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Abstract 

 

In recent times, various efforts have been made to address the challenge of adequately representing 

hydropower systems in modeling frameworks, accounting for the lack of data to represent the 

multiple constraints in hydropower operation. This research is a pilot data-driven methodology for 

characterizing, classifying, and comparing the water-to-energy and energy-to-water signal 

transformations that hydropower facilities as signal processors accomplish. In this study, a Box 

Jenkins transfer function/noise model is used to identify the relationship between reservoir inflows 

and outflows. For examining the feasibility of this methodology, 5-minute fleet data for five 

storage and five run-of-river facilities was provided by the Tennessee Valley Authority (TVA) and 

transfer function models are developed. The influence of past inflow and outflow values on the 

current outflow decisions was investigated and summarized by examining the results of Box 

Jenkins methodology. Finally, dominance analysis was introduced to add value to the Box Jenkins 

model results and provide different stakeholders with a set of concepts to convey the functionality 

of hydropower. 
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Chapter 1: Introduction 
"All models are wrong, but some are useful." 

                                                                                George E. P. Box. 
1.1 Objectives and Problem Definition 
 
Due to evolving electrical grid conditions, hydropower operations have undergone substantial 

changes in the past decade. The electrical power grid and hydropower basins are correlated 

complex systems with competing objectives and multiple constraints; therefore, proper 

characterization of hydropower operation is crucial in a model of an energy system. Additionally, 

suppose hydropower is to be employed as a default driver for flexibility requirements of the electric 

grid. In that case, the representation of hydropower generation in energy system models with 

respect to water dynamics (inflows and outflows) should be considered for better representation 

within electrical grid models. A driver of this is also the ever-evolving climate change conditions, 

which impact river patterns with droughts and floods.  

There are multiple optimizations and rule-based water management models available to assist 

stakeholders in decision-making. Many initiatives have been made to address the issue of proper 

representation of hydrological and energy systems in modeling frameworks. However, it is evident 

that there are fundamental disparities in the ways hydropower is represented in the existing 

watershed, dispatch, and production cost models((Stoll, Andrade, Cohen, Brinkman, & Brancucci 

Martinez-Anido, 2017),(Voisin, Bain, Macknick, & O'Neil, 2020)). This research is a pilot data-

driven methodology for characterizing, classifying, and comparing the water-to-energy and 

energy-to-water signal transformations that hydropower facilities as signal processors accomplish. 

Success in this effort is being reviewed by multiple industries and research partners, and advisors 

and includes: 

1. The ability of the methodology to distinguish between intuitively different facilities (e.g., 

storage versus run-of-river),  

2. The feasibility and efficacy of the methodology to be applied to facilities in different 

regions and contexts,  

3. The feasibility (including data availability) of automating and scaling the methodology for 

application to the entire North American hydropower fleet, and 
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4. The extent to which the resulting “hydropower signal processor parameters” are intuitively 

and quantitatively linkable to conventional methods such as production cost modeling (e.g., 

modes of operation for hydropower facilities) and water balance modeling, routing, and 

scheduling.   

The proposed method uses a time series modeling approach to derive a transfer function that 

models the water and energy transformations that hydropower plants are expected to accomplish 

as signal processors. The goal of this research is not to develop a new model for how hydropower 

interacts with power systems; instead, it will provide practitioners such as system modelers, grid 

operators, and other stakeholders with well-informed concepts to help them understand and 

improve the functionality and value of hydropower in their existing efforts. 

 

1.2 Overview of Hydropower Generation 
 
Hydropower generates electricity by utilizing water stored in a reservoir to spin a turbine. A typical 

hydropower facility includes the civil structures, hydraulic conveyance facilities (head race, 

headworks, penstock, gate, valves, and tailrace), the turbine-generator unit, electrical components 

(transformer, instrumentation, and controls, switchgear), and transmission lines (Gulliver & Arndt, 

1991). The different components of a hydropower facility are shown in Fig. 1. Water released 

through the dam spins the turbine and converts the potential to mechanical energy, turning a 

generator connected to the turbine. There are different ways to classify hydropower facilities. 

Common types are discussed below.  

 
1.2.1 Classification of Hydropower facilities 
On a local scale, hydropower plants serve multiple objectives: 

• flood control,  

• water supply (industrial, public, and drinking water),  

• electricity generation and irrigation. 

However, on a national scale, a further classification can depend on the hydrological cycle. Nations 

with extreme volatile climatic conditions support low head hydropower generation while cascade 

or diversion type facilities may be favored in countries significant annual precipitation rates. Some 

common types of classifications include: 
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Figure 1: Components of a hydropower facility 

(O'connor et al., 2016)  
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1. Classification based on head: One of the key elements in determining the amount of 

electricity generated by a hydropower facility is the hydraulic head, which is the elevation 

at which water is maintained in a reservoir. Hydropower facilities can be classified into 

high head, medium head, and low head. There is no standard on the exact range of values 

that fall in these categories, and it varies in different countries. According to Majumder 

et.al, low head facilities utilize heads of less than 30 m while medium- head facilities have 

head values falling under 30-300 m (Majumder & Ghosh, 2013).  

2. Classification based on capacity: Depending on the power generation capacity, 

hydropower plants can be divided in micro, small and large hydropower facilities. Like 

head, there is no universally accepted definitions for capacity size within the U.S. Micro 

hydropower systems generate up to 100 kW of electricity while small while hydropower 

up to 10 MW can be classified as small. Plants with capacities larger than 10 MW are 

defined as large hydropower plants (Johnson, Hadjerioua, & Martinez, 2015). 

3. Classification based on availability of water flow: Based on the quantity of water available, 

hydroelectric facilities are categorized as run-of-river facilities and storage facilities. Run-

of-river facilities are unable to store water and must release water as it comes. In storage 

facilities, water is stored behind the dam and is available for generation as required. Storage 

facilities have greater operation range. They also provide a wide range of energy services 

such as base load and peak load and can dispatched to provide energy production when it 

is most valuable to the power system. Run-of-river facilities typically function as base-load 

power plants, with the generation varying according to water availability. 

 

1.2.2 Hydropower operation and the constraints involved  
Hydropower generation depends on water availability, which may vary by time and reservoir type. 

Many water control projects provide services beyond electricity generation, including flood and 

drought management, irrigation, navigation, recreational services, and water supply. Only 25 

percent of reservoirs globally have hydropower generation as their primary purpose. (Uria-

Martinez et al., 2021) Hydropower is one of the most flexible sources of electricity generation in 

the power grid. It has the ideal properties to provide flexible operation (as shown in Table 1) that 

can support the integration of renewable energy sources in the grid.  
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Table 1: List of Ancillary services and their functions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ancillary Service Function 

 

Spinning Reserve 

Reserve capacity that is online and synchronized to the 

grid. Capable of meeting system demand within 10 

minutes of a dispatch instruction 

 

Non-Spinning Reserve 

Offline generation capacity can be ramped to capacity 

and synchronized to the grid within 10 minutes of a 

dispatch instruction 

Voltage Support Ability to produce or absorb reactive power 

 

Regulation and Frequency Response 

Capability to provide continuous balancing of the 

generation with load and to maintain the system 

frequency 

 

Black Start Capability 

The capability of a generating unit to go from 

shutdown to operating condition and generate without 

assistance from a power system. 
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According to a recent hydropower value assessment undertaken by the U.S. Department of Energy 

(DOE), even though hydropower accounts for just around 10% of total US generating capacity, 

hydropower turbines account for 40% of units assessed as capable of providing black start services 

to restore power systems operations (Ingram, 2019). In a storage hydropower project, a reservoir 

is constructed behind a dam to store water for the purpose of generating electricity as well as to 

provide ancillary grid services. Therefore, it also contributes to the grid's overall stability and 

reliability. Because they participate in both water systems and power systems, hydropower plants 

are subject to a wide range of constraints on their operation. As a reservoir, hydropower facilities 

encounter ecological and regulatory constraints such as availability of water rights, reservoir level 

restrictions, spillage limitation, and water quality concerns. The effects of water releases and their 

timing on the participants downstream, including aquatic species, their food chains, and other 

water users, must be considered while considering the operation of a hydropower project. 

Hydropower plants thus have the potential to adversely affect both the water availability and water 

quality in the specific habitats where aquatic organisms can develop and thrive.  

The primary operational constraints for  hydropower are connected to the equipment's capabilities, 

such as the minimum and maximum power that can be produced and the frequency of maintenance. 

Some turbine types have a minimum amount of power required to operate the turbine and a 

maximum power capacity based on the turbine's rating. Finally in deregulated markets hydropower 

projects may have power purchase agreements in place. These contracts call for a facility to supply 

a specific amount of energy at a set cost. Due to contractual obligations to supply a certain amount 

of power regardless of economic and market conditions, such agreements place further restrictions 

on how hydroelectric operations can be conducted(Stoll et al., 2017). The operational decision-

making thus relies upon several uncertainties. In a multi-purpose reservoir, the tradeoffs that make 

decisions beneficial for one purpose and detrimental for another are often identified only be 

discerned through analysis of historical data in conjunction with reservoir operating studies. Over 

the past few decades, significant changes in hydropower operations have called for its better 

representation in the power system models. Consistent hydropower representation across the three 

domains as shown in Fig. 2 (environmental, operational, and power system services) is imperative 

to avoid inaccurate estimates of the ability of the hydropower fleet to provide flexible operation 

(Voisin et al., 2020) 
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Figure 2: The three major domains in hydropower operation 
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1.3 Relevance of the research 
 
1.3.1 Role of Hydropower in future power systems 
Hydropower is the world's most significant renewable energy source, accounting for 17% of total 

electricity production (Moran, Lopez, Moore, Müller, & Hyndman, 2018).Hydropower contributes 

to the decarbonization of the power grid in two ways: first, it generates clean, renewable electricity; 

second, it acts as a grid stabilizer and enabler, allowing for higher penetration of variable 

renewable energy sources by helping to stabilize demand and supply fluctuations. Humanity’s 

need for clean and affordable energy, as well as the scarcity, variability, and unpredictability of 

water resources, will become more pressing concerns in the coming years. 

The electricity in a hydropower facility is produced by the movement of water. Rain and melted 

snowfall from the hills and mountains form streams and rivers that finally flow into the sea. A 

conventional hydro plant is thus composed of three parts:  a river or reservoir that supplies the 

water, a dam or canal that controls water flow, and a power plant that generates. As a result, 

hydropower is a complex system made up of water and power systems with distinct views and 

goals. The bulk of hydroelectric plants in the United States are governed by complex agreements 

that were created to accommodate a variety of social objectives and to function within specific 

operational constraints.  

1.3.2 Water system perspective of hydropower operation 
Water systems are vast networks that include a wide range of participants, including dams and 

reservoirs, river basins, animals, and downstream agricultural users. Most water system activities 

are governed by the following categories of water use: water supply, flood control, navigation, 

water quality, recreation, fish and wildlife, and hydropower. Planning and managing a river basin 

thus consider a wide range of factors, including economic development, environmental protection 

concerns as well as water-related issues. The production and storage of a specific hydroelectric 

project are frequently dictated by regulations and agreements on water use and as a result, the 

water regime in which a hydroelectric plant is located has a significant impact on the constraints 

in its operation. The operational policies of a reservoir are significantly influenced by a large 

number of different public agencies, project beneficiaries, and interest groups in addition to the 

organizations that own and operate the reservoir system. The objectives of each project decide 

which entities are in charge of planning and managing reservoir projects within this complicated 
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institutional framework (Wurbs, 2005). Therefore, it is crucial to plan for and manage water 

resources over the long term. A water system operator's role is to use a hydroelectric facility to 

operate these complex systems in a way that meets the multiple objectives of water resources. 

Water managers have no control over the volume of the incoming water, which is determined 

mainly by the weather and geography. Stream inflow is typically underestimated when modeling 

river basins. Groundwater flow models are frequently incorrect due to the inability of current 

monitoring systems to accurately monitor groundwater flow. Furthermore, evaporation from 

reservoirs cannot be measured directly. For modeling purposes, stochastically varying inputs are 

required to analyze the uncertainties associated with the water entering and leaving the reservoir 

(Stoll et al., 2017). Therefore, the many goals of water system management and operation, as well 

as the numerous limitations and regulations that govern these operations, are exceedingly complex 

and often ill-defined. 

 
1.3.3 Power system perspective of hydropower operation 
To maintain frequency stability in electric power systems, the consumption and production of 

electricity must always be in balance. The system operator must be able to balance supply and 

demand for electricity at all times in order to provide a dependable electrical system. Demand 

exceeding supply will cause the system frequency of the electrical grid to drop below 60 Hertz. If 

the system frequency drifts slightly from 60 Hz the spinning generators will naturally apply greater 

force to one another to restore the frequency back to 60 Hz. If the deviation is really large, the grid 

will collapse on its own.  An imbalance between supply and demand also causes voltage instability 

which occurs when the reactive power provided by the power system is insufficient to fulfill 

demand. Therefore, it is crucial for the power system to have flexible resources to ensure that users 

can get electricity when they need it. Along with being a source of cheap, abundant renewable 

energy on a bulk scale, hydropower also provides large-scale flexibility to the power grid. 

The nature of the system and the market under which they operate has a significant impact on the 

contribution of hydropower in the power system. The objective of power system operators is to 

provide reliable electricity supply at the lowest possible cost. Because demand varies over time 

(from seconds to decades), the resource mix has evolved to the point where different types of 

resources supply the power system with different types of services and energy. The role of power 

system operators is to select the various services provided by generation resources as efficiently 
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as possible. Generation from hydropower has a significant contribution to the national electric grid 

by providing essential generation and ancillary grid services, such as energy for baseload and peak 

load, load following, black start, reactive power control, spinning, and non-spinning reserves, 

regulation, and frequency response (Hirth, 2016). The widespread deployment of variable 

renewable energy sources has pushed the need to provide ancillary services to manage the 

increased variability and uncertainty of the power grid. Consequently, hydropower facilities that 

were operated consistently in the past were called upon to provide these services owing to their 

capability to meet the immediate demands of the power system. Hydropower operators often must 

adhere to a range of operational and environmental constraints in order to maximize revenues from 

grid services. As a result, power systems, like water systems, present a challenging system 

operating problem for hydropower operations. 

In regions with vertically integrated utilities, a single company responsible for the generation, 

transmission, and distribution of electricity to their consumers. Power system operators in such 

regions attempt to schedule generators in such a way that system load is met reliably while costs 

are reduced and then passed on to end-users. This is challenging because the system operator must 

forecast both short- term and long-term electric power demands, as well as estimate generation, 

transmission, and operating costs. In a deregulated electricity market, the utilities that cater to retail 

customers are only accountable for distribution of electricity to the consumers; the electricity is 

produced by other entities. Through competitive power markets such as Independent System 

Operators (ISO) and Regional Transmission Organizations (RTO), these organizations sell the 

electricity generated. It is difficult to generalize about hydropower generation and subsequent 

involvement in the power system now and in the future due to the diversity of operational and 

market organization structures. 

1.3.4 Using data to validate representation 
Power and water systems are vital in hydropower, responsible for supplying a wide range of 

services, many of which are interconnected. Hydropower facilities, unlike other generating 

sources, are planned and run to serve multiple objectives; water-related objectives are often given 

higher priority in hydropower generation operating policies than power-related purposes. 

Furthermore, it is clear from the preceding discussion that there is a substantial difference in the 

representation of hydropower in water and energy systems. While the primary objective of a water 

system domain is to ensure and maintain a healthy river system, the quantity (maximum energy 
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produced) and the reliability of the electricity generated by the facility are more critical  from a 

power system domain. The same could be said about models employed in these two domains. For 

hydropower modeling, a variety of water and power system models are currently available, and 

the model used depends on the desired output. 

• Watershed models simulate the availability of water availability and environmental 

impacts and the operational decisions of a hydropower plant. 

• Dispatch models and production cost models are primarily concerned with representing the 

operational capabilities and the power system constraints.  

Modeling tools in the hydropower sector are thus extremely diverse, and while the existing models 

are clear about the questions they can help address, there appears to be a lack of clarity about which 

model is best for answering facility-specific questions, which can lead to incompatibility in 

decision-making.  

Data-driven modeling is based on examining the data that characterizes the system under 

consideration. With only a few assumptions about the physical behavior of the system, a model is 

constructed based on the relationship between the different state variables (input, controls, and 

output) of the system. Given the complexities and multi-objective operations of the water and 

power systems, using data to highlight the bi-directional transformation between the two systems 

can aid in conveying the functionality and value of hydropower from the context of the facility. 

1.4 Research Objectives 
As previously stated, this research aims to construct a transfer function model that characterizes 

hydropower operation. The research objectives are to 

1. Explore the relationship between the time series of inflow to the reservoir and time series 

of downstream flow 

2. Develop a Box Jenkins transfer function model based on the relationship identified 

3. Examine the methodology's ability to distinguish among various types of facilities (e.g., 

storage versus Run-Of-River) 

1.5 Thesis Outline 
This thesis is organized into six chapters. 

• Chapter 1 lays the background along with the definition of the problem. 
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• Chapter 2 summarizes the literature review on transfer function modeling in non-hydro 

power-related sectors and the methodology characteristics of existing energy system 

models. Various research gaps are also identified. 

