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Abstract

The advancements in the fields of microelectronics facilitate incorporating team ele-

ments like coordination into engineering systems through advanced computing power.

Such incorporation is useful since many engineering systems can be characterized as

a collection of interacting subsystems each having access to local information, making

local decisions, interacting with neighbors, and seeking to optimize local objectives that

may well conflict with other subsystems, while also trying to optimize a certain global

objective. In this dissertation, we take advantage of such technological advancements to

explore the problem of resource allocation through different aspects of the decentralized

architecture like information structure in a team.

Introduced in 1968 as a challenging toy example in the field of team decision theory

to demonstrate the significance of information structure within a team, the celebrated

Witsenhausen counterexample remained unsolved until the analytical person-by-person

optimal solution was developed within the past decade. We develop a numerical method

to implement the optimal laws and show that our laws coincide with the optimal affine

laws. For the region where the optimal laws are non-linear, we show that our laws

result in the lowest costs when compared with previously reported costs.

Recognizing that, in the framework of team decision theory, the difficulties

arising from the non-classical information structure within a team currently limit its

applicability in real-world applications, we move on to investigating Centroidal Voronoi

Tessellations (CVTs) to solve the resource allocation problem. In one-dimensional
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spaces, a line communication network is sufficient to obtain CVTs in a decentralized

manner, while being scalable to any number of agents in the team.

We first solve the static resource allocation problem where the amount of resource

is fixed. Using such a static allocation solution as an initialization step, we solve the

dynamic resource allocation problem in a truly decentralized manner. Furthermore,

we allow for flexibility in agents’ embedding their local preferences through what we

call a civility model. We end the dissertation by revisiting the application of Demand-

response in smart grids and demonstrate the developed decentralized dynamic resource

allocation method to solve the problem of power allocation in a group of building loads.
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Chapter 1

Introduction

This is a dissertation document probing the field of multi-agent systems through

different approaches. We first begin with our motivation to work in this field in

Section 1.1. Then in Section 1.2, we introduce three approaches – centralized, team

decision theory, and centroidal Voronoi tessellations – and explore their background

and usefulness to the resource allocation problem. We list the contributions from this

dissertation in Section 1.2.1 and outline the rest of the document in Section 1.3.

1.1 Motivation

“Global trendsetting, local negotiations”

Team coordination is a ubiquitous phenomenon in nature: species of birds in flocks

performing graceful formations, ant colonies regulating their foraging behavior, swarm

of bees constructing perennial colonial nests from wax in large size colonies, are just a

few among abundant, fascinating examples found in nature. Humans, as a species, are

also capable of incredible coordination – building civilizations, exploring outer space,

drilling towards the earth’s core, building bridges, all of which are team efforts. While

humans have a highly complex brain that can support advanced activities, it is truly

fascinating to observe the level of coordination that is present in bees or ants, [55].
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In fact, by studying ants as models, researchers hypothesize that the human brain

shrinkage parallels the expansion of collective intelligence in human societies, [80].

With new advancements in the fields of microelectronics and miniaturization, it is

natural to wonder about the potential advantages of incorporating such coordination

in engineering systems. In fact, many engineering systems can be characterized as a

large scale collection of interacting subsystems each having access to local information,

making local decisions, having local interactions with neighbors, and seeking to

optimize local objectives that may well be in conflict with other subsystems, while also

trying to optimize certain objective of the entire large scale system. The potential

benefits of distributed decision architectures include the opportunity for real-time

adaptation and robustness to dynamic uncertainties such as individual component

failures, non-stationary environments, and adversarial elements. With increasing

interest in groups of embedded systems, the field of multi-agent control has grown

rapidly in the past few decades, [18].

The field of control systems, over the past seven decades, has developed various

control methods each with their specializations. For example, model predictive control

(MPC) was developed for control in automation plants and is still widely used in such

applications, [15]. While there still remains a lot of room for development in controllers

for single plants – like adaptive control – various developed controllers suffice for a

satisfactory control of simple subsystems in a multi-agent, or multi-plant, setup. For

example, a PID controller performs well in general in controlling a line following robot.

Equipping an agent with a satisfactorily performing controller allows us to introduce

and deal with concepts like a team of agents. Under such architecture we can move

from an individual agent to a higher level of multiple agents where we can observe and

model the interactions between them. The team can then be coordinated and controlled

to achieve complex tasks that the agents would be unable to achieve individually, [43].

Like the concept of Emergence, we can obtain a sum that is greater than its parts.

Humankind has transitioned from being just one of the species to taking over the

planet; the ability of cooperation and coordination in humans is largely responsible for
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it. Similarly, the path forward for the autonomous agents is to team up, and for us as

the designers, a vast, largely unexplored field of multi-agents systems awaits.

The envisioned groups of agents can be endowed with communication, sensing and

computation capabilities, and promise great efficiency in the realization of even multiple

tasks, for example, environmental monitoring, exploratory missions, search and rescue

operations. Depending on the application, on the team architecture, on the agent

properties, there are different approaches to the problem of multi-agents systems –

for example, team decision theory, distributed control, swarm robotics, decentralized

control, [26].

However, the question of the scale of decentralization is not only central to all the

aforementioned fields, but also a philosophical one. In complete absence of any central

element, the actions of individual agents could be meaningless and classified as chaos.

In the quoted examples of team coordination in nature, there is an objective that all

the bees are working towards, there is a certain global trend that has been set, and

the bees work locally to maintain the trend. Subjective as it may be, the amount of

centralization necessary to achieve a set objective also depends on the application at

hand.

In this dissertation, we consider the problem of resource allocation and provide

different solutions to it that vary in their decentralization. As we navigate the world

in our day-to-day life, we are constantly presented with a conflicting and paradoxical

narrative of excess and scarcity coexisting simultaneously. Despite the tons of food

wasted everyday, hunger and starvation, especially among kids, remain a significant

global issue. We constantly notice blocks of vacant houses ready to be occupied, but

a large number of people being able to live only on the street by those houses and

not in them. Exacerbated by climate change, there are regions facing the worst floods

and other regions facing their worst drought. In the middle of such conditions, the

world is on the brink of food shortage while there are grains rotting in silos. We can

continue naming several more examples, but in each of them there is a resource that is

not being allocated in the “right” way. While the causes for global crises like food or

3



power shortage are beyond an individual’s control, the effects are certainly reverberated

through all the levels. Performing resource allocation in the “right” way in that case,

would at the very least shield local interests from such global crises up to an extent. In

order to explore the problem of resource allocation in a decentralized way, we propose

a framework based on Centroidal Voronoi Tessellations (CVTs) due to their ability to

inherently capture a global behavior. More importantly, the framework of CVTs allows

for simple communication network in a team of agents to reach the global optimal. To

delve into the framework of CVTs for resource allocation, we first begin with gaining

some background on the aforementioned fields and their relevance to this dissertation.

1.2 Background

We begin by considering the problem of resource allocation through Demand-Response

in smart grids. Each agent is a power consuming load that needs to operate at a

prescribed setpoint, and as a team of multiple agents, their combined task is to consume

a certain amount of power together. The reason we choose this problem is to facilitate

the integration of renewable energy in the day-to-day consumption by employing all the

energy generated from a renewable source locally in a set of local loads. In this work,

we consider building loads because of their flexibility, and their share of participation in

the electricity market – hence resulting in a greater impact on the overall integration.

Consequently, it is also a step towards making buildings more energy efficient.

There have been promising developments in the area of energy-efficient buildings.

For example, [6] and [1], developed an adaptive control approach to maintain the

indoor air temperatures of the building at a desirable temperature. [22] formulated

an augmented optimal model predictive control (MPC) methodology that is suitable

not only for controlling the building indoor air temperatures but also for handling

energy constraints. Various innovative methods have been specifically developed for

the control of temperatures in buildings. While most studies design the control method

independent of building occupants, [33] incorporates active user feedback to maintain
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the temperatures during the occupancy hours. [58] considers temperature forecasts and

historical data in the design of the control technique. This is done by a feedforward

scheme based on iterative learning control to extract information from historical data

with similar temperature patterns and preemptively account for expected future error.

In this part of the dissertation, we employ the Model-free control (MFC) method to

maintain indoor air temperatures in building HVACs and water temperatures in water

heaters in buildings.

Each of these building loads – HVACs or water heaters – is treated as an agent, and

together they are to consume a certain amount of power. To achieve such coordination,

we consider an architecture where all the agents act as local controllers, and their

combined power consumption is coordinated by a central controller. This central

controller communicates back and forth with all the agents, however, the agents do not

communicate among themselves. Such framework is currently employed in transactive

energy markets – one of the fastest growing areas of research and implementation in

the power sector.

As many parts of the world are gradually moving towards competitive transactive

energy markets as a means to generate and procure electricity alongside many of the

support services required to operate a power system, many countries are pushing the

reform of the electricity power sector very positively. For example, Chile pioneered

in the 1980s the deregulation of the electric power industry. In today’s U.S. retail

electricity market, fourteen states have already adequate retail competition with Texas,

Illinois, and Ohio respectively having 100%, 60%, and 50% of their residential customers

receiving service from electricity suppliers [17]. But, even today, most of the customers

have very limited “direct” participation in supporting the grid.

Through the development in the transactive energy market, there have been some

interesting and innovative proposals. [81] proposes a data-driven methodology to

forecast electricity demand for decentralized energy management. On the electricity

consumption end, peer-to-peer (P2P) electricity trading is gaining momentum with

time. Analogous to internet servers and clients, P2P electricity trading is the platform
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where the end consumer becomes a prosumer (functioning as both energy producer

and consumer) and exchanges the remaining electricity with other consumers in the

power grid [61]. A detailed review of existing P2P trading projects is carried out in

[84]. Another major proposal in this direction is load aggregation.

The aforementioned central controller is a load aggregator in transactive energy

market. As defined in [52] “An aggregator is a new type of energy service provider

which can increase or moderate the electricity consumption of a group of consumers

according to the total electricity demand on the grid. An aggregator can also operate

on behalf of a group of consumers producing their own electricity by selling the excess

electricity they produce.” A detailed review of the value of aggregators in the electricity

market can be found in [10].

It is worth noting that the two proposals are not mutually exclusive; aggregators

can act as participants in the P2P network. Aggregation and optimization of massive

portfolios of behind-the-meter assets are likely to grow as a business opportunity

because individual prosumers will have limited capabilities and/or financial incentives

to deal with capturing the modest value streams of their own microgrids, creating a

huge opportunity for the aggregators, [68].

While such a centralized framework is beneficial in certain applications, like

transactive energy markets, the cost and the risk of the associated communication

overhead can be too high to bear for other applications – for example, a set of mobile

robots deployed in a search and rescue mission. In such a mission, one can have the

problem such that the only objective of all the robots involved is common and is

to search for a certain entity. The advantages of having communication capabilities

between the robots is clear in such time-sensitive situations. One then needs to develop

a framework to model the flow of information among the robots and design control laws

such that the common objective is efficiently achieved. Team decision theory is one

such field.

Team decision theory is a mathematical formalism for a stochastic decision problem

in which a team, consisting of two or more team members, cooperate to achieve a
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common control objective. In the framework of team decision theory, there is only a

global objective common to all the team members; there is no individual local objective.

The field originated in 1950’s with papers by Marschak and Radner, [53] and [65],

aimed to solve the objectives of teams within an organization. In the former, Marschak

introduced various terminologies and elements relating to an organization team, while

Radner, in the latter, mathematically formulates the team decision problem. Then,

Ho in [35] in 1970’s explores the role of information structures by considering a

dynamic team with partially-nested information structure. Later the same decade,

Ho brings together in [36] three seemingly unrelated topics – team decision theory,

market signaling in economics, and the classical Shannon information theory. In [43],

the authors extend Radner’s theorem to obtain sufficient conditions to establish global

optimality of certain candidate control laws for a certain static team problem with

convex cost. In the recent decades, [51] provides a characterization of information

structures and their impact on the tractability of team optimization. [77] provides a

compilation of all the main results in the field of team decision theory.

The Witsenhausen’s counterexample provides an anticipatory explanation for the

lack of accelerated developments in the field. While various aforementioned papers

explore the complex roles information structures play in the team problem, [37] was

the first one to do so. It introduced a simple two player team problem with a non-

classical information structure – both the players do not have access to the same

information – and showed that the optimal laws are in general not linear for certain

parameter values. Even though the problem is similar to a linear quadratic gaussian

(LQG) problem, Witsenhausen showed that the results of a centralized LQG problem

do not apply to the provided counterexample due to its information structure.

The framework offered in team decision theory is wide and encompasses almost

every architecture in a team problem. However, the difficulties arising from the

limitations regarding information structure within a team currently raise obstacles

in its applicability in real-world situations. For example, solving the power allocation

problem considered in the beginning of this section, might prove extremely cumbersome
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in a team decision framework. Therefore, as a next step in this work, we explore another

approach to solving such multi-agent problems – through Voronoi tessellations (VTs).

Voronoi diagram is a partition of a set into subsets containing elements that are

close to each other according to a certain metric. Voronoi partition of, say a plane,

a two-dimensional region would be a collection of disjoint regions that contain points

that are closer to the region they are in than any other region. The collections of

such regions is called a Voronoi tessellation. Dirichlet was the first to systematically

treat Voronoi tessellations, which was generalized half a century later by Voronoi, [40].

Hence, Voronoi tessellations are also called Dirichlet cells.

Even though they date centuries, Voronoi tessellations have been found to be

immensely helpful in various applications ranging from health to computer graphics to

natural sciences. The first documented application of Voronoi tessellations appeared in

[69] on the 1854 cholera epidemic in London in which it is demonstrated that proximity

to a particular well was strongly correlated to deaths due to the disease [40]. In

more recent decades, VTs have almost become a common basis tool for path planning

algorithms by multi-robot systems in the field of coverage control [19] to such an extent

that the VT-based coverage control has been generalized using optimal transport-based

control [38]. An adaptive coverage controller is proposed in [5] where the leader in

the leader-follower strategy therein distributes the followers within its obstacle-free

sensing range, and the optimized distribution is obtained through Centroidal Voronoi

Tessellation (CVT). In their study on optimality of multi-robot coverage control, the

authors in [20] draw a relationship between CVT configurations and the sufficient

condition for optimality through the spatial derivative of the density.

In line with the popularity of CVTs, remarkable amount of contributions have been

made to further their development. [25] refines the notion of Constrained CVTs and

derives various properties like their characterization as energy minimizers. Focusing

on 1-D Voronoi diagrams, [3] develops an optimal algorithm for computing collinear

weighted Voronoi diagrams that is conceptually simple and attractive for practical

implementations. [29] studies the inverse Voronoi problem in-depth.

8



Despite the wide applicability and vast development in the literature pertaining to

CVTs, there are challenges and open questions, especially in high dimensional spaces.

For dimensions greater than one, rigorously verifying that a given CVT is a local

minimum can prove difficult, for example [76] uses variational techniques to give a full

characterization of the second variation of a CVT and provides sufficient conditions

for a CVT to be a local minimum. Moreover, in high dimensional spaces, the number

of CVTs under certain conditions and their quality is elusive, and their computation

remains difficult.

The regions in the Voronoi tessellations have a “center”. The definition of the

center depends on the application at hand – it can be a mass centroid based on certain

underlying probability distribution over the region. In any case, the centers of the

Voronoi regions are usually the element of interest or a function of it. For example, in

a coverage control application, the center is the position of the agent, and accordingly

we can use the framework of Voronoi tessellations to model the team dynamics and

the information structure in the team. In this work, we employ Voronoi tessellations

to solve a resource allocation problem within a team which is formulated as:

min
zi∈Rn

1

N

∑
i∈IN

fi(zi)

such that,
∑
i∈IN

zi = B (1.1)

In the resource allocation problem (1.1), B is the amount of resource to be allocated

among N agents while minimizing the sum of their individual costs {fi}i∈IN . Seemingly

trivial and complex simultaneously, the nature of (1.1) can be broken down into the

information structure in the group of agents, the separability of the objective function,

and the global constraint. While each agent can minimize the cost function without

any dependance on other agents, the global constraint is imposed on the team, hence

making the team information structure a significant aspect.
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Allowing a dynamic information structure with certain mild conditions, the authors

in [44] propose gradient and sub-gradient based algorithms to solve (1.1) when the

individual cost functions are differentiable and otherwise, respectively. While [44]

proposes the gradient descent algorithm where the agents trade resources in proportion

to the gradient difference for their respective utility functions, [83] takes up the

allocation problem (5.1) to focus on choosing the proportional weights (to the resource

trading) to sufficient conditions for the convergence of the algorithm, and to further

improve the rate of convergence. [7] considers the dual of the resource allocation

problem and derives two methods using the alternating direction method of multipliers

(ADMM) algorithm. Also considering the dual problem, [21] includes uncertainties

in the individual cost functions and solves the problem using sub-gradient methods

on the distributed Lagrangian. Including economics in the team, [12] considers a

stochastic system in which agents allocate shared system resources in response to

customer requests that arrive stochastically over time and introduces the notion of

a transfer contract to specify compensation among agents when resources are traded.

Each agent has a model of how resources are shared by others and makes allocation

decisions by maximizing its utility function subject to such model. However, it is worth

noting that in most of the work on decentralized resource allocation, the amount of

resource to be allocated is fixed over the iterations; the agents move along the feasible

solutions to only minimize the cost function.

1.2.1 Contributions

Various aspects of the problem of Demand-Response in smart grids are studied under

different conditions in a centralized framework. Recognizing that most of the significant

power consuming loads in a building operate under ON-OFF inputs, for example

Heating, Ventilation and Air Conditioning (HVAC) or water heater, we analyze the

stability of Model-free control (MFC), a control method introduced in [28] that we
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employ for (local) control of building loads, under various constraints on the local

input.

Building on the MFC as a local controller, we develop algorithms for centralized

power allocation for homogeneous and heterogeneous loads. For the latter, we

develop an allocation method using weighted projections where different loads can

be assigned different weights reflecting the preferences of the building occupant, while

simultaneously maintaining the power allocation constraint.

Moving away from centralization to team decision theory, we consider the celebrated

Witsenhausen counterexample. Although it was introduced as a toy example, its

optimal non-linear laws had remained elusive. In this dissertation, we develop a

numerical method to implement the optimal laws that were analytically derived in

the past decade but had remained unimplemented. We show that our laws coincide

with the optimal affine laws in the parameter set where the optimal laws are known

to be affine. For the region where the optimal laws are non-linear, we show that our

laws result in the lowest costs when compared with the previously reported costs in

the literature from heuristic solutions.

In the investigation of employing CVTs to solve the resource allocation problem,

we encounter a lack of computational methods that obtain the entire CVT in high-

dimensional spaces, and not just the centroids. To that end, we develop a new

decomposition method to obtain some of the many non-unique CVTs in a high-

dimensional space under the same condition. The underlying idea of the developed

method is to construct a high-dimensional CVT from a series of decomposed 1-D

CVTs. Such construction results in grid-like tessellations, and are obtained in a simple

and efficient manner.

