
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

12-2022

Towards Reduced-order Model Accelerated Optimization for Towards Reduced-order Model Accelerated Optimization for

Aerodynamic Design Aerodynamic Design

Andrew L. Kaminsky
University of Tennessee, Knoxville, akamins1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Aerodynamics and Fluid Mechanics Commons, and the Numerical Analysis and

Computation Commons

Recommended Citation Recommended Citation
Kaminsky, Andrew L., "Towards Reduced-order Model Accelerated Optimization for Aerodynamic Design. "
PhD diss., University of Tennessee, 2022.
https://trace.tennessee.edu/utk_graddiss/7677

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/222?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=trace.tennessee.edu%2Futk_graddiss%2F7677&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Andrew L. Kaminsky entitled "Towards

Reduced-order Model Accelerated Optimization for Aerodynamic Design." I have examined the

final electronic copy of this dissertation for form and content and recommend that it be

accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a

major in Mechanical Engineering.

Kivanc Ekici, Major Professor

We have read this dissertation and recommend its acceptance:

Kivanc Ekici, Jay Frankel, Vasilios Alexiades, Zhili Zhang

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Towards Reduced-order Model

Accelerated Optimization for

Aerodynamic Design

A Dissertation Proposal Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Andrew Lawrence Kaminsky

December 2022

© by Andrew Lawrence Kaminsky, 2022
All Rights Reserved.

ii

to my girls: Courtney, Eleanor, and Emily

iii

Acknowledgments

I would like to thank my parents. Mom, thank you for fostering my creativity and for
modeling how to research. Dad, thank you for demonstrating the value of hard work and for
pushing me to strive for goals that feel unattainable. These traits were critical to completing
my graduate studies.

I would also like to thank my mentors at Oak Ridge National Laboratory and at CFD
Research for their investment in my growth. Ashraf, Mark, Bernie, and Phil thank you for
introducing me to computational fluid dynamics, experimental flow testing, and many many
other engineering disciplines. Your mentoring led me to pursue graduate studies. Yi and
Kapil thank you for opening the door to continue modeling, simulation, and optimization of
real world problems and for your collective guidance and mentoring. My time in industry
has provided a much deeper appreciation for the knowledge I accumulated in my graduate
studies.

To my past and present labmates, Reza, Hang, Seth, Brandon, Jason, and John, I thank
you for your collaborative spirits and for our time shared in technical brainstorming sessions,
code debugging, and celebration of milestones. I would also like to thank friends old and
new for their friendship and support during my graduate studies. I greatly cherish our time
shared during bridge nights, intramural frisbee games, and Sunday school.

I would like to thank my committee members Dr. Jay Frankel, Dr. Zhili Zhang, and Dr.
Vasilios Alexiades. In addition to your participation on my committee your heat transfer,
aerodynamics, and applied mathematics courses were among those I enjoyed most. I would
also like to thank Dr. Charles Mader at the University of Michigan for his help with adjoint
sensitivities and dynamic stability calculations; and Dr. Jens-Dominik Mueller at Queen
Mary University of London for fielding questions on the primal timestepping adjoint.

I am deeply indebted to my advisor, Dr. Kivanc Ekici. Dr Ekici, you provided
opportunities innumerable and gave me a firm push when I most needed it. Thank you
for your help with securing support for my graduate studies while I was fighting health
battles. Thank you for fostering a lab environment that allowed me to explore my technical
interests. Thank you for your technical guidance and the professional advice you bestowed
upon me. I vividly remember an early conversation with you in which you advised me that
selecting a Ph.D. advisor and a spouse may be the two most important decisions of student’s
life. I am happy to say that I feel blessed with the decision I made in both regards.

iv

Finally, I would like to express my deepest appreciation to my wife, Courtney. Your
patience, selflessness, support, and love made completing my graduate studies possible.
Thank you for everything. I love you.

Completing my graduate studies would not have been possible without the support
I received during my Ph.D. studies from the National Science Foundation (under grant
No.: CBET-1150332); the Bredesen Center for Interdisciplinary Research and Graduate
Education Fellowship and the Mechanical, Aerospace, and Biomedical Engineering (MABE)
department Chancellor’s Fellowship; the Engineering Fundamentals Program at the Univer-
sity of Tennessee; and CFD Research Corporation. Thank you for your support.

v

Abstract

The adoption of mathematically formal simulation-based optimization approaches within
aerodynamic design depends upon a delicate balance of affordability and accessibility.
Techniques are needed to accelerate the simulation-based optimization process, but they
must remain approachable enough for the implementation time to not eliminate the cost
savings or act as a barrier to adoption.

This dissertation introduces a reduced-order model technique for accelerating fixed-point
iterative solvers, such as those employed to solve primal equations, sensitivity equations,
design equations, and their combination. The reduced-order model-based acceleration
technique collects snapshots of early iteration (pre-convergent) solutions and residuals and
then uses them to project to significantly more accurate solutions, i.e., those associated
with smaller residuals. The acceleration technique can be combined with other convergence
schemes like multigrid and adaptive timestepping. The technique is also generalizable and in
this work is demonstrated to accelerate steady and unsteady flow solutions; continuous and
discrete adjoint sensitivity solutions; and one-shot design optimization solutions. This final
application, reduced-order model accelerated one-shot optimization approach, in particular
represents a step towards more efficient aerodynamic design optimization.

Through this series of applications, different basis vectors were considered and best
practices for snapshot collection procedures were outlined for the reduced-order model
acceleration technique. The major outcome of this dissertation is the development and
demonstration of this reduced-order model acceleration technique. This work includes the
first application of the reduced-order model-based acceleration method to an explicit one-
shot iterative optimization process.

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background and Related Work . 2

1.2.1 Optimization . 2
1.2.2 Flow Simulation via Computational Fluid Dynamics 3
1.2.3 Sensitivity Analysis . 5
1.2.4 Reduced-order modeling . 9

1.3 Contributions to the State of Art . 11
1.4 Outline . 11
1.5 Related Published Works . 12

2 Governing Flow Equations 14
2.1 The Navier-Stokes Equations . 14

2.1.1 The Perfect Gas Model . 16
2.1.2 The Spalart-Allmaras Turbulence Model 17

2.2 The Euler Equations . 18
2.2.1 Quasi-1D Euler Equations . 19

2.3 The Harmonic Balance Equations . 19

3 Numerical Approach 22
3.1 Non-Dimensionalization . 22
3.2 Spatial Discretization . 22

3.2.1 Cell-Centered Discretization . 23
3.3 Temporal Discretization . 25
3.4 Discrete Boundary Conditions . 27

3.4.1 Solid Wall Boundaries . 27
3.4.2 Far Field Boundaries . 28

3.5 Convergence Acceleration Techniques . 30
3.5.1 Local Time-Stepping . 30
3.5.2 Residual Smoothing . 31
3.5.3 Multigrid . 31

vii

4 Sensitivity Equations and Analysis 34
4.1 Derivation of the Direct Approach . 34
4.2 Derivation of the Adjoint Approach . 36

4.2.1 Continuous adjoint method . 37
4.3 Automatic Differentiation . 42

4.3.1 Forward mode automatic differentiation 43
4.3.2 Reverse mode automatic differentiation 44

5 Validation and Verification 49
5.1 Quasi-1D Flow through a Nozzle . 49

5.1.1 Nozzle with subsonic flow field . 50
5.1.2 Nozzle with subsonic inlet supersonic outlet 50
5.1.3 Nozzle with shocked flow . 51

5.2 Viscous 2D flow over an RAE2822 Airfoil 51
5.2.1 AGARD Test Case 1 . 52
5.2.2 AGARD Test Case 6 . 52

5.3 Inviscid 2D Flow over an Oscillating NACA0012 Airfoil 54
5.4 Inviscid 2D Flow over a Plunging NACA0012 Airfoil 54

5.4.1 Time-spectral Stability Derivative Method 54
5.4.2 Unsteady Adjoint Sensitivity Verification for Dynamic Stability Deriva-

tives . 56

6 Optimization methods 58
6.1 Traditional Gradient-Based Optimization . 58

6.1.1 Steepest Descent Method . 59
6.1.2 Newton’s Method . 59
6.1.3 Quasi-Newton Broyden, Fletcher, Goldfarb, and Shanno 60

6.2 One-Shot Gradient-Based Optimization . 61
6.2.1 Single-step One-shot Optimization 62
6.2.2 Pseudo-time Stepping One-shot Optimization 62

7 Reduced-Order Modeling 64
7.1 Reduced-Order Model-based Convergence Acceleration of Fixed-Point Iterators 65

7.1.1 Reduced-order Model Acceleration with Snapshot Basis Vectors . . . 66
7.1.2 Reduced-order Model Acceleration with Covariance Basis Vectors . . 68
7.1.3 Reduced-order Model Acceleration with Orthogonal Basis Vectors . . 70

8 Demonstration of Reduced-order Model Acceleration 72
8.1 Acceleration of an Unsteady Harmonic Balance Solution 72

8.1.1 Flow over an Oscillating RAE 2822 Airfoil 73
8.2 Acceleration of a Continuous Adjoint Solver 73

8.2.1 Case 1: fully subsonic nozzle . 74
8.2.2 Nozzle with subsonic inlet supersonic outlet 78

viii

8.2.3 Nozzle with shocked flow . 79
8.3 Accelerated Nested Optimization Study through Projected Discrete Adjoint

Sensitivities . 80
8.3.1 Sensitivity Projection for Inverse Design of a 2D Cascade 81

8.4 Acceleration of a Nested Optimization Scheme 83
8.4.1 Inverse Design of NREL S809 Airfoil in Inviscid Flow Field 83
8.4.2 Inverse Design of NREL S809 in a Viscous Flow Field 87

8.5 Acceleration of a One-shot Optimization Scheme 89
8.5.1 Inverse Design of Converging-Diverging Nozzle 89

9 Conclusions and Recommendations 94
9.1 Summary . 94
9.2 Future Work . 95

Bibliography 97

Appendix 115

Vita 179

ix

List of Tables

1 Coefficients for hybrid multistage Runge–Kutta scheme 116
2 Flow condition at far field boundary for one-dimensional flow. 116
3 RAE 2822 AGARD case parameters and computational corrections 128
4 RAE 2822 AGARD case 1 experimental and CFD results 128
5 Computational cost for convergence acceleration techniques 128
6 RAE 2822 AGARD case 6 parameters and computational corrections 128
7 A comparison of sensitivity values for AGARD case 6 133
8 A comparison of sensitivity values at different iterations 133
9 RAE 2822 AGARD case 9 parameters and computational corrections 133
10 Snapshot collection parameters for the varied initial snapshot location cases . 141
11 Iteration reduction for increasing snapshot count 141
12 Acceleration performance for increasing snapshot counts 147
13 Iteration reduction for increasing snapshot count with a single application . . 147
14 Iteration reduction for increasing snapshot count with a single application

applied to the 1 level multigrid scheme . 153
15 Iteration reduction for increasing snapshot count with multiple applications

applied to the 1 level multigrid scheme . 153
16 Snapshot collection parameters for the varied snapshot cases. 160
17 Snapshot collection parameters for the varied initial snapshot location cases . 160
18 Computation cost comparison of each sensitivity approach to reach ∥R̄(Ū)∥2 =

1× 10−15 . 160
19 Comparison of loading coefficients for the NREL S809 airfoil. 160
20 Snapshot collection parameters for the viscous flow case. 162
21 Computational cost comparison of design optimization 162
22 Snapshot collection parameters for the nozzle one-shot optimization case with

a single acceleration. 162
23 Snapshot collection parameters for the nozzle one-shot optimization case. . . 162

x

List of Figures

1 Nested gradient-based design-optimization flow chart. 117
2 Sub-time level Mach number contours for a pitching NACA 0012. [109] . . . 118
3 Spatial discretization using (a) cell-vertex and (b) cell-centered schemes [16]. 118
4 The auxiliary control volume for derivative evaluation in a cell-centered

scheme [16]. 119
5 Ghost cell indices across solid boundary. 119
6 Characteristics at the flow inlet for (a) subsonic and (b) supersonic flow. . . 120
7 Typical convergence history of an explicit steady state solver. 120
8 The multigrid cycle from fine to coarse and back. Here • denotes restriction

and ◦ corresponds to prolongation. 121
9 Cell-centered multigrid (a) Restriction and (b) Prolongation. Here are the

centers of the fine grid and ■ is the center of the coarse grid. 121
10 Forward mode operator overloading for multiplication. 122
11 Code utilizing operator overloading. 123
12 Forward Mode Automatic Differentiation of Convective Flux Subroutine. . . 124
13 Simplified flow solver code. 125
14 Automatically differentiated flow solver code. 125
15 Reverse mode AD sensitivity calculation flow chart. 125
16 Simplified flow solver code. 126
17 Unsteady adjoint code from brute force automatic differentiation. 126
18 (a) Pseudo-code for the forward pass and (b) Pseudo-code for the reverse pass

using brute force AD. Adapted from Christakopoulos et al. [27]. 127
19 Pseudo-code for the reverse pass using the primal time-stepping adjoint AD

approach. Adapted from Christakopoulos et al. [27] 127
20 The cross-sectional area of the nozzle is defined by a sinusoidal decrease near

the throat. 129
21 Fully subsonic nozzle solution (a) convergence history and (b) Mach number

distribution. 129
22 Adjoint solver (a) convergence history and (b) comparison of the adjoint

solution vector with that of Lozano and Ponsin [128]. 130
23 Transonic nozzle (a) Mach number distribution and (b) adjoint vector solution

both match the values reported by Giles and Pierce [62]. 130

xi

24 Shocked nozzle (a) Mach number distribution and (b) adjoint vector solution
match those of Giles and Pierce [62]. 131

25 RAE 2822 viscous grid . 131
26 (a) Pressure coefficient distribution and (b) convergence history for the RAE

2822 airfoil at AGARD case 1. 132
27 Lift coefficient for varying angles of attack over RAE 2822 at M = 0.725 and

Re = 6.5× 106 . 132
28 AGARD Case 6 lift coefficients and sensitivity to angle of attack. 134
29 (a) Pressure coefficient and (b) Mach contours for the RAE airfoil at M =

0.734, α = 2.79◦, and 6.5× 106. 134
30 NACA 0012 inviscid grid . 135
31 Harmonic balance unsteady Mach number contours for unsteady NACA 0012

case at each sub-time. 136
32 NACA 0012 (a) normal force and(b) pitching moment coefficients vs. α. Note:

Ronch data is digitized from Ref.[33] . 136
33 NACA 0012 (a) zeroth and (b) first harmonic imaginary unsteady surface

pressure coefficient distribution . 137
34 Typical harmonic balance solutions: CL vs. α for an oscillating flat plate . . 137
35 Typical harmonic balance solutions: RCL

vs. α̇ for an oscillating flat plate . 138
36 NACA 0012 inviscid grid . 138
37 NACA 0012 time-spectral stability derivative verification 139
38 Comparison of adjoint dCLα/dk derivatives with time-spectral dynamic

stability profile . 140
39 Comparison of dCLα/dk calculated via an adjoint approach and finite difference140
40 RAE 2822 viscous grid. 142
41 Surface pressure distributions for the five harmonic balance sub-time solutions.143
42 Unaccelerated harmonic balance primal solution convergence history. 143
43 Comparison of the convergence history of the primal harmonic balance solver

accelerated with the reduced-order model-base acceleration technique. 144
44 Adjoint solver (a) convergence history and (b) comparison of the adjoint

solution vector with that of Lozano and Ponsin [128]. 144
45 Convergence history achieved by varying snapshot count: increased snapshot

quantities improve convergence acceleration 145
46 Projected adjoint vector profiles offer considerable improvement over the

adjoint vector profile of the most converged snapshot. 145
47 The differences between the projected adjoint vector profiles and converged

values show that the projections significantly improve the present solution. . 146
48 Multiple applications of the convergence acceleration technique (a) using

double precision reaches an artificial convergence limit but (b) using quadruple
precision eliminates this limit. 146

49 Convergence acceleration using orthogonal basis vectors with snapshot collec-
tion beginning at (a) iteration 500 and (b) iteration 2. 148

xii

50 Delaying the first iteration location for the 41 snapshot case improves
projections until a gradual plateau is reached. 148

51 Convergence acceleration using multiple applications of the POD-based
correlation technique with snapshot collection beginning at (a) iteration 2
and (b) iteration 500. 149

52 Convergence acceleration using multiple applications of the POD-based
correlation technique stabilized by increasing the delay between acceleration
cycles for 21 snapshots . 149

53 Convergence acceleration using multiple applications of the POD-based
acceleration technique delayed 13 spans. 150

54 Convergence acceleration using multiple applications of the POD-based
correlation technique with 21 snapshots varying the iteration interval between
snapshots. 150

55 Convergence acceleration using orthogonal basis vectors with snapshot spans
of (a) 80 iterations, (b) 160 iterations, (c) 320 iterations, and (d) 640 iterations151

56 Convergence acceleration using orthogonal basis vectors applied once. 152
57 Convergence acceleration using orthogonal basis vectors applied once to the

multigrid scheme . 152
58 Convergence acceleration using orthogonal basis vectors applied multiple

times to the multigrid scheme . 154
59 Perturbed 10th standard inviscid HOH grid 155
60 Convergence of global sensitivity residual of first design cycle. 156
61 The initial, target and optimized (a) surface pressure distribution and (b)

blade shape . 156
62 Comparison of cost function reduction versus CPU time for the traditional

and projected adjoint sensitivity methods. 157
63 Percent difference from converged sensitivity values for each design variable

at initial design point . 158
64 Percent difference from converged sensitivity values for each design cycle of

design variable 12 . 158
65 Average percent difference from converged sensitivity values for each design

cycle over all design cycles . 159
66 Inviscid O-type computational grids for: (a) the NREL S809 airfoil (target),

and (b) the RAE 2822 airfoil (initial). Both grids are made up of 201 × 70
nodes. 161

67 Comparison of surface pressure distributions for the NREL S809 and RAE
2822 airfoils. 163

68 Comparison of the sensitivity values calculated via the brute force and primal
time-stepping adjoint approaches. 164

69 Convergence history of the brute force and primal time-stepping adjoint. . . 165

xiii

70 Comparison of the convergence history of the primal time-stepping adjoint
accelerated with reduced-order models built using: (a) different snapshot
quantities, and (b) varied initial snapshot collection iterations. 165

71 Convergence history of the traditional and accelerated primal time-stepping
adjoint. 166

72 Eigenvalue distribution of POD basis for the first three acceleration projections.167
73 Cost function history of the L-BFGS optimizer with sensitivities calculated

via the PTS adjoint approach with and without the ROM acceleration over
(a) CPU time and (b) design cycle. 167

74 Comparison of the initial, target, and optimized (a) surface pressure profiles.
and (b) airfoil surfaces. 168

75 Viscous grids for the (a) NREL S809 (target design) and (b) RAE 2822 (initial
design) airfoils. Both grids have 257×127 nodes in the streamwise and normal
directions, respectively. 168

76 A comparison of the surface pressure distribution of the NREL S809 airfoil. . 169
77 The adjoint sensitivity values of the b-spline control points at the initial

design. Design variables 1-15 modify the top surface and 16-30 control the
bottom surface. 169

78 Convergence history of the primal time-stepping adjoint sensitivity approach
for the viscous flow case with and without the ROM acceleration. 170

79 History of the cost function for L-BFGS-B optimizer using PTS adjoints
calculated with and without acceleration over (a) CPU time and (b) design
cycle. 170

80 Comparison of the initial, target, and optimized (a) airfoil surfaces and (b)
surface pressure profiles. 171

81 Inverse design problem (a) nozzle cross-section area and (b) flow solution of
initial design. 171

82 Comparison of the inverse design problem initial and target (a)nozzle cross-
section area and (b) pressure profile. 172

83 Convergence history of the primal, brute-force adjoint, and time-stepping
adjoint sensitivity approach for the initial nozzle design. 172

84 Cost function history over (a) each design cycle and (b) time. 173
85 Comparison of the (a) nozzle cross-section and (b) pressure profile recovered

by the L-BFGS-B optimizer. 173
86 Convergence history of the primal, adjoint, and design equations solved via a

one-shot optimization approach. 174
87 Cost function history over (a) each design cycle and (b) time. 174
88 Comparison of the (a) nozzle cross-section and (b) pressure profile recovered

by the one-shot optimizer. 175
89 Convergence history of the primal, adjoint, and design equations solved via

a one-shot optimizer with a single application of the reduced-order model
acceleration technique. 175

xiv

90 Design variable history for the one-shot optimizer with a single application of
the reduced-order model acceleration technique. 176

91 Convergence history of the primal, adjoint, and design equations solved via
the ROM-accelerated one-shot optimization approach. 176

92 Cost function history over (a) each design cycle and (b) time. 177
93 Comparison of the (a) nozzle cross-section and (b) pressure profile recovered

by the ROM-accelerated one-shot optimizer. 177
94 Comparison of the optimized design variable values from each optimization

approach. 178

xv

Nomenclature

A cross-sectional area
A Jacobian matrix
Ac convective flux Jacobian
An, Bn Fourier coefficients of time level n
b right hand side vector
c speed of sound
CD drag coefficient
CL lift coefficient
Cm moment coefficient
CLα , CLα̇ , ... stability derivatives
D artificial dissipation
D pseudo-spectral operator
E total energy
E discrete Fourier transform
E−1 inverse discrete Fourier transform
ḟ , ġ, ḣ grid velocity
fe external force
fi function
F ,G,H conservation flux vectors
FC convective flux
FD diffusive flux
g sensitivity source term
h enthalpy
J cost function
k coefficient of thermal conductivity or reduced frequency
Kr Krylov subspace
K correlation operator
M number of basis vectors or Mach number
NF number of faces
NH number of harmonics
p pressure
pt total pressure
Prl laminar Prandtl number

xvi

Prt turbulent Prandtl number
Q source vector
QF multigrid forcing function
R residual vector
R−, R+ Riemann invariants
Rg gas constant per unit mass
Re Reynolds number
s state vector
S control volume surface
∆S face area
St Spalart-Allmaras source term
t time
t1, t2 Hicks-Henne bump function control parameters
T pseudo-time
T temperature or period
U vector of conservation variables
U ∗ conservation variables at all sub-time levels
Ũ Fourier coefficients of conservation variables
u, v, w velocity components
v velocity vector
V contravariant velocity
V volume
V ′ auxiliary volume
x, y, z Cartesian coordinates
α angle of attack
α0 mean angle of attack
α1 unsteady oscillation amplitude
αcor corrected angle of attack
αm stage coefficients
βm blending coefficients
β design variables
δ Kronecker delta or perturbation
ϵ smoothing coefficients
ϵ(2), ϵ(4) artificial dissipation coefficients
γ specific heat ratio
λ spectral radii or eigenvalues
λc spectral radius of convective flux
λv spectral radius of viscous flux
µ dynamic viscosity
µl laminar viscosity
µt turbulent viscosity
ν pressure switch

xvii

ν̃ Spalart-Allmaras turbulent working variable
ω fundamental frequency
Ω flow domain
Φ basis vector matrix
ψ adjoint vector or Lagrange multiplier
ρ density
σ̄ internal stress
τ̄ shear stress
τxx, τxy, ... viscous stress
ξ weighting coefficients
ζ second coefficient of viscosity

xviii

Chapter 1

Introduction

1.1 Motivation
Continually increasing hardware computing resources and improvement in our ability to
simulate aerodynamic flows using computational fluid dynamics (CFD) has fundamentally
changed the aerodynamic design process. Industrial aerodynamic design processes now
routinely use CFD alongside traditional wind-tunnel and flight testing [141], where it
is commonly employed to analyze candidate designs and understand the resulting flow
phenomena. In this capacity, CFD simulation is regularly employed to guide experimental
testing and reduce experimental testing budgets. The use of CFD has grown to be such
an integral part of the aerodynamic design process that it is hard to imagine it without
CFD [141]. However, the true potential of CFD simulation within the industrial aerodynamic
design process has yet to be fully realized. Extending the industrial aerodynamic design
process to leverage CFD simulation within formal numerical optimization procedures would
further enhance the aerodynamic design process [174].

Numerical optimization of CFD simulation-based aerodynamic design processes is
complicated by high-dimensional, multi-disciplinary design spaces, expensive objective
metric simulation processes, and even more expensive sensitivity calculation processes.
Over the past few decades significant research and development has been performed
to form coupled CFD and numerical optimization processes that can be employed to
realize CFD-based design. Perhaps the most important development was Jameson’s
seminal work demonstrating use of the adjoint sensitivity method, borrowed from optimal
control, to affordably calculate gradients for a large number of design parameters [98].
Reuther [164, 165], Giles [61, 59], Martins [142, 140, 143], and many others [160, 27, 70, 71, 69]
have refined the ajdoint sensitivity calculation methodology.

The ability to simulate flow solutions and calculate their sensitivities to design parameters
has led to development of several coupled CFD-simulation and numerical optimization in
frameworks utilizing nested optimization strategies such as OpenMDAO [65], UNPAC [36],
and SU2 [2]. To reduce the cost of simulation based optimization Hafka [73], Ta’asan [182,

1

184], Hazra [79, 77], Ozkaya [158] and others [53, 72, 69, 18, 115] have demonstrated paths
towards more efficient one-shot optimization procedures.

Greater adoption of mathematically formal simulation-based optimization approaches
within aerodynamic design depends upon a delicate balance of affordability and accessibility.
Thus, techniques are needed to accelerate the simulation-based optimization process, but
these techniques must remain approachable enough for the implementation time to not
eliminate the cost savings. The effort of the work communicated within this dissertation
has been motivated by a search for techniques to accelerate simulation-based optimization
and its underlying components in an approachable manner.

1.2 Background and Related Work
A typical gradient-based design-optimization procedure can be broken down into four steps:
(1) problem setup; (2) flow solution; (3) sensitivity calculation; and (4) design update, as
depicted in Fig. 1. During the problem setup, the initial design, objective functions, and
design variables are specified. Following the problem definition, the flow equations must be
solved to evaluate the present design. If the design is deemed adequate the optimization
procedure is completed; otherwise, the process must be continued. The optimization process
begins with calculation of the sensitivities. Specifically, sensitivities of the objective function
to the design variables are calculated to determine an appropriate optimization search
direction for a gradient-based optimization procedure. The primary goal of the present
work is to accelerate this process.

1.2.1 Optimization
Optimization is the process of identifying a global or local extremum of a given function.
Design optimization is performed by defining an objective function that is maximized (or
minimized) when an ideal design is reached. In simulation-based aerodynamic design, the
objective function is based upon the converged flow solution. Typical cost functions include:
lift to drag ratios [84], stage efficiency [198], the difference from a target surface pressure
profile [94, 107], or even fuel efficiency [122]. Optimization methods for identifying the
objective function extremum can be classified as either gradient-based or gradient-free.

