}

(b) Factor diagonal block and nested tasks for panel
column update.

Figure 3.3: OpenMP task implementation of BLR factorization

31

I inserted the tasks that set and decrement the counter for each non-local block, and once

the counter becomes zero, the task deallocates the block.

The BLR factorization has a relatively simple dependency graph, and the computational

kernel, which each task executes, has been already separated into its own subroutine for

the Flat MPI implementation. Thus, it did not present a significant challenge to integrate

OpenMP tasks to the sequential code. Furthermore, since many of the application codes

already use OpenMP, and my implementation can leverage that so it does not require any

changes to compile the code. Overall, the tasking improved the performance of Flat MPI by

removing the synchronization points and reducing the idling time of the cores due the load

imbalance. However, correctly scheduling the communication tasks for optimal performance

remained a challenge. As the process count increased, it became progressively more difficult

to coordinate these communication tasks, and some of them might have been blocked waiting

on the communication to finish, and thus they kept the CPU cores in idle state.

3.5.4 PaRSEC DTD

DTD allows the sequential task insertions into the PaRSEC runtime, hence providing a

simpler to use API, capable of describing parallel distributed algorithms. In order to use

the DTD API, the user must specify the distribution of the data that the tasks operate

on, the dependencies among the tasks through their data usage, and the code that each

task executes once all the required data become available. Recent study on StarPU [4]

has demonstrated that by pruning the task graph it is possible to delay the task insertion

bottleneck, allowing sequential task insertion model to scale to a larger number of processes,

each storing its own pruned version of the global task graph. Although DTD could benefit

from such optimization, we did not implement it in the current version.

In order to remove the need to manually move data among the processes and managing

temporary buffers for the non-local data, I ported the OpenMP implementation to use the

DTD interface in PaRSEC. Since DTD provides the sequential task insertion interface, as

can be seen in Figure 3.4, the DTD implementation resembles the OpenMP implementation.

32

1 for(k = 0; k < NT; k++){

2 // diagonal DGETRF

3 insert_task(taskpool , parsec_dgetrf ,

4 1, "getrf",

5 sizeof(int) , &k ,VALUE ,

6 PASSED_BY_REF , TILE_OF(A, k, k) ,INOUT | AFFINITY ,

7 PASSED_BY_REF , TILE_OF(IP , k, 0),OUTPUT ,

8 PARSEC_DTD_ARG_END);

9 if(k < NT -1){

10 for(int i = k+1; i < NT; i++){

11 insert_task(taskpool , parsec_dtrsm_l ,

12 ...);

13 insert_task(taskpool , parsec_dtrsm_u ,

14 ...);

15 }

16 data_flush(dtd_tp , TILE_OF(A, k, k));

17 data_flush(dtd_tp , TILE_OF(IP, k, 0));

18
19 for(int i = k+1; i < NT; i++){

20 for(int j = k+1; j < NT; j++){

21 insert_task(taskpool , parsec_dgemm ,

22 ...);

23 }

24 }

25 }

26 }

27
28 int parsec_dgemm(parsec_execution_stream_t *es,

29 parsec_task_t *this_task) {

30 int k, i, j;

31 double *A, *B, *C;

32 parsec_dtd_unpack_args(this_task , &k, &i, &j,

33 &descA , &A, &B, &C);

34 int rankA = (int)A[0]; // rank of non -local block A

35 int rankB = (int)B[0]; // rank of non -local block B

36 int mb = descA ->super.nbi[i]; // # of rows in block C

37 int nb = descA ->super.nbi[j]; // # of cols in block C

38 // perform update

39 ...

40 // update the output message size

41 new_count = rank * (mb + nb) + 1;

42 dtd_update_count_of_flow(this_task , 2, new_count);

43 }

Figure 3.4: PaRSEC DTD implementation of BLR factorization, including insertion of the
tasks in sequential order with the data usage information provided.

33

Thus, it was straightforward to implement it and I show how the data usage is specified

only for the dgetrf task: it executed the code parsec dgetrf that takes three arguments k, A,

and IP, where the diagonal block A and pivoting IP are passed in by reference. The INOUT

flag indicates that the task reads data and by its completion time it would have written new

data to the same place. AFFINITY flag indicates that this task will be executed on the

process that owns the k-th diagonal block. PARSEC DTD ARG END signals the end of

parameters list. DTD provides an API call dtd update count of flow to update the size of

the data to be sent in the task body.

At each step, first the diagonal factorization task dgetrf is inserted. Then computation

proceeds with the off-diagonal blocks of the panel by inserting the triangular solve tasks

dtrsm l and dtrsm u for each off-diagonal block in the lower and upper triangular factors,

respectively. Finally, the implementation continues by inserting the tasks that update each

block in the trailing sub-matrix. To recycle the temporary buffer for the non-local data,

data flush needs to be called when the non-local data is no longer needed.

In order to transition our MPI implementation to use the PaRSEC runtime, I needed to

deal with the data distribution in the PaRSEC data descriptor format. Though the PaRSEC

data collections can be more dynamic and support non-regular, non-2DBC distributions,

I selected the PaRSEC data collection to be regular 2DBC distribution, which the MPI

implementation uses, ensuring a uniform implementation across the models.

BLR factorization requires the runtime system to dynamically change the size of the data

being sent or received since the numerical rank of the block changes during the factorization.

DTD provides this capability by enabling selection of the size of the data in the task body.

I use this feature such that our implementation sends only the required amount of data

specified by the current numerical rank. Similar to Flat MPI, the dynamic size of the blocks

imposes an increased communication load, as the size of the blocks must be propagated

before sending the block data.

In order to maintain the minimum amount of the memory usage, I would like to reallocate

the data as the low-rank block is recompressed. PaRSEC provides a flexible data descriptor

34

that supports irregular data sizes, which allows the reallocation of the data to accommodate

rank changes. The current implementation does not use this functionality. Instead, I specify

a maximum rank for each low-rank block to avoid the reallocation at the cost of higher

memory consumption.

3.5.5 PaRSEC PTG

PaRSEC’s PTG DSL uses a concise, parametrized task graph description known as Job Data

Flow (JDF) to represent the data dependencies between tasks. As I will show subsequently in

the later section, the developer must specify a few crucial pieces of information for each task

class: 1) the data distribution, 2) the possible input parameter values, 3) the process that

will execute the task based on the data distribution, 4) the data dependency between the

task classes and 6) the actual code body of the task. Based on these pieces of information,

PaRSEC can discover and then execute all the available tasks at runtime, moving the data

between processes as the tasks are completed and it can be achieved without exploring

let alone instantiating the whole task graph at once in memory: this may be considered

an implicit task graph representation. Previous results have shown that PTG can deliver

a significant percentage of the hardware peak performance on heterogeneous distributed

machines [116].

In the dataflow description of the PTG DSL, each computational task is defined by a

set of parameters and a number of input and output flows of data. Unlike in the DTD

implementation, the PTG model requires the programmer to express the data dependencies

between tasks as mathematical relationships between the tasks’ parameters. These data

dependencies, along with the shape and size of the data, must be specified and agreed upon

by a pair of tasks that is sending and receiving the data.

Figure 3.5 shows a JDF specification of the diagonal factorization task, where the

parameter k defines the task for factorizing the k-th diagonal block. In the figure, “RW”

designation specifies that these diagonal factorization tasks both read and write the data

(equivalent to “INOUT” label in DTD), while the left- and right-arrows show where the data

35

1 dgetrf(k)

2 k = 0 .. NT

3
4 : descA(k, k) // locality

5
6 RW A <- (FIRST) ? descA(k,k)

7 <- (!FIRST) ? C dgemm(k_prev , DIAG , DIAG)

8
9 -> (END >= START) ? A dtrsm_l(k, START..END)

10 -> (END >= START) ? A dtrsm_u(k, START..END)

11
12 RW IP <- IP ipiv_in(k) [type = PIVOT count = NB]

13 -> IP ipiv_out(k) [type = PIVOT count = NB]

14
15 /* Priority */

16 ;1

17
18 BODY

19 {

20 // Factorizing diagonal block (k, k)

21 int mb = descA.nbi[k];

22 double *dA = &(((double *)A)[1]);

23 iinfo = LAPACKE_dgetrf(LAPACK_COL_MAJOR ,

24 mb, mb , dA , mb, ipiv);

25 }

26
27 dgemm(k, i, j)

28 ...

29 RW C <- (k == 0) ? descA(i, j) : C dgemm(k-1, i, j)

30 [count = COUNT_C]

31 -> (k == lastk && i == j) ? A dgetrf(m)

32 [count = COUNT_C]

33 ...

34
35 /* Priority */

36 ;(j == k+1 ? 1 : 0)

37
38 BODY

39 {

40 ...

41 // update the output message size

42 this_task ->locals.COUNT_C.value = 1 + ranks * (mb + nb);

43 }

Figure 3.5: PaRSEC PTG specification of the diagonal factorization tasks: defining the
parameter space, data locality, and data dependencies, written in JDF.

36

is read from, and written to, respectively, at the completion of the task, e.g., for reading the

data A, “descA(k,k)” indicates that the data is read from the memory at the initialization,

while “C dgemm(k prev, DIAG, DIAG)” indicates that the task dgemm(k prev, DIAG,

DIAG) will send the data C, which the diagonal factorization uses as A. The “type” combined

with “count” indicates the temporary buffer size for sending and receiving the data. It is

possible to change the size of the data to be sent (e.g., when the numerical rank changes

after the recompression), by changing the local value passed to “count” in BODY.

The second line specifies the range of the parameter, showing that all integer values

between 0 and the last diagonal index, NT, are legal for the parameter k. On the third line,

the locality statement specifies that the k-th diagonal factorization task will be executed

by the process that owns the specified data (i.e., the k-th diagonal block). Finally, the

data dependencies for the tasks are defined (the data can be initialized by reading from the

memory, written to the memory, or passed in or to another task).

For the computational task to be executed, once all the input flows are locally available,

we can simply call (in the BODY) the computation kernels developed for the Flat MPI

implementation.

Given this dataflow expression in JDF format, the PTG preprocessor generates the C/C++

code that encodes the symbolic task representation. Then, at run time, the PaRSEC runtime

explores the task graph, moves the specified data between the tasks, and executes the tasks

as all the required data become available—without the overhead of task discovery, which the

DTD implementation has to endure.

Both PTG and DTD implementations use the same data distribution descriptor, allowing

a smooth transition from the DTD to PTG implementation. From programmability

perspective, PTG introduces a completely different parallelization philosophy, driven by data

dependencies and not by control dependencies. For most of HPC users, converting their

parallel applications (e.g., parallelized with MPI and OpenMP) might require substantial

amount of effort. However, the description provides enough information to the runtime itself

37

to allow for automatic communication and computation overlap, as well as collective pattern

description, providing a strong base for more scalable and more efficient implementations.

3.6 Performance Evaluation

In addition to evaluating the effort needed for each implementation qualitatively, in this

section I compare the performance of the models quantitatively.

3.6.1 Experimental Setup

For experiments, I used a software package called ppohBEM [81] that numerically solves

the integral equations for simulating the electrostatic field based on the boundary element

method. In particular, I used the BLR matrices generated by the software package called

HACApK [80], which uses the low-rank matrix format for solving dense linear systems of

equations. To compute the appropriate matrix permutation and partition for generating the

low-rank matrix, HACApK uses the geometrical information associated with the underlying

physical problem such that the off-diagonal blocks of large dimensions become low-rank.

Figure 3.7 shows the size information of the test matrices, and their initial numerical ranks

are shown in Figure 3.6.

I compiled the entire software stack using Intel Parallel Studio XE 2019 suite and linked

with the corresponding MPI and OpenMP library. I used PaRSEC library from the master

branch as of June 2019 with DTD dtd update count of flow API in development branch, and

the release version 6.9.0 of Charm++. The experiments were conducted on the Bridge cluster

located at Pittsburgh Supercomputing Center (PSC). Each compute node has 2 Intel Haswell

(E5-2695 v3) CPUs with 14 cores per CPU, running at 2.3–3.3 GHz, and are interconnected

using Intel Omni-Path networking equipment.

Experiments were run using all 28 cores per node starting from one node all the way up to

16 nodes (the total of 448 cores), which were enough to show the overall performance trend.

The results for the 1ms dataset start from 4 nodes due to memory constraint. For the Flat

38

0

100

200

300

400
a) 338ts

0

100

200

300

400

b) human_4x4

0

200

400

600

c) 1ms

10

100

1000
Rank

R
ow

Figure 3.6: Initial block ranks for each test matrix, all have dense tiles near diagonal, but
different off-diagonal low rank patterns

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●
●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●
●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●● ●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●●

● ● ●

●

●

●

●

●

●

●
● ● ●

●

●
● ● ●

●

●

●

●

●

●
●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ● ●

●

● ● ●

● ● ●

●●

● ●

●

● ●
●

● ●

● ●

●

●

●

●

●

● ●

● ● ● ●

● ●

● ●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

● ●

●

●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

● ●

●

●

●

● ●

●

●●

●

● ●

● ● ●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●● ●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
● ● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

500

1000

1500

2000

0 200 400 600
Diagonal Index

B
lo

ck
 S

iz
e

Dataset
●

●

●

1ms
338ts
human_4x4

(a) Diagonal square blocks sizes, and the off-diagonal
blocks will be rectangular

matrix dimension # of block columns
338ts 338000 408
human 4x4 314624 448
1ms 10004400 704

(b) Test matrices

Figure 3.7: Test matrices information

39

MPI model, each core has one process; for the MPI+OpenMP model, the best configuration I

observed is with two processes per socket (with the socket’s cores evenly divided between the

processes), so the total of four MPI processes ran per node. For the AMPI model, I used the

SMP mode, with two processes per node, each with 14 threads, and I set the virtual process

number to be three times higher than the physical core count. Finally, for the PaRSEC

implementations I had one process per node with one core dedicated to the communication

thread, and the rest – as computational threads. To avoid the non-uniform memory access

(NUMA) effects when accessing the main memory, PaRSEC data was initialized by all the

threads to ensure uniform affinity of the virtual memory pages because first-touch policy was

in effect.

3.6.2 Experiment Results

Flat MPI

In the experiments with the 2DBC data distribution of the blocks, the total computational

load was well balanced among the participating processes. However, at each step of the

factorization, the changing sizes and numerical ranks of the blocks created a significant

load imbalance among the processes. Since the Flat MPI implementation introduces global

synchronization, all the processes are forced to wait for the slowest processes by design,

and the accumulated idle time due to the load imbalance can become a significant portion

of the total factorization time. This observation had motivated us to explore alternative

programming models besides Flat MPI.

Figure 3.8 illustrates these load imbalance issues for the three test matrices. To measure

the imbalance, I put an artificial global barrier before each broadcast and accumulated this

wait time for each process. As shown in the figure, the average idle time can be as high as

77% of the execution time, while the error bars indicate that the total computational load

among the processes has a much smaller variation for most cases.

Thus, the existence of such a large imbalance effect opens up the possibility for

opportunities favoring approaches that rely on node oversubscription to translate this wasted

40

Figure 3.8: The average wait time of a MPI process in a collective call for the flat MPI
model, shown as percentage of total execution time. Minimum and maximum shown as well

41

wait time into useful computation time for another thread residing on the same node.

Moreover, in the case where over 50% of the time is wasted on average on all processes,

it seems extremely plausible that oversubscription could drastically reduce the wasted time

and therefore minimize the time-to-solution.

AMPI

In Figure 3.9, the green and the pink lines show the results comparing AMPI with Flat

MPI. By oversubscribing the cores, I expect AMPI to be able to reduce the idle time,

thus achieving better performance than the Flat MPI model. Unfortunately, the result

contradicts my expectation. To investigate why the AMPI is taking more time to execute,

I timed the different sections in the Flat MPI/AMPI implementation using a smaller test

dataset on a single node (28 processes, 84 virtual processes). Figure 3.10 shows the trace

for one process. FactorDiag includes dgetrf and the resulting broadcast to panel row and

column. PanelUpdate computes the panel, BCastPanel broadcasts the panel blocks to the

corresponding column or row processes. UpdateRemain is the computation of the update

kernel on trailing submatrix.

Since I oversubscribe by 3:1, AMPI’s UpdateRemain time is roughly 1/3 of Flat MPI’s

time. But the AMPI BCastPanel time is much larger and is the reason for the longer

execution time. We varied the oversubscription factor from 1 to 5, and 3 was the best

configuration.

MPI+OpenMP

In Figure 3.9, in addition to the factorization time, the black line shows the average total

compute time for each process, as obtained from the Flat MPI model result. It also has

ticks for the minimum and maximum among the processes as well. The line serves as an

unattainable lower bound of the execution time, as it represents the most favorable scenario,

one that only accounts for computational costs and completely disregards all costs related

to data movement.