In addition, in the investigation we notice an advantage brought forth to the team

information structure by CVTs in one-dimensional spaces. Because the underlying

space is 1-D, a simple communication network that is merely a line graph is sufficient

to obtain CVTs in a decentralized manner. This further allows the method to be
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scalable to any number of agents in the team since each member can have at most two

neighbors.

Therefore, we exploit such properties of CVTs to solve the resource allocation

problem. While most of the solutions in the literature assume a fixed amount of

resource to be allocated, we exploit the properties of CVTs to solve a dynamic

(time-varying) resource allocation problem in a truly decentralized manner. Along

with being a CVT that satisfies the allocation constraint, we allow for flexibility in

agents’ embedding their local preferences through what we call a “civility model”.

We demonstrate the applicability of the developed decentralized dynamic resource

allocation method on the problem of power allocation in a group of building HVACs.

1.3 Outline of the Dissertation

The demand-response problem in power allocation in transactive energy market is

taken up in Chapter 2. The problem is first described in detail graphically and

then formulated mathematically. The local control method – MFC – is reviewed

in Section 2.1.1, and then its stability under certain input constraints is studied in

Section 2.1.2. We then move on to the central controller, and develop two algorithms

for power allocations for equally and differently weighted loads in Sections 2.2 and 2.3,

respectively.

In Chapter 3, we consider the Witsenhausen counterexample. Specifically,

in Section 3.1, we explain the problem in-depth and note the previously-derived

analytically optimal solutions. In Section 3.2, we develop a method to numerically

implement the optimal control laws. Finally in Section 3.3, we provide simulation

results for various parameter sets in the problem, and compare the results we obtain

with those previously reported in the literature.

In Chapter 4, we study and analyze CVTs beginning with some definitions and

uniqueness properties in Section 4.1, followed by computational methods to obtain

one-dimensional CVTs in Section 4.2. Moving to CVTs in high-dimensional spaces, we
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develop a decomposition method in Section 4.3 and compare it with existing methods,

both numerically and qualitatively.

In Chapter 5 we explore the role of CVTs in decentralized resource allocation,

starting with the problem statement and complete introduction to the resource

allocation problem. We present our motivation for using CVTs to solve the resource

allocation problem in Section 5.1 including the sufficiency of a simple information

structure in the team to reach a minima in Section 5.1.1. We consider the resource

allocation problem with fixed amount of resources – static allocation – and solve it by

embedding the resource allocation constraint within the distribution of the CVT in

Section 5.2. Using the static allocation solution as the initialization step, we solve the

dynamic resource allocation problem in Section 5.3. We apply the developed method

in the field of demand-response to solve the problem of power allocation among a group

of building HVACs.

Finally, in Chapter 6, we draw some conclusions and provide some explicit lines of

future work.
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Chapter 2

Centralized Power Allocation in

Heterogeneous Building Loads

In a step to move towards a greener planet, renewable sources of energy must be

integrated in the day-to-day consumption. However, the uncertainty associated with

such sources has been a drag on the progress. One direction to reduce the negative

effects of such uncertainty is to use the energy generated from renewable sources in

applications that have flexible loads. Buildings consume 40% of the electricity produced

in the United States, and have flexible loads like HVAC (heating, ventilation, and air

conditioning) units and water heaters.

In this chapter, we consider a solar farm as a source of energy generation, and a

group of buildings in the neighborhood of the farm. The problem we are interested

in is employing all the energy generated in the farm to meet the energy needs of the

buildings in real-time, that is, the generated energy is not stored, and ideally, not

wasted either.

Let there be N building loads – we consider HVACs and water heaters – that need to

be controlled to maintain certain desired setpoints – indoor air temperature and water

temperature in HVAC and water heater, respectively. Denote the generated power

from the solar farm at time instant k as P (k). Given the nature of the problem at
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hand, we also call the generated power as the available power. Let the power consumed

by the ith building at time instant k be denoted Pi(k). The power allocation problem,

for a tolerance ε > 0, is mathematically stated as:

P (k)− ε ≤
N∑
i=1

Pi(k) ≤ P (k) + ε (2.1)

The power allocation is carried out by a central controller that has access to the

states of all the loads. Based on the states of the loads and the available power, the

central controller allots each Pi(k). Meanwhile, on the building load side, the local

controller responsible for maintaining the load at the desired setpoint does so while

accounting for the allotted power. Each local controller tracks the load output against

the desired setpoint. Based on the load output and the desired setpoint, it computes

an appropriate or “ideal” input to the load. This control input translates into usage

of a certain amount of power. The local controller communicates this control input to

the central controller, which then based on the information from all the other loads

and the available power at that time instant, communicates back to the local controller

the input it can supply to the load. This interaction between the central and the local

controllers is summarized in the block diagram shown in Fig. 2.1.

In Section 2.1, we will look into the local controller, while in Sections 2.2 and 2.3, we

will take up two algorithms by the central controller to allocate the generated power.

2.1 Model-free Control

The local controller monitors the load output, and based on the desired setpoint,

computes an appropriate control input. We employ the method of Model-free control

(MFC) [28] as our local controller. First, we introduce the control method in Section

2.1.1. As previously discussed, the “ideal” control input need not be the one supplied

to the load. The power allocation constraint translates onto the local controller as
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Figure 2.1: Block diagram illustrating the overall problem framework and the flow
of information between central and local controllers.
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constraints on the input to the load. Accordingly, we study the stability of the local

controller – MFC – under different input constraints in Section 2.1.2.

2.1.1 Overview

In this Section, we will review MFC introduced in [28] for a general SISO (single-input

single-output) system operating under unconstrained input and look into the associated

stability conditions. The SISO system is approximated by an ultra-local model as:

ẏ = F + αu (2.2)

Here, u and y are the input and output of the system, and F describes the poorly known

or unknown parts of the system. The parameter α is to correct for the difference in the

magnitudes of the input and the output. F is approximated by a piecewise constant

function φ that is given as [28]:

φ =
−6

L3

∫ t

t−L
[(L− 2σ)y(σ) + ασ(L− σ)u(σ)]dσ (2.3)

Note that φ is estimated using the measurements of the system obtained in the

last L seconds and accordingly F is continuously updated. Using the latest F , the

intelligent-proportional control law is given by [28]:

u = −F − ẏ
∗ +Kp(y − y∗)

α
(2.4)

Here, y∗ is the desired reference trajectory and Kp is the proportional gain. Combining

(2.2) and (2.4) provides the error dynamics [28]:

ė+Kpe = 0 (2.5)

17



where e = y − y∗ is the tracking error. With t0 as the initial time, the solution of this

differential equation is:

e(t) = e(t0) exp(−Kp(t− t0)) (2.6)

Without loss of generality, let t0 = 0 for all of the following. Equation (2.6) shows that

the error asymptotically decays to 0 for Kp > 0, making the tuning of the proportional

gain straightforward. The only other tuning parameters that need to be manually set

are α and L [28].

Equation (2.6) shows that, for appropriate value of the proportional gain, the

system is asymptotically stable for unconstrained control input. However, in reality, for

most systems the control input is saturated. Moreover, in many applications external

constraints need to be imposed on the control input. For example, in conventional

building HVAC systems, the HVAC unit can only be operated in different stages, i.e.,

the input power to the HVAC, u, can only take a set of distinct values (for example

u ∈ {0, 1, 2, . . .}) or it could only be switched on or off i.e., u ∈ {0, 1}. In the next

section, we will mathematically pose these constraints and evaluate the stability of the

MFC design under each of these constraints.

2.1.2 Stability Analysis under Constrained Inputs

In this section, we first consider the constraint where the control input can only take

discrete values (as in multi-stage HVAC unit where u ∈ {0, 1, 2, . . .}), and then we

consider the constraint where the control input can only be either on or off. The

second constraint inherently includes simultaneous saturation and discretization of the

control input. The stability analysis and derivations of conditions are published in [74].

Let u be the value of the control input obtained from the model-free control law (2.4)

and ur be the constrained input that is ultimately supplied to the plant. Accordingly,

the model of the plant will be transformed as:
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ẏ = Fr + αur (2.7)

Since it is the constrained input ur that is ultimately delivered to the plant, Fr is

approximated by φr that will be computed using ur as:

φr =
−6

L3

∫ t

t−L
[(L− 2σ)y(σ) + ασ(L− σ)ur(σ)]dσ (2.8)

Using the latest Fr, u will be computed as:

u = −Fr − ẏ
∗ +Kp(y − y∗)

α
(2.9)

Finally, ur is obtained by constraining u, and the definition of ur will be specific to

the constraint formulation as in the following sections.

Constraint of discrete input

The constraint of discrete control input can be formulated as round-off value of the

original control input u, i.e., ur = round(u), which is given by:

ur = bu+
1

2
c (2.10)

where b.c is the floor function defined as:

buc = max{m ∈ Z : m ≤ u} (2.11)

and Z is the set of integers. The following relation holds true between u and ur:

u− 1

2
≤ ur ≤ u+

1

2
(2.12)

Substituting for u from (2.9) and for ur from (2.7), we obtain:
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−Fr − ẏ
∗ +Kpe

α
− 1

2
≤ 1

α
(ẏ − Fr) ≤ −

Fr − ẏ∗ +Kpe

α
+

1

2

Consider the left-hand side:

− Fr − ẏ∗ +Kpe

α
− 1

2
≤ 1

α
(ẏ − Fr)

=⇒ −α
2
≤ ė+Kpe

Similarly, the right-hand side:

1

α
(ẏ − Fr) ≤ −

Fr − ẏ∗ +Kpe

α
+

1

2

=⇒ ė+Kpe ≤
α

2

Therefore, ∀u ∈ R, we obtain the following error dynamics when the control input

is discretized:

−α
2
≤ ė+Kpe ≤

α

2
(2.13)

In order to further investigate the stability conditions when the control input is

constrained, we need to solve the associated differential inequality (2.13). C(.) is

the space of continuous functions and C1(.) is the space of continuously differentiable

functions. We employ the result of Lemma 1 from [63], which is restated here:

Lemma 2.1. Let x0, y0 ∈ R, I = [x0,∞), a, b ∈ C(I), y ∈ C1(I) and

ẏ ≤ a(x)y(x) + b(x),∀x ≥ x0, y(x0) = y0 (2.14)

then ∀x ≥ x0 the following holds:
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y(x) ≤ y0 exp
( ∫ x

x0

a(t)dt
)
+∫ x

x0

b(s) exp
( ∫ x

s

a(t)dt
)
ds (2.15)

If the converse holds in (2.14), then the converse holds in (2.15) too.

Applying the result of Lemma 2.1 to the right-hand side of (2.13), we obtain,

e(t) ≤ e(0) exp
( ∫ t

0

−Kpdτ
)
+∫ t

0

0.5α exp
( ∫ t

s

−Kpdτ
)
ds

=⇒ e(t) ≤ e(0) exp(−Kpt) +
0.5α

Kp

(
1− exp(−Kpt)

)
(2.16)

Similarly, applying the result of Lemma 2.1 to the left-hand side of (2.13), we

obtain,

e(t) > e(0) exp
( ∫ t

0

−Kpdτ
)
−∫ t

0

0.5α exp
( ∫ t

s

−Kpdτ
)
ds

=⇒ e(t) > e(0) exp(−Kpt)−
0.5α

Kp

(
1− exp(−Kpt)

)
(2.17)

Combining (2.16) and (2.17), we obtain the solution of the differential inequality of

the error dynamics in (2.13) when the control input is constrained:
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e(0) exp(−Kpt)−
0.5α

Kp

(
1− exp(−Kpt)

)
< e(t)

≤ e(0) exp(−Kpt) +
0.5α

Kp

(
1− exp(−Kpt)

)
(2.18)

By comparing (2.18) and (2.6), it can be observed that when the control input is

constrained, the error stays within ±0.5α
Kp

(
1 − exp(−Kpt)

)
of (2.6). Furthermore, as

t → ∞, the error associated with the constrained input will be within ±0.5α
Kp

of the

error obtained when the input is not constrained.

Since the error in the case of discretization-constrained control input is within a

finite band of the asymptotically decaying error of (2.6), it is concluded that the MFC

design leads to bounded output (hence stable controlled system) even when the control

input is constrained as in (2.10).

Constraint of on-off input

Now we consider the constraint where the control input can either be on or off, as in

the case of a single-stage HVAC unit. Without loss of generality, this constraint can

be formulated as:

ur =

0, if u < M

1, if u ≥M
(2.19)

where 0 < M < 1. Equation (2.19) simultaneously imposes discretization and

saturation constraints on the control input. Let us now continue the evaluation on

a case-by-case basis.

Case 1: u < M

From (2.19) and (2.7), we have ur = 0, ẏ = Fr and because u < M ,
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=⇒ − 1

α
[Fr − ẏ∗ +Kpe] < M

=⇒ ė+Kpe > −αM (2.20)

Case 2: u ≥M

Similarly, from (2.19) and (2.7), we have ur = 1, ẏ = Fr + α and because u ≥M ,

=⇒ − 1

α
[Fr − ẏ∗ +Kpe] ≥M

=⇒ ė+Kpe ≤ α(1−M) (2.21)

Combining (2.20) and (2.21), we obtain the following error dynamics:

− αM < ė+Kpe ≤ α(1−M) (2.22)

It can be seen that the error dynamics in (2.22) are in the same form as the error

dynamics associated with the discretization constraint, (2.13). Hence, as in Section

2.1.2, it is concluded that the MFC design leads to a stable system when there is a

simultaneous imposition of saturation and discretization constraints.

Simulation on an example HVAC model

The mathematical model for the building HVAC system employed for simulation is

given by the state space formulation [13], [54] :

ẋ = Ax+Bu+Gw

y = Cx+Du
(2.23)

where u ∈ R is the input to the HVAC system, w ∈ R2 is the disturbance, and y ∈ R

is the measured indoor temperature. u is the only controllable input to the system.

23



The disturbances considered in w are the external temperature (denoted ue) and solar

radiation (denoted us). These are the measurements obtained in the summer of 2017

in Knoxville, TN, USA. The profile of disturbances, a subset of which is employed in

the subsequent simulations, is shown in Fig. 2.2.

The system matrices in (2.23) are parameterized as:

A = −1/(RC1), B = −Qhvac/C1

G = [1/C1 1/(RC1)]

C = 1, D = 0

where the parameters are:

R = 1/200, C1 = 20advacp

Qhvac = 3× 3504× 1.5

Here, ad = 1.225kg/m3 is the air density, va = 550m3 is the volume of the air, and

cp = 1033J/kgC is the specific heat of the air. The continuous time model (2.23) is

used in simulations as a discrete-time model with 10 minutes discretization to match

the slow nature of the bulky HVAC systems.

MFC is designed for the building HVAC system for three different scenarios: 1)

There is no constraint on the control input. 2) The control input is rounded-off (as in

Section 2.1.2). 3) The control input is constrained to on or off (as in Section 2.1.2).

In the simulations, we use α = 1, L = 3600 and Kp = 10. The errors in the

indoor temperatures obtained in all three scenarios are shown in Fig. 2.3 and the

corresponding control inputs are shown in Fig. 2.4.

There are some noteworthy points in the results. In the first scenario, the error is

expected to be asymptotically decaying as governed by (2.6). However, we observe an
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Figure 2.2: Measured disturbances, top: external temperature, bottom: solar
radiation., taken in a typical summer in July 2017 in Knoxville, Tennesee.
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oscillatory response. The amplitude and frequency of the oscillations is dependent on

the value of the proportional gain Kp. The reason for the observed oscillations can be

attributed to the estimation error, i.e., φr 6= Fr.

Let the estimation error be bounded, i.e., |φr − Fr| ≤ ε, for some ε > 0. As in

Section 2.1.2, using (2.7) and (2.9), the associated error dynamics can be derived to

be:

− ε ≤ ė+Kpe ≤ ε (2.24)

Equation (2.24) conveys that, practically, the error settles within an ε band of 0

instead of asymptotically decaying to 0. As the estimation error is not constant over

time, the corresponding error margin also varies. Moreover, the estimate (along with

the proportional gain) influences the control input (given in (2.4)) and the control input

in turn influences the estimate with a lag. Therefore, for the aforementioned reasons,

even though we expect asymptotically decaying behavior in the error for any Kp > 0,

the observed behavior is not compliant with (2.6).

While the error in the first scenario deviates from the expected behavior by

oscillations, we observe that the errors in the second and the third scenarios are almost

as expected. From the comparison of (2.6) and (2.18), we expect the error in the second

and the third scenarios to be within a certain band of the error in the first scenario.

The upper and lower bounds of the band are shown in dotted red line in Fig. 2.3.

Except for the slight excursion out of the band by the error in the third scenario, we

observe that the constrained error stays within a known band of the unconstrained

error. The control inputs corresponding to the cases in Fig. 2.3 are shown in Fig. 2.4.

In this Section, we employed MFC as the local controller and studied its stability

under various constraints on the control input. In the next two sections, we will take

up the central controller that manages the available power among all the loads based

on their states.
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2.2 Power Allocation under Equal Importance

In reference to Fig. 2.1 from the beginning of this chapter, the N loads considered in

this section are equally weighted. That is, no one load has any more priority than any

of the other loads. Further dividing the section, first we consider N identical and then

nonidentical HVAC units. In the last part of this section, we formulate a relationship

between the generated PV power and the total number of buildings required to consume

all of the generated power. The method introduced in here, along with the results are

published in [72].

Identical and otherwise, in this Section, we consider single-stage HVAC units; they

can only be turned ON or OFF. This translates into the following constraint on the

HVAC inputs:

u = {0, 1} (2.25)

where, 0 and 1 correspond to the HVAC system turned off and on, respectively. If a

unit is turned ON, it consumes the rated power, pr. The power consumed by the ith

load at time k is hence Pi(k) = prui(k), where ui(k) is the input to the ith HVAC at

time k.

Since our focus includes fully employing the generated PV energy, we limit our

analysis to during the day when there is sufficient solar energy. Accordingly, when the

HVAC system is turned off, the indoor temperature of the building increases, and when

the HVAC system is turned on the building temperature decreases. More specifically,

we consider summer time here. That is, the HVAC system considered operates only in

cooling mode.

The algorithm to achieve the power allocation objective by the central controller

is developed as follows. Employing the MFC method, each local controller computes

the “ideal” control input to its load using the previous L seconds of input and output

measurements of the load:
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ui(k + 1) = MFC(ui((k − n) : k), yk((k − n) : k))

Here, n is the previous L seconds of measurements, with n = tsampL, where tsamp is the

sampling time. The function MFC(.) is implemented as reviewed in Section 2.1. All

the local controllers communicate their ui(k + 1) to the central controller. Translating

each received control input to the power required, the central controller checks if the

power allocation constraint (2.1) is satisfied or violated. If it is satisfied, then all the

control inputs are rounded, to satisfy the HVAC on-off constraint, and communicated

back to the local controllers, which then supply it to their HVAC loads. On the other

hand, if the constraint is violated, then the central controller prioritizes the need to cool

the buildings by their “ideal” control inputs. For example, if u29 = 0.9 and u87 = 0.7,

then the 29th building will have a higher priority of cooling than the 87th. Once the

priority list is computed, the central controller allocates 1, until the available power is

exhausted, to the loads that are at the top of the priority list.