In the gradient-free approach, optimization is performed by evaluating the cost function
at different design points to find the optimum point. Gradient-free techniques include
genetic algorithms, random search, and space filling methods. Gradient-free optimization
can provide the global optimum of any function, but as the dimension of the design space
increases the number of function evaluations required can cause them to be intractable [132,
161].

Gradient-based optimization provides an interesting alternative when a local extremum
is sufficient. In aerodynamic design optimization, engineers typically have an initial guess
to the desired design, and an optimum near this original design is often sufficient. To find a
local extremum, gradient-based procedures use the gradient of the cost function to decision

2

parameters to determine the search direction and step size used to update the design within
an iterative design process. The steepest descent method, a simple first order gradient-based
technique, defines the search direction opposite that of the gradient. Convergence to a local
minimum requires a large number of design cycles, on the order of N2, where N is the
dimension of the design space. Newton’s method is a second-order gradient-based technique
that converges quadratically, but it requires the calculation of the Hessians, the second-order
derivative matrices, for each design cycle. The Hessian calculation is computationally very
expensive and can be cost prohibitive. Quasi-Newton methods provide a compromise by
approximating the Hessian using the changes in the gradients between design cycles. The
Davidon-Fletcher-Powell (DFP) updating algorithm [34, 204] was the first quasi-Newton
algorithm, but its popularity has since been superseded by the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method [204].

Recently one-shot optimization procedures which solve the design system (flow, gradient
and design solutions) simultaneously have been considered for aerodynamic design opti-
mization. Kuruvila et al. [113] originally used a multi-level Newton method to advance
all parts. Griewank and Faure [69] developed a ‘piggy-back’ method to simultaneously
calculate the flow, sensitivity, and design solutions. More recently, pseudo-time-stepping
approaches [27, 77, 104] have been used to march the flow, sensitivity, and design solutions
simultaneously. By coupling the convergence of the design system, increasingly accurate
flow and gradient information are used to update the design. This is beneficial because
the procedure is able to update the early design with relatively inaccurate gradients when
only a search direction is needed. Then as the design begins to converge, highly accurate
gradients are used to update the design. One-shot approaches have been shown to result in
considerable cost savings.

These gradient-based optimization procedures return a local optimum which, may or may
not be the global optimum. Optimization from multiple start locations can be considered to
surmount this, but in numerous aerodynamic considerations the design is initiated from a
baseline shape so that a local-optimum is sufficient. A gradient-based optimization process
can also be complicated by noisy or non-smooth results, but multi-point optimization can
be used to overcome this challenge [26]. The biggest cost associated with gradient-based
optimization is the sensitivity calculation, which is therefore a point of considerable interest
in our pursuit to accelerate the design cycle.

1.2.2 Flow Simulation via Computational Fluid Dynamics
In design optimization, it is often important to consider unsteady flow behavior in addition
to time-averaged steady states. Problems such as flutter [41, 121], wake-shock interactions
[64], vortex shedding [63], and row interactions [194], can have significant impacts on the
loading, efficiency, and stability, and should be considered.

Work on unsteady CFD time-stepping approaches began as early as the 1950s [75], but
it was Jameson’s dual time-stepping approach [99] introduced in 1991 that made time-
dependent solutions practical. In the dual time-stepping method, the temporal derivative

3

term is approximated by a second-order backward difference operator. To solve the
discretized equations, a pseudo-time derivative is added to the equations. The solution
is marched in pseudo-time until convergence is reached (usually when the residual has been
dropped two or three orders of magnitude). When convergence is reached, the pseudo-time
derivative term vanishes, and the original equations are recovered. The solution is then
advanced to the next physical time. The dual time-stepping method has been used to model
unsteady shock motion for an airfoil [170], fluid-structure interaction for wing flutter [124],
and turbomachinery [28, 81]. The dual time-stepping method accurately models the flow in
a straightforward way, but the computational cost can become unmanageable for large time-
scale solutions. This cost is further exacerbated when sensitivity calculations are needed due
to reasons that will be explained in detail throughout this work.

Flows over wings, through turbomachinery, and around wind turbines often behave
periodically, which makes aerodynamic analysis of these systems well-suited to frequency
domain techniques like the harmonic balance method [74] proposed by Hall et al. [74].
The harmonic balance method models the unsteady flow variables using a Fourier series
in time with spatially varying coefficients. The Fourier series coefficients are computed
by evaluating the flow solution at equally spaced sub-time levels over a single period, as
shown in Fig. 2. These sub-time solutions are coupled using a pseudo-spectral operator to
approximate the physical time derivative term. Since the coupled sub-time level solutions
are mathematically steady, common steady equation acceleration techniques including
multigrid, residual smoothing, and local time-stepping can be used to significantly reduce the
computational cost relative to traditional unsteady methods [45, 48]. The harmonic balance
method has been shown to be up to two orders of magnitude faster than traditional time-
accurate solutions [46] or roughly 5-10 times the cost of a steady Navier-Stokes analysis [89].
Among many other problems, the harmonic balance method has been used to model,
unsteady flows over unsteady turbomachinery [74], limit-cycle oscillations [45, 185, 186],
and unsteady flows about helicopter rotors [46], to name a few.

Jameson et al. [100] and McMullen and Jameson [148] developed a variation called
the non-linear frequency domain (NLFD) method, which uses Fourier coefficients as the
dependent variables. This requires Fourier transformation and inverse Fourier transformation
of conservation variables and residuals between the time and frequency domain at each
iteration. Accordingly, the harmonic balance technique is easier to implement.

Several have developed improvements or extensions of the original harmonic balance
method. Maple et al. [136] proposed an adaptive harmonic balance to consider flows with
varying levels of unsteadiness. Fewer harmonics are retained in relatively steady regions,
and more harmonics are retained in highly unsteady regions. The multi-frequency harmonic
balance technique was developed for application to aperiodic flows [43, 44]. In some instances,
the frequency of interest is unknown a priori. Several techniques have been developed to
determine the appropriate frequency [49, 63, 178] during the solution.

The harmonic balance technique is a model-order reduction technique that can con-
siderably reduce the computational cost for unsteady considerations while providing quite
accurate solutions. However, like all model-order reduction techniques some accuracy is

4

traded for the computational speedup. For example, the harmonic balance approach is
shown to introduce aliasing errors for some highly nonlinear problems and investigators have
developed/sought ways to address these issues.

1.2.3 Sensitivity Analysis
Following calculation of the flow solution and the objective metric, the sensitivity can be
calculated to inform the design update. The sensitivity of the objective function to design
variables can be calculated in several ways including: finite differencing, the direct approach,
and the adjoint approach.

Finite differencing is the most straightforward method, since only a flow solver is needed.
This method approximates the sensitivity of the objective function to a design parameter
by evaluating the objective function at a given design point, and then re-evaluating the
objective function after perturbing the design parameter. The difference between the initial
and perturbed solution is divided by the size of the perturbation to yield the gradient of the
objective function with respect to the single perturbed design variable. Sobieszczanski-
Sobieski [175] highlighted the need to determine sensitivity derivatives, and presented
finite differencing as a potential technique. Beux and Dervieux [11] considered derivatives
approximated using finite differences to optimize a nozzle while studying the impact of second
order accuracy on sensitivity derivatives. Hicks et al. [85] used finite differencing for airfoil
design.

The primary drawback of finite differencing is that the process must be repeated for each
design variable of interest, so the computational cost associated with sensitivity calculation
is directly proportional to the number of design variables considered. Aerodynamic design
optimization procedures potentially require tens to hundreds of design variables [146], which
makes this type of sensitivity calculation undesirable. Another drawback of this approach is
the dependence of its accuracy to the perturbation size. The choice of perturbation size is
faced with mutual influence of truncation and cancellation error [14]. The step size must be
small enough to decrease the truncation error but still large enough to limit the cancellation
of significant digits that cause round-off error. The sensitivity to step size can be removed
though by considering the complex step method developed by Martins et al. [145]. Due to
these limitations, finite differencing is not commonly used to calculate aerodynamic design
sensitivities any more, but it is frequently used to verify other sensitivity approaches [3].

Direct sensitivity analysis

The direct sensitivity approach offers an another alternative that alleviates the dependence
on perturbation step size. In the direct sensitivity approach, the flow solution is computed
once, and then a differentiated state problem is computed for each design parameter. The
computation cost of the differentiated state problem is typically slightly more than that of
a flow solution. However, if multiple cost functions are of interest, the sensitivity of all cost
functions to a single design variable can be calculated simultaneously, which can result in
cost reduction.

5

Development of the differentiated state problem can be automated using automatic
differentiation, which yields a fixed-point iterative solver that can be accelerated using
traditional acceleration techniques. The direct sensitivity approach is easily parallelized,
because the sensitivity solution of each variable can be run independently. Differentiation of
parallelized solvers is quite challenging [163], so this inherent parallelization is quite valuable.
If only a few design variables are considered, the direct sensitivity approach represents a
valuable technique.

Within aerodynamic design optimization, the direct sensitivity approach has been applied
by Baysal and Eleshaky [8] and Baysal et al. [9] to optimize a scramjet nozzle-afterbody
section. Bischof et al. [15] used a forward mode automatic differentiation to determine the
sensitivity of flow over a backward-facing step to empirical parameters of several turbulence
models. Within a design optimization context the direct sensitivity method can also
accelerate Hessian calculations [55], which can be used within Newton-based optimization
schemes.

Adjoint sensitivity analysis

The final sensitivity calculation technique is the adjoint sensitivity method [123]. The adjoint
method can be used to find the gradient information at a cost that is independent of the
number of design variables considered. The adjoint sensitivity method begins with the
solution of the flow equation followed by a solution of the adjoint equations. The flow
equation is typically referred to as the forward problem, and the adjoint equation is often
called the backward or reverse problem. The forward and backward problems can both
be solved using the same numerical techniques. Theory suggests that the required number
of floating point operations for adjoint computations is no more than three times that of
the original code [61]. The key feature of the adjoint method is it provides a significant
reduction in computational costs for problems, like aerodynamic design optimization, that
utilize several design variables.

From a mathematical viewpoint, the analytic adjoint equations are obtained by
linearizing the flow equations [128]. For numerical applications, a discretized version of
the adjoint equations is required which can be developed using one of two approaches: the
continuous [102] or discrete [61, 188] approach.

The continuous approach formulates the adjoint of the governing partial differential
equations, and then discretizes these linear equations. This approach was the method
originally developed by Jameson in his seminal work [98]. Borrowing from the field of
optimal control Jameson applied calculus of variations to the governing flow equations to
obtain the adjoint equations [141]. The continuous adjoint approach has the advantage that
it conveys the physical significance of the adjoint variables and boundary conditions. In
direct comparisons [149], the continuous approach has been demonstrated to form solvers
that were less computationally expensive. However derivation of the adjoint boundary
conditions for the continuous adjoint approach can be challenging and has received a
lot of attention [60, 128]. It can also be difficult to derive the adjoint equations for

6

turbulence models [210]. In practice, the turbulence field is often frozen and considered
to be independent of the design variables. Finally because discretization and linearization
are generally noncommutative, the sensitivities found by a continuous solver are not
consistent with the discretization and therefore won’t exactly match those found through
finite difference approximations.

Conversely, the discrete approach develops the discretized adjoint equations in the reverse
manner by first discretizing the governing partial differential equations (i.e., the CFD solver)
and then linearizing the flow solver. The discrete adjoint approach provides the exact
gradient of the discrete objective function [61]. Implementation of the discrete adjoint
method can be simplified by using automatic differentiation, which will be discussed in the
following subsection. The more straightforward implementation has lead to greater adoption
of the discrete adjoint method [141].

Within aerodynamic design optimization the adjoint sensitivity method is the most
prevalent sensitivity technique. As mentioned earlier, the continuous adjoint approach
was first considered by Jameson et al [98], within aerodynamic design. It has since been
extended to multi-element high-lift configurations [111], 3D wing [102] and wing-body
shape optimization [164, 165], 3D turbomachinery shape optimization [131], and coupled
aerodynamic-structural optimization [140, 142, 143]. These design studies have improved
lift to drag ratios, increased flight range, and improved off design performance. In earlier
work, the discrete adjoint approach has been hand-coded for 3D Euler equation-based shape
optimization [50], and the 3D Navier-stokes equation based shape optimization [155]. More
commonly though, the discrete adjoint approach has also been implemented using automatic
differentiation. For example, automatic differentiation has been used by Giles et al. [59] for
sensitivity calculation of airfoils in inviscid and viscous flows, by Nielson et al. [154] for
3D wing optimization, and by Wang and He [197] and Wang et al. [198] for sensitivities of
multi-stage turbomachinery.

The adjoint method has enjoyed more popularity within steady flow considerations.
Application of the adjoint method to unsteady flows is complicated by the reversal nature of
the adjoint calculation, which requires storage of the time-accurate flow solution history [151].
Storage of the unsteady solution history can be untenable. However, the harmonic balance
method enables unsteady flows to be considered using mathematically steady equations,
which alleviates the solution storage requirement. The adjoint technique has been applied
to the harmonic balance method for unsteady design optimization of wings and airfoils
[150, 151], unsteady turbomachinery [94, 40], and unsteady stability derivative calculations
by the present author [109].

Automatic Differentiation

Development of the direct method and the discrete adjoint approach can be streamlined
using automatic differentiation. Automatic differentiation is based upon the premise that
numerical codes like CFD solvers are made up of a series operations that can be reduced to
elementary arithmetic operations. Individually, each of these simple operations can easily

7

be differentiated. Automatic differentiation techniques apply the chain rule in an automated
manner to generate the derivative of the complete sequence [152]. Two common approaches
are followed for implementing automatic differentiation: operator overloading [70] and source
code transformation [76].

The operator overloading approach ‘overloads’ real numbers and integers so that the
defined type variables store the parameter of interest as well as that parameter’s derivative.
In addition, every intrinsic function and operation (e.g., addition, subtraction, multiplication,
exponential, etc.) must be overloaded so that when those operations are performed, both
the nominal variable values and the values of the derivatives of the variables are calculated.
An advantage of this approach is that very few changes to the original source code are
required. Generally, only changes to the data types are required. However, this approach
can only be utilized in languages where overloading is supported. In languages where it
is supported, operator overloading can apply a great deal of pressure on the compiler to
remove all the extra dispatches, allocations, and memory references it introduces. Also it is
often more costly compared to the source code transformation approach, because derivatives
are calculated for every operation regardless of whether it is pertinent to the quantities of
interest.

In source code transformation, the source code for a function is replaced by an
automatically generated source code. This code includes statements that calculate
derivatives of functions found within the original code. Source code transformation can
be implemented for any programming language. However, the creation of a source code
transformation type AD tool is difficult, but several AD packages including ADIFOR [12],
TAF [54], and TAPENADE [76] are available. Existing automatic differentiation tools
generally only require the user to specify which function’s gradients are desired and for which
variables the gradients should be found. TAPENADE is the source-code transformation tool
used within this work. Automatic differentiation can be performed in forward or reverse
modes, which respectively correspond to the direct and adjoint sensitivity methods. The
resulting derivative code generated using source code transformation is typically easier to
optimize because the derivative code is directly available.

Early efforts to apply automatic differentiation to CFD began in the 1990s with the
calculation of non-geometric sensitivity derivatives [13], followed by sensitivity to turbulence
modeling parameters[66], and sensitivity to geometric inputs [24]. It has since been utilized
within frequency domain solvers [94, 188] and unsteady flows [200].

Though this approach is called automatic differentiation it is not entirely automatic since
considerable work can be required to prepare the code before and after differentiation [106].
The simplest application of automatic differentiation is called the ‘brute force’ approach.
In the ‘brute force’ approach, the entire source code is provided to the source code
transformation tool. In the forward mode, ‘brute force’ automatic differentiation builds
a fixed-point iterative method to determine the sensitivity values, but in the reverse mode
the automatic differentiation does not yield a fixed-point method [27]. As a result, many
investigators have developed alternative applications of the reverse mode. Mader and
Martins [134] proposed the ADjoint approach which builds the adjoint problem term by

8

term. Christakopoulos et al. [27] introduced the ‘primal time-stepping’ adjoint which uses
hand assembly to form an iterative fixed-point iterative approach.

Automatic differentiation has primarily been applied to steady problems, because the
reversal required in the adjoint calculation requires storage of flow history, which can be
quite large. A few techniques have been developed to reduce the associated cost. Wang [199]
developed a checkpointing algorithm, which trades memory usage for run-time by only
reversing parts of the program at a time [71]. Beran et al. [10] proposed a POD compression
technique to compress the time-accurate solution history. Frequency domain techniques like
the harmonic balance and non-linear frequency domain method are mathematically steady;
therefore, storage of the solution history is not necessary. This makes them well-suited to
automatic differentiation. Adjoint harmonic balance and non-linear frequency domain solvers
have been developed for helicopter rotor design [25], a pitching and plunging wing [135], and
turbomachinery stage optimization [94].

1.2.4 Reduced-order modeling
High-fidelity computational fluid dynamic models and sensitivity analysis are becoming
increasingly valuable design tools. Their utility is only limited by their computational
cost and the information they are able to convey for flows of interest [129]. Model order
reduction can be used to decrease computational cost by distilling the system to the minimum
information needed. Projection-based model order reduction methods can be used to project
the high-order equations onto a subspace of the original space. This is equivalent to
transforming the original high-order system of equations to a system of much lower order,
by retaining only the most dominant portions of the solution dynamics [7]. The projection-
based model effectively “compresses” the system’s state information by projecting the state
behavior onto a lower dimensional subspace thereby rewriting the governing equations in
a compressed representation [137]. This low dimensional space consists of a basis that is
developed to capture the features of the solution using the fewest states possible. The
accuracy of any reduced-order model is dependent upon how well the solution features are
captured.

In 1807 Fourier presented one of the first attempts to approximate a complicated function
with a simpler formulation [171]. He used the orthogonal relationship of the sine and cosine
functions to form a basis, in what is now known as the Fourier series. Model order reduction
in its present form really began with Lanczos [171] who tried to reduce tridiagonal matrices
and Arnoldi who realized that smaller matrices could provide a good approximation of a
larger matrix [5]. Since then several methods to form reduced-order bases have been proposed
including: Krylov-subspaces and proper orthogonal decomposition (POD) [126].

Krylov-based methods find the eigenvalues of large sparse matrices or solve large linear
systems of equations without performing a direct linear solve, but instead use matrix-vector
multiplication. Given a linear system of equations Ax = b, an order-r Krylov subspace is
built by multiplying right hand side vector b in succession with the first r powers of A,
i.e., Kr = span

(
b,Ab,A2b, ...,Ar−1b

)
. However, the vectors become linearly dependent

9

so Krylov-based methods commonly use an orthogonalization scheme [82], such as Lanczos
iteration or Arnoldi iteration, to form the reduced-order basis. Krylov-based methods are
well-suited for reduction of large systems, because they preserve stability and passivity
which ensures the system does not produce energy. Krylov subspace methods have been
used for simulation of circuits [6, 166, 190], micromachined devices [166, 207], and wireless
systems [83]. Within computational fluid dynamics, among many others, Wilcox et al. [202]
developed an Arnoldi approach to model mistuned turbomachinery rotors and Lassaux [117]
used an Arnoldi derived reduced-order model for active shock position control.

Proper orthogonal decomposition is used to decompose a spatio-temporal signal into a
linear combination of orthogonal spatial basis functions and temporal coefficients. The basis
is chosen such that it is “optimal” in the sense that the error in the projection onto the
subspace is minimized. The solution of the optimization problem reduces to an eigenvalue
problem, and provides an orthogonal basis for the optimal subspace [168]. The method of
snapshots introduced by Sirovich [173], can be used to determine the eigenfunctions from a
set of samples or snapshots of the system.

Within fluid mechanics, proper orthogonal decomposition was first applied to the study
of turbulence [130]. Proper orthogonal decomposition is arguably the most popular model
order reduction technique for non-linear systems [23]. As such it has been extended to a wide
range of applications. Bui-Thahn et al. [20] proposed a gappy POD method to reconstruct
flow fields from incomplete data sets. LeGreseley and Alonso [119] considered POD-based
reduced-order models for design optimization by collecting snapshots at different design
variable values. Ekici and Hall [42] used POD to estimate time-linearized unsteady flows in
turbomachinery for different interblade phase angles.

Convergence acceleration

In addition to the previously discussed applications, reduced-order modeling techniques can
be used as convergence acceleration techniques by transforming, or projecting, a slowly
converging sequence to a new sequence that converges more rapidly to the same limit.
These methods, called extrapolation methods, were first pioneered by Wynn’s scalar and
vector epsilon algorithms [206]. More recently, the minimal polynomial extrapolation has
been used to approximate the eigenvalues of the flow solver [22]. The eigenvalues are
used in the characteristic polynomial to extrapolate a solution to minimize the convergence
error. Alternatively, Jespersen and Bunning accelerated an iterative process for the Euler
equations by annihilating the unstable eigenvalues [105]. Ekici et al. [47] extended this
concept to the Navier–Stokes equations by employing proper orthogonal decomposition
(POD) to approximate the unstable eigenvalues. Mader et al. [134] used GMRES, a Krylov
subspace method, to calculate adjoint sensitivities. Model order reduction has also been
performed to find an initial guess for iterative solvers. Clemens et al. [29] used Gram-Schmidt
orthogonalization to form a basis to extrapolate an initial guess in their subspace projection
extrapolation scheme. Liu et al. [125] used dynamic mode decomposition, a Krylov subspace

10

derivative, in the mode multigrid method to accelerate steady flow solutions. Markovinović
and Jansen used POD to project initial guesses from previous time-steps [137].

The present author has also co-developed a reduced-order model-based acceleration
scheme to approximate converged flow solutions [38] with considerable success. The same
technique has been applied to accelerate continuous adjoint solutions [108] and discrete
adjoint projection [107, 110]. This acceleration scheme avoids the need to generate several
high-fidelity solutions, which is a weakness of previous POD techniques. The technique
collects snapshots during a single solution at a set of preconvergent iterations. The technique
can be used in conjunction with traditional acceleration schemes including local time-
stepping and multigrid for even greater acceleration. It should be noted that despite the
relatively few attempts to accelerate the solution of the sensitivity equations, the adjoint and
direct method are well-suited to reduced-order model-based acceleration because they are
linear. Furthermore, acceleration of the sensitivity procedure is especially valuable because
of its higher cost relative to the flow solution. This technique is a key component of the
present dissertation.

1.3 Contributions to the State of Art
This dissertation proposal puts forward a novel reduced-order model accelerated one-shot
optimizer for aerodynamic design. The reduced-order modeling technique dramatically
reduces the cost associated with one-shot optimization. The traditional one-shot approach
limits the cost of early design cycles by performing design updates before convergence
is reached. The flow solution and the adjoint solution are converged simultaneously to
an accuracy that is increased as the design updates progress. The reduced-order model
acceleration technique takes snapshots of preconvergent solutions and uses them to project
the solution forward towards to a significantly more accurate solution, i.e. smaller residual.
In this work the reduced-order model based acceleration technique is demonstrated to
independently accelerate primal and adjoint solutions and combined primal, adjoint and
design solutions within the one-shot approach. Development of the proposed reduced-order
model accelerated one-shot optimizer for aerodynamic design requires:

• Reduced-order model-based acceleration of the primal flow solutions.

• Reduced-order model-based acceleration of the sensitivity analysis.

• Reduced-order model-based acceleration of the one-shot design step.

1.4 Outline
The gradient-based aerodynamic design cycle requires a flow solution, sensitivity calculation,
and design update. Before the accelerated unsteady one-shot gradient-based optimizer can

11

be built, the theory, implementation, and verification of the flow solver, sensitivity solver,
and reduced-order model acceleration technique must be demonstrated.

In Chapter 2, the governing flow equations are presented. The high-fidelity Navier–Stokes
equations are outlined and the simplified inviscid Euler equations are derived. The harmonic
balance method is presented for efficient analysis of unsteady periodic flows. Following the
introduction of the governing equations, the discretization method is discussed in Chapter 3.
The numerical approaches of the in-house solvers, external and cascade, are outlined.

Next the sensitivity equations are introduced in Chapter 4. Initially the direct (or
forward) sensitivity is derived. Afterwards the adjoint sensitivity approach commonly used
in aerodynamic design is detailed. Both the continuous and discrete variants of the adjoint
approach are considered. Finally, automatic differentiation is introduced as a method for
efficiently developing derivative code.

In Chapter 5, the flow and sensitivity solvers are validated and verified. The flow
solvers are validated against experimental and externally generated computational data for
steady and unsteady flows. Traditional convergence acceleration techniques are considered to
establish baseline performance. The sensitivity approaches are verified through comparison
with finite differencing and validated with sensitivity results from the literature.

Chapter 6 introduces optimization techniques employing the primal flow solvers and
adjoint sensitivity solvers. First, traditional nested optimization approaches are detailed.
Moving from techniques of low complexity and slow convergence rates to greater complexity
and faster convergence rates. The chapter culminates with the introduction of one-shot
optimization techniques, which drop feasibility requirements to simultaneously solve the
primal, adjoint, and design solutions to accelerate the process.

Chapter 7, introduces reduced-order modeling techniques and details the novel con-
vergence acceleration technique that is the focus of this dissertation. The convergence
acceleration technique is developed to accelerate convergence of fixed-point iterative solvers.
The motivation for the reduced-order modeling approach is discussed, and its implementation
is described for three different basis vector types.

Chapter 8 demonstrates the reduced-order model acceleration technique in a number
of applications. First acceleration of a harmonic balance flow solution is presented. Next,
acceleration of a continuous adjoint solver and discrete adjoint solver is considered. Finally,
the acceleration technique is demonstrated to accelerate a nested design loop and a one-shot
gradient-based optimizer for aerodynamic design. Chapter 9 summarizes the findings and
presents interesting paths forward.

1.5 Related Published Works
This dissertation is based upon work published within the following peer reviewed journals
and conference proceedings:

12

1. Kaminsky, Andrew L., and Kivanc Ekici. "Sensitivity and stability derivative
analysis using an efficient adjoint harmonic balance technique." In 54th AIAA aerospace
sciences meeting, p. 0808. 2016.

2. Kaminsky, Andrew L., Reza Djeddi, and Kivanc Ekici. "An Efficient Reduced-
Order-Model for Accurate Projection of Adjoint Sensitivities." In 55th AIAA Aerospace
Sciences Meeting, p. 0037. 2017.