42

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

● ●
●

1

2

4

8

16

32

1 2 4 8 12 16

S
pe

ed
 U

p

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

● ●
●

1

2

4

8

16

32

1 2 4 8 12 16

S
pe

ed
 U

p

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●
●

1

2

4

8

16

1 2 4 8 12 16
Number of Nodes

S
pe

ed
 U

p

AMPI
compute
flat_mpi
mpi_omp
parsec_dtd
parsec_ptg

Figure 3.9: Execution time of each model on different datasets, top) 338ts, middle)
human 4x4, bottom) 1ms. Flat MPI performances on 1 node (28 cores)/4 nodes are used
as base to show speed up of the models. They are 317, 221 and 1050 seconds respectively.
Both X- and Y-axis are plotted on log2 scale. PTG speed up over MPI+OMP are 1.23, 1.24
and 1.40 at 16 nodes

BCastPanel
FactorDiag

PanelUpdate
UpdateRemain0
UpdateRemain1

0 5 10 15 20 25 30 35
Time (s)

BCastPanel
FactorDiag

PanelUpdate
UpdateRemain0
UpdateRemain1

0 5 10 15 20 25 30 35
Time (s)

Figure 3.10: Execution stream of the different sections for one selected process, top) Flat
MPI, bottom) AMPI. Most of the BCastPanel time are likely idle time

43

The first thing I noticed was that Flat MPI model performs the worst among the other

programming models that I tested, while the remaining models performed better to some

degree. This is expected as the strongest point of all the other approaches is to relax the

strong synchronization inherent to the Flat MPI model to some extent. The second thing

was that MPI+OpenMP scales well as the number of nodes increases, but there are still

limitations to prevent it from obtaining better performance, as I will analyze later.

PaRSEC DTD

The DTD implementation performs better than MPI+OpenMP at the beginning, which can

be attributed to its finer-grain dependency tracking, further removing the synchronization

imposed on block columns. But PaRSEC DTD has its own issues, mainly with regard to

the scalability of the sequential task insertion. As the node counts increase, the performance

begins to deviate from that of the PaRSEC PTG version to finally become worse than the

Flat MPI result for the human 4 × 4 dataset on 16 nodes. I believe that, as we strong-

scale, the overhead of PaRSEC DTD task discovery starts to occupy a bigger portion of the

execution time, and the discovery and insertion of local tasks being slower than the execution

of already inserted tasks. The proposed DAG trimming technique [4] was likely to help in

mitigating the problem but is not implemented in this case.

PaRSEC PTG

The PTG implementation performs consistently better than the other models. Not only it

removes all global synchronization (replacing them with fine-grain synchronization points at

the task level), but also creates more opportunity for communication-computation overlap.

It also has the feature allowing us to specify higher priorities for diagonal tasks. Given the

disparity between diagonal and off-diagonal computation loads, this capability ensures high

levels of parallel workloads and cores’ occupancy by directing the runtime to follow, even if

loosely, the algorithmic critical path [36].

44

To understand the improvement from MPI+OpenMP to PaRSEC PTG, I profiled the

executions on a single node. MPI+OpenMP was run with two processes, each on a socket.

The top plot in Figure 3.11 shows a summary of each thread’s occupancy information,

defined as the summation of all the computation kernels’ time on a thread divided by the

total execution time. On a single node, both models achieve over 90% efficiency, and roughly

speaking we can attribute the rest to runtime overheads.

But a closer look at the diagonal factorization kernel in MPI+OpenMP reveals that all

the processes in the current panel will call this kernel in order to receive the actual diagonal

factorization. Root process will thus complete the computation then block on the broadcast

to panel row and column, while the receiving processes will directly block on the broadcast.

The bottom plot in Figure 3.11 shows that if the kernel is doing only broadcast (and is not

the root process), it takes as long as needed to complete the broadcast and exit. But for the

root process, it will block on the broadcast for additional time after the computation.

On the other hand, PaRSEC delegates all the communication to a single thread dedicated

to communication and uses non-blocking communication. This removed this synchronization

point and likely provided the performance benefits we observe in Figure 3.9 as problem scale

increases.

3.7 Conclusions

In this chapter, I presented implementations of BLR LU factorization as test cases

for using five programming models: Flat MPI, MPI+OpenMP as well as alternative

models AMPI/Charm++, PaRSEC DTD, and PaRSEC PTG. I summarized the experience

implementing the algorithm using these models, and evaluated their respective performance.

The results indicate the potential for the task-based approaches to address the load imbalance

and outperform Flat MPI. Overall, PaRSEC PTG achieved the best execution time and

scalability, with a certain cost on the programming effort. PaRSEC DTD provides a smoother

transition to task-based runtime but faces scalability issues as the number of nodes grows.

45

●

●

0.92

0.94

0.96

0.98

1.00

MPI_OMP PTG
Type

O
cc

up
an

cy

Process 0 Process 1

Compute BCast Compute BCast

0

10

20

30

40

T
im

e
(s

)

Blocking
Working

Figure 3.11: Top) Computation kernels occupancy summary of all the threads, Bottom)
Detail breakdown of the diagonal factorization task for MPI+OpenMP model

46

MPI+OpenMP can obtain reasonable results and might be more familiar and easier to

implement. AMPI’s result for this test case is unexpected and warrants further investigation.

Several features needed for an efficient BLR factorization are highlighted, including

necessary capabilities to address load imbalance, handle dynamic data sizes, reduce

synchronization, and provide the ability to highlight the algorithm’s critical path. I hope

that this work can motivate future adoption of alternative programming models to tackle the

irregular workloads arising from the system or the application, and improvements of features

in runtime systems.

The current implementation is designed as a benchmark to compare different program-

ming models. It is possible to further optimize some of the implementations. For example,

instead of using the 2DBC distribution, we may evenly distributed the dense tiles close to

the diagonal among the processes, which may greatly improve the load balance and improve

performance [36]. Since PaRSEC handles all the data movement, the user just needs to

define a new data distribution, making it easy to use a different distribution scheme. Other

programming models like Task-aware MPI (TAMPI) [95] implements the interoperability

services between MPI and OpenMP tasks, and can be further investigated. I also observed a

higher memory consumption of PaRSEC-based approaches due to the temporary buffer used

in the runtime, a quantitative evaluation of this aspect will also be interesting in the future.

Finally, GPU kernels can also be added to offload work and speed up the computation.

47

Chapter 4

Sequential Task Flow Runtime Model

Improvements and Limitations

4.1 Overview

Task-based runtime systems were developed to manage the challenges of programming at

extreme scale and successfully adapted to heterogeneous hardware. In this programming

model, the runtime is in charge of scheduling the computational tasks on parallel computing

resources, as well as the communication between nodes. The user needs to decompose the

algorithm into tasks with explicitly specified data dependencies among them, forming a

Direct Acyclic Graph (DAG). This programming paradigm was adopted in recent years by

many different software systems, among them StarPU [17], Legion [25], and PaRSEC [31].

Even within task-based runtime systems, there are many different ways to express the

algorithm as a task-graph and subsequently to analyze and then to schedule the resulting

DAG onto HPC systems.

PaRSEC PTG interface [43] provides a domain specific language (DSL) to describe the

algorithm by specifying the individual tasks, as well as the data dependencies between

those tasks. Given this compact representation of the graph, each node can process the

tasks that will be executed on that node, and can react to the data received from remote

48

nodes without the overhead of building the global knowledge during execution. And for

StarPU and PaRSEC DTD interface [76], the Sequential Task Flow (STF) model provides

an easy-to-use API for algorithm formulation. A single thread of execution is responsible for

inserting the tasks following the sequential execution order of the algorithm, and the data

usage information is provided (either READ, WRITE, or READ-WRITE) so that internally-

independent tasks can be scheduled in parallel, and dependent tasks will follow the correct

read-after-write orders, and data usage across nodes will trigger the corresponding data

transfers and have them inserted in to the scheduling flow.

Although such an interface is easy to use, but the granularity of the tasks needs to

be sufficiently high to overlap with the dependency analysis, and this was demonstrated

in the previous chapter with the BLR LU implementation, and elsewhere [76, 99]. This

analysis overhead increases equally with the problem size on all the processes. This

means that STF model will face significant scalability issues especially in the exascale

era, where the number of compute nodes can be in the range of hundreds of thousands.

Still, when making the transition to programming using a task-based runtime system, the

STF model is a very attractive target for the new adopters and they can obtain immediate

performance improvement over the more commonly used MPI+X model when running on

smaller scale [92].

Also, unlike in the PaRSEC PTG model where parallelism is unleashed eagerly, and can

lead to wrong scheduling decisions: certain control flows are needed to enforce task execution

priority. STF model usually will have a parameter specifying the size of the window into

the global graph of tasks. It is included with the primary goal of limiting the memory usage

resulting from graph exploration (the main thread will keep inserting tasks up-to the window

size, then join the computation threads for task execution and when the number of tasks

decreases below a prescribed threshold the main thread would go back to the task insertion

mode). This window size is a tunable parameter and has the side benefit of acting similarly

to the lookahead technique that is common in matrix factorization implementations, and

49

it allows the task execution to follow the critical path of the algorithms, ensuring optimal

scheduling for the user.

Given the benefits of the STF model, in this chapter, I would like to push the limits of

STF model to achieve better scalability and performance, while balancing it with the ease-of-

use of the model. Previous work has tested similar ideas for Cholesky factorization [4] [50].

But I would argue that the dependency graph is relatively simple in the previous studies.

As a result, I also implemented and evaluated trimming and broadcast’s impact on QR

factorization, which has a tighter dependency graph.

The contributions from this work are as follows:

• Create the sender/receiver key internally so that user can trim the DAG during task

insertion.

• Adopt a two-stage approach for data broadcast operation for the PaRSEC DTD

interface.

• Evaluated empirically the changes in writing the algorithms in order to trim the DAG,

and the usability of such an interface for more complicated algorithms.

• Evaluated the impacts of graph trimming and broadcast operation on performances of

Cholesky and QR factorizations on two HPC systems at scale.

4.2 User Graph Trimming and Broadcast Operations

4.2.1 DTD Model

PaRSEC as a task-based runtime supports multiple interfaces, the PTG interface requires

the users to specify the body of the tasks, and the dependencies between the tasks via

the Job Data Flow (JDF) DSL. On the other hand, DTD interface allows users to write

sequential-looking code, including conditionals, for-loops, and code blocks to insert tasks

using PaRSEC’s API without using a custom DSL. Both methods of task graph definition

50

share the same runtime scheduler, data representation, and communication engine. There

are three main concepts that enable expression of a task graph in PaRSEC using DTD: a

task, dependency, and data item. A task is any kind of computation that will not block

due to communication, data items are regions of main memory used by the computations

that will be accessed or modified, and, finally, dependencies are the ordering relationships

between tasks in the graph. To insert a task with any of PaRSEC’s API options, users must

indicate the data and the mode of operation that will be performed on that data by the

task (either read, write or read-write). Dependencies between tasks are created based on the

operation-type on the data: a task performing a write before a task performing a read on the

same data will create a read-after-write (RAW) dependency between the writing task and

reading task, such that the reading task will only execute after the writing task is completed.

The properly sequenced expression guarantees the correct ordering of tasks regardless of the

parallel execution and any data concurrency interaction.

In distributed memory systems all the participating processes need to have a consistent

view of the DAG for DTD to maintain the correct sequential order of tasks and requiring

the whole DAG to be discovered by all the processes is one solution. This means that

many tasks that are not related to a given node will still need to be inserted and inspected,

creating a growing overhead as more nodes are involved. With this kind of implementation

guaranteeing the insertion of the entire graph, it allows for creating a unique key and thus

a consistent naming of each task on all the nodes without involving extra communication.

This approach allows for simple message matching across nodes, based on this naming scheme

and its unique keys. This is a sufficient solution, but is a stronger requirement than what is

needed for the STF model.

4.2.2 PaRSEC DTD Tasks and Communications Tracking

PaRSEC communication engine is exposed to the rest of the runtime only through a well-

defined interface. The DSLs encapsulate the information of a communication via an object

called remote deps (the circle in Figure 4.1) for remote dependencies that is passed into the

51

Figure 4.1: Top: original DTD, each task has a unique key Bottom: send/recv level key.
Grey square represents local task, white square represents remote task. Circle represents the
remote deps structure. In the new scheme, data flow ID is a combination of sender rank and
sequence number to uniquely label each data transfer. As long as both the sender and the
receiver has the dependent tasks inserted, the data ID will be assigned correctly for the two
sides to match the data transferred.

52

engine. This abstraction allows PaRSEC to adopt different underlying libraries (right now

it uses MPI two-sided) for communication. When we are inserting the tasks, DTD keeps

track of the remote parent task or the received remote deps object in a local hash table with

the unique key for a given task. Since each task in the entire DAG has a unique key, the

communicated data represented in the remote deps can be matched with the remote task

object and continue the task graph execution.

4.2.3 Graph Trimming

This unique key generated independently on each node is the link between the task

management level and the underlying communication engine. The correct message carrying

the data will be provided as the input data to the corresponding task via the key generated

independently on each node. By observing that for each send-receive pair of exchanging

data between two participating nodes, they only need to keep track of the order of the

previous communication instances between the two, then they can correctly generate the

next key for the point-to-point transfer between the two. So to remove this artificially

stronger requirement of inserting all tasks and labeling them uniquely, thus permitting user

level graph trimming, each node keeps internal arrays that will track the sends and receives

with respect to other ranks instead. With this approach, users can trim the task graph at

the user-level transparently, reducing the overhead of the runtime scheduling and improving

performance (an example of the arrays is shown in Figure 4.1). This change does not affect

the existing code that inserts all tasks on each node, since the irrelevant tasks that get

trimmed will never have the data IDs assigned to them and thus will not affect the correct

ID assignment for retained tasks.

4.2.4 Broadcast Operation

Collective operations are a critical part of message delivery optimization, especially for large-

scale distributed systems. In a typical MPI-based program, collective operations are done

via a predefined communicator, and as a result all the callers know the participant ranks.

53

In a sequential task insertion interface like PaRSEC DTD, tasks are inserted sequentially

and the group of nodes/processes/ranks participating in a collective operation are not

known beforehand. Previous work [50] implemented implicit broadcast, assuming all the

participants are discovered when the data is ready to be send (i.e. the broadcast will cover

all the descendant ranks or most of the ranks). The benefit of this approach is that it

is transparent to the application writer, your original STF code will benefit without any

changes. But the assumption that the task discovery progresses faster than the kernel

execution turns out to be a strong one, and risks the possibility of lacking ability to identify

collective operations and falling back to doing point-to-point communication.

I proposed an explicit broadcast API, whereby with the knowledge of the algorithm

writer, the root of a broadcast call can specify all the participating ranks (the dependent

tasks that will use the data), and the participants don’t need to know each other. This is

the same kind of information that is needed when the user trims the task graph with remote

read tasks not knowing each other but will have the same writer task in the root inserted.

Also, with an explicit collective API, many similar collective calls can be implemented

(reduction/allreduce, gather/allgather etc).

PaRSEC PTG and PaRSEC DTD models share the same underlying communication

engine, and a version of broadcast has already been implemented for PTG. It is built on

top of the MPI point-to-point operations. Since for PTG, the entire graph’s information

is represented locally, a descendant can replay the task schedule as the root in order to

rediscover the participant ranks and the propagation path, thus can continue the data

broadcast downstream. There are two different typologies supported, namely: chain and

binomial trees. The mechanism to check for direct descendants is based on a bit array

representing participant ranks and, as a result, the route will be fixed given a topology and

a set of participant ranks.

Since both DSL variants share the same communication engine, the idea then is to adopt

a two-stage approach (Figure 4.2) and reuse many of the same implementations. In this

scheme, I first prepare a message containing a global ID, local data keys (the P2P keys

54

Figure 4.2: Two-step broadcast with meta-data transfer as the first, and data payload
transfer as the second. They propagate as two separate flows but data reception call can
only be matched when the meta-data is received and global ID is known.

55

between the root and each children) and participating ranks as the first step. This is the

propagation of the metadata information representing the broadcast. In the PTG case, I

can query the parameterized graph information to obtain this knowledge, but in the STF

model, the parent needs to inform the descendants of the global knowledge coming from the

root. This metadata is matched via the point-to-point data keys between the root and each

of the descendants. For an intermediate node, once it has received the metadata, it can

act as the root to continue the propagation of metadata. The actual data broadcast will

use the global ID to progress as an independent second step. This is possible because after

the first step completes and the global ID is known, the communication engine can match

the data received using this ID. By populating the metadata received into the outgoing

message, DTD broadcast can reuse PaRSEC collective implementation to continue message

propagation using the selected topology.

4.3 Evaluation with the Cholesky and QR Factoriza-

tions

Cholesky and QR factorizations are classic linear algebra algorithms that are widely used

for solving linear systems of the form Ax = b with A having special numerical properties

benefiting special algorithmic choices. For square matrix, their corresponding floating point

operation (FLOP) counts are n3

3
and 4n3

3
. Their corresponding tile-based algorithms are

listed in Algorithm 1 and 2, respectively. They both use four computational kernels that are

successively applied on the trailing sub-matrix at each step, as illustrated in Figure 4.3 for

matrices of 6 × 6 tiles at iteration k = 2. In practice, the implementation of these kernels

relies on a BLAS library, such as MKL on Intel’s x86 CPUs or SSL2 on Fujitsu A64FX

CPUs.