As a further note, consider the case where there are multiple buildings (say N1

number of buildings) that have the same value of ui(k + 1), and there is not enough

generated power to cool them all. In that case, we cool N2 < N1 number of buildings,

and buffer the remaining for the next timestep. Here, N2 corresponds to the number

of buildings that can be cooled using the generated power. When the available power

is more than the required power, the aforementioned conflict resolution technique is

mirrored and employed.

In our simulations, α = 1, L = 3600 seconds, tsamp = 600 seconds, and ε is set

as 10% of P . The data used for disturbances in (2.23), i.e., external temperature and

solar radiation, are the measurements taken on a typical summer day in July 2017, in

Knoxville, Tennessee, and are the same as shown in Fig. 2.2.

We consider two cases: all building HVACs are identical, and nonidentical. In both

cases, the initial conditions (initial indoor temperatures) of all buildings are randomly

assigned.
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Analysis for identical buildings

In this section, we consider N = 100 identical building HVACs with rated power of

3.5kW, starting at different initial conditions. The MFC method is used in combination

with the reviewed methodology to control the indoor temperatures while employing all

of the generated power. The results obtained are compared with the standard MPC

method developed in [22].

The desired indoor temperature is 23◦C and the comfort band is defined to be

23◦C ± 1.5◦C. The indoor temperatures obtained in 100 identical buildings with MFC

are shown in Fig. 2.5, and the temperatures obtained using Model Predictive Control

[14], under the same conditions as in MFC, are shown in Fig. 2.6. The corresponding

total power consumed at each timestep for both methods is compared in Fig. 2.7.

It can be observed that while MPC strictly maintains the indoor temperatures

within the comfort band, the power consumed is higher than the generated power

for a brief period of time. On the other hand, while MFC uses the generated power

within permissible limits, the indoor temperatures for a few buildings deviate from

the comfort band by less than 0.5◦C for a brief period of time. This is because the

control algorithm implemented with MPC imposes hard constraint on maintaining

the indoor temperature, whereas, MFC imposes hard constraint on employing the

generated power within permissible limits. If following the power constraint is more

important than maintaining the indoor temperature, then the MPC algorithm can be

easily reconfigured in a straight-forward manner whereas MFC is not so flexible with

changing the constraints. However, MFC is computationally extremely light with its

implementation using only a few lines, whereas MPC carries the computational burden.

The results obtained are summarized in Table 2.1 using different tracking error

metrics. The root mean square error (RMSE), mean absolute error, and the maximum

error in indoor temperature are calculated as:
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Figure 2.5: Indoor temperatures obtained using MFC for 100 identical buildings
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Figure 2.6: Indoor temperatures obtained using MPC for 100 identical buildings
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Figure 2.7: Power consumption by 100 identical buildings obtained with MFC and
MPC vs generated PV energy. The dotted red lines mark the upper and lower bounds
of permissible violation in the power allocation.

Table 2.1: Comparison of MFC and MPC through evaluation of different tracking
error metrics

Indoor temperature Power consumption

MFC MPC MFC MPC

Root mean square error 0.60 0.82 3.64 20.94
Mean absolute error 0.49 0.74 2.97 8.22
Maximum error 2.11 1.50 9.24 82.17
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RMSE =
1

N

N∑
k=1

√√√√ 1

T

T∑
i=1

(yk(i)− y∗)2

MAE =
1

T

T∑
i=1

|yk(i)− y∗|

ME = max{yk(i)− y∗ : ∀i = 1, 2, . . . , n}

Here, yk(i) refers to the measured indoor temperature in kth building at ith timestep,

y∗ = 23◦C is the constant reference signal, T is the total number of timesteps, and

N = 100 is the total number of buildings. In short, the aggregate error for all buildings

is computed as the average of the root mean square error in each building. Similarly,

the mean absolute error and maximum error are computed.

Analysis for nonidentical buildings

To generate N nonidentical buildings, we sample from a normal distribution where the

state-space parameters from the model (2.23) are considered as the mean, and σ is

the standard deviation. Specifically, σ = 0.7 × 10−3 for A, σ = 0.8 × 10−3 for B, and

σ = 5 × 10−3 for G. N values, for each state-space parameter, are sampled from the

normal distributions and each set is used as a model for the building.

The resulting indoor temperatures and the total power consumption from all the

buildings are shown in Fig. 2.8 and Fig. 2.9, respectively.

In both the cases of identical and nonidentical building HVACs, we observe that

the power allocation constraint is satisfied, and the indoor air temperatures are not

in extreme violation of the comfort band. In this Section, identical or nonidentical

HVACs, they all had the same importance. That is, if u29 = 0.9 > u87 = 0.7, then

the 29th building will have a higher priority of cooling than the 87th; the latter is not

assigned any importance and hence jump the line in the cooling priority.
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Figure 2.8: Indoor temperatures obtained using MFC for 100 nonidentical buildings
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Figure 2.9: Power consumption by 100 nonidentical buildings with MFC vs generated
power
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In the next Section, we take the case where the loads have the flexibility to be

allotted different levels of importance.

2.3 Power allocation using Weighted Projection

In Referring back to the Fig. 2.1 from the beginning of this chapter, N loads are

considered therein. Consider the case where one building has multiple loads that are

participating in the power allocation. For example, suppose a residential building

with participating HVAC and water heater. Inclusion of multiple loads by the same

participating building allows one to model the case where the building dwellers can

have different preferences. That is, since the power allocation is a hard constraint, the

building clients may have strict preferences to maintaining the indoor air temperature

and more flexible towards the hot water temperature from the participating water

heater. Such preferences can be modeled by assigning different weights (or different

importance levels) to different loads. We develop a method to allocate power under

such conditions, and the method along with various simulations are published in [70].

Let the number of different types of loads be n, and let Ni be the total number

of loads of the ith type, ∀i = 1, 2, . . . , n. Let the total number of participating loads

of all types be N . That is, N =
∑n

i=1Ni. Denote by ucij the “ideal” control input of

the local controller (obtained from the MFC law (2.4)) of the jth load in the ith load

type. It is obtained in the same way as the control input for equal importance loads

in Section 2.2.

Once the central controller receives the “ideal” control inputs from all the loads, it

first does the following sequentially:

1.) For each load type, it computes the priority list of the loads from their control

inputs, like in Section 2.2.

2.) Since the loads considered are on-off, it discretizes the control inputs to 0 or 1.

It then computes the “ideal” total power required by all the loads of the ith type as:
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ci = pi

Ni∑
j=1

uij (2.26)

where pi is the rated power of the ith load type.

Since there are n different types of loads, c = (c1, c2, . . . , cn) will be a vector in Rn.

The vector c would be the “ideal” amount of power consumed by all the loads, had

there been no power-tracking constraint. By “ideal” amount of power it is meant that

if c amount of power is allocated, then every unit is maintained at its desired setpoint.

Let xi be the amount of power consumed at a particular time instant by the ith

type load. Since the total power that would be consumed by all types of loads must

be equal to the available power at that time instant P (t), the power constraint is an

affine hyperplane of dimension (n− 1):

n∑
i=1

xi = P (t) (2.27)

such that 0 ≤ xi ≤ piNi, ∀i = 1, 2, . . . , n

Since each type of load has a different importance level, this can be modelled by

assigning weights to the loads. Let wi ∈ [0, 1] be the weight associated with the ith type

load such that
∑n

i=1wi = 1. Denote the overall weight array by w = (w1, w2, . . . , wn).

wi = 1 implies wj = 0,∀j 6= i. This represents the scenario where the ith load is

of the highest importance. In such a scenario, it is ideal to allot ci amount of power

to the ith type of load: that is, xi = ci. Since the power constraint (2.27) needs to be

satisfied, one would have:

∑
j=1 to n,j 6=i

xj + ci = P (t)

Similarly, merging the ideal amount of power for each type of load and the power

constraint, a system of n linear equations is obtained, expressed concisely as:
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0 1 . . . 1

1 0 . . . 1
... 1

. . .
...

1 1 . . . 0




x1

x2

...

xn

 =


P (t)− c1

P (t)− c2

...

P (t)− cn

 (2.28)

Denote the solution of the system of equations (2.28) as s = (s1, s2, . . . , sn).

Then, the point si = (s1, s2, . . . , si−1, ci, si+1, . . . , sn) represents the point on the power

constraint plane (2.27) that assigns the highest importance on the ith type of load.

Although 0 ≤ si(i) = ci ≤ piNi, s
i(j),∀j 6= i may not satisfy 0 ≤ si(j) ≤ pjNj.

That is, the solution of (2.28) might result in consuming negative power. For illustrative

purposes, consider n = 2. In Figure 2.10, the axes represent the power consumption

of the two loads. The red line represents the power constraint plane (line in this case

of n = 2) given by (2.27). The coordinate (c1, c2) represents the ideal power for the

two types of loads. The coordinates s1 and s2 are obtained from the solution of (2.28),

and they correspond to highest importance on the first and second load, respectively.

However, it can be seen that s2 < 0 implying negative power consumption by the

second load. Therefore, it is needed to ensure that every si satisfies the upper and

lower bounds on power:

0 ≤ si ≤ p.N (2.29)

where p = (p1, p2, . . . , pn), N = (N1, N2, . . . , Nn) and p.N is their element-wise

multiplication: p.N = (p1N1, p2N2, . . . , pnNn). For all i = {1, 2, . . . , N}, if si satisfies

(2.29), then it is said to have satisfied the boundary conditions for all the loads.

To ensure that the solution meets the boundary constraint, zi within the boundaries

and closest to si is found. This is posed and solved as a constrained optimization

problem ∀i:
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Figure 2.10: Illustration of the two-dimensional power plane.
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min
zi
||zi − si||22 (2.30)

such that,

n∑
j=1

zi(j) = P (t) and 0 ≤ zi ≤ p.N

The optimization problem (2.30) is a constrained linear least square problem that

has an explicit solution, see the Appendix section. It can also be solved using the

MATLAB command lsqlin. The latter is employed for automated implementation.

For all n types of loads, zi fulfills the following three conditions:

• It is on the power constraint plane.

• It corresponds to the highest importance on the ith type of load.

• It satisfies the boundary conditions for all loads.

For illustration, the example of n = 2 from Figure 2.10 is continued. Imposing

the boundary conditions on s1 and s2, the two nearest coordinates z1 and z2 that are

within the boundaries are found. In the considered illustration, while s1 was out of the

boundary, s2 was not. Accordingly, it is seen in Figure 2.11 that s1 is “moved” to z1,

where z1 now corresponds to the point of highest importance on the first load, and s2

is retained. That is, the infeasible power coordinate s1 is translated along the power

constraint line to z1 satisfying the boundary conditions.

So far, a methodology is formulated that meets the power constraint and deviates

from the customers’ comfort as less as possible for all loads in general. However, the

customers’ preferences of one load over another are not yet embedded. To do so, with

these n zi points, define a region M ∈ Rn as:

M = {z ∈ Rn : z =
n∑
i=1

wiz
i and

n∑
i=1

wi = 1} (2.31)
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Figure 2.11: Illustration of solution of (2.30) for two types of loads, i.e., n = 2.

40



The polygon M is the set of convex combinations of {zi}ni=1 and M is known as the

convex hull of {zi}ni=1, [64]. Therefore, any point in M corresponds to the weighted

projection of c onto the power constraint plane, specific to the prescribed weights w.

Such a point would hence meet the power constraint and deviate the least possible

amount from customers’ comfort, based on the customers’ preferences. For example,

for n = 2, consider an HVAC for indoor air cooling and a water heater as the two types

of loads. Suppose the customer’s comfort level for indoor air temperature is 23◦C and

the water temperature is 48◦C. Suppose the customer’s preference is such that it is

more important to maintain the indoor air temperature at 23◦C than it is to maintain

water temperature at 48◦C. In such a case, 1 ≥ w1 > w2 ≥ 0, where w1 and w2 are the

weights assigned to the HVAC and the water heater respectively.

Continuing with the considered illustration from Figures 2.10 and 2.11, the role of

weights w are observed. z1 and z2 represent the feasible coordinates, on the power

constraint line, of highest importance on the first and second load, respectively. Any

intermediate point on the line joining z1 and z2 is a convex combination of the end

points. Accordingly, the set M is the collection of all such points, where each can be

obtained by translating along the line. This is illustrated in Figure 2.12. The boundary

is defined with z1 and z2 as the end-points. The midpoint of z1 and z2 would hence

correspond to equal importance to both loads. The set M from (2.31) is the collection

of all the points on the power constraint (red line in Figure 2.12) between z1 and z2.

Since such a point in M meets all three objectives of the task considered in this

paper, denote this final solution by z ∈ Rn as:

z = proj(c, w, p, P )

where proj is the formulated weighted projection methodology.

Once the point z = (z1, z2, . . . , zn) ∈ Rn is computed, zi ∈ R+ is the amount of

power allotted to the ith type load at time instant t. To determine how to allot the zi

amount of power among the Ni number of loads, the value of the priority function πij
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Figure 2.12: Weight-based translation on the power constraint line within the
boundary.
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is employed. For example, π25 > π29 implies in the 2nd type of load, 5th unit needs to

be switched on earlier than the 9th unit.

An example: n = 3

As an illustration to the discussed theory, consider n = 3. The system of equations is:


0 1 1

1 0 1

1 1 0



x1

x2

x3

 =


P (t)− c1

P (t)− c2

P (t)− c3


Let the solution of this system of equations be s = (s1, s2, s3) Then, s1 = (c1, s2, s3)

would be a point on the power constraint plane that corresponds to the scenario of

highest importance of the first type of load. Similarly, s2 = (s1, c2, s3) and s3 =

(s1, s2, c3). To ensure boundary conditions, (2.30) is solved to obtain z1, z2 and z3.

Then for a specified weight vector w, any z ∈ R3 such that z = z1w1 + z2w2 + z3w3

would lie in the convex region M and would represent the weighted projection of c onto

the power constraint plane.

The formulated methodology is summarized below. At every time instant, for all

local controllers and the central controller, do the following:
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Local controller: Compute the control input ucij (2.4) and communicate to the central

controller.

Central controller:

1 For each load type i, compute the priority list πi from ucij, ∀j = 1 to Ni

2 Determine the “ideal” power requirement c ∈ Rn for all load types from (2.26).

3 Compute the weighted projection z = proj (c, w, p, P ) from (2.30)-(2.31).

4 For each load type i, compute uaij for all the Ni loads by allocating zi amount of

power based on the priority list πi.

5 Communicate uaij to the local controllers.

Local controller: Supply the assigned input uaij to the load.

44



Chapter 3

The Witsenhausen Counterexample

In the framework of power allocation taken up in Chapter 2, there was one central

controller that obtained information from all N local controllers, processed that

information in order to meet a certain objective, and communicated back certain

control action to the local controllers. All the local controllers aim to maintain the

desired setpoint of their loads while together consuming a certain generated power.

However, since the local controllers do not communicate with each other, there is a

central controller that coordinates their actions. In such a setup, the local controllers

form a “team” with the global objective of consuming certain amount of power, and

individual objective of maintaining their loads’ outputs at desired setpoints.

Team decision theory is a mathematical formalism for a stochastic decision problem

in which a team, consisting of two or more team members, cooperates to achieve a

common control objective. In the framework of team decision theory, there is only the

global objective common to all the team members; there is no individual local objective.

The field of team decision theory developed out of the need for a mathematical model

of cooperating teams or groups within an organization in which all team members have

the same objective yet different information, [77].

The field originated in 1950’s with papers by Marschak and Radner, [53] and [65],

aimed to solve the objectives of teams within an organization. While there have been
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some developments, the field has largely stagnated. [77] provides a brief introduction

to the field and capitulates the main results in it. While [32] provides some existence

results on certain problems with asymmetric information structure, it mentions that

significant improvement on the frameworks in the field cannot be made unless new

mathematical tools like free probability theory are employed.

The Witsenhausen’s counterexample formulated in 1968 is a toy example, with

just two team members and a convex objective function, that remained unsolved for

decades in the field of team decision theory. It is decentralized stochastic control

problem that shows the importance of information structure in a team through a

seemingly simple two player team problem. Despite immense attention towards the

problem, the non-classical information structure therein had remained the key challenge

to obtain the optimal solution until recently [16] (2014), when the Person-by-Person

nonlinear optimal laws that satisfy integral equations were derived using Girsanov’s

transformation.

Here, in this chapter, we compute and implement the nonlinear optimal laws [71].

We begin with a detailed discussion of the counterexample in Section 3.1. Then, in

Section 3.2, we employ the Gauss Hermite Quadrature method to approximate the

optimal laws that are in integral form and then solve a system of non-linear equations

to compute the signaling levels. We then analyze and compare our results with costs

previously reported in the literature in Section 3.3.

3.1 Introduction

The Witsenhausen’s counterexample [37] is a two-stage stochastic control problem

described by the following (state and output) equations, admissible strategies and pay-

off.
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State Equations:

x1 = x0 + u1, (3.1)

x2 = x1 − u2. (3.2)

Output Equations:

y0 = x0, (3.3)

y1 = x1 + v. (3.4)

Admissible Strategies:

u1 = γ1(y0),

u2 = γ2(y1). (3.5)

Cost function:

J(u1, u2) = J(γ1, γ2) , Eu1,u2
{
k2u2

1 + x2
2

}
, k ∈ R (3.6)

Here, x0 is a random variable (RV) with known probability density function px0(x),

v ∈ N(0, σ2) denotes a zero mean, variance σ2, Gaussian noise, and x0 is assumed

independent of v. A Gaussian RV x0 is represented by x0 ∈ N(0, σ2
x). Witsenhaussen’s

fundamental problem is: determine the tuple of strategies (γ∗1 , γ
∗
2) that minimize

J(γ1, γ2), i.e.,

J(γ∗1 , γ
∗
2) , inf

(γ1(y0),γ2(y1))
J(γ1, γ2).

The complete system and information structure are shown in Fig. 3.1. The

information pattern is nonclassical since y0 is known to the control u1 applied at the first

stage and unknown to the control u2 applied at the second stage. It is the nonclassical
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Figure 3.1: Witsenhausen’s decentralized stochastic system
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information structure that scales up the difficulty of the problem; this was investigated

and demonstrated in [37].

Hans Witsenhausen [37] investigated optimal and sub-optimal solutions and

demonstrated by construction, that for certain parameters, the optimal affine law is

outperformed by a simple nonlinear law. We recapitulate the optimal affine law and

the nonlinear law from [37] in Section 3.3. To clarify any existing misconception that

the nonlinear law from [37] outperforms all linear laws for all parameters, we highlight

the conclusion of Theorem 2 of [37]: it is only for certain parameters that the nonlinear

law (3.15), which is not proved to be optimal, outperforms the optimal affine law.

Witsenhausen derived, for a fixed γ1(x0), the following optimal law for the second

controller γ∗2(y1),

γ∗2(y1) = E{x0 + γ1(x0)|y1}

while the optimal first stage law γ∗1(x0), remained unknown until recently [16], [71].