3. Djeddi, Reza, Andrew Kaminsky, and Kivanc Ekici. "Convergence acceleration of
fluid dynamics solvers using a reduced-order model." AIAA Journal 55.9 (2017): 3059-
3071

4. Kaminsky, Andrew L., Reza Djeddi, and Kivanc Ekici. "Convergence acceleration
of continuous adjoint solvers using a reduced-order model." International Journal for
Numerical Methods in Fluids 86, no. 9 (2018): 582-606.

5. Kaminsky, Andrew L., and Kivanc Ekici. "Efficient prediction of forward
aerodynamic sensitivities using a reduced-order model." In 2018 Multidisciplinary
Analysis and Optimization Conference, p. 3744. 2018.

6. Kaminsky, Andrew L., and Kivanc Ekici. "Reduced-order model-based convergence
acceleration of reverse mode discrete adjoint solvers." Aerospace Science and Technol-
ogy 93 (2019): 105334.

7. Thress, John F., Andrew L. Kaminsky, Reza Djeddi, and Kivanc Ekici. "One-shot
Design Optimization Based on the Adjoint Harmonic Balance Technique." In AIAA
AVIATION 2020 FORUM, p. 3128. 2020.

8. Thress, John, Andrew L. Kaminsky, Reza Djeddi, and Kivanc Ekici. "Monolithic
One-Shot Optimization for Time-Periodic Flows Using Harmonic Balance." AIAA
Journal 60, no. 6 (2022): 3539-3554.

At various points within this dissertation, material from these papers will be presented.
Footnotes will be used to highlight this use.

13

Chapter 2

Governing Flow Equations

This chapter presents the governing flow equations. The flow equations are solved to
characterize the performance of a given aerodynamic design through an objective metric,
which is defined such that either maximization or minimization corresponds to an optimal
design. Thus, in the context of aerodynamic design optimization the flow solution can be
thought of as the primal problem.

Mathematical models with varying levels of approximation are considered to resolve
the flow field. First, the Reynolds-averaged Navier–Stokes equations are introduced in
Section 2.1. In Section 2.2, physical simplifications are made to derive the Euler equations
which model inviscid flows. Finally, Section 2.3 details the harmonic balance approach [74]
which extends these equations to efficiently solve unsteady flow solutions for periodic flows.

2.1 The Navier-Stokes Equations
In this work, the two-dimensional unsteady Navier–Stokes equations will be used to describe
fluid motion through a time-dependent continuity equation for conservation of mass, two
time-dependent conservation of momentum equations, and a time-dependent conservation
of energy equation. In integral form, the Navier–Stokes equations are written as

∂

∂t

∫
V
ρ dV +

∮
S
ρv · dS = 0 (2.1)

∂

∂t

∫
V
ρv dV +

∮
S
ρv (v · dS) =

∫
V
ρfe dV −

∮
S
p · dS +

∮
S

¯̄τ · dS (2.2)

∂

∂t

∫
V
ρE dV +

∮
S
ρEv · dS =

∮
S
k∇T · dS +

∫
V

(ρfe · v + qH) dV +
∮

S

(
¯̄σ · v

)
· dS. (2.3)

The Navier–Stokes equations describe the relationship between the velocity v, pressure p,
temperature T , and density ρ of a moving fluid. In two-dimensional flow these dependent

14

variables are functions of three independent variables, the two spatial coordinates (x and y)
and time t.

The Navier–Stokes equations can also be written in strong conservation form

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
= Q , (2.4)

where the vector of conservation variables U ; the flux vectors F , andG; and the source
vector Q are given by

U =


ρ
ρu
ρv
ρE

 , F =


ρu− ρḟ

ρu2 + p− τxx − ρuḟ
ρuv − τxy − ρvḟ
ρuh− τxh − ρEḟ

 , G =


ρv − ρġ

ρuv − τyx − ρuġ
ρv2 + p− τyy − ρvġ
ρvh− τyh − ρEġ

 Q =


0
0
0
0

 .

The conservation variables U represent the flow solution state. In the absence of Coriolis
and body forces the source vector Q vanishes. In the equations above, ḟ and ġ are the x and
y components of the grid velocity respectively. From Eq. (2.4), it can be seen that beyond
grid motion the flux results from two sources: convection and diffusion. The convective flux
represents the transport of quantities due to the motion of the bulk flow. In the x-direction
these terms are

FC =


ρu

ρu2 + p
ρuv
ρuh

 . (2.5)

Each component of the convective flux contains the directional velocity to model the bulk
motion in that direction. These terms grow as the velocity of the fluid increases, and they
are zero when the fluid is at rest.

The vector of diffusive or viscous fluxes represents the macroscopic transport due to
molecular agitation. The diffusive flux drives the flow toward equilibrium and uniformity.
In the x-direction, the diffusive flux is

FD =


0
−τxx

−τxy

−τxh

 . (2.6)

Not all physical properties are diffusive. For instance, the mass of a fluid does not diffuse.
Any displacement of mass would imply displacement of fluid particles which would by
definition be convective motion. This property can be observed by the zero in the mass
term of the diffusive fluxes. Fick [159] observed that the diffusive flux is proportional to the
gradient of the concentration but moves in the opposite direction. For a Newtonian fluid, the

15

viscous shear stress is proportional to the velocity gradient, and the diffusive vector contains
a viscous shear stress term τ for the momentum and energy equations. The viscous stress
components in the x-direction are defined by

τxx = ζ

[
∂u

∂x
+ ∂v

∂y

]
+ 2µ∂u

∂x
(2.7)

τxy = µ

(
∂u

∂y
+ ∂v

∂x

)
. (2.8)

Here µ represents the dynamic viscosity and ζ is the second viscosity coefficient. Stokes [179]
introduced the hypothesis that the two are related according to

ζ + 2
3µ = 0. (2.9)

This relation is called the bulk viscosity, and it represents the property responsible for energy
dissipation in a fluid at uniform temperature during a constant rate change in volume [16].
With this relation, the stress tensor terms can be simplified so that they only depend on
the dynamic viscosity term µ, which can be broken up into two components: µl the laminar
viscosity and µt the eddy viscosity. The laminar viscosity is a fluid property that can be
determined using the Sutherland formula (in Kelvin) [180]

µl = 1.45T 3/2

T + 110 · 10−6 (2.10)

The eddy viscosity can be computed using turbulence models like the K−ϵ [118], K−ω [201],
or Spalart-Allmaras [177] turbulence model. As discussed in Section 2.1.2, the Spalart-
Allmaras turbulence model is employed in the present effort.

2.1.1 The Perfect Gas Model
The two-dimensional Navier–Stokes equations consist of four equations for the four
conservative variables ρ, ρu, ρv, and ρE, which contain six unknown flow field variables ρ,
u, v, E, p, and T . Since there are more two-more unknowns than equations, two equations
of state are needed to close the mathematical model. The equations of state are developed
by assuming the compressible fluid behaves as a perfect gas with constant specific heat
ratios. This approximation can be used to define a relationship between the pressure and
the conservation variables

p = (γ − 1)ρ
[
E − 1

2(u2 + v2)
]
, (2.11)

and the temperature can be calculated through the ideal gas law [87],

16

p = ρRgT (2.12)

where Rg is the gas constant per unit mass.

2.1.2 The Spalart-Allmaras Turbulence Model
Modeling turbulent flow presents another obstacle. A direct numerical simulation (DNS)
of the time-dependent Navier–Stokes equations, requires the grid resolution scale with the
Reynolds number according to Re9/4[16] and CPU-times that scale according to Re3. In
engineering applications this cost is generally impractical, and the effects of turbulence
typically need to be approximated using models of reduced complexity. The Reynolds-
averaged Navier–Stokes (RANS) equations are the most widely applied approximation for
industrial CFD applications [87].

The RANS equations decompose the flow variables into mean and fluctuating parts, which
are then time averaged [167]. Inserting the decomposed variables into the Navier–Stokes
equations Eq. (2.4) and averaging, results in the same equations for the mean variables with
two additional terms. The first is the Reynolds-stress tensor

¯̄τij = −ρ̄ṽ′′i v′′j , (2.13)

and the second is the turbulent heat-flux vector

FHF = −ρ̄h̃′′v′′. (2.14)

Here v′′i and v′′j denote the density-weighted fluctuating parts of the velocity components.
The over-bar and over-tilde represent ensemble and design weighted averages, respectively.
To close the RANS equations, a large variety of turbulence models have been devised. In this
work, a first-order closure approach is considered through the Spalart-Allmaras turbulence
model.

The Spalart-Allmaras turbulence model is based on the Boussinesq assumption

τij = 2µt

(
Sij −

1
3
∂uk

∂xk

δij

)
− 2

3ρkδij, (2.15)

which states that the turbulent shear stress is linearly proportional to the mean strain
rate [16]. The eddy viscosity is the proportionality constant and can be combined with the
laminar viscosity to calculate the dynamic viscosity term.

The Spalart-Allmaras turbulence model is used solve for the eddy viscosity term. It can
be implemented by concatenating an equation to the Navier–Stokes equations Eq. (2.4),

U =
[
ρν̃

]
, F =

[
ρuν̃ − τxν − ρν̃ḟ

]
, G =

[
ρvν̃ − τyν − ρν̃ġ

]
, Q =

[
St

]
.

17

The eddy viscosity can then be found by [177]

µt = ρν̃fv1 (2.16)

where
fvs = 1− χ

1 + χfv1
; χ = ρν̃

µl

. (2.17)

The shear stress term in the x-direction is given by

τxν = 1
σ

(µl + ρν̃) ∂ν
∂x
. (2.18)

The source term contains an eddy-viscosity production, turbulence destruction, and non-
conservative diffusion term

St = Cb1 (1− ft2) S̃ρν̃ − ρ
[
Cw1fw −

Cb1

κ2 ft2

] (
ν̃

d

)2
+ ρCb2

σ

(∂ν̃
∂x

)2

+
(
∂ν̃

∂y

)2
 . (2.19)

The production term is evaluated from

S̃ = Ω + ν̃

κ2d2fv2; fvs = 1− χ

1 + χfv1
; fv2 = 1− χ

1 + χfv1
χ = ρñu

µl

,

where Ω is the vorticity magnitude. The terms controlling the destruction are found using

fw = g

(
1 + c6

w3
g6 + c6

w3

)
; g = r + ccw2

(
r6 − r

)
; r = min

(
ν̃

S̃κ2d2

)
.

2.2 The Euler Equations
Though the RANS equations are more accurate, it is often advantageous and appropriate
to consider models of reduced complexity and computational cost. The Euler equations are
an example of a physical simplification that can be made to model certain types of flow at
considerably reduced computational cost and little impact on the solution accuracy. The
Euler equations are obtained by neglecting the diffusive terms from the governing equations
Eq. (2.4) yielding:

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
= Q . (2.20)

The vector of conservation variables U , the flux vectors F andG, and the source vector Q
are given by

18

U =


ρ
ρu
ρv
ρE

 , F =


ρu− ρḟ

ρu2 + p− ρuḟ
ρuv − ρvḟ
ρuh− ρEḟ

 , G =


ρv − ρġ
ρuv − ρuġ

ρv2 + p−−ρvġ
ρvh− ρEġ

 , Q =


0
0
0
0

 .

By ignoring the viscous effects, the associated computational cost can be decreased
considerably. The reduced complexity also facilitates sensitivity derivation, because
sensitivity methods are often complicated by viscous effects and turbulence models.

2.2.1 Quasi-1D Euler Equations
The 2D Euler equations can be further simplified when applied to modeling asymmetric
nozzle flow. Specifically, the 2D Euler Equations can be reformulated in a steady-state
quasi-one-dimensional form

R (U, A) = d
dx (AF)−Q

dA
dx = 0 (2.21)

Here A denotes the cross-sectional area, and the vector of conservation variables U, the
convective flux vector F, and the source term Q are given by

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p
ρhu

 , Q =

 0
p
0


Again, the pressure and total enthalpy are related to the conservation variables through

p = (γ − 1)ρ
[
E − 1

2u
2
]

h = ρE + p

ρ

The quasi-one-dimensional Euler equations were considered in this work, because they are
simple enough to have exact analytic solutions [62], while retaining complex flow features, like
shocks. This makes the quasi-one-dimensional Euler equations well-suited to validation and
verification studies, particularly continuous adjoint solvers and their boundary conditions.

2.3 The Harmonic Balance Equations
The harmonic balance technique is another simplification technique that can be used to
efficiently specific types of unsteady flow problems. The harmonic balance technique was
inspired by recognizing many flows of interest are temporally periodic due to vibration,

19

pitching, or cyclical operation. These cyclical flow behaviors in time can then be accurately
represented by a Fourier series with spatially varying coefficients e.g.,

U(x, y, ti) = A0(x, y) +
NH∑
n=0

[An(x, y) cos(ωnti) +Bn(x, y) sin(ωnti)] . (2.22)

Here ω is the fundamental frequency and A0, An, and Bn are the Fourier coefficients of the
conservation variables. For affordable simulation, the harmonic balance technique truncates
this Fourier series to NH harmonics. The Fourier coefficients Ũ can be found from conserved
flow variables at 2NH + 1 sub-time levels U ∗ using the inverse discrete Fourier transform

Ũ = E−1U ∗. (2.23)

The inverse discrete Fourier transform is given by

E−1 = 2
2NH + 1



1/2 1/2 1/2 . . . 1/2
cosωt1 cosωt2 cosωt3 . . . cosωt2NH+1

...
cosNHωt1 cosNHωt2 cosNHωt3 . . . cosNHωt2NH+1

sinωt1 sinωt2 sinωt3 . . . sinωt2NH+1
...

sinNHωt1 sinNHωt2 sinNHωt3 . . . sinNHωt2NH+1


. (2.24)

Alternatively, the sub-time level solutions U ∗ can be recovered from the Fourier coefficients
Ũ using the discrete Fourier transform

E =


1 cosωt1 . . . cosNHωt1 sinωt1 . . . sinNHωt1
1 cosωt2 . . . cosNHωt2 sinωt2 . . . sinNHωt2
...
1 cosωt2NH+1 . . . cosNHωt2NH+1 sinωt2NH+1 . . . sinNHωt2NH+1

 (2.25)

through

U ∗ = EŨ . (2.26)

The unsteady flow equations, Eq. (2.4), can be rewritten so that multiple sub-time levels
are considered simultaneously, i.e.,

∂U ∗

∂t
+ ∂F ∗

∂x
+ ∂G∗

∂y
= Q∗ . (2.27)

F ∗ and G∗ are the flux vectors evaluated at U ∗. The 2NH + 1 sub-time levels are coupled
through the time derivative term

20

∂

∂t
U ∗ =

NH∑
n=1

[−ωn ·An(x, y) sin(ωnt) + ωn ·Bn(x, y) cos(ωnt)] . (2.28)

Recalling the inverse discrete Fourier transformE−1, the time derivative term may be written
in matrix form as

∂U ∗

∂t
= ∂E

∂t
Ũ . (2.29)

The inverse discrete Fourier transform, Eq. (2.24), can then be used so that the time
derivative term is dependent on the sub-time level solutions

∂U ∗

∂t
= ∂E

∂t
E−1U ∗ = DU ∗. (2.30)

where D is known as the pseudo-spectral operator. The harmonic balance equations can
then be written as

DU ∗ + ∂F ∗

∂x
+ ∂G∗

∂y
+ ∂H∗

∂z
= Q∗ . (2.31)

The pseudo-spectral operator removes the time dependence of the Navier-Stokes equations
so that the harmonic balance equation is mathematically steady. A pseudo-time term can
then be added and used to march Eq. (2.31) to steady state

∂U ∗

∂T
+ DU ∗ + ∂F ∗

∂x
+ ∂G∗

∂y
+ ∂H∗

∂z
= Q∗ . (2.32)

21

Chapter 3

Numerical Approach

3.1 Non-Dimensionalization
It is convenient to work in a dimensionless form of the governing flow equations [90]. The non-
dimensional form provides unitless results and isolates parameters which makes comparisons
with external sources easier. Within this work, the non-dimensionalization is based on a
reference pressure, temperature, and length term which can be used to calculate additional
reference quantities [90], given as

ρref = pref

RgasTref

; Vref =
√
RgasTref ; aref =

√
γRgasTref ; ωref = Vref

Lref

. (3.1)

With these reference values defined the non-dimensionalized variables are:

x̂ = x

Lref

; ŷ = y

Lref

; ẑ = z

Lref

t̂ = t

Lref/Vref

(3.2)

û = u

Vref

; v̂ = v

Vref

; ŵ = w

Vref

; ω̂ = ω

ωref

; (3.3)

µ̂ = µ

ρrefVrefLref

; ρ̂ = ρ

ρref

; p̂ = p

pref

; T̂ = T

Tref

(3.4)

where hats denote dimensionless quantities.

3.2 Spatial Discretization
Within this work two in-house flow solvers cascade [92, 93] and external [37, 38, 88] are
used. The cascade solver employs a vertex-centered spatial discretization method [97]. In
this approach, the control volume is formed by taking the union of cells that meet at that
vertex. In two-dimensional cases the control volume is made of four cells as shown in Fig 3a.
The external solver employs a cell-centered spatial discretization approach to define control
volumes that coincide with the cells made by the grid, as shown in Fig. 3b. In this approach,

22

the flow variables are stored at the centroids of the control volumes and the fluxes are
calculated on the control volume faces. Solvers with differing spatial discretization schemes
are used to evaluate the acceleration technique introduced in Chapter 7 and demonstrate its
versatility. However, in the interest of conciseness only the cell-centered approach will be
outlined here.

3.2.1 Cell-Centered Discretization
Convective Fluxes

A central scheme with artificial dissipation known as the Jameson-Schmidt-Turkel (JST)
scheme [103] is used to compute the convective fluxes. In the JST scheme, the convective
flux is computed at each control volume face using an average of the flow variables to either
side of the face. Denoting face surfaces using 1/2-indexing, the convective flux can be written
as

(Fc∆S)i+1/2,j,k ≈ Fc

(
Ui+1/2,j,k

)
∆Si+1/2,j,k (3.5)

where the conservative variables at the face are defined as the arithmetic average of the
values of the two adjacent cells,

Ui+1/2,j,k = 1
2 (Ui,j,k +Ui+1,j,k) . (3.6)

The central scheme suffers from odd-even decoupling which manifests itself as oscillations
in the solution due to the generation of two independent solutions of the discretized equations.
Artificial dissipation is typically added to stabilize the solution. Adding artificial dissipation,
the convective flux becomes

(Fc∆S)i+1/2,j,k ≈ Fc

(
Ui+1/2,j,k

)
∆Si+1/2,j,k −Di+1/2,j,k , (3.7)

whereDi+1/2,j,k is the artificial dissipation flux at the cell face. In the traditional JST scheme,
the artificial dissipation flux consists of a blend of the second- and fourth-order difference
operators

Di+1/2,j,k =λi+1/2,j,k

[
ϵ

(2)
i+1/2,j,k (Ui+1,j,k −Ui,j,k)

− ϵ(4)
i+1/2,j,k (Ui+2,j,k − 3Ui+1,j,k + 3Ui,j,k −Ui−1,j,k)

]
.

(3.8)

The dissipation is scaled by the sum of the spectral radii of the convective flux Jacobian in
each coordinate direction

λi+1/2,j,k = λi
i+1/2,j,k + λj

i+1/2,j,k + λk
i+1/2,j,k . (3.9)

23

The spectral radius at the face is taken as the average of the spectral radii of the two adjacent
cells, where the spectral radius is evaluated using the formula

λi
i,j,k = (|V |+ c) ∆S (3.10)

where V is the contravariant velocity, and c the speed of sound. The coefficients ϵ(2) and ϵ(4)

are used to tune the artificial dissipation depending on the flow conditions, according to

ϵ
(2)
i,j,k = k(2)max (νi,j,k, νi+1,j,k) (3.11)

ϵ
(4)
i,j,k = max

[
0,
(
k(0) − ϵ(2)

i+1/2,j,k

)]
(3.12)

where νi,j,k is a pressure switch given by

νi,j,k = |pi−1,j,k − 2pi,j,k + pi+1,j,k|
pi−1,j,k + 2pi,j,k + pi+1,j,k

. (3.13)

The switch is used to adjust the impact of the second- and fourth-order artificial dissipation
terms. In smooth flow regions, the second-order term is turned off while the fourth-order term
is active to damp oscillations caused by odd-even decoupling. In regions with discontinuities,
the second-order term is switched on and the fourth-order term is switched off to prevent
strong oscillations. Values for these constants are typically in the ranges 0.25 ≤ k(2) ≤ 0.5
and 0.008 ≤ k(4) ≤ 0.032.

The solution accuracy can be improved by reducing the numerical dissipation. The
JST scheme can be modified to act more like an upwind scheme which allows the artificial
dissipation to be limited. The matrix dissipation scheme [181] uses a matrix consisting of
the convective flux Jacobian instead of the spectral radius to limit the dissipation terms. As
a result, each equation is scaled by its corresponding eigenvalue and Eq. (3.8) becomes

Di+1/2,j,k =|Ac|i+1/2,j,k

[
ϵ

(2)
i+1/2,j,k (Ui+1,j,k −Ui,j,k)

− ϵ(4)
i+1/2,j,k (Ui+2,j,k − 3Ui+1,j,k + 3Ui,j,k −Ui−1,j,k)

]
.

(3.14)

where
|Ac| = T |λc∆S|T−1. (3.15)

Ac = ∂Fc/∂U is the convective flux Jacobian, T and T−1 are the right and left eigenvectors
and λc is the diagonal matrix of eigenvalues. Blazek [16] presents a thorough derivation
of the eigenvalues and eigenvectors for 2D and 3D cases. The JST scheme with artificial
dissipation Eq 3.14 provides a simple to implement and computationally efficient approach
for convective flux calculation.

24

Viscous Fluxes

To consider viscous flow fields, a numerical scheme must be developed for the viscous fluxes
as well. Like the convective flux scheme, the viscous flux scheme also follows a central
difference-based stencil [139]. Therefore, the values at the faces again result from the average
of the values of the adjacent cell centers. However, the viscous flux terms contain velocity
derivative terms that need to be evaluated at the cell faces. These derivative terms can be
evaluated using either finite differences or Green’s theorem.

Green’s theorem relates the volume integral of the first derivative of a variable to the
surface integral of the same variable. The derivative of u in the x-direction is approximated
as

∂u

∂x
= 1
V ′
∫∫
V ′

∂u

∂x
dxdy = 1

V ′
∫
V ′
udy ≈ 1

V ′
NF∑

m=1
umS

′
x,m (3.16)

where V ′ is the volume of an auxiliary cell shown in Fig. 4 and NF is the number of faces of
the auxiliary cell. It can be seen from the figure that the values at the left and right faces
are already known, but values on the upper and lower faces need to be determined. The
value of u at location i + 1/2, j + 1/2 and i + 1/2, j − 1/2 are taken as the average of the
four surrounding cells, for example

ui+1/2,j+1/2 = 1
4 (ui,j + ui+1,j + ui,j+1 + ui+1,j+1) . (3.17)

3.3 Temporal Discretization
The temporal domain must also be discretized. Within this work, Jameson’s multi-stage
Runge–Kutta scheme [103] is used to time-march the discretized equations. The multi-stage
technique divides the update into a number of steps. Both the Euler and Navier-Stokes
equations can be summarized as

∂U

∂t
+Rn

i,j,k = 0 (3.18)

25

where Rn
i,j,k is the residual at the current time level. A 5-stage Runge–Kutta scheme can be

used to update the solution in successive steps as described by

U
(0)
i,j,k = Un

i,j,k (3.19)

U
(1)
i,j,k = U

(0)
i,j,k − α1

∆ti,j,k

Vi,j,k

[
R(0)

c −R
(0)
d

]
i,j,k

(3.20)

U
(2)
i,j,k = U

(0)
i,j,k − α2

∆ti,j,k

Vi,j,k

[
R(1)

c −R
(0)
d

]
i,j,k

(3.21)

U
(3)
i,j,k = U

(0)
i,j,k − α3

∆ti,j,k

Vi,j,k

[
R(2)

c −R
(2,0)
d

]
i,j,k

(3.22)

U
(4)
i,j,k = U

(0)
i,j,k − α4

∆ti,j,k

Vi,j,k

[
R(3)

c −R
(2,0)
d

]
i,j,k

(3.23)

U
(5)
i,j,k = U

(0)
i,j,k − α5

∆ti,j,k

Vi,j,k

[
R(4)

c −R
(4,2)
d

]
i,j,k

(3.24)

where

R
(2,0)
d = β3R

(2)
d + (1− β3)R(0)

d (3.25)
R

(4,2)
d = β5R

(4)
d + (1− β5)R(2,0)

d (3.26)

This is a hybrid Runge–Kutta scheme, because the viscous terms on are only re-evaluated on
the odd stages. Mavriplis and Jameson [147] outlined this particular hybrid scheme called
the (5,3)-scheme since it is a 5-stage Runge-Kutta integration with dissipation calculated
during three of the stages. Using optimized stage coefficients, the hybrid schemes are as
robust as the basic multistage schemes but more computationally efficient. The stage αm

and blending βm coefficients for the (5,3)-scheme are given in Table 1. Hybrid Runge–Kutta
schemes are also memory efficient because only the zeroth solution and final residual must
be stored. This is in contrast to classical Runge–Kutta schemes which require storage of
all the intermediate solutions. The five-stage Runge–Kutta update for the two-dimensional
RANS equations can then be conveniently written as:

Un+1 = Un +R (Un) , (3.27)

Explicit methods are limited by a maximum timestep. This timestep ∆ti,j,k must satisfy
the Courant-Friedricks-Lewy (CFL) condition [31] for each control volume to remain stable.
For explicit time-stepping schemes the timestep must be smaller than the time required
to transport information across the spatial discretization stencil. Therefore, the maximum
timestep can be found by

∆ti = CFL
V

λc + 4λv

(3.28)

where λc is the spectral radius of the convective flux and λv is the viscous spectral radius:

26

λv = max
(

4
3ρ,

γ

ρ

)(
µL

PrL

+ µT

PrT

) ∆Si

Vi,j,k

. (3.29)

Here PrL and PrT are the laminar and turbulent Prandtl numbers, respectively. For cases
considering high reduced frequencies or numerous harmonics, Van der Weide et al. [193]
added the excitation frequency and number of harmonics NH into the maximum pseudo-
time-step calculation

∆τ = CFL
V

λc + ωNHV
(3.30)

This addition has been found to stabilize performance. The maximum stable CFL number
for the (5,3) Hybrid Runge–Kutta scheme with a central spatial discretization is 3.5 [183].