56

0

3 4

0 21

3 354

0 021

3 354

1

4 5

0

3

3

0

0

1 2 0 1 2

0

54

354

1

1

3

1 2 0 1 2

54

54

2

02

0 21

21

POTRF

TRSM

SYRK

GEMM

GEQRT

TSQRT

UNMQR

TSMQR

Figure 4.3: The four different kernels from Cholesky and QR respectively. Both runs on a
2X3 compute grid with 2-D block cyclic distribution. For QR, a super-tiling of 2 is used on
the grid row to reduce cross node P2P communication.

57

Algorithm 1: Pseudo-code of Cholesky Factorization.

1 for k = 0 to NT − 1 /∗ Panel Factorization (PF) ∗/
2 POTRF(CRW

kk)
3 for m = k + 1 to NT − 1
4 TRSM(CR

kk, C
RW
mk)

5 for m = k + 1 to NT − 1
6 SYRK(CR

mk, C
RW
mm)

7 for m = k + 2 to NT − 1 /∗ Trailing Submatrix Update ∗/
8 for n = k + 1 to m− 1
9 GEMM(CR

mk, C
R
nk, C

RW
mn)

Algorithm 2: Pseudo-code of QR Factorization.

1 for k = 0 to NT − 1
2 GEQRT(CRW

kk , TW
kk)

3 for n = k + 1 to NT − 1
4 UNMQR(CR

kk, T
R
kk, C

RW
kn)

5 for m = k + 1 to MT − 1
6 TSQRT(CRW

kk , CRW
mk , TW

mk)
7 for n = k + 1 to NT − 1
8 /∗ Trailing Submatrix Update ∗/
9 TSMQR(CRW

kn , CR
mk, T

R
mk, C

RW
mn)

4.3.1 Modifications to the user code

STF model provides a simple-to-use programming interface, but as demonstrated before and

later in this study, the task graph overhead will significantly increase as we increase the

problem size because the number of tasks is proportional to the problem size when the tile

size remains fixed. As a result, the graph trimming is a required step to include in order to

achieve good performance at large system and problem scales. Based on the tiled algorithm

58

of Cholesky and QR, here I describe how to both trim the task graphs and to incorporate

explicit broadcast operations into the algorithms.

To ensure the correctness of the algorithm, the sender side needs to insert all the remote

descendant tasks and on the receiver side, the remote data provider task needs to be inserted

as well. For the Cholesky factorization without broadcast, this means that all TRSM tasks

need to be inserted on the POTRF task node, and each of the nodes in the current panel need

to insert the remote POTRF task in order to receive input data. On the receiving nodes,

this means that other remote TRSM tasks can be trimmed (Figure 4.4, Left). Similarly, for

the connections between TRSM and GEMM, each TRSM needs to insert all the GEMMs

that are in the same row, as well as the GEMM tasks in the reflective column. On the

receiver side, all the GEMM tasks will need to insert the two TRSM tasks from the given

row/column. With an explicit API call to a user-level broadcast added, the expression of

the program is changed. The destination ranks are iterated to create the metadata, and, as

a result, the broadcast operation itself (yellow tasks in Figure 4.4, Right) can serve as the

connection between the sender task and receiver tasks and we don’t need to insert the tasks

on the other side of communication exchange, thus simplifying the trimming code.

For the QR algorithm, it has a tighter set of data dependencies between the tasks, where

each row has data dependency on the previous row. As a result, for a trailing task TSMQR,

we need to discover the TSQRT on that row as well as the UNMQR task or the previous

rows’ TSMQR task in order to correctly obtain the input data. In the case of 2-dimensional

block cyclic data distribution with P ×Q number of nodes (usually with super-tiling on P to

reduce row level communication frequency), we only need to insert (P +Q)/(P ×Q) number

of the original TSMQR tasks. For broadcast operations, the opportunities are limited in the

QR algorithm, as the row-by-row updates naturally translate to point-to-point operations.

The only possible broadcasts are the propagation of panel data across a given row of Q

processes, either for GEQRT to UNMQR, or TSQRT to TSMQR (Figure 4.5).

59

Rank 4Rank 1Rank 4 Rank 1

Figure 4.4: Left, trimmed task graph without broadcast call; Right, explicit broadcast call
to propagate POTRF data. Color scheme and data distribution follows that from Figure 4.3.
Lighter red and purple represent remote tasks, yellow represents broadcast task. Data
dependency between TRSM and GEMM omitted.

0

3 4
4

021
021

1
1 2

1 2
0 1 2 0 1 2

4
4

2

54
354

1
1

1
1

3
1 2 0 1 2

54
54

Figure 4.5: Since only the TSMQR tasks are of order O(N3), we can insert all the other
tasks in all the nodes while inserting TSMQR only on ranks that are in the same row or
column of the current panel tasks. Figure on the left, shows the situation for tasks inserted
on rank 1, while figure on the right is for tasks on rank 4.

60

4.3.2 Qualitative Analysis

The major appealing factor for the STF model is that it is easy to use. Indeed, one can

simply write the two algorithms following the pseudo-code with PaRSEC DTD and it will

work out-of-the-box. The issue is that in order to obtain good performance and to avoid the

overhead of traversing the entire task graph, the user needs to include many conditionals in

the user code to evaluate whether we should insert a given task. Here, I will argue that this

modification at the user level is not insignificant, rendering the STF model complicated to

use (in some ways similar to the SPMD model). This is in contrast to previously brought

up suggestions that this modification is easy and can be hidden. For data users, it can

insert all the relevant remote tasks that will produce this data, but for the data writer tasks,

the algorithm writer needs to be aware of the users of output data tasks, and will need to

insert those reader tasks, correspondingly. In the case of Cholesky and QR factorizations, it

is tractable, but when the algorithm becomes more complicated instead of trivially nested

for-loops, we can imagine that trimming can produce very error prone codes.

This goes back to some of the difficulties in writing algorithms using PaRSEC PTG.

One is that you need to write in a domain specific language, but more importantly, the user

needs to think of the algorithm in terms of the DAG and to specify the data dependencies

between the tasks explicitly. This includes all the data’ input and data’ output links of each

of the tasks. But to trim the graph correctly, the algorithm writer is essentially expressing

the same information as with PaRSEC PTG. As a result, I view the trimming optimization

as trying to express the same information on these two interfaces, and they only differ as

to when and where the users supply additional information about the relationships between

tasks.

61

4.4 Performance Results and Analysis

4.4.1 Description of HPC systems

I implemented the new features in PaRSEC based on the branch from Nov, 2020. All

the results presented in this paper use the IEEE 754 double precision variants DPOTRF

and DGEQRF for Cholesky and QR factorizations, respectively. In this paper, I ran the

experiments on two systems:

• Shaheen II, a Cray XC40 supercomputer with 6,174 nodes composed of two-socket

16-core Intel Haswell (AVX2) processor and 128GB of main memory, using the Cray

Aries network interconnect. I used Cray MPI and Intel programming environment

(MKL).

• Fugaku system, a Fujitsu ARM (SVE) system with A64FX nodes composed of four

12-core core memory groups (CMGs) and 32GB of main memory, connected through

the TofuD interconnect. I used Fujitsu MPI and SSL2 libraries.

4.4.2 Broadcast Benchmark Performance

I measured the message transfer time of one broadcast operation and compared it with the

scenario of using the default DTD point-to-point (P2P) to evaluate the benefit from doing

the broadcast. I varied the number of nodes, as well as the size of the data I was sending to

match the amount with the square tile from the Cholesky and QR factorizations. The two

machines have different networks: Shaheen II uses Cray Aries Interconnect with Dragonfly

topology with bandwidth of around 10 GB/s. Fugaku uses TofuD interconnect, a 6D torus

topology, from Fujitsu with bandwidth of around 40 GB/s.

The results are shown in Figure 4.6. On Fugaku machine, the result followed our

expectations, namely the broadcast can propagate the data equally or faster than P2P

where the root sending the data to each of the descendant. Also, as the message sizes

became bigger, it took longer to complete the entire data transfer.

62

F
ugaku

S
haheen II

16 64

0.00

0.05

0.10

0.15

0.0

0.2

0.4

0.6

Number of Nodes

T
im

e
(s

)

dtd_bcast dtd_p2p ptg_bcast 560 960 1500

Figure 4.6: Benchmark of a broadcast operation for sending a square tile of double
precision floating point values. I tested on two sets of nodes, and varied the message data
size. For comparison, I have the default DTD P2P, the proposed DTD broadcast and

finally the broadcast utilized in PTG (the two shared the same mechanism).

63

But on Shaheen II, the point-to-point version could finish faster than the collective version

for all message sizes. The reason for this is not known, but my hypothesis is that the

difference in network topology alleviated the bottleneck of the P2P from the root node.

But in real applications, the situation can be complicated and network state could change.

For example, the computation threads can create memory contention and reduce network

performance [49], and when employing broadcast, the operation can share the network usage

across the nodes, instead of relying on a single root node for data transfers, potentially

saturating a single node’s outflow bandwidth.

4.4.3 Experiment performances

As the baseline to compare our achieved performance, I also ran the ScaLAPACK version

of Cholesky and QR factorizations provided by the math libraries on the respective system

(MKL from Intel on Shaheen II and SSL2 from Fujitsu on Fugaku). ScaLAPACK is a widely

used library that provides distributed version of common linear algebra operations and its

optimized versions are provided by vendors.

Based on the previous descriptions, I implemented different versions of Cholesky,

with graph trimming, broadcast operation, or a combination of both. I compared the

performance of the different flavors of these algorithms with the original DTD as well as

PTG implementations from DPLASMA. And for the QR factorization, I have the trimmed-

only version as well as trimming with broadcast version (since the broadcast-only version

shows no improvement, it is not shown here). I obtained results for matrices varying in size

from 100K up to size of 600K, using two different tile sizes. Finally, I show the scalability

of the implementations by running on 256 and 512 nodes.

Shaheen II Results

The results from Shaheen II for the Cholesky and QR factorizations are shown in Figure 4.7

and Figure 4.8 for 256 and 512 nodes, respectively. The black lines are for the results from

ScaLAPACK with one MPI rank per core, block size of 64. I tested two different tile sizes,

64

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

50

100

150

200

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

●

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
scalapack
trimmed

560
960

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

50

100

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

560
960

●

●

●

●

●

bcast_trimmed
dtd_base
PTG
scalapack
trimmed

Figure 4.7: Performance on Shaheen II, 256 nodes. Left: Cholesky, Right: QR

●

●

●
●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

560
960

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
trimmed

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

50

100

150

200

250

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

560
960

●

●

●

●

bcast_trimmed
dtd_base
PTG
trimmed

Figure 4.8: Performance on Shaheen II, 512 nodes. Left: Cholesky, Right: QR

65

which affects the number of available tasks as well as the degree of parallelism. First thing

I would like to point out is that overall, the performance from the runtime system-based

implementations were better than the ones from ScaLAPACK, this is especially true for the

Cholesky factorization. Performance on a single node for DPOTRF is around 860 GFLOP/s,

meaning that assuming the perfect scaling, we would have reached 220 TFLOP/s with 256

nodes. But in terms of the maximum performance achieved, the Cholesky factorization could

reach a higher efficiency than QR, which was likely due to a larger degree of parallelism.

ScaLAPACK QR performs very well as the problem size increases.

Second thing to note is that for the tile-based algorithms, the tile size needs to be tuned

in order to obtain good performance. And the optimal tile size depends on the interface

we used and the balance between computation, communication, and runtime overheads.

For most cases, the tile size of 560 is better than 960, but for the QR implementation

this is dependent on the problem size, as the matrix sizes increase, using tile size 560 we

observe performance degradation instead of stabilization, while a larger tile size of 960 shows

performance improvements. I suspect this came from the overhead of task insertion and

management. This explains why the trimmed version of QR is faster than the base DTD

version when tile size was 560, with the reduction of task analysis overhead.

The two user-level features, that I added, provided various degree of performance

improvements. When the tile size was 960 instead of 560, since the number of tasks is cubic

with the number of tiles, we could have had 5-fold reduction in the number of tasks. As a

result, the graph trimming is not providing as much of an impact as with the case of tile size

560 (trimming can reduce the number of inspected tasks by an order of magnitude). Adding

broadcast for the Cholesky factorization provided a good performance gain in the case of tile

size 560, but when combining the two, we could get the biggest boost in performance, even

better than the PTG version of Cholesky implementation. This two features also changed

the optimal tile size for Cholesky from 960 to 560. Tile size of 560 is big enough to obtain

good performance from Intel’s MKL and the bigger the tile size was the more likely it was

to compensate for the higher overhead from base DTD overheads.

66

The interesting thing is that in Figure 4.6, the P2P is faster than broadcast but results

from Figure 4.7 and Figure 4.8 showed improved performance for Cholesky factorization.

Other authors indicated [49] that computation can reduce network bandwidth due to memory

contention, I think that the actual P2P bandwidth during Cholesky factorization is less

than the benchmark measurement. By spreading the message propagation across the

participating nodes via broadcast, it could remedy the network degradation and improve

overall performance.

Fugaku Results

Similarly, the results from Fugaku are in Figure 4.9 and Figure 4.10 for 256 and 512 nodes,

respectively. I observed generally the same trends as in the result from Shaheen II, with good

scalability on both 256 and 512 nodes. On one node of Fugaku, I could obtain DPOTRF

results of around 1700 GFLOP/s, meaning the result from 256 nodes would have had a ceiling

of 435 TFLOP/s. The single node base is lower than other SSL2 results due to an issue calling

SSL2 math library from multiple threads, and I had to disable the sector cache optimization

to complete the runs. One difference is that the base DTD Cholesky was performing much

worse relative to the ones from Shaheen II. And correspondingly, a much smaller effect was

observed from just adding broadcast. With 48 cores instead of 32 from Shaheen II, insertion

efficiency might have had a larger factor in order to saturate all the cores. And the trimming

in this case provided a larger degree of relieve to this bottleneck. With the two features

combined, I actually obtained significantly better result for the Cholesky implementation in

comparison with the PTG version from 512 nodes.

For the QR implementation, the broadcast-only version showed a minimum improvement

effect, since the dependencies are tighter than for the Cholesky one. Although trimming can

provide a small performance boost, I still need to increase the tile size to further reduce

the overhead, this in turn diminishes the effect of trimming. In summary, further profiling

is needed to understand the exact reason for the performance drop and where the limiting

factors were coming from for DTD version.

67

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

●

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
scalapack
trimmed

560
960

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

50

100

150

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

560
960

●

●

●

●

●

bcast_trimmed
dtd_base
PTG
scalapack
trimmed

Figure 4.9: Performance on Fugaku, 256 nodes. Left: Cholesky, Right: QR

●

●

●
● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

200

400

600

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

560
960

●

●

●

●

●

bcast
bcast_trimmed
dtd_base
PTG
trimmed

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

100

200

300

100 200 300 400 500 600
Matrix Size (k)

T
F

lo
p/

s

560
960

●

●

●

●

bcast_trimmed
dtd_base
PTG
trimmed

Figure 4.10: Performance on Fugaku, 512 nodes. Left: Cholesky, Right: QR

68

4.5 Conclusions

In this work, I introduced two new features to PaRSEC DTD interface, namely user-level

graph trimming and broadcast operations. I demonstrated the user-level changes needed to

use these two features with the Cholesky and QR factorizations. This experience indicated

that although it is relatively easy to trim the graph when the algorithm is simple, it can

be complicated when the user needs to know the exact dependencies among the tasks and

will lead to messy and error-prone user codes. I also showed that with these two added

features, I can significantly improve the performance of Cholesky, while providing only

modest improvement for QR. From both the usability and performance perspective, I showed

that the STF interface still has a lot of opportunities for improvement, but it will likely limit

the usability of the original interface and create difficult to maintain and debug user code.

Exploring the reason for QR performance drop is beyond the scope of this programming

model study, but further investigation is needed to understand the bottleneck in those cases

and the likely overheads still in the runtime implementation, and the applicability of STF

interface to a wider range of scientific applications.

69

Chapter 5

Extension to PTG - Testcase with

Communication Avoiding 2D Stencils

5.1 Overview

Stencil computations are a common pattern in a variety of scientific and engineering

simulations based on discretizations of partial differential equations (PDE), and they

constitute a key component of many canonical algorithms such as stationary iterative

methods involving sparse linear algebra operations, for example Jacobi iteration [61], as well

as non-stationary and projection methods employing geometric multigrid [Hackbusch, 109]

and Krylov solvers [105, pp. 241-313]. They are routinely used to solve problems that arise

from the discretizations of PDEs [60]. Stencil codes can be characterized as having high

regularity in terms of the data structures and the data dependency pattern. However, they

also exhibit low arithmetic intensity and, as a consequence, the available memory bandwidth

required for data movement is the limiting factor to their performance. To exacerbate these

issues, the recent trends in the hardware architecture design have been skewed towards ever-

increasing number of cores, widening data parallelism, heterogeneous accelerators, and a

decreasing amount of per-core memory bandwidth [114]. The prior work on optimizing the

stencil computations has mostly focused on techniques to improve the kernel performance

70

within a particular domain such as cache oblivious algorithms, time skewing, wave-front

optimizations, and overlapped tiling [23]. On modern systems, these algorithmic classes

must be recast to overcome the geometrically growing gap between processor speed and

memory/network parameters, in particular, CPU/GPU speeds have been improving at 59%

per year while the main memory bandwidth at only 23%, and the main memory latency

decreased at a mere 5.5% [63]. Given the widening gap between computation speed and

network bandwidth, a systematic study of performance of stencils on the distributed memory

machines is still relevant. Especially the optimization of communication is lacking.