Since Witsenhausen formulated the counterexample in 1968, several papers appeared

in the literature to compute numerically the optimal pay-off. Using finite element

analysis, [67] takes up a numerical study of the counterexample by investigating a

homogeneous integral equation that arises from the necessary first-order condition

for optimiality of the Stage 1 controller. [4] provides a numerical solution to the

Witsenhausen counterexample by employing one-hidden-layer neural network as the

approximating network. [41] approaches the problem through iterative source-channel

coding. [45] develops a hierarchical framework approach to nonconvex optimization

problems and to gain additional new insights to the properties of a better solution to

the Witsenhausen’s counterexample. [56] transforms the problem to an optimization

problem over the space of quantile functions and provides a numerical method to

generate a sequence of solution approximations. [8] considers a parameterized family

of a two-stage control problem with nonclassical information pattern and partition the

parameter space into two regions: one where the optimal law is affine and the other
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where the optimal law is nonlinear. However, an explicit optimal solution had remained

elusive until [16] was published in 2014.

Charalambous and Ahmed [16] applied Girsanov’s measure transformation to

equivalently re-formulated continuous-time and discrete-time decentralized stochastic

dynamic decision problems, under a reference probability measure, such that the

observations are independent of the controls. When the method is applied to

the Witsenhausen’s counterexample, the optimal Person-by-Person (PbP) strategies,

(γo1(y0), γo2(y1)) are obtained, and are given by

γo1(y0) = − 1

2k2σ2
Eγo1 ,γo2

{
(y1 − x0 − γo1)(x0 + γo1 − γo2)2

}
− 1

k2
Eγo1 ,γ∗2

{
x0 + γo1(y0)− γo2 |y0

}

γo2(y1) = Eγo1
{
x0|y1

}
+ Eγo1

{
γo1(y0)|y1

}
By defining γo1(x0) , x0 + γo1(x0) then, the optimal tuple is equivalently expressed in

integral form,

γ̄1(x0) = x0 −
1

k2

∫ ∞

−∞

{ 1

2σ2
(ζ − γ̄1(x0))(γ̄1(x0)− γ2(ζ))2 + (γ̄1(x0)− γ2(ζ))

}
1√

2πσ2
exp(−(ζ − γ̄1(x0))2

2σ2
)dζ (3.7)

γ2(y1) =

∫ ∞
−∞ γ̄1(ξ) exp (− (y1−γ̄1(ξ))2

2σ2 )px0(dξ)∫∞
−∞ exp (− (y1−γ̄1(ξ))2

2σ2 )px0(dξ)
(3.8)
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Here, the tuple of PbP optimal laws are implemented by approximating the integrals

(3.7) and (3.8) by employing the Gauss Hermite Quadrature numerical integration

method. The resulting coupled approximations are then solved by posing them as a

system of nonlinear equations. From the numerical results follows the verification of

several of the properties found in Witsenhaussen’s paper.

3.2 Numerical Integration of the Optimal Strate-

gies

Consider the optimal strategies in their integral form (3.7) and (3.8). Recognizing that

with the exponential function within the integral, the integral form can be reformulated

to have a Gaussian exponential function, we employ the Gauss Hermite Quadrature

(GHQ) method to implement the optimal strategies.

First, we briefly review the Gauss Hermite Quadrature method. The approximate

numerical integration formula for a function f(x) on the infinite range (−∞,∞) with

the weight function e−x
2

is [31]:

∫ ∞
−∞

f(x)e−x
2

dx ≈ Σn
i=1f(xi,n)λi,n (3.9)

where the abscissas {xi,n} are the roots of the nth order Hermite polynomial

Hn(x) = −
√

2
n
hn(
√

2x) = 0

with hn(x) = e
x2

2
dn(e

−x2
2 )

dxn
and the weights {λi,n} are given by

λi,n =

√
π2n+1n!

H ′n(xi,n)2
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where H
′
n(x) = 2nHn−1(x). For n ≤ 10, the zeros xi,n of the Hermite polynomial Hn(x)

and the weights λi,n are calculated in [31]. For higher orders, the zeros and weights are

calculated in [62]. It is shown in [30] that the Gauss quadrature rule (3.9) is exact for

all continuous functions f that are polynomials of degree ≤ 2n− 1. The implications

of quadrature rule to approximate a discontinuous function will be discussed in Section

3.3.

It is in general a difficult problem to compute zeros and weights for any Hermite

polynomial and any weight function. Therefore, since the zeros and weights for

the aforementioned Hn(x) are calculated in the literature, we transform the optimal

strategies (3.7) and (3.8) to have the standard Gaussian function e−x
2

as the weight

function.

Consider the first law (3.7) and the change of variables as z = ζ−γ̄1(x0)√
2σ2

and dz =

dζ√
2σ2

. Then,

γ̄1(x0) = x0 −
1√
πk2

∫ ∞

−∞

{ z√
2σ2

(γ̄1(x0)− γ2(
√

2σ2z + γ̄1(x0)))2

+(γ̄1(x0)− γ2(
√

2σ2z + γ̄1(x0)))
}
e−z

2

dz

Using Gauss Hermite Quadrature approximation (3.9),

γ̄1(x0) ≈ x0 −
1√
πk2

n∑
i=1

{ zi√
2σ2

(γ̄1(x0)− γ2(
√

2σ2zi + γ̄1(x0)))2

+(γ̄1(x0)− γ2(
√

2σ2zi + γ̄1(x0)))
}
λi

(3.10)

Similarly approximating the second law (3.8) with the change of variable z = ξ√
2σ2
x

,

we get:
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γ2(y1) =

∫ ∞
−∞ γ̄1(ξ) exp (− (y1−γ̄1(ξ))2

2σ2 ) exp (− ξ2

2σ2
x
)dξ∫∞

−∞ exp (− (y1−γ̄1(ξ))2

2σ2 ) exp (− ξ2

2σ2
x
)dξ

≈
∑n

i=1 γ̄1(
√

2σ2
xzi) exp (− (y1−γ̄1(

√
2σ2
xzi))

2

2σ2 )λi∑n
i=1 exp (− (y1−γ̄1(

√
2σ2
xzi))

2

2σ2 )λi

(3.11)

Consider (3.10), since zi and λi are the (known) nodes and weights, for certain

x0 ∈ R, the unknowns are γ̄1(x0) and γ2(
√

2σ2zi+γ̄1(x0))) (whose argument is in turn a

function of γ̄1(x0)). In order to solve this equation, we employ the expression for γ2(y1)

from (3.11) by having y1 =
√

2σ2zi + γ̄1(x0). Substituting γ2(y1 =
√

2σ2zi + γ̄1(x0)))

from (3.11) in (3.10) to get:

γ̄1(x0) ≈ x0 −
1√
πk2

n∑
i=1

λi

{
zi√
2σ2(

γ̄1(x0)−
( n∑

j=1

(
γ̄1(
√

2σ2
xzj) exp (−

(
√

2σ2zi + γ̄1(x0)− γ̄1(
√

2σ2
xzj))

2

2σ2
)λj
))/

( n∑
j=1

(
exp (−

(
√

2σ2zi + γ̄1(x0)− γ̄1(
√

2σ2
xzj))

2

2σ2
)λj

)))2

+

(
γ̄1(x0)−

( n∑
j=1

(
γ̄1(
√

2σ2
xzj) exp (−

(
√

2σ2zi + γ̄1(x0)− γ̄1(
√

2σ2
xzj))

2

2σ2
)λj
))/

( n∑
j=1

(
exp (−

(
√

2σ2zi + γ̄1(x0)− γ̄1(
√

2σ2
xzj))

2

2σ2
)λj

)))}
(3.12)

While x0 ∈ R and
√

2σ2
xzi are known, γ̄1(x0) and γ̄1(

√
2σ2

xzi) are unknown. Let

si = γ̄1(
√

2σ2
xzi), ∀i. For each x0, (3.12) hence contains (n+ 1) number of unknowns,

i.e., n si’s and one γ̄1(x0):
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γ̄1(x0) ≈ x0 −
1√
πk2

n∑
i=1

λi

{
zi√
2σ2

(
γ̄1(x0)−

( n∑
j=1

(
sj exp (−(

√
2σ2zi + γ̄1(x0)− sj)2

2σ2
)λj
))/

( n∑
j=1

(
exp (−(

√
2σ2zi + γ̄1(x0)− sj)2

2σ2
)λj

)))2

+(
γ̄1(x0)−

( n∑
j=1

(
sj exp (−(

√
2σ2zi + γ̄1(x0)− sj)2

2σ2
)λj
))/

( n∑
j=1

(
exp (−(

√
2σ2zi + γ̄1(x0)− sj)2

2σ2
)λj

)))}

Substituting x0 = x0l =
√

2σ2
xzl for each l ∈ {1, 2, . . . , n}, we obtain n nonlinear

equations with n sl’s that are unknown, given in (3.13). Each sl, which is the value of

γ̄1(x0) at nodes selected according to Gauss-Hermite Quadrature, is the signaling level

of the control action. Rearranging (3.13) to move all terms on one side, we denote the

resulting system of nonlinear equations as fsysnonlin : Rn → Rn.

∀l = 1, 2, . . . , n

sl ≈
√

2σ2
xzl −

1√
πk2

n∑
i=1

λi

{
zi√
2σ2

(
sl −

( n∑
j=1

(
sj exp (−(

√
2σ2zi + sl − sj)2

2σ2
)λj
))/

( n∑
j=1

(
exp (−(

√
2σ2zi + sl − sj)2

2σ2
)λj

)))2

+(
sl −

( n∑
j=1

(
sj exp (−(

√
2σ2zi + sl − sj)2

2σ2
)λj
))/

( n∑
j=1

(
exp (−(

√
2σ2zi + sl − sj)2

2σ2
)λj

)))}
(3.13)

The solution of the system of n nonlinear equations (3.13) results in n explicit

points, i.e., n signaling levels s∗l , ∀l = 1, 2, . . . , n, such that ||fsysnonlin(s∗1, s
∗
2, . . . , s

∗
n)||
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is close to zero. Using these n signaling levels, we obtain the value of γ̄1(x0), ∀x0, by

substituting (s∗1, s
∗
2, . . . , s

∗
n) in (3.12) which results in one unknown γ̄1(x0) and solving

the resulting nonlinear equation for each x0. This is similar to the collocation method

used to solve integral equations, [2]. Here, x0 = x0l =
√

2σ2
xzl for each l ∈ {1, 2, . . . , n}

are the collocation points and signaling levels are the value of γ̄1(x0) at the collocation

points.

To obtain the strategy of the second controller, we substitute the signaling levels

(s∗1, s
∗
2, . . . , s

∗
n) in (3.11). This directly gives the expression for γ2(y1) which is evaluated

at y1. It is worth noting here that although y1 ∈ R, but because y1 = γ̄1(x0) + v from

(3.4), the values taken by y1 are dictated by the strategy of the first controller γ̄1(x0).

Once both the strategies γ̄1, γ2 are obtained, we calculate the total cost J from (3.6).

In this section, we presented the methodology to numerically integrate the derived

optimal strategies (3.7) and (3.8). We now briefly summarize it.

Input parameters: k, σ, σx, n

Input signals: x0, v

- Solve fsysnonlin to obtain the signaling levels (s∗1, s
∗
2, . . . , s

∗
n).

- For each x0, compute γ̄1(x0)

- For all y1 = γ̄1(x0) + v, compute γ2(y1)

Implementation aspects: We employ the software MATLAB to implement the

solution strategies (3.7) and (3.8). The command fsolve is used to solve the system of

nonlinear equations fsysnonlin and lsqnonlin to solve for γ̄1(x0).
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3.3 Results

In this Section, we present the results of our implementation and compare the costs we

obtain with the costs previously reported in the literature. The set of parameters in

the Witsenhausen counterexample (3.2)-(3.6) are (k, σ, σx). For certain set of values of

these parameters, the optimal law is affine while for the rest of the region of parameters,

the optimal law is non-linear.

In Lemma 1 in [37], Witsenhausen derived the optimal affine laws as:

γ̄aff1 (x0) = νx0

γ2(y1)aff = µy1 (3.14)

where γ̄1(x0) = x0 + γ1(x0),

µ =
σ2
xν

2

1 + σ2
xν

2

and t = σxν is a real root of the equation

(t− σx)(1 + t2)2 +
1

k2
t = 0

We denote the cost obtained from the optimal affine laws as Jaff = J(γ̄aff1 , γaff2 ).

In Theorem 2 of [37] he considers the sample non-linear laws:

γ̄wit1 (x0) = σxsgn(x0)

γwit2 (y1) = σx tanh (σxy1) (3.15)

and shows that Jwit < Jaff as k → 0, where Jwit is the cost resulting from the nonlinear

laws (3.15). That is, Jwit = J(γ̄wit1 , γwit2 ).
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We denote the cost we obtain from the derived optimal laws (3.7) and (3.8)

and implemented using the Gauss Hermite Quadrature numerical integration method

detailed in Section 3.2 as Jo. We consider different parameter values of (k, σ, σx) and

compare the cost we obtain Jo with Jaff , Jwit and some other costs previously reported

in the literature. For additional insight into the results, the total cost is broken into

two stages: Stage 1 and Stage 2 costs are the first and the second term, respectively,

in the total cost:

J(γ̄1, γ2) = E
{
k2(γ̄1(x0)− x0)2 + (γ̄1(x0)− γ2(y1))2

}
(3.16)

We have employed 600, 000 samples for x0 and v generated according to N (0, σx)

and N (0, σ) respectively. The order of the Hermite polynomial in GHQ method is n =

7. Moreover, as stated in Lemma 1 of [37], the optimal cost is less than min(1, k2σ2
x).

Accordingly, we verify if the cost Jo is less than min(1, k2σ2
x).

Parameters k = 0.001, σx = 1000, σ = 1

The total costs obtained are reported in Table 3.1. Note that Jo < min(1, k2σ2
x) = 1

and so are Jwit and Jaff . The optimal control laws γ̄1, γ1 and γ2 obtained are shown in

Fig. 3.2. As pointed in [37], we observe that γ̄1 is indeed symmetric about the origin.

Moreover, we obtain four quantization steps, compared to one step resulting from γ̄wit1 .

We also observe that the derived laws result in a strategy such that γ̄1(x0) ≈ γ2(y1)

leading to near zero Stage 2 cost. It is worth pointing out that since γ2 admits y1 =

γ̄1(x0) + v as the input, the behavior of γ2 over the entire real line R is not apparent.

Parameters k = 1, σx = 1, σ = 1

As pointed in [82], this set of parameter values (k ≮ 0.56 and σx is not large) is in

the region where affine laws are optimal. The optimal control laws (3.7) and (3.8) are

compared with optimal affine laws in Fig. 3.3. It is seen that the resulting laws are

the same as the optimal affine laws. We further compare the cost with Jaff and
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Table 3.1: Total cost, k = 0.001, σx = 1000

Stage 1 Stage 2 Total Cost

Jaff 0.9984 9.9843× 10−7 0.9984
Jwit 0.4041 0 0.4041
Jo 0.1137 1.1368× 10−7 0.1137

Figure 3.2: Optimal control laws (3.7) and (3.8)
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Figure 3.3: Comparison of the optimal control laws and the special class of optimal
affine laws

Table 3.2: Total cost, k = 1, σx = 1

Stage 1 Stage 2 Total Cost

Jaff 0.1011 0.3174 0.418500414352474
Jwit 0.4043 0.4480 0.852287449358227
Jo 0.1011 0.3174 0.418500469701766
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Jwit in Table 3.2. The negligible difference in Jaff and Jo is attributed to numerical

inaccuracy in the implementation of (3.7) and (3.8) through approximate numerical

integration method.

Comparison with [9]

A class of nonlinear policies initially introduced in [37] and further analyzed and

improved upon in [8] is given by:

γbb1 (x0) = εbbsgn(x0) + λbbx0

γbb2 (y1) = E[εbbsgn(x0) + λbbx0|y1] (3.17)

where εbb and λbb are parameters to be optimized over. For k = 0.01, σx =
√

80 and

σ = 1, [9] picks εbb = 5 and λbb = 0.01006 in the law (3.17) and reports the cost to

be J bb = 0.3309. Furthermore, the authors in [57] mention that they obtain the same

cost of 0.3309 with the algorithm developed therein. The optimal law γ̄1(x0) obtained

from (3.7) is shown in Fig. 3.4. The corresponding total cost is compared with J bb,

Jwit and the optimal affine cost Jaff in Table 3.3. The stage 2 cost from both Jo and

Jaff is of the order 10−7 and from Jwit it is 0.

Parameters k = 0.2, σx = 5, σ = 1

The last set of parameters we consider has been the most studied case and has enabled

more insights into the solution of the Witsenhausen counterexample. [4] provides a

numerical solution by employing one-hidden-layer neural network as an approximating

network. The cost obtained therein is denoted Jnn. Lee, Lau and Ho present a

hierarchical search approach in [45]. Therein, they impose γ̄1 to be a non-decreasing,

step function that is symmetric about the origin. For a number of steps, they find the

signaling levels (value of γ̄1 at the step) and the breakpoints (x0 where the step change

occurs). They also find that the cost objective is lower for slightly sloped steps
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Figure 3.4: Optimal control laws for the parameters in [9]

Table 3.3: Total cost obtained from different solutions

k = 0.01, σ = 1, σx =
√

80

Jaff 0.007986277332674
Jwit 0.003232551870223
J bb 0.3309
Jo 0.001566775786064
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than perfectly leveled steps. Through comparison of their costs for different number of

steps, they find that 7−step solution yields the lowest cost. The cost obtained in [45]

is denoted J llh here and the signaling levels therein are s∗ = {0,±6.5,±13.2,±19.9}.

In our work, the solution of (3.13) yields the signaling levels

s∗∗ = {0,±6.15,±12.8,±19.8}

and ||fsysnonlin(s∗∗)|| = 10−15 while ||fsysnonlin(s∗)|| = 0.7. Following up on the notes

from Section 3.2, the Gauss quadrature rule is not exact for the set of parameters

k = 0.2, σx = 5, σ = 1 because this parameter set lies in the region where the optimal

laws are non-linear. Moreover, the optimal non-linear laws are not continuous; they

are only piecewise continuous. As a result, the inaccuracy in the approximation using

Gauss quadrature rule reveals itself through the system of nonlinear equations fsysnonlin.

The cost we obtain for signaling levels s∗ and s∗∗ are Jo∗ = 0.16 and Jo∗∗ = 0.1712,

respectively.

The strategy of the first controller, γ̄1(x0), we obtained for the signaling levels s∗

and s∗∗ are shown in Fig 3.5. Although we do not externally impose symmetry, it

can be observed that γ̄1 is symmetric about origin and is non-decreasing. We zoom

in on one of the 7 steps and observe in the left column of Fig 3.6 that the steps are

slightly sloped. Further zooming in, we see in the right column of Fig 3.6 that each

signaling level is further comprised of a number of closely spaced steps. Similar to this

result, the authors in [45] added segments in each of the 7 steps to obtain the cost

J llh = 0.167313205338. We compare both the costs with previously reported costs in

the literature in Table 3.4. Further in agreement with the findings in [45], we obtain

the lowest cost for 7 steps, Jo∗∗ = 0.1712.