• Chapter 3 describes the methodology which includes various steps involved in Box Jenkins 

models 

• Chapter 4 outlines the many procedures necessary to preprocess the fleet data for applying 

Box Jenkins methodology and the subsequent analysis 

•  Chapter 5 provides results of transfer function modeling explores potential explanations 

of the model outputs obtained. 

• The conclusions and recommendations for future work are summarized in Chapter 6 
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Chapter 2: Literature Review 
2.1 Background 
 
Historically, efforts at statistically relating the system's input to its output started with regression 

analysis. However, a regression model only considers the simultaneous response between the input 

and output variables. Additionally, regression analysis would only be successful if the system is 

in stable equilibrium and is inappropriate in circumstances where there is a time-lagged 

relationship and noise in the system(Pankratz, 2012).  

Transfer functions demonstrate the causal relationship between the input and output of a process. 

In 1976, George Box and Gwilym Jenkins introduced a statistical method to model the relationship 

between input and output of a system by using transfer functions. The Box-Jenkins transfer 

function methodology presents a set of procedures for identifying, fitting, and checking 

autoregressive integrates moving average (ARIMA) models with the time series data (G. E. P. 

Box, Jenkins, Reinsel, & Ljung, 2015). This chapter presents the results of the literature review, 

which includes:  

a) representation of hydropower systems in existing models and the significance of transfer 

function modeling. 

b) A summary of different statistical techniques and description of the Box-Jenkins method 

c) Application of Box Jenkins methodology in non-hydropower-related research 

 

2.2 Hydropower modeling and fidelity 
 
Decision-making in a hydropower facility falls into three domains: Environmental outcomes, 

operational capabilities, and power system services.  

• Environmental Outcomes: Despite the advantages of hydropower as a relatively clean fuel, 

the development of hydropower facilities have been linked to severe and irreversible 

alterations in the natural hydrologic river regimes affecting the quality of habitat and fish 

species. Hydropower generation has negative impacts on water quality, habitat, landscape, 

and biodiversity. Consequently, the interaction of hydropower facilities with upstream and 

downstream results in significant physical, chemical, and biological transformation of the 

local ecosystem.   
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• Operational capabilities: Water inflow into the reservoir significantly impacts the operation 

of the hydropower facility and the reservoir storage. The flow into the reservoir determines 

the operational bounds of hydropower generation and creates restrictions on the energy and 

ancillary services provided by the facility. 

• Power System Services: Hydropower facilities can participate in both the power system's 

energy and ancillary services markets. The power system services offered by hydropower 

include voltage support, regulation and frequency response, load following, spinning, and 

non-spinning reserve. 

Decision-making, therefore, involves multiple stakeholders with conflicting perspectives, values, 

and proposed solutions. Existing hydropower representation in energy system models mainly falls 

into three categories: watershed, dispatch, and production cost. 

2.2.1 Watershed Models 
Watershed models focus on the water systems and aim to evaluate the impacts of different 

operational regimes on reservoir storage and releases. Watershed management models concentrate 

more on Best Management Practices for water uses, and the most used models are: 

• RiverWare: RiverWare is a river and reservoir modeling tool developed by CADSWES 

(Center for Advanced Decision Support for Water and Environmental Systems) at the 

University of Colorado Boulder with a wide range of applications, including operational 

scheduling and forecasting, policy evaluation, planning, and other decision processes. The 

tool models the entire water system, including the reservoir and associated environmental 

outcomes, and it is thus used by many agencies, including the Tennessee Valley Authority 

and the U.S. Bureau of Reclamation, and the U.S. Army Corps of Engineers(Cotter, 

Hydraulic Engineer, District, & Zagona).  

The RiverWare model can be run in three modes: pure simulation, rule-based simulation, 

and optimization. In pure simulation mode, variables like reservoir storage, pool elevation, 

and turbine discharge are used to begin the simulation. This mode solves a problem, which 

is completely specified, and the object-oriented approach makes it easier to identify 

whether the model may be over-or underdetermined. In rule-based simulation mode, 

multiple unknown values are allowed to be inputs, and additional information is provided 

by prioritized rules which are user-specified. These "if-then-else" operating policy 
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statements examine the system's state and then drive the simulation by setting slot values 

on the variables depending on that state. The optimization mode works through a linear 

programming approach for prioritized policy objects and constraints. The reservoir outflow 

is optimized for a prioritized set of user-specified objectives such as navigation, water 

supply, hydropower production, recreation and flood control, and fish and wildlife habitat 

("RiverWare,"). 

• MODSIM: MODSIM is a river basin management decision support system (DSS) 

developed by the Colorado State University. It utilizes a network flow optimization 

algorithm to simulate a priority-based water allocation mechanism in a river system. The 

most recent version of the tool is developed under the Microsoft .NET Framework and 

provides the users with the ability to customize it for any specific input, operating regime, 

and output. MODSIM is based on the hypothesis that any complex river basin can be 

represented in a network formulation comprised of nodes and links connecting the nodes. 

Therefore, in addition to simulation of reservoir allocation and operations, MODSIM could 

also perform complex water rights accounting without writing scripts or rules (Labadie, 

2006). 

 

2.2.2 Dispatch Models 
Dispatch models are used to optimize the revenue in a power plant and are typically utilized for 

short-term applications (up to 14 days). As the generation must match the load, a set of network 

constraints in addition to security and stability constraints needs to be accommodated to ensure the 

safe operation of the system. 

• SHOP (Short-term Hydro Operation Planning): Developed by SINTEF, a research 

organization in Norway, in collaboration with Norwegian University of Science and 

Technology (NTNU), SHOP is a hydropower scheduling tool to maximize profit. 

Components of SHOP include reservoirs, hydropower units, discharge gates, and junctions. 

Successive Linear Programming and Mixed Integer Programming are utilized in the 

software, and the market process and inflows are assumed for the entire horizon. Unit 

commitment and dispatch plans could be determined, and depending on the planning task 

prepared, SHOP models can be run in different modes. Examples of operational constraints 

included in the software consist of time-dependent ones such as minimum and maximum 
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production values, reservoirs, and gates, and the results are given as times series(Skjelbred, 

2020). 

• GTMax: GTMax (Generation and Transmission Maximization Model) was created by 

Argonne National Laboratory in 1995. This model utilizes a network representation of the 

power system, which is constructed from objects representing demand, supply, and 

transport systems. Data is entered at various time periods, including annual, monthly, 

weekly, daily, and hourly. The power system operations and energy transactions are 

optimized and solved using linear and mixed-integer programming. Hydropower units are 

one of the six power supply resources in the GTMax model. A hydro node consists of three 

options; Run-Of-River, storage, and pumped storage. Hydropower dispatch is constrained 

by reservoir-specific limitations, and GTMax computes the marginal value of water by 

considering those operational restrictions(T. D. Veselka, 2009). 

 

2.2.3 Production Cost Models 
The main objective of production cost models is minimizing the production costs while adhering 

to the operating constraints. These models calculate hourly production costs and market clearing 

prices which are location specific. 

• PLEXOS: Developed and commercialized by Energy Exemplar, PLEXOS models unit 

commitment and dispatch of generators in the power system. The model uses a 

deterministic mixed-integer linear program to minimize the overall cost of operation. 

Depending on the data available, the modeler can choose between three hydro model 

settings: Energy, Level, and Volume. The software can assume either a fixed or economic 

dispatch for hydropower generation. For fixed dispatch, the software read in the file 

specifying the electricity generated for every hour of every day for the entire year. While 

in an economic dispatch, hydropower is dispatched when it is most beneficial for the 

system operation while accommodating operation constraints(Bain & Acker, 2018). 

• PROMOD: PROMOD is a production cost model developed and marketed by Ventyx. It 

provides an extensive representation of the topology of the power system and is used for a 

variety of applications, including locational marginal price (LMP), asset valuations, 

financial transmission right (FTR) validation, and forecasting. In PROMOD, the hourly 

electricity generation is optimized based on the type of energy source (thermoelectric, 
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hydropower, solar, wind) and asset characteristics (capacity, cost, contract types, etc.) to 

satisfy the hourly loads in each zone for the lowest cost. In this model, hydro units and 

scheduled before the thermoelectric units, and for energy scheduling, hydropower units are 

defined as either run of river or peak shave. In the Run Of River option, the units are 

scheduled to uniformly transmit the provided energy limit, while in the peak shave option, 

the units are allocated to meet the upper-most load(Nekooie, 2018). 

• GridView: GridView is an analytical tool developed by Hitachi ABB Power Grids Inc. for 

market simulation and asset performance evaluation. Given the unit characteristics and 

chronological load, the software dispatches generators to minimize production costs. Under 

normal as well as contingency conditions, GridView performs dispatch to ensure that the 

transmission line restrictions are not exceeded. Additionally, the shadow prices on lines 

and spot rates on buses are also estimated. If using the load following schedule option, the 

software adjusts each hydro generator's weekly schedule using the weekly energy budget, 

minimum and maximum generation according to the weekly k factor at the start of each 

week in simulation. The k factor is the value that characterizes the plant’s ability to respond 

to the load by combining hydraulic and environmental constraints into a single number 

(Nathalie Voisin, 2021) 

 

2.3 Hydropower representation: RiverWare vs. PLEXOS 
 
2.3.1 Representation of hydropower in RiverWare 

RiverWare is a watershed modeling tool developed as a collaborative effort by the TVA, the U.S 

Bureau of Reclamation (USBR) and the University of Colorado Center for Advanced Decision 

Support for Water and Environmental Systems (CADSWES). The features of the river basin are 

represented by objects which are represented by icons on the graphical workspace. The object in 

turn has different slots which corresponds to the data structure for a variable or parameter used in 

the physical process equations for that feature. The required data are entered through direct manual 

entry or through importing database. The objects also contain various methods to model the 

different processes. There are two method types, namely dispatch and user selectable. In dispatch 

method, the user specifies the input/output configuration to solve the process using conventional 

algorithms while in user selectable methods, the basin is modeled in accordance with the 
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algorithm/model which the user selects(Zagona & Magee, 1999). The main objects associated with 

hydropower modeling are listed in Table 2.  Although inline power is shown as the object that 

represents run of river production, it cannot be generalized.  Strictly, RoR schema means that the 

river is not dammed and thus do not have any water storage capability. However, some run-of-

river facilities do use a small weir or dam to make sure that adequate water reaches the penstock 

and have a little pondage to store water for immediate use. As they cannot store water for future 

use, these facilities cannot be categorized as storage plants as well. Therefore, in RiverWare such 

facilities are represented as Slope Power Reservoirs. Contrary to the general definition of a storage 

reservoir, RiverWare's version of the object doesn't have any power-generating capability and the 

only process performed is the storage of water. Level Power Reservoir represents the object in 

which water is stored behind a reservoir and utilized for energy production (Singh & Frevert, 

2010). 

2.3.2 Reservoir modeling in RiverWare 

RiverWare offers three different kinds of solution techniques: simple simulation, rule-based 

simulation, and optimization. In a simple simulation, the user provides the inputs that drive the 

solution, which is based on an object-oriented modeling paradigm where each object waits to solve 

until it has enough information. In the other two techniques, operational policies drive the solution. 

In a rule-based simulation, the user-specified priority policy rules add additional information on 

the objects to solve the system and then modify the slot values on the objects based on the system 

state. In optimization, linear programming is set to optimize each of the prioritized goals input by 

the used. Optimization offers a universal solution across all objects and all the time steps taken, in 

contrast to the other two procedures that solve each item individually, one time step at a time. This 

enables the optimization solution to trade off objectives both spatially and over time. Modeling 

inflow, storage, and outflow in the power reservoir (facilities with power generating capability) 

objects is accomplished using mass balance approach: The common equations for reservoir mass 

balance in RiverWare are: 

𝑆𝑡𝑜𝑟𝑎𝑔𝑒! = 𝑆𝑡𝑜𝑟𝑎𝑔𝑒!"# +*(𝐼𝑛𝑓𝑙𝑜𝑤𝑠 × ∆𝑡) −*(𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠 × ∆𝑡) + 𝐺𝑎𝑖𝑛𝑠 − 𝐿𝑜𝑠𝑠𝑒𝑠 

𝑂𝑢𝑡𝑓𝑙𝑜𝑤 = 𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑠) + 𝑆𝑝𝑖𝑙𝑙(𝑠) 

𝑇𝑜𝑡𝑎𝑙	𝐼𝑛𝑓𝑙𝑜𝑤 = 𝐼𝑛𝑓𝑙𝑜𝑤 + 𝐻𝑦𝑑𝑟𝑜𝑙𝑜𝑔𝑖𝑐	𝐼𝑛𝑓𝑙𝑜𝑤 
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Table 2: Workspace objects in RiverWare related to hydropower 

Objects Functions 

Reach A section of the river that routes water using the many user-

selectable routing algorithms. 

Inline power A hydropower plant on reach with no storage and simulates run-of-

river production. 

Level Power Reservoir Reservoir with hydropower plant and outlets. The power and energy 

are computed via user-selected methods and solves mass balance 

equation. 

Slope Power Reservoir Similar to level power reservoir but with the capability to model the 

backwater storage effects of a sloped water surface. 

Pumped Storage Reservoir which can be linked to an in-line reservoir with the 

capability to store energy as well as generate power. 

Storage Reservoir A reservoir with outlets and spillways but with no hydropower 

facilities. 
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Hydrological inflows are inflows into a reservoir that are not a part of the main stream and/or 

ungauged (Zagona & Magee, 1999). RiverWare provides the capacity to simulate reservoir 

hydrology and hydrological processes, hydropower generation and energy use, as well as water 

ownership and rights. 

 
2.3.3 Representation of Hydropower in PLEXOS 

The PLEXOS system consist of PLEXOS GUI which includes the input and output interface and 

the PLEXOS engine. In the input interface, the user enters or imports the energy system data 

(description of power system, analysis specification) which in turn is read by the PLEXOS Engine. 

After the data has been read, a solver interprets it to produce results that may be seen in the output 

interface. The object model that forms the foundation of PLEXOS is based on three levels of 

hierarchy: objects, memberships, and properties. Entities to be modeled in a system are called 

objects, while memberships refer to the relationships between the objects. Properties are the 

characteristics of objects which is used to store the data associated with object. Hydropower 

systems are modeled in PLEXOS using four main classes: Generator, Waterways, Storages, and 

constraint. The different classes are briefly described below(Papadopoulos, Johnson, Valdebenito, 

& Exemplar, 2014): 

1. Generator: The generator class includes the properties of the hydro generators such as 

energy, capacity factor, load, and units. 

2. Storage: Reservoirs with any given capacity and short, medium, or long-term storages are 

represented by the storage class. They can also be used to represent simple river junctions, 

as well as the head and tail ponds of generators. There are generally three different kinds 

of storage: pumped storage reservoirs, short-term storages that cycle every few hours, days, 

or weeks, and long-term storages, whose "water value" is estimated exogenously or decided 

over an extended period of time. 

3. Waterways: The waterway class is used to model the canals and spillways. By assigning 

a membership, waterways can either join the storages together or let the water ‘spill to the 

sea”. 

4. Constraints: Constraint objects can be used to define the custom constraints define the 

individual or combination of elements in the hydro system. The different constraints can 

be set for generators, waterways, and storages in any combination. 
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2.3.4 Reservoir Modeling in PLEXOS  

The hydro model in PLEXOS has three types of settings: energy, level, and volume. In an energy 

model, storage volumes are expressed in terms of potential energy which is determined by the 

generating efficiency of all the power plants located downstream of the storage. Simple "linear" 

cascaded systems and models of closed-circuit pumped storage are ideal applications for this kind 

of model. The level model uses elevations and reference areas are used and storages are modeled 

as trapezoidal, indicating that their surface area increases as they fill up. The storage volumes are 

measures in thousands of cubic meters. In contrast to energy model, generator efficiency must be 

stated and are measured in !"
#!/%

. In the volume model, the unit of storage is a volume of water, 

instead of levels of potential energy and the storage volume is represented in cubic meter days 

(CMD). The generating efficiency must be defined and are measured in !"
#!/%

, similar to the level 

model. The hydro dispatch approach employed in PLEXOS maximizes the utilization of 

hydropower while being constrained by monthly maximum and minimum power outputs as well 

as monthly energy constraints for the dispatchable units(Exemplar, 2022). 

 

2.3.5 Drawbacks in the representation 

1. Ambiguity in hydropower classification: The common forms of classification of 

hydropower facilities are storage, run-of-river, and pumped storage. However, this 

classification does not apply to either of the models mentioned above. The term "storage 

reservoir" in RiverWare refers to an object without hydropower capabilities, whereas 

"inline power" is used to describe facilities that produce power without storage. The run-

of-river facilities are mostly depicted as slope power reservoirs while storage facilities are 

depicted as level power reservoirs in the RiverWare workspace that represents the TVA 

system's reservoirs.(Biddle, 2001) While in PLEXOS, all the reservoirs come under the 

Storage Class which is divided in to pumped storage, short term storages which operates 

under a RoR schema and long term storage for representing traditional modeling facilities. 