In the recent years, a number of runtime systems and new programming models have

been developed to facilitate application development by separating the domain science and

the tuning of the performance, leveraging the respective strengths of domain scientist and

runtimes. The runtime abstraction layer invariably comes with a certain amount of overhead

that can be overlapped with enough task granularity [99]. But with the low arithmetic

intensity of most of these types of kernels, a viable runtime solution needs to be able to

maintain efficiency with fine grained tasks. STF model with dynamic task graph analysis as

a result is not suitable, while from our results in Chapter 3, PTG is a good platform for the

development of a set of stencil-like operations.

As a result, in this pilot project, I adopted PaRSEC PTG to abstract away the

MPI communication across nodes, and experimented with communication-avoiding (CA)

techniques to further reduce the communication overhead that is the limiting factor in

stencil computation. I use the 2D five-point stencil as the test case, and compared

the performance of three implementations: PETSc, base-PaRSEC and CA-PaRSEC. I

investigated extensively the interplay between memory bandwidth, computation speed, and

network latency/bandwidth on stencil code performance. I demonstrated that under some

reasonable assumptions on workload and system configurations, performance improvements

between 33% and 57% were obtained on the two tested machines when communication

avoiding scheme is adopted into PaRSEC runtime.

71

5.2 Related Work

Stencil codes research has mostly focused on optimizing the kernels [122] or domain

specific systems that can generate efficient kernels automatically [114] and generating

code that can utilize GPUs efficiently [121]. The authors not only optimized the

kernel [23], but also implemented the communication avoiding technique directly within

their compiler framework. Here, instead of combining everything within one compiler

system, I investigate delegating the internode communication to runtime system instead of

combining both communication hiding and communication avoiding at the runtime system’s

level. Communication avoiding (CA) methods (or s-steps methods) themselves represent a

mature concept [47] and many Krylov subspace solvers were built with this idea [73] [119].

The numerical properties of such approaches, including monomial basis and matrix powers

kernels (MPK), are out of scope of this paper and we mainly focus on the feasibility and

benefits of having CA ability implemented within a runtime infrastructure. Applications of

communication avoiding techniques to numerical linear algebra algorithms have also been

studied and performance improvement demonstrated [101] [59]. In particular, authors also

studied the interaction between communication computation overlap with communication

avoiding technique programmed with Unified Parallel C (UPC) [59], a partitioned global

address space (PGAS) model.

In this study, I adopt the runtime-based approach and study extensively the benefits

of runtime system’s benefits to provide better communication-computation overlap, and

the opportunity for further improvement via communication avoiding scheme for stencil

computations and for Sparse Matrix-Vector multiplication (SpMV) in general [7] [117]. To

the best of my knowledge, this is the first time the combined approach addressed distributed

systems in a comprehensive manner. My goal was to demonstrate the feasibility of such a

software infrastructure for a broad range of numerical algorithms.

72

5.3 Background

5.3.1 Stencil Problem Description

Scientific simulations in diverse areas such as diffusion, electromagnetics, and fluid dynamics

use PDE solvers as the main computational component. These applications commonly

employ discretization schemes such as finite-difference or finite-element techniques. During

the solve, they sweep over a spatial grid, performing computations involving nearest-neighbor

grid points. Such compute patterns are called stencils. In these operations, each of

the regular grid points is updated with weighted contributions from a small subset of

neighboring points in both time and space. The weights represent the coefficients of the PDE

discretization for each data element. Depending on the solver, these coefficients may be the

same across the entire grid or differ at each grid point. The former is a constant-coefficient

stencil while the latter – a variable-coefficient stencil. The range of solvers that often

employ stencil operations includes simple Jacobi iterations [61] to complex multigrid [109]

and adaptive mesh refinement (AMR) methods [44].

Stencils can operate in different dimensions of the domain, having different iterations

and coefficient types. In this work, I use the classic Jacobi iteration to solve the Laplace’s

equation, which means that I have one input grid Xℓ−1 (for reading) and one output grid

Xℓ (for writing), and the update between the two is in the form of:

xℓ
i,j =w0,0 · xℓ−1

i,j

+w0,−1 · xℓ−1
i,j−1 + w0,1 · xℓ−1

i,j+1

+w−1,0 · xℓ−1
i−1,j + w1,0 · xℓ−1

i+1,j

(5.1)

I used the more general form of weights which will give me the consistent FLOP/s count

of 9n2 for all implementations (5 multiplications and 4 additions). A diagram of the Jacobi

iteration scheme is shown in Figure 5.1.

73

Figure 5.1: Common illustration of the Jacobi update scheme [44].

74

5.3.2 Communication Avoiding Approach

With the increasingly widening gap between computation and communication, modern

algorithms should try to minimize communication both within a local memory hierarchy

and between processor or nodes. And this is especially true for SpMV, stencil operations

that are bound by the speed of the memory system and network interconnect. The key idea

from Demmel et al [47] is to perform some redundant work locally that would relieve the

bottleneck of communication latency. Two new algorithms were introduced, PA1 (depicted

in Figure 5.2) and PA2 as they described in the paper, where PA1 is the näıve version while

PA2 minimizes the redundant work but might limit the amount of available overlap between

computation and communication. My implementation follows the PA1 algorithm.

As an example shown in Figure 5.2, ghost region of 3-layers are used to store remote data.

This allows the local grid to perform Jacobi updates up to three time steps on the local data

(white points) with replication of work from remote points (outer red points used to update

inner red points). By performing redundant work, I reduce the frequency of communication

thus the effect of network latency.

PaRSEC runtime system by design allows computation and communication overlap, by

incorporating the communication avoiding scheme into the task-based implementation of

stencil operations, I believe such an infrastructure can further improve its performance.

5.4 Implementations

5.4.1 Standard Implementation with PETSc

PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific

applications modeled by partial differential equations [21, 20, 22]. It provides many of the

mechanisms needed within parallel application codes, such as simple parallel matrix and

vector assembly routines that allow the overlap of communication and computation. In

addition, PETSc includes support for parallel distributed arrays useful for finite difference

methods.

75

Figure 5.2: The 2D five-point stencil operation using PA1 algorithm on a 10-by-10 grid,
having a step size of 3 as illustrated in the original report [Demmel et al.]. For a single
processor with the projected view. Red asterisks indicate remote values that need to be
communicated.

76

In order to mplement Jacobi iteration in PETSc, I simply expand the 2D compute grid

points into 1D solution vector, and the corresponding 5 points stencil update is expressed

as a sparse matrix multiplication by the vector of unknowns. By default, PETSc partitions

the sparse matrix by rows with each process assigned a continuous block of matrix rows. To

perform the updates, I keep two solution vectors that are swapped within the main for-loop

up to a specified iteration count. Since PETSc is a mature and widely used package, the

result will serve as the baseline to compare against our PaRSEC performance.

5.4.2 Task-based Implementation in PaRSEC

Baseline PaRSEC Version

The first version follows the formulation of the Jacobi iteration, with data partitioned into

2D blocks over the 2D computation grids. Then the data on each node are divided into tiles

that each task will operate on. By providing this extra level of decomposition, only the tasks

that have neighbor tiles on a remote node will incur communication, while the inner tasks

can still be processed with the remaining workers. Each tile will have an extra ghost region

used for data exchange between tasks.

Figure 5.3(a) provides the diagram that depicts the implementation of the baseline stencil

code. The dashed line indicates the node boundary, the 2D blocked data distribution ensures

that the surface to volume ratio is minimized and we have minimal remote communication.

Each tile had the same size and also each one had an extra ghost region for copying neighbor

tiles’ value. Since the implementation involves a 5-point stencil, the figure indicates that

there are three possible dependencies cases, for the interior tasks, all the neighbors are

local to the task and can simply copy the memory into the ghost region. For the tiles on

the boundaries or corners, one or two remote data transfers are needed. Otherwise, the

computation kernel itself is very straightforward as it simply loops over the grid elements

within a tile and apply the updates during the iteration.

77

Figure 5.3: Top) Diagram of the baseline version of the PaRSEC implementation. Three
possible task locations and their data dependencies are shown. Black line indicates within
node data copy while red line indicates remote communication., Bottom) Diagram of the
communication avoiding version PaRSEC implementation. Three possible task locations
and their data dependencies are shown. Black line indicates within node data copy while
red line indicates remote communication. The boundary tiles will have a bigger ghost region
to accommodate the extra layers of remote data.

78

Communication Avoiding PaRSEC Version

The second version I adopted used the communication avoiding scheme whereby I trade

extra computation for less frequent communication exchanges. Figure 5.3(b) has the overall

structure very similar to the baseline version, and the interior tasks have the same task

dependency as in the baseline version. But for boundary tiles, in addition to the four

neighbors, I need to buffer additional data from the four corner neighbors due to the

additional steps of remote computation that need to replicate locally. Since I still don’t

have the support at the runtime level, I implemented the logic directly as a proof of concept,

specifying the dependencies directly at the PTG level. Conditions are provided to test

whether the task is operating on a boundary tile, and whether I need to communicate at a

given iteration. And the corresponding logic in the body of the task to decide on the data

I need to copy in and out, and the kernel it should call. Similar to the baseline version, the

tiles that have all its neighbors local to the node would still have one layer ghost region for

data exchanges since they do not need remote communication. But the boundary tiles have

a ghost region of steps-layers as specified for the extra amount of data exchanged, and as a

result, this version uses slightly more memory.

5.5 Experiments Results

5.5.1 Experimental Setup

To evaluate the benefits of implementing stencil operations with a runtime system and

additionally the benefits of incorporating communication avoiding scheme, I consider the

following properties of the problem and the characteristics of the machines:

1. Number of arithmetic operations and memory accesses per task;

2. The maximum achievable network bandwidth of the cluster’s nodes and the memory

bandwidth of a compute node;

79

3. Number of floating-point numbers communicated per processor, and the number of

messages sent per processor.

Since I formulate the problem in the more generic version which performs 9 floating-

point operations per grid point update and need to transfer 16 to 24 Bytes (read and write

of double floating point numbers) of data depending on the size of tiles, therefore I will

use the range of 0.37 to 0.56 as the arithmetic intensity. To measure the peak network

bandwidth performance, I used the NetPIPE benchmark [110] and for the memory bandwidth

performance, I used the STREAM benchmark [86].

As mentioned before, there are three versions of my stencil code implementation, one

in PETSc and two in PaRSEC, with normal communication pattern and CA scheme

respectively. I first compare the strong scaling performance of the three versions using PETSc

as the baseline in order to have a better understanding of PaRSEC versions’ performance.

Then, I move on to adjust the step sizes and tune the execution time of the kernel (to simulate

memory bandwidth utilization rate) to investigate the interplay between memory bandwidth

and network communication on the overall performance. As the computer architectures

continue to evolve, the results here should provide a guidance for future performance

improvements that can be expected on stencil operations.

The experiments were run on two systems. First is an in-house cluster called NaCl that

had a total of 64 nodes, each with two Intel Xeon X5660 (Westmere) CPUs, with the total

of 12 cores spread across two sockets of each node and 23 GB of memory per node. The

network switch and network cards are Infiniband QDR with a peak network rate of 32 Gb/s.

The second system was Stampede2 system located at TACC: each node is equipped with two

Intel Xeon Platinum 8160 (Skylake) CPUs with a total of 48 cores across two sockets of a

node, and 192 GB of on-node memory. The interconnect was a 100 Gb/sec Intel Omni-Path

network.

I used PaRSEC master branch from commit faf0872052, and PETSc release version 3.12.

On NaCl, we compiled the code with GCC 8.3.0 C compiler and used Intel MPI 2019.3.199.

On Stampede2, we compiled our code with Intel C compiler 18.0.2 and MVAPICH2 version

80

2.3.1. PETSc was compiled with all the optimizations enabled and used 64-bit integers for

indexing. PETSc runs had one MPI process per core. For PaRSEC runs, I configured the

system to have one process per node, with one thread dedicated for communication while

the remaining ones were assigned to computational tasks. The nodes during the runs were

arranged into square compute grid and the data tiles were allocated in a 2D block fashion

to exploit the surface-to-volume effect.

5.5.2 Network and Memory Bandwidth Benchmark

STREAM benchmark was run on both systems utilizing all the cores on a compute node

since, as the results show, a single core cannot saturate the memory interface. The results

are shown in Table 5.1. The different STREAM modes vary in their arithmetic intensity:

bytes transferred per FLOP computed. For simplicity, in the following I use the results from

COPY operation as the achieved memory bandwidth.

The achieved bandwidth on NaCl and Stampede2 were 39.1 GB/s and 172.5 GB/s,

respectively. The estimated arithmetic intensity is between 0.37 to 0.56 depending on data

availability in cache. I expect the effective peak performance between 14.5 to 21.9 GFLOP/s

and 63.8 to 96.6 GFLOP/s for the memory-bound stencil kernels under the assumptions of

the roofline model [115].

I tested the network interconnect on both systems with the NetPIPE benchmark and

obtained the performance results plotted in Figure 5.4). The effective peak network

bandwidth on NaCl is about 27 Gb/s while on Stampede2 I could achieve up to 86 Gb/s.

Given the size of our stencil tiles, it is unlikely to reach that peak bandwidth shown in

Figure 5.4. The latency of the network was around 1 microseconds.

5.5.3 Tuning of Tile Size for PaRSEC Performance

Next, we measure the actual performance results of the base implementation on top of

PaRSEC that runs on a single node (no network communication) with different tile sizes

across all available cores. The results allow us to select a reasonable tile size for local

81

Table 5.1: STREAM Benchmark Results (MB/s) for NaCl and Stampede2.

System Scale COPY SCALE ADD TRIAD
NaCl 1-core 9814.2 10080.3 10289.3 10271.6
NaCl 1-node 40091.3 26335.8 28992.0 28547.2

Stampede2 1-core 10632.6 10772.0 13427.1 13440.0
Stampede2 1-node 176701.1 178718.7 192560.3 193216.3

0

25

50

75

256B 1KB 16KB 256KB 1MB
Message Size

%
 o

f T
he

or
et

ic
al

 P
ea

k

NaCL Stampede2

Figure 5.4: Network Performance from NetPIPE on NaCl and Stampede2 with theoretical
peak of 32Gb/s and 100 Gb/s, respectively.

82

computation. They also tell us the gap between the performance of the native kernel and

the peak memory bandwidth performance to provide us with a reference point for distributed

runs.

In Figure 5.5 there is a certain range of tile sizes that allows us to obtain reasonable

performance levels. For the NaCl system, the tile sizes of 200 to 300 will result in 11

GFLOP/s while on Stampede2 the tile sizes 400 to 2000 will yield close to 43.5 GFLOP/s.

Given the fact that I did not optimize the kernel, the obtained result is acceptable for the

circumstances but is still not close to the peak memory bandwidth level indicated in the

previous section. Therefore, in the following experiments, I will run PaRSEC versions with

the tile sizes in the optimal range obtained from the local-only runs.

5.5.4 Comparing Strong Scaling Performance

Figure 5.6 shows the strong scaling speed up of the three stencil implementations when

using optimal single node performance as baseline. All three maintain good scalability levels,

and the PaRSEC versions can achieve twice the performance of PETSc. This performance

advantage can be partially explained by the specific SpMV formulation used by PETSc, since

instead of having the weight matrix be represented with only 5 numbers, the update will

involve both sparse matrix indices and the corresponding values – other versions represent the

indices implicitly as small-value constants in the array indexing code. This, at the very least,

doubles the number of memory loads (64-bit integers) that are needed for the same amount

of floating point operations (64-bit floating-point.) Finally, I notice that the two PaRSEC

versions are almost indistinguishable from each other, indicating that the communication

avoiding approach is not very helpful for 5-point 2D stencils on the tested machines as long

as the kernel is bound by the local memory bandwidth instead of being sensitive to the

network bandwidth.

83

NaCLNaCLNaCLNaCLNaCLNaCL
7

8

9

10

11

100 200 300 400 500

G
F

LO
P

/s

Stampede2Stampede2Stampede2Stampede2Stampede2Stampede2Stampede240

42

44

1000 2000 3000
Tile Size

G
F

LO
P

/s

Figure 5.5: Shared memory PaRSEC base version performance for a given tile size; (top)
NaCl with problem size 20K, (bottom) Stampede2 with problem size 27K.