With the parameter set k = 0.2, σx = 5, σ = 1, the number of steps we obtain is

the same as the value of the Gauss quadrature rule parameter n. However, this is not

necessarily the case for all parameter sets; for example see Section 3.3. The parameter

set k = 1, σx = 5, σ = 1 is known to lie in a region where the optimal law is affine,
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Figure 3.5: Comparison of obtained signaling levels s∗∗ with those from [45]

Figure 3.6: Magnifying one signaling level from Fig. 3.5 highlights that the levels are
slightly sloped
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Table 3.4: Reported and obtained costs, k = 0.2, σx = 5, σ = 1

Stage 1 Stage 2 Total Cost

Jaff 0.0017428616051158 0.956950417234115 0.958693278839234
Jwit 0.403507741927546 2.134488364684996× 10−6 0.403509876415911
Jnn[4] - - 0.1735
J llh [45] 0.131884081844 0.035429123524 0.167313205368
Jo∗ 0.128541364988695 0.038385613344897 0.166926978333592
Jo∗∗ 0.120110042087359 0.051158481289032 0.171268523376388
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and even though we employ n = 7 steps for GHQ, the resulting control laws are affine.

Likewise, as seen in Fig 3.4, the parameter set lies in the region where the optimal

law is non-linear and we obtain a three-step control law for γ̄1 for the GHQ parameter

n = 7.
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Chapter 4

Centroidal Voronoi Tessellations

and their Computation

The field of team decision theory is broad, encompassing almost every architecture in

a team problem. However, as seen in Chapter 3, the field still remains largely in its

theoretical development stage. One of the challenges preventing its applicability in

real-world problems is the difficulty in obtaining optimal decentralized solutions when

the information structure is non-classical. Accordingly, solving the resource allocation

problem might prove extremely cumbersome in a team decision framework. Therefore,

as a next step in this work, we explore another approach – through Centroidal Voronoi

tessellations (CVTs).

In this Chapter, we formalize the definition of CVTs and study its properties

in Section 4.1. We look into the computation of CVTs using Lloyd’s algorithm in

Section 4.2.1, formalize a method to analytically obtain CVTs in one-dimensional

spaces in Section 4.2.2, and compare the two in Section 4.2.3. We then develop a

CVT computation method for higher dimensional spaces in Section 4.3.1 and present

the corresponding results in Section 4.3.2.
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4.1 Centroidal Voronoi Tessellation

Consider Ω ⊂ Rn. Let Vi ⊂ Ω, and zi ∈ Ω. Denote by I the set of indices:

IN = {1, 2, . . . , N}, N ∈ N. Let ρ(x) be the density function associated with Ω.

The following are some helpful definitions to build the understanding of a Centroidal

Voronoi Tessellation, [24].

1 Tessellation: A collection of N number of subsets of Ω is called a tessellation

of Ω if the subsets have disjoint interiors and their union makes up Ω. That is,

{Vi}i∈IN is a tessellation of Ω if Vi ∩ Vj = ∅ for i 6= j, and ∪i∈I V̄i = Ω̄, where V̄i

is the closure of Vi.

2 Voronoi region and generators: The Voronoi region V̂i corresponding to a point

zi is a collection of points in Ω that are closer to zi than zj, ∀i 6= j. That is,

V̂i = {x ∈ Ω : ||x − zi|| < ||x − zj||, i 6= j and i, j ∈ IN}. Correspondingly, the

points {zi}i∈IN are called the Voronoi generators.

3 Voronoi tessellation: The set of all the Voronoi regions, {Vi}i∈IN , corresponding

to the generators {zi}i∈IN is called a Voronoi tessellation (VT).

Let z = {zi}i∈IN denote the set of Voronoi generators in Ω. Similarly, denote by

Vz = {Vi}i∈IN the set of Voronoi regions corresponding to the set of generators z. A

Voronoi tessellation formed from generator z would hence be denoted V T = {z,Vz}.

For a visual demonstration, consider n = 1 and let Ω ⊂ R be [0, 15]. Consider

two sets of generators z1 = {3, 4, 9} and z2 = {6, 9, 14} in Ω. Fig. 4.1 shows their

corresponding Voronoi regions V1
z and V2

z. The top line indicates the region Ω, the

middle graph shows the Voronoi tessellation corresponding to z1, and the bottom graph

corresponding to z2. The generators are marked as dots in colors red, green and blue,

and their Voronoi regions are marked as solid lines in respective colors for both the

Voronoi tessellations. Notice that the generators do not appear to the “centers” in

their Voronoi regions. To be precise, we need to include the probability distribution of

the region Ω in order to define its “center”, or the mass centroid to be exact.
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Figure 4.1: Voronoi Tessellations of z1 and z2 in the region [0, 15].
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The mass centroid of a region Vi ⊂ Ω under the probability density function ρ(x)

is defined as:

zcVi,ρ =

∫
Vi
xρ(x)dx∫

Vi
ρ(x)dx

(4.1)

Consider the same one-dimensional region from Fig. 4.1 with generators z1 and z2

and their corresponding Voronoi regions V1
z and V2

z. Consider Uniform and Normal

distributions on Ω: U(0, 15) and N (7.5, 1). Fig. 4.2 shows the mass centroids of

the two Voronoi tessellations under the considered distributions. The centroids of the

Voronoi regions V1
z for Uniform and Normal distributions are shown in the center

graph, marked by star and square symbols, respectively. Notice that the centroids

corresponding to the uniform distribution are at the center of the Voronoi regions,

whereas the centroids corresponding to the normal distribution are closer to each other

and seeming to approach to cluster around the specified mean 7.5. Similarly, the

bottom graph shows the centroids of the Voronoi regions of z1. The key point to note

in Fig. 4.2 is that z1 6= zcVz1 ,U
6= zcVz1 ,N

. That is, the generators z1 are not the mass

centroids for either of the considered distributions. Same is true for z2.

Accordingly, a Voronoi tessellation where the generators of all the Voronoi regions

are the mass centroids of their respective Voronoi regions is called a Centroidal Voronoi

Tessellation (CVT), [24]. Since it is not the case in Fig. 4.2, the two Voronoi

tessellations showed therein are not CVTs. In order to obtain the CVT, one can

follow its definition and move the generators to the mass centroids. The Voronoi

regions corresponding to the new generator points is obtained, and their mass centroids

computed. If the generators are the mass centroids, then the tessellation is a centroidal

Voronoi tessellation. If not, the procedure can be repeated until a CVT is obtained.

Such an iterative method is called Lloyd’s algorithm, and will be further discussed

in Section 4.2.1.The CVT obtained for the region Ω = [0, 15] under the distributions

U(0, 15) and N (7.5, 1) is shown in Fig. 4.3.
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Figure 4.2: Mass centroids of Voronoi Tessellations of z1 and z2 in the region [0, 15]
under Uniform and Normal distributions.

Figure 4.3: Centroidal Voronoi Tessellations of [0, 15] under Uniform and Normal
distributions.
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Moreover, the centroids are independent of the generators z1 and z2, as seen in

Fig. 4.3. One may be tempted to conclude that CVT is unique in this example, and it

is indeed true for one-dimension under certain assumptions. However, in general, the

solution to finding the CVT is not unique. We will now briefly look into the uniqueness

properties of CVTs.

4.1.1 Uniqueness of Centroidal Voronoi Tessellations

In order to discuss the uniqueness of CVTs, it is helpful to first mathematically

formulate the problem of finding them. Given a region Ω ⊂ Rn, a positive integer

N , and a probability density function ρ(x) on Ω, consider the functional F with any

N points zi ∈ Ω and any tessellation {Vi}i∈IN of Ω as input to its arguments:

F((zi, Vi), i ∈ IN) =
∑
i∈IN

∫
x∈Vi

ρ(x)||x− zi||2dx (4.2)

Proposition 3.1 in [24] states that a necessary condition for the function F to be

minimized is that {Vi}i∈IN are the Voronoi regions corresponding to {zi}i∈IN , and

simultaneously, {zi}i∈IN are the centroids of their respective Voronoi regions. In other

words, the minimizer of the functional F is a Centroidal Voronoi Tessellation.

Additionally, if the tessellation in (4.2) is fixed to be the Voronoi tessellation of

{zi}i∈IN , then the following functional K has the same minimizer as F , [24].

K((zi), i ∈ IN) =
∑
i∈IN

∫
x∈Vi

ρ(x)||x− zi||2dx (4.3)

This functional K is also referred to as the energy of the tessellation or the quantization

energy. It is stated and proved in Lemma 3.4 in [24] that K is continuous and

that it possesses a global minimum. Moving from the existence of the CVT to its

uniqueness, [24] also mentions that K may have local minimizers. Any more results on

the uniqueness of CVTs require additional assumptions.
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It is showed in [27] that the solution of (4.3) is unique in one-dimensional regions

with a logarithmically concave continuous probability density function of finite second

moment. As reiterated in [76], for n = 1, the logarithmic concavity condition implies

that any CVT is a local minimum, and further, that there is a unique CVT that is both

a local and a global minimum of K(z), where z = {zi}i∈IN . Accordingly, since the two

distributions – Uniform and Normal – considered in Fig. 4.2 on the one-dimensional

region Ω = [0, 15] are log-concave with finite second moment, we have that the CVTs

showed therein are the global minima for the two distributions.

The solution of (4.3) are also called scalar quantizers for n = 1 and vector quantizers

for higher dimensions. The conditions on the uniqueness of vector quantizers for the

general case, that is, no assumptions on the region, density or the number of quantizers

N , remain an open area of research. However, it is proved in [76] that for N = 2, there

does not exist a unique CVT for any density for dimensions greater than one.

For a graphic illustration, one may consider a square in R2 with two generator

points under Uniform distribution. As shown in Fig. 4.4, there are multiple CVTs: all

the three Voronoi tessellations shown are centroidal. Additional CVTs can be obtained

through rotations.

To summarize, the solution of (4.3) is unique in one-dimensional regions for log-

concave density functions but remains an open and actively sought out question in

higher dimensions for general cases. In the next Section, we look into ways to obtain

the centroidal Voronoi tessellation.

4.2 Computation of CVT in 1-D Spaces

Given a region Ω ⊂ Rn, a number of generators N , and a density function ρ(x) over Ω,

there are various iterative algorithms to compute a CVT in Ω. As noted in the previous

Section, in general, the CVT need not be unique for any dimensional region unless

certain conditions are imposed on the density function. Accordingly, the solutions

rendered by all the algorithms, to compute the CVT, need not be the unique global
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Figure 4.4: Two generator centroidal Voronoi tessellations of a square with uniform
density.
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minimizers. In this Section, we first describe perhaps the most widely employed of all

the algorithms: Lloyd’s algorithm, and then develop a computation method to obtain

the exact solution of the problem of finding the CVT in one-dimensional regions.

4.2.1 Lloyd’s Algorithm

Introduced in [47] to find the optimal quantization in pulse-code modulation, Lloyd’s

algorithm, also known as Voronoi iteration or relaxation, has been modified or adapted

in various fields. At the core of it, Lloyd’s algorithm is an iteration between constructing

Voronoi tessellations and their centroids:

Given: Ω ⊂ Rn, N , ρ(x)

Initialize: Generators z = {zi}i∈IN , where each zi ∈ Ω

1 Construct the Voronoi tessellation Vz.

2 Compute the mass centroids zcVz,ρ
of Vz.

3 If the computed centroids meet certain stopping criteria then terminate. If

not, then set z = zcVz,ρ
, and return to Step 1.

Since we are looking for a CVT, the search/iterations stop when the centroids of the

Voronoi regions are the generators. Accordingly, the stopping criteria can be defined

to have the generators same as the centroids with some tolerance. For example, |z −

zcVz,ρ
| ≤ 10−6 can be a stopping criteria. As a result, the accuracy of the resulting

solution depends on the specified tolerance.

Even though Lloyd’s algorithm is iterative and approximate, it has certain desirable

convergence properties. Various global convergence properties of the Lloyd’s algorithm

are rigorously proved in [23]. Moreover, [23] also surveys and presents the complete

compilation of all the results concerning the convergence of the Lloyd’s algorithm.

Additionally, the authors of [23] also rigorously prove various global convergence
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theorems: the global convergence of subsequences for any density functions, the global

convergence of the whole sequence in one-dimensional space, and the global convergence

under some non-degeneracy conditions. Specifically for one-dimensional spaces with

log-concave density functions, the local convergence using the Lloyd’s algorithm has

been proved in [42]. Since the CVT in one-dimensional spaces with log-concave density

functions is both a local and global minimum of (4.3), one can conclude that the

Lloyd’s algorithm converges to the unique globally minimizing CVT in such cases. In

higher dimensions, as discussed in Section 4.1.1, the CVT need not be unique, and the

Lloyd’s algorithm converges to one of them. Moreover, Lloyd’s algorithm has linear

convergence rate that is slow for large-scale problems. Therefore, depending on the

application at hand, various algorithms that have faster convergence than Lloyd’s have

been proposed, [46], [79], [34].

Finding the exact solution of the problem of finding the CVT is highly non-

trivial, especially as the dimension of the space grows. For one-dimensional spaces,

we formalize a method to analytically compute the exact solution.

4.2.2 System of Nonlinear Equations

The core idea behind the analytical computation of the CVT in one-dimensional region

is to parameterize the Voronoi regions in terms of their centroids. In a region Ω =

[a, b] ⊂ R, without loss of generality, let the N generator points be z1 < z2 < . . . <

zN ∈ Ω. By definition of Voronoi regions as described in Section 4.1, the Voronoi

regions of these generator points are given as:
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V1 = [a,
z1 + z2

2
]

V2 = [
z1 + z2

2
,
z2 + z3

2
]

...

Vi = [
zi−1 + zi

2
,
zi + zi+1

2
]

...

VN = [
zN−1 + zN

2
, b] (4.4)

Since, by definition of CVT, the N generators of the centroidal Voronoi tessellation

in Ω with density ρ(x) are the centroids of the Voronoi regions, the centroids from

(4.1) can be rewritten in terms of the parameterized Voronoi regions from (4.4) with

centroids as generators. The resulting centroids are given as:

zc1 =

∫ zc1+z
c
2

2

a
xρ(x)dx∫ zc1+z
c
2

2

a
ρ(x)dx

zc2 =

∫ zc2+z
c
3

2
zc1+z

c
2

2

xρ(x)dx∫ zc2+z
c
3

2
zc1+z

c
2

2

ρ(x)dx

...

zci =

∫ zci+z
c
i+1

2
zc
i−1

+zc
i

2

xρ(x)dx

∫ zc
i
+zc
i+1

2
zc
i−1

+zc
i

2

ρ(x)dx

...

zcN =

∫ b
zc
N−1

+zc
N

2

xρ(x)dx∫ b
zc
N−1

+zc
N

2

ρ(x)dx
(4.5)
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where zcVi,ρ from (4.1) is denoted as zci for ease of notation. In (4.5), there are N

number of unknowns: zci ’s, andN equations. Therefore, solving this system of nonlinear

equations (SNLE) will result in the generators of the centroidal Voronoi tessellation,

which is the exact solution of the functional K from (4.3).

There are various methods to solve the SNLE from (4.5), and depending on the

density function, one can choose the most suitable method. The two main approaches

to analytically solving an SNLE are by substitution and elimination. If the exact

solutions cannot be determined by algebraic methods, then one can approximate

the solutions using numerical methods, [66]. An additional advantage of employing

numerical methods is that they usually allow the problem framework to remain generic.

For example one need not choose a numerical method specifically for a density function.

Here, the SNLE from (4.5) is solved in MATLAB using the command fsolve that

uses the Powell’s dog leg algorithm, an iterative optimization algorithm similar to the

Levenberg-Marquardt algorithm. In the next Section, along with a brief comparison

of the two methods discussed in this section, their solutions are presented.

4.2.3 Numerical Results

One of the main differences between Lloyd’s algorithm and the SNLE method is

that the former is an approximate method to obtain a CVT, while the latter is not.

However, since the CVT is unique in one-dimensional spaces (see Section 4.1.1), and in

conjunction with the convergence properties of the Lloyd’s algorithm, it is inferred that

the solution from the Lloyd’s algorithm is indeed the centroidal Voronoi tessellation.

On the other hand, while the SNLE method can be exact, in order to preserve the

generalizability in the framework, we take a numerical approach to solve it. Therefore,

while the solution can be sensitive to the initial conditions, with an appropriate choice

of the initial conditions and given the uniqueness of the CVT in one-dimensional spaces,

the solution from both the methods are expected to be very close to each other.

77



In the subsequent figures, we will compare the solutions from both the methods

under various conditions. The region Ω = [0, 20] is the x-axis that is shown while

the number of generators N and the density function are explicitly mentioned in each

graph. Fig. 4.5 shows the locations of the N generators in the CVT in Ω under a

Gaussian distribution with mean 10 and standard deviation 2. The top graph considers

5 generators, the middle one 15, and the bottom one considers 45 generators. The

solution zl from the Lloyd’s algorithm is marked by the diamond symbol, and the

solution of the SNLE by the asterisk symbol. The generator points are marked by N

different colors while keeping the corresponding solutions from the two methods in the

same color but different symbol. That is, zli and zci are marked in the same color but

different symbols. To preserve the readability of the graphs, the corresponding Voronoi

regions of zl and zc are not shown. However, one can visualize the Voronoi regions

with the aid of the generators and their Voronoi regions from Fig. 4.2.

Similarly, Fig. 4.6 shows the centroidal Voronoi tessellations with 25 generators

in Ω = [0, 20] under an Exponential distribution with the rate parameter λ increasing

from 0.1 to 0.5 to 1 from top to bottom. While the number of generators were varied

in Fig. 4.5 under the fixed, symmetric Gaussian distribution, the number of generators

is fixed in Fig. 4.6 under the varying, asymmetric Exponential distribution.

The two methods discussed in Section 4.2.1 and 4.2.2 are scalable to any number of

generators, theoretically. The Lloyd’s algorithm in particular is more robust to a very

high N in comparison with the SNLE method, since the latter involves solving a system

of N equations. A small demonstration of the scalability of the two methods is shown

in Fig. 4.7 where the CVT is obtained for 100 generators under three different density

functions: [log-concave] Gaussian with mean 10 and deviation 2, [not log-concave]

Cauchy with parameters x0 = 10, γ = 2, and [log-concave] Gamma distribution with

shape parameter 2 and rate parameter 5. An additional noteworthy point is the non-

specificity of the two methods regarding the underlying probability densities; while

uniqueness may not be guaranteed in non-log-concave distributions, the two methods

are applicable to any probability distribution in one-dimension.
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0 2 4 6 8 10 12 14 16 18 20

5 CVT generators under Gaussian(10,2)

Llyods

Exact

0 2 4 6 8 10 12 14 16 18 20

15 CVT generators under Gaussian(10,2)

Llyods

Exact

0 2 4 6 8 10 12 14 16 18 20

45 CVT generators under Gaussian(10,2)

Llyods

Exact

Figure 4.5: Centroidal Voronoi tessellations from 5 (top), 15 (middle) and 45
(bottom) generators in Ω = [0, 20] under Gaussian distribution with mean 10 and
standard deviation 2.
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0 2 4 6 8 10 12 14 16 18 20

25 CVT generators under Exponential(0.1)

Llyods

Exact

0 2 4 6 8 10 12 14 16 18 20

25 CVT generators under Exponential(0.5)

Llyods

Exact

0 2 4 6 8 10 12 14 16 18 20

25 CVT generators under Exponential(1)

Llyods

Exact

Figure 4.6: Centroidal Voronoi tessellations from 25 generators in Ω = [0, 20]
under Exponential distribution with the rate parameters 0.1 (top), 0.5 (middle) and 1
(bottom).
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0 2 4 6 8 10 12 14 16 18 20

100 CVT generators under Gaussian(10,2)

Llyods

Exact

0 2 4 6 8 10 12 14 16 18 20

100 CVT generators under Cauchy(10,2)

Llyods

Exact

0 2 4 6 8 10 12 14 16 18 20

100 CVT generators under Gamma(2,5)

Llyods

Exact

Figure 4.7: Centroidal Voronoi tessellations from 100 generators in Ω = [0, 20] under
(top) Gaussian distribution with mean 10 and standard deviation 2, (middle) Cauchy
with parameters x0 = 10, γ = 2 and Gamma distribution with shape parameter 2 and
rate parameter 5.
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To summarize, in this section, we looked into ways to compute the Centroidal

Voronoi Tessellations in one-dimensional spaces. The first approach is the widely

employed Lloyd’s algorithm, and the second approach is the method that is based

on solving a system of non-linear equations from Section 4.2.2. The two methods are

then compared through their solutions under different scenarios.