2. Modeling Fidelity: Hydropower facilities generates electricity by discharging water from 

the reservoir into the penstocks and through turbines. Although the different operational 

aspects of hydropower operation are well understood and easier to model, the 

accompanying hydrological parameters and water management choices are complex and 
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site-specific. Thus, the fidelity of hydropower modeling performed by a dam operator, or 

a power provider sets it apart from external modeling(Turner & Voisin, 2022). On 

analyzing hydropower representation in both these models, it clear that they are based on 

general guidelines for water release that are derived from the prior knowledge of inflows, 

reservoir elevations, flow and capacity constraints and demands. Both these models 

however cannot account for the reservoir operation events that are the result of manual 

decisions made by the reservoir operators, or that fall outside of the standard operating 

procedures of the reservoirs. 

3. Incorporating non-stationarity: A key assumption in reservoir design and operation is 

hydrologic stationarity. Stationarity indicates that recorded observations have a probability 

distribution function that does not change with time and whose properties can be inferred 

from the past. Although some hydrological processes are stationary, others may change 

over time due to variables including changes in regional resource management and 

hydroclimatic change(Milly et al., 2008). The assumption of stationarity is made in both 

the models outlined above including in both simulation and optimization, by either directly 

utilizing historical inflows as an input or by employing synthetic inflow based on historical 

streamflow statistics.  

2.4 Summary 
Hydropower development is frequently subjected to environmental and regulatory constraints and 

representing these constraints inside the existing energy models model is a complex process. The 

literature research also reveals that there is diversity in the models and their representation of 

hydropower. Most of the models are focused on either water or power systems, and because both 

are complex systems with competing objectives and multiple constraints, it has not been possible 

to capture these intricacies in a single model yet. Both water and power system operators require 

the right tools to examine the impact of renewable energy integration on water system operations, 

as well as quantify the flexibility of hydropower plants to address power system concerns. 

Characterization of hydropower is thus a major weakness of energy systems models because: 

a) Because the majority of models are concerned with linear programming optimization, non-

linear dynamic aspects of a hydropower plant, such as evaporation losses and hydraulic 

head effects, must be simplified in order to be incorporated into such models. 
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b) Reservoirs and pumped storage systems are being employed to provide energy storage and 

ancillary services to the power grid, and standard hydropower modeling frameworks may 

not adequately capture the flexible properties of hydropower generation. 

 

2.5 Significance of the Study 
 
2.5.1 Characterization of hydropower – need for a common rubric/nomenclature 
The majority of the models available (watershed, dispatch, and production cost) are utilized in a 

variety of applications and are adopted as a standard by many utilities. However, there is a need 

for improvement in how they represent hydropower. Because water has its own constraints as a 

fuel source, it is challenging to represent hydropower the available models. Additionally, as 

observed from previous discussions, both water models and power system models place distinct 

constraints and values on hydropower and many potential opportunities exist for better 

representation. In models and communications that support electric power and water management 

decision-making, it is challenging to clearly identify, classify, and express the key consequences 

of hydropower facility operations within the scheduling of power systems and water systems. 

While practitioners in  the water and power domains have an intuitive understanding of the 

multiple assets they analyze and schedule on a daily basis, only a handful of them have gained 

relevant insights. Fewer still have collected data for entire fleets of hydropower assets spread 

across multiple owners, watersheds, balancing authorities, and interconnections. What is required 

is a quantitative, data-driven rubric and nomenclature to compare and contrast the essential 

functionality of numerous diverse hydropower facilities that translate the dynamics of water and 

electric power across various operational and planning time scales. 

2.5.2 Modeling water and energy systems 
In the past, various efforts were made to accurately model water and power systems to achieve 

proper hydrological and power systems independent of one another. They usually fall into two 

categories: merging existing models or constructing a new model for a specific research region. 

Linking energy systems models with watershed models can provide additional information for 

both these systems, allowing their individual capabilities to assist each other.  Large-scale 

renewable energy integration studies have simulated power systems at varying penetration levels, 

although frequently using simplified representations of hydropower operations. Combined 
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optimization of both electrical and water system models has proven to be reliable in this 

scenario(Ibanez et al., 2014). The adequacy of integrating a hydrological model with a production 

cost model (PROMOD) to estimate the susceptibility of the US western electric grid to climatic 

conditions was investigated in another study (Voisin et al., 2016).  Cardenal et al. devised a 

methodology for introducing power markets into hydro-economic models to analyze the economic 

tradeoffs between hydropower, and other water uses in the Iberian Peninsula(Pereira-Cardenal, 

Mo, Riegels, Arnbjerg-Nielsen, & Bauer-Gottwein, 2015).  

Due to the high computational cost, a model that optimizes water resource management and power 

system planning simultaneously has yet to be adopted. The Science and Technology Directorate 

of the United States Department of Homeland Security (Petri, 2009) stated a “serious unmet need” 

in comprehending the interdependence of electrical and water system infrastructure to aid in the 

recovery of the national power grid after regional or national-scale incidents. In March 2019, the 

Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory 

(NREL) conducted a workshop supported by the U.S. Department of Energy (DOE) to better 

understand the need for research to improve hydropower representation in grid models(Voisin et 

al., 2020). The current research looks to narrow the knowledge gap in several of the research 

themes outlined in the workshop report released in November 2020. In particular, it will 

particularly assist with theme two, “Data Availability as a Barrier to Modeling,” which examines 

how a lack of publicly available hydropower-specific data impedes various hydropower modeling 

tasks from a power system perspective. 

2.5.3 Relevance of time series analysis 
Time series modeling has been explored in the machine learning and statistics communities for 

decades. In general, there are two types of applications for time analysis: creating predictions of 

future values and learning representation, which entails determining the nature of the phenomenon 

represented by the observations. For decades, the former has been a prominent research topic, and 

time-series models are used for forecasting if three requirements are met (Makridakis, 

Wheelwright, & Hyndman, 2008) : 

• Historical recordings of the data are available 

• Required information is quantified as numerical/categorical data 
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• It can be assumed that at least some portion of the past pattern will be repeated in the future 

(assumption of continuity) 

Many components of the hydrologic cycle are described using time series; common ones include 

precipitation, flowrate, discharge levels, and streamflow(Survey, 2016). Hydrological time series 

data has been widely used for forecasting studies in a variety of domains, including hydropower 

generation, drought mitigation, and water resource management (Adamowski, 2008; Alemu, 

Palmer, Polebitski, & Meaker, 2011; Pozzi et al., 2013; Waage, Baldwin, Steger, & Bray, 2001). 

However, employing time series analysis for diagnostic learning to determine system behavior 

based on historical data has not been explored adequately in the hydropower sector. This is 

significant both in terms of renewable energy integration and climate change. 

 

2.5.3.1 Data-Driven Modeling 
Based on the review of existing models, they can be classified as simulation, optimization, or 

combinations. A simulation model represents a system that is used to forecast its behavior under a 

given set of conditions. In contrast, optimization models consist of objectives, variables, and 

constraints used to generate an “optimum” result. Both approaches rely on prior knowledge of the 

system in question and are usually based on the first-order principles from the physics of a 

phenomenon or system.  

Data-driven modeling is based on examining the data that characterizes the system in question and 

relies on the measurements taken from real-world systems. The most common methods used are 

statistical methods, artificial neural networks, and fuzzy rule-based systems(Solomatine & Ostfeld, 

2008). With only a few assumptions about the system's physical behavior, a model can be 

evaluated by analyzing concurrent input and output time series. 

2.6 Statistical Modeling Techniques 

Statistical modeling is the process of applying statistical analysis to a set of data to find the 

mathematical relationship between the variables and draw inferences about its characteristics. 

Using statistical modeling to examine raw data allows scientists to adopt a strategic approach to 

data analysis by creating representations that uncover the relationship between variables and make 

informed decisions. Statistical modeling methodologies falls into two categories: supervised and 

unsupervised learning (Sathya & Abraham, 2013). 
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2.6.1 Supervised Learning 

Supervised learning is a method of training a model on a labeled historical dataset such that it can 

predict the outcome. Supervised learning can be further classified into two types: classification 

models and regression models. 

• Classification Models: In classification models, the learning algorithm learns a function to 

translate inputs to output where the output value is in discrete class label. The test data is 

assigned to specific groups by using this process. Common types of classification 

algorithms include Random forests, Naïve Bayes, K-Nearest Neighbors, Decision Trees, 

and SVM. 

• Regression Models: In regression models, the algorithm is used to identify the relationship 

between the dependent and independent variables and the output is continuous real number. 

Linear regression, logistic regression, and polynomial regression models are all common 

types of regression models. 

2.6.2 Unsupervised Learning 

Unsupervised learning is a technique to build models from unlabeled data without human 

intervention. These models are used for the following tasks: 

• Clustering: In clustering the data is grouped according to their similarities (or differences). 

An example is K-means clustering, where K represents the size and granularity with which 

the algorithm groups data. 

• Dimensionality reduction: When the features involved in the dataset is too high, this 

technique is applied. Dimensionality reduction attempts to maintain data integrity while 

lowering the number data inputs to a manageable level. 

• Association: In this unsupervised learning method, different rules are applied to determine 

the association (dependency, relationship) between group of objects in a large data set. 

2.6.3 Selecting the required model 

Selection of the appropriate model generally depends on the questions posed, time restraints and 

data available (Love, 2002). This research tries to address the following questions: 

1. What changes are required in the existing models to effectively address the complexities 

of water and power management decisions? 
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2. When assessing the functionality of a hydropower facility, what influence does water 

dynamics have on electric power dynamics, and vice versa? 

3. What specific information pertaining to the above questions could be harnessed from 

hydropower fleet data? 

Unsupervised learning methods are given little consideration as data from the hydropower fleet is 

labeled and is in the form of historical time series. Furthermore, the appropriate time to apply 

unsupervised learning is when there is no available data on desired outcomes. However, because 

we are aiming to better understand the relationship between two systems, it may not be practical 

to apply such techniques in this study. As fleet data is in continuous time series format, regression 

models are believed to the best choice among the types of models available in supervised learning. 

2.6.4 Objectives of regression models 

Regression analysis is one of the most widely used statistical approaches in practice, with 

applications in a variety of scientific domains such as economics, engineering, biology, 

agriculture, medicine, geology, and others. Regression models are used to define the relationship 

between a dependent (or response) variable  y and the independent (predictor) variables x&, x&, 

x'… . x(. Regression analysis has several objectives (Yan & Su, 2009): 

a) Based on a set of values of x&, x&, x'… . x(, predict the value of y 

b) Establish a causal relationship between the response variable and the predictor variables 

c) Examining the independent variables x&, x&, x'… . x( to see which one is more essential 

than the others in explaining the dependent variable y and determining the relationship 

appropriately. 

The different regression models include linear regression, logistic regression, and polynomial 

regression, with linear regression being the most fundamental and extensively employed. 

 
2.6.5 Linear regression models 
A simple linear regression model is used to define the relationship between a dependent (or 

response) variable y and the independent (predictor) variable x. The linear regression model is 

written as the following form (Pankratz, 2012): 

y) 	= b* + b&x) + n) 

b* = y intercept,  b& = gradient/slope of the regression line,  n)= stochastic disturbance term 
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In simple linear regression, it is assumed that the disturbance n) is normally distributed with 

E(n)) = 0	and a constant variance Var(n)) = σ+. 

2.6.5.1 Drawbacks in estimating with linear regression 
a) Relationships with time lag: If y) is related to x) with a time lag, there are chances that it 

may be related to previous lag terms including x),&, x),+ .. and so forth. If we adhere to 

solely linear regression in that scenario, the impacts of prior time lags may be missed and 

as a result, the estimate of the random error term will be higher than necessary. 

b) Self-correlation of the noise series: The disturbance term n) ma be related to its own past 

values n),&, n),+ and if we ignore this in estimating the regression model, the predicted 

residuals will be much larger than they need to be. In addition, failing to account for 

autocorrelation in the disturbance results in inefficient coefficient estimates and erroneous 

statistical tests(Pankratz, 2012). 

2.6.6 Dynamic Regression models 

Alan Pankratz introduced the term “Dynamic Regression” to improve the shortcomings of simple 

linear regression models in his book Forecasting using Dynamic Regression Models. A dynamic 

regression model states how the output y)	is linearly related to the current and past values of one 

or more inputs(Pankratz, 2012). It is crucial to note that the inputs are not affected by the output 

and the noise term n) has an autocorrelation structure in this model. The dynamic regression model 

is written as the following form: 

y) = 𝐶 +
ω(B)
𝛿(𝐵) x),- ++n) 

𝑏 = delay terms 

ω(B) = describes the magnitude of immediate effects of the x) on y) 

𝛿(𝐵)= describes the duration and pattern of the decay 

Pankratz introduced dynamic regression in 1991 to describe what Box and Jenkins termed as 

"transfer function models" in 1976. 

 
2.7 Box-Jenkins ARIMA Modeling 
Some common terminologies in time series analysis are summarized and the elements of Box-

Jenkins ARIMA methodology described in this section. 



 29 

2.7.1 Stationarity 
A times series is defined as observations recorded sequentially in time. By convention, time series 

can be classified as discrete or continuous. In a discrete series, the observations are taken at discrete 

points, while for the latter, the measurements are made continuously through time. 

A stationary time series is one whose statistical properties (mean, variance, autocorrelation) remain 

constant over time. Stationarity plays a relevant role in enhancing our ability to analyze a time 

series and its various application. A stationary model assumes that the stochastic process remains 

in statistical equilibrium as the probabilistic laws that govern the behavior of the process remain 

constant over time. (Hyndman & Athanasopoulos, 2018) 

2.7.2 Differencing 
Differencing is a method used to transform a non-stationary time series to achieve stationarity and 

helps to stabilize the mean by removing existing trends in a time series. 

First-order difference: First-order difference or first differencing is the change between 

consecutive observations in a time series. Let	Y) denote the value of time series Y at a given time 

𝑡, then first differencing is calculated by: 

𝑌./ = 𝑌. − 𝑌.,& 

Random walk model: If the first differencing results are entirely random (where the current 

observation is the same as the prior one with a random step up or down), then the time series Y is 

said to follow a random walk. The random walk can be represented as: 

𝑌. = 𝑌.,& + 𝜖. 

Where	𝜖. is the random shock, the value of error term at time t. 

Second-order difference: If the first differencing does not produce stationarity, it may be 

necessary to produce a second-order difference. 

𝑌.// = 𝑌./ − 𝑌.,&/	 

Seasonal difference: Seasonality in a time series is a characteristic in which the data observe a 

regular pattern of changes that repeats over a specific time frame (weekly, daily, quarterly, etc.). 

The seasonal difference is thus the difference between an observation and the previous observation 

from the same season, rather than in consecutive periods. If a given series has m seasons, seasonal 

differencing is calculated by: (Hyndman & Athanasopoulos, 2018) 

𝑌./ = 𝑌. − 𝑌.,# 
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2.7.3 Correlation 
In statistics, correlation measures the local strength and direction of a linear relationship between 

two random variables. Analyzing the correlation between a series and its lags (shifts in time) is 

relevant in time series analysis as past lags may contain patterns or properties that might influence 

subsequent periods' values. 

Correlation between two random variables 𝑥 and 𝑦 is expressed as: 

𝑟0,2 =
𝑐𝑜𝑣(𝑥, 𝑦)
𝜎0 × 𝜎2

	 , 𝑤ℎ𝑒𝑟𝑒 − 1 ≤ 𝑟0,2 ≤ 1 

 

𝑐𝑜𝑣(𝑥, 𝑦) =	Covariance between 𝑥 and 𝑦	 

                  = 𝐸[O𝑥 − 𝐸(𝑥)P − O𝑦 − 𝐸(𝑦)P] 

𝜎0 = Standard deviation of 𝑥 

𝜎2 = Standard deviation of 𝑦 

Autocorrelation function: In time series, the autocorrelation function (ACF) is used to quantify the 

correlation between two adjacent values (Krispin, 2019). For example, for a lag k, the sample 

autocorrelation function is: 

𝑟3 =	Q
O(𝑦4 − 𝑦R)PO(𝑦453 − 𝑦R)P

∑ (𝑦4 − 𝑦R)+6
47&

6,3

47&

 

 

𝑛 = Number of observations 

𝑦R= Mean of the series 

 

Partial Autocorrelation Function: The partial autocorrelation function (PACF) at lag k is the 

autocorrelation between 𝑦. and 𝑦.,3 which are not considered for by lags 1 through 𝑘-1. Thus, the 

PACF directly correlates a series at lag k after removing the interventions of the shorter time lags 

(𝑦.,&, 𝑦.,+, … , 𝑦.,3,&). 

 

2.7.4 Stationary Models 
1. Autoregressive Model: In an Autoregressive (AR) model, the current value of the 

series𝑌.	can be predicted using previous outputs	𝑌.,&, 𝑌.,+, 𝑌.,' and a random shock value 
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𝑎.. The term autoregression indicates the regression of a variable on itself. The order of the 

model is the immediately preceding values in the series that are used to predict the current 

observation. Mathematically, an AR model of order 𝑝 can be expressed as (Burges, 1998) 

𝑌.(𝑝) = 𝑐 + Φ&𝑌.,& +Φ+𝑌.,+ +⋯+Φ8𝑌.,8 + 𝑎. 