3.4 Discrete Boundary Conditions

3.4.1 Solid Wall Boundaries
Inviscid flow

The fluid in inviscid flow simulations is considered to slip over the surface at solid wall
boundaries. In this slip condition the velocity is tangent to the solid boundary surface. The
velocity component normal to the wall is set to zero so that the fluid does not penetrate the
wall. As a result, the convective flux vector is reduced to only the pressure terms at the wall.
As illustrated in Fig. 5, Ghost cells can be used to satisfy the boundary conditions without
making special accommodations for boundary cells.

Using the ghost cell indices from the figure, the density values of the ghost cells are
mirrored across the boundary according to

ρ0 = ρ1 (3.31)
ρ−1 = ρ2 (3.32)

In the cell-centered scheme, the conserved values are evaluated at the cell centroids. The
solid wall appears at the cell face S so the conserved values at the wall must be obtained
through extrapolation from the interior of the domain,

Uw = 3
2U1 −

1
2U2. (3.33)

Now the velocity and more importantly the normal velocity component can be determined
at the wall. For a moving wall, the normal velocity can be written as

Vnormal =
(
uw − ḟ

)
ηx + (vw − ġ) ηy. (3.34)

27

The velocity of the ghost cells can be found from an average of the wall and interior domain.
However, the normal component of the velocity at the wall needs to be removed so that the
flow does not penetrate the solid wall boundary. Therefore, the velocity components of the
first row of ghost cells are

u0 = 2 (uw − ηxVnormal)− u1 (3.35)
v0 = 2 (vw − ηyVnormal)− v1. (3.36)

The second row of ghost cells can be found similarly

u−1 = 2 (uw − ηxVnormal)− u2 (3.37)
v−1 = 2 (vw − ηyVnormal)− v2. (3.38)

Viscous flow

Viscous flow at a solid wall boundary must satisfy the no-slip condition, which requires the
relative velocity between the surface and the fluid to equal zero. The velocity components
of the first and second rows of the ghost cells are

u0 = 2ḟ − u1 (3.39)
v0 = 2ġ − v1 (3.40)
u−1 = 2ḟ − u2 (3.41)
v−1 = 2ġ − v2 (3.42)

(3.43)

For an adiabatic wall, the density is found in the same manner as the inviscid case, and the
total energy in the first ghost cell can be calculated as

(ρE) = p0

γ − 1 + 1
2ρ0

[
(ρu)2

0 + (ρv)2
0

]
. (3.44)

The Spalart-Allmaras working variable is also set to zero at a solid wall, so the ghost cell
value is set according to

ν̃0 = −ν̃1 (3.45)

3.4.2 Far Field Boundaries
In numerical simulations, it is necessary to bound the domain using an artificial far field
boundary condition. This boundary condition must have no noticeable effect on the flow
solution when compared with an infinite domain. Subsonic and transonic flow problems are
particularly sensitive to the far field boundary conditions. To define boundary conditions,
we must determine the number of conditions of physical origin that must be imposed and
how to define the remaining variables.

28

The far field values are often treated using characteristic variables, since the governing
equations are dominated by hyperbolic propagation [86]. The characteristic variables or
the Riemann invariants express the propagation properties of the flow in a straightforward
way. Since the boundary behavior of one-dimensional flow is readily extended to higher
dimensions, consider the development of Riemann invariant boundary conditions using the
eigenvalues of the one-dimensional convective flux Jacobian:

λ =

 λ1
λ2
λ3

 =

 u− c
u

u+ c

 (3.46)

The sign of the eigenvalue determines whether information is transported into or out of the
computational domain. For a boundary node subject to subsonic and supersonic flow the
situation is depicted in Fig. 6a and 6b, respectively. Table 2 lists the number of physical and
extrapolated boundary conditions for each boundary type.

The corresponding left eigenvectors

L−1 =

0 1 −1/ρc
1 0 −1/c2

0 1 1/ρc

 (3.47)

can be used to define a set of characteristic equations

du− dp

ρc
= 0 (3.48)

dρ− dp

c2 = 0 (3.49)

du+ dp

ρc
= 0 (3.50)

Riemann invariants or characteristic variables are obtained by integrating Eqs. (3.48) and
(3.50) [90]

R− = u−
∫ dp

ρc
(3.51)

R+ = u+
∫ dp

ρc
. (3.52)

Isentropic relations
p = kργ and c2 = kγργ−1 (3.53)

29

can be used to simplify the Riemann invariants to

R− = u− 2c
γ − 1 (3.54)

R+ = u+ 2c
γ − 1 . (3.55)

The two equations can then be combined to solve for the velocity and speed of sound at the
boundary by

u = 1
2
(
R+ +R−

)
(3.56)

c = γ − 1
4

(
R+ −R−

)
(3.57)

The remaining characteristic equation, Eq. (3.49) is integrated directly

p

ργ
= Constant (3.58)

Eqs. (3.56) - (3.58) are used to define the far field flow conditions for one-dimensional flow.
For two- and three-dimensional flow, each dimension adds a tangential velocity component.
The tangential velocity is constant across the Riemann invariant waves. This can be used
to define the additional boundary condition.

3.5 Convergence Acceleration Techniques
The computational fluid dynamic model outlined here provides accurate flow solutions
that convey insight into flow fields of interest. However, CFD’s utility is limited by its
computational cost. Within the CFD literature, many techniques have been proposed
to accelerate the solution. Below a few of the more common techniques and their
implementation within the external flow solver are discussed.

3.5.1 Local Time-Stepping
The local time-stepping approach achieves acceleration by using the maximum timestep
for each individual control volume, rather than a global timestep permitted by all control
volumes. This acceleration technique is only viable for steady-state solutions, because the
approach destroys the time-accuracy since the control volumes are advanced by different
timesteps.

30

3.5.2 Residual Smoothing
The residual smoothing technique aims to increase the maximum possible time-step by
introducing a certain amount of implicitness into the explicit scheme. Introduced by Jameson
and Baker [101], the central implicit residual smoothing scheme replaces the residual at each
point with a weighted average of the residuals from neighboring points, according to

−ϵiR∗i−1,j,k +
(
1 + 2ϵi

)
R∗i,j,k − ϵiR∗i+1,j,k = Ri,j,k (3.59)

−ϵjR∗∗i,j−1,k +
(
1 + 2ϵj

)
R∗∗i,j,k − ϵjR∗∗i,j+1,k = R∗i,j,k (3.60)

−ϵkR∗∗∗i,j,k−1 +
(
1 + 2ϵk

)
R∗∗∗i,j,k − ϵkR∗∗∗i,j,k+1 = R∗∗i,j,k (3.61)

where R∗i,j,k, R
∗∗
i,j,k, and R∗∗∗i,j,k are the smoothed residuals in the i-, j-, and k-directions. The

residual smoothing scheme results in a tridiagonal matrix that must be numerically inverted.
Relative to other implicit schemes it has the advantage that it requires less computational
effort. It has an associated cost of about 20% more effort, but the original time-step can be
increased by a factor of 2-3. The smoothing coefficients are defined as functions of the spectral
radii, and several formulations are provided by Turkel et al [192]. The residual smoothing
technique damps high-frequency error components of the residual, which is advantageous to
other acceleration techniques like the multigrid method and the reduced-order model-based
acceleration technique.

3.5.3 Multigrid
The multigrid technique accelerates convergence to steady state by using solutions on
coarsened grids to update the solution on the grid of interest. The multigrid technique
arises from the observation that most iterative time-stepping schemes efficiently reduce
high-frequency components of the solution error but not low-frequency components. This
results in solvers with rapid convergence during an initial phase where the high-frequency
components are damped, followed by slow convergence, as shown in Fig. 7. Multigrid helps
address this issue because low-frequency components on the fine grid become high-frequency
components on the coarse grid that can be reduced efficiently. Through this process the
error is quickly reduced over the entire spectrum, providing significant acceleration.

The basic multigrid scheme begins by creating the coarsened grids. This is typically
done by coarsening the grid evenly in all coordinate directions by removing every other
point, as shown in Fig. 8. Following grid creation, the multigrid scheme starts from a known
solution Un on the fine grid, a new solution Un+1 is obtained after one timestep of the
technique outlined in Section 3.3. A new residual is evaluated with this solution. The
multigrid scheme then seeks to improve the new solution Un+1 using a coarse grid through
the following steps. For cell-centered schemes, the solution and residual are transferred from
the fine grid (denoted by the subscript h) to the coarse grid (denoted by the subscript 2h)
using an interpolation operator,

U
(0)
2h = I2h

h U
n+1
h . (3.62)

31

The interpolation operator transfers the solution on the fine grid to the coarse grid through
a volume weighted interpolation. In 2D the interpolation is

(
U

(0)
2h

)
i,j

=

(
Un+1

h

)
i,j
Vi,j +

(
Un+1

h

)
i+1,j
Vi+1,j +

(
Un+1

h

)
i,j+1
Vi,j+1 +

(
Un+1

h

)
i+1,j+1

Vi+1,j+1

Vi,j + Vi+1,j + Vi,j+1 + Vi+1,j+1
(3.63)

The residuals are restricted by summing the residuals from the fine grid cells that make up
the new coarse grid cell. Following transfer to the coarse grid, new volumes and timesteps
must be calculated for the coarse grid. The coarse grids allow larger timesteps because the
cell volumes are larger. For a cell-centered scheme the volumes are restricted as shown in
Fig. 9a.

To retain the accuracy of the fine grid on the coarse grid, a forcing function QF is
calculated as the difference between the restricted residuals and the residual from the
restricted working variables on the coarse grid,

(QF)2h = I2h
h R

n+1
h −R(0)

2h . (3.64)

The solution is then evaluated on the coarse grid in the same manner as on the fine grid,
with the addition of the forcing function added to the coarse residual,

(RF)2h = R2h + (QF)2h. (3.65)

Therefore, using the same multistage time-stepping scheme, from Eq (3.19), the coarse grid
solution can be obtained from

U
(k)
2h = U

(0)
2h + αk

∆t2h

V2h

[
R

(k−1)
2h + (QF)2h

]
, k = 1, ...,m (3.66)

The solution on the coarse grid features less computational effort due to the reduced node
count and utilization of lower-order solution schemes.

After the time-step is carried out, the correction on the coarse grid is calculated as the
difference between the coarse grid solution and the initial approximation,

δU2h = Un+1
2h −U (0)

h (3.67)

The coarse grid correction is then prolongated to the finer grid via

U+
h = Un+1

h + Ih
2hδU2h (3.68)

where Ih
2h is the prolongation operator. For a cell-centered scheme, a zeroth-order

prolongation is accomplished by adding the coarse grid residual to the constituent fine grid
cells (

U+
h

)
i+1,j

=
(
Un+1

h

)
i+1,j

+ (δU2h)i,j (3.69)

32

Fig. 9b shows this simple prolongation. Multigrid is one of the most popular acceleration
techniques for CFD solvers. It was originally developed by Brandt [19] for elliptic partial
differential equations and Jameson later applied the method to the Euler equations [96].
Application of multigrid can offer considerable acceleration as will be shown in Section 5.2.1.

33

Chapter 4

Sensitivity Equations and Analysis

This chapter covers the second phase of the design cycle, the sensitivity calculation. The
chapter begins by outlining the general form of sensitivity equation and introduces the direct
or forward method in Section 4.1. Next, the adjoint sensitivity approach is introduced
through its analytic derivation 4.2. Following the analytic derivations, Section 4.3 introduces
automatic differentiation which can be employed as a practical approach for calculating
sensitivities of CFD solvers. Validation and verification of the sensitivity calculation methods
implemented in this work can be found in Chapter 5.

4.1 Derivation of the Direct Approach
The objective of sensitivity analysis is to calculate the sensitivity, or dependence, of a function
or parameter of interest, called the objective function, with respect to a number of other
parameters, referred to as the design variables. The objective function J (also sometimes
referred to as the cost function or loss metric) is typically defined such that either the
maximum or minimum corresponds to an optimal design. In the practice of aerodynamic
design, the cost function frequently depends not only on the design variables β but also on
the state variables U , as well. These state variables can also be dependent on the design
variables, causing the objective function to be both directly and indirectly dependent upon
the design variables. Consequently, the objective function can be expressed as

J = J (β,U (β)) . (4.1)

The chain rule can be used to derive the total derivative of the objective function with respect
to the design variables of interest as

dJ
dβ = ∂J

∂β
+ ∂J

∂U

dU
dβ . (4.2)

Here the partial derivative terms on the right-hand side are easily determined through finite
differencing, i.e., by perturbing each independent variable and re-evaluating the dependent

34

variable. However, the total derivative of the state vector with respect to the design variable
vector requires a full solution of the governing equations for each component of β [144].

An alternative form for the sensitivity equation can developed by considering the
governing equations in residual form,

R(β,U(β)) = 0 (4.3)

which states that regardless of the flow conditions the residual will equal zero at the converged
solution. As a result, the total derivative of the residual with respect to the design variable
must also be zero,

dR
dβ = ∂R

∂β
+ ∂R

∂U

dU
dβ = 0 . (4.4)

Eq. (4.4) can be rearranged to isolate the derivative of the state vector with respect to the
design variable, i.e.,

dU
dβ = −

[
∂R

∂U

]−1
∂R

∂β
. (4.5)

Substituting Eq. (4.5) into Eq. (4.2) yields

dJ
dβ = ∂J

∂β ︸ ︷︷ ︸
ψT

− ∂J

∂U

dU/dβ︷ ︸︸ ︷[
∂R

∂U

]−1
∂R

∂β
. (4.6)

The direct approach can be employed to solve Eq. (4.6) by calculating dU/dβ using
Eq. (4.5). Solving for dU/dβ requires the solution of the matrix equation for each design
variable βi. It should be noted that a change in the design variable doesn’t affect the
Jacobian matrix ∂R/∂U , so if the Jacobian can be calculated explicitly, solving for multiple
design variables by back substitution would be relatively inexpensive. However, for the large
iterative problems found in computational fluid dynamics problems the Jacobian generally
is not factored explicitly. Instead, the system of equations requires an iterative solution with
a computational cost that is typically slightly more than that of flow equations. Multiplying
this cost by the number of design variables causes the direct approach to become unsuitable
as the number of design variables increases. The forward approach is applicable when only
a few design variables are of interest or if multiple cost functions are of interest.

35

4.2 Derivation of the Adjoint Approach
The sensitivity equation Eq. (4.6)

dJ
dβ = ∂J

∂β ︸ ︷︷ ︸
ψT

− ∂J

∂U

dU/dβ︷ ︸︸ ︷[
∂R

∂U

]−1
∂R

∂β
, (4.6)

can also be solved using the adjoint approach by calculating the adjoint vector ψ through
the adjoint equations, [

∂R

∂U

]T

ψ = − ∂J
∂U

T

. (4.7)

The adjoint vector, ψ, can be substituted into Eq. (4.6) to find the total sensitivity.

dJ
dβ = ∂J

∂β
+ψT ∂R

∂β
, (4.6)

In contrast to the direct method, the adjoint vector is independent of the number of design
variables, β. Instead, it is dependent on the number of cost functions of interest. The
solution methodology has a considerable impact on the cost of the sensitivity analysis. If the
number of design variables exceeds the number of cost functions, then the adjoint method
should be favored. Otherwise, the direct approach should be considered.

From a mathematical viewpoint, the analytic adjoint equations are obtained by linearizing
the flow equations [128]. For numerical applications, a discretized version of the adjoint
equations is required. Derivation of the discretized adjoint equations can be divided into the
continuous and discrete approaches [153]. In the continuous adjoint approach, discussed in
Section 4.2.1 the discretized adjoint equations are obtained by linearizing the flow equations
to obtain the analytic adjoint equations, which are then discretized. The discrete adjoint
approach, discussed in Section 4.3.2, reverses this procedure. The flow equations are initially
discretized and then linearized.

Sensitivity values found using the two approaches may vary, since discretization and
linearization are generally noncommutative. The discrete approach delivers the exact
gradients of the discrete objective function and is consistent with gradients found through
finite difference approximations.

36

4.2.1 Continuous adjoint method1

In the continuous adjoint approach, the PDEs are differentiated prior to discretization. The
adjoint equations are obtained by defining a cost function which is augmented with the flow
equations enforced as constraints through Lagrange multipliers [4].

This approach was the method originally developed by Jameson in his seminal work [98].
Borrowing from the field of optimal control Jameson applied calculus of variations to
the governing flow equations to obtain the adjoint equations [141]. Derivation of the
adjoint equations through the continuous adjoint approach has the advantage that it
conveys the physical significance of the adjoint variables and boundary conditions in a
meaningful manner. In comparison to discrete approach, solvers developed using the
continuous adjoint approach typically feature reduced memory requirements and faster run
times [149]. However, difficulty of implementation, which will be illustrated in the following
subsection, has led to many favoring the discrete adjoint approach over the continuous adjoint
approach [141].

Flow equations: quasi-one-dimensional Euler equations

To demonstrate the complexity of the continuous adjoint approach, the continuous adjoint
approach is derived for the quasi-1D Euler equations introduced in Section 2.2.1. First, the
quasi-1D Euler flow equations are reintroduced. Then, the continuous adjoint equations
and boundary conditions are derived. The quasi-1D Euler equations were utilized because
they are simple enough to have exact analytic solutions, while retaining complex flow
features, such as shocks [62]. Although the method is presented for a quasi-1D problem,
it is extendable to two-dimension and three-dimension CFD-based adjoint flow solvers.

In the present derivation, the quasi-1D Euler equations were employed to model flow
through a nozzle and can be written as

R (U , A) = d
dx (AF)−QdA

dx = 0 . (2.21)

Here A denotes the cross-sectional area, and the vector of conservation variables U , the
convective flux vector F , and the source term Q are given by

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu2 + p
ρhu

 , Q =

 0
p
0

 .
1This section, in part, is a reprint of the material as it appears in the International Journal of Numerical

Methods in Fluids 86 (9), 582-606 titled "Convergence acceleration of continuous adjoint solvers using
a reduced-order model" (2018). Authors: Andrew Kaminsky, Reza Djeddi, and Kivanc Ekici. The
dissertation author was the primary investigator and author of this paper. Wiley’s copyright policies permit
the use of the article in full or in part within the author’s thesis or dissertation for non-commercial purposes.

37

Adjoint equations for the quasi-one-dimensional Euler equations

The derivation of the continuous adjoint equations presented here closely follows the
approaches of Lozano and Ponsin [128] and Giles and Pierce [62]. The derivation begins
by defining a cost function, J . For example, consider a cost function defined as the integral
of pressure along the nozzle

J =
∫

Ω
p dx , (4.8)

where Ω represents the flow domain. This cost function is analogous to the lift integral,
which is of considerable importance in aerodynamic design. From this definition, it should
be observed that the cost function depends on the flow solution. Therefore, a perturbation
in the flow solution, δU , causes a change in the cost function, which is expressed by

δJ =
∫

Ω

∂p

∂U
δUdx . (4.9)

To calculate the change in the cost function, Eq. (2.21) must be solved for each perturbation,
δU , which is computationally demanding.

The method of Lagrange multipliers can be used to alleviate this requirement through
the augmented cost function, written as

J =
∫

Ω
p dx−

∫
Ω
ψTR (U , A) dx . (4.10)

It should be noted that the augmented cost function Eq. (4.10) is equivalent to Eq. (4.8)
because R (U , A) = 0 for a converged flow solution. Linearization of the new augmented
cost function with respect to changes in the flow, results in

δJ =
∫

Ω

∂p

∂U
δUdx−

∫
Ω
ψT

[
d
dx

(
A
∂F

∂U
δU

)
− dh

dx
∂Q

∂U
δU − dδA

dx Q+ d
dx (δAF)

]
dx . (4.11)

Integration by parts followed by isolation of terms dependent on changes in the flow solution,
δU , yields

δJ =
∫

Ω
ψT

[
dδA
dx Q−

d
dx (δAF)

]
dx

−
∫

Ω
δUT

[
−A∂F

∂U

T dψ
dx −

dA
dx

∂Q

∂U

T

ψ − ∂p

∂U

T
]

dx−
[
AψT ∂F

∂U
δU

]xo

xi

.

(4.12)

Here xi and xo are the inlet and outlet locations, respectively. This equation is valid for
any value of ψ. As a result, Eq. (4.12) can be simplified so that the variation of the cost
function, δJ , no longer depends on the variation of the flow solution, δU , by choosing ψ so
that these terms are zero, i.e.,

38

− A∂F
∂U

T dψ
dx −

dA
dx

∂Q

∂U

T

ψ − ∂p

∂U

T

= 0 (4.13)

and [
AψT ∂F

∂U
δU

]xo

xi

= 0 . (4.14)

With these conditions satisfied, the variation of the cost function can be calculated,
independently of δU , through the remaining terms,

δJ =
∫

Ω
ψT

[
dδA
dx Q−

d
dx (δAF)

]
dx . (4.15)

Adjoint boundary conditions for the quasi-one-dimensional Euler equations

To solve the adjoint equations, Eq. (4.13), appropriate boundary conditions must be derived
to satisfy Eq. (4.14). The mathematical formulation of appropriate boundary conditions
for the adjoint equations is one of the main challenges associated with the continuous
adjoint method. The inlet and outlet adjoint boundary conditions must be formulated
so that Eq. (4.14) is satisfied. In doing so, it is helpful to keep in mind that the adjoint
characteristics are inversely related to the flow characteristics. For the quasi-one-dimensional
Euler equations, if the flow equations have n incoming characteristics, then the adjoint
equations have (3− n) incoming characteristics, and an equivalent number of boundary
conditions must be specified [58].

Subsonic inlet boundary conditions

In the flow regime, a subsonic inlet has two incoming characteristics (corresponding to right-
traveling pressure and entropy waves), with the eigenvalues (u+ c) and u, and one outgoing
characteristic (corresponding to a left-traveling pressure wave), with the eigenvalue, (u− c).
As a result, the flow equations require two physical and one numerical boundary condition.
One possibility is to specify the stagnation enthalpy, h, and the total pressure, pt, while
numerically extrapolating the Mach number, M , from the interior.

Recall that the adjoint boundary condition must satisfy Eq. (4.14). Expanding the adjoint
boundary condition in terms of the inlet flow variables (h, pt,M) yields

ψT ∂F

∂U
δU = ψT ∂F

∂h

∣∣∣∣∣
pt,M

δh+ ψT ∂F

∂pt

∣∣∣∣∣
h,M

δpt + ψT ∂F

∂M

∣∣∣∣∣
h,pt

δM = 0 . (4.16)

Here the change in total enthalpy, δh, and total pressure, δpt, are both zero if no energy is
added or removed from the system. This leaves only the term dependent on the change in
Mach number, δM , which can be eliminated by imposing the adjoint boundary condition:

39

ψT ∂F

∂M

∣∣∣∣∣
h,pt

= 0 (4.17)

The inlet boundary condition in the continuous adjoint solver is implemented by imposing
the adjoint boundary condition given by Eq. (4.17) and then extrapolating the two additional
adjoint variables from the interior of the domain. This is accomplished by defining adjoint
inlet variables, ψ̃in =

[
ψ̃M ψ̃H ψ̃pt

]T
, as follows

ψ̃M =
M
(
1 + γ−1

2 M2
)

ρu (1−M2)

(
∂F

∂M

)T

h,pt

ψ = ψ1 + uψ2 + hψ3

ψ̃h =2h
ρu

(
∂F

∂h

)T

M,pt

ψ = −ψ1 + hψ3

ψ̃pt =pt

(
∂F

∂pt

)T

h,M

ψ = ρuψ1 +
(
ρu2 + p

)
ψ2 + ρuhψ3 ,

(4.18)

where ψ̃M = 0, while ψ̃h and ψ̃pt are extrapolated from the interior. Inversely, the adjoint
variables at the inlet, ψin = [ψ1 ψ2 ψ3]Tin are related to ψ̃in through

ψin =

 ψ1
ψ2
ψ3


in

=


ρu2+p

2p
−1

2 − u
2p

−ρu
p

0 1
p

ρu2+p
2ph

1
2h
− u

2ph


 0
ψ̃

(e)
h

ψ̃(e)
pt

 , (4.19)

where the superscript (e) indicates extrapolated values from the interior.

Subsonic outlet boundary conditions

A subsonic outlet in the flow domain has one incoming characteristic (left-traveling pressure),
corresponding to the eigenvalue (u− c), and two outgoing characteristics (right-traveling
pressure and entropy), corresponding to the eigenvalues (u+ c) and u, respectively. As
such, the flow equations require one physical and two numerical boundary conditions. One
possibility is setting the exit pressure, p, and then extrapolating two other variables such as
the density, ρ, and the velocity, u, numerically from the interior [128].

The outlet adjoint boundary conditions must be defined to enforce the exit condition of
Eq. (4.14), which can be expanded in terms of the exit flow variables (ρ, u, p) yielding

ψT ∂F

∂U
δU = ψT ∂F

∂ρ

∣∣∣∣∣
p,u

δρ+ ψT ∂F

∂u

∣∣∣∣∣
p,ρ

δu+ ψT ∂F

∂p

∣∣∣∣∣
ρ,u

δp . (4.20)

Note that δp is zero if the back pressure is held constant, which eliminates the dependence of
the adjoint outlet boundary condition, Eq. (4.20), on the pressure. To remove the dependence

40

of the adjoint outlet boundary condition, Eq. (4.20), on δρ and δu the adjoint boundary
conditions require

ψT ∂F

∂ρ

∣∣∣∣∣
p,u

=0

ψT ∂F

∂u

∣∣∣∣∣
p,ρ

=0 .
(4.21)

The outlet boundary condition in the continuous adjoint solver is thus implemented by
imposing the adjoint boundary condition given by Eq. (4.21) and then extrapolating the
remaining independent adjoint variable from the interior of the domain. Thus, the adjoint
outlet variables, ψ̃out =

[
ψ̃ρ ψ̃u ψ̃p

]T
, are

ψ̃out =

 ψ̃ρ

ψ̃u

ψ̃p

 =


1
u

(
∂F
∂ρ

)T
ψ

1
ρ

(
∂F
∂u

)T
ψ(

∂F
∂p

)T
ψ

 =

1 u u2

2
1 2u h+ u2

0 1 γ
γ−1u


 ψ1
ψ2
ψ3

 . (4.22)

The adjoint exit boundary conditions impose that ψ̃ρ = 0 and ψ̃u = 0 , while ψ̃p is
extrapolated from the interior of the domain. The relation of these adjoint inlet variables
can be inverted, which gives the final relation for the adjoint variables

ψout =

 ψ1
ψ2
ψ3


out

= 1
γ+1
γ−1

u2

2 − h


u2(γ+1)−h(γ−1)

γ−1 −u2

2
γ+1
γ−1 uh

− γu
γ−1

γu
γ−1 −h− u2

2
1 −1 u


 0

0
ψ̃(e)

p

 . (4.23)

Supersonic outlet boundary conditions

In the flow regime, a supersonic outlet has no incoming characteristics, and three outgoing
characteristic, corresponding to the eigenvalues of u, (u− c), and (u+ c). Therefore, the flow
equations require three numerical boundary conditions, and the three exit flow variables, p,
ρ, and u, are extrapolated numerically from the interior.