4.3 Computation of CVT in n-D Spaces

4.3.1 Decomposition Method

From looking into computational methods for CVTs in one-dimensional spaces in the

previous section, we move to higher dimensions here. In this section, we first propose

a simple method to obtain a tessellation in a higher dimensional space from CVTs in

1-D spaces. Then, we present the proof that a tessellation constructed in such a way

is also a CVT.

Consider a region Ω ⊂ Rn, n > 1, and Ω = Ω1 × Ω2 × . . . × Ωn. Let ρ(.) be the

probability density function over Ω, and ρi(.) be the density function over Ωi,∀i ∈

In = {1, 2, . . . , n}. That is, ρ(.) is the joint density, and {ρi(.)}i∈In are the marginal

densities.

Let the number of generators in a CVT of Ωi under ρi(.) be Ni, and let the number

of generators in a CVT of Ω under ρ(.) be N , where N = N1× . . .×Nn. Denote a CVT

in Ωi as {z∗i ,Vz∗i
}. Here, z∗i = {z∗i,j}j∈INi is the set of all the centroids of the CVT in Ωi,

and Vz∗i
= {Vz∗i,j}j∈INi is the set of their respective Voronoi regions. Similarly, denote

a CVT in Ω as {z∗,Vz∗}, where z∗ = {z∗k}k∈IN denotes the centroids, Vz∗ = {Vz∗k}k∈IN
denotes their corresponding Voronoi regions.

The set of centroids in Ω can be given as a matrix z∗ = [z∗1 z∗2 . . . z
∗
N ] ∈ Rn×N ,

where each matrix column {z∗k}k∈IN ∈ Rn denotes a centroid in Rn. Similarly, the set

of centroids in Ωi is given as a vector z∗i = [z∗i,1 z
∗
i,2 . . . z

∗
i,Ni

] ∈ RNi , where each element

is a centroid in R. Additionally, note that Vz∗k ⊂ R
n while Vz∗i,j ⊂ R.
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Let In×N denote the matrix containing all combinations of vectors INi ,∀i ∈ In.

That is, define the kth of the N columns of In×N as {[j1 j2 . . . jn]T such that ji ∈

INi , i ∈ In} For example, if n = 2, N1 = 2, N2 = 3, then N = 2× 3 = 6 and

In×N =

1 1 1 2 2 2

1 2 3 1 2 3

 (4.6)

With all the notations defined, we now present a straightforward method of

constructing a tessellation in Ω from CVTs in Ω′is:

Tessellation construction in Ω

For each dimension i ∈ In, construct a CVT in Ωi: {z∗i ,Vz∗i
}

Obtain the n coordinates of each centroid in Ω and its Voronoi region as:

∀k ∈ IN :

∀i ∈ In :

z∗k(i) = z∗In×N (i,k)

Vz∗k = Vz∗
In×N (i,k)

The set of all the centroids {z∗k}k∈IN and their Voronoi regions {Vz∗k}k∈IN make the

tessellation in Ω: {z∗,Vz∗}

Having obtained the tessellation, we show in the following theorem that {z∗,Vz∗}

constructed from {z∗i ,Vz∗i
}i∈In is a CVT in Ω, which was published in [73].

Theorem: Let Ω = Ω1×Ω2× . . .×Ωn ⊂ Rn, n > 1. Let ρ(.) be the joint density

function over Ω, and ρi(.) be the density function over Ωi, ∀i ∈ In. If ρ(x1, . . . , xn) =∏
i∈In ρi(xi), then ∀i ∈ In, ∀k ∈ IN and ki = In×N(i, k), we have:

z∗k = (z∗1,k1 , z
∗
2,k2

, . . . , z∗n,kn) (4.7)

Vz∗k = Vz∗1,k1
× Vz∗2,k2 × . . .× Vz∗n,kn (4.8)
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Proof:

Consider x ∈ Vz∗1,k1 × . . . × Vz∗n,kn , ∀i ∈ In, and denote x = (x1, . . . , xn). Because

Vz∗i,ki
is the Voronoi region of z∗i,ki , ∀i ∈ In, we have for any ji ∈ INi :

||xi − z∗i,ki||2 ≤ ||xi − z
∗
i,ji
||2 =⇒ (xi − z∗i,ki)

2 ≤ (xi − z∗i,ji)
2 (4.9)

Summing (4.9) ∀i ∈ In,

(x1 − z∗1,k1)
2 + . . .+ (xn − z∗n,kn)2 ≤ (x1 − z∗1,j1)

2 + . . .+ (xn − z∗n,jn)2

=⇒
√

((x1 − z∗1,k1)
2 + . . .+ (xn − z∗n,kn)2) ≤

√
((x1 − z∗1,j1)

2 + . . .+ (xn − z∗n,jn)2)

Let ẑ∗k = (z∗1,k1 , z
∗
2,k2

, . . . , z∗n,kn), then:

||x− ẑ∗k||2 ≤ ||x− z∗j || =⇒ Vẑ∗k = Vz∗1,k1
× . . .× Vz∗n,kn (4.10)

That is, Vz∗1,k1
× . . .× Vz∗n,k1 is the Voronoi region of ẑ∗k.

Consider the ith coordinate of ẑ∗k. Since z∗i,ki is the centroid of Vz∗i,ki
, by definition

of centroid, we have:

z∗i,ki =

∫
Vz∗
i,ki

xiρ1(xi)dxi∫
Vz∗
i,ki

ρn(xi)dxi

=

∫
Vz∗

1,k1

ρ1(x1)dx1∫
Vz∗

1,k1

ρ1(x1)dx1

× . . .×

∫
Vz∗
i,ki

xiρi(xi)dxi∫
Vz∗
i,ki

ρi(xi)dxi
× . . .

∫
Vz∗
n,kn

ρn(xn)dxn∫
Vz∗
n,kn

ρn(xn)dxn
(4.11)

Because the events in Ωi are independent of those in Ωj, ∀i 6= j, i, j ∈ In, we have

ρ(x1, . . . , xn) = ρ1(x1)× . . .× ρn(xn). Substituting this relation in (4.11) implies:
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z∗i,ki =

∫
Vz∗

1,k1

. . .
∫
Vz∗
n,kn

xiρ(x1, . . . , xn)dx1 . . . dxn∫
Vz∗

1,k1

. . .
∫
Vz∗
n,k

ρ(x1, . . . , xn)dx1 . . . dxn

which, by (4.1), is the ith coordinate of the kth of the N centroids – z∗k – in Ω with

density ρ(.). That is, z∗k(i) = z∗i,ki . Since this holds for all i ∈ In coordinates, we

have z∗k = ẑ∗k = (z∗1,k1 , z
∗
2,k2

, . . . , z∗n,kn), and hence proving (4.7). On the other hand,

since Vz∗1,k1
× . . .× Vz∗n,k1 is the Voronoi region of ẑ∗k from (4.10), and z∗k = ẑ∗k, we have

Vz∗1,k1
× . . . × Vz∗n,k1 is the Voronoi region of z∗k, hence proving (4.7). Since this holds

for all N centroids in Ω, we have that Vz∗ = {Vz∗k}k∈IN is the Voronoi partition of

z∗ = {z∗k}k∈IN .

Having shown that Vz∗1,k1
× . . . × Vz∗n,k1 is the Voronoi region of ẑ∗k and that ẑ∗k is

its centroid, we now show that {Vz∗k}k∈IN is a tessellation in Ω. Because Vz∗i
is a

tessellation in Ωi, ∀i ∈ In, we have:

⋃
k∈IN

∏
i∈In

Vz∗i,ki
=
∏
i∈In

⋃
ji∈INi

Vz∗i,ji
=
∏
i∈In

Ωi = Ω

∀ k 6= l, Vz∗k

⋂
Vz∗l =

∏
i∈In

Vz∗i,ki

⋂∏
i∈In

Vz∗i,li

=
∏
i∈In

(Vz∗i,ki
∩ Vz∗i,li ) = ∅

Hence, {Vz∗k}k∈IN is a tessellation in Ω.

Since z∗ are the centroids of partitions Vz∗ , Vz∗ = {Vz∗k}k∈IN are the Voronoi regions

of z∗, and {Vz∗k}k∈IN is a tessellation in Ω, we have that {z∗,Vz∗} is a CVT in Ω with

density ρ(.).

�
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Consider Ω = [0, 20]× [0, 10] in R2 with density ρ(.) ∼ N (µ,Σ), where µ = (12, 7)

and Σ = [4 0; 0 1]. Denote the CVT as {z∗,Vz∗}, where z∗ = (z∗1 , . . . , z
∗
6), and

z∗k ∈ R2,∀k ∈ I6 = {1, . . . , 6}.

On the other hand, let N1 = 3 and N2 = 2. Consider the unique CVT in Ω1 = [0, 20]

for ρ1(.) ∼ N (12, 4), which is denoted {z∗1,Vz∗1
}. Note z∗1 = (z∗1,1, z

∗
1,2, z

∗
1,3), and z∗1,j ∈

R,∀j ∈ I3. Similarly, consider the unique CVT in Ω2 = [0, 10] for ρ1(.) ∼ N (7, 1),

which is denoted {z∗2,Vz∗2
}. Note z∗2 = (z∗2,1, z

∗
1,2), and z∗1,j ∈ R,∀j ∈ I2. These

generators are shown in Fig 4.8: the region Ω1 and the CVT generators in it are shown

in pink, and the region Ω2 and the CVT generators in it are shown in blue.

Suppose Ni = N and Nj = 1, ∀j 6= i for some i, j ∈ In, n > 1. This corresponds

to the case where all the centroids in Rn are “aligned” along the ith dimension, that is,

the centroids only differ in their ith coordinate. In such a case, the decomposition of

obtaining the CVT in Rn into n CVTs in R is equivalent to obtaining a CVT in R with

all other dimensions held constant. While the proposed method of obtaining a CVT in

higher dimensions by employing a combination of CVTs in R does not result in every

possible CVT of the higher dimension under the given conditions, we are guaranteed

to obtain at least one of them in a straightforward manner with minimal computation.
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Figure 4.8: CVT in Ω with density N (µ,Σ) where µ = [12; 7] and Σ = [4 0; 0 1] .
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4.3.2 Numerical Results

In this Section, we present a set of numerical results to demonstrate the ease of

extension in higher dimensions through the time required to compute the CVT and its

energy. Additionally, for 2 and 3 dimensional spaces we also present the tessellations

graphically. To obtain the CVTs in 1-D spaces, one can employ Lloyd’s algorithm or

solve the system of nonlinear equations; the latter being more desirable when N ′is are

low, in the order of 10s.

We compare the proposed decomposition method to obtain a CVT in higher

dimensional space with a popular probabilistic method – MacQueen’s which was

introduced in [50]. The elegant MacQueen’s algorithm requires Monte Carlo sampling

for initialization and randomization in every iteration to compute the centroids in a

given space under certain density. Its performance vastly depends on the Monte Carlo

samples, and accordingly on the method employed to generate such samples. The

authors in [39] compare their proposed method to obtain a CVT with MacQueen’s

method for 1-D spaces and employ rejection sampling to obtain Monte Carlo samples.

However, the rejection method does not readily scale to higher dimensions; its high

rejection rate makes it extremely inefficient to generate Monte Carlo samples according

to a desired distribution in higher dimensional spaces [60]. Since our focus is CVT in

high-dimensional spaces, we employ Metropolis-Hasting algorithm [60] to obtain the

Monte Carlo samples for MacQueen’s method. The termination criteria we employ for

implementation of MacQueen’s is the change in the norm of the centroids over each

update; if the norm changes less than 10−6 we terminate the MacQueen’s iterations.

Additionally, [39] compares their results with those from MacQueen’s through

the CVT energy for 1-D spaces and graphically for two-dimensional spaces. While

obtaining the Voronoi partitions is very straightforward in 1-D spaces, its computation

in higher dimensions is difficult. The requirement of the knowledge of Voronoi cell

boundary of each centroid along with the computation of the cell energy, which

involves the computation of “area” of arbitrary high-dimensional polygons, makes
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the computation of the tessellation energy in high dimensional spaces very difficult.

Therefore, following [39] we compare our results with those from MacQueen’s visually

in two and three dimensions, and through computation time in higher dimensional

spaces.

Consider Ω = [−1, 1] × [−1, 1]. Following the cases taken up in [39], we let the

density function over Ω be e−10x2 . The CVT with 16 centroids in each dimension,

obtained using the proposed decomposition method and the MacQueen’s method are

shown in Fig. 4.9. As designed and expected, the tessellation from the decomposition

has a well drawn out grid-like structure with the intensity of centroids being higher in

the center of Ω. The resulting tessellation is a CVT with (low) energy of 2.9×10−4 and

was obtained in a computational time as less as 13.18 minutes in an ordinary laptop –

MacBook Air 2015 with 2.2 GHz Dual-Core Intel Core i7.

The next case of demonstration is in the region Ω = [0, 20] × [0, 20] with density

N (µ,Σ), where µ = (5, 6.5) and Σ = [2 0; 0 1]. The resulting CVTs with 3000

centroids, obtained using the proposed method and the MacQueen’s method are shown

in Fig. 4.10. While we can observe a similar CVT pattern from the two methods, we

can see the laid-out grid-like tessellation from the proposed method. Additionally,

notice the lack of the CVT energy in the MacQueen’s method.

Moving to 3 dimensional spaces, we consider Ω = [0, 10] × [0, 10] × [0, 10] with

density N (µ,Σ), where µ = (6, 5, 3.5) and Σ = [2 0 0; 0 1 0; 0 0 1]. The resulting

well-aligned grid-like CVT with 16 centroids in each dimension, with energy 0.1616, is

shown in Fig. 4.11. In contrast to the aligned CVT, the solution tessellation from

MacQueen’s under the same conditions is also shown in Fig. 4.11.

The convergence of the MacQueen’s iterates to a CVT is not guaranteed for all

conditions, and due to its probabilistic nature, its performance vastly depends on the

Monte Carlo samples. Since we employ the deterministic Lloyd’s method to compute

the CVTs in one dimensional spaces for which convergence is proven, the proposed

algorithm converges to a CVT without the performance being vastly tied to the initial

samples. Moreover, our proposed decomposition method also provides deep insight
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Figure 4.9: CVT of 256 centroids under ρ1(x1) = ρ2(x2) = e−10x2 .
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Figure 4.10: CVT of 3000 centroids with Gaussian density.
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Figure 4.11: Scalability and generalizability to any density: CVT of 4096 centroids
under a Gaussian density.
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into the tessellation (and hence the application at hand that requires the CVT)

by allowing the evaluation of the quality of all the solutions (CVTs) through their

energies. This is because we decompose our high dimensional spaces into a series

of 1-D spaces for which the Voronoi partitions, and hence the tessellation energy, are

readily obtained. However, since Lloyd’s computes the mass centroids at each iteration

while in MacQueen’s the only characterization of the density function is through the

Monte Carlo samples, our results have higher computation time than MacQueen’s. We

must note here that while we employ Lloyd’s to obtain CVTs in 1-D spaces, one could

employ MacQueen’s or other CVT computation methods for the decomposed CVTs in

1-D.

One of the areas where higher dimensional CVTs have found an application is in the

field of evolutionary optimization. Recently introduced, MAP-elites [59] is an algorithm

that illuminates search spaces in evolutionary optimization, allowing researchers to

understand how interesting attributes of solutions combine to affect performance. To

scale up the MAP-elites algorithm, the authors in [78] employ CVTs, and therein,

following [39], MacQueen’s method is used to obtain the CVTs and show the sufficiency

of using 5000 centroids. In line with their result, we keep the total number of centroids

in our results of high-dimensional CVTs, around the same. Similar to illuminating

search spaces using MAP-elites, CVTs have been useful in the field of fluid dynamics

and control through their role in finite-element analysis for discretization in space

dimensions [11]. While the authors in [11] use CVT-based clustering for reduced-order

modeling under uniform density, one could employ CVTs to model the underlying

space according to candidate density functions. Specifically in such space discretization

applications, the proposed method allows us a clear insight into the underlying solution

(or search) space by evaluating all possible grid-like CVTs under any density function.

For example, by varying the number of centroids per dimension we can obtain a number

of different tessellations, and although this would not be exhaustive and there will still

be more (non grid-like) CVTs under the same conditions, we can get a better idea
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about the solutions at different points in the underlying space through the energies of

all the grid-like CVTs obtained from the proposed method.

In our last block of presentation of numerical results, we consider dimensions higher

than 3 and vary Ni,∀i ∈ In such that N =
∏

iNi is around 5000. The corresponding

results are given in Table 4.1 where we see that the computation time decreases with

the increase in dimension n. This is because with increasing n, we decrease Ni to keep

N around 5000. Hence, the computation of CVT in 1-D spaces with fewer centroids is

faster. The low energy of all the tessellations is also worth noting. On the other hand,

the computation time required to compute the centroids using MacQueen’s method are

lower but the solutions are opaque since it is difficult to evaluate their quality through

their tessellation energy.

While the proposed method allows us to obtain a number of CVTs and their energies

in a straightforward fashion, it suffers from the curse of dimensionality. Considering 32

dimensions and 2 centroids per dimension, the problem requirement scales to a total

of 232 centroids. While the maximum array size allocated varies by the program and

the software, such exponential growth in the number of centroids practically limits

the proposed method to under 30 dimensions. However, the applications where the

proposed decomposition method would be most beneficial do not require dimensions

in hundreds. For example, the number of features in MAP-elites are typically less than

10; in [75] the authors consider a four-dimensional problem. The exploration of the

solution space using finite element analysis is in space dimensions. In such applications

the proposed method provides insightful tessellations at various markers in the solution

space even for finer discretizations.
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Table 4.1: Proposed method for Ωi = [−1, 1],∀i ∈ In under e−10x2 . Note the absence
of CVT energy from MacQueen’s.

n N =
∏

iNi
CVT energy
×10−3 Time (min)

MacQueen’s
time (min)

4 4096 = 84 0.68 6.174 2.644
5 4096 = 43 × 82 1.2 4.248 1.433
8 6561 = 38 0.74 0.641 1.556
12 4096 = 212 0.21 0.480 1.425
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Chapter 5

Resource Allocation using

Centroidal Voronoi Tessellations

In the study and exploration CVTs in the previous Chapter 4, we developed a

computational method to obtain CVTs in high-dimensional spaces. In the process,

we observed an advantage that one-dimensional CVTs would bring to the resource

allocation problem: A simple information structure that is sufficient to obtain the

CVT (a minima).