= 𝑐 +QΦ4𝑌.,4

8

47&

+ 𝑎. 

  𝑎. = random error at time 𝑡	with mean 0 and constant variance, independent of 𝑌.  

			c = constant 

			Φ8= coefficients of the autoregressive process 

 

2. Moving Average Model: In a moving average (MA) model, the past forecast errors are 

used as the explanatory variables while predicting the current observation. A moving 

average model of order 𝑞 is represented as: 

𝑌.(𝑞) = 𝜇 + 𝑎.−θ&𝑎.,&−θ+𝑎.,+ −⋯−θ9𝑎.,9 

= 𝜇 −Qθ:𝑎.,:

9

:7&

+ 𝑎. 

𝑎. = random error at time 𝑡	with mean 0 and constant variance, independent of 𝑌.  

𝜇 = mean of the time series 

θ9= coefficients of the moving average process 

 

3. Mixed Models: Mixed models attempts to capture the properties of both Autoregressive 

and Moving Average processes. These models usually have fewer parameters than an AR 

(𝑝) or MA (𝑝) model by themselves. There are two common types of mixed models: 

Autoregressive Moving Average (ARMA) model and Autoregressive Integrated Moving 

Average (ARIMA) process.  

An ARMA (𝑝, 𝑞) model is defined by the equation: 

𝑌.(𝑝, 𝑞) =QΦ4𝑌.,4

8

47&

+ 𝑎. −Qθ:𝑎:,4

9

:7&
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The ARMA model assumes that the time series is stationary, however, in practice, many 

datasets have trends and seasonality. When the time series exhibit-non stationarity, an 

initial differencing is included in the model to achieve stationarity. Combining differencing 

of an ARMA process produces Autoregressive Integrated Moving Average (ARIMA) 

models.(Hyndman & Athanasopoulos, 2018) 

 An ARIMA (𝑝, 𝑑, 𝑞) model is represented as: 

𝑌./(𝑝, 𝑑, 𝑞) = 𝑐 +QΦ4𝑌/.,4 −Qθ:𝑎.,:

9

:7&

+ 𝑎.

8

47&

 

𝑌./= differenced time series (which may have been differenced more than once) 

𝑑 = degree of differencing involved. 

 

2.7.5 Backshift Notation 
ARIMA models are often represented in backshift notation	B and is useful when working with 

time series lags. Using notation B before a series indicates that element should be moved back one 

time, 

𝐵3𝑌. = 𝑌.,3 

2.7.6 Differencing Operator 
The backshift operator is also convenient for describing differencing process. As explained above, 

first order differencing is represented as: 

𝑌./ =	𝑌. − 𝑌.,& 

					= 	𝑌. − 𝐵𝑌. 

							= (1 − 𝐵)𝑌. 

= ∇𝑌. 

The differencing operator ∇ takes the difference between an observation and the previous 

observation in a time series. Seasonal differencing operator  ∇#takes the difference between two 

points in the same season. These are expressed as: 

∇𝑌. =	𝑌. − 𝑌.,& 

∇#𝑌. =	𝑌. − 𝑌.,# 

Using these definitions, the general ARIMA (𝑝, 𝑑, 𝑞) thus can be represented as (Pankratz, 2012): 

Φ(B)∇;𝑌. = 𝑐 + 	θ(B)𝑎. 
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∇;= (1 − 𝐵); 										(the	d − order	differencing	operator) 

Φ(B) = 1 − Φ&𝐵 −Φ+𝐵+ −⋯−Φ8𝐵8				(the	p − order	AR	operator) 

θ(B) = 1 − θ&𝐵 − θ+𝐵+ −⋯− θ9𝐵9 		(the	q − order	MA	operator) 

2.8 The Box-Jenkins Methodology 
 
George Box and Gwilym Jenkins developed a systematic methodology for selecting an appropriate 

model for estimating and forecasting a univariate time series (G. E. Box & Jenkins, 1976). It is a 

three-step iterative strategy for identifying, estimating, and forecasting ARIMA models. This 

approach relies on the principle of parsimony which refers to modeling a time series with as few 

parameters possible for adequately representing the process. Parsimonious models, according to 

Box and Jenkins, yield better forecasts than models with numerous parameters(G. E. P. Box et al., 

2015). The following are the three steps in the Box-Jenkins methodology: 

1. Model Identification: In the identification stage, values of 𝑑	and then 𝑝 and 𝑞 in the 

ARIMA (𝑝, 𝑑, 𝑞) model is selected by visually examining the ACF and PACF plots of the 

time series. Because the Box-Jenkins approach can only be applied to stationary series, the 

first step in the identification process is to assess if the provided time series is stationary. 

Plotting each observation in a sequence against time yields helpful information about 

outliers, missing values, and periodic trends. While differencing is the common 

transformation technique used to achieve stationarity, logarithmic transformations can also 

be used to stabilize the variance of a time series. However, they can only be applied to 

positive-valued series. 

Unit root tests 

A unit root process is a stochastic trend in a time series, and the presence or absence of unit 

roots can assist in identifying some of the underlying properties of a time series. If a series 

does not have any unit-roots, it is better characterized as stationary with a constant mean. 

Unit root tests are statistical hypothesis tests that can be used to determine the stationarity 

of a time series when visual detection fails to detect trends and/or seasonal components. 

The two common unit root tests used in time series analysis are the Augmented Dickey-

Fuller (ADF) Test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test. After 

achieving stationarity and determining the value of 𝑑, the next step is to identify the orders 

𝑝 and 𝑞 of the AR and MA process. A comparison of the sample ACF and PACF plots may 
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reveal patterns that provide additional information on the data and its characteristics. Box 

and Jenkins (G. E. P. Box et al., 2015) summarized the behavior of ACF and PACF in three 

types of stationary ARIMA models, which are listed in Table 3. 

2. Model Estimation: Following the estimation of the orders of 𝑝, 𝑑,	and 𝑞, the next step is 

to obtain precise estimates of the coefficients ARIMA model	(	Φ8, θ9)  chosen during the 

identification stage. For this, an efficient nonlinear least-squares algorithm is used, the 

common one being the Maximum Likelihood Estimation (MLE). The residuals, which are 

the difference between the observed and “fitted” values of the time series, are also obtained. 

The sum of squared residuals is minimized with the least-squared estimates of 	Φ8, θ9. In 

addition to the above, parameter estimates should meet certain conditions for the suggested 

model to be considered acceptable. The generated AR and MA parameters must be 

statistically significant, and this is verified by T-tests for the estimates parameters must 

produce a fitted time series that is stationary (for AR) and invertible (for MA). Finally, it 

is critical to ensure that the parameter estimates are not overly correlated, as strong 

correlations suggest low-quality estimations. In most circumstances, a 0.9 correlation is 

used as a rule-of-thumb cutoff level. If the correlation coefficient calculated in greater than 

0.9, then the parameters estimated would have been dependent on each other (Pankratz, 

2009).  

3. Diagnostic Checking: The diagnostic checking stage verifies that the residuals calculated 

during the estimation stage constitute a white noise process, meaning that no more 

improvement in the residual variance can be gained by adding another parameter. To do 

so, the ACF and PACF plots of the residuals are inspected to detect any unaccounted 

pattern. At any lag order, the ACF plots must show no significant correlation, and the 

PACF plots must show no significant spikes (Fig.3). The Ljung-Box Chi-Square test is 

another statistical test used to ensure that the residuals are random. The null hypothesis in 

this test indicates that the residual autocorrelation represents a white noise series  (Pankratz, 

2009). The different steps involved in the Box-Jenkins methodology are summarized in 

Fig. 4. 
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Table 3:ACF and PACF patterns for ARMA 

 

 

 

 

 
Figure 3: ACF plot for a white noise series 

(Hyndman & Athanasopoulos, 2018) 

 
 
 

 AR	(𝒑)	process MA	(𝒒)	process ARMA (𝒑, 𝒒) process 

ACF 

Infinite (exponential decay 

and/or damped sine waves) 
Finite 

Infinite (exponential decay 

and/or damped sine waves 

after first 𝑞 – 𝑝 lags) 

Tails off towards 0 Cuts off to 0 after lag 𝑞 Tails off towards 0 

PACF 
Finite 

Infinite (dominated by 

exponential decay and/or 

damped sine waves) 

Infinite (dominated by 

exponential decay and/or 

damped sine waves after 

first 𝑝 – 𝑞 lags) 

Cuts off to 0 after lag 𝑝 Tails off towards 0 Tails off towards 0 
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Figure 4: Box Jenkins methodology 
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2.8.1 Information based criteria for model identification 
Model selection by analyzing sample plots can be time-consuming and error-prone, because real-

life time series rarely reveal simple patterns. As a result, information-based criteria such as the 

Akaike Information Criterion (AIC) and Bayesian Information Criteria (BIC) have been proposed 

to help choose the best mode(Akaike, 1973; Schwarz, 1978). 

1. Akaike Information Criterion (AIC) 

AIC is a commonly used statistical model measure. It essentially combines the model's goodness 

of fit and its parsimony into a single metric. AIC is computed as: 

AIC = −2	 ln(𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 	2𝑟 

≈ 𝑛 lnO𝜎u<
+P + 	2𝑟 

𝑛 = number of observations in the series 

𝑟 = number of parameters estimated in the model 

𝜎u<
+= maximum likelihood estimation of the residual variance 𝜎<+ 

 

 

2. Bayesian Information Criterion (BIC) 

BIC is another statistical tool for model selection which attempts to correct the tendency of AIC 

to overfit. BIC is computed as 

BIC = −2	 ln(𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑑	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 	𝑟 ln(𝑛) 

≈ 𝑛 lnO𝜎u<
+P + 	𝑟 ln(𝑛) 

For both these tools, the preferred model is the one with the minimum value for the criterion 

chosen.  

2.9 Application of Transfer Function Models 
 
A transfer function relates two variables: the cause (forcing function or input variable) and the 

effect (response or output variable). There are many published examples of application of Box 

Jenkins transfer function models and over the years transfer function modeling have been applied 

to several fields including physical science, biology, transportation, economics, and engineering. 

Forecasting commodity prices, population response, and unemployment prediction are all 

examples of applications of transfer function models in the economic, social, and behavioral 

sciences. Liu studied the relationship between gasoline and crude oil prices in the U.S by 
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employing transfer function models (Liu, 1991). By examining data from the PJM Interconnection 

to anticipate day-ahead electricity prices, transfer function models were constructed relating the 

electricity demand with prices(Nogales & Conejo, 2006).  A similar study was conducted 

employed an ARIMA model approach to assess and forecast the day-ahead prices for the German 

electricity market(Jakaša, Andročec, & Sprčić, 2011). A transfer function analysis was used to 

investigate the impact of economic decisions made by the local county on the number residential, 

commercial, and industrial permits issued (McGinnis, 1994). 

In biology, transfer function models are used to study the effects of different medications, the 

structure–function relationship of proteins, and the assessment of various cell populations. Monnet 

et al studied the relationship between antimicrobial use and bacterial resistance by developing a 

linear transfer function between the two parameters (Monnet et al., 2001). Aldeyab et.al. did a 

similar study over a 5-year period, using a multivariate ARIMA model to link antibiotic use to 

extended-spectrum beta (ESB) generating bacteria incidence rates and resistance patterns(Aldeyab 

et al., 2011). Parsons and Colbourne presented another application of the transfer function model 

by forecasting annual capture rates in a shrimp fishing location off the coast of Labrador using the 

annual winter ice cover as an input variable (Parsons & Colbourne, 2000). 

One of the first industries to use the Box Jenkins technique for transfer function modeling was the 

transportation sector, notably in traffic volume forecasting and transportation planning studies. 

Nihan and Homesland analyzed monthly traffic flow from freeways from 1968 to 1976 to 

anticipate traffic levels in 1977, using the Box Jenkins technique (Nihan & Holmesland, 1980). 

Cools et al. used a seasonal ARIMA model with explanatory variables to analyze seasonality in 

daily traffic data and evaluated the influence of holidays on incoming traffic to two different sites. 

Holidays have a noticeable impact on commuter highways when compared to those used for leisure 

travel, according to ARIMA models developed. (Cools, Moons, & Wets, 2009). Kumar and 

Vanajakshi used seasonal ARIMA models to predict traffic patterns in the short run with limited 

input data(Kumar & Vanajakshi, 2015). Using historical values, transfer function modeling was 

also utilized to predict missing observations in traffic data. (Zhong & Sharma, 2006),(Harvey & 

Pierse, 1984). 

The broadest application of transfer function modeling is in engineering and physical sciences. In 

engineering, however, transfer functions are often represented using a frequency-based technique 
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rather than a time series analysis. Electrical engineers frequently perform linear analysis using 

transfer functions, which are then used to compare different designs. In their research, Raghavan 

and Satish computed a transfer function of an electric transformer by analyzing its equivalent 

circuit model (Ragavan & Satish, 2007). Transfer function modeling also has numerous 

applications in control systems. Qiang and Kui, in their study, analyzed the transfer function model 

of an open-loop Buck converter in a continuous conduction mode (CCM) and, from the models 

derived, found the various elements that influence its operation(Wang Fa-Qiang, 2013). 

Transfer function modeling could be used in ways that are not traditionally associated with science 

and engineering. Huang and Wu conducted an empirical study in which they used an ARIMA 

model to examine and forecast a student's academic performance based on previous test 

results(Huang & Wu, 2014). By studying student enrollment data, ARIMA modeling was also 

utilized to investigate gender parity in accessing higher education in Taiwan, which can help 

support a higher education expansion program in the country(Chang, 2018). 

Time series analysis in the hydropower sector necessitates the availability of characteristics such 

as reservoir inflow, pool elevation, total flow, and power generated, and the longer the series, the 

better. Instead of using a pre-defined simulation/optimization model, the time series of the outflow 

can be extracted and compared to the inflow in the upstream to examine the dependencies among 

them, and exploratory approaches like this uncover information regarding reservoir operation that 

might otherwise go unnoticed in a priori models. The use of the Box-Jenkins transfer function 

framework in this research is beneficial since trends in these two series can be recognized for better 

understanding and decision making, and can eventually be linked to water systems modeling, 

dispatch, and hydropower production cost modeling. This research and proposed methodology are 

not intended to establish a new model; instead, they should be able to supplement existing models 

by providing robust data management and modeling tools for water managers, policymakers, and 

other stakeholders. 
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Chapter 3: Methodology 

Hydropower plants are highly non-linear and complex systems, and over the years, much research 

effort has been put into the modeling of facilities with different levels of detail. The nonlinear 

dynamic characteristics of hydro plant rely upon several uncertainties, and in a multi-purpose 

reservoir, the tradeoffs that make decisions beneficial for one purpose and harmful for other are 

often identified only by recording the effects of water released and reservoir elevations (T. 

Veselka, Ploussard, & Christian, 2020). Facility specific parameters like total flow, power 

generated, headwater, and tailwater is usually represented in a time series, and several insights 

could be gained by examining how they affect they functionality of a hydropower project. The 

proposed transfer function model is shown in Fig.5. Environmental outcomes, operational 

capabilities, and power system services are all inter-linked through hydropower operator decisions. 

Therefore, to consider a hydropower facility as a system, it is crucial to identify the different 

parameters entering and leaving each of these domains, the time scales, and the various external 

factors involved which may influence these signals. 

3.1 Research Hypothesis 
 
The main hypothesis of this thesis can be stated as follows: 

Given information about the operating environment, a transfer function can represent the 

relationship between the inflow and outflow of the reservoir. For hydropower projects with the 

same classification (Run-Of-River, impoundment), these derived transfer functions will provide 

features that can be used to represent and model these facilities more consistently in the existing 

power and river system models. 

 

The justification of this hypothesis begins with the analysis of time-series data of inflow and 

outflow, which are then used to develop a multivariate transfer function model. 
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Figure 5: Proposed transfer function model 
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3.2 Transfer function modeling 
 
ARIMA models are univariate time series models and as only one variable is analyzed, no 

relationships can be determined from this model. The purpose behind transfer function modeling 

is to evaluate the relationship between a target/output series and one (or more) explanatory/input 

series. If a series 𝑌. is influenced by another series 𝑋.,a transfer function model can be deduced 

with 𝑌. as output and 𝑋. as input of a dynamic linear system. This particular approach was 

developed principally by Box and the different procedures involved are discussed here.(G. E. P. 

Box et al., 2015) 

Fig. 6 gives a schematic diagram of a linear system where the input 𝑥. and output 𝑦. is assumed 

to be stationary. According to the Box-Jenkins approach, a transfer function model with one input 

variable x), may be split into two components, 

																																																													𝑦. = 𝑢. + 𝑛.                                                                         (3.1)                                                                                                                                                   

Where y)	is the dependent variable which is transformed to achieve stationarity and u) is the 

portion of y)	which can be described in terms of the input variable x) and n) is the error term which 

represents the sum of the effects of all variables other than the input. 