The outlet boundary conditions again must be defined to enforce the exit condition of
Eq. (4.14), which can be expanded in terms of the exit flow variables (ρ, u, p) yielding

ψT ∂F

∂U
δU = ψT ∂F

∂ρ

∣∣∣∣∣
p,u

δρ+ ψT ∂F

∂u

∣∣∣∣∣
p,ρ

δu+ ψT ∂F

∂p

∣∣∣∣∣
ρ,u

δp . (4.24)

For this condition to be satisfied, the adjoint boundary conditions require

41

ψT ∂F

∂ρ

∣∣∣∣∣
p,u

=0

ψT ∂F

∂u

∣∣∣∣∣
p,ρ

=0

ψT ∂F

∂p

∣∣∣∣∣
u,ρ

=0

. (4.25)

As a result, the adjoint variables for a supersonic outlet will all equal zero. Examining the
adjoint outlet boundary condition given by Eq. (4.22) and Eq. (4.23) reaffirms this according
to

ψout =

 ψ1
ψ2
ψ3


out

= 1
γ+1
γ−1

u2

2 − h


u2(γ+1)−h(γ−1)

γ−1 −u2

2
γ+1
γ−1 uh

− γu
γ−1

γu
γ−1 −h− u2

2
1 −1 u


 0

0
0

 =

 0
0
0

 (4.26)

since ψ̃ρ, ψ̃u, and ψ̃p must all equal zero.

4.3 Automatic Differentiation
The derivation of the continuous adjoint approach for the quasi-one-dimensional Euler
equations highlights the challenges associated with the continuous adjoint technique. Adding
the viscous terms, only further complicates development [210]. The discrete adjoint approach
represents an appealing alternative, because development can be simplified through the use
of automatic differentiation.

As the name suggests, automatic differentiation is a set of techniques developed to
evaluate the derivative of a function specified by a computer program in an automated
manner. Automatic differentiation is based upon the premise that a CFD solver is composed
of lines of code that can be broken down to a sequence of elementary arithmetic operations
and functions. Thus, the flow solver can be rewritten as a sequence of functions fi,

f = f1 ◦ f2 ◦ f3 ◦ ... ◦ fn. (4.27)

Here f1 is the first action executed by the code, f2 is the second, and so on. Each operation
has a simple derivative, and the chain rule can be used to find the derivative of the complete
sequence. Automatic differentiation systematically applies the chain rule to each operation
of the code so that the derivative of each step can be accumulated to give the directional
derivative of interest.

42

← adjoint accumulation

∂f

∂β
= ∂β

∂β

∂f1

∂β

∂f2

∂f1

∂f3

∂f2
...

∂fn

∂fn−1
forward accumulation→

. (4.28)

The automatic differentiation tool calculates the derivative by tracing the flow of
information in one of two directions and then assembling the derivative of each statement
of the solver using the chain rule. In forward mode, the derivative is traced from the inputs
to the output. In the reverse mode the process is reversed, and the derivatives are traced
backwards from the output to the inputs.

4.3.1 Forward mode automatic differentiation 2

A direct sensitivity solver can be developed using forward mode automatic differentiation. In
forward mode automatic differentiation, the directional derivative is found by specifying the
independent variable of interest, or the direction. The derivative of each intermediate term
with respect to this independent variable is then determined by calculating the derivative of
each sub-expression recursively. This process is repeated until the derivative of interest is
reached.

Automatic differentiation can be implemented using one of two strategies: source code
transformation (SCT) or operator overloading (OO). Operator overloading can only be
utilized in languages where it is supported. Fortran is one such language. Following the
method presented by Thomas et al. [187], Fig. 10 presents an example of operator overloading
implemented in Fortran and its utilization for a simple function is shown in Fig. 11.

Operator overloading has the inherent advantage that it doesn’t require changes to the
form of the original source code, often the only changes required are changes to the data
types. Additionally, forward mode operator overloading is easy to implement and alleviates
the need for third-party source code transformation tools. However, operator overloading
implementations apply a great deal of pressure on the compiler to remove all the extra
dispatches, allocations, and memory references it introduces. Operator overloading is also
frequently more costly than the source code transformation approach, because derivatives
are calculated for every operation regardless of whether it is pertinent to the quantities
of interest. However, Djeddi and Ekici recently proposed techniques to reduce the cost of
OO-based automatic differentiation methods [35].

In the source code transformation approach, a transformation tool, like TAPENADE [76],
is used to parse the source code and return output code that has statements for calculating
the derivatives interwoven with the original lines of code as shown within Fig. 12. Within
Fig. 12, the derivative variables are identified by the suffix (_d), and each derivative

2This section, in part, is a reprint of the material as it appears in AIAA Paper 2018-3744 titled "Efficient
Prediction of Forward Mode Aerodynamic Sensitivities using a Reduced-order Model" (2018). Authors:
Andrew Kaminsky and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Copyright is held by Andrew Kaminsky and Kivanc Ekici.

43

calculation precedes the corresponding flow calculation so that the derivative is evaluated
before the variable is updated.

For the present research, SCT has the advantage that the derivative code is human
readable and can be edited separately from the base flow solver. Another feature is the SCT
tool can be employed to parse and isolate the relationship between the cost function and the
design variable so that derivatives are only computed for germane variables, which reduces
the computational cost of the sensitivity code. The primary challenge of the SCT approach is
the development of the source code transformation tool. However, several capable source code
transformation tools available including FDOT [35], ADOL [70, 172], and TAPENADE [76].
The source code transformation tool TAPENADE [76] was used in this work.

To automatically differentiate the code, the source code is passed to the SCT tool
and the input(s) and output(s) of interest are specified. The resulting differentiated code
is structurally very similar to the original flow solver. This similarity is illustrated by
considering the simplified flow solver presented in Fig. 13 and its forward mode differentiation
code included in Fig. 14. Within the Figures, U represents the flow solution, R the residuals,
y defines the grid, β the design variables, J the cost function, → represents an input and ←
is an output. The dot derivatives correspond to the derivative of the variable with respect
to the specified design variable of interest i.e.,

ẏ = ∂y

∂β
, U̇ = ∂U

∂β
, Ṙ = ∂R

∂β
J̇ = ∂J

∂β
.

The forward sensitivity method calculates the sensitivity of every intermediate variable to
the specified design variable, β. Thus, the forward sensitivity method requires a sensitivity
solution for each design variable of interest. The intermediate functions can be grouped
together so that the calculation of the forward sensitivity value of interest is calculated
iteratively:

U̇n+1
i,j = U̇n

i,j + Ṙi,j (U) . (4.29)

This can be seen by examining the automatic differentiated code shown in Fig. 14, where
update_d updates both the flow solution U and the derivative U̇ .

4.3.2 Reverse mode automatic differentiation3

Automatic differentiation can also be used to dramatically simplify the development of a
discrete adjoint solver through reverse mode automatic differentiation. This fact is the
primary advantage of the discrete adjoint approach. Reverse mode automatic differentiation
can generate code through an all-at-one ‘brute force’ approach (similar to the forward
approach) or through a multiple-application ‘assembled’ approach. The multiple application

3This section, in part, is a reprint of the material as it appears in Aerospace Sciences 93 titled "Reduced-
order model-based convergence acceleration of reverse mode discrete adjoint solvers" (2019). Authors:
Andrew Kaminsky and Kivanc Ekici. The dissertation author was the primary investigator and author
of this paper. Elsevier’s copyright policies permit the material in the paper to be included, in full or in part,
within the author’s thesis or dissertation for non-commercial purposes.

44

assembled approach has a number of benefits over the brute force approach. Many of these
advantages are critical to the ROM convergence acceleration. The following sections will
introduce the two adjoint approaches and highlight the relative limitations and advantages
of each approach.

Brute Force Automatic Differentiation

In the brute force approach, the entire CFD source code is passed to an automatic
differentiation tool while specifying the dependent output and independent input variables.
The sensitivity is then calculated by tracing the flow of information and assembling the
derivative of each statement of the solver using the chain rule. In contrast to the forward
approach which accumulates derivatives in a single forward pass (see Fig. 14) adjoint solvers
built using reverse mode automatic differentiation calculate sensitivities in a two-step process
as depicted in Fig. 15.

A forward sweep is performed first to compute the primal flow solution, and then a
reverse mode sweep traces the derivatives from the cost function all the way back to the
design variables. This reverse sweep traces the derivatives backwards from the objective
function to the design parameters, or:

← adjoint accumulation

∂f

∂β
= ∂β

∂β

∂f1

∂β

∂f2

∂f1

∂f3

∂f2
...

∂fn

∂fn−1
. (4.30)

The code generated from reverse mode automatic differentiation is an unsteady adjoint of
the original solver [91]. This results in an inefficient and costly adjoint sensitivity code. The
unsteady adjoint stores the solution history by saving the value of the intermediate variables
at every iteration during the forward sweep. During the reverse sweep these stored values are
reloaded in the corresponding reverse iterations. TAPENADE performs storage and loading
through PUSH and POP statements, respectively.

To demonstrate this process we again consider the our simplified flow solver code in
Fig. 16 and the resulting reverse mode automatic differentiated code in Fig. 17. Within the
figures the bar derivatives correspond to the derivative of the cost function with respect to
the named variable i.e.,

ȳ = ∂J

∂x
, Ū = ∂J

∂U
, R̄ = ∂J

∂R
J̄ = ∂J

∂J
.

The adjoint code contains a forward sweep that calculates the flow solution and stores
the solution history using PUSH statements, then during the reverse sweep the sensitivities
are calculated and the stored solution history is reloaded using the POP statements. It
is incredibly expensive to store the solution history, and typically the storage cannot be
handled using RAM alone, which further slows down the calculation. Fortunately the
costly solution storage can be neglected for steady flow considerations. In steady state
considerations, the time-stepping is performed in pseudo-time and only the final solution
state is of interest. Once convergence is reached, the flow solution ceases to change from one

45

iteration to the next, which means the intermediate variables remain constant (to machine
accuracy). Since the intermediate variables following convergence remain constant, storage of
the solution history can be avoided, because the sensitivity solution can keep using the same
flow solution values. This means the top level PUSH and POP statements, specifically those
in the iterative loop that store the intermediate values for each iteration can be removed.
Unfortunately, the removal of the PUSH and POP statements is only applicable to steady
state considerations. To consider unsteady time-accurate flow solutions, checkpointing [199]
and POD basis vectors [10] have been used to limit the storage costs. However, both add
another level of complexity to the sensitivity analysis. The harmonic balance equations
developed in Section 2.3, provide an interesting alternative for sensitivity analysis of unsteady
flows. Since the harmonic balance equations consider unsteady periodic flow fields using
a mathematically steady model, the solution storage can be neglected which makes the
harmonic balance equations well-suited to sensitivity analysis of unsteady problems.

It is useful to break the forward and reverse passes into pre-iterative, iterative, and post-
iterative sections following the approach presented by Christakopoulos et al. [27]. Fig. 18
presents an example of code built using brute force reverse mode AD applied to flow solver
broken into these pre-iterative, iterative, and post-iterative sections. In the figure, the
terms with an overbar represent the adjoint quantities. The derivative code propagates
the sensitivity from the cost function, through the iterative loop, to the grid, and finally the
defining design variables. This reversed nature can be seen by examining the reverse sweep
subroutines and noticing that when the primal variable was an input, the derivative variable
(for example Ū) is now an output and vice versa. Propagating the sensitivities through the
reverse operations, the boxes associated with the post-iterative, iterative, and pre-iterative
parts of the code calculate the following derivatives:

• cost_function_b: Initializes the flow solution adjoint Ū = ∂J
∂U

.

• The iterative loop: Accumulates the sensitivity to the grid ∂U
∂y

∂J
∂U

.

• generate_grid_b: Completes the sensitivity to the design variables ∂y
∂β

∂U
∂y

∂J
∂U

.
The intermediate functions within the iterative loop can be grouped together so that the
sensitivities can be calculated iteratively, i.e.,

Ūn+1 = Ūn + R̄n. (4.31)

This can be seen by examining the subroutine residual_b in the automatic differentiated
code shown in Fig. 18b. Each pass through the subroutine residual_b calculates

Ūn = ∂J

∂Un+1
∂Un+1

∂Rn

∂Rn

∂Un
(4.32)

as shown by the ← Ū output. It also builds the sensitivity to the grid

ȳ = ∂J

∂Un+1
∂Un+1

∂Rn

∂Rn

∂Un

∂Un

∂y
(4.33)

46

as indicated by the ← ȳ output. This process is repeated in a reverse manner for n =
Nmax, Nmax − 1, ..., 2, 1. Within the loop, the sensitivity to the grid is accumulated at each
backward iteration, but it is not used as an input. As a result, the working variable of the
iterative loop is the sensitivity of the cost function to the flow variable during the iterative
loop, and at each iteration the sensitivity to the grid is accumulated for use following the
iterative loop.

It is very important to note that brute force automatic differentiation of a fixed-point
solver does not yield a fixed-point iterative adjoint solver [1]. That is, R̄n is not a function
of Ūn. Instead, the code is merely a series of derivatives accumulated via the chain rule. A
change to the intermediate sensitivity variables would befoul the derivative aggregation and
lead to incorrect sensitivity values. Accordingly, code developed using brute force automatic
differentiation must initialize the iterative loop to the value of the gradient of the cost
function. Therefore, “hot-starting” from another value, for example the previous solution
of the last design cycle, typically results in the accumulation of an incorrect derivative [27].
This acts as a barrier to several acceleration techniques, including the reduced-order model
acceleration technique presented in Chapter 7 that is the focus of this dissertation [109]. As
a result, an alternative automatic differentiation approach is needed, if computational cost
reduction is sought.

Primal time-stepping

To maximize the efficacy of the proposed reduced-order model adjoint sensitivity acceleration
technique, a fixed-point iterative method is needed for the discrete adjoint approach.
The “primal time-stepping” adjoint approach proposed by Christakopoulos [27] is a
straightforward method for employing reverse mode automatic differentiation to develop
a fixed-point adjoint solver. The primal time-stepping approach hand assembles automatic
differentiated code to develop a fixed-point iterative method for the adjoint sensitivities
through a process that reuses the time-stepping of the flow solution within the adjoint solver.
Thus, the adjoint variables are updated in a fixed-point manner according to

Ūn+1 = Ūn + R̄
(
Ūn

)
, (4.34)

where Ū is the adjoint solution, R̄ = −∆t
(
AT Ū − g

)
is the adjoint residual where ∆t is

the primal time-step.
Following [27] The primal time-stepping approach was motivated by noticing that in the

brute force adjoint approach the sensitivity of the flow solver to the grid, ȳ, is calculated
every iteration. However, these grid sensitivity values are only used following the loop,
so they actually only need to be calculated once, after the adjoint solution is converged.
The primal time-stepping adjoint technique removes this calculation from the iterative loop
by differentiating the residual subroutine twice, once with respect to the flow solution U
and once with respect to the grid parameters y [27]. The two applications of AD result in
subroutines labeled residual_u and residual_y to demarcate which variable the subroutine

47

was differentiated with respect to. A fixed-point adjoint solver can then be hand assembled
in the form of the primal flow solution, as shown in Fig. 19.

The iterative code block now follows the structure found in the flow solver, i.e., a residual
calculation followed by a solution update. In fact, the adjoint PTS loop actually uses the
update subroutine from the original flow solver to iteratively update the sensitivity values.
To keep the logic of the adjoint variables and residuals intact, the positions of Ū and R̄
must be switched manually (compared to the brute force approach) in the invocation of the
subroutine residual_u [27]. Following the operations of the PTS adjoint approach presented
in Fig. 19, the derivatives are calculated in the following manner:

• cost_function_b: Calculates the source term g = ∂J
∂U

.

• The iterative loop: Computes the adjoint variables ψ = A−Tg = ∂J
∂R

.

• residual_y: Calculates the sensitivity to the grid ∂R
∂y

∂J
∂R

.

• read_grid_b: Completes the sensitivity calculation ∂y
∂β

∂R
∂y

∂J
∂R

.

As before, the subroutine cost_function_b calculates the source term. Manually switching
the invocation of the subroutine residual_u allows us to compute product of AT and the
input seed vector Ū , which gives the current iterate of the adjoint variables, ψ, from the
adjoint equation [

∂R

∂U

]T

ψ = − ∂J
∂U

T

, (4.35)

to calculate AT Ū . Subtracting the source term from the output of residual_u provides the
adjoint residual used by update. After the iterative loop has reached a converged adjoint
solution, the subroutine residual_y calculates the sensitivity to the grid only once for the
converged adjoint solution, which is then extended to the design variable sensitivities in
read_grid_b.

The PTS adjoint generalizes the adjoint initialization parameter due to the inclusion of
the source term so that it is the current iterate of the adjoint vector. As a result the PTS
adjoint code is a fixed-point method that can recover from a solution perturbation or a bad
initial guess. Hence, the solution can be “hot-started,” and is no longer required to start from
the original source vector. These features allow the novel reduced-order model acceleration
technique to supply an updated adjoint vector and resume traditional iteration towards
convergence. This technique is discussed in Chapter 7 and demonstrated in Chapter 8

48

Chapter 5

Validation and Verification

This chapter presents case studies performed to validate and verify the numerical results of
the different flow and sensitivity solvers. Initially, the quasi-one-dimensional Euler solver is
applied to three nozzle case studies from the literature. The numerical results of the flow
and continuous adjoint solvers are compared with external sources. Next, external solver
is applied to resolve two-dimensional flow over the RAE2822 airfoil. Three AGARD case
studies are examined to verify the steady-state flow solution and the adjoint sensitivities of a
brute-force discrete adjoint solver. The next case study considers two-dimensional flow over
an oscillating NACA 0012 to verify the harmonic balance technique and discrete adjoint
differentiation of the method. In addition, to validation, salient features of the solvers
will be examined, particularly the performance of the traditional convergence acceleration
techniques. Although not included here, a grid convergence was performed for all cases. In
combination, these case studies instill sufficient confidence in the numerical solvers employed
in this work. The flow solvers and sensitivity solvers validated here will be accelerated and
utilized within optimization procedures in Chapter 8 .

5.1 Quasi-1D Flow through a Nozzle 1

This case study considers inviscid flow through a converging diverging nozzle. This case
will be used to verify the solver developed for the quasi-1D Euler equations introduced
in Section 2.2.1 and the solver developed for the continuous adjoint equations detailed
in Section 4.2.1. Unlike the discrete adjoint approach, the sensitivities calculated using
the continuous adjoint formulation will not exactly match the finite difference or discrete
sensitivity values, since linearization and discretization are noncommutative. As a result,

1This section, in part, is a reprint of the material as it appears in the International Journal of Numerical
Methods in Fluids 86 (9), 582-606 titled "Convergence acceleration of continuous adjoint solvers using
a reduced-order model" (2018). Authors: Andrew Kaminsky, Reza Djeddi, and Kivanc Ekici. The
dissertation author was the primary investigator and author of this paper. Wiley’s copyright policies permit
the use of the article in full or in part within the author’s thesis or dissertation for non-commercial purposes.

49

validation of the quasi-1D Euler solver and the continuous adjoint formulation was performed
through comparison with external results [128, 62, 127].

Flow was considered for a nozzle given by

h(x) =


2 0 ≤ x ≤ 0.5
1 + sin2 (π (x− 1.0)) 0.5 < x < 1.5
2 1.5 ≤ x ≤ 2 ,

(5.1)

and included in Fig. 20. Three cases with increasingly complex flow fields were considered.
These cases were chosen because each had been previously examined, thus enabling both
internal and external verification of the adjoint vector [128, 62, 127].

5.1.1 Nozzle with subsonic flow field
The first case considered a nozzle with a fully subsonic flow field. The case was defined by
a total inlet pressure of 1.0, a total inlet temperature of 1.0, and an exit pressure of 0.9899.
This corresponds to the cases of Lozano [127] and Giles and Pierce [62] defined by an inlet
Mach number of Min = 0.12.

Flow solution

The sensitivity calculation procedure began with determination of the nozzle flow field
solution. The numeric flow solution was obtained using a dual control-volume discretization
and a central scheme with scalar artificial dissipation on a 299-node uniform grid. The Mach
number distribution is shown to agree with the analytic flow solution [128] in Fig. 21b. The
resulting flow field is entirely subsonic and in the incompressible regime. As a result, the
density-based compressible flow solver converges rather slowly as shown in Fig.21a.

Adjoint solution

Once the flow solution was obtained, the results were used to solve for the adjoint vector
using a continuous adjoint solver. A traditional (non-accelerated) continuous adjoint solver
was used to solve for the adjoint variables. The convergence rate of the adjoint solution
was similar to that found for the flow solution and is included in Fig. 22a. The adjoint
vector is verified in Fig. 22b using the results presented by Lozano and Ponsin [128]. The
adjoint solution obtained using the continuous adjoint solver agrees well with Lozano and
Ponsin [128].

5.1.2 Nozzle with subsonic inlet supersonic outlet
The second case considered a nozzle with a subsonic inlet flow and supersonic outlet. The
case was specified by a total inlet pressure of 1.0, a total inlet temperature of 1.0, and an
exit pressure of 0.52. This case corresponds to the case of Giles and Pierce [62] designated

50

by Hin = 4 and ptin
= 2. The Mach number profile and adjoint solution using the traditional

approach are compared with those of Giles and Pierce [62] in Figs. 23a and 23b, respectively.
In this case a finer 899-node grid was considered. Inspecting the adjoint vector solution, it
is interesting to note the asymptotic behavior at the nozzle throat. This is expected since a
small change at the throat within a transonic flow field can have large ramifications. It can
also be seen that the adjoint vector is zero at the outlet boundary, which is forced by the
boundary conditions.

5.1.3 Nozzle with shocked flow
The third case considered a nozzle with a transonic shocked flow field with a total inlet
pressure of 1.0, a total inlet temperature of 1.0, and an exit pressure of 0.84317. This case is
consistent with the Hin = 4, ptin

= 2, and pex = 1.6 case presented by Giles and Pierce [62].
Comparisons of the Mach number profile, adjoint solution, and those reported by Giles and
Pierce [62] are presented in Figs. 24a and 24b.

The adjoint and flow solutions were obtained using a 1025-node grid. The Mach number
profile, shown in Fig. 24a, clearly shows a shock in the flow field. Despite the shock in the
flow field, the corresponding adjoint vector, Fig. 24b, is actually quite similar to the prior
subsonic-supersonic case. The adjoint vector field again behaves asymptotically near the
throat but remains smooth and continuous at the shock location. This behavior is expected,
and an in-depth explanation is presented by Giles and Pierce [60]. Additionally, the adjoint
vector is no longer zero at the exit.

These three cases verify the implementation of the quasi-1D Euler solver and the
accompanying continuous adjoint solver. The continuous adjoint solver was one of the
first solvers used to demonstrate the reduced-order model-based convergence acceleration
technique, presented in Section 7, and these cases will be revisited in Section 8.2 to
demonstrate the reduced-order model-based convergence acceleration technique.

5.2 Viscous 2D flow over an RAE2822 Airfoil
This case study considers two-dimensional viscous flow over an RAE 2822 airfoil. This case
will be used to verify external flow solver detailed in Section 3.2 and a discrete adjoint
solver developed through reverse mode automatic differentiation of the external flow solver
following the brute force approach discussed in Section 4.3.2. Three flight conditions defined
by the Advisory Group for Aerospace Research and Development (AGARD) test cases 1,
6, and 9 were considered to validate the external flow solver. These cases examine steady
viscous flow over an RAE2822 airfoil. The grid employed for the RAE2822 is shown in
Fig. 25.

The experimental case definition parameters are included in Table 3. Angle of attack
corrections are extremely important for this airfoil [138] so a corrected angle of attack is
included for each case. Traditionally, the angle of attack corrections are found by changing
the angle of attack until the lift coefficient matches the experimental value, but since the

51

main purpose here is validation the corrected angle of attacks were set to values presented
by other authors [138, 181, 196].

5.2.1 AGARD Test Case 1
The AGARD test case 1 for the RAE 2822 airfoil was considered using a corrected angle of
attack α = 1.83◦ [138], Mach number M∞ = 0.676, and Reynolds number Re = 5.7 × 106.
Table 4 presents a comparison of the lift, drag, and moment coefficients with the experimental
results [30]. The lift coefficient values match to within 1%, but the CFD solution over predicts
the drag. This case was further examined by comparing the surface pressure coefficient with
experimental values, as shown in Fig. 26a. The general profile matches well, and the largest
discrepancy occurs at the leading edge.

This case was also used to examine traditional convergence acceleration techniques. The
convergence histories of the external solver accelerated using residual smoothing, 1- and
2-level multigrid, and simultaneous application of multigrid and residual smoothing are
presented in Fig. 26b. Both multigrid and residual smoothing significantly reduce the number
of iterations and time required to reach convergence. A comparison of the cost for each case
is included in Table 5. The combined multigrid and residual smoothing case decreases the
computational time by 52.6% and the iteration count by 82.3%. The computational time
is not reduced as dramatically as the iteration count, because the acceleration techniques
increase the computational cost associated with each iteration.

5.2.2 AGARD Test Case 6
AGARD test case 6 considers flow over the RAE 2822 airfoil, at a corrected angle of attack
α = 2.44◦ suggested by Veldman [196], Mach number M∞ = 0.725, and Reynolds number
Re = 6.5× 106.

Flow Solution Verification

The lift coefficient calculated by the external solver again matches to within 1%, but the drag
and moment coefficients are under- and over-predicted respectively as shown in Table 6. This
case has been considered by Giles et al. [57] for varying angles of attack. The lift coefficients
calculated using the external solver are compared with those provided by Giles at varying
angles of attack, in Fig. 27. The two are also in good agreement, though our solver predicts
a slightly steeper slope.

Discrete Adjoint Sensitivity Verification

The literature often validates sensitivity derivative solvers by examining the sensitivity to
design variables that change the grid or design shape in some manner. The sensitivity values
are then verified by comparing the results of the adjoint or forward mode with either finite
differencing or the complex-step method. This approach is sufficient for solver verification,

52

but comparison with other solvers is difficult because grid sensitivities or shape sensitivity
can change based on discretization type and grid.