NaCL

4
8

12
16
20

32

40

4 16 64

S
pe

ed
U

p

Stampede2

4
8

12
16
20

32

40

50

4 16 64
Nodes

S
pe

ed
U

p

Base CA PETSc

Figure 5.6: Strong scaling speed up over single node baseline PaRSEC; (top) NaCl result
with problem size 23k, tile size 288; (bottom) Stampede2 result with problem size 55k, tile
size 864, running for 100 iterations. Steps size of 15 is used for CA version.

84

5.5.5 Tuning of Kernel Time and Performance Impact of Commu-

nication Avoiding Scheme

To further investigate the potential benefits of communication avoiding schemes on a

distributed problem, I tested the case where the memory system is much faster or the

computational kernel was optimized to better utilize the memory bandwidth (for example,

the case of a local communication avoiding scheme that reduces slow memory accesses). To

simulate this, I set a ratio parameter r, so that only (r×mb)×(r×nb) portion of the tile gets

updated, which effectively reduces the memory access thus speedup the kernel execution by

an adjustable ratio r (mb and nb are the rows and columns number of a tile, respectively).

Figure 5.7 shows that in such case, communication avoiding can provide a decent amount

of improvements, for example the NaCl 16 nodes case we can see a 57% improvement if the

kernel time is small. While on 16 Stampede2 nodes, a moderate 18% improvement can be

observed in that case. The fast kernel times I assume here is quite realistic as well. Based on

STREAM memory bandwidth test result, 0.6 ratio kernel performance is similar to reaching

around 80% of STREAM bound. According to recent study [122], it is an efficiency level

achieved with optimized kernel.

The step size affects how often the boundary tiles communicate with each other, the size

of the message and the amount of available tasks can be enabled in this interval. Although in

my implementation, it had no impact on the boundary tasks’ execution time since I simulated

the kernel time without the extra computation. The interplay between step size and kernel

execution time is complicated, but the optimal step size can be searched via experimental

runs. Figure 5.8 indicates that if communication avoiding scheme can improve performance

over the base version, the step size needs to be tuned to get the best possible speedup on

the tested system.

5.5.6 PaRSEC Profiling of the Two Versions

To validate that the communication avoiding versions indeed reduce the network latency thus

reducing the cores idling time, I used PaRSEC’s profiling system to record the execution trace

85

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

250

500

750

1000

G
F

LO
P

/s

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

2500

5000

7500

10000

Kernel Adjustment Ratio

G
F

LO
P

/s

base CA

Figure 5.7: Tuned kernel performance: (top) NaCl result with problem size 23k, tile size 288;
(bottom) Stampede2 result with problem size 55k, tile size 864, running for 100 iterations.
Steps size of 15 is used for CA version. Running on 4, 16 and 64 nodes with squared compute
grid. The ratio r indicates the ratio of mb and nb of tile being operated on, namely r2 of
the original number of points in a tile. Black lines indicate the base PaRSEC with original
kernels’ result.

86

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

250

500

750

1000

G
F

LO
P

/s

4 16 64

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0

2500

5000

7500

10000

Kernel Adjustment Ratio

G
F

LO
P

/s

5 15 25 40

Figure 5.8: Tuned step size performance: (top) NaCl results with problem size 23k, tile
size 288; (bottom) Stampede2 results with problem size 55k, tile size 864, running for 100
iterations. Step sizes of 5, 15, 25 and 40 are used.

87

of the tasks to generate the content of Figure 5.9. The result from Figure 5.7 shows that

for tuned ratio of 0.4 running on 16 nodes on NaCl, I get a 14% performance improvement.

The execution trace indicates that indeed with the help of the CA approach, more tasks

are enabled for execution while network messages are exchanged and it generally results in

higher CPU occupancy. And the faster execution is achieved despite the fact that the base

version has median kernel time of 136 milliseconds while CA version has median kernel time

of 153 milliseconds due to the extra copies in the body.

5.6 Conclusions

In this chapter, I described and analyzed implementations of a 2D stencil code and its

communication-avoiding (CA) variant on top of the PaRSEC runtime system. In particular,

I proposed three implementations of a 5-point stencil as our test cases. I showed performance

results on two distinct systems: NaCl and Stampede2; and compared three versions: PETSc,

baseline PaRSEC and CA PaRSEC. The approaches based on a tasking runtime show good

performance results, with minimal distinction between the two approaches in all compute-

intensive scenarios. By artificially reducing the kernel execution time, I highlighted the case

where the CA variant on top of PaRSEC is able to outperform the others in the strong

scaling regime with up to 57% and 33% improvements on both the NaCl and Stampede2

systems.

On the current state-of-the-art high performance computing system such as the Depart-

ment of Energy’s Summit at Oak Ridge National Laboratory, each node has 6 GPUs and in

excess of 900 GB/s HBM2 memory bandwidth per GPU and network latency of only about

1 microsecond [Vazhkudai et al.]. The emerging new exascale systems feature even higher

memory bandwidth improvements with HBM2e, but the improvement of the network latency

remains modest – a well established trend of growing compute-communication gap [63].

Thus, if the workload on each node can efficiently utilize the full memory bandwidth then,

in all likelihood, it would become network-bound and the implementation variant based

on communication-avoiding approach shows a distinct advantage. However, other changes

88

0

1

2

3

4

5

6

7

8

9

10

0 250 500 750 1000

0

1

2

3

4

5

6

7

8

9

10

0 250 500 750 1000
Time (ms)

boundary 0 1

Figure 5.9: One node’s profiling result, running on NaCl with 16 nodes, tuned ratio of 0.4,
11 computation threads on a node. (top) baseline PaRSEC; (bottom) CA PaRSEC. The
boundary indicates the tiles that need to exchange data with remote nodes.

89

orthogonal to this study like increasing the arithmetic intensity of the algorithms by using

higher-order discretizations and accompanying stencils, or increasing workload on each node

could also provide effective ways to mitigate the network inefficiencies.

Another way to look at the benefits of the communication avoiding approach is to note

how it aggregates the data across several iteration steps. This reduces the communication

frequency to counteract the latency overhead and thus transforming a latency-bound

algorithm into a bandwidth-bound one. This also allows us to more efficiently use the

network due to communicating larger messages that allow increased bandwidth efficiency

from 20% percent to 70% of peak network bandwidth as shown in the NetPIPE results in

Figure 5.4. By performing redundant computations, we delayed the network latency penalty

and achieved strong-scaling to larger node counts as a result.

90

Chapter 6

Profiling Analysis for Performance

Tuning

6.1 Overview

It has been shown that a task-based approach is extremely efficient for load balancing and

using intelligently all the resources’ computational power in heterogeneous platforms for

many scientific computing fields—including application libraries built on top of the usual

dense [6, 28] and sparse [84] linear algebra solvers with either arithmetic- or memory-

intense computational tasks. In a task-based programming environment, a large amount

of parallelism is exposed by representing the algorithm as a large set of fine-grained tasks.

Then, the runtime system is responsible for scheduling these tasks while satisfying the data

dependencies between them for correctness. Such a runtime must adapt to the changes in

the amount of parallelism available in applications and map tasks to underlying hardware

resources under dynamic and unpredictable system conditions. PaRSEC [29] is one of

the leading runtime systems that were actively developed and integrated into scientific

application codes.

Although a task-based runtime system is convenient and efficient, from users’ perspective

a well-designed profiling system is needed to inspect the execution—especially when it suffers

91

from subtle performance problems that tend to be tedious to diagnose. The profiling system

needs to integrate well with the runtime and be able to extract information that allows

reasoning about task costs, scheduling quality, memory usage, and information regarding

messages and data transferred in the network. In this chapter, I describe the profiling

system of PaRSEC: the mechanisms embedded in the runtime system to extract critical

information and produce a trace of the execution, and the tools allowing users to manage

this collection of events. Based on this profiling system, I demonstrate how a performance

issue was pinpointed for the Tile Low-Rank (TLR) Cholesky implementation, leading to the

lookahead control flow optimization in Section 5 of [36].

6.2 Related Work

In this section, I focus on the profiling and performance instrumentation systems available

for task-based runtime systems under the most active development.

Legion includes a performance profiling tool called Legion Prof, that generates at runtime

a log file in an internal data format of the task graph execution [107, 85]. The logs can be

converted to a set of dynamic HTML pages using a tool provided with the Legion distribution

that shows utilization graphs of the processors and their memory during the run. These

webpages are dynamic, and more detailed information can be obtained from them, including

common pieces of information like showing what tasks executed on what resource at what

time, and showing part of the directed acyclic graph (DAG) connecting these tasks.

StarPU provides multiple approaches for performance analysis. On the one hand, the

analysis can happen online [103]: dynamic hooks are available for the application developer

to connect to task- and communication-related events and write their own tracing or

performance analysis mechanisms, or general statistics on the process status can be read at

runtime (e.g., amount of compute time per core, time spent in the runtime system per core,

etc.). On the other hand, the performance analysis can be conducted offline after creating

a trace of the execution [102]. StarPU uses the Fast User/Kernel Tracing (FxT) [94] library

to create traces that can be converted into GraphViz’ DOT graph representations or the

92

Pajé trace format [45]. The latter can then be visualized with the ViTE tool [41] as an

annotated Gantt chart. StarPU provides additional tools to create text files describing the

execution of each task in a key/value format for integration with external tools, and allows

the user to build application-specific analysis. It is possible to use a combination of the trace

formats (Pajé, DOT, enriched text files), and with support of ad hoc conversion scripts to

build a CSV database of the execution and analyze it in R or other statistical tools, using

application-specific methods [57]. Lastly, a set of internal tools are also available in StarPU

to measure the efficiency of the performance models built by the runtime system for its

scheduling, and to check the accuracy of the simulations, if they are conducted with the

runtime system.

To the best of my knowledge, QUARK does not provide any profiling or tracing

tools within the runtime system to help the performance analysis aside tracing wrappers

around scheduling calls that integrate with the Pajé-ViTE trace tooling duo. Initially,

instrumentation was accomplished with manual intervention into each task’s invocation

in order to collect timing information and build Gantt diagrams and other performance

analysis [69].

OmpSs includes a set of instrumentation plug-ins [88], that can be selected at run time,

in order to dynamically call functions defined in these plugins when specific events occur.

The set of events that trigger a call is controlled at compile time by a variety of options.

Available plugins include an Ayudame plugin for the Temanejo graphical debugger [33], a

module to compute and output the DAG of tasks. Another one, provides an experimental

support for traces from execution of a task system simulator. Also, a module is available

to provide traces suitable for us by Paraver [93] that can potentially embed Performance

Application Programming Interface (PAPI) information obtained directly from hardware

counters. Traces of parallel runs can be visualized as Gantt charts using Paraver from a

variety of perspectives (e.g., from a task view or a thread perspective, showing the achieved

rate of instructions per cycle in different thread contexts, or the TLB miss ratio, etc.) [96].

93

The HPX Performance Counter Framework [64] defines an API to access internal counters

exposed by the HPX runtime. These counters include information about the hardware, but

also about the runtime system’s status. The counter values are identified by their names,

following a fixed naming scheme. The runtime provides rudimentary tools to regularly read

a set of hardware counters and display them on the standard output or send them to an

output file, but this approach is only time-periodic and not event-driven and thus does not

allow for creating a trace of the execution. The preferred approach is to embed the user

analysis directly within the HPX program, or to write user’s own tracing layer within the

application for more sophisticated offline analysis.

As I describe below, the approach in PaRSEC differs from the other approaches in

that a detailed trace of the execution is created and converted into an open format, which

encourages the development of small and application-specific analysis tools in simple scripting

languages. Below, I will illustrate how this approach allows users to take an application

written with PaRSEC and collect a trace of execution with fine enough details to allow a

programmer with a good understanding of the application itself to identify the bottlenecks

and successfully eliminate them.

6.3 Background

This section briefly provides background information on the Tile Low Rank (TLR) Cholesky

factorization. More detailed information is provided in Sections 4 and 5 of [36].

6.3.1 TLR Cholesky Factorization Basics

In the standard dense Cholesky factorization, the matrix data is stored in the form of an

underlying tile layout and is usually executed by four computational kernels: POTRF (single-

tile local Cholesky factorization), TRSM (triangular solve with a matrix), SYRK (symmetric

rank-k update), and GEMM (general matrix-matrix multiply) on either the lower or upper

part of the symmetric positive-definite matrix. The entire factorization translates into a

94

DAG with nodes corresponding to tasks and edges representing data dependencies, with a

serial and incompressible critical path of (nt−1)× (POTRF + TRSM + SYRK) + POTRF,

where nt is the number of row or column tiles.

The DAG of tasks (and thus its critical path) is the same for both TLR and classic

dense tile-based Cholesky factorization as shown in Figure 6.1, but there are two critical

differences:

1. data format: all tiles are dense with size of nb×nb in the dense Cholesky factorization,

where nb is the tile size; while in TLR Cholesky factorization, only tiles on the

main diagonal are dense, and off-diagonaltiles are numerically compressed using the

application-dependent accuracy threshold by using a variant of the Singular Value

Decomposition (SVD) with size of nb × rank with rank ≪ nb for tiles further away

from the diagonal tiles;

2. computational kernels, as well as arithmetic complexity: to work on the

compressed data layout of the off-diagonal tiles, TLR Cholesky requires an implemen-

tation of new low-rank kernels variants: LR SYRK and LR GEMM, which introduce

decompression and compression phases, respectively, as introduced in the prior work [9];

the arithmetic complexity is 2 × n2
b × rank + 4 × nb × rank2 for LR SYRK and

36 × nb × rank2 for LR GEMM, instead of n3
b for SYRK and 2 × n3

b for GEMM.

And for TRSM, the arithmetic complexity is reduced to n2
b × rank from n3

b as well.

6.4 Performance Tools

PaRSEC features a rich development environment including tools to debug programs written

in the different DSLs, and to profile the performance of system’s task execution. In this

section, I present in further detail the performance profiling and instrumentation capabilities

of PaRSEC.

95

Figure 6.1: Left, TLR format for matrix A having 4-by-4 tiles of size nb-by-nb. Diagonal
tiles are stored as dense. Off-diagonal tiles, are compressed to have U and V blocks, each
has its own rank, k. Right, the corresponding DAG for TLR POTRF of the matrix.

96

6.4.1 Trace Collection Framework

The Trace Collection Framework may be considered at the root of the performance profiling

system. It is an integral part of the PaRSEC runtime system and can be enabled through a

compile-time option. The framework consists of a runtime support thread and library that

provides a generic API to define and store events that occur during the execution. The user

program (typically the PaRSEC runtime and the different PaRSEC DSLs) defines events as

individually identified entities that are executed on a given thread at a given time, and they

are bound with a contiguous structure of arbitrary size that holds information pertaining

to the event. For example, for each task of the PTG DSL, the DSL defines task-start and

task-end events that store the task class, task identifier, and parameters of the task.

These events are stored in a set of binary files, one per every process of the application.

In each file, events are grouped in buffers of fixed size, each buffer belonging to a given thread

of the process. Buffers are linked one to another, creating as many linked lists of buffers as

there were threads in the process during the execution.

The library is designed to be highly scalable for many-thread environments and to incur

a minimal overhead when logging events. Logging an event consists of reading a timer,

and copying the information related to the event (which has a size from a dozen to a few

hundreds bytes, depending on the event type) in a buffer of memory that is memory-mapped

onto the backend file that stores the binary trace. At runtime, each PaRSEC thread owns

an independent buffer to log its events, in order to avoid sharing and atomicity issues. When

a buffer is filled, the PaRSEC thread that is logging an event atomically swaps its current

logging buffer with a fresh one. The helping thread that is part of the Trace Collection

Framework continuously expands the backend file on which these buffers are mapped, and

prepares in advance new buffers for the PaRSEC threads to acquire when needed. The only

thread-synchronizing operations occur when requesting a new buffer and releasing the current

one, and different PaRSEC threads never interact with each other’s tracing structures during

the computation.

97

This approach relies on the availability of a few buffers of memory: one buffer per PaRSEC

thread for the current buffer, and a few more that are allocated in advance to overlap I/O

operations with logging operations. If the PaRSEC threads generate events faster than the

operating system can complete the cycle of truncating the backend file, mapping the new

area, and unmapping the completed areas, the system will throttle the incoming event data

stream by slowing down the logging operations in order to complete the preceding ones. This

is usually avoided entirely when the backend file is stored on a scalable or local I/O systems.

The Tracing Framework helping thread is usually left without affinity to a particular CPU

core, in order to allow “stealing” of idle cycles from computing threads, as all its time is

spent waiting on incoming event data or being blocked on I/O operations.

In an effort to improve portability and to enable interoperability with existing perfor-

mance analysis tools for parallel applications, the tracing interface can also be configured

at compile time to produce its output log of the execution in the OTF2 trace format [54].

In this work, I focused on the binary trace collection and the conversion methods described

below allowed me to build my own ad-hoc analysis tools.

6.4.2 PINS: PaRSEC INStrumentation

The Trace Collection Framework is used within the PaRSEC runtime through the PaRSEC

INStrumentation (PINS) interface: different modules can register callbacks that typically

log events that form the trace, and are called when the execution reaches critical points in

the code. PINS modules are exposed to the final user through the Modular Component

Architecture (MCA) [56], and can be selected at run time to decide the type of information

logged in the binary profile files.