The linear dynamic relationship between x)	and	u) can be represented as 

u) − δ&u),& −⋯− δ=u),= = ω*x),- −ω&x),-,& −⋯−ω>x),-,> 

i.e., 

u) 	= 	
	ω* −ω&B −⋯−ω>B>

1 − δ&B −⋯− δ=B=
x),- 

=
ω(B)
𝛿(𝐵) x),- 

= v(B)x) 

where v(B)= ?(A)
C(A)

B-. The polynomial operator v(B), is also referred to as transfer function filter 

according to Box and Jenkins(G. E. Box & Jenkins, 1976), reflects the output-to-input transfer 

function and highlights the dynamic structure of the effect transferred from the input to the output 

sequence. The coefficients of the transfer function model are the impulse response weights v* ,v&, 

v+	etc. of the polynomial operator v(B). 
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Figure 6: Schematic representation of a linear system 
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The noise Term n) may be replaced by an ARMA (p, q) model of the form 

n) 	= c +
θ(B)
Φ(𝐵) a) 

where θ(B) and Φ(𝐵) are AR and MA polynomials of order p and q respectively and a)	, a white 

noise series. 

Equation (3.1) can be re-written as 

																																																						𝑦. = 𝑐 + D(E)
F(E)

𝑥.,G +	
H(E)
I(E)

𝑎.																																																						(3.2)                                                                                                             

 

In the transfer function model δ&, δ+…… . δ=, ω*, ω&, …… .ω> are the parameters, and (𝑟, 𝑠, 𝑏) are 

integers greater than or equal to zero. The polynomial operator ω(B) described the magnitude of 

the immediate effects of input whereas δ(B) describes the duration and pattern of their decay. 

Hence, the order of model is defined by: 

𝑟=the number of lagged terms on output y) 

𝑠 =the number of lagged terms on x) 

𝑏 = delay time of response representing the number of periods before any visible effects 

Transfer function modeling follows the same steps of ARIMA modeling, identification, 

estimation, and diagnostic checking and are outlined below.  

3.2.1 Identification Stage 
Box and Jenkins (G. E. Box & Jenkins, 1976) suggest the following procedures for the 

identification of the transfer function model: 

1. Derive an estimate of the transfer function weights vJ|  

2. Use the estimates of vJ|  to make approximate orders of r, s	and	b 

3. Substitute the estimates of vJ|  in the following equations 

														vK = 0																																																		; 𝑗 < 𝑏 

								vK = δ&vK,& + δ+vK,+ +⋯δ=vK,=. +ω*												; 𝑗 = 𝑏 

																													vK = δ&vK,& + δ+vK,+ +⋯δ=vK,=. −ωK,-MNO											; 𝑗

= 𝑏 + 1, 𝑏 + 2, . . 𝑏 + 𝑠 

							vK = δ&vK,& + δ+vK,+ +⋯δ=vK,=																							; 𝑗 > 𝑏 + 𝑠. 
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If the actual  vJ|  values were known, (𝑟, 𝑠, 𝑏) can be estimated from the general information 

governing the impulse response weights. Impulse response weights consist of: 

a) 𝑏	zero values v*, v&…., v-,& 

b) A further s-r+1 values v-, v-5&… . . , v-5>,= following no fixed pattern (only if 𝑠 ≥ 𝑟) 

c) Values 	vK with 𝑗 ≥ 𝑏 + 𝑠 − 𝑟 + 1	 following the pattern of a difference equation of order 

𝑟, which has r starting values v-5>, … . v-5>,=5& 

The estimation of the impulse response function and the identification of the transfer function noise 

model are described in the following two sections. 

3.2.1.1 Estimation of impulse response function 
Box and Jenkins present three strategies for determining transfer function weights in their book. 

Regression and the pre-whitening cross-correlation approach are the time domain methodologies, 

while cross spectral analysis approach is a frequency domain method. The pre-whitening cross 

correlation approach was preferred over the regression method in their analysis. 

The transfer function weights vJ|  can be estimated from the sample cross correlation between the 

pre-whitened input and the transformed output. The steps involved in pre-whitening and 

subsequent impulse response weights are outlined in Fig. 7. 

 
3.2.1.2 Pre-whitening of the input 
If the input series x) is autocorrelated, the effect of any changes in the input will take some time 

to manifest their effect. Therefore, we may observe non-causal effects, or changes in the output 

that appear to have occurred before changes in the input (Bisgaard & Kulahci, 2011). The process 

of removing the autocorrelation from an input series by identifying and fitting an ARMA model is 

known as pre-whitening. Removing all systematic and predicable components converts the input 

to a white noise process.  

From the literature review, the general ARMA(𝑝, 𝑞) model is represented by: 

																																																														Φ	(𝐵)x) = θ(B)α)																																																																								(3.4)  

 

Given the fitted model the residuals a) is computed by Equation (3.5) 

																																																											Φ	(𝐵)θ,&(B)x) = α)																																																																						(3.5)  
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Figure 7:Procedure for estimating impulse response function 
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3.2.1.3 Transformation of the Output 
Once the residuals α) are computed, the output data is filtered through the same model. Thus, 

applying the same model to the output y) gives 

																																																											Φ	(𝐵)θ,&(B)y) = β)																																																																						(3.6)  

 
 

3.2.1.4 Computing the sample cross-correlation function and transfer function weights 
From the flow chart in Fig. 6, the next step is to compute the cross-correlation 𝑟P,Q(𝑘)between pre-

whitened input α) and output β). The cross correlations at lag k are directly proportional to the 

impulse response function vJ|  and therefore, the sample cross correlation function provides 

estimates of the transfer function weights (G. E. P. Box et al., 2015). Box and Jenkins showed that 

the rough estimates of vJ|  can be computed as 

																																																														𝑣R| =
%"
%#
𝑟P,Q(𝑘),			𝑗 = 0,… , 𝑘                                                     (3.7) 

Where sS	and	sT are the estimated standard deviations of the pre-whitened output and input. A 

reasonable approximation of the standard error of the cross correlation for n observation is 

provided by &
√6

 ,and the significance of a given vJ|  can be determined. 

3.3 Identification of the transfer function model 
 
Identification of transfer function model involves finding the appropriate order of (𝑟, 𝑠, 𝑏) as 

shown in Eq. (3.2). Once the transfer function weights are computed, the characteristic decay 

pattern it is plotted. In most cases, only a few parameters controlling ω(B ) and 𝛿(𝐵) are enough 

to represent the lags found in the input. Some examples of impulse response functions for specific 

transfer function models (with n) assumed to be zero) are shown in Fig. 8. 

The task of visually identifying an appropriate model Is inherently subjective and becomes more 

complicated when the noise term n) grows more significant relative to the input x).  

From Eq. (3.2) 

v(𝐵) =
𝜔(𝐵)
𝛿(𝐵) B

- 

𝛿(𝐵)v(𝐵) = 𝜔(𝐵)B- 
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Figure 8: Examples of impulse response functions of commonly adopted transfer functions 

Adapted from G. E. P. Box, Jenkins, Reinsel, & Ljung (2015, p. 410) 
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(1 − δ&𝐵 −⋯ . . −δ=𝐵V)(v* + v&𝐵 +⋯) = (ω* −ω&B −⋯−ω>𝐵%)B- 

This gives. 

																					𝑣: − 𝛿&𝑣:,& − 𝛿+𝑣:,+ −⋯− 𝛿V𝑣:,V = �
−𝜔:,G							𝑗 = 𝑏 + 1,… . , 𝑏 + 𝑠
0																														𝑗 > 𝑏 + 𝑠 													(3.8)	                          

 

Once the values of 𝑟, 𝑠 and 𝑏 are identified, it is then substituted in Eq.7 to get the polynomial 

parameters 𝜔(𝐵)	and 𝛿(𝐵). 

3.3.1 Identification of a parsimonious noise model 
Once the initial transfer function is identified and estimated, the next step is to identify the noise  

model.  

Y) = v(B)x) + n) 

n) = y) − v(B)x) 

As preliminary estimates of transfer function weights 	𝑣R|	 are estimated the noise series is given 

by: 

n) = y) − v*x) − v&x),& − v+x),+ −⋯ 

Alternatively, the noise term can also be calculated by replacing  v(𝐵) with the initial estimates of 

the parameters 𝜔(𝐵)	and 𝛿(𝐵) computed in Eq. (3.8)  

n) = y) −
𝜔*(𝐵)
𝛿*(𝐵)

𝑥.,G 

Then, the ACF and PACF of the estimated noise series can be obtained and used to identify the 

ARIMA (p, q) noise model represented as 

n) 	= c +
θ(B)
Φ(𝐵) a) 

 

3.3.2 Estimation Stage 
As outlined in the literature review, the maximum likelihood estimates for the parameters in 

𝜔(𝐵)	and 𝛿(𝐵) for each potential transfer function model and in θ(B) and Φ(𝐵) for the 

corresponding noise model are calculated in this stage. The estimation procedure is calculation-

intensive and iterative, leading to long execution times. Finally, the model parameters with the 

best least square fit are chosen. 
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3.4 Diagnostic Checking 

The final step is to put the chosen transfer function model to diagnostic tests. The residuals a) of 

the tentative model are examined to see if they correlate with the unsystematic changes in the input 

x). Statistical methods, such as the Ljung-Box Chi-Square test, can be used to establish that the 

residuals are random.	 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 51 

Chapter 4: Data and Analysis 
 
4.1 Data Availability 
 
Approximately half of the hydroelectric generating capacity is owned and operated by the federal 

government in the U.S. (Bracmort, Stern, & Vann, 2013) The major federal entities include the 

U.S Army Corps of Engineers (Corps), the Bureau of Reclamation, and the Tennessee Valley 

Authority (TVA). Fleet owners collect the operations and maintenance data for their records and 

mandate reporting to the North American Electric Reliability Corporation (NERC).  

4.1.1 Fleet Data 
For this research, the required time series data were obtained from the TVA staff for the 

hydropower projects as shown in Table 4. The data was recorded on a 5-minute time step between 

January 2004 and December 2016, and these include the date, time, total power, gross head, 

headwater, tailwater, water temperature, spill, and total flow. The TVA also provided the data for 

plotting the elevation-storage curve for the reservoir. Because the TVA system’s reservoirs operate 

as a network, operating policies relating to a single reservoir can vary depending on external events 

throughout the system. 

4.2 Data Preprocessing 
 
This study uses the inflow to the reservoir and the downstream discharge to compute a transfer 

function model of the ten facilities. The outflow, which is the amount of water that departs the 

reservoir every second, is recorded by the TVA. The pre-processing techniques required to 

construct a transfer function model are presented using the Norris hydropower plant as an example, 

and identical steps are followed for the other facilities studies. Relevant equations are also 

explained, and save for clarity, are not repeated in the other facilities evaluated. 

4.2.1 Description of the study area- Norris hydropower facility 
In East Tennessee, Norris Reservoir stretches 73 miles up the Clinch River and 56 miles up the 

Powell River from the Norris Dam. It is the first dam built by the TVA and its largest tributary 

storage impoundment (Fig. 9). A multipurpose project, the reservoir’s primary purpose includes 

flood control and hydroelectric power generation while also supporting secondary uses such as 

water supply, recreation, and providing habitats for aquatic life(Authority).  
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Table 4: Hydropower projects studied 

Storage Facilities Run-of-river facilities 

Norris Dam Watts Bar Dam 

Cherokee Dam Chickamauga Dam 

Fontana Dam Guntersville Dam 

Douglas Dam Nickajack Dam 

Blue Ridge Dam Fort Loudon Dam 

 

 

 

 
Figure 9:Norris Dam 
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Located in the Clinch River basin, the hydroelectric power plant consists of two generating units 

with a summer net dependable capacity of 126 MW, about 3 percent of the total hydropower 

capacity of the TVA system. The reservoir also has a flood storage capacity of 1,113,000 acre-ft, 

and the flood detention capacity varies seasonally. (Authority, 2022). The reservoir’s annual 

operating cycle includes releasing water through summer and fall to generate hydropower during 

peak demand periods and drawing the reservoir to its flood control level at the beginning of the 

year to store the runoff from heavy rains during the winter months. The operating guide is shown 

in  Fig. 10 and a snapshot of the data is shown in Fig. 11. (Authority). 

4.2.2 Inflow computation 
Efficient water management strategies and resource planning are required to maximize the value 

of water resources. Thus, the knowledge of historical water inflow data is very relevant as it defines 

the input into the reservoirs and, therefore, the eventual plant output. Unfortunately, there are no 

direct methods to measure water inflows as it typically comprises the stream runoffs and the 

surrounding tributaries. Even though the water discharge data of the mainstream is readily 

available, corresponding observations from the tributaries are not easily quantifiable. Reservoir 

inflow is conventionally estimated using the water balance method, which involves the reservoir  

release and the change in storage during the period considered. According to the water balance 

method (Chow, Maidment, & Mays, 1988), 

QW = Q= +
VW5& − VW
ΔT + QX 

QW=Reservoir inflow,   Q==Reservoir release VW=Initial storage volume, VW5&=Final storage volume 

ΔT= Time period under consideration QX= Water losses (including evaporation and seepage losses) 

The reservoir storage VY is estimated by the reservoir stage-elevation relationship  

V) = 𝑓(𝐻𝑊) 

Here, 𝐻𝑊 is the observed water level. It should be noted that the water losses are not usually 

quantified so for this calculation, it is assumed to be negligible. The data for computing the 

relationship between the reservoir storage and elevation were provided by the TVA through direct 

correspondence, which is plotted to obtain the function as shown in Fig 12. A second-degree 

polynomial relationship is identified between the elevation level and reservoir volume, expressed 

as: 

																																			𝑉. = (5.7 × 10Z) 𝐻𝑊+	– (1.04 × 10&*)𝐻𝑊 + 4.69 × 10&+																						(4.1)        



 54 

 
Figure 10:Operating guide of Norris dam 

(Authority, 2021)  
 
 
 

 

 
 

Figure 11: Synopsis of operation data  
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Figure 12:Curve-fitting- Reservoir volume as a function of elevation 
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4.2.2.1 Negative inflow values: sources of errors 
The initial inflow estimation produced inflow values with significant negative terms as shown in 

Fig.13 and 14. When computing the reservoir volume, each coefficient in Eq. (4.1) has associated 

errors, and the following reasons can cause estimated negative inflows. 

a) A small inaccuracy in the reservoir elevation observations might cause a considerable 

variation in the reservoir volume estimation (Fig 15). 

b) Due to the lack of recent data for computing the reservoir volume- elevation curve, the 

reservoir capacity at specific elevations can be miscalculated. 

c) The estimated uncertainties in computed outflows for lakes having continuous-record 

gaging stations at or near their outlets range from 5 to 10% (Winter, 1981) 

However, when daily and weekly inflows are calculated, the magnitude of negative values is 

reduced, and the effects of headwater fluctuations are minimized, as illustrated in Fig.16. 

4.2.2.2 Replacing computed negative inflow values 
The primary input for transfer function modeling is reservoir inflow and fitting an ARIMA model 

to the input for obtaining the impulse response function is the first step in the Box Jenkins 

identification stage. Because the input is so critical in the design of a transfer function model, it’s 

crucial to modify the negative inflows so that the inflow time series can be used for further analysis. 

The leading cause of errors in reservoir storage estimation and subsequent inflow computation is 

uncertain elevation level change and Fig. 15 depicts the fluctuations in the headwater levels of 

Norris Dam. Waves and seiches can also potentially produce inaccuracies in elevation level 

readings, in addition to human errors during measurement. In a USGS report that assessed the 

daily inflows and outflows of eight regulated lakes in the Oswego River basin, Lumia and Moore 

devised a reservoir level hydrograph smoothing technique to deal with changes in lake levels 

(Lumia & Moore, 1983). They used interpolation to replace null headwater data points, and 

fluctuations in the headwater observations are smoothed using an analog-based low pass 

Butterworth filter, as illustrated in Fig.17. Even though the resulting inflows have been much 

reduced, the time series still contains negative inflow values. 