To validate the sensitivity solver, the sensitivities to flow parameters were considered.
In contrast to more grid dependent design parameters the sensitivity to flow parameters
should remain relatively constant from one solver to another. Thus, sensitivities of the
loading coefficients to varying angles of attack were considered for the flow conditions of the
RAE 2822 AGARD case 6 outlined in Section 5.2.2. Sensitivity analysis of this case has
been previously considered by Giles et al. [57]. The sensitivities of the loading parameters
to the angle of attack were first calculated using finite differences. Then sensitivities for
the direct and adjoint approaches were found through forward and reverse mode automatic
differentiation of the external solver. A comparison of the converged values is included in
Table 7. For the external solver all three sensitivity methods match well. A comparison with
those reported by Giles et al.[57] shows that the sensitivity values calculated with external
are slightly higher. This is expected based on the two profiles of the lift coefficient values
for different angles of attack shown in Fig. 28, where the present solver’s distribution has a
slightly steeper slope.

Verification of the direct and adjoint approach can be further proven using the adjoint-
tangent linearization equivalence:

gTu = (ATv)Tu = vTAu = vTf (5.2)

This implies that the direct and adjoint gradients should match to machine precision. The
two automatically generated solvers compute the same derivative, but in reverse directions.
Table 8 presents a comparison of the direct and adjoint sensitivities at different iterations
within the convergence process for an angle of attack of 0.0◦. As expected the sensitivity
solvers match to machine precision at the final iteration. What is even more interesting
though is that the sensitivity values match to machine accuracy at every iteration. This
provides a method to validate our solvers without full sensitivity solutions.

AGARD Test Case 9

The final AGARD case, test case 9, considered flow over the RAE 2822 airfoil, at a corrected
angle of attack α = 2.79◦[181], Mach number M∞ = 0.734, and Reynolds number Re =
6.5 × 106. The lift, drag, and moment coefficients match the experimental results most
closely in this case, as shown in Table 9. The lift and drag coefficients both match to within
1% and 2% respectively. This case was further validated by comparing the surface pressure
coefficient with experimental data and the numerical results of Swanson and Turkel [181],
shown in Fig. 29a. The Mach contours are also included in Fig. 29b.

In combination, the three AGARD case studies validated and verified the external flow
solver and the discrete adjoint implementation. The flow solver and the discrete adjoint
technique will be reconsidered in Section 8.1 and Section 8.4 to demonstrate acceleration that
can be achieved by applying the reduced-order model acceleration to the adjoint sensitivity
calculation within a nested design process.

53

5.3 Inviscid 2D Flow over an Oscillating NACA0012
Airfoil 2

This case study considers periodically unsteady inviscid transonic flow over an oscillating
NACA0012 airfoil to validate the implementation of the harmonic balance method within
the external solver. The case study considered is the AGARD CT5 case [116] which exhibits
an unsteady transonic dynamically nonlinear flow condition. The nominal flow conditions
considered were M∞ = 0.755, α0 = 0.016◦, α1 = 2.51◦, and k = 0.0814. The inviscid mesh
used for this case was generated using a conformal transformation [195], and it is included
in Fig. 36. The sub-time level solutions for the three harmonic case are included in Fig. 31.
As expected, the resulting flow field contains strong non-linearities, which can be attributed
to shock wave motion occurring during the oscillation period.

This case was previously studied by Da Ronch et al. [33]. Fig. 32 presents a comparison of
the harmonic balance aerodynamic loading coefficients of a case considering seven harmonics
with Da Ronch’s time accurate solution. Further assessments of the frequency domain
method can be made by considering the zeroth and first harmonic unsteady surface pressure
coefficient distributions as shown in Fig. 33. It can be seen that the results of the solver
presented here agree well with those of Da Ronch.

5.4 Inviscid 2D Flow over a Plunging NACA0012
Airfoil 3

This case study considers two-dimensional flow over a plunging NACA0012 airfoil in which
the dynamic stability derivatives were found using the harmonic balance and a discrete
adjoint solver. This case will verify the ability to perform sensitivity analysis of an unsteady
flow.

5.4.1 Time-spectral Stability Derivative Method
First some background, Mader and Martin [133] developed the time-spectral stability method
based on linear air reaction theory. Their method leverages a time-spectral CFD solution
with a linear regression technique to generate estimates for the dynamic stability derivative
of the force, lift, or moment coefficient with respect to an oscillating parameter and the

2This section, in part, is a reprint of the material as it appears in AIAA Paper 2016-0808 titled
"Sensitivity and Stability Derivative Analysis using an Efficient Adjoint Harmonic Balance Technique"
(2016). Authors: Andrew Kaminsky and Kivanc Ekici. The dissertation author was the primary
investigator and author of this paper. Copyright is held by Andrew Kaminsky and Kivanc Ekici.

3This section, in part, is a reprint of the material as it appears in AIAA Paper 2016-0808 titled
"Sensitivity and Stability Derivative Analysis using an Efficient Adjoint Harmonic Balance Technique"
(2016). Authors: Andrew Kaminsky and Kivanc Ekici. The dissertation author was the primary
investigator and author of this paper. Copyright is held by Andrew Kaminsky and Kivanc Ekici.

54

derivative of this oscillating parameter. The simple algebraic nature allows it to be used in
conjunction with the adjoint method to compute the gradients for aerodynamic optimization.

Linear air reaction theory states that for a simple motion consisting of a single dynamic
state, α, the lift coefficient can be approximated as

CL = CL0 + CLα∆α + CLα̇∆α̇ + CLα̈∆α̈ + (5.3)

This approximation can be truncated by assuming that the higher-order derivatives are small
and generalized so that

Ci = Ci0 + Cij
∆j + Cij̇

∆j̇ , (5.4)

where i = L,D,Mx,Mz,My and j = α, β, q, r. Equation (5.4) leaves us with three unknowns,
Ci0 , Cij

, Cij̇
. It is key to define a motion that excites a single dynamic state to identify the

values of individual stability derivatives. Etkin[51] introduced a two-dimensional path to
isolate α by plunging an airfoil so that the grid velocity adds a transient y component to the
flow velocity changing the angle of attack according to

α = A sinωt (5.5)

A time-spectral solution of a case considering a single dynamic state consists of state variables
at 2N +1 time instances distributed across a single period. This periodic time history of the
force and moment coefficients can be used to compute the dynamic stability derivatives with
respect to the oscillating parameter by relating the coefficients to the oscillating parameter
through the time variable. Fig. 34 shows the lift coefficient results of a typical harmonic
balance solution. It can be seen that a linear trend exists between the coefficient and motion
parameter with a notable hysteresis effect resulting from the difference in the coefficient
value during up and down stroke.

The time-spectral stability derivative method computes the stability derivative from the
harmonic balance solution by performing a least squares fit of the coefficient with respect to
the motion variable, which gives an approximation of the form

y = C1x+ C2 . (5.6)

The resulting slope is the dynamic stability derivative, CLα , and the lift coefficient at the
zero value of motion, CL0 , is the y intercept. This can be generalized to

y = Cij
j + Ci0 . (5.7)

The solution hysteresis can be used to calculate the transient or “dot” derivatives can be
calculated by subtracting the linear regression from the harmonic balance solution:

Rn
Ci

= Cn
i + y(xn) . (5.8)

55

This removes the dependence of the solution on the main motion variable, leaving just
Rn

Ci
, which is the variation dependent on the latent hysteresis. A strong linear relationship

between exists between Rn
Ci

and the time derivative of the motion variable, α̇, as shown
in Fig. 35. The slope of this line is equivalent to CLα̇ , the transient derivative term.
Furthermore, the plot shows the linear approximation is a near exact match of the data
indicating that dependence on higher-order time derivatives is negligible. Thus, the
assumption to truncate Eq. (5.4) is warranted.

The time-spectral derivative method calculates stability derivatives through a simple
algebraic technique and offers a rare opportunity to verify adjoint sensitivity calculations for
an unsteady flow solver, since relatively little sensitivity analysis is available for unsteady
flow fields.

5.4.2 Unsteady Adjoint Sensitivity Verification for Dynamic Sta-
bility Derivatives

With the time-spectral derivative method outlined, consider unsteady flow over a NACA0012
airfoil defined by a Mach number of M∞ = 0.1 and an angle of attack of α0 = 0.0, to perform
unsteady sensitivity analysis. Small amplitude plunging oscillations were considered so that
the angle attack oscillation amplitude was α1 = 0.5. This is a highly linear case and only
a single harmonic NH = 1 is needed to resolve the flow solution. The NACA0012 airfoil is
symmetric and has a 12 percent thickness with respect to its chord. The inviscid NACA0012
grid was generated using a conformal transformation[195], and it can be seen in Fig. 36. The
flow field was simulated using the Euler equations.

NACA 0012: Spectral Stability Derivatives

The stability derivatives were calculated using Mader’s time-spectral stability derivative
method for different oscillation frequencies. A comparison of the NACA 0012 stability
derivative profile with those of a flat plate and theoretical Theodorsen values is included in
Fig. 37. Although the NACA 0012 is not thin, the aerodynamic response of the NACA 0012
demonstrates a similar trend to that of the flat plate due to its symmetry. The NACA 0012
dynamic stability derivatives, CLα and Cmα , tend to overshoot those of the thin-airfoil theory
at low frequencies while slightly undershooting them at higher frequencies. The transient
stability derivatives, CLα̇ and Cmα̇ , both have profiles similar to those of the thin-airfoil theory
with a small offset. This case has previously been considered by Mader and Martins[133],
and the results presented here are in good agreement with their findings.

NACA 0012: Adjoint Stability Derivatives

These stability derivative calculations present two opportunities to evaluate the adjoint
sensitivity method. The static stability derivatives, CLα and Cmα at k = 0.0, can be
calculated from a steady case by applying the adjoint method to the harmonic balance

56

solver considering zero harmonics, and taking the cost function as the lift coefficient

J = CL , (5.9)

and the design variable as the angle of attack

β = α . (5.10)

As expected, the time-spectral stability derivative values at low reduced frequencies converge
to the value found through the adjoint technique, as shown in Fig. 38. The lowest reduced
frequency considered was k = 0.001 and the subsequent CLα was within 0.05 percent of
the value calculated through the adjoint sensitivity approach. One drawback of this steady
method is the lack of time-dependent information in the solution, which makes the transient
derivatives CLα̇ and Cmα̇ unrecoverable. Thus, only the static stability derivatives can be
found in this manner.

The dynamic stability derivative profiles, also offer an opportunity to perform sensitivity
verification of unsteady flow solutions. An adjoint solver was developed to calculate the
sensitivity of the lift dynamic stability derivative, CLα , with respect to the reduced frequency,
k, or dCLα/dk. Fig. 38 shows the stability derivative profile generated through the time-
spectral stability derivative method overlaid with tangent lines of the derivative calculated
through the adjoint sensitivity approach. It can be seen that the adjoint sensitivities, shown
as the black tangent lines, clearly agree with those suggested by the time-spectral stability
derivative profile.

In addition to this qualitative verification, the finite difference method can be used to
quantitatively assess the derivative values using a perturbation size of 1× 10−7. Overall, the
adjoint sensitivities match well with the values obtained using the finite difference approach,
and a comparison can be seen in Fig. 39. The adjoint sensitivities and finite difference values
all fall within a few percent of each other.

57

Chapter 6

Optimization methods

Aerodynamic design optimization problems have historically been formulated as a con-
strained minimization problem:

min
β∈D

J (β) (6.1)

where J is the objective function and β is the vector of design variables which belong to
design space

D := {β ∈ Rn|h(β) = 0} . (6.2)

The function h: Rn → Rr represents the equality constraints on the design space. In the
case of aerodynamic optimization, the design variables are limited to the set of designs that
provide a converged flow solution. The goal of the aerodynamic design problem is to find
the design that minimizes the objective function.

6.1 Traditional Gradient-Based Optimization
Gradient-based optimization has emerged as the dominant optimization strategy for
aerodynamic design. Gradient-based optimization methods iteratively update the design
of design cycle n through a step in a search direction:

β(n+1) = β(n) + δd(n), n = 1, 2, 3, ... (6.3)

Here d defines the search direction, which is generally informed by the sensitivity of the
objective metric to the design variables and the step size δ defines the magnitude of the
perturbation.

58

6.1.1 Steepest Descent Method
The method of steepest descent defines the search direction as the negated gradient of the
objective function:

d(n) = −∇f(β(n)) (6.4)

This search direction intuitively falls out from a first-order Taylor expansion:

f(β + t) ≈ f(β) +∇f(β(n))T t+ (6.5)

The steepest descent design update is

β(n+1) = β(n) − δ∇f(β(n)). (6.6)

The steepest descent method is popular due its ease of implementation, but its convergence
rate to the optimized design is slow in comparison to other more involved techniques.

6.1.2 Newton’s Method
Newton’s method can be derived in a similar manner using a second-order Taylor expansion
in place of the first-order expansion to provide a better approximation of the search direction,
e.g.,

f(β(n) + t) ≈ f(β(n)) +∇f(β(n))T t+ 1
2∇

2f(β(n))T t2... . (6.7)

By defining the next iterate as β(n+1) = β(n) + t(n) and the steepest descent step is found by
minimizing the quadratic approximation in t based on the assumption that approximation
is a convex function and its minimum can be found by setting the derivative to zero

0 = d

dt

(
f(x(n)) +∇f(x(n))T t+ 1

2∇
2f(x(n))T t2

)
= ∇f(x(n)) +∇2f(x(n))T t. (6.8)

The minimum of which can be found to be

t = ∇f(x(n))
∇2f(x(n)) . (6.9)

Using this result, the Newton iteration step direction is taken to be

d = −∇2f(x(n))−1∇f(x(n)) . (6.10)

Generally this step direction is augmented with a small step size 0 ≤ δ ≤ 1 to meet the
Wolfe or Armijo conditions leading to the Newton update performed as

x(n+1) = x(n) − δ
[
∇2f(x(n))

]−1
∇f(x(n)) . (6.11)

59

Newton’s method features faster convergence but is accompanied by the requirement of
calculating the second derivative, or Hessian, of the function.

6.1.3 Quasi-Newton Broyden, Fletcher, Goldfarb, and Shanno
Calculating the Hessian of iterative CFD solvers can be challenging and computationally
expensive. Therefore, it is desirable to avoid its calculation. Quasi-Newton methods remove
the requirement of calculating the true Hessian ∇2f(x(n)) by forming an approximation of
the Hessian H(n) at each design step. The Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
algorithm and its variants are perhaps the most popular of the quasi-Newton methods. The
BFGS update replaces the true Hessian with the approximation and is expressed as

d =
[
H(n))

]−1
∇f(x(n)) . (6.12)

The BFGS method approximates the Hessian as

H(n+1) = H(n) + y(n)y(n)T

y(n)T
s(n)
− H(n)s(n)s(n)T

H(n)

s(n)T
H(n)s(n)

(6.13)

where

s(n) = x(n+1) − x(n), and y(n) = ∇f(x(n+1))−∇f(x(n)). (6.14)

The BFGS update generates a positive definite approximation of H(n+1) if the initial
approximation H(n) is positive definite. It also mimics the properties of the true Hessian by
satisfying the secant equation and maintaining symmetry [156]. Note the inverse is Hessian
is used as the search direction, thus it is appealing to directly update the inverse

[H(n+1)]−1 = [H(n)]−1 + y(n)y(n)T

y(n)T
s(n)
− s(n)y(n)T [H(n)]−1 + [H(n)]−1y(n)s(n)T

y(n)T
s(n)

+

(
y(n)T [H(n)]−1y(n)

) (
y(n)s(n)T

)
(
y(n)T

s(n)
)2

(6.15)

The BFGS algorithm is quite attractive in that attains superlinear convergence rates but
does not require computation of the Hessian [156]. An efficient limited-memory version
of variant of the BFGS algorithm, known has L-BFGS has been developed to solve larger
problems. The BFGS algorithm stores a dense N × N matrix to approximate the inverse
Hessian matrix, which can lead to a significant memory footprint [156]. L-BFGS reduces the
memory requirements by discarding less relevant early curvature information. The Hessian
is then approximated using only M vectors where (M << N).

60

6.2 One-Shot Gradient-Based Optimization
In aerodynamic design the objective metric typically includes solving for computationally
expensive numerical solutions of a system of partial differential equations. Classical nested
optimization approaches fully solve the state equations and their accompanying adjoint and
then update the designs on fully converged numerical solutions. For many aerodynamic
design problems, this approach is computationally expensive and severely limit the number
of design updates that can be performed. More recently, one-shot optimization methods have
been developed in an attempt to reduce the cost of optimization by reframe the approach
to iterate design while solving the state and adjoint equations. That is one-shot approaches
seek to converge the state, adjoint, and design questions simultaneously through coupled
iterative approaches.

Recalling the aerodynamic design problem can be represented as

min
β∈D

J (β,U) subject to R(β,U) = 0, (6.16)

where J (β,U) is the objective metric, R (β,U) is the residual of the primal (flow) solver,
β is the design vector and U is the state vector. This constrained optimization problem can
be reformulated as in unconstrained Lagrange multiplier problem form

minL (β,U ,ψ) = J (β,U(β)) +ψTR(β,U(β)) (6.17)

where the Lagrange multiplier ψ is the adjoint vector. Taking the derivative of Eq. (6.17)
with respect toU , β, ψ and finding the minimum (e.g., when the derivative equals zero) leads
us to the first-order necessary conditions for optimality known as the Karush-Kuhn-Tucker
(KKT) conditions:

∂L
∂ψ

= R(β,U (β)) = 0 (State equation) (6.18a)

∂L
∂U

= ∂J

∂U
+ψT ∂R

∂U
= ∇UL(β,U ,ψ) = 0 (Adjoint equation) (6.18b)

∂L
∂β

= ∂J

∂β
+ψT ∂R

∂β
= ∇βL(β,U ,ψ) = 0 (Design equation) (6.18c)

The traditional nested optimization method identifies the KKT optimality point by solving
Eq. (6.18a), then Eq. (6.18b), and finally performing a design update. The classical approach
thus establishes feasibility of the state equation and the adjoint equation in each design
update, which leads to the question of whether it is necessary to recreate feasibility if the
design solution is not yet optimal [114].

One-shot optimization techniques seek to accelerate optimization by relaxing the
feasibility requirement while the solution is far from the optimal design point. Instead of
establishing feasibility for every design, one-shot approaches [182, 17, 158, 78] (also known
as simultaneous analysis and design (SAND) [73], the all-at-once approach [32], and the

61

simultaneous optimization approach [191]) converge the state feasibility, adjoint feasibility,
and design optimization simultaneously. Kusch [114] provides an excellent summary of one-
shot methods, which she divides into two main strategies.

6.2.1 Single-step One-shot Optimization
The first strategy is the so-called single-step one-shot approach initially developed by
Griewank [67]. The single-step one-shot strategy is derived using the discretized PDEs, and
its formulation is based on fixed-point iteration. The single-step one-shot approach extends
the piggy-back iteration [68, 69], which simultaneously solves the state equation together with
the adjoint equation for a fixed design and iteration index, to include the design variable. The
single-step one-shot approach can be interpreted as a Jacobi-type iteration procedure [114].
The base formulation approach has been extended within the literature to support additional
constraints [115]; unsteady PDE constraints [72]; and multi-step Seidel-type iteration [18].

6.2.2 Pseudo-time Stepping One-shot Optimization
The second strategy is pseudo-time stepping techniques. Ta’asan [184], Iollo [95], and
Hazra [77] proposed pseudo time-stepping approaches that could be employed to simul-
taneously solve the primal, adjoint, and design equations. More recently this approach
has been formulated as an inexact reduced sequential quadratic programming (rSQP)
approach [79, 77, 80], which is applied to the continuous optimization problem and then
discretized afterwards. In this formulation, the step is

0 0 ∂R
∂U

T

0 ∂2J
∂β2

∂R
∂β

T

∂R
∂U

∂R
∂β

0



∆U
∆β
∆ψ

 =


−∇UL (β,U ,ψ)
−∇βL (β,U ,ψ)
−R (β,U (β))

 (6.19)

where U is the primal state, ψ is the adjoint state, β is the design state with U (n+1) =
U (n) + ∆U (n), β(n+1) = β(n) + ∆β(n), and ψ(n+1) = ψ(n) + ∆ψ(n). The formulation above
includes the Hessian ∂2J

∂β2 which can be cumbersome to calculate. However, the Hessian has
been shown to primarily affect the rate of convergence [189] and Hazra [79] and Ozkaya [157]
showed that Hessian can be replaced with an BFGS approximation or even steepest descent
approximation. This pseudo-time stepping method for the KKT system effectively employs a
Gauss-Seidel iteration strategy in which the state and adjoint variable are used in the design
update as soon as they are available. Kusch highlights that the reduced SQP approach
matches the explicit Euler method for a preconditioned system [114].

Both one-shot optimization strategies have been applied to aerodynamic optimization.
In these applications, the one-shot techniques have exhibited improved efficiency relative
to nested optimization strategies, so long as the one-shot optimizers have been carefully
constructed with a suitable design space preconditioner. Underrelaxation of the design
through a preconditioner is critical for attaining these cost reductions. Various approaches

62

have been proposed based the runtime, number of fixed-point iterations, or the contraction
rate of the coupled fixed-point iterations [17]. If chosen correctly costs for the one-
shot optimizer are typically only a small multiple of the cost for solving the underlying
PDE [53, 158, 114].

63

Chapter 7

Reduced-Order Modeling

This chapter introduces a novel acceleration technique developed to accelerate the con-
vergence of fixed-point iterative solvers. In the preceding chapters pseudo-time stepping
formulations have been developed and detailed for computational fluid dynamic primal
equations, adjoint sensitivity equations, and the design equation. Each of these solutions
effectively time marches a solution of the form:

ds

dt
+N (s) = 0 (7.1)

where s is an iterated state which could consist of the primal, adjoint, or design states (or
some combination), and N is the nonlinear discretization operator [39] for the corresponding
state equations. Each of these governing equations is high dimension with a large number
of degrees of freedom. For instance, the governing flow equations, outlined in the previous
sections, must solve for between 3-7 variables per grid point in the computational domain
which can easily be on the order of millions of degrees of freedom. Moreover, design studies
add an equivalent number of degrees of freedom for the sensitivity equation and a set of
design variables further enlarging the size of the system.

The size of these systems makes the numerical solution of these equations computationally
expensive. As discussed above, high-fidelity computational fluid dynamic models and
sensitivity analysis are becoming increasingly valuable design tools, but their adoption is
limited by their computational cost [129]. Techniques that accelerate the primal, adjoint,
and design equation solution process is critical to further adoption of numerical optimization
procedures in aerodynamic design.

Projection-based reduced-order modeling is an avenue for accelerating the iterative
solution. Projection-based reduced-order modeling transform the high-order model of
the governing equations to a simplified reduced-order model which provides an accurate
approximation of the system but with considerably fewer states [7]. This is achieved by
projecting the state and residual behavior onto lower dimensional subspaces thereby rewriting
the governing equations in a compressed representation [137]. These subspaces are defined
by a set of basis vectors Φ which are chosen so that the relevant system dynamics captured

64

by the snapshots are well represented with a reduced number of states e.g.

s ∼= Φξ (7.2)

The basis and its Hermitian transpose can then be applied to Eq. (7.3) to form a reduced-
order model [38]

ΦT d

dt
(Φξ) + ΦTN (Φξ) = 0 (7.3)

where the basis vector coefficients ξ must be found.

7.1 Reduced-Order Model-based Convergence Accel-
eration of Fixed-Point Iterators 1

Within this section, reduced-order modeling techniques are developed to accelerate fixed-
point iterative methods, by considering the pseudo-time as the varied parameter. By using
the pseudo-time as the varied parameter, the snapshots can be collected within a single
solution procedure. Consider a fixed-point scheme for a general state vector s, where the
solution is updated in an iterative process

sn+1 = sn +R (sn) . (7.4)

Here n is the iteration number, R is the residual at each stage of the iteration process, and s
is the state vector, which can represent the flow, sensitivity, or design states. This iterative
process drives the solution to convergence which corresponds to a zero residual.

The idea for a path towards convergence acceleration is that there are conditions that
allow the residual vector to be approximated as a linear function

R ≈ As− b . (7.5)

This assumption is valid for the adjoint and forward sensitivity equations which are
developed through linearization of governing flow equations. It has also been found
to be valid for non-linear considerations like flow solutions that behave linearly near
convergence [38, 39]. A key contribution of this dissertation is demonstration that the
assumption can also be extended to one-shot design solutions as shown in Section 8.5.

The system in Eq. (7.10) is still the full-order system with N degrees of freedom,
equal to the number of grid points times the number of governing equations. Projection-
based reduced-order modeling can be applied to reform the equation on a reduced basis by
substituting Eq. (7.2) into Eq. (7.10) yielding:

1This section, in part, is a reprint of the material as it appears in Aerospace Sciences 93 titled "Reduced-
order model-based convergence acceleration of reverse mode discrete adjoint" (2019). Authors: Andrew
Kaminsky and Kivanc Ekici. The dissertation author was the primary investigator and author of this
paper. Elsevier’s copyright policies permit the material in the paper to be included, in full or in part, within
the author’s thesis or dissertation for non-commercial purposes.

65

R ≈ AΦξ − b . (7.6)

This reduced-order model can then be solved to approximate the converged fixed-point
solution by determining the solution that corresponds to when the residual is equal to zero

R(Φξ) ≈ R(s) = 0. (7.7)

Identifying the solution on the reduced-order model, requires the span of the basis vectors
contains the fully converged (or at least a better) solution, i.e.,

s |R(s)=0 ∈ span (Φ) =
{

M∑
i=1
ϕiξi | ξi ∈ R and ϕi ∈ Φ

}
. (7.8)

Therefore, proper selection of the basis is critical. Over the course of several research
papers and convergence proceedings [39, 107, 38, 108, 110] the present author and colleagues
considered three basis vector types for convergence acceleration: snapshot, covariance, and
orthogonal. Each of these methods forms a basis in an online manner by collecting snapshots
of the solution state and residual behavior during preconvergent iterations. The fixed-point
iteration process drives the state solution to convergence; therefore, the snapshots tend
to cover the relevant solution space as the solution converges. Intuitively, increasing the
number of basis vectors also expands the solution set span and will typically lead to better
performance.

The procedure for reduced-order model-based acceleration using each of the basis vector
types is detailed in the following subsections. For each method the basis formulation is
introduced and the procedure for calculating the basis vector coefficients for approximation
of the converged full state solution is discussed. Additionally, the applicability, strengths,
and limitations of each technique for convergence acceleration of fixed-point iterators are
highlighted.

7.1.1 Reduced-order Model Acceleration with Snapshot Basis
Vectors

The initial form of the reduced-order model acceleration [39, 107] used the snapshot solution
vectors as the basis vector set

Φ =

s1 s2 s3 . . . sM


N×M

, (7.9)

where si is the state of the fixed-point solution of interest. The use of snapshots was
motivated ease of implementation and by Ekici and Hall [42] who demonstrated a non-
orthogonal basis formed from snapshot solutions could be used as the foundation of a reduced-
order model.