Typically, PINS registers callbacks for all the important steps of a task’s life cycle: when it

is created, when it becomes ready to run, when it is selected for execution, when it is assigned

to an accelerator (if eligible and available), when it starts and ends its execution, and when

it enables one of its successor tasks. There are also callbacks available that pertain to the

98

state of the PaRSEC runtime: when it allocates or frees system resources, when network

events are triggered, etc.

The MCA design exposes different logging policies, available for the user: for example,

the pins papi module allows logging PAPI’s hardware counters of user’s choice. This is in

addition to basic tracing that by default records the time and thread that generated each

event. This enables augmenting the trace with information on the state of the hardware at

the time of the event.

6.4.3 Dependency Analysis

The events instrumentation allows us to measure the status of the system at critical moments

of task scheduling. In order to enable full analysis of the program’s behavior, it is often

necessary to connect this information with the actual DAG of tasks that was executed.

In order to achieve this, the events’ trace is completed with another file representing the

dependencies as they are expressed to the runtime system in another set of files following

the DOT syntax defined by the GraphViz software collection [53] for portability.

For all deterministic problems (typically when the DAG of tasks is not data-dependent,

but is entirely defined by the parameters that instantiate the DAG as is the case with the

PTG DSL), the assembly of the DAG can be done offline and does not have to be performed

during the timing of the operation itself, thus completely avoiding the risk of impacting the

execution’s timing. One DOT file per process is produced, as for the tracing mechanism,

and all PaRSEC DSLs provide a unique naming of tasks that enables an internal tool to

stitch the different DOT files to produce a single one that represents the entire distributed

DAG of tasks.

6.4.4 Trace Conversion Tools

It is important to note from the outset, that this is not the case for the binary trace: once

a trace is generated, the user has access to a set of binary files, one per process in the

application. The format of these files is not exposed to the user, as information in them is

99

kept as close as possible to the architecture, in order to avoid conversion costs to produce a

portable trace format during the execution. Timing information, for example, is architecture-

and operating system–dependent; each architecture defines its own time reading routine. All

information logged by the user (typically integers of various size to store the parameters,

PAPI counters, etc.) is also kept in the architecture-specific storage.

As is often the case with tracing systems, a conversion step is necessary to obtain a

portable and exploitable file format of the trace. During this step, the generated binary files

are merged in a single file by appending the rank of the process that produced the initial

binary file as an identifier for each record. For portability and ease of use, PaRSEC chose to

export the portable file format in Hierarchical Data Format (HDF5), following the structure

required by the popular the Pandas library [87] to describe Data Frames in HDF5.

HDF5 [55] is an open format, self-describing, and efficient in representing large data sets.

The self-describing property of HDF5 enables exposing a large variety of data collections

with only minimal external documentation. Pandas [87] is a popular Python library

providing high-performance, easy-to-use data structures and data analysis tools for the

Python programming language. The goal behind these choices is to simplify writing ad hoc

analysis tools tailored to their application, as is done in the following techniques I present

below. The PaRSEC programming environment also provides tools to take the generated

trace and convert it into a full Gantt chart, or simply compute basic summary statistics of

the entire trace.

The HDF5 file contains a few of Pandas so called DataFrames or Series: a Series describes

what event types have been registered with the application, and associates an identifier to

them; another one collects all the architectural information, at the application level, or per

process and per thread basis. The largest DataFrame is a relational array that stores all

the events logged during the execution (one per row), and provides a tabular view of each

record, where the columns define the fields of the events. Some fields are common to all

events (e.g., timing of the event’s start and end, resource identifier that produced the event,

100

etc.), and other fields that correspond to the information logged by the PINS module and

are specific to some event types.

In order to simplify the development of ad hoc analysis tools in Python with Pandas,

the PaRSEC environment also provides a library to read the generated DOT files into a

NetworkX [68] representation that understands the naming scheme of the specific DSL, and

connects the tasks in the graph object with the records in the Pandas DataFrame. The

user can then easily select an event, find the task that relates to it, explore its successors

or predecessors and find events relating to those in the DataFrame. The case study in this

chapter makes use of this particular feature.

6.5 TLR Cholesky Case Analysis

The exploratory analysis of the data can proceed along many different directions, but there

are several intuitive concepts that lead me to investigate the connections and delays between

message transfers and task execution periods. First, the critical path of the Cholesky

factorization is important for my analysis because it is executed as if it was sequential. Also,

the tasks from the critical path are responsible for enabling all the parallel kernels, that

update off-diagonal tiles, and that are essential for keeping the compute threads occupied

with useful work. Second, the low-rank kernels were meant to reduce the computational

intensity, and as a result, rendered the execution less tolerant to deviation and jitter

occurring on the critical path, which may easily lead to work starvation and show up as

under-utilization of the compute threads. And finally, based on my understanding of the

PaRSEC runtime, which eagerly enables tasks for maximum parallelism, the scheduler can

get overwhelmed with the amount of tasks eligible for execution and during scheduling, the

less critical tasks could be selected, even with the scheduling hints available in the form of

task priorities.

In order for the output files to be manageable, I performed a limited experiment on a 3×3

compute grid, with tile size of 2700 and a total of 100× 100 matrix tiles. The tested kernel

was a synthetic 2D application kernel where the kernels for off-diagonal work had average

101

numerical rank of 13 after compression (consult Figure 2 in [37] for further details). I profiled

the resulting execution to ensure that as soon as the data is ready, PaRSEC enables the

critical tasks first according to the priority information. To be able to compute the average

time it takes for data to be produced on one node and consumed on another, I had to connect

multiple distributed events: the task termination, network activation, payload emission, and

remote task execution. This information was provided by the PaRSEC’s profiling system

through a combination of the trace information and the DOT files.

The generated DOT files are in the GraphViz DOT format, and can be used to graph

the DAG of tasks. They also can be viewed directly with a graphical editor and a typical

file entry is shown in Figure 6.2: it contains both the nodes as well as edges. For example,

the text tpid=4, tcid=0, tid=0 represents potrf dpotrf task when value of k is 0. And

the second entry indicates that there’s an edge between the potrf(0) task and the trsm(0,

2) task. Tasks in DOT files can be uniquely mapped to the events corresponding to data

payload sending and the payload receiving in the HDF5 profiling files through the following

association: tpid -> taskpool id, tcid -> tcid, and tid -> id. My Python script

defines the ParsecDAG class, which uses NetworkX package to convert the information in

DOT files into a complete DAG. The HDF5 file contains the information of the recorded

time of MPI’s data send on the sender rank, the MPI’s data receive time on the receiver

rank. It also contains the start and end times of each of the executed tasks as shown in

Figure 6.3.

By combining the information from these sources, I could identify the times at which

the diagonal tasks finished and the times when the following off-diagonal triangular updates

start executing. Figure 6.4 shows the time interval between receiving the diagonal data for

the POTRF task and the start of TRSM tasks in the matrix panels. In the default case, the

tasks operating on data closest to the diagonal experience the largest delay, and this clearly is

not optimal for the execution of the TLR Cholesky factorization, as the tasks on the critical

path, operating on the data close to the diagonal, should have the highest priority to ensure

that more off-diagonal updates are enabled for increased level of parallelism. Thus by using

102

po t r f d p o t r f 4 0 [penco lo r =” . . . ” , l a b e l=”<0/0/0>po t r f d p o t r f (0)<512>” ,
t o o l t i p=”tp id=4: t c i d =0: tcname=po t r f d p o t r f : t i d =0”] ;

p o t r f d p o t r f 4 0 −> po t r f d t r sm 4 0 2 [l a b e l=”T=>T”] ;

Figure 6.2: Example DOT file entries.

>>> import pandas as pd
>>> t = pd . HDFStore (’ dpot r f . h5 ’)
>>> t . events [t . events . type == t . event types [’MPI DATA PLD RCV ’]]

begin end s r c dst tp id t c i d t i d
2 54829493 55167839 1 .0 0 .0 2 .0 10 .0 4 .0
3 54863972 55167839 1 .0 0 .0 2 .0 10 .0 1 .0
6 45964530 46325381 0 .0 1 .0 2 .0 10 .0 0 .0
7 46007558 46325381 0 .0 1 .0 2 .0 10 .0 6 .0
8 46515282 46671406 0 .0 1 .0 2 .0 10 .0 3 .0
9 57474746 57530395 0 .0 1 .0 2 .0 10 .0 2 .0
>>> t . event types
ACTIVATE CB 6
Device de l e ga t e 1
MPI ACTIVATE 2
MPI DATA CTL 3
MPI DATA PLD RCV 5
MPI DATA PLD SND 4
PUT CB 7
TASKMEMORY 0
potrf dgemm 8
po t r f d p o t r f 11
po t r f d sy rk 9
pot r f d t r sm 10
dtype : in t64

Figure 6.3: Example HDF5 file entries.

103

Figure 6.4: Time between data is ready and TRSM starts for st-2D-sqexp synthetic kernel
data. Left, without lookahead; right, with lookahead of 5; each point represents one TRSM;
matrix has 100× 100 tiles.

104

my profiling tools for analysis I identified this inefficient scheduling effect and proceeded

to addressing the resulting performance issue. I did it by introducing a new lookahead

mechanism in the control flow between the LR SYRK and TRSM tasks. This allowed the

scheduling of the TRSM tasks, which worked on data further away from the diagonal, to

only run after the critical updates near the diagonal have fully completed. With my new

customized lookahead, the updated profiling visualization shows that indeed the intended

scheduling change occurred and a performance improvement was achieved.

6.6 Conclusions

In this chapter, I presented the profiling system available in PaRSEC: the mechanisms

embedded in the runtime system to extract critical timing information and produce a rich

trace of the execution, and the tools allowing users to manage this collection of events.

Using the information provided by this profiling system, I demonstrated the performance

analysis to show how the optimization footprint of the TLR Cholesky factorization could

impose a stricter control on execution sequence resulting in faster completion time. This

perspective, which appropriately highlights the benefits of PaRSEC’s instrumentation tools,

provided insights into PaRSEC’s scheduling process and system’s details during execution

thus enabling a comprehensive understanding of the behavior of the entire application, which

in turn was crucial in identifying potential performance bottlenecks and regressions.

105

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The constant evolution of the HPC systems with more and more heterogeneous components

poses a serious complexity challenge to the programming models in the software space.

It is expected that in the near future, MPI standard will continue to be the dominant

model of choice for applications to handle inter-node communication, while the landscape of

viable choices for shared memory systems’ programming (e.g. OpenMP, CUDA, Kokkos) will

proliferate and thus will continue the trend of strong reliance on the MPI+X programming

approach. At the same time, the ideal model should achieve a good balance between the

usability on the one hand and on the other it should not get in the way of ability to extract

a sizable portion of the peak performance from multiple generations of the HPC systems. In

this regard, task-based programming model and their modern implementations has become

a serious candidate for users’ codes, including scientific applications, despite the initial effort

required to adapt the existing applications to this promising paradigm.

My contributions to task-based programming model in general and to PaRSEC, one of

its prominent runtimes, in particular, include the following:

Programming Models Evaluation: This work compared the dominant MPI and MPI+X

programming models with two runtime systems for task-based model using the BLR LU

106

factorization as the scientific test program. Due to the load imbalance of this workload,

not uncommon among scientific codes, the inherent ability to handle such use case via

communication and computation overlap inside a runtime system was a major outcome

of my work that resulted in better node performance and scalability results. Within

the two task-based runtime systems, STF model is simpler from user perspective and

consequently saw some level of adoption, but the performance is limited by the dynamic

task graph analysis and the associated overheads. I showed that PaRSEC PTG is

the most scalable approach, but it uses its own DSL with custom syntax and as a

result is harder to adopt. Distributed task-based runtimes represent a shift away from

the MPI+X approach and require benchmarking efforts and active demonstrations

to encourage wider adoptions. The limitations exposed during my efforts (e.g. STF

overhead) and the capabilities highlighted for efficient implementation (e.g. prioritizing

tasks on the critical path for the scheduler to to follow, handling dynamic data sizes

that change throughout the line) help drive runtime optimizations further.

STF Optimizations: Following the discoveries from the first study and other results from

the literature, I proposed and implemented two optimizations in PaRSEC’s DTD which

follows closely the STF model, namely user-level graph trimming and a new API

for dynamically constructed data broadcast operations. My performance results from

Cholesky and QR factorizations indicated that they both can provide a certain degree

of improvement, but it can be limited due to inherent design choices because we can

not avoid the STF overheads under all circumstances, but rather we may be able

to postpone the issues within certain scalability regimes. Additionally, implementing

graph trimming at the user level requires non-trivial amount of user involvement: not

only the local writer tasks need to specify all the remote tasks that use the updated

data, the data user tasks need to insert the remote data writer tasks to provide with

the latest copy. In essence, the algorithm writer needs to provide the same amount

of information to trim the graph as is required to write the algorithm with the PTG

107

approach, thus breaking the ease-of-use benefit of the STF model and producing more

complicated and thus error-prone code.

Extension of PTG to Support Communication Avoiding (CA): The recent hard-

ware trends suggest that for sparse iterative solvers, although it is beneficial to adopt

CA to speed up the SpMV calculation, however, the limited options for preconditioner

have led to the shift away from this approach. Still, there are many stencil-like

simulations derived from solving PDEs that can benefit from the combined benefits

of runtime systems and CA. As the gap between improvements in the computational

power and memory/network bandwidth continues to widen, this combination promises

to remain relevant going forward. My results from the simple five-point 2D stencil

code demonstrated these conditions with a positive impact on total running time.

Flexible Profiling Analysis: In order to increase application performance at the software

level, we need to either innovate at the algorithm level or improve the adopted software

system. Profiling tools help us identify the performance bottlenecks and facilitate

performance optimization as we iterate this process as necessary until goal metrics

are reached. For task-based runtime system with dynamic execution behavior, the

profiling results contain task scheduling information, message transfer events, kernel

execution time, runtime overhead, and many other pieces of information. In my work, I

demonstrated the ability of PaRSEC’s profiling system to collect this information, and

implemented the flexible data analysis tools, that I subsequently used to synthesize

them together to identify performance issues. With the TLR Cholesky factorization as

test case, I was able to connect network events with task scheduling events to pinpoint

an issue with the use of PaRSEC scheduling. And this lead me to the subsequent

addition of control sequences to better guide the execution along critical path.

108

7.2 Future Work

This dissertation explored several of the key programming models with focused set of

algorithms for scientific applications. Exploring their performance on more applications’

domains would be of great interest, since the different characteristics of the computational

workload can further showcase the variety of benefits of the task-based runtime approach,

and shed light on new areas of possible improvements. Consistent benchmarking efforts is

important for robust performance engineering and reliable hardware evaluation and software

systems’ analysis, thus expanding my baseline set of workloads to include other emerging

programming models would be beneficial to further inform the application writers on the

essential performance-productivity-portability trade-offs and would be worthy extension of

my my work as well.

There are several opportunities for performance improvements of my DTD broadcast

implementation. The first one is to add the ability to select a different broadcast topology for

each of the subsequent broadcast collectives, since the best topology is usually dependents on

the message size and node counts of the broadcast tree. In my work, only one topology layout

is used for all calls. The second optimization is related to the PaRSEC’s implementation of

collective communication. Currently, the participating process ranks are encoded as a set

by an implementation of a bit array to reduce memory usage, resulting in a loss of process

ordering. As a result, the selection of the rank of the descendant process does not take into

account task’s priority, but only follows the ranks’ numbering order. Instead, we could use

an ordered set of communicating process ranks and use an array to represent the ranks,

giving us more detailed ordering information at the price of the extra storage space: this

could encode both ordering and priority information in a single array and be used during

scheduling of message exchanges. And finally, we could cache the metadata associated with

each collective operation on each of the participating nodes, where information similar to

that of an MPI communicator is stored for even better scheduling decisions. Note that for

any future collective exchanges, we could avoid the transfer of the metadata array, and use

only a key to obtain a location of the cached group information.

109

My study on combining the communication avoiding and runtime system was just

the beginning with additional new directions still possible. A more representative set of

applications needs to be studied to better understand whether PaRSEC’s PTG is a suitable

DSL to form a foundation for efficient implementations. And for these new applications, a

more generic communication avoiding framework could be created and also could be built

directly into the runtime system, which I believe can further improve performance. This

approach could include automatic data replication across the stencil’s grid neighbors, i.e.,

the grid-owning nodes that share a frontier region with each other. Under such a design, the

generation process and the scheduling of the redundant tasks becomes fully transparent to

the user.

Finally, although all the evaluations are with CPU-only systems, PaRSEC supports

execution of kernels on the available hardware accelerators because it features a device

management engine. Evaluating many of the past design proposals would be critical for

improvements since many of the leading systems obtain most of their computational power

from their attached accelerators, and we would like to demonstrate PaRSEC’s capabilities

in that area. Also, this would alter the dynamic balance of the system as a whole, where it

has less nodes in total but each node has more computational power. How well would the

runtime systems perform on this new system configuration? And, what adaptations would

be needed to make it work more efficiently under these new circumstances? These questions

would be invaluable knowledge to both runtime developers and domain scientists.