To replace the remaining negative values, a methodology proposed by Goel et al. is applied. In 

this process, the sum of negative values for a water year is adjusted in the positive values in 

proportion to their magnitude. The negative inflow term is then changed to zero, resulting in water 

balance for the hydrological year (Goel, Jain, Rani, & Chalisgaonkar, 2018).  
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Figure 13:Computed reservoir inflow 

 
 
 
 

    
Figure 14: Computed reservoir Inflow – data 
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Figure 15:Recorded elevation levels 

 
 

  

Figure 16:Computed net inflows- daily and weekly 
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Figure 17: Elevation levels after smoothing 
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According to USGS, a water year is defined as a 12-month period from October 1 through 

September 30, for any given year. The updated inflow, I[ is calculated as 

 

I[ = �IM − �
IM
S � × 	N																					I\ ≥ 0

0																																											I\ < 0
 

S = Magnitude of the sum of total positive inflows in a water year 

N = Magnitude of the sum of total negative inflows in a water year 

IM = Computed inflow from the water balance equation 

 

4.2.2.3 Evaluation of the methodology 
Direct statistical evaluation of the proposed methodology is impossible since there are no direct 

methods for computing the inflow into a reservoir. To evaluate the proposed technique, the Pearson 

correlation coefficient between computed inflows and the streamflow at the nearby unregulated 

streams is calculated. The Pearson correlation coefficient, also known as Pearson’s 𝑟, is a measure 

of the linear dependence between two variables. The value of 𝑟 lies between [−1,1], with -1 

representing complete negative correlation and 1, a positive correlation (Boslaugh, 2012).  For the 

Norris Dam, about 70 percent of the total inflow comes from the Clinch River basin, and the Powell 

River provides the remaining 30 percent (Authority). The daily historical measurement from these 

gauges were obtained from the public USGS database (USGS NWIS, 2010) and correlated to the 

concurrent inflow computed using water balance approach and the inflow computed using the 

proposed methodology.  The results of the correlation are presented in Table 5. The 𝑟 values in the 

inflows calculated using the water balance method show a moderate correlation with the 

streamflow values. However, applying the proposed methodology shows a significant 

improvement in the correlation with the results indicating a strong positive correlation between the 

updated inflow values and the corresponding values from the gages. A comparison of the resulting 

inflow time series after applying smoothing techniques and replacing the negative values with the 

updated inflow is illustrated in Fig. 18. 
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Table 5: Results of correlation analysis 

Gages used Type of inflow data Value of 𝒓 Improvement 
in correlation 

Clinch River above 
Tazewell 

 
Powell River near 

Arthur 

Inflow (Water Balance 
Method) 

0.58 0.16 

Inflow (Proposed 
Methodology) 

0.74 

 
 

 
Figure 18: Replacing negative inflow values -different stages 
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4.2.3 Choosing the appropriate time step 
 
The time-series data provided by the TVA is recorded at the 5-minute interval, and for developing 

a transfer function model, there are four options available (Fig.19): 

a) Using the dataset as is, with 5-minute frequency resulting in 277882 input values. This may 

necessitate much processing, and understanding a pattern may be challenging  

b) In hours, resample the data, yielding 104929 values. While some patterns are emerging, 

most of the data produced are sparse and there is still a significant number of data points 

to examine. 

c) Resample the data for obtaining the daily inflow value. Even if the number of terms has 

decreased dramatically (4373), the trend remains the same as in the hourly data. 

d) Resample the data every week, for a total of 626-time steps. Even if the data is less granular 

and follows the same daily data trends, performing diagnostic tests could be an issue later. 

The changes in inflow time series across different time scales are illustrated in Fig.19. It should 

also be observed that the monthly data shows a pattern, but this is of less importance in terms of 

modeling because most of the existing models focus on simulations with short time periods.  

While there is no “correct” time step for transfer function modeling, hourly and daily values are 

used for model development in this research.  

4.3 List of software used 
 
The following software and packages were used in this thesis for developing the Box Jenkins 

model: 

1. Python: The Pandas library is used to perform the initial data preparation, which includes 

steps like combining the 5-minute fleet, imputing missing values and incorrect data points, 

data resampling and determining appropriate range for the different variables. Machine 

learning libraries such as NumPy, SciPy and scikit-learn were utilized for designing 

Butterworth filter and corresponding inflow computations. 

2. JMP Pro: After obtaining the daily inflows and outflows, JMP software’s ARIMA 

modeling capabilities was used to compare various ARIMA models and choose the one 

with the lowest AIC values. 
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Figure 19: Inflow across different time intervals 
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3. SAS Studio: Using PROC ARIMA in SAS Studio, the results for the various stages in the 

Box Jenkins approach, including pre-whitening, CCF computation, and transfer function 

model coefficients are obtained. 

 

4.4 Analysis 
 
After the data has been pre-processed and the inflow has been calculated, the Box- Jenkins 

approach discussed in Chapter 3 has been applied to data from five storage facilities and five runoff 

river facilities. The Box-Jenkins approach is based on the premise that the time series being studied 

is stationary. As a result, the data structure must be examined as because it could lead to the 

selection of the inappropriate ARIMA model and transfer function. 

Decomposing a time series involves considering a combination of level, trend, seasonality, and 

noise. Level is the value that goes on average with time, while the trend is the data’s progressive 

upward or downward movement over time. The seasonal component explains the patters that 

repeat at regular intervals and when you separate seasonality and trend from the time series, you 

are left with the noise or random component. One can obtain more insight and understanding into 

the nature of a time series by decomposing it based on such elements and plotting the result. There 

are two types of decomposition: additive and multiplicative. If 𝑆., 𝑇. and 𝑅. represents the 

seasonality, trend, and residuals respectively, for a data𝑥., additive decomposition is written as 

(Hyndman & Athanasopoulos, 2018),  

𝑥. =	𝑆. + 𝑇. + 𝑅. 

A multiplicative decomposition is represented as 

𝑥. =	𝑆. × 𝑇. × 𝑅. 

If the seasonal variations are constant and periodic, additive decomposition is recommended. 

Seasonal fluctuations are constant for hydropower flow data, except for years with extreme 

weather conditions, and so additive decomposition is used. R software has various time series 

analysis packages, including decomposition, forecasting, ARIMA modeling, and more functions 
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4.5 Application of the Box- Jenkins Approach to data from storage facilities 
 
The location of the storage sites selected are shown on the map in Fig. 20, and additional 

information on the elevation levels, number of units and net dependable capacity is given in Table 

6. The daily data from 2004-2016 were used for analysis and the development of transfer function 

model. The plots in Appendix A show the inflow and outflow of the five facilities studied over the 

13 years. The ADF test is conducted utilizing the statsmodels package in Python and the results of 

suggest that the inflow time series is stationary, but the seasonal decomposition shows a seasonal 

pattern, so a seasonal differencing is necessary to remove the cyclic trend from the data. 

4.5.1 Transfer function Modeling 

The Box Jenkins transfer function modeling methodology described in Chapter 3 are applied to 

the inflow and outflow time series obtained from these facilities. The relevant equations were 

presented in Chapter 3 and are only mentioned here for clarity. Mathematical symbols are used if 

equations are utilized, and they follow the notations used in Chapter 3.  

4.5.1.1 Pre-whitening inflow and outflow 

The first step in Box Jenkins methodology is to pre-whiten the inflow time series. In this case the 

ACF and PACF plots of the inflow series are insufficient to anticipate the 𝑝  and 𝑞 parameters of 

the ARIMA model. Therefore, an automated algorithm, the ARIMA model group of jmp software 

("ARIMA Modelling,")  was used to identify the best fit with the lowest AIC value (Section 2.7.1). 

These include setting the maximum value of 𝑝 and 𝑞 to 4 and seasonal orders 𝑃 and 𝑄 to 1. Due 

to the presence of seasonality, the value 𝐷 is also set to 1. The “best fit” seasonal ARMA model 

and the pre-whitening filter for the five storage facilities are listed in Table 7. The coefficients of 

the pre-whitening filter is obtained using SAS Studio software, and in particular SAS proc ARIMA 

(SAS & ETS, 2014). The outflow time series was then transformed using the pre-whitening filter 

that has been fit into the inflow.  

4.5.1.2 Interpreting the CCF plots 

The outflow from a reservoir may be related to the prior lags of inflow and the sample cross 

correlation is useful for finding the inflow lags that might be useful to establish that relationship. 

A negative lag value represents a correlation between outflow at time 𝑡 and the inflow at a time 

before 𝑡 and a positive lag value indicates a correlation between outflow at time 𝑡 and the inflow 

at a time after 𝑡. 
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Figure 20: Map showing location of storage facilities 

 
 
 

Table 6: Storage facilities studied 

Facility 
Minimum 
Elevation 

(ft) 

Maximum 
Elevation 

(ft) 
No. of units Net dependable capacity  

(MW) 

Norris Dam 960 1031 2 126 

Cherokee Dam 1020 1071 4 122 

Fontana Dam 1580 1710 3 304 

Douglas Dam 940 994 4 182 

Blue Ridge Dam 1616 1691 1 16 
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Table 7: Pre-whitening of Inflow time series- storage facilities 

Facility SARIMA fit Pre-whitening filter for Inflow  

Norris  (2,0,4) (1,1,1) 

[7] 
G
(1 + 1.7B + 0.93B$ + 0.23B% + 0.001B&)(1 − 0.88B')

(1 + 0.44B − 0.55B$)(1 − 0.06B')
T Inflow( 

Cherokee  (3,0,1) (1,1,1) 

[7] 
G

(1 + B)(1 − 0.95B')
(1 + 0.17B − 0.78B$ + 0.05B%)(1 − 0.12B')

T Inflow( 

Fontana  (4,0,4) (0,1,1) 

[7] 
G
(1 − 2.1B + 1.6B$ − 0.13B% − 0.25B&)(1 − 0.98B')

(1 − 2.9B + 3.5B$ − 1.9B% + 0.4B&)
T Inflow( 

Douglas  (3,0,2) (1,1,1) 

[7] 
G

(1 − 0.78B − 0.14B$)(1 − 0.95B')
(1 − 1.7B + 0.84B$ − 0.09B%)(1 − 0.05B')

T Inflow( 

Blue 

Ridge  

(4,0,4) (1,1,1) 

[7] 
G
(1 − 0.88B − 0.1B$ + 0.13B% − 0.11B&)(1 − 0.99B')
(1 − 1.38B + 0.51B$ − 0.28B% + 0.16B&)(1 − 0.003B')

T Inflow( 
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Additionally, significant positive spikes in the CCF plot indicate that changes in the inflow causes 

changes in outflow to follow suit, while negative spikes suggest that the input variable may be 

providing feedback to the output variable.  Sample cross-correlations between the pre-whitened 

inflow and outflow time series are plotted in Fig. 21. 

Although the CCF plots of the storage facilities differed widely, they shared some crucial 

characteristics. First, the lag-zero weight was the largest across all the sites, indicating that the 

inflow at current day was more significant on the outflow response. Second, in four of these sites 

except for Blue Ridge, the lag-1 and lag+1 weights were larger relative to other lags. Third, 

considerable inflow input for Norris and Douglas dam was suggested at higher order lags than t-1 

and t+1. The disparity between these two plots and the plot for other facilities leads one to believe 

that the quantity of inflows from the previous day that influenced the present outflow may range 

significantly from site to site. 

4.5.1.3 Identification of transfer function models 
The impulse response function v(𝐵) is given by 

v(𝐵) =
𝜔(𝐵)
𝛿(𝐵) B

- 

where 

𝜔(𝐵) = ω* −ω&B −⋯−ω>B> 

𝛿(𝐵) = 1 − δ&B −⋯− δ=B= 

The impulse-response weight pattern can be visualized from the CCF plots. The numerator 𝜔(𝐵) 

and denominator 𝛿(𝐵)	play distinct roles in representing the impulse response patterns (Pankratz, 

2012) : 

1. Up until the lag, which establishes the delay time 𝑏	between the input and the output, the 

impulse response weights are 0. 

2. The spikes in the CCF plot that are not a part of the decay pattern are captured by the 

numerator factor 𝜔(𝐵). The lag after which the transfer function weights exhibit a decay 

can be thought of as the value 𝑠. 

3. The denominator 𝛿(𝐵) dictates the pattern of decay. In case of simple exponential decay, 

𝑟 = 1 and in compound exponential or sinusoidal decay patters, 𝑟 = 2 
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Figure 21: CCF Plots of storage facilities 
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In all the CCF plots above, as there are no initial zero-valued weights, the delay time 𝑏 = 0. The 

values of 𝑟 and 𝑠 are determine by examining the characteristics of the decay pattern. To fit the 

transfer function, IDENTIFY and ESTIMATE functions in the proc ARIMA functionality of SAS 

was utilized, and the residuals were examined. The plots of residual correlation and normality 

diagnostics are listed in Appendix B. From the residual correlation analysis, the order of the noise 

term n) was also identified. The outcomes of the final transfer function model are listed in Table 

8 where 𝑌. represents outflow and 𝑋. represents inflow. 

 

4.6 Application of the Box- Jenkins approach to data from run-of-river facilities 

The location of the storage sites selected are shown on the map in Fig. 22, and additional 

information on the elevation levels, number of units and net dependable capacity is given in Table 

9. Like storage facilities, daily data from 2004-2016 were used for analysis and the development 

of transfer function model. The plots in Appendix A shows the inflow and outflow of the five 

facilities studied over the 13 years. 

4.6.1 Transfer function modeling 

The inflow and outflow time series from these facilities are modeled using the Box Jenkins 

modeling approach.  

4.6.1.1 Pre-whitening inflow and outflow 

The details seasonal ARIMA model and the pre-whitening filter obtained using the SAS Studio 

software are listed in Table 10. The outflow is subsequently transformed using the same filter. 

4.6.1.2 Interpreting the CCF Plots 

Sample cross-correlations between the pre-whitened inflow and outflow time series are plotted in 

Fig. 23. The CCF plots of the five run-of-river facilities displayed different characteristics. The 

lag-zero weight was the largest across all the sites, indicating that the inflow at current day has 

higher effect on the outflow. Additionally, in three of these sites, Watts bar, Chickamauga and 

Guntersville, the lag-2 and lag+2 weights were significant than other lags. Lastly, in both Fort 

Loudon and Nickajack facilities, the only significant correlation is at lag 0. 

4.6.1.3 Identification of transfer function model 

The outcomes of the final transfer function model developed for these five run-of-river facilities 

studied are listed in Table 11. 
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Table 8: Identified Transfer- Function Models: storage  

Facility (𝒓, 𝒔 𝒃) TFN Model 

Norris (1,1,0) 𝑌! = −0.98 + 0.08 _
1 + 0.03B
1 + 0.64B

` 𝑋! + _
1

(1 − 0.7B)
` a( 

Cherokee (2,1,0) 
𝑌! = −4.6 + 0.81 _

1 − 0.3B
1 − 0.07B$

` 𝑋! + _
(1 + 0.37B)
(1 − 0.56B)

` a( 

Fontana (2,1,0) 
𝑌! = −0.37 + 0.59 _

1 − 0.36B
1 − 0.07B$

` 𝑋! + _
(1 + 0.42B)
(1 − 0.53B)

` a( 

Douglas (1,1,0) 
𝑌! = −7.78 + 0.6 _

1 − 0.24B
1 + 0.28B

`𝑋! + _
(1 + 0.47B)
(1 − 0.55B)

` a( 

Blue Ridge (1,0,0) 
𝑌! = −7.78 + 0.08 _

1
1 + 0.38B

`𝑋! + _
(1 + 0.22B)
(1 − 0.48B)

` a( 

 

 

 

 

 
Figure 22: Map showing locations of run-of-river facilities 
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Table 9: Run-of-river facilities studied 

Facility Minimum 
Elevation 

(ft) 

Maximum 
Elevation 

(ft) 

No. of units Net dependable capacity  
(MW) 

Watts Bar 735 745 5 196 

Chickamauga 675 685 4 142 

Guntersville 593 595 4 123 

Fort Loudon 807 813 4 151 

Nickajack 632 635 4 107 

 
 

 
Table 10: Pre- whitening of Inflow time series- run-of-river facilities 

Facility SARIMA fit Pre-whitening filter for Inflow  

Watts Bar (4,0,4) (1,1,1) 

[7] 
G
(1 − 0.64B − 0.99B$ + 0.33B% − 0.3B&)(1 − 0.97B')
(1 − 1.51B − 0.17B$ + 0.91B% − 0.23B&)(1 − 0.03B')

T Inflow( 

Chickamauga (3,0,3) (1,1,1) 

[7] 
G
(1 + 0.27B − 0.64B$ − 0.28B%)(1 − 0.94B')
(1 − 0.6B − 0.6B$ + 0.22B%)(1 − 0.04B')

T Inflow( 

Guntersville (4,0,4) (0,1,1) 

[7] 
G
(1 − 1.41B + 1.06B$ − 0.14B% − 0.27B&)(1 − 0.94B')

(1 − 2.06B + 2.11B$ − 1.13B% + 0.1B&)
T Inflow( 

Fort Loudon (3,0,2) (1,1,1) 

[7] 
G

(1 − 0.29B − 0.44B$)(1 − 0.97B')
(1 − 0.95B − 0.19B$ + 0.16B%)(1 − 0.08B')

T Inflow( 

Nickajack (3,0,4) (1,1,1) 

[7] 
G
(1 + 1.2B − 0.19B$ − 0.56B% − 0.08B&)(1 − 0.96B')

(1 + 0.69B − 0.87B$ − 0.67B%)(1 − 0.08B')
T Inflow( 
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Figure 23: CCF plots of run-of-river facilities 
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Table 11: Identified Transfer- Function Model: run-of-river 

Facility (𝒓, 𝒔 𝒃) TFN Model 

Watts Bar  (1,2,0) 
𝑌! = −14.84 + 0.48 G

1 + 0.42B$

1 + 0.07B
T 𝑋! + _

1 + 0.37B
(1 − 0.31B)

` a( 

Chickamauga  (2,2,0) 
𝑌! = 5.67 + 0.44 G

1 − 0.13B$

1 − 0.52B$
T 𝑋! + _

(1 + 0.56B)
(1 − 0.19B$)

` a( 

Guntersville (1,2,0) 
𝑌! = −12.61 + 0.6 G

1 + 0.24B$

1 + 0.06B
T𝑋! + _

(1 + 0.49B)
(1 − 0.008B)

` a( 

Fort Loudon  (1,0,0) 
𝑌! = −0.92 + _

1
1 + 0.039B

`𝑋! + _
(1 + 0.59B)
(1 − 0.08B)

` a( 

Nickajack  (1,0,0) 
𝑌! = 0.66 + 0.99 _

1
1 − 0.008B

` 𝑋! + G
(1 − 0.32B$)
(1 + 0.24B)

T a( 
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4.7 Checking the fitted models 
Once the transfer function model is identified, the final step is to check the adequacy of the model 

chosen by undergoing various diagnostic tests. Additionally, the model should also meet all the 

criteria below: 

i. The model should only include a few parameters, adhering to the parsimony principle.  

ii. A stable linear dynamic system must be represented by the transfer function components 

of the model. 

iii. There should be no autocorrelations within the residuals of the model, and it should be 

independent of the input variable. 

iv. The ARIMA noise component n) should be stationary. 
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Chapter 5: Results and Discussion 
In a transfer function model, the dynamic relationship between output 𝑌. and input 𝑋. is: 

𝑌. = 𝐶 + 𝑣(𝐵)𝑋. + 𝑛. 