66

Returning to the linearized residual function Eq. (7.10)

R ≈ As− b . (7.10)

The reduced-order formulation is begun by substituting the linear combination of snapshot
vectors Φξ and their coefficients for the state s arriving at

R ≈ AΦξ − b., (7.6)

This equation can then be used to solve for the appropriate basis vector coefficients, by
recalling that a zero residual corresponds to the desired converged sensitivity solution.
Therefore, the coefficients ξ, are chosen such that the residual, Ṙ, projected onto the space
spanned by the basis vectors is zero

R = AΦξ − b = 0 . (7.11)

The size of the system in Eq. (7.33) is N e.g., the number of state equations times the number
of grid points, which can be computationally demanding to solve as the problem size grows.
However, the size can be reduced by pre-multiplying by the transpose of Φ, which reduces
the system size to the number of snapshots M

ΦTAΦξ = ΦTb . (7.12)

This equation can be solved more easily due to the reduced dimension. To solve Eq. (7.35)
the right-hand side vector, b and Jacobian, A, need to be calculated. First, the right-hand
side vector can be calculated by setting the state in Eq. (7.10) to zero and performing a
single iteration. This residual can then be used to find b according to

R (s = 0) = −b . (7.13)

In practice, it is not always possible to set the state vector to zero, for example in density-
based flow solvers require a positive non-zero density state. In instances where a zero state is
not allowed, a matrix-fee Jacobian approximation method [112] can be used to approximate
the Jacobian vector product through second-order central-difference[38]

∂R

∂s
s = As ≈ R (s+ ϵs)−R (s− ϵs)

2ϵ (7.14)

Here ϵ is a small perturbation. Using this approximation, the right-hand side vector b
can then be calculated using Eq. (7.10)

b = As−R(s) (7.15)

Following calculation of the right-hand side vector the Jacobian needs to be found. Rather
than explicitly calculating the Jacobian, A, in Eq. (7.35) directly, the matrix-free approach
outlined by Ekici and Hall [42] is adopted to compute AΦ column by column. The column

67

of each matrix-vector product, AΦi, is calculated by initializing the state solver with the
first basis vector and calculating the resulting residual of the adjoint solver by running it for
a single iteration. The first column of the matrix-vector product is then obtained from

Aϕ1 = R (ϕ1) + b . (7.16)

The remaining matrix-vector products Aϕ2, ...,AϕM , are found in the same manner. It
should be noted that the snapshot solutions and their residual are naturally calculated during
the iterative solution. They can be stored during the nominal solution to alleviate the need
for recalculation.

With b, Φ, AΦ known, the weighting coefficients, ξ, can be found by solving the reduced-
order problem Eq. (7.35). The full-order state vector can then be approximated through the
linear combination given by Eq. (7.2). As a result, the converged state solution can be
approximated using a number of early iteration unconverged state and residual vectors. The
accuracy of converged state approximation can be checked by loading the state into the
solver and resuming iteration. The solution of the reduced-order systems is typical on the
order of M iterations. Therefore, the iterative solution can be accelerated if the residual of
the projected state is smaller than the residual that could be achieved by an additional M
iterations. As will be shown in Chapter 8 this approach proves to be a very efficient way to
accelerate fixed-point iterative solvers.

7.1.2 Reduced-order Model Acceleration with Covariance Basis
Vectors

For improved resolution an alternate basis can be created by subtracting the snapshot mean
from the snapshots

Φ =

s1 − s̄ s2 − s̄ s3 − s̄ . . . sM − s̄

 , (7.17)

where
s̄ = 1

M

M∑
i=1
s (7.18)

is the mean of the snapshots. For these basis vectors the solution approximation is now
defined as a linear combination of the basis vectors plus the snapshot mean

s = Φξ + s̄. (7.19)

Again, since a zero residual corresponds to a converged solution, the coefficients ξ are chosen
such that the residual of the approximation is assumed to be small (or machine accuracy
zero)

68

R (Φξ + s̄) ≈ 0. (7.20)

Substituting the approximation Eq. (7.19) into the governing equations Eq. (7.10) yields

R (Φξ + s̄) = A (Φξ + s̄)− b = As̄+AΦξ − b = 0 (7.21)

By recalling
R (s̄) = As̄− b, (7.22)

Eq. (7.21) can be simplified due to linearity to

AΦξ +R (s̄) = 0, (7.23)

The size of the system is still of the same order as the original governing state equations.
However, by pre-multiplying the equation by the transpose of the basis vector ΦT the system
size can be reduced to M , the number of snapshots

ΦT AΦξ = −ΦTR (s̄) . (7.24)

Once again the Jacobian matrix is not computed directly. Instead AΦ is computed column
by column as a matrix vector product

Aϕ1 = A (s1 − s̄) . (7.25)

This can be simplified by the fact that

Aϕ1 = As1 −As̄ , (7.26)

where As1 and As̄ can be directly related to the solution residuals through

Aϕ1 = (R (s1) + b)︸ ︷︷ ︸
As1

−
(
R̄ (s̄) + b

)
︸ ︷︷ ︸

As̄

(7.27)

Observe, the right-hand side vectors cancel out, which leaves

Aϕ1 = R (s1)−R (s̄) . (7.28)

This procedure is repeated for the remaining vector products. With all of the other terms
known, the weighting coefficients, ξ, can be simply computed by solving Eq. (7.24). The
weighting coefficients can then be used to construct the approximate “converged” state
solution through Eq. (7.19). The accuracy of the approximation depends on how well
the solution behavior is captured by the snapshots, and the quality of the approximation
can be evaluated by initializing the fixed-point solver with the approximated solution and
performing a single iteration after the projection. The resulting residual can be used to gauge
the solution accuracy. After restarting the solution, the ROM acceleration procedure can
be repeated until the desired solution accuracy is reached. A key benefit of this approach is

69

removal of the need to calculate the right-hand side vector b. Which is useful when a solver
cannot be initialized from a zero solution. This allows general consideration of fixed-point
iterators for primal, adjoint, and design solutions. Finally, this approach has been shown to
provide better projections that the technique using the snapshot basis vectors.

7.1.3 Reduced-order Model Acceleration with Orthogonal Basis
Vectors

The final basis is an orthogonal basis developed through proper-orthogonal decomposition.
This basis is generated by collecting the M snapshots collected in a matrix column by column

S =

s1 s2 s3 . . . sM


N×M

, (7.29)

Proper orthogonal decomposition is performed on this snapshot matrix to form an orthogonal
basis by solving the eigenvector problem defined by

ST SΨ = λΨ, (7.30)

where λ and Ψ are the eigenvalues and right eigenvectors of the symmetric matrix ST S.
Since the matrix is symmetric, each eigenvector corresponding to a unique eigenvalue will
be orthogonal. These eigenvectors are then multiplied by the snapshot matrix to form an
orthogonal basis

Φ = SΨ (7.31)

where:

Φ =

ϕ1 ϕ2 ϕ3 . . . ϕM


N×M

. (7.32)

The orthogonal basis has the benefit that it maximizes the span of the basis vectors of a given
order, which is beneficial since the model is limited to the solutions within its span Eq. (7.8).
The projected solution is found by substituting this reduced-order model approximation from
Eq. (7.2) into the full-order governing equations, Eq. (7.10), yielding

R = AΦξ − b , (7.33)

which can be used to determine the appropriate weighting coefficients that drive the residual
of the adjoint solver to machine accuracy, i.e.,

R = AΦξ − b = 0 . (7.34)

70

Again, the order of the system is reduced by pre-multiplying by ΦT

ΦTAΦξ = ΦTb . (7.35)

The determination of the basis vector calculation begins by calculating the right-hand side
vector, b, first. This is done by initializing the adjoint solution vector to zero and performing
a single iteration. The residual of the adjoint solver can then be used to find b according to

R (0) = −b . (7.36)

Again, the matrix-free approach outlined by Ekici and Hall [42] is followed to compute AΦ
column by column. This is accomplished by initializing the state solver with the first basis
vector and calculating the resulting residual by running it for a single iteration. The matrix
vector product Aϕ1 is then obtained from

Aϕ1 = R (ϕ1) + b . (7.37)

The remaining matrix-vector products, Aϕ2, ...,AϕM , are computed in a similar manner.
In the snapshot approach, the residual can be stored for each snapshot during collection, but
for orthogonal basis vectors the residual must be calculated for each basis vector. Thus, the
orthogonal basis vector approach has an increased cost associated with the basis formation
eigenproblem and residual calculation. Furthermore, the orthogonal basis vectors may
contain negative or zero values, which can be incompatible with some fixed-point iterators
like a density-based CFD solver. However, in several applications like fixed-point sensitivity
solvers zero or negative values are of no concern and the orthogonal basis vector approach
can provide significantly more accurate approximations, as shown in during the verification
of the reduced-order model acceleration techniques in Chapter 8.

71

Chapter 8

Demonstration of Reduced-order
Model Acceleration

This chapter presents case studies performed to demonstrate the reduced-order model-based
acceleration techniques presented in Chapter 7. The computational cost reduction that
can be achieved is demonstrated for a range of fixed-point iterators. Initially, the reduced-
order model acceleration technique is applied to accelerate the flow solution of a harmonic
balance solver considering flow over an oscillating RAE 2822 airfoil. Next, the reduced-order
model convergence acceleration technique is applied to accelerate a continuous adjoint solver
derived for the quasi-one-dimensional Euler equations. Three case studies are considered to
evaluate snapshot collection approaches for varying basis vectors. The reduced-order model
acceleration technique is then applied to discrete adjoint solvers. The first discrete adjoint
solver case considered the reduced-order model acceleration technique applied to a brute force
implementation, which prevented continuation of the iterative solution following projection.
To overcome this limitation, the reduced-order model acceleration technique was next applied
to a fixed-point iterative primal time-stepping discrete adjoint solver. Finally, the reduced-
order model acceleration technique was applied to accelerate a one-shot optimizer. The range
of applications considered here demonstrates the robustness of the approach and its ability
to generalize to a broad set of fixed-point iterators.

8.1 Acceleration of an Unsteady Harmonic Balance
Solution

The first case presented here, considers application of the reduced-order model acceleration
technique to accelerate a harmonic balance primal flow solution and its adjoint. The
initial application of the reduced-order model acceleration technique to computational fluid
dynamic flow solutions was performed by Djeddi, Kaminsky and Ekici in [37]. The present
case study presents extension of the technique to unsteady flows through acceleration of a
mathematically steady harmonic balance solver.

72

8.1.1 Flow over an Oscillating RAE 2822 Airfoil
The case study considered unsteady two-dimensional viscous flow over an RAE 2822 airfoil.
The flow was defined by a Mach number of M∞ = 0.78 with a nominal angle of attack
α0 = 0.0◦. The airfoil was forced to oscillate with small amplitude, α1 = 1.0◦, pitching
oscillations at a reduced frequency of k = 0.2. The grid employed for the RAE2822 is shown
in Fig. 40.

The unsteady flow behavior was resolved using a harmonic balance solver considering
two harmonics. Thus, five coupled sub-time solutions were simulated. The surface pressure
distributions for each timestep are presented in Fig. 41. The harmonic balance solver
employed the Fifth-order Runge–Kutta scheme detailed in Section 3.3 and the convergence
history is included in Fig. 42.

With this baseline convergence rate established for the primal solver, the investigation
turns to the evaluation of the reduced-order model convergence acceleration technique. Mul-
tiple applications of the reduced-order model-based acceleration technique were performed
using the covariance basis vectors. The different cases, detailed in Table 10, considered
the reduced-order model acceleration technique with snapshot collection procedures varying
initial snapshots collection points. The convergence histories of the reduced-order model
accelerated cases are compared with the baseline convergence rate in Fig. 43. From the
table and figure it can be seen that the reduced-order model-based acceleration technique
dramatically reduces the number of iterations required to reach convergence. The average
reduction in iterations to reach machine accuracy R(U) < 1×10−18 was 34.8 percent. Varying
the initial snapshot location led to only minor deviations, illustrating the reduced-order
model acceleration was robust to snapshot location. This case successfully demonstrates
the reduced-order model acceleration can be deployed to accelerate unsteady flow solutions
considered by primal harmonic balance solvers.

8.2 Acceleration of a Continuous Adjoint Solver1

The proposed ROM-based acceleration technique was also applied to the continuous adjoint
solver cases outlined in Section 5.2. The same three cases were considered, but this time
the adjoint vector, ψT , solution was accelerated using the reduced-order model convergence
acceleration technique. This case was used to evaluate snapshot collection procedures and the
effects of delayed starts, snapshot intervals, snapshot quantities, and repeated application.
Unlike the density-based flow solver considered in the previous case, the continuous adjoint
sensitivity fixed-point iterative solver does not have any limitations on the state values. As
a result, this solver also supports comparison of the different basis vector types.

1This section, in part, is a reprint of the material as it appears in the International Journal of Numerical
Methods in Fluids 86 (9), 582-606 titled "Convergence acceleration of continuous adjoint solvers using
a reduced-order model" (2018). Authors: Andrew Kaminsky, Reza Djeddi, and Kivanc Ekici. The
dissertation author was the primary investigator and author of this paper. Wiley’s copyright policies permit
the use of the article in full or in part within the author’s thesis or dissertation for non-commercial purposes.

73

8.2.1 Case 1: fully subsonic nozzle
The first case considers a nozzle with a fully subsonic flow field. The case is defined by a
total inlet pressure of 1.0, a total inlet temperature of 1.0, and an exit pressure of 0.9899.
The traditional (non-accelerated) continuous adjoint solver is used as a baseline to evaluate
the performance of the reduced-order model acceleration technique. The flow solution was
obtained, and then the adjoint vector was solved for using a continuous adjoint solver.

To establish a baseline for the reduced-order model acceleration, a traditional (non-
accelerated) continuous adjoint solver was used to solve for the adjoint variables. The
convergence rate of the adjoint solution was similar to that found for the flow solution
and is included in Fig. 44a. The adjoint vector is verified in Fig. 44b using the results
presented by Lozano and Ponsin [128]. Note, verification of the traditional flow solution and
continuous adjoint solution for case was considered previously in detail in Section 5.1.1.

Convergence acceleration with snapshot basis vectors

The reduced-order model acceleration of the continuous adjoint solver was first considered
using snapshots as basis vectors for this case. The snapshot-based acceleration, the
simplest of the proposed techniques, utilizes the snapshots as the basis vectors to project
the converged solution. Several parameters including snapshot quantity, first snapshot
placement, iteration interval between snapshots, and snapshot span, are used to control
the convergence acceleration technique.

The acceleration technique’s dependence on the snapshot quantity was evaluated first. To
isolate the snapshot count as the sole variable of interest, the snapshots were collected over
the same iteration span by varying the number of iterations between each snapshot for each
case. This ensured that all the snapshots started and ended on the same iteration. Each
time the snapshot count was halved, the acceleration technique effectively samples every
other snapshot. The global residual convergence rates for acceleration utilizing increasing
snapshot quantities are presented in Fig. 45.

Table 11 includes the snapshot collection parameters and the number of iterations to
reach convergence, R (ψ) = 1 × 10−16, for each case. Table 11 also presents the iteration
reduction for each case. An idea of the cost associated with the ROM-based acceleration
at different snapshot quantities can be observed by examining the correlation between the
reduction in iterations and the time. As the snapshot count increases, the computational
time reductions are diminished relative to the reduction in iteration count due to the time
associated with the ROM-based convergence acceleration.

For this case, it is clear that collecting additional snapshots causes increasingly large
global residual drops. This is likely due to the increased span of the solution space resulting
from the additional degrees of freedom in Eq. (7.8). It should be noted that all the
acceleration cases reach machine accuracy before the traditional method. This occurs despite
the fact that the 11 snapshot case residual actually jumps to a value higher than that found
by the traditional method. The convergence rate increases after the jump so that even
the 11 snapshot case is able to catch up to and eventually surpass the convergence of the

74

traditional method. However, it is apparent that for the case considered here 11 snapshots
are insufficient to provide enough information to achieve a drop in the adjoint residual after
the projection.

A comparison of the projected adjoint vectors with the fully converged solution and the
adjoint vector at the last snapshot is presented in Fig. 46. It is clear that all of the projected
adjoint solutions are closer to the fully converged solution; the 41, 81, and 161 snapshot cases
are visually indistinguishable from the fully converged profile. Examining the 11 snapshot
profile, it can be seen that the residual jump in the 11 snapshot case is produced by the
steep gradient oscillation in the projected solution near x = 0.25. After the oscillations
are attenuated, the profile matches the converged solution more closely which leads to an
increased convergence rate. The difference of each projection from the converged value is
also included in Fig. 47 on a log scale, which demonstrates how accurately the projections
match the converged solution.

Thus far, only a single application of the convergence acceleration technique has been
considered. However, the proposed method can be applied multiple times during a solution
procedure to further improve the convergence rate. The performance of repeated application
of the acceleration technique is presented for each snapshot quantity using double precision
in Fig. 48a and quadruple precision in Fig. 48b. Examining the convergence rates in Fig.
48a for multiple applications of the acceleration it can be seen that all but the 11 snapshot
case reach a convergence limit at a global residual value between 1 × 10−8 and 1 × 10−10

using double precision floating point numbers. The correlation-based acceleration technique
is unable to project to a solution with improved accuracy at this point. This results from
the fact that as the solution converges, the snapshot values will be increasingly similar and
thus become less linearly independent making the reduced-order model ill-conditioned. As
a result, the potential solution space given by Eq. (7.8) diminishes to a point where solution
improvement is no longer attainable. However, if application of the acceleration technique is
ceased once the residual convergence limit (1 × 10−10) is reached the solution will continue
to converge until machine accuracy.

To test the assertion that the method fails due to nearly linearly dependent snapshots,
the solver was run using quadruple precision. Fig.48b shows that using quadruple precision
eliminates the artificial convergence limit. However, it also increases the computational
cost as well as the memory requirement by a factor of two. The additional precision
helps to distinguish between the snapshots as they become increasingly linearly dependent.
However, even quadruple precision fails to add additional convergence acceleration for
repeated application of the 11 and 21 snapshot cases with these parameters, so stabilization
of the method is desirable. While quadruple precision succeeds in reducing the total number
of iterations for the 41, 81 and 161 snapshot cases, the up to four-fold cost increase of each
iteration is untenable. Thus, another method is desired to make the acceleration tractable
for convergence to machine accuracy.

75

Convergence acceleration with orthogonal basis vectors

To circumvent problems with ill-conditioned ROMs, proper orthogonal decomposition can
be used to maximize the span of the solution space, Eq. (7.8), by forming orthogonal basis
vectors. The convergence acceleration for application of the correlation-based acceleration
technique with orthogonal basis vectors is presented for cases using increasing quantities
of snapshots in Fig. 49a. The orthogonal basis vectors used here were formed from the
same snapshots used for the convergence acceleration shown in Fig. 45. It can be seen
that a single application the orthogonal basis vectors only results in a slight improvement in
the convergence drop. The most notable drop occurs for the 161 snapshot case which now
outperforms the 81 snapshot case. The 161 snapshot case projection also converges past the
artificial convergence limit found in the prior case using double precision arithmetic.

Thus far, sampling of the first snapshot has been delayed until iteration 500. Fig.
49b presents convergence acceleration for the same snapshot selection procedure but with
snapshot sampling beginning at iteration 2 instead of iteration 500. Examining Figs. 49a
and 49b it is evident that delayed snapshot collection improves the performance of the
acceleration technique. Table 12 presents the snapshot collection parameters and the relative
acceleration improvement offered by delayed snapshot selection.

Delaying snapshot collection offers considerable improvement, particularly for the cases
with higher snapshot counts. Even this small delay achieves an additional cost reduction
of up to 68%. By delaying snapshot collection, sampling of the initial transient behavior of
the solver is avoided. This leads to less oscillatory basis vectors which leads to improved
convergence acceleration. Delaying the first snapshot location even further conveys improved
convergence acceleration until an eventual plateau is reached, as shown in Fig. 50, for the 41
snapshot case. While it is clear an optimal delay for the first snapshot location exists, all of
the locations provide convergence acceleration. Additionally, for the best performance out
of a single application of the convergence acceleration technique it may be desirable to delay
the application. However, it could also be argued that earlier improvement in the global
residual is actually more significant.

The concern over when to begin snapshot sampling is largely alleviated by applying
the convergence acceleration technique multiple times. Convergence acceleration achieved
through multiple applications of the POD-based technique with snapshot sampling starting
at iterations 2 and 500 is shown in Figs. 51a and 51b respectively. Orthogonal basis vectors
convey considerable improvement in convergence rates for cases that make use of repeated
application of the acceleration technique. Again, the convergence limit found when using
snapshot basis vectors is no longer present. Delaying sampling of the first snapshot still
yields improved performance but to a much smaller degree, and both repeated application
cases significantly outperform even the very best single application case. The 81 snapshot
delayed application case achieved the greatest speed up, reducing the total computational
cost by 90%.

Only the 41, 81, and 161 snapshot cases were presented in Fig. 51, because despite the
orthogonal basis, the 11 and 21 snapshot cases defined using the same snapshot selection
parameters were unsuccessful in delivering additional convergence acceleration. Multiple

76

applications of the convergence acceleration technique using fewer snapshots results in
unstable projections that can sometimes result in global residual drops but more frequently
cause undesirable jumps. Two different techniques have been found to stabilize the
performance of repeated application cases that utilize fewer snapshots. Both techniques
were developed by recalling that the efficacy of a reduced-order model is dependent upon
how much of the solution behavior is captured [137, 21].

The first approach is performed by increasing the space between consecutive acceleration
spans. Previously, a one span delay between the last projection and the first snapshot of the
following projection was used. An increased delay allows the solution to converge even further
beyond the solution that was last projected. By sampling snapshots later, any transient
behavior from oscillations in the previous projection has been dampened out, and new
solution behavior is captured from the next cycle of snapshots. The stabilization provided
by an increased delay is demonstrated for the 21 snapshot case in Fig. 52. Looking closely, it
appears that there is a trade-off between the frequency with which the acceleration technique
is applied and the stabilization provided by increasing the delay between acceleration cycles.
Performance improves from the increased stability through the 9 span delay. For larger
delays, the increased delay leads to fewer applications of the acceleration technique which
leads to less acceleration comparatively.

Occasionally, using this approach the convergence rate jumps following the projection.
This is likely due to small oscillations within the projected solution, like those shown in
Fig. 46. These oscillations occur because the limited basis vectors provide fewer degrees
of freedom to completely smooth out the profile. Using more basis vectors eliminates these
jumps as shown in Fig. 53, where the 41 snapshot case is presented for comparison. However,
it should be noted that despite the jumps, repeated application after the stabilization can
outperform the single application case. The repeated application offers an improved slope
following each projection. Examining the convergence history of the single application
case, in Fig. 45, the initially steep slope following the projection deteriorates as the
solution progresses leading to a concave shape. The repeated application ensures the steep
convergence history slope is maintained. Finally, it is easy to evaluate a jump in the global
residual, and if it is deemed too large it is easy to reset the solution to the pre-projection
value.

The second approach is the increased interval approach. Before, the iteration interval
between snapshots was selected so that the span of case was kept constant. This was
done merely for evaluative purposes. By increasing the span, the reduced-order model
can capture more of the solution behavior since the snapshots are collected over a longer
pseudo-time. The improved stability conferred by increased iteration intervals for a 21
snapshot case is presented in Fig. 54. Again, there is a trade-off between the convergence
acceleration application frequency and the stabilization provided by increasing the interval
between snapshots, and the ideal snapshot interval for this case occurs at 32 iterations and
achieves a 50% cost reduction. It is also notable that the increased interval approach slightly
outperforms the increased delay approach. However, either approach can be used to stabilize
multiple applications of convergence acceleration with fewer snapshots.

77

Lower snapshot counts are appealing because of the reduced memory requirements.
For problems with more degrees of freedom, storing 161, 81, or even 41 snapshots within
the Random Access Memory (RAM) could become unfeasible. However, the acceleration
technique can be performed using either an input-output (I/O) efficient or a memory efficient
approach. In the I/O efficient approach the solution and their residuals are written into
external files at each snapshot. After all of the snapshots have been collected, the snapshot
solutions and residuals are all read into the RAM. This requires enough RAM to store
N × (M + 1) values, where N is the number of degrees of freedom and M is the number
of snapshots. This limits the number of I/O operations to only 2M , since each snapshot
and residual is written and then read only once. In the memory efficient approach, the left-
and right-hand sides of Eq. (7.35) are built term by term by loading only 2 snapshots at
a time, instead of loading all of the snapshots at once. This approach limits the memory
requirements to 2N but requires M2 + 2M I/O operations. The additional I/O operations
slow down the projection procedure but provide extension to problems with considerably
more degrees of freedom [38].

8.2.2 Nozzle with subsonic inlet supersonic outlet
The continuous adjoint second case considered is specified by a total inlet pressure of 1.0,
a total inlet temperature of 1.0, and an exit pressure of 0.52. This case corresponds to the
case of Giles and Pierce [62] designated by Hin = 4 and ptin

= 2. As shown in Section 5.1.2,
the adjoint solution using the traditional approach compared well with that of Giles and
Pierce [62] in Figs. 23a and 23b respectively. In this case a finer 899-node grid was used
to show convergence acceleration for a case with a reduced convergence rate due to grid
resolution.

Convergence acceleration with orthogonal basis vectors

The convergence acceleration technique utilizing orthogonal basis vectors was applied to
this transonic flow problem. This case was used to further examine the importance of the
interval between snapshots. Application of the convergence acceleration utilizing increasing
spans of 80, 160, 320, and 640 iterations is shown in Fig. 55. For these comparisons the
initial snapshot was taken at iteration 1000 to encourage stability among even the smallest
span. As the span of the snapshots is increased, performance of the acceleration technique is
improved. The convergence behavior for this case is smoother than the prior case which leads
to large drops even for very small spans. The typical global residual drop is increased from
3 orders of magnitude to almost 10 by quadrupling the span. Overall, a single application
of the acceleration technique can reduce the computation cost by over 50% for this case.

78

8.2.3 Nozzle with shocked flow
Flow solution and adjoint vector verification

The third continuous adjoint acceleration case reconsiders the nozzle with a transonic shocked
flow field with a total inlet pressure of 1.0, a total inlet temperature of 1.0, and an exit
pressure of 0.84317. This case is consistent with the Hin = 4, ptin

= 2, and pex = 1.6 case
presented by Giles and Pierce [62]. The adjoint solution will be compared with that of Giles
and Pierce [62], as shown in Section 5.1.3.