To elaborate on the advantage, let us first formalize the resource allocation problem

following [44]:

min
zi∈Rn

1

N

∑
i∈IN

fi(zi)

such that,
∑
i∈IN

zi = r (5.1)

In the resource allocation problem (5.1), r amount of resources is to be allocated

among N agents while minimizing the sum of their individual costs {fi}i∈IN . Seemingly

trivial and complex simultaneously, the nature of (5.1) can be broken down into the

information structure in the group of agents, the separability of the objective function,
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and the global constraint. While each agent can minimize the cost function without

any dependance on other agents, the global constraint is imposed on the team, hence

making the team information structure a significant aspect.

Like most of the work on the resource allocation problem, the authors in [44] assume

the individual cost functions {fi}i∈IN , to be convex. In the case where the cost functions

are differentiable, they propose a gradient descent consensus algorithm. And when the

cost functions are not necessarily differentiable, they present a sub-gradient based

algorithm. While they let the team information structure be dynamic, they impose

reasonable mild conditions on the team information structure like connectedness, and

start at an initial feasible condition. However, it is worth noting that the amount

of resource to be allocated, r, is fixed over the iterations; the agents move along the

feasible solutions to only minimize the cost function in (5.1).

While the resource allocation problem (5.1) has received attention and contributions

from the community, most of the works, as noted in Section 1.2, assume the allocation

amount to be fixed, and they start at a feasible constraint, [83]. In this work, we

work towards the resource allocation problem for dynamically changing the allocation

amount under the assumption that the amount to be allocated (or shared) is known

by the all the agents beforehand.

Our approach to the problem involves Centroidal Voronoi tessellations (CVTs), and

accordingly we begin with our motivation for the same in Section 5.1 and solve the static

resource allocation problem in Section 5.2. We move to the dynamic (time-varying)

resource allocation problem and propose a decentralized solution in Section 5.3. Finally,

in Section 5.4 we demonstrate the developed decentralized dynamic resource allocation

method on a demand-response problem of power allocation in a group of building loads.

96



5.1 Motivation

Recall the CVT minimization problem from Section 4.1.1:

min
zi

∑
i∈IN

∫
x∈Vi

ρ(x)||x− zi||2dx

Including the resource allocation constraint from (5.1), we have:

min
zi

∑
i∈IN

∫
x∈Vi

ρ(x)||x− zi||2dx

subject to ∑
i∈IN

zi = r (5.2)

Comparing (5.2) with the resource allocation problem (5.1) we see that the

individual objective functions from (5.2) are {
∫
x∈Vi ρ(x)||x − zi||2dx}i∈IN . While the

objective function in (5.2) is separable, a common (global) distribution ρ(.) governs all

the individual objective functions. Therefore, this enables the embedding of a desired

aggregate behavior in the team through such distributions; the desired aggregate

behavior can arise from modeling individual preferences or from an external global

trendsetting factor depending on the application at hand.

Additionally, as seen in Section 4.2.1, CVTs obtained through Lloyd’s algorithm

only require communication with neighbors. In 1-D spaces, it translates to a line

communication graph. To grasp the advantage of CVTs in simple communication

networks, we review and formalize certain basic concepts from network theory.
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5.1.1 Network theory Basics

Let Z denote the undirected resource network graph with vertex set z = (z1, z2, . . . , zN)

(where zi is the resource allocated to the ith agent in IN) and edge set EZ . The set of

neighbors of i according to the resource network graph, or resource neighbors in short,

is given by [48]:

NZi = {j ∈ IN : zk < zj < zi, ∀j, k ∈ IN} ∪ {j ∈ IN : zi < zj < zk, ∀j, k ∈ IN} (5.3)

If j ∈ NZi , then the agents i and j are resource neighbors and there exists an edge

between them. Hence, the pair {zi, zj} ∈ EZ . Moreover, if a pair {zi, zj} is in the edge

set, then the agents i and j are neighbors. And, since Z is an undirected graph, if

j ∈ NZi then i ∈ NZj , and vice versa. Summarizing mathematically, by definition, we

have the following:

j ∈ NZi ⇐⇒ {zi, zj} ∈ EZ ⇐⇒ i ∈ NZj (5.4)

Let C denote the communication network graph among all the agents in IN . The

vertex set is IN and denote the edge set by EC . Without loss of generality, let the

element of communication be their respective resource quantities {zi}i∈IN . We note

here that the communication network graph need not be undirected. If an agent i

communicates its resource position zi to an agent j, then j need not communicate

back zj. For simplicity, we assume that C is undirected. If the agents i and j are

communication neighbors, then agent i is aware of zj and agent j is aware of zi.

Accordingly, by definition, {i, j} ∈ EC ⇐⇒ i ∈ NCj and j ∈ NCi , where NCi is the set

of communication neighbors of the agent i.

For a quick demonstration, consider an example of 5 agents with resource positions

z1 = 4.8, z2 = 2, z3 = 6, z4 = 0.5, and z5 = 3. Fig. 5.1 shows the resource network

graph Z and three different communication graphs C1, C2 and C3.
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Figure 5.1: Resource network Z (top graph) and three example communication
graphs, C1, C2, C3 (bottom graphs) for 5 agents with resources at z.
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The vertices (or nodes) in all the graphs therein are marked by black dots. The edges in

the resource graph are shown in dotted green lines and the edges in the communication

graphs are shown in dotted blue lines. Following the definition of resource neighbors

from (5.3), the resource neighbors of all the agents are:

NZ1 = {3, 5}

NZ2 = {4, 5}

NZ3 = {1}

NZ4 = {2}

NZ5 = {1, 2}

A compact way to indicate the neighbors in a graph is to use the Adjacency matrix,

[48]. The adjacency matrix of a graph, AG, is a square matrix whose elements are 1 or

0 corresponding to whether the pair of vertices in question are neighbors in the graph

or not. The matrix is of the size N×N , and its rows and columns are labeled by the N

vertices. If an agent i ∈ NZj , then the ith row and jth column of the adjacency matrix

is 1; otherwise it is 0. The adjacency matrix is also called the connection matrix. The

adjacency matrix of the resource graph Z from Fig. 5.1 is given by:

AZ =



0 0 1 0 1

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0


Similarly, the adjacency matrices of the communication graphs C1, C2 and C3 are:
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AC1 =



0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0


AC2 =



0 0 1 0 1

0 0 1 1 1

1 1 0 0 1

0 1 0 0 1

1 1 1 1 0


AC3 =



0 0 1 0 1

0 0 0 1 1

1 0 0 0 0

0 1 0 0 0

1 1 0 0 0


The symmetry in the adjacency matrices across their diagonals is a presentation of the

fact that we assume the graphs to be undirected. Notice that the adjacency matrix of

the first communication graph, C1, has all off-diagonal elements as 1, highlighting the

fully-connected nature of the graph. As seen in Fig. 5.1, the number of connections

decrease as we proceed from C1 to C3. This decrease is proportionally seen in their

adjacency matrices with the decrease in the number of 1’s in the matrices.

Suppose the resource and the communication graphs are the same: Z = C. Under

this assumption, if two agents are resource neighbors, then they are also communication

neighbors, and are hence aware of each other’s resource positions. Since our region of

interest is one-dimensional, the resource network graph is always a line graph, as also

seen in Fig. 5.1. That is, each agent i can have at most 2 resource neighbors. However,

depending on the communication network graph C, each agent i can be aware of any

number of agents’ resource position that are also its communication neighbors. The

simplest communication graph C such that Z ⊂ C, is C = Z, and accordingly C is also

a line graph. In the aforementioned example from Fig. 5.1, it is worth noting that the

adjacency matrices of Z and C3 are the same; C3 is essentially a line graph.

CVTs in one-dimensional spaces have an inherent line structure in their resource

graphs. Consider the top plot in Fig. 4.5. Without loss of generality, let the 5

agents therein be ordered 1 to 5 from left to right, that is, z1 < z2 < . . . < z5. By

definition of the resource neighbors from (5.3), we have that the resource neighbor of

agent 1 is agent 2, the resource neighbors of agent 2 are agents 1 and 3, and so on.
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In the implementation of Lloyd’s algorithm, it is evident that each agent requires the

resource positions of its resource neighbors for them all to converge to the CVT. Any

agent having resource positions of agents that are not its neighbors is redundant, since

it is not used in the iterative steps in the algorithm. Therefore, if each agent were to

communicate only with its resource neighbors, then all the agents would converge to

the CVT through Lloyd’s algorithm with minimal communication. That is, one would

have obtained the CVT in a decentralized manner. Therefore, one may obtain CVTs in

a decentralized manner using one of the simplest communication graphs: a line graph

that is also the same as the resource graph.

To summarize, CVTs provide a natural way of embedding a desired distribution

in the solution, along with obtaining the solution in a straightforward decentralized

approach with minimal requirements on the team information structure. In the next

Section, we take up the resource allocation problem (5.1) which is a constrained CVT

minimization problem, and solve it using the analytical CVT computation method

from Section 4.2.2.

5.2 Static Allocation

In this Section we consider the question of how to employ CVTs to solve the resource

allocation problem for a fixed amount of resource, and analytically solve it as a

constrained CVT minimization problem. The underlying idea of the solution is to

pose the generators of the CVT as the resource amounts allocated to the agents, and

accordingly, they must sum up to the available amount of resource, r.

Recall the resource allocation constrained CVT minimization problem (5.2) intro-

duced in Section 5.1. For a fixed amount of resource, we solve (5.2) by transforming it

to (4.3) through the elimination of the constraint.

One way to eliminate the constraint is to choose the design parameters defining ρ(x)

such that the resource allocation constraint is embedded in them. The “free” design

parameter to be chosen can then be treated as an unknown along with the N generators
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zi’s. Resorting to the SNLE method developed in Section 4.2.2, while we now have

N + 1 number of unknowns, we also have N + 1 equations. That is, N equations from

the definition of mass centroid for the generators, and one resource allocation constraint

equation. Accordingly, the solution of this system of N + 1 nonlinear equations results

in the N CVT generators and, more importantly, the design parameter such that the

resource allocation constraint is met. We can now formalize this overview of the idea.

Suppose the density function ρ(.) is defined by nρ number of parameters: v =

(v1, v2, . . . , vnρ). Let vk ∈ v be unknown, and all the other parameters defining the

density function be known and fixed. To highlight the dependence of the density

function on the free parameter vk, denote the density function as ρ(x, vk), where x

is the support of the considered probability distribution. The N number of nonlinear

equations from (4.5) and the resource allocation constraint (5.1) will together constitute

the following SNLE with N + 1 unknowns – (zc1, z
c
2, . . . , z

c
N , vk).
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zc1 =

∫ zc1+z
c
2

2

a
xρ(x, vk)dx∫ zc1+z
c
2

2

a
ρ(x, vk)dx

zc2 =

∫ zc2+z
c
3

2
zc1+z

c
2

2

xρ(x, vk)dx∫ zc2+z
c
3

2
zc1+z

c
2

2

ρ(x, vk)dx

...

zci =

∫ zci+z
c
i+1

2
zc
i−1

+zc
i

2

xρ(x, vk)dx∫ zc
i
+zc
i+1

2
zc
i−1

+zc
i

2

ρ(x, vk)dx

...

zcN =

∫ b
zc
N−1

+zc
N

2

xρ(x, vk)dx∫ b
zc
N−1

+zc
N

2

ρ(x, vk)dx

N∑
i=1

zci = r (5.5)

The solution of this system of nonlinear equations, (zc1, z
c
2, . . . , z

c
N , vk), will be such

that (zc1, z
c
2, . . . , z

c
N) are the N number of CVT generators in the region Ω = [a, b] under

the density function ρ(x, v̄k), and such that the sum of the generators is r. While in

this method we already obtain the solution of (5.2), this is a centralized approach.

The main solution of interest here is the solved design parameter v̄k which is fed to

the Lloyd’s algorithm in its initialization step. In such an approach, all the agents can

still maintain communication only with their resource neighbors, and since they are

all initialized with the same design parameters, all the agents are minimizing the cost

function (4.3) under the same specifications to obtain the CVT. Therefore, we achieve

the CVT in a decentralized approach through Lloyd’s algorithm while also meeting the

resource allocation constraint.
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While we consider the resource allocation constraint in the described approach, it

is worth noting that this approach can be extended to a different constraint in (5.1),

where the constraint can be multiplicative or any function with n input arguments to R,

in place of the summation constraint therein. Or, one can embed as many constraints

as the number of “free” parameters in the density function, and employ the same

developed elimination-of-constraint approach to solve the resulting multi-constrained

problem.

Implementation aspects: In the process of fixing the other design parameters,

it is important to choose them in a way that renders a feasible solution from (5.5). For

example, we cannot have r = 100 with 5 agents in Ω = [0, 10] for any density function.

In this case, at the very least, Ω should include the mean r/N = 20. Another aspect

is the scalability of this method. Since obtaining the free design parameter involves

solving the system of N + 1 equations, the computational complexity increases with

N . However, since the communication graph is still a line graph, Lloyd’s algorithm is

scalable to any N .

We now demonstrate the method with different simulation cases. In Fig. 5.2,

the region Ω and the number of agents are fixed as [0, 100] and 50, respectively, and

the density is Gaussian. Out of the three examples therein, the top two have the

same variance but are required to allocate different amounts of resources – 2500 in

the first and 1500 in the second – among the same number of agents. Accordingly,

we can observe the allocated resources among all the agents on average are lower in

the second case than the first. Moving from the second case to the third, that is, the

bottom graph in Fig. 5.2, the variance is increased while keeping all other parameters

the same. In all these three cases, the free design parameter is µ – the mean of the

Gaussian distribution. The solution of the free parameter obtained from solving the

N + 1 equations from (5.5), is shown in the figures, and is used to initialize the Lloyd’s

algorithm. The generators obtained from the Lloyd’s algorithm and the generators

from solving (5.5) are plotted together. We can observe that the two solutions are very
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Figure 5.2: Allocation of zr amount of resource among 50 agents in Ω = [0, 100] under
Gaussian distribution for specified variances – 4 (top and middle) and 8 (bottom). The
mean of the distribution is the solution vk from (5.5).
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close to each other. Additionally, both the solutions sum up to zr with an acceptable

error.

Similarly, we present another set of simulations in Fig. 5.3. In the three cases

therein, the region, the number of agents and the total amount of resource to be

allocated are the same. The difference in the three cases is the underlying distributions

– Gamma distribution in the top figure, Exponential in the middle and Gaussian

distribution in the bottom figure. Like in Fig. 5.2, the solutions from the two

approaches are close to each other and also sum up to zr.

In the aforementioned two figures, the free parameter in the cases of Gaussian

distribution has been the mean µ and the free parameter for Gamma distribution has

been the shape parameter k. In Fig. 5.4, we let the standard deviation σ be the free

parameter for Gaussian and the scale parameter θ be the free parameter for Gamma

distribution.

Like most of the work addressing the resource allocation problem, we presented a

solution to the static resource allocation problem, that is, the amount of resource to

be allocated is fixed. In the next Section, we consider the resource allocation problem

for a time-varying amount of resource in a team of agents.

5.3 Dynamic Resource Allocation

In the previous section, we solved the static resource allocation problem by using the

centralized system of nonlinear equations. However, extending the same approach to

varying amount of resource-to-be-allocated results in a centralized approach. Therefore,

in this Section we focus on developing a decentralized approach to the dynamic resource

allocation problem.

Employing the static resource allocation problem as the initialization step, our

solution approach to the dynamic resource allocation problem under a Normal

distribution involves a one-step update that maintains the dynamic resource allocation

constraint
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0 50 100 150 200 250 300

Figure 5.3: Allocation of zr amount of resource among 50 agents in Ω = [0, 300]
under three different distributions. One of the parameters of the distributions is the
solution vk from (5.5).
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0 50 100 150 200 250 300

0 50 100 150 200 250 300

Figure 5.4: Allocation of zr amount of resource among 50 agents in Ω = [0, 300] for
Gaussian and Gamma distributions with standard deviation σ and scale parameter θ
being the free parameters that are obtained as a solution of (5.5).

109



while preserving the CVT. We employ the following Lemma 5.1 to obtain such a one-

step update in Theorem 5.2. Through the design process, we assume that the amount

of resource to be allocated among all the agents over the considered time duration is

known to all the agents.

Suppose ρ(.) = N (µ, σ2) and the “free” parameter is µ. Then we have:

Lemma 5.1. Suppose at time k, {zi(k)}i∈IN are the centroids of the CVT in Ω ⊂ R

with density ρ(.) = N (µ(k), σ2). Then the following relationship holds between the

time-updated centroids:

zi(k + 1)− zi(k) = zj(k + 1)− zj(k) = µ(k + 1)− µ(k) = −δ (5.6)

Proof: Let µ(k+ 1) = µ(k)− δ. Because {zi(k)}i∈IN are the centroids with normal

distribution, we have by definition:

zi(k) =

∫
Vi(k)

xe
(x−µ(k))2

2σ2 dx∫
Vi(k)

e
(x−µ(k))2

2σ2 dx

Similarly, writing out the mass centroid for the next time instant k + 1 using

µ(k + 1) = µ(k)− δ, we have:

zi(k + 1) =

∫
Vi(k+1)

xe
(x−(µ(k)−δ))2

2σ2 dx∫
Vi(k)

e
(x−(µ(k)−δ))2

2σ2 dx
(5.7)

Suppose Vi(k) = [a, b] ⊂ Ω. Consider the change of variables y = x − δ. Then the

mass centroids transform as:
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zi(k) =

∫ b
a
xe

(x−µ(k))2

2σ2 dx∫ b
a
e

(x−µ(k))2
2σ2 dx

=

∫ b−δ
a−δ (y + δ)e

(y+δ−µ(k))2

2σ2 dy∫ b−δ
a−δ e

(y+δ−µ(k))2
2σ2 dy

=

∫ b−δ
a−δ (y + δ)e

(y−(µ(k)−δ))2

2σ2 dy∫ b−δ
a−δ e

(y−(µ(k)−δ))2
2σ2 dy

=

∫ b−δ
a−δ ye

(y−(µ(k)−δ))2

2σ2 dy +
∫ b−δ
a−δ δe

(y−(µ(k)−δ))2

2σ2 dy∫ b−δ
a−δ e

(y−(µ(k)−δ))2
2σ2 dy

=

∫
Vi(k+1)

ye
(y−µ(k+1))2

2σ2 dy∫
Vi(k+1)

e
(y−µ(k+1))2

2σ2 dy
+ δ

∫
Vi(k+1)

e
(y−µ(k+1))2

2σ2 dy∫
Vi(k+1)

e
(y−µ(k+1))2

2σ2 dy

= zi(k + 1) + δ

=⇒ zi(k + 1)− zi(k) = −δ (5.8)

Since (5.8) holds for all i ∈ IN and µ(k + 1) = µ(k)− δ, we have (5.6) proved.