As the intercept 𝐶 and noise term 𝑛. are independent of the input 𝑋., we can learn how 𝑌. responds 

to changes in 𝑋. by utilizing the individual 𝑣 weights. The positive and negative signs of the 

weights indicate how much or how little the output increases or decreases when there is a change 

in input. The transfer function weights can take on a large variety of patterns in practice, thus we 

can’t be certain which pattern is best for a given data set. In the previous chapter some assumptions 

were made regarding the order of (𝑟, 𝑠 𝑏) and a transfer function model was developed. Before 

using the results to characterize the relationship between inflow and outflow, a Maximum 

Likelihood Estimation (MLE) method is utilized to understand the significance of the different 

coefficients (	𝛿, 𝜔 ) obtained. The standard error, t-ratio, and p-value that the MLE test in SAS 

produces allow us to determine the significance of the coefficient in the model.  

5.1 General results of transfer function modeling 

5.1.1 Storage Facilities 

The initial CCF plot of the five storage facilities provides evidence of correlation between outflow 

at time 𝑡 and the inflow at a time 𝑡 and its several lags. The parameter estimates of individual 

facilities with the results of MLE methods are shown in Table 12. The relationship obtained 

between outflow and inflow are also summarized in Table 13. The information obtained from the 

transfer function relationship can be categorized as: 

1. Past Information: It is clear from the relationship obtained that outflow at time 𝑡 is related 

to the past values of inflows and outflows. The inflow from the day before affects the 

outflow in three of the five storage facilities under investigation. Regarding the effects of 

prior outflow values themselves, the results are varied, with Cherokee and Fontana flows 

depending on the outflow of the previous two days while for the other three, the outflows 

from the previous day had more impact on the value of the present day. 

2. Current Information: In all the storage facilities studied, the current day inflow information 

has the higher impact on the outflow values. In Cherokee, Fontana, and Douglas, the 

magnitude of increase in outflow with a change in inflow is higher than the other two 

facilities analyzed. 
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Table 12: Diagnostic checks on parameter estimates- storage facilities 

Facility Parameter Estimate SE t-Ratio p-value 

Norris 
-0.03 0.16 -0.17 0.8636 

-0.64 0.1 -6.3 <0.0001 

Cherokee 
0.3 0.03 11.36 <0.0001 

0.07 0.02 3.27 0.0011 

Fontana 
0.36 0.02 13.98 <0.0001 

0.07 0.01 3.52 0.0004 

Douglas 
0.24 0.06 4.07 <0.0001 

-0.29 0.04 -7.09 <0.0001 

Blue Ridge -0.38 0.06 -6.44 <0.0001 

 

 

 

 
Table 13: Inflow-Outflow relationship of storage facilities 

Facility Inflow-Outflow Relationship 

Norris 𝑌. = 0.08𝑋. − 0.64𝑌.,& 

Cherokee 𝑌. = 0.81𝑋. − 0.24𝑋.,& + 0.07𝑌.,+ 

Fontana 𝑌. = 0.59𝑋. − 0.21𝑋.,& + 0.07𝑌.,+ 

Douglas 𝑌. = 0.6𝑋. − 0.14𝑋.,& − 0.28𝑌.,& 

Blue Ridge 𝑌. = 0.08𝑋. − 0.38𝑌.,& 
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5.1.2 Run-of-River Facilities 

The CCF plots of the run of river facilities displays a significant difference from the storage 

facilities. The parameter estimates of individual facilities with the results of MLE methods are 

shown in Table 14. The relationship obtained between outflow and inflow are also summarized in 

Table 15. The information obtained from the transfer function relationship can be categorized as: 

1. Past Information: In the run of river facilities, the relationship between outflow and its past 

values varies between the facilities under consideration. For instance, in all the projects 

except Chickamauga, the present-day outflow has a negative correlation with the past 

values, but the magnitude of this change is very small. For three projects, Watts Bar, 

Chickamauga, and Guntersville, the outflow at current day also depends on the value of 

inflow two days prior ( 𝑡 − 2). Additionally, in Chickamauga dam, both the outflow and 

inflow the of day ( 𝑡 − 2) has influence on the current day outflow. 

2. Current Information: The current day outflow is significantly influenced by the equivalent 

inflow values, just like with storage facilities. Fort Loudon and Nickajack both exhibit a 

nearly identical outflow equals inflow relationship. 

5.2 Discussion – Interpretation of Box Jenkins model results 
The main goal of this thesis is to examine how well the Box Jenkins methodology categorizes 

various kinds of hydropower facilities. From the review of the different types of classification of 

hydropower facilities in section 1.1 it can be seen that the classification categories are not mutually 

exclusive. Storage facilities, for instance, can be used as a base load or peak load plant, and most 

large hydropower plants have a high head. Run-of-river facilities often fall under the base load 

category, however, certain plants with pondage water storage during off-peak periods and use this 

water during peak period to meet the hourly demand swings. 

5.2.1 The intuition behind the transfer function coefficients: inflow and outflow dynamics 

Hydrological conditions are always changing, which has a significant effect on hydropower 

operations. Water inflows-which may be natural inflows as well as discharges from upstream 

hydropower generation-and outflows-which include losses due to seepage and evaporation—have 

an impact on reservoirs.  
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Table 14: Diagnostic checks on parameter estimates- run-of-river facilities 

Facility Parameter Estimate SE t-Ratio p-value 

Watts Bar 
-0.42 0.022 -18.41 <0.0001 

-0.07 0.018 -3.92 <0.0001 

Chickamauga 
0.13 0.05 2.61 <0.009 

0.52 0.03 14.84 0.0011 

Guntersville 
-0.24 0.017 -13.89 <0.0001 

-0.06 0.015 -3.93 <0.0001 

Fort Loudon -0.039 0.0059 168.86 <0.0001 

Nickajack -0.38 0.06 -6.44 <0.0001 

 

 

 

 
Table 15: Inflow-Outflow relationship of run-of-river facilities 

Facility Inflow-Outflow Relationship 

Watts Bar Y) = 0.48X) + 0.2X),+ − 0.07Y),& 

Chickamauga Y) = 0.44X) − 0.05X),+ + 0.52Y),+ 

Guntersville Y) = 0.6X) + 0.14X),+ − 0.06Y),& 

Fort Loudon Y) = X) − 0.039Y),& 

Nickajack Y) = X) + 0.008Y),& 
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The amount of water in a reservoir restricts how much energy can be stored, so an understanding 

of both of these variables is crucial for proper reservoir operation and management operations in 

a hydropower project. Figure 24 illustrates the dependence between inflows and outflows derived 

from the transfer function modeling. The solid line represents the direct pathways of influence 

between the variable. In areas with regulated flows, the inflow on a given day is influenced by 

previous values because accurate and reliable forecasting of inflows is essential for the effective 

use of water resources and reservoir operation (Gragne, Sharma, Mehrotra, & Alfredsen, 2015). 

The dashed lines represent the influence of the variables and the lags discovered from the transfer 

function models developed. The different coefficients and their effects at various time lags are 

listed in Table 16. Regression analysis uses p-values and coefficients to determine the statistical 

significance of the correlation between the dependent and independent variables as well as the 

nature of the relationships. The coefficients describe the mathematical relationship between the 

variables and the sign (positive or negative) indicates whether there is a positive or negative 

correlation between the variables. The mean of the dependent variable increases as the value of 

the independent variable increases, according to a positive coefficient, whereas a negative 

coefficient suggests the contrary. The value of the coefficient represents how much the mean of 

the dependent variable changes when the independent variable is shifted by one unit while the 

other variables in the model remain constant. This is essential because it enables the user to 

evaluate each variable’s impact independently of the others (Frost, 2019).  

Reservoir outflow is the amount of water leaving per second by outlets, spillways, or water 

withdrawal. The volume of water that leaves the reservoir in any time period is referred to as 

withdrawal. The outflow is determined by the reservoir release schedule, which is composed of a 

number of regulations, rules, and guidelines approved by the water management authorities. The 

release schedule also includes data about the minimum outflow maintained, which is the minimal 

amount of water that must be released from the reservoir into a stream to satisfy the demands 

downstream (Votruba & Broža, 1989). The TVA’s water control system, which consists of a 

network of connected dams and reservoirs on the Tennessee River and its tributaries, is seen in 

Figure 25. In all the ten facilities studied, outflows at time 𝑡 are correlated to the corresponding 

inflows. However, each facility has different coefficients and dependencies at various time lags. 

Some potential reason for these outcomes are discussed below. 
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Figure 24: Inflow-Outflow dependance 

 
 
 
 
 

Table 16: Effect of coefficients and lags 

Facility 

Contribution to 𝐎𝐮𝐭𝐟𝐥𝐨𝐰𝒕 

Outflow Inflow 

( 𝐭 − 𝟏) ( 𝐭 − 𝟐) 𝐭 ( 𝐭 − 𝟏) ( 𝐭 − 𝟐)	

Storage  

Norris ⇓ 0.64  ⇑ 0.08   

Cherokee  ⇑ 0.07 ⇑ 0.81 ⇓ 0.24  

Fontana  ⇑ 0.07 ⇑ 0.59 ⇓ 0.21  

Douglas ⇓ 0.28  ⇑ 0.60 ⇓ 0.14  

Blue Ridge ⇓ 0.28  ⇑ 0.08   

 

Run of 

River  

Watts Bar ⇓ 0.07  ⇑ 0.48  ⇑ 0.2 

Chickamauga  ⇑ 0.52 ⇑ 0.44  ⇓ 0.05 

Guntersville ⇓ 0.06  ⇑ 0.60  ⇑ 0.14 

Fort Loudon ⇓ 0.039  ⇑ 1   

Nickajack ⇑ 0.008  ⇑ 1   
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Figure 25: The TVA Water Control System 

Adapted from Tennessee Valley Authority Reservoir Operations Study  (Authority, 2004) 
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5.2.1.1 Storage Facilities 

Fontana Dam with the largest capacity of the storage facilities under study, can generate 304 MW, 

whereas Blue Ridge is the smallest with 16 MW. When comparing the characteristics of 

coefficients of both Cherokee and Fontana, a similar pattern can be seen, with fairly similar 

coefficient values at the time lags. The same can be stated for Norris and Blue Ridge Dam while 

Douglas has a different trend. Let’s now analyze each facility separately depending on its location 

and operational objectives inside the TVA water control system. 

 

1. Norris and Blue Ridge: Located on the Clinch River basin, in addition to the different 

operational objectives, Norris dam also serves as a supply of cooling water to the Bull Run 

Steam Plant located 32 miles downstream. Additionally, this dam is 56.7 river miles 

upstream from Melton Hill Dam, the only TVA dam on a tributary stream with a navigation 

lock, (Tomljanovich, Strunk, & Oxendine, 1992). The Blue Ridge Dam is located on the 

Toccoa River in North Georgia, which flows northwest into Tennessee where it is called 

the Ocoee River. Additionally, it is the uppermost of the four Ocoee River dams that the 

TVA manages. The hydroelectric generating capacity of Norris is higher at 126 MW than 

that of Blue Ridge, which has a capacity of only 16 MW. According to the findings of 

transfer function modeling, the outflows at time 𝑡 are dependent on the corresponding 

inflow as well as the outflow from the day before, with the prior outflow value having 

higher dependence (negative correlation) than the inflow. One possible explanation of this 

behavior would be the presence of dams downstream of these facilities. There are dams 

located downstream from both Norris and Blue Ridge where the discharges contribute to 

the inflow. For Melton Hill Dam, drainage from 2912 square miles of the watershed is 

regulated the Norris Dam(Tomljanovich et al., 1992) while outflows from Blue Ridge Dam 

make for 56 percent of the total inflow to the Ocoee no. 3 dam (Cox, 1990). This could 

account for the inverse correlation between the past outflow value with the current day’s 

outflow. 

2. Cherokee and Fontana: Cherokee Dam is located on the Holston River, and it is the 

largest (by storage volume) of the six dams located on the Holston River and its forks. 
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Boone, Fort Patrick Henry, and South Holston Dams are located on the South Fork Holston 

River while Watauga and Wilbur Dam are located on Watauga River. Having a flood 

storage capacity of 747,400 acre-ft., during a year with normal rainfall, the water level in 

Cherokee reservoir varies about 30 ft. from summer to winter to provide seasonal flood 

storage (Status of Cherokee Reservoir, 1990).  Fontana Dam is located on the Little 

Tennessee River and is the uppermost of the five dams on the Little Tennessee River: 

Cheoah Dam downstream, followed by Calderwood Dam, Chilhowee Dam, and Tellico 

Dam. Fontana dam controls the reservoir levels of Chilhowee, Calderwood and Cheoah all 

of which operate in a “modified run-of-river mode” in which the inflow and outflow from 

the facilities balance out daily (Sale, Hall, & Keil, 2016). The Tellico Dam has no 

hydroelectric facilities and is designed only for storage. Fontana has a total seasonal flood 

control storage of 771,200 acre-ft. and gives a high degree of control flood control (Water 

resources appraisal for hydroelectric licensing: Little Tennessee River Basin, Tennessee, 

North Carolina, and Georgia. Appraisal report, 1981).  The two dams are components of 

basin wide multiple reservoir system, and the results of transfer function modeling shows 

a positive correlation with current day inflow and the outflow two days prior and an inverse 

correlation with the past day inflow. The outflow value two days prior are disregarded for 

the time being as its correlation is smaller when compared to the inflow factors. Both these 

reservoirs are part of multi-reservoir system which offers a substantial degree of flood 

control. Because of this, the outflow for the current day is heavily dependent on the inflows, 

which could also explain why there is a negative correlation between the outflow and the 

inflow from the previous day. 
 

3. Douglas Dam: Douglas Dam is the only TVA reservoir located on the Lower Broad River 

Basin in East Tennessee. A combination of the two scenarios discussed above is seen in 

the results for Douglas. The outflows at time 𝑡 are dependent on the corresponding inflow 

as well as the outflow and inflows from the day before. The Douglas Dam serves as a flood 

reservoir for the Tennessee River downstream in addition French Broad River. 

Additionally, the downstream Fort Loudon Dam, which operates in the run-of-river mode, 

is impacted by the releases from Douglas as well. 
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5.2.1.2 Run-of-River Facilities 

Run-of-river facilities are those where there is no long-term water storage and where you would 

anticipate that outflows would be dependent only on the inflows. The outcomes of the Box Jenkins 

approach suggest otherwise. In some under study, correlation at time lags also appears to be 

significant, even if outflow strongly depends on the corresponding inflow values. Since all these 

facilities are located on the mainstem of the Tennessee river, it might be challenging to distinguish 

the distinctive differences between their operations. In this case, it would make more sense to 

assess facilities based on their location in the mainstem rather than categorizing them based on the 

outcomes of transfer function modeling. 

1. Fort Loudon Dam: Fort Loudon is the uppermost in the chain of nine TVA operated 

reservoirs that form a continuous navigable channel from Tennessee to Kentucky. The 

French Broad River, Little River, and Holston River are three major tributaries that are 

flowing into the reservoir (Anderson, 1984). From the transfer function modeling, outflows 

at time 𝑡 are correlated to inflows on a 1:1 basis in addition to a small, but potentially 

unimportant, negative correlation to the outflow from the day before. 

2. Watts Bar Dam: Located on the Tennessee River, the Watts Bar Dam extends 72.4 miles 

northeast from the dam to Fort Loudon Dam. Watts Bar Lake receives unregulated inflows 

from the 1,790 square mile local drainage region in addition to releases from Melton Hill 

and Fort Loudon Dam. The outflow at time 𝑡 are dependent on the corresponding inflow 

in addition to the outflows from the day before and inflows two days prior. The outflows 

have positive correlation to the inflow values while a negative correlation is observed for 

the past outflow observations.  