110

Bibliography

111

[1] (January 2017). The chameleon project. https://gitlab.inria.fr/solverstack/chameleon.

18

[2] Abdulah, S., Cao, Q., Pei, Y., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E.,

Ltaief, H., and Sun, Y. (2021). Accelerating geostatistical modeling and prediction

with mixed-precision computations: A high-productivity approach with parsec. IEEE

Transactions on Parallel and Distributed Systems, 33(4):964–976. 23

[3] Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Robson, M.,

Sun, Y., Totoni, E., Wesolowski, L., and Kale, L. (2014). Parallel programming with

migratable objects: Charm++ in practice. In SC’14: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, pages

647–658. 21, 29

[4] Agullo, E., Aumage, O., Faverge, M., Furmento, N., Pruvost, F., Sergent, M., and

Thibault, S. (2017). Achieving High Performance on Supercomputers with a Sequential

Task-based Programming Model. TPDS - IEEE Transactions on Parallel and Distributed

Systems. 13, 32, 44, 50

[5] Agullo, E., Buttari, A., Guermouche, A., and Lopez, F. (2013a). Multifrontal qr

factorization for multicore architectures over runtime systems. In European Conference

on Parallel Processing, pages 521–532. Springer. 18

[6] Agullo, E., Demmel, J., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Ltaief, H.,

Luszczek, P., and Tomov, S. (2009). Numerical Linear Algebra on Emerging Architectures:

The PLASMA and MAGMA Projects. Journal of Physics: Conference Series, 180. 91

[7] Agullo, E., Giraud, L., Guermouche, A., Nakov, S., and Roman, J. (2013b). Pipelining

the CG Solver Over a Runtime System. In GPU Technology Conference, San Jose, United

States. NVIIDA. 14, 72

[8] Akbudak, K., Ltaief, H., Mikhalev, A., Charara, A., Esposito, A., and Keyes, D. (2018).

Exploiting data sparsity for large-scale matrix computations. In Aldinucci, M., Padovani,

112

L., and Torquati, M., editors, Euro-Par 2018: Parallel Processing, pages 721–734, Cham.

Springer International Publishing. 23

[9] Akbudak, K., Ltaief, H., Mikhalev, A., and Keyes, D. (2017). Tile low rank Cholesky

factorization for climate/weather modeling applications on manycore architectures. In

Kunkel, J. M., Yokota, R., Balaji, P., and Keyes, D. E., editors, High Performance

Computing - 32nd International Conference, ISC High Performance 2017, Frankfurt,

Germany, June 18-22, 2017, Proceedings, volume 10266, pages 22–40. 95

[10] Ambikasaran, S. and Darve, E. (2013). An O(N log N) fast direct solver for partial

hierarchically semi-separable matrices. Journal of Scientific Computing, 57:477–501. 22

[11] Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., and Weisbecker,

C. (2015). Improving multifrontal methods by means of block low-rank representations.

SIAM Journal on Scientific Computing, 37:A1451–A1474. 20

[12] Amestoy, P., Buttari, A., L ’excellent, J.-Y., and Mary, T. (2018). Bridging the

gap between flat and hierarchical low-rank matrix formats: the multilevel BLR format.

Technical Report hal-01774642, University of Manchester. 22

[13] Amestoy, P., Buttari, A., L’Excellent, J., and Mary, T. (2017). On the complexity of

the block low-rank multifrontal factorization. SIAM Journal on Scientific Computing,

39(4):A1710–A1740. 22, 23

[14] Amestoy, P. R., Buttari, A., L’Excellent, J.-Y., and Mary, T. (2019). Performance

and scalability of the block low-rank multifrontal factorization on multicore architectures.

ACM Trans. Math. Softw., 45(1):2:1–2:26. 22

[15] Anderson, E., Bai, Z., Bischof, C. H., Blackford, L. S., Demmel, J. W., Dongarra, J. J.,

Croz, J. J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. C.

(1999). LAPACK User’s Guide. SIAM, Philadelphia, 3rd edition. 18

113

[16] Augonnet, C., Thibault, S., Namyst, R., andWacrenier, P.-A. (2011a). StarPU: a unified

platform for task scheduling on heterogeneous multicore architectures. Concurrency and

Computation: Practice and Experience, 23(2):187–198. 23

[17] Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011b). StarPU:

a unified platform for task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience, 23(2):187–198. 48

[18] Bachan, J., Bonachea, D., Hargrove, P. H., Hofmeyr, S., Jacquelin, M., Kamil, A.,

van Straalen, B., and Baden, S. B. (2017). The UPC++ PGAS Library for Exascale

Computing. In Proceedings of the Second Annual PGAS Applications Workshop, PAW17,

pages 7:1–7:4, New York, NY, USA. ACM. 23

[19] Bak, S., Menon, H., White, S., Diener, M., and Kalé, L. V. (2018). Multi-level

load balancing with an integrated runtime approach. In 18th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing, CCGRID 2018, Washington, DC,

USA, May 1-4, 2018, pages 31–40. 29

[20] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,

L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G.,

May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F.,

Zampini, S., Zhang, H., and Zhang, H. (2019a). PETSc users manual. Technical Report

ANL-95/11 - Revision 3.12, Argonne National Laboratory. 18, 75

[21] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,

L., Dener, A., Eijkhout, V., Gropp, W. D., Karpeyev, D., Kaushik, D., Knepley, M. G.,

May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P., Smith, B. F.,

Zampini, S., Zhang, H., and Zhang, H. (2019b). PETSc Web page. 75

[22] Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). Efficient management

of parallelism in object oriented numerical software libraries. In Arge, E., Bruaset, A. M.,

114

and Langtangen, H. P., editors, Modern Software Tools in Scientific Computing, pages

163–202. Birkhäuser Press. 75

[23] Basu, P., Venkat, A., Hall, M., Williams, S., Van Straalen, B., and Oliker, L. (2013).

Compiler generation and autotuning of communication-avoiding operators for geometric

multigrid. In 20th Annual International Conference on High Performance Computing,

pages 452–461. 71, 72

[24] Bauer, M., Lee, W., Slaughter, E., Jia, Z., Di Renzo, M., Papadakis, M., Shipman,

G., McCormick, P., Garland, M., and Aiken, A. (2021). Scaling implicit parallelism via

dynamic control replication. In Proceedings of the 26th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 105–118. 14

[25] Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. (2012). Legion: Expressing locality

and independence with logical regions. In International Conference for High Performance

Computing, Networking, Storage and Analysis, SC, pages 1–11. IEEE. 13, 48

[26] Bebendorf, M. and Rjasanow, S. (2003). Adaptive low-rank approximation of collocation

matrices. Computing, 70:1–24. 23, 24

[27] Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra,

J., Hammarling, S., Henry, G., Petitet, A., et al. (1997). ScaLAPACK users’ guide,

volume 4. SIAM. 18

[28] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T., Kurzak,

J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A., and Dongarra, J.

(2011). Flexible Development of Dense Linear Algebra Algorithms on Massively Parallel

Architectures with DPLASMA. In 2011 IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum, pages 1432–1441. 18, 91

[29] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., and Dongarra, J.

(2013). PaRSEC: A Programming Paradigm Exploiting Heterogeneity for Enhancing

Scalability. Computing in Science and Engineering, 99:1. 2, 91

115

[30] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., and Dongarra, J. J.

(2013). PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in Science

Engineering, 15(6):36–45. 11, 21

[31] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Hérault, T., and Dongarra, J. J.

(2013). PaRSEC: Exploiting Heterogeneity to Enhance Scalability. Computing in Science

& Engineering, 15(6):36–45. 48

[32] Bosilca, G., Harrison, R. J., Hérault, T., Javanmard, M. M., Nookala, P., and Valeev,

E. F. (2020). The template task graph (ttg)-an emerging practical dataflow programming

paradigm for scientific simulation at extreme scale. In 2020 IEEE/ACM Fifth International

Workshop on Extreme Scale Programming Models and Middleware (ESPM2), pages 1–7.

IEEE. 11

[33] Brinkmann, S., Gracia, J., and Niethammer, C. (2013). Task debugging with temanejo.

In Tools for High Performance Computing 2012, pages 13–21, Berlin, Heidelberg. Springer.

93

[34] Cao, Q., Bosilca, G., Wu, W., Zhong, D., Bouteiller, A., and Dongarra, J. (2020a).

Flexible data redistribution in a task-based runtime system. In 2020 IEEE International

Conference on Cluster Computing (CLUSTER), pages 221–225. IEEE. 11

[35] Cao, Q., Pei, Y., Akbudak, K., Bosilca, G., Ltaief, H., Keyes, D., and Dongarra, J.

(2021). Leveraging parsec runtime support to tackle challenging 3d data-sparse matrix

problems. In 2021 IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 79–89. IEEE. 11, 23

[36] Cao, Q., Pei, Y., Akbudak, K., Mikhalev, A., Bosilca, G., Ltaief, H., Keyes, D.,

and Dongarra, J. (2020b). Extreme-scale Task-based Cholesky Factorization Toward

Climate and Weather Prediction Applications. In Proceedings of the Platform for Advanced

Scientific Computing Conference (PASC), pages 1–11. 11, 23, 44, 47, 92, 94

116

[37] Cao, Q., Pei, Y., Herault, T., Akbudak, K., Mikhalev, A., Bosilca, G., Ltaief, H., Keyes,

D., and Dongarra, J. (2019). Performance analysis of tile low-rank cholesky factorization

using parsec instrumentation tools. In 2019 IEEE/ACM International Workshop on

Programming and Performance Visualization Tools (ProTools), pages 25–32. IEEE. 102

[38] Chamberlain, B. L., Callahan, D., and Zima, H. P. (2007). Parallel programmability

and the chapel language. The International Journal of High Performance Computing

Applications, 21(3):291–312. 8

[39] Chandrasekaran, S., Gu, M., and Pals, T. (2006). A fast ULV decomposition solver

for hierarchically semiseparable representations. SIAM Journal on Matrix Analysis and

Applications, 28(3):603–622. 22

[40] Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., and Smith, L.

(2010). Introducing openshmem: Shmem for the pgas community. In Proceedings of the

Fourth Conference on Partitioned Global Address Space Programming Model, pages 1–3.

8

[41] Coulomb, K., Faverge, M., Jazeix, J., Lagrasse, O., Marcoueille, J., Noisette, P.,

Redondy, A., and Vuchener, C. (2009). Visual trace explorer (ViTE). Technical report,

Technical report. 93

[42] Danalis, A., Bosilca, G., Bouteiller, A., Herault, T., and Dongarra, J. (2014). Ptg:

An abstraction for unhindered parallelism. In 2014 Fourth International Workshop on

Domain-Specific Languages and High-Level Frameworks for High Performance Computing,

pages 21–30. 2, 11

[43] Danalis, A., Bosilca, G., Bouteiller, A., Herault, T., and Dongarra, J. (2014). PTG:

an Abstraction for Unhindered Parallelism. In 2014 Fourth International Workshop on

Domain-Specific Languages and High-Level Frameworks for High Performance Computing,

pages 21–30. IEEE. 48

117

[44] Datta, K. (2009). Auto-Tuning Stencil Codes for Cache-Based Multicore Platforms.

PhD thesis, USA. xv, 73, 74

[45] de Kergommeaux, J. C., Stein, B., and Bernard, P. (2000). Pajé, an interactive

visualization tool for tuning multi-threaded parallel applications. Parallel Computing,

26(10):1253 – 1274. 93

[46] Demmel, J., Grigori, L., Hoemmen, M., and Langou, J. (2012). Communication-optimal

parallel and sequential QR and LU factorizations. SIAM J. Sci. Comput., 34(1):206–239.

20

[47] Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2008). Avoiding

communication in sparse matrix computations. In 2008 IEEE International Symposium

on Parallel and Distributed Processing, pages 1–12. 72, 75

[Demmel et al.] Demmel, J., Hoemmen, M. F., Mohiyuddin, M., and Yelick, K. A. Avoiding

communication in computing Krylov subspaces. Technical Report UCB/EECS-2007-123,

EECS Department, University of California, Berkeley. xv, 76

[49] Denis, A., Jeannot, E., and Swartvagher, P. (2021). Interferences between

communications and computations in distributed hpc systems. In 50th International

Conference on Parallel Processing, pages 1–11. 64, 67

[50] Denis, A., Jeannot, E., Swartvagher, P., and Thibault, S. (2020). Using Dynamic

Broadcasts to improve Task-Based Runtime Performances. In Euro-Par - 26th

International European Conference on Parallel and Distributed Computing, Warsaw,

Poland. Rzadca and Malawski, Springer. 13, 50, 54

[51] Duran, A., Ferrer, R., Ayguade, E., Badia, R. M., and Labarta, J. (2009). A proposal

to extend the OpenMP tasking model with dependent tasks. Intl. Journal of Parallel

Programming, 37(3):292–305. 15

118

[52] Edwards, H. C., Trott, C. R., and Sunderland, D. (2014). Kokkos: Enabling manycore

performance portability through polymorphic memory access patterns. Journal of parallel

and distributed computing, 74(12):3202–3216. 1, 8

[53] Ellson, J., Gansner, E., Koutsofios, L., North, S. C., and Woodhull, G. (2001).

Graphviz—open source graph drawing tools. In International Symposium on Graph

Drawing, pages 483–484. Springer. 99

[54] Eschweiler, D., Wagner, M., Geimer, M., Knüpfer, A., Nagel, W. E., and Wolf, F.

(2011). Open trace format 2: The next generation of scalable trace formats and support

libraries. In PARCO, volume 22, pages 481–490. 98

[55] Folk, M., Heber, G., Koziol, Q., Pourmal, E., and Robinson, D. (2011). An overview of

the hdf5 technology suite and its applications. In Proceedings of the EDBT/ICDT 2011

Workshop on Array Databases, pages 36–47. ACM. 100

[56] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M.,

Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., et al. (2004). Open MPI:

Goals, concept, and design of a next generation MPI implementation. In European

Parallel Virtual Machine/Message Passing Interface Users’ Group Meeting, pages 97–104.

Springer. 98

[57] Garcia Pinto, V., Schnorr, L. M., Stanisic, L., Legrand, A., Thibault, S., and Danjean,

V. (2018). A Visual Performance Analysis Framework for Task-based Parallel Applications

running on Hybrid Clusters. CCPE, 30. 93

[58] Gates, M., Kurzak, J., Charara, A., YarKhan, A., and Dongarra, J. (2019). Slate:

design of a modern distributed and accelerated linear algebra library. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–18. 18

[59] Georganas, E., Gonzalez-Dominguez, J., Solomonik, E., Zheng, Y., Tourino, J., and

Yelick, K. (2012). Communication avoiding and overlapping for numerical linear algebra.

119

In SC ’12: Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, pages 1–11. 72

[60] Ghysels, P. and Vanroose, W. (2015). Modeling the performance of geometric multigrid

stencils on multicore computer architectures. SIAM Journal on Scientific Computing,

37(2):C194–C216. 70

[61] Golub, G. and Ortega, J. (1993). Scientific Computing, an introduction with Parallel

Computing. Academic Press. 70, 73

[62] Graham, R. L., Woodall, T. S., and Squyres, J. M. (2006a). Open mpi: A flexible

high performance mpi. In Wyrzykowski, R., Dongarra, J., Meyer, N., and Waśniewski, J.,

editors, Parallel Processing and Applied Mathematics, pages 228–239, Berlin, Heidelberg.

Springer Berlin Heidelberg. 8

[63] Graham, S. L., Snir, M., and Patterson, C. A. (2006b). Getting up to speed, the future

of supercomputing. The National Academies Press. 71, 88

[64] Grubel, P., Kaiser, H., Huck, K., and Cook, J. (2016). Using intrinsic performance

counters to assess efficiency in task-based parallel applications. In IPDPS Workshops,

pages 1692–1701. 94

[Hackbusch] Hackbusch, W. Multigrid Methods and Applications. Springer Series in

Computational Mathematics Vol. 4, Springer-Verlag, Berlin, 1985. 70

[66] Hackbusch, W. (1999). A sparse matrix arithmetic based on H-matrices, part I:

Introduction to H-matrices. Computing, 62:89–108. 22

[67] Hackbusch, W., Khoromskij, B., and Sauter, S. A. (2000). OnH2-matrices. In Bungartz,

H., Hoppe, R., and Zenger, C., editors, Lectures on Applied Mathematics. Springer Berlin

Heidelberg. 22

120

[68] Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network structure, dynamics,

and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los

Alamos, NM (United States). 101

[69] Haugen, B., Richmond, S., Kurzak, J., Steed, C. A., and Dongarra, J. (2015).

Visualizing execution traces with task dependencies. In Proceedings of VPA’15, pages

2:1–2:8. 93

[70] Hénon, P., Ramet, P., and Roman, J. (2002). Pastix: a high-performance parallel direct

solver for sparse symmetric positive definite systems. Parallel Computing, 28(2):301–321.