�

Theorem 5.2. Suppose the initial condition is a static resource allocation solution

at discrete-time k and are at the following conditions: {zi(k)}i∈IN s.t
∑

i∈IN zi(k) =

r(k), {zi(k)}i∈IN ∼ N (µ(k), σ2). Suppose the resource to be allocated at the next time

instant is r(k + 1). If agents update their resources as

zi(k + 1) = zi(k) +
1

N
(r(k + 1)− r(k)) (5.9)

then the resulting solution satisfies the following:

1.
∑

i∈IN zi(k + 1) = r(k + 1)

2. {zi(k + 1)}i∈IN ∼ N (µ(k + 1), σ2)
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where µ(k + 1) is a solution of the (N + 1) SNLE (5.5).

Proof: Obtain the time-difference of the summation of the resources:

∑
i∈IN

zi(k + 1)−
∑
i∈IN

zi(k) =
∑
i∈IN

zi(k + 1)− zi(k)

= −Nδ

= N(µ(k + 1)− µ(k))

= r(k + 1)− r(k) (5.10)

�

Following the Theorem 5.2 we obtain the CVT that satisfies the dynamic resource

allocation constraint for the desired Normal distribution in a decentralized manner.

While this fulfills our objective, it can be observed that the approach is quite rigid. In

practical applications where the agents have their own set of dynamics and are trying

to navigate around certain local objectives as well, this approach can be restrictive.

Therefore, to extend its applicability we introduce some flexibility in the design by

allowing for (local) negotiations between communication, and hence resource, neighbors

through what we call a “civility model”.

Before detailing the civility model, let us introduce and recall some new and old

notations, respectively. For each agent i ∈ IN , denote its desired resource amount at

time k that meets its local objective as ui(k). For example, if the agent i is responsible

for the control of a certain system modeled as a state-space, such ui(k) could be

the control input from a state-feedback controller or from an LQR or any such local

controller like MFC from Section 2.1.1. Since we are operating in 1-D spaces, recall

from Section 5.1.1 that the resource and communication graphs are the same. Following

the same notation therein, denote the communication graph at time k as Ck, and the

neighbors of agent i at time k as NCki .
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Initialization: All agents are aware of the total resources r(k),∀k ∈ T and the initial

communication network Ck−1. Solve the static allocation problem for the resource

r(k − 1).

Following the initialization for decentralized dynamic resource allocation, the

civility model for local negotiations is developed as follows.

Civility model for local negotiations

For every agent i ∈ IN , at every time k ∈ T , do:

1 Compute the resource update zi(k) from (5.9). Compute ui(k) based on the

local requirements, possibly from the local controller.

2 Compute the neighbor of interest as ĵ = {j ∈ NCki ∪ i such that ||ui(k) −

zĵ(k)|| < ||ui(k)− zj(k)||}.

3 Swap resources with the neighbor of interest ĵ from the previous step, if ĵ

indicates it has not already been taken. This results in zi(k) = zĵ(k). If ĵ

has already negotiated with its other neighbor and is hence taken, or if ĵ = i,

then implement the resource update zi(k) from Step 1.

It is worth noting that the communication network is dynamically updated in a

decentralized manner, and that such an update naturally follows from the resource

swap during the local negotiations. We call this approach the civility model because

if a neighbor asks to swap, the agent complies with it regardless of its own local

requirement. And hence, since all the agents follow the same model, no agent is at a

disadvantage in following such approach.

To demonstrate the clarity and effectiveness of the proposed method to dynamically

allocate resources in a decentralized manner, we revisit the application of demand-

response in smart grids from Chapter 2. Specifically, we consider a group of Heating,

Ventilation, and Air Conditioning (HVAC) units that have their local objectives to
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maintain their indoor air temperatures according to certain desired setpoints, but are

also required to respond to certain demand (power) curve by consuming the available

power as a team of agents.

5.4 Application to Demand Response

To demonstrate the developed method, we consider power allocation in a group of

building HVACs. In this application of demand-response, the agents are the building

HVACs. The resources to be allocated to all the agents is power consumed by the

HVACs to maintain the indoor air temperatures. We adapt the state-space model

from [49] to simulate the indoor air temperatures for each agent i as:

ẋi(t) = Aixi(t) +Biui(t) +Giwi(t)

yi(t) = Cixi(t) +Diui(t) (5.11)

The input ui is the power consumption of the HVAC (agent i), the output yi is the

indoor air temperature, and wi is the vector of disturbances – outdoor air temperature

and solar radiation. The system matrices for each agent are given by:

Ai =


−(Ki

1+Ki
2+Ki

3+Ki
5)

Ci1

(Ki
1+Ki

2)

Ci1

Ki
5

Ci1
Ki

1+Ki
2

Ci2

−(Ki
1+Ki

2)

Ci2
0

Ki
1

Ci3
0

−(Ki
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Ci1
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Ci2

0

0
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Ci1

1
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0 1
Ci2
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4

Ci3
0
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1 0 0

]
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with Di being a zero matrix. The system parameters, which are resistances and

capacitances in the thermal dynamics of the building model, for each agent i are

obtained as realizations of the following normal distributions:

K1 ∼ N (16.48, 0.1) K5 ∼ N (23.04, 0.1)

K2 ∼ N (108.5, 0.1) C1 ∼ N (9.36× 105, 1)

K3 ∼ N (5, 0.1) C2 ∼ N (2.97× 106, 1)

K4 ∼ N (30.5, 0.1) C3 ∼ N (6.695× 105, 1)

We implement the agent’s model by discretizing the state-space model (5.11) with a

sampling time of 10 minutes. In the HVAC model, the input ui corresponds to cooling

when negative and corresponds to heating when positive. Regardless, its absolute

value is the power consumed, and therefore we use that for local negotiations and let

the individual agent decide whether to use the allocated power for heating or cooling

based on its local control. To maintain the indoor air temperatures from a local

control, we employ a state-feedback controller for pole placement for every agent to

determine its ui(k). We consider the same disturbances for all the agents; the outdoor

air temperature and the solar radiation we use for our simulations are shown in Fig.

5.5. The disturbances are derived from variation in a typical summer day in Knoxville,

Tennessee.

To begin the dynamic resource allocation we initialize ρ(.) asN (µ, σ2), and following

Section 5.2, solve the first-time allocation (initialization) as a static allocation problem.

Communicating to all the agents the resulting mean µ, we begin decentralized dynamic

allocation as laid out in Section 5.3.

Even though the performance of the developed approach depends on the total

available resource and the local requirements, the civility model allows for flexibility,
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Figure 5.5: Disturbances in the HVAC model (5.11)
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which could be necessary for local disturbances or improper selection for the (desired)

distribution in the tessellation. To explain the graphical setup, we begin with N = 5;

Fig 5.6, on the left, shows the power consumption of all the agents at every time

instant, and on the right shows their total power consumption versus the available

power. Augmenting, Fig 5.7 shows the individual indoor air temperatures when the

agents implement the allocated power from Fig 5.6.

Next, we demonstrate the civility model from Section 5.3 by allowing for swapping

through local negotiations. We first show only 5 agents in Fig. 5.8 continuing the

previous case and then demonstrating for 15 agents in Fig. 5.9. For every agent,

the power consumption and the indoor air temperature are shown in the same color

through the simulation duration. For example, agent 2 is shown in red. Thus one can

follow the agents’ negotiations and the resulting swaps and communication network by

following the individual power consumption of the agents through their colors. In the

subsequent cases, we do not show the satisfaction of the resource allocation constraint

through a dedicated figure since we can concisely express it numerically as the error

between total power consumption of all the agents and the available power; we use the

l2 norm to compute the power consumption error.

The strengths of the developed method lie in its robustness in maintaining

the resource allocation constraint while accounting for local preferences in a truly

decentralized manner. To demonstrate the same, we perturb the setpoints of certain

agents and observe the corresponding resource negotiations and the air temperatures in

Fig 5.10. We can observe the increased amount of negotiations through the increased

number of swaps spreading throughout the team to correct for the disturbances for

some of the agents. Quantifying the swaps, we have that out of 144 time-steps in the

simulation, each agent swapped 126.9 times on average and that every agent has been

a neighbor of almost every other agent. This suggests a high degree of variation in

the communication network, further suggesting that the amount of information is so

fragmented among all the agents that it is sufficient to meet the resource allocation
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constraint while following the desired distribution in the tessellation, but not enough

for any agent to recreate the behavior of any other agent.

The dynamic resource allocation solution proposed in this chapter follows the idea of

“Global trendsetting, local negotiations” introduced in Chapter 1. Here, the the global

trend is for the agents’ resources to be Normally distributed while summing up to the

available power, and the local negotiations happen to maintain the balance between

following such global trend and accounting for the local requirements simultaneously.
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Chapter 6

Conclusions and Future Work

In this Chapter, we first derive certain conclusions from each of the chapters in this

dissertation, and then end it with some promising lines of future work.

6.1 Conclusions

In this dissertation, we considered the topic of resource allocation in multi-agent

systems, and probed it through different frameworks. We started in Chapter 2 with

a centralized architecture to allocate a certain amount of generated power from a

renewable source to a group of building loads. In such a framework, one central

controller coordinated the power consumption of all the building loads, and the local

controllers were responsible for maintaining their loads with communication to the

central controller only (and none with other building loads). While such architecture

is currently employed in real-world applications like the transactive energy market,

the costs and risks associated with the communication overhead render the framework

rather costly.

Team decision theory provides a relatively lighter and a generic architecture to

model a team. Taken up in Chapter 3, team decision theory models the information

structure within a team, allows for a global objective to be optimized by the team
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whose members do not have any local or individual objective to optimize. The

celebrated Witsenhausen counterexample effectively shows the complexity a non-

classical information structure can introduce even in a simple two-player team problem

with linear dynamics and quadratic cost. Even though we developed a method to

implement the analytically optimal control laws, the method is rather cumbersome

and its applicability in real-world applications remains an open question.

Therefore, we move on to consider Centroidal Voronoi Tessellations to solve the

resource allocation problem. We study them in Chapter 4 and compare different

computational methods through their advantages and disadvantages, usability in the

decentralized framework, and extension to computation in higher dimensions. In the

process, we observe the lack of a computational method to obtain a complete CVT in a

high dimensional space, not just the centroids. Therefore, we develop a computational

method to obtain some of the many non-unique CVTs in a high-dimensional space.

Although such CVTs are grid-like tessellations, the developed method renders them

in a simple and efficient manner, and hence allowing a user to obtain a number of

the non-unique CVTs under the same conditions to improve the understanding of a

considered solution space.

Having studied CVTs to a certain depth, we move on to solving the resource

allocation problem in Chapter 5 by first precisely stating the resource allocation

problem and explaining the motivation for employing CVTs as the solution. Using the

developed system of non-linear equations method we solve the static resource allocation

problem by embedding the resource allocation constraint within the distribution of the

tessellation. Recognizing such approach to be centralized and employing it only as

an initialization step, we consider a dynamic resource allocation problem where the

amount of resource to be allocated varies with time and develop a decentralized solution

through a combination of a single-update for tessellations with Normal distributions

and a civility model for local negotiations between the agents. The developed approach

involves a dynamic (time-varying) communication network that is merely a line graph

at all times, hence resulting in minimal communication requirements in the team.
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We now conclude this dissertation by comparing the centralized and the decen-

tralized power allocation methods developed in Chapters 2 and 5, respectively. The

centralized power allocation approach has fewer and fixed communication links, but

suffers from the following disadvantages:

• Lack of privacy and security.

• Rigid architecture, hence causing difficulty in, for example, inclusion of local

preferences resulting from any number of causes like local disturbances.

• Does not easily scale to a large number of agents.

• Difficulty in accounting for continuous-input systems or high degree of hetero-

geneity in agents.

The developed decentralized dynamic resource allocation method, as demonstrated

with application to power allocation among a group of HVACs, rectifies the drawbacks

of the centralized approach to a large extent. The advantages can be summarized

through the following points.

• The dynamic communication network, with any agent having at most two

neighbors at a given time, results in incomplete information about an agent to

another, thus preserving privacy to an extent.

• The civility model allows for dynamic flexibility to address changes in local

preferences.

• Easily scalable to any number of agents because the communication network is

a line graph regardless of the number of participating agents.

• There is no restriction on the dynamics or the type of the agents. As long as all

the agents consume the same resource quantity, they are flexible to further use

the allocated resource as locally required.
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6.2 Future Work

The use of CVTs to solve a dynamic resource allocation problem in a team has proved

promising. We are interested in further exploring this work along following lines.

1. Analysis of the privacy level: The amount of information is so fragmented

among all the agents that it is sufficient to meet the resource allocation constraint

while following the desired distribution in the tessellation but not enough to

assemble information about an agent to easily recreate its behavior. Accordingly,

we find it interesting to look into the level of security inherently offered in this

framework, make recommendations for the applications that prioritize privacy

and security, and further improve the security using the developed framework.

2. Extension to other constraints: The resource allocation constraint is to

maintain the sum of the individual resources. The developed static allocation

framework, extends as is, to any constraint that takes in all the agents’ resources

and has a range in R. Accordingly, its extension to relevant applications can be

explored.

3. Generalization to more distributions: The single-update for dynamic

allocation assumes the desired distribution in the tessellation is a Normal

distribution. While this assumption models a large number of applications, it

will be interesting to generalize such update rule to other distributions.

4. Explicitly model the distributions: Following up on the previous point, we

can employ historical information to model a desired distribution of the allocated

resources to set the global trend.

5. Extension to higher dimensions: Ultimately, while we consider one-

dimensional resources, it might be worth looking into the extension of the devel-

oped decentralized dynamic allocation method to higher dimensional resources,
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possibly using the developed computational method to obtain CVTs in high-

dimensional spaces.
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A Explicit solution to the constrained linear least

square problem

In this Section, an explicit solution to the optimization problem (2.30) is presented.

Restating the problem:

min
x∈Rn
||x− s||22 (1)

such that,

n∑
j=1

x(j) = P and 0 ≤ x ≤ p.N

The first constraint is the equality constraint to obtain a solution that is on the

power constraint plane (2.27). The second constraint is the inequality constraint to

ensure that the solution lies within the specified boundaries. Let us denote these power

and boundary constraint planes explicity as:

Qc : x1+x2 + . . .+ xn = P

¯
Q1 : x1 = 0

¯
Q2 : x2 = 0

...

¯
Qn : xn = 0

Q̄1 : x1 = p1N1

Q̄2 : x2 = p2N2

...

Q̄n : xn = pnNn
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Intersecting every boundary constraint plane with the constraint plane Qc results

in n lines:
¯
l1,

¯
l2, . . . ,

¯
ln and l̄1, l̄2, . . . , l̄n, where ∀k = 1, 2, . . . , n,

¯
lk is the intersection of

¯
Qk and QC , and l̄k is the intersection of Q̄k and Qc. Mutual intersection of all the lines

¯
lk and l̄k results in at most O = n(n − 1) number of points on the power constraint

plane, denoted a1, a2, . . . an(n−1).

If pkNk > P, ∀k, then there will be n vertices, else n(n− 1) vertices. As a rule of

thumb, for certain k, if pkNk > P , then one intersection point is obtained; else (n− 1)

number of intersection points are obtained.

The surface on the power constraint plane that is enclosed by these vertices

a1, a2, . . . an(n−1) is the feasible region, denoted R, for the solution of the optimization

problem (1). That is, if x ∈ R then such x is on the power constraint plane and within

the boundary conditions.

Since R is convex, denote a point in R as:

x = µ1a1 + µ2a2 + . . .+ µnan (2)

where each µk in[0, 1] and all the coefficients µk sum up to 1. Accordingly, reformulate

the original optimization problem as:

min
µ∈Rn
||µ1a1 + µ2a2 + . . .+ µnan − s||22 (3)

such that,

n∑
k=1

µk = P and − µ ≤ 0

Optimization problem (3) can be solved using Karush-Kuhn-Tucker conditions. To

demonstrate, consider the following example.
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s =


s1

s2

s3

 =


1.5

−2.13

1.3628

× 105, P = 0.7× 105, n = 3

p =


p1

p2

p3

 =


1.5

4.5

3.5

× 103 N =


N1

N2

N3

 =


100

100

100


While s1 + s2 + s3 = P (meeting the equality constraint), s violates the boundary

condition since s2 < 0 (inequality constraint). The upper boundary is the dot product

of p and N :

p.N =


p1N1

p2N2

p3N3

 =


1.5

4.5

3.5

× 105

Since pkNk > P ∀k = 1, 2, 3, intersection of all the lines
¯
lk and l̄k results in the

feasible region given by the following 3 vertices:

a1 =


P

0

0

 , a2 =


0

P

0

 , a3 =


0

0

P

 ,

For this demonstration, the reformulated optimization problem (3) becomes:
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min
µ∈R3

∣∣∣∣∣
∣∣∣∣∣

µ1P − s1

µ2P − s2

µ3P − s3


∣∣∣∣∣
∣∣∣∣∣
2

2

such that,

µ1 + µ2 + µ3 = 1 and − µ ≤ 0

The Lagrangian function and its partial derivative with respect to µ is given by:

L(µ, u, v) = (µ1P − s1)2 + (µ2P − s2)2 + (µ3P − s3)2 − u1µ1 − u2µ2 − u3µ3 + v(µ1 + µ2 + µ3 − 1)

∂L

∂µk
= 2(µkP − sk)P − uk + v, k = 1, 2, 3

The Karush-Kuhn-Tucker conditions (KKT) are:

KKT1: ∂L
∂µk

= 0, k = 1, 2, 3

KKT2: ukµk = 0, k = 1, 2, 3

KKT3: (a) −µk ≤ 0, k = 1, 2, 3

(b) µ1 + µ2 + µ3 − 1 = 0

KKT4: uk ≥ 0, k = 1, 2, 3

Since s2 < 0 violates the inequality constraint, set u2 > 0 in order to keep this

constraint active. Therefore, from KKT2, µ2 = 0. From KKT1, the first condition,

uk = 2P (µkP − sk) + v. Since s1 and s3 satisfy the inequality constraint, these two

constraints are kept inactive by having u1, u3 = 0. Therefore,
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u1 = 0

=⇒ 2P (µ1P − s1) + v = 0 (4)

u3 = 0

=⇒ 2P (µ3P − s3) + v = 0 (5)

From KKT3b condition with µ2 = 0,

µ1 + µ3 = 1 (6)

Combining equations (4)-(6) results three equations and three variables: µ1, µ3, v.

Solving these three equations results in:

µ∗ =


0.689

0

0.311


Substituting the solution µ∗ in the original optimization problem (1):

z∗ = µ1a1 + µ2a2 + µ3a3 =


4.997

0

2.2568

× 104

=⇒ ||z∗ − s||2 = 6.133× 104
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