3. Chickamauga Dam: Chickamauga Dam is located in the Tennessee river, 7 miles above 

Chattanooga. It maintains a navigation channel approximately 59 miles up to the river to 

Watts Bar Dam and along the Hiwassee River to Charleston, Tennessee. Between the 

Chickamauga and Nickajack Reservoirs, the dam contains one lock that is 60 feet wide by 

360 feet long and can lower barges up to 50 feet (Authority, 2017a). Cooling water for the 

Watts Bar nuclear reactor, which is situated on the west side of the reservoir, flows from 

the dam through the plant intake channel to the intake pump station.(No, 2011). The results 

from transfer function are different compared to other runoff facilities studied. The outflow 
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at time 𝑡 are dependent on the corresponding inflow as well as the outflow from two days 

earlier, with the past outflow value having higher positive correlation than the inflow. As 

it has a lower correlation than the other two, the negative correlation with prior inflows is 

temporarily disregarded. 

4. Nickajack Dam: Located in Southeastern Tennessee, Nickajack Dam was built in 1967 to 

replace Hales Bar Dam. The dam impounds the Nickajack Lake and feeds into the 

Guntersville Lake. Between these two lakes, a 600 by 110-foot auxiliary that can lift or 

lower nine big barges at a time serves Nickajack Dam. The Raccoon Mountain Pumped 

Storage project is situated adjacent to the Nickajack Reservoir, and during times of low 

electricity demand, water is pumped from the dam at the base of Raccoon Mountain to the 

reservoir constructed at the top. (Authority, 2017b). From the transfer function modeling, 

outflows at time 𝑡 are correlated to inflows on a 1:1 basis and a small, but potentially 

insignificant positive correlation to the outflow from the day before.  

5. Guntersville Dam: Guntersville dam is located in Marshall County in Alabama. It 

impounds the Guntersville Lake, and the releases are fed into the Wheeler Lake(Authority, 

2001). About 37,200 cfs of the inflows into Guntersville Reservoir comes from releases 

from Nickajack Dam which accounts for almost 89 percent of the annual discharge. The 

transfer function has comparable characteristics to Watts Bar Dam in which the outflows 

have positive correlation to the inflow values and a negative correlation to the past outflow 

observations. 

These run-of-river facilities are difficult to categorize based on the results of transfer function 

modeling, unlike the storage facilities. But the findings lead to the following observations: 

a. Watts Bar and Guntersville, as well as the dams upstream of them (Fort Loudon and 

Nickajack), exhibit comparable features in transfer function modeling. Additionally, it has 

been observed that releases from the upstream dams make up the majority of the inflows 

into these reservoirs.  

b. The primary flow into Chickamauga Dam is from Watts Bar located upstream and as 

previously indicated, the results of Chickamauga Dam differ from the rest of the facilities. 

The Watts Bar Nuclear Power Plant uses Chickamauga Dam as a supply of cooling water; 
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further research is needed to determine whether any attempts have been made to control 

the flows in order to maintain the ideal reservoir temperature for cooling purposes. 

5.2.2 Comparing transfer function coefficients – Dominance Analysis 

The relative significance of the independent should be considered whenever multiple regression is 

used to test and compare models. According to the Box Jenkins models' findings, outflows are 

related to the equivalent inflows as well as the inflows and outflows from the past. By analyzing 

the various contributing factors to outflows, some potential reasons of the behavior were examined. 

It is important to keep in mind that, the many variables influencing the outflows are also inter-

correlated and, as a result, cannot be observed separately. Take the example of Douglas Dam, the 

outflows at 𝑡 are correlated to inflows as well as outflows at lag 𝑡 − 1 which are correlated with 

each other. As a result, understanding the relative importance of each variable gives reservoir 

operators a more effective tool to use in operational planning, policy making, and other processes. 

Dominance analysis is a commonly used technique in statistical models to determine the 

importance of independent variable (Budescu, 1993). Dominance statistics can be divided into four 

different types of measures: 

• Individual Dominance: Individual dominance provides the variability in the independent 

(predictor) variable alone on the absence of other variables. Mathematically it is the R2 vale 

of the model between the dependent and predictor variable 

•  Interactional Dominance: When all other predictors are present, the interactional 

dominance is the impact of variability expressed by a given predictor variable. It is the 

difference between the R2 vale of the overall model and the R2 value of the model calculated 

without the specified predictor variable. 

• Average Partial Dominance: This can be seen as the average impact a predictor has in all 

combinations with other predictors, excluding the combination in which all predictors are 

accessible. 

• Total Dominance: By averaging all of the conditional values, total dominance compiles the 

additional contributions of each predictor to all subset models. 

The results of dominance analysis conducted on Douglas Dam is shown as an example in Figure 

26. The dominance analysis package in Python is utilized for finding the relative importance of 

the different independent variables.  
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Figure 26: Results of Dominance Analysis- Douglas Dam 
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The percentage relative importance computed for all the ten facilities are summarized in Table 17 

and 18. In all the storage facilities studied, past outflows were observed to be the dominant 

predictor when comparing the percentage relative importance values. In run-of-river facilities, 

current day inflow is observed to have the highest percentage of relative importance. In contrast 

to storage facilities, where the difference in relative importance was quite noticeable, the past 

inflow and outflow values are comparable to the current inflow in run-or-river facilities. 

Determining the relative importance of the different dependence variables obtained from the Box 

Jenkins analysis allows the practitioners to decide which variable to pay closer attention to. For 

instance, the results of dominance analysis for Douglas Dam reveals that previous day outflows 

have the highest dominance over the other inflow values, despite the fact that Box Jenkins results 

suggested a strong positive correlation to the current day inflow. Furthermore, it should be 

highlighted that dominance analysis is only used in this study as an additional concept that adds 

value to the Box Jenkins technique, and that additional research is required to determine the true 

benefit of combining the outcomes of the Box Jenkins approach and dominance analysis. 

5.2.3  Practical application of this research 

Reservoir operation frequently involves complex and undocumented decision processes. Decisions 

made by reservoir operators are based on available hydrologic information, such as historical 

outflows, reservoir water level, and forecasted inflows, which have a significant impact on the 

regulated outflows from a reservoir (Chen et al., 2018). The volume of water released from a 

reservoir is thus determined by the expertise of the reservoir operators, and reservoir simulation 

models are frequently used to estimate these releases. Many sophisticated reservoir simulation 

models, such RiverWare and WRAP to mention a couple, were developed and have since gained 

the favor of numerous governmental organizations and fleet owners. These reservoir models, 

however, are only valuable if the operating laws or policies included in the simulation could 

accurately reflect the actual operation. It was also commonly accepted that system operators 

regularly deviate from the operating guidelines in order to respond to particular circumstances or 

constraints that can arise at different times (Oliveira & Loucks, 1997). The difference in 

representation of hydropower in both RiverWare and PLEXOS were briefly discussed in the 

section 2.3.  
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Table 17: Relative importance: run-of-river facilities 

 

 
 

Table 18: Relative importance: storage facilities 

 

 

 

 

 

 

 

 

 

 

 

Facility 
Percentage Relative Importance (%) 

Inflow(𝐭) Inflow (𝐭 − 𝟏) Outflow (𝐭 − 𝟏) Outflow (𝐭 − 𝟐) 

Norris 16.8  83.2  

Cherokee 35.8 17.5  46.8 

Fontana 29.6 13.6  56.8 

Douglas 14.8 9.04 76.1  

Blue Ridge 8.96  91  

Facility 
Percentage Relative Importance (%) 

Inflow (𝐭) Inflow (𝐭 − 𝟐) Outflow 	(𝐭 − 𝟏) Outflow (𝐭 − 𝟐) 

Watts Bar 38.6 24.5 36.8  

Chickamauga 44.6 25.4  30 

Guntersville 47 20 33  

Fort Loudon 66  33.2  

Nickajack 68.2  31.8  



 91 

Deriving transparent reservoir policies that are based on both hydrological condition and other 

decision variables is therefore necessary in order to understand the actual release decisions. The 

novel aspect of this work is the incorporation of statistical techniques in an attempt to address the 

crucial research problem of characterizing reservoir operation under the ever-evolving grid 

conditions and the ensuing decisions. The use of Box Jenkins models has also been a focus of this 

thesis, with the emphasis on time series representation rather than forecasting, which is what they 

are well known for. We begin our examination of Box-Jenkins procedure by applying it to the time 

series data on inflow and outflow and tested its ability understand the factors contributing to actual 

release decisions. To accomplish this task, this study posed the following research questions. 

a) Can different hydropower facilities be classified using the Box Jenkins methodology 

proposed? 

b) What information/insights gained from the transfer function model developed might be 

transferable to other fleets? 

Although emphasis in this study was on the value of Box Jenkins approach, the findings revealed 

a number of additional factors that were found to be helpful in improving the representation of 

hydropower generation within various reservoir models. Figure 27 below is an extension of Figure 

24 with the dashed lines representing the relationship derived from transfer function modeling. By 

considering the magnitude and direction of the coefficients, the transfer function model developed 

evaluates the effects of various factors contributing to the reservoir outflow.  

1. Relevance of past outflows 

Rivers used to generate hydropower typically exhibit significantly higher day-to-day and 

intraday flow changes, more frequent and faster than those that define free-flowing rivers. 

The hydraulic parameters including water level, flow rate, water quality, and river 

morphology also change along with changes in flow regimes, having a substantial impact 

on the downstream watershed (Bejarano, Sordo-Ward, Alonso, & Nilsson, 2017). Consider 

reservoir operator making the outflow decision yesterday. In fact, yesterday, they also had 

the next-day forecasts of the different hydrological parameters. As a result, the operator 

made the outflow decision by naturally taking forecasting and the state of the reservoir into 

account, demonstrating that historical outflow data contains much more than just what is 

initially obvious.  
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Figure 27: Factors significant for model interpretation 
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Additionally, as seen with the example of Norris and Blue Ride, the presence of reservoirs 

downstream also influences the outflows to be dependent on past values. The results of 

dominance analysis also suggest a significance reliance on past outflow values in storage 

facilities. 

2. Relevance of past inflows 

Reservoir operators must be aware of how reservoir inflows change under various 

hydrological conditions in order to operate them efficiently and the priority of operating 

objectives varies by reservoirs and regions. Consider reservoir operator making the outflow 

decision today. The timing and magnitude of outflows are based on the changes in the 

timing and volume of inflows which was forecasted the day before. This illustrates that the 

outflow decision is indirectly dependent on the past inflows. In reservoirs built largely to 

regulate flood flows, that goal take precedence when determining outflows, and past 

inflows have a significant impact on decisions in such circumstances. 

 
5.2.4 Limitations and scope for future studies 

It should be emphasized that the results from five storage and five run-of-river facilities should not 

be viewed as an exhaustive evaluation of Box Jenkins models for characterizing hydropower 

operation.  These results should only be interpreted within the context of the following qualifying 

factors: 

a) All the facilities owned and operated by a single utility 

b) The particular set of input-output data used in the model (reservoir inflows and outflows) 

c) The arbitrary daily-time step with a weekly seasonality chosen for analysis 

d) Modified inflow values to account for negative results encountered during computation 

This research was presented solely as a preliminary step in investigating the feasibility of Box-

Jenkins models in characterizing hydropower facilities. The list of qualifying factors makes it 

evident that there are a variety of modifications of the present analysis that could be investigated. 

The results of this study show that it is possible to produce Box-Jenkins models to assess reservoir 

operation. Box Jenkins models have high computational complexity, and the model used in this 

study was created for daily flows, making analysis of hourly or 5-minute flows time consuming. 

Applying the Box Jenkins methodology is also subjective, and the researcher's expertise and 

experience may influence how reliable the model they choose is.  
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For this research, a prior arrangement was already in place with the TVA, making it possible to 

obtain the fleet data. The very sensitive nature of fleet data, however, prevents all utilities from 

sharing their operational data. Would data availability be a challenge if this methodology is to be 

made transferable?  

All the reservoirs in the analyzed for this study are operated by the TVA, whose ownership extends 

to all supply chain levels, including generating, transmission, and distribution. Future research 

must be done using fleet data from reservoirs serving in ISO/RTO regions. Not only will this 

address the performance of the methodology but will assist identifying any additional limitations 

that affect decisions about outflow that are outside the control of reservoir operators. Lastly, this 

study develops a single input single output transfer function (SISO) model. Box Jenkins technique, 

however, is able to handle multiple input variables, and for subsequent research, other elements 

impacting inflow including temperature and precipitation might be modeled. 

 

5.3 Summary 
 
The transformation between inflows and outflows in five storage and five run-of-river facilities 

operated by the TVA was modeled using a Box Jenkins methodology. The major results obtained 

from this pilot data-driven methodology may be summarized as follows: 

• The correlation between outflows and inflows demonstrates that present-day outflows are 

significantly dependent on previous values addition to the corresponding inflows. 

• When transfer function coefficients were compared, certain facilities exhibited coefficients 

that were comparable to one another. Facilities with comparable transfer function patterns 

were examined to determine the root of the resemblance. 

• From the perspective of an individual facility, it was discovered that the following factors 

were significant interpreting the model results: location and operation mode of downstream 

reservoirs, release pattern of the upstream reservoirs and their contribution to the inflows, 

other relevant uses of water (such as flood control, cooling water source etc.)  
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Chapter 6: Conclusions and Recommendations 
 

6.1 Outcomes from Box Jenkins representation 

Hydrologic information in the form of inflows, storages, and discharges are typically included in 

models for reservoir operations. However, in practice, reservoir operators might use a combination 

of any of them, or even all of them, depending on the circumstances. As management of reservoirs 

frequently reply on complex and unrecorded decision-making procedures, representation of 

hydropower in energy system models is challenging. Let's look at three key stakeholders: a 

reservoir operator, a power system dispatcher, and lastly a downstream water user, in order to 

comprehend the relevance of the transfer function model developed. 

From the reservoir operator’s point of view, the Box Jenkins model developed requires 

incorporation of their knowledge of facility operation, and they are able to correct/justify their 

actions by analyzing the results. Reservoir operators need hydrologic data to make outflow 

decisions, and the results of transfer function modeling imply that particular attention should be 

paid not just to the previous inflow values but also to the past outflow values.  

The power system dispatchers are responsible for ensuring the steady operation of the power 

system. The dispatchers should regularly contact with the reservoir operators, who are responsible 

for the facility operation, including regulation schedules, transmission and generation constraints 

and emergencies. Even if there is an unforeseen communication issues with the operators, the 

transfer function model developed and the different factors contributing the model, can still aid 

dispatchers in understanding how the facility operates. 

From the perspective of downstream water users, the regulated outflows from an upstream 

reservoir are strongly influenced by the operators' actions rather than natural inflow process. As a 

result, in order to build effective water management systems, the water users downstream must be 

aware of how the upstream reservoirs function. Without the need for complex models, the Box 

Jenkins model may provide the necessary physical interpretation, allowing downstream water 

consumers to comprehend the operating characteristics of the upstream reservoirs. 
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6.2 Research Contributions 
The following is a summary of the contributions made by the research presented in this thesis: 

• The three-step iterative Box Jenkins methodological framework was developed to serve as 

a guide in achieving the objectives of this study. Specifically, to understand how a transfer 

function model may act as a tool for parametrizing hydropower. 

• The real-world situation was next investigated by utilizing the fleet data from ten TVA 

operated facilities to estimate degree of the transferability of the methodology. 

• The transfer function model generated was used to qualitatively analyze and characterize 

the operations of the various facilities under study. The contributing aspects important for 

interpreting model results are also discussed. 

• Dominance analysis was introduced to add value to the Box Jenkins model results and 

provide different stakeholders with an additional set of concepts to convey the functionality 

of hydropower. 

 

6.2.1 Recommendations for further research 

The following recommendations are made for additional research in this area: 

1. Development of seasonal transfer function: The Box Jenkins model created for this 

research includes flows for 12 years between 2004 and 2016. The next stage would be to 

create distinct transfer function models for the dry, normal, and wet multi-year segments, 

and then compare the variations in outcomes. 

2. Developing multi-input models: The Box Jenkins methodology can handle multiple inputs 

and subsequent research can include factors influencing the inflow such as temperature and 

water quality as inputs. The differences in the outcomes of the transfer function model 

might then be examined. 

3. Feature importance of the transfer function coefficients: It's critical to determine which 

coefficients in the transfer function model are more significant if the Box Jenkins 

methodology is to be scaled. A dominance analysis is presented to compare the relative 

importance of the contributing factors. For further research, machine learning methods like 

feature importance or could be used to compare the relative contributions of each variable 

by collecting additional data over more years. 



 97 

4. Conversion to frequency domain: The dynamic regression model can be analyzed in the 

frequency domain which involves the frequency analysis of ARMA models. Because 

spectral approaches are generally easier to interpret, analyze, and understand and can 

almost completely reveal the dynamics of the system, they are generally more useful than 

time domain methods. 
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Appendix A: Time series plots 
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Appendix B: Residual analysis plots 
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