18

[71] Heroux, M. A., Thakur, R., McInnes, L., Vetter, J. S., Li, X. S., Aherns, J., Munson, T.,

and Mohror, K. (2020). Ecp software technology capability assessment report. Technical

report, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States). 1

[72] Hiraishi, T., Munakata, K., Bai, S., and Ida, A. (2018). Dynamic load balancing for

construction and arithmetic of hierarchical matrices. Presented at SIAM Conference on

Parallel Processing for Scientific Computing. 23

[73] Hoemmen, M. (2010). Communication-Avoiding Krylov Subspace Methods. PhD thesis,

USA. AAI3413388. 72

[74] Hoque, R., Herault, T., Bosilca, G., and Dongarra, J. (2017a). Dynamic Task Discovery

in PaRSEC: A Data-flow Task-based Runtime. In Proceedings of the 8th Workshop on

Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17, pages 6:1–6:8.

2, 11

[75] Hoque, R., Herault, T., Bosilca, G., and Dongarra, J. (2017b). Dynamic Task Discovery

in PaRSEC: A Data-flow Task-based Runtime. In Proceedings of the 8th Workshop on

Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17, pages 6:1–6:8,

New York, NY, USA. ACM. 21

121

[76] Hoque, R., Herault, T., Bosilca, G., and Dongarra, J. (2017c). Dynamic Task Discovery

in PaRSEC: A Data-flow Task-based Runtime. In Proceedings of the 8th Workshop on

Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17. 49

[77] Hoque, R. and Shamis, P. (2018). Distributed Task-Based Runtime Systems - Current

State and Micro-Benchmark Performance. In 2018 IEEE 20th International Conference on

High Performance Computing and Communications; IEEE 16th International Conference

on Smart City; IEEE 4th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pages 934–941. 23

[78] Hornung, R. D. and Keasler, J. A. (2014). The raja portability layer: overview and

status. 2, 8

[79] Huang, T.-W., Lin, D.-L., Lin, C.-X., and Lin, Y. (2021). Taskflow: A lightweight

parallel and heterogeneous task graph computing system. IEEE Transactions on Parallel

and Distributed Systems, 33(6):1303–1320. 15

[80] Ida, A., Iwashita, T., Mifune, T., and Takahashi, Y. (2014). Parallel hierarchical

matrices with adaptive cross approximation on symmetric multiprocessing clusters.

Journal of Information Processing, 22:642–650. 23, 38

[81] Iwashita, T., Ida, A., Mifune, T., and Takahashi, Y. (2017). Software framework for

parallel BEM analyses with H-matrices using MPI and OpenMP. In Proceedings of the

International Conference on Computational Science, pages 12–14. 38

[82] Kale, L. V. and Krishnan, S. (1993). CHARM++: A portable concurrent object oriented

system based on C++. In Proceedings of the Eighth Annual Conference on Object-Oriented

Programming Systems, Languages, and Applications, OOPSLA ’93, page 91–108, New

York, NY, USA. Association for Computing Machinery. 14

[83] Kurtz, S., Rain, O., and Rjasanow, S. (2002). The adaptive cross-approximation

technique for the 3-D boundary-element method. IEEE Trans. Magn., 38:421–424. 23, 24

122

[84] Lacoste, X., Faverge, M., Bosilca, G., Ramet, P., and Thibault, S. (2014). Taking

advantage of hybrid systems for sparse direct solvers via task-based runtimes. In IEEE

International Parallel & Distributed Processing Symposium Workshops (IPDPSW), pages

29–38. 91

[85] Legion Team (2019). Legion: Performance profiling and tuning.

https://legion.stanford.edu/profiling/. 92

[86] McCalpin, J. D. (1991-2007). STREAM: Sustainable memory bandwidth in high

performance computers. Technical report, University of Virginia, Charlottesville, Virginia.

A continually updated technical report. http://www.cs.virginia.edu/stream/. 80

[87] McKinney, W. (2011). pandas: a foundational python library for data analysis and

statistics. Python for High Performance and Scientific Computing, 14. 100

[88] OmpSs Team (2020). OmpSs: Instrumentation modules.

https://pm.bsc.es/ftp/ompss/doc/user-guide/run-programs-plugin-instrument.html.

93

[89] OpenMP (2015). OpenMP 4.5 Complete Specifications. 1, 8

[90] Patinyasakdikul, T., Eberius, D., Bosilca, G., and Hjelm, N. (2019a). Give mpi

threading a fair chance: A study of multithreaded mpi designs. In 2019 IEEE International

Conference on Cluster Computing (CLUSTER), pages 1–11. IEEE. 10

[91] Patinyasakdikul, T., Eberius, D., Bosilca, G., and Hjelm, N. (2019b). Give MPI

Threading a Fair Chance: A Study of Multithreaded MPI Designs. In 2019 IEEE

International Conference on Cluster Computing, pages 1–11. 30

[92] Pei, Y., Bosilca, G., Yamazaki, I., Ida, A., and Dongarra, J. (2019). Evaluation

of programming models to address load imbalance on distributed multi-core cpus: A

case study with block low-rank factorization. In 2019 IEEE/ACM Parallel Applications

Workshop, Alternatives To MPI (PAW-ATM), pages 25–36. IEEE. 49

123

[93] Pillet, V., Pillet, V., Labarta, J., Cortes, T., Cortes, T., Girona, S., and Girona, S.

(1995). PARAVER: A tool to visualize and analyze parallel code. Technical report,

CEPBA/UPC Report No RR-95/03 February 1995. 93

[94] Russel, B., Danjean, V., and Thibault, S. (2020). Fast user/kernel tracing.

https://savannah.nongnu.org/projects/fkt/. 92

[95] Sala, K., Teruel, X., Perez, J. M., Peña, A. J., Beltran, V., and Labarta, J. (2019).

Integrating blocking and non-blocking mpi primitives with task-based programming

models. Parallel Computing, 85:153 – 166. 47

[96] Servat, H., Teruel, X., Llort, G., Duran, A., Giménez, J., Martorell, X., Ayguadé,

E., and Labarta, J. (2013). On the instrumentation of OpenMP and OmpSs tasking

constructs. In Euro-Par’12 Wksh, pages 414–428. 93

[97] Siegel, A., Evans, T., Draeger, E., Deslippe, J., Francois, M., Germann, T. C., Martin,

D. F., and Hart, W. (2021). Map applications to target exascale architecture with machine-

specific performance analysis, including challenges and projections. 10

[98] Slaughter, E., Lee, W., Treichler, S., Bauer, M., and Aiken, A. (2015). Regent: A

high-productivity programming language for hpc with logical regions. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–12. 14

[99] Slaughter, E., Wu, W., Fu, Y., Garcia, N., Kautz, W., Marx, E., Morris, K. S., Cao,

Q., Bosilca, G., Mirchandaney, S., et al. (2020). Task bench: A parameterized benchmark

for evaluating parallel runtime performance. In SC20: International Conference for High

Performance Computing, Networking, Storage and Analysis, pages 1–15. IEEE. 23, 49, 71

[100] Snir, M., Gropp, W., Otto, S., Huss-Lederman, S., Dongarra, J., and Walker, D.

(1998). MPI–the Complete Reference: the MPI core, volume 1. MIT press. 1, 7

124

[101] Solomonik, E. and Demmel, J. (2011). Communication-optimal parallel 2.5d matrix

multiplication and lu factorization algorithms. In Jeannot, E., Namyst, R., and Roman,

J., editors, Euro-Par 2011 Parallel Processing, pages 90–109, Berlin, Heidelberg. Springer

Berlin Heidelberg. 72

[102] StarPU team (2019a). StarPU: Offline performance tools.

http://starpu.gforge.inria.fr/doc/html/OfflinePerformanceTools.html. 92

[103] StarPU team (2019b). StarPU: Online performance tools.

http://starpu.gforge.inria.fr/doc/html/OnlinePerformanceTools.html. 92

[104] Torres, H., Papadakis, M., and Jofre Cruanyes, L. (2019). Soleil-x: turbulence,

particles, and radiation in the regent programming language. In SC’19: Proceedings of

the International Conference for High Performance Computing, Networking, Storage and

Analysis, pages 1–4. 14

[105] Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM, Philadelphia,

PA. 70

[106] Treichler, S., Bauer, M., and Aiken, A. (2014). Realm: An event-based low-level

runtime for distributed memory architectures. In Proceedings of the 23rd international

conference on Parallel architectures and compilation, pages 263–276. 14

[107] Treichler, S. J. (2016). Realm: Performance Portability through

Composable Asynchrony. Phd dissertation, Standford University.

https://legion.stanford.edu/pdfs/treichler thesis.pdf. 92

[Trilinos Project Team] Trilinos Project Team, T. The Trilinos Project Website. 18

[109] Trottenberg, U., Oosterlee, C. W., and Schüller, A. (2001). Multigrid. Academic Press,

London NW1 7BY, UK. 70, 73

[110] Turner, D., Oline, A., Chen, X., and Benjegerdes, T. (2003). Integrating new

capabilities into netpipe. In Dongarra, J., Laforenza, D., and Orlando, S., editors, Recent

125

Advances in Parallel Virtual Machine and Message Passing Interface, pages 37–44, Berlin,

Heidelberg. Springer Berlin Heidelberg. 80

[111] Valiant, L. G. (1989). Bulk-synchronous parallel computers. In Reeve, M., editor,

Parallel Processing and Artificial Intelligence, pages 15–22. John Wiley & Sons. 8

[112] Valiant, L. G. (1990). A bridging model for parallel computation. Communications of

the ACM, 33(8). DOI 10.1145/79173.79181. 8

[Vazhkudai et al.] Vazhkudai, S. S., de Supinski, B. R., Bland, A. S., Geist, A., Sexton,

J., Kahle, J., Zimmer, C. J., Atchley, S., Oral, S., Maxwell, D. E., and et al. The

design, deployment, and evaluation of the coral pre-exascale systems. In Proceedings of

the International Conference for High Performance Computing, Networking, Storage, and

Analysis, SC ’18. IEEE Press. 88

[114] Williams, S., Kalamkar, D. D., Singh, A., Deshpande, A. M., Van Straalen, B.,

Smelyanskiy, M., Almgren, A., Dubey, P., Shalf, J., and Oliker, L. (2012). Optimization of

geometric multigrid for emerging multi- and manycore processors. In SC ’12: Proceedings

of the International Conference on High Performance Computing, Networking, Storage

and Analysis, pages 1–11. 70, 72

[115] Williams, S., Watterman, A., and Patterson, D. (2009). Roofline: An Insightful

Visual Performance Model for Floating-Point Programs and Multicore Architectures.

Communications of the ACM. 81

[116] Wu, W., Bouteiller, A., Bosilca, G., Faverge, M., and Dongarra, J. (2015). Hierarchical

DAG Scheduling for Hybrid Distributed Systems. In 2015 IEEE International Parallel and

Distributed Processing Symposium, pages 156–165. 35

[117] Yamazaki, I., Hoemmen, M., Luszczek, P., and Dongarra, J. (2017). Improving

performance of gmres by reducing communication and pipelining global collectives. In

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pages 1118–1127. 72

126

[118] Yamazaki, I., Ida, A., Yokota, R., and Dongarra, J. (2019). Distributed-memory

latticeH-matrix factorization. The International Journal of High Performance Computing

Applications. 22

[119] Yamazaki, I., Thomas, S., Hoemmen, M., Boman, E. G., Świrydowicz, K., and Elliott,

J. J. (2020). Low-synchronization orthogonalization schemes for s-step and pipelined

krylov solvers in trilinos. In Proceedings of the 2020 SIAM Conference on Parallel

Processing for Scientific Computing, pages 118–128. SIAM. 72

[120] Zhang, W., Almgren, A., Beckner, V., Bell, J., Blaschke, J., Chan, C., Day, M., Friesen,

B., Gott, K., Graves, D., et al. (2019). Amrex: a framework for block-structured adaptive

mesh refinement. Journal of Open Source Software, 4(37):1370–1370. 2

[121] Zhang, Y. and Mueller, F. (2012). Auto-generation and auto-tuning of 3D stencil

codes on GPU clusters. In Proceedings of the Tenth International Symposium on Code

Generation and Optimization, CGO ’12, page 155–164, New York, NY, USA. Association

for Computing Machinery. 72

[122] Zhao, T., Williams, S., Hall, M., and Johansen, H. (2018). Delivering performance-

portable stencil computations on cpus and gpus using bricks. In 2018 IEEE/ACM

International Workshop on Performance, Portability and Productivity in HPC (P3HPC),

pages 59–70. 72, 85

[123] Zheng, Y., Kamil, A., Driscoll, M. B., Shan, H., and Yelick, K. (2014). Upc++: a pgas

extension for c++. In 2014 IEEE 28th International Parallel and Distributed Processing

Symposium, pages 1105–1114. IEEE. 8

[124] Zhu, H., Goodell, D., Gropp, W., and Thakur, R. (2009). Hierarchical Collectives in

MPICH2, pages 325–326. Springer Berlin Heidelberg, Berlin, Heidelberg. 8

127

Vita

Yu Pei was born in Shaoguan, Guangdong province, China, in September 3rd, 1990. He

attended Sun Yat-Sen University in Guangzhou, China from 2008 to 2013 where he obtained

Bachelor’s degree in both biotechnology and Statistics.

He obtained his Master degree in Biostatistics from the University of California, Davis

in 2015, after that he worked briefly at UC Davis Energy Institute and Oak Ridge

National Laboratory. During this period, he developed an interested in efficient statistical

computations and the usage of supercomputers.

And he enrolled in the Ph.D. program in Computer Science at the University of Tennessee,

Knoxville in Fall, 2016. During his studies, he worked as a graduate research assistant at the

Innovative Computing Laboratory (ICL) under the supervision of Dr. Jack Dongarra and

Dr. George Bosilca. His research interests focus on high-performance computing, including

the evaluation of programming models, optimizations to task-based runtime systems and it’s

application to efficiently implement numerical linear algebra algorithms. Yu Pei is expected

to receive his Doctor of Philosophy degree in Computer Science in December 2022.

128

	Evaluation of Distributed Programming Models and Extensions to Task-based Runtime Systems
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Programming Models Evaluations
	1.2.2 STF Improvements and Limitations
	1.2.3 Communication Avoiding with PTG for Sparse Algorithms
	1.2.4 Profiling Analysis for Performance Tuning

	1.3 Dissertation Outline

	2 Background and Literature Review of Related Work
	2.1 Current programming Models
	2.1.1 Distributed Memory Programming Models
	2.1.2 Shared Memory Programming Models

	2.2 Task-based Runtime Systems
	2.2.1 PaRSEC Runtime System
	2.2.2 Other Runtime Systems

	2.3 Numerical Linear Algebra

	3 Parallel Programming Models Evaluation
	3.1 Overview
	3.2 Related Work
	3.3 Block Low-Rank Factorization Algorithm
	3.4 Required Features
	3.5 Implementation with the Programming Models
	3.5.1 Flat MPI Programming Model
	3.5.2 Flat MPI with Charm++/AMPI
	3.5.3 OpenMP Task Programming Model
	3.5.4 PaRSEC DTD
	3.5.5 PaRSEC PTG

	3.6 Performance Evaluation
	3.6.1 Experimental Setup
	3.6.2 Experiment Results

	3.7 Conclusions

	4 Sequential Task Flow Runtime Model Improvements and Limitations
	4.1 Overview
	4.2 User Graph Trimming and Broadcast Operations
	4.2.1 DTD Model
	4.2.2 PaRSEC DTD Tasks and Communications Tracking
	4.2.3 Graph Trimming
	4.2.4 Broadcast Operation

	4.3 Evaluation with the Cholesky and QR Factorizations
	4.3.1 Modifications to the user code
	4.3.2 Qualitative Analysis

	4.4 Performance Results and Analysis
	4.4.1 Description of HPC systems
	4.4.2 Broadcast Benchmark Performance
	4.4.3 Experiment performances

	4.5 Conclusions

	5 Extension to PTG - Testcase with Communication Avoiding 2D Stencils
	5.1 Overview
	5.2 Related Work
	5.3 Background
	5.3.1 Stencil Problem Description
	5.3.2 Communication Avoiding Approach

	5.4 Implementations
	5.4.1 Standard Implementation with PETSc
	5.4.2 Task-based Implementation in PaRSEC

	5.5 Experiments Results
	5.5.1 Experimental Setup
	5.5.2 Network and Memory Bandwidth Benchmark
	5.5.3 Tuning of Tile Size for PaRSEC Performance
	5.5.4 Comparing Strong Scaling Performance
	5.5.5 Tuning of Kernel Time and Performance Impact of Communication Avoiding Scheme
	5.5.6 PaRSEC Profiling of the Two Versions

	5.6 Conclusions

	6 Profiling Analysis for Performance Tuning
	6.1 Overview
	6.2 Related Work
	6.3 Background
	6.3.1 TLR Cholesky Factorization Basics

	6.4 Performance Tools
	6.4.1 Trace Collection Framework
	6.4.2 PINS: PaRSEC INStrumentation
	6.4.3 Dependency Analysis
	6.4.4 Trace Conversion Tools

	6.5 TLR Cholesky Case Analysis
	6.6 Conclusions

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Vita