Convergence acceleration with orthogonal basis vectors

As previously mentioned, the ROM-based acceleration scheme is easily implemented with
existing convergence acceleration techniques. Here performance of the correlation-based
acceleration technique with orthogonal basis vectors applied to a solver accelerated with a
multigrid scheme is evaluated using the shocked flow condition. To establish a baseline, a
single application of the ROM acceleration technique is performed without multigrid, and
the convergence histories are compared with those of the varying levels of multigrid schemes
in Fig. 56.

The cost reduction associated with each level of multigrid and the ROM convergence
acceleration technique applied separately is included in Table 13. As found in the previous
two cases, increasing the snapshot quantity again leads to larger global residual drops. It is
interesting to note that there is no additional acceleration added by increasing the snapshot
count from 21 to 41 snapshots. This is a known drawback of POD-based reduced-order
models. Increased modes do not guarantee improved performance, and they can sometimes
perform worse [169]. However, the general trend is still established by the improved
performance offered by the 81 and 161 snapshot case. The 81 snapshot case performs
the best in terms of computational time, and it can be observed that the computational
time increases significantly for the 161 snapshot cased even though the iteration counts are
similar. The time required for storage of the snapshots and the solution of the basis vector
coefficients increases with the number of snapshots and as a result lower snapshot counts
perform more efficiently.

Fig. 56 also demonstrates that both multigrid levels significantly reduce the number of
iterations required to reach convergence, but the 1 level multigrid slightly outperforms the 2
level multigrid scheme when considering computational time as shown in Table 13. It should
be noted that for this case the multigrid scheme outperforms all the ROM-based acceleration
applications except the 81 snapshot case, with respect to computational time.

An advantage of the proposed scheme is that it can easily be compounded with other
acceleration schemes, and application of the ROM-based acceleration scheme to a solver
utilizing one level of multigrid is presented in Fig 57. A single application of the ROM-based
convergence acceleration technique leads to a further reduction in required iterations and
more importantly computational time for each snapshot quantity as shown in Table 14. The
ROM-based acceleration applied to the multigrid scheme provides additional computational

79

cost reduction relative to the multigrid scheme alone, and the 81 snapshot case almost halves
the computational time.

Note that for the multigrid case the snapshot collection was started earlier and over a
smaller span. This was done for two reasons. First if application of the convergence technique
was delayed until iteration 1500 on the multigrid scheme the solution would have been nearly
converged, and thus not a fair assessment of the ROM-based acceleration technique. Secondly
and more interestingly, the multigrid scheme actually appears to stabilize the performance of
the ROM-based acceleration technique. Multigrid schemes remove low-frequency oscillation
components from the solution behavior by solving the solution on a coarser grid, where
they act as higher-frequency oscillations. When prolongation is performed to extend the
coarse residuals to the fine grid, interpolation is required where data is not present. This
interpolation leads to an inherent residual smoothing. The removal of the low-frequency
oscillations coupled with the inherent residual smoothing allows the ROM-based acceleration
technique to be applied earlier with smaller snapshot spans, because the residuals and basis
vectors are less oscillatory.

Finally, the ROM-based acceleration technique was applied multiple times to the
multigrid scheme, and the convergence history is included in Fig. 58 and Table 15. Multiple
applications using 81 and 161 snapshots reduces the number of iterations required, but
actually increases the computational time. From Fig. 58 it is clear that after the first
application, there is little gained from additional applications of the ROM-based acceleration
technique. Additionally, the cost associated with the ROM-based acceleration technique
increases with the number of snapshots used. As a result, it is recommended that application
of the ROM-based scheme be halted after a global residual level around 1 × 10−12 when
utilizing large snapshot quantities in double precision, due to the diminishing returns.

While performance for the higher snapshot counts deteriorated when considering multiple
applications, the performance of cases considering fewer snapshots improved. Smaller
snapshot quantities require less RAM or storage space and are thus preferred to larger
snapshot quantities. Multiple applications of the small quantity snapshot cases to the
multigrid scheme, in particular the 21 snapshot case, perform nearly as well as the best
case and thus is a valuable alternative when memory is a concern.

8.3 Accelerated Nested Optimization Study through
Projected Discrete Adjoint Sensitivities 2

The third case study considers application of the reduced-order model acceleration
technique to accelerate a nested design optimization loop with a brute-force discrete adjoint

2This section, in part, is a reprint of the material as it appears in AIAA Paper 2017-0037 titled "An
Efficient Reduced-Order Model for Accurate Projection of Adjoint Sensitivities" (2017). Authors: Andrew
Kaminsky, Reza Djeddi, and Kivanc Ekici. The dissertation author was the primary investigator and
author of this paper. Copyright is held by Andrew Kaminsky, Reza Djeddi, and Kivanc Ekici.

80

solver. The case originally presented in [107] was the first application of the technique to
adjoint solvers. It is important to highlight that this case considered application to the
brute-force automatic differentiation code. As discussed in Section 4.3.2, the brute-force
solver is not a fixed-point iterator. Modifying the working variable in this solver will corrupt
the chain rule and lead to an incorrect sensitivity. Therefore, in this case the reduced-order
model acceleration technique will be used to approximate the converged solution, but the
iterative solution will not be resumed.

8.3.1 Sensitivity Projection for Inverse Design of a 2D Cascade
This case considered an inverse design problem for a compressor stage. The intent of this
inverse design problem is to recover the Tenth Standard Configuration [52] by minimizing
the difference between the surface pressure distribution of the current shape and that of the
Tenth Standard Configuration. This case has also been considered by Wu et al. [205] and
Huang and Ekici [94].

The Tenth Standard Configuration is a steady two-dimensional inviscid compressor
cascade consisting of a modified NACA 0006 airfoil with a stagger angle of 45 degrees and a
gap to chord ratio of 1.0. For this case the transonic inlet condition was considered with an
inlet Mach number of 0.8 and an inlet flow angle of 58 degrees. The initial shape was obtained
by deforming the Tenth Standard geometry by adding a sine wave with an amplitude of 1%
chord length to both the pressure and suction sides. The initial grid has been included in
Fig. 59.

The inverse design problem was solved by defining the objective function as

J =
∫

s

1
2 (p− ptarget)2 ds (8.1)

Here p denotes the surface pressure values for the present design, and ptarget denotes the
target surface pressure values, those of the Tenth Standard geometry. Hicks-Henne bump
functions were used to parameterize the blade shape. A set of 24 Hicks-Henne bump functions
are equally spaced along the axial chord direction for both the pressure and suction sides,
and are defined as

bi(x) = ai

[
sin

(
πx

log 0.5
log t1i

)]4
for i = 1, 2, ..., 24 (8.2)

where

t1i
= i

25 and t2 = 4.0

The design variables were defined as the amplitudes of the Hicks-Henne bump functions, ai.
The flow solution was developed using the in house cascade solver presented in [91]

and brute force automatic differentiation was performed to provide the sensitivities.
Using the flow solver and its reverse mode automatic differentiation, the sensitivities of

81

the objective function with respect to each design variable were calculated using the
traditional and the projected adjoint sensitivity methods for the initial geometry. The
projected sensitivity method projects the adjoint sensitivities using the reduced-order model
convergence acceleration technique and then halts the sensitivity iteration. The traditional
adjoint method converged to machine accuracy after 1,400 reverse iterations as shown in
Fig. 60. The convergence rate of the discrete adjoint solver was again found to match that
of the forward flow solver. Note the cascade flow solution is converging more rapidly due
to the implementation of a two level multigrid scheme. After the fully converged sensitivity
values were calculated the projection method was employed for the first design cycle. The
projection method was observed to only require 146 reverse iterations to project sensitivities
within 1% of the converged value. The projection was performed using ten equally spaced
basis vectors stored between reverse iterations 2 and 146 as shown in Fig. 60. This resulted
in a reduction of over 1,000 reverse iterations per design cycle.

The projected sensitivities were employed in an L-BFGS optimization procedure to
perform iterative design optimization until the desired surface pressured distribution was
recovered. The pressure distributions for the optimized, initial, and target shapes are
presented in Fig. 61a. The corresponding blade profiles are included in Fig. 61b. The
projected sensitivity method succeeds in recovering the target pressure profile and shape.
A comparison between the design convergence using the traditional adjoint and projected
adjoint method is included in Fig. 62. The traditional adjoint sensitivity method reaches an
optimization limit around 60,000 seconds, while the adjoint projection method reaches the
same optimization level after only 11,000 seconds, thereby reducing the computational time
by 80%. The optimization limit likely results from the Hicks-Henne bump functions forming
an incomplete design space. However, the target design was still recovered.

The projected adjoint sensitivity values were again evaluated by comparing the projected
sensitivities and the sensitivities of the most converged basis vector with the fully converged
sensitivity values. The percent difference of the projected and final basis vector sensitivity
values from the fully converged sensitivity values for each design variable at the initial design
point is shown in Fig. 63. From Fig. 63 it can be seen that the profile for the final basis vectors
and the projected values have similar profiles. This isn’t surprising since as the accuracy of
the basis vectors improve the accuracy of the projected values is expected to improve as a
result. It can also be seen that the projected adjoint sensitivities are considerably closer to
the converged values. In fact, the percent difference of the projected sensitivity values from
the converged sensitivity value are on average more than an order of magnitude closer.

Additionally, a comparison of the percent difference of the projected and the final basis
vector sensitivity values from the fully converged sensitivity values is shown for the twelfth
design variable across all the design cycles in Fig. 64. The twelfth design variable was
selected because it appears closest to the point of the maximum difference between the
initial and target shapes. For this design variable it should be noted that the projected
sensitivity values all fall within the specified 1% tolerance, even though some of final basis
vector values are significantly less accurate. In particular, examine design cycle 20 for the
twelfth design variable. The final basis vector sensitivity value for is off by 50% percent from

82

the fully converged value. Applying the projection method yields a value that is within 1%
of the converged value. This improvement highlights the considerable value of the adjoint
sensitivity projection method. Through a computational cost equivalent to roughly one
reverse iteration the adjoint sensitivity values were remarkably improved.

Finally, a comparison of the average percent difference of the projected and final basis
vector sensitivities from the fully converged value over the course of all 25 design cycles
is presented for all the design variables in Fig. 65. The average percent difference of all
the final basis vector sensitivity values from the fully converged values was found to be
0.85%. In comparison the average percent difference over all adjoint projection sensitivity
values from the fully converged values was 0.13%. On average this is nearly equivalent to an
additional digit of accuracy for each sensitivity value. This added accuracy coupled with the
suppression of highly inaccurate sensitivity values enables design optimization with highly
accurate sensitivities for a fraction of the cost of an optimization technique utilizing fully
converged values.

8.4 Acceleration of a Nested Optimization Scheme 3

The fourth case study again considers application of the reduced-order model acceleration
technique to accelerate a nested design optimization loop. However, this time a fixed-
point iteration approach is used to solve for the adjoint sensitivities. The case originally
presented in [110] demonstrates a methodology that can be followed to accelerate the
adjoint sensitivity solution through repeated application of the reduced-order model-based
acceleration technique.

8.4.1 Inverse Design of NREL S809 Airfoil in Inviscid Flow Field
To evaluate the reduced-order model convergence acceleration techniques, flow and sensitiv-
ity solutions for a well-known horizontal axis wind turbine blade profile were considered. The
analysis of the flow and sensitivities was performed for both inviscid and viscous flow fields.
Furthermore, aerodynamic design optimization was also considered in the form of a simple
inverse design problem where the surface pressure distribution of a known airfoil is prescribed
as the target pressure profile. The design is then started from another geometry and
optimization is performed to recover the target surface pressure profile and its corresponding
airfoil geometry. In this work, the inverse design problem seeks to recover the NREL S809
airfoil from an RAE 2822 airfoil. As mentioned before, the NREL S809 is a well-studied
airfoil for horizontal-axis wind turbines [162, 176]. It is a 21% thick laminar flow airfoil that
has been used within NREL Phase II, Phase III, and Phase IV wind turbines [56].

3This section, in part, is a reprint of the material as it appears in Aerospace Sciences 93 titled
"Reduced-order model-based convergence acceleration of reverse mode discrete adjoint solvers" (2019).
Authors: Andrew Kaminsky and Kivanc Ekici. The dissertation author was the primary investigator
and author of this paper. Elsevier’s copyright policies permit the material in the paper to be included, in
full or in part, within the author’s thesis or dissertation for non-commercial purposes.

83

Flow Solution

The NREL S809 airfoil was designed for a maximum, but restrained lift coefficient that is
insensitive to roughness with a low profile drag. The airfoil is typically subjected to low
Mach number flows, and presently two-dimensional inviscid flow at a Mach number of 0.3
and 0.0 degree angle of attack is considered. This case corresponds to the flow near the end
of a horizontal-axis wind turbine (HAWT) blade where the relative air speed is high, and
the blade twist leads to a lower angle of attack. The computational grids with an O-type
topology for both the NREL S809 airfoil (target design) and the RAE2822 airfoil (initial
design) are presented in Figs. 66a and 66b, respectively. The O-grids were generated using
conformal mapping [195], and the far-field boundary is placed 100 chord lengths away.

To start the analyses, the nominal flow solver is verified first by comparing the surface
pressure profile for the NREL S809 with the surface pressure distributions of Somers’s panel
method and experimental wind-tunnel tests [176], in Fig. 67. The NREL S809 surface
pressure distribution of the present solver matches that of Somers’s panel method relatively
well, and the slight differences are likely due to the fact that the present solver is of higher-
fidelity. This is substantiated by the fact that the surface pressure distribution of the present
solver lies closer to the experimental data where there is disparity. In Fig. 67, the surface
pressure distribution of the RAE 2822 is also included to highlight the difference between the
initial and target pressure distributions. It is clear that the pressure profile of the RAE 2822
airfoil is dramatically different from that of the NREL S809 and optimization will require
significant changes to the airfoil shape to recover the target surface pressure.

Sensitivity Solution

To evaluate the performance and robustness of the sensitivity acceleration technique an
inverse design problem is set up by defining the surface pressure distribution of the NREL
S809 airfoil as an optimal, target pressure profile. The objective function, which will be used
to drive the initial airfoil shape to that of the target shape, is based on the difference between
the current pressure distribution and the target pressure distribution over the entire airfoil,
i.e.,

J = 1
2

∫
S
(p− ptarget)2 ds , (8.3)

to quantify the quality of the current design. By minimizing the cost function, the desired
NREL S809 airfoil should be recovered. The original airfoil shape is parameterized using
fourth order b-splines

C(t) =
n∑

i=0
βBi,p(t) , n = 15 , (8.4)

where β are the control points and B are the basis functions. For the cases considered in
this work, a total of 30 surface control points (15 points on each of the suction and pressure
surfaces) are used as design variables. The b-spline basis functions can be derived by means

84

of the Cox-de Boor recursion formula [120] given as:

Bi,0 =

 1 if ti ≤ x < ti+1
0 otherwise (8.5)

Bi,k(x) = x− ti
ti+k − ti

Bi,k−1(x) + ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1(x) k = 1, ..., 3 . (8.6)

The adjoint solver is used to calculate the sensitivity of the cost function to the design
variables ∂J

∂β
, which can later be utilized in a gradient-based optimization procedure to obtain

the target design. The sensitivity solutions are calculated using the fixed-point iterative
method developed via the primal time-stepping adjoint technique. The fixed-point method
can be verified by comparing the sensitivity values of the primal time-stepping approach with
the brute-force adjoint approach, as shown in Fig. 68. It is clearly seen that the sensitivities
obtained through the brute-force adjoint approach and the newly developed primal time-
stepping approach match to machine accuracy.

The sensitivities convey the relationship between the cost function and each design
variable, and the magnitude and sign represent the step size and the direction that the
b-spline control points should be moved. The first 15 design variables control the top surface
of the airfoil, and the next 15 control the bottom surface. The control points are ordered
from leading to trailing edge, which explains the large jump discontinuity between design
variable 15 and 16. From the sensitivity values, it can be seen that top surface should be
expanded upwards near the mid-chord where the sensitivities are negative and narrowed near
the leading and trailing edges where the sensitivities are positive. Conversely, the bottom
surface should be expanded downwards where sensitivities are positive and narrowed where
the sensitivities are negative. In combination, this leads to an updated airfoil shape which
expands the RAE 2822 towards the NREL S809 by increasing the curvature of the top surface
and forming the belly of the airfoil on the bottom surface.

A comparison of the convergence histories of the primal time-stepping and brute force
adjoint approaches is also provided in Fig. 69 to offer further insight into the relationship
between the brute force and primal time-stepping adjoint approaches. As can be seen, the
convergence histories of the two approaches are identical. The convergence history of the
sensitivity solvers is smooth, and the convergence rate of the sensitivity solvers match that of
the flow solver, as expected. Although not shown here, the sensitivity values actually match
at every iteration [27]. It must be emphasized that even though the convergence histories
for two approached are identical, the sensitivity calculation process is not. Additionally, the
adjoint sensitivities were converged until the residual is less than 1× 10−15. Converging the
adjoint sensitivities to this residual criterion may not be necessary during the entire process,
but as the solution converges increasingly accurate derivative information is required by the
L-BFGS optimizer [209]. Convergence has been enforced to a smaller residual during the
whole design optimization process, to demonstrate the acceleration technique is robust and
can be applied consistently to obtain a numerically identical solution.

85

Reduced-order Model Convergence Acceleration for Sensitivity Analysis

The goal now is to reduce the cost associated with calculating adjoint sensitivities. Initially,
the sensitivities of the first design stage are used to evaluate the performance of the ROM
convergence acceleration techniques. Comparisons of the convergence histories of the baseline
primal time-stepping approach and the ROM accelerated primal time-stepping approach are
presented in Figs. 70a and 70b. The effects of the number of snapshots as well as the iteration
at which the first snapshot is collected are investigated in the figure. Furthermore, the
snapshot collection parameters for the ROMs are included in Table 16 for varied snapshot
counts, and in Table 17 for varied initial snapshot locations. The convergence history of
the PTS adjoint with covariance acceleration features regions of smooth convergence where
snapshots are collected while the fixed-point iterative method is performed in the nominal
manner. Once the snapshots are collected, the reduced-order model is formed and used to
project the converged solution. The solution projections occur at the sharp drops found
in the convergence histories. These drops result from restarting the fixed-point solver from
the projected solutions which have smaller associated residual values due to their improved
accuracy. By repeating this projection process, considerable cost reductions can be obtained.

Investigating Figs. 70a and 70b, some insight into proper snapshot selection and some
general rules of thumb are: (1) delaying the initial snapshot leads to an improved initial pro-
jection until a plateau is reached, but repeated application leads to comparable convergence
histories; (2) increasing the span between snapshots typically improves performance; and
(3) additional snapshots lead to better projections but more costly models. The improved
performance resulting from additional basis vectors is caused by the expansion of the solution
space. Considerable attention was given to proper snapshot selection in the authors’ previous
work [108], and further information is available to the interested reader.

Gradient-based Optimization with ROM Accelerated Sensitivities

To emulate snapshot selection in a typical case, a set of snapshot selection parameters were
selected in a uniform manner. A reduced-order model is built using 101 snapshots that
were initially collected at iteration 500 and then sampled every 5 iterations. Following a
projection, the snapshot collection was delayed 500 iterations and then samples are collected
every 5 iterations until 101 snapshots are obtained. These parameters can be optimized, but
in general the method is robust so long as a sufficient number of snapshots are collected.
A comparison of the convergence histories of the primal time-stepping approach with and
without the ROM convergence acceleration is presented in Fig. 71 for the sensitivities at the
initial design. The convergence history of the PTS adjoint with the acceleration techniques
feature sharp drops where the reduced-order model-based projections are made to predict
the converged flow solution. In contrast, the POD acceleration technique features jumps
followed by sudden drops in the convergence history. The jumps correspond to the residuals
calculated for the orthogonal basis vectors, and as such, they are considered “synthetic,” and
are of no concern here. It also should be noted that both methods can project solutions to
machine accuracy.

86

The POD projection method utilized the full POD basis set, and a comparison of the
eigenvalues for the first three projections is included in Fig. 72 for this case study. From the
figure it can be seen that as the solution converges, the early POD modes have increasingly
larger eigenvalues.

The computational cost associated with each of the sensitivity calculation techniques
is included in Table 18. The primal time-stepping adjoint is faster than the brute force
approach. This is because the brute force adjoint approach propagates the sensitivity of
the flow solver to the grid every iteration, while the primal time-stepping adjoint method
determines the sensitivity of the objective function to the flow solution, and then propagates
the sensitivity to the grid only once the flow sensitivities are converged. In the context of
design optimization, the cost of the primal time-stepping adjoint can be further reduced, by
“hot-starting” discrete adjoint computations from the converged solution of the prior design
cycle. Since the primal time-stepping approach is based on a fixed-point iterative method, it
should be possible to start the computations from any value and recover the correct solution.
Conversely, the brute force adjoint approach is merely a systematic execution of the chain
rule. Any perturbation or deviation from the exact values in the intermediate accumulation
steps will ultimately lead to incorrect sensitivity values [107, 27].

From this study, it is clear that both acceleration techniques offer considerable cost
reductions. The POD acceleration technique offers an 80% cost reduction whereas the
covariance acceleration technique offers an 83% cost reduction for this particular test case.

Following application to the first design step, the sensitivity convergence acceleration
technique was next employed within a nested design optimization loop to demonstrate
the robustness of the technique. Unconstrained optimization was performed using the L-
BFGS gradient-based optimizer [204]. A comparison the cost function over 25 design cycles
is shown in Fig. 73. From the figure it can be seen that the objective function values
for each incremental design are nearly identical for both methods. In fact, the final cost
function values only differ by 5.20× 10−10. This instills confidence in the method since the
sensitivity values are identical with and without the use of the acceleration technique, and
the acceleration results entirely from the reduced cost of the sensitivity calculation.

The optimization with the sensitivity convergence acceleration was able to recover
the target surface as shown in Fig 74a. Correspondingly the optimized airfoil profile
matches that of the NREL S809 as shown in Fig. 74b. This case demonstrates that the
sensitivity acceleration techniques provide sensitivities of comparable accuracy at a fraction
of the computational cost. The optimization with the covariance convergence acceleration
technique reduced the computational time by 80% relative to the optimization based on the
nominal primal time-stepping adjoint sensitivities without acceleration.

8.4.2 Inverse Design of NREL S809 in a Viscous Flow Field
Flow Solution

The same inverse design problem was also considered with a viscous flow field. A Reynolds
number of 2×106 is considered to match Somers’s experimental flow condition [176]. For this

87

case, O-type grids [as shown in Figs. 75a and 75b] are generated with 257×129 nodes in the
circumferential and radial directions respectively, and the far-field boundary is placed 100
chords away from the airfoils. The viscous flow solution accuracy is evaluated by comparing
the surface pressure profile of the NREL S809 with the CFD-ACE solver [203] as well as
the available experimental wind-tunnel measurements [176], as shown in Fig. 76. Both
solvers capture the surface pressure distribution well, though the present solver matches
the experimental data slightly better particularly near the mid-chord. A comparison of the
loading coefficients is also included in Table 19. The lift, drag, and moment coefficients are
quite similar to those reported by Wolfe and Ochs [203]. Both solvers underestimate the lift
coefficient and overestimate the drag and moment coefficients.

Sensitivity solution

The sensitivity solution is again considered for the initial design cycle. The sensitivity of
the cost function to the design variables was calculated using the brute force, PTS adjoint,
and ROM accelerated PTS adjoint approaches. A comparison of the sensitivity solutions is
included in Fig. 77, and all three sensitivity solutions match quite well. The sensitivities of
the viscous case are qualitatively similar to the inviscid case, but the local extrema appear
to be more pronounced relative to the inviscid case.

The reduced-order model was built using the snapshot collection parameters in the
Table 20. A higher snapshot quantity was used due to the added complexity of the flow
behavior resulting from including the viscous effects and the additional degrees of freedom
associated with the turbulence model. The collection of the snapshots was also delayed
due to the flow field taking longer to develop past the initial transient start-up behavior.
A comparison of the convergence rate using the primal time-stepping approach with and
without the ROM based acceleration is included in Fig. 78. It is apparent that the proposed
approach is able to accelerate the convergence rate of the discrete adjoint solver significantly.
For this case, it is interesting to note that the first projection actually slightly increases the
global residual rather than leading to a global residual drop. This indicates that snapshots
were likely gathered during the initial development of the sensitivity field and performance
could be improved by lagging snapshot collection further. However, despite the poor initial
projection the subsequent applications of the reduced-order model convergence acceleration
technique led to a marked acceleration, thus demonstrating the robustness of the technique
to recover following a poor projection.

Gradient-based optimization with ROM accelerated sensitivities

Again, the design optimization was started from an RAE 2822 airfoil. From Fig. 76 it is clear
that the surface pressure distributions are considerably different, and the design optimization
process must be able to handle large design variations. To assist with robustness a bounded
optimization was performed using the L-BFGS-B solver [208]. The design variables were
bounded so that the suction and pressure sides of the airfoil were never allowed to intersect.

88

The design optimization was performed for 25 major L-BFGS-B design cycles, using
sensitivities found from the baseline PTS adjoint and the ROM accelerated PTS adjoint
approach. A comparison of the cost function over time for the two approaches is included
in Fig. 79 and Table 21 indicating computational savings of around 57%. Again, the cost
function values at each design cycle are nearly identical, and the optimizer is quite successful
in consistently decreasing the cost function with the sensitivities provided. The cost function
can be decreased even further, but the surface pressure distribution and airfoil profile are
adequately recovered as shown in Fig. 80a and Fig. 80b, respectively.

8.5 Acceleration of a One-shot Optimization Scheme
In the previous case study, the optimization process was accelerated by using the Reduced-
order model-based acceleration technique to accelerate the adjoint solver. In the next study,
the ability of the Reduced-order model-based acceleration to generalize to different types of
fixed-point iterators will be demonstrated by applying it to accelerate a one-shot optimizer
simultaneously solving the primal, adjoint, and design equations.

8.5.1 Inverse Design of Converging-Diverging Nozzle
The ROM-based acceleration of a one-shot was demonstrated for a nozzle inverse design
problem. An initial nozzle shape was defined as

h(x) =

0.5 (a1 − 1.0) (1 + cos
(

πx
0.35

)
0 ≤ x ≤ 0.35

0.5 (a2 − 1.0) (1 + cos
(

π(x−0.35)
0.65

)
0.35V x ≤ 1 ,

(8.7)

where a1 = 1.5 and a2 = 2.5. The nozzle cross-section is included in Fig.81a. The flow
through the nozzle will be modeled using the quasi-1D Euler equations detailed in Section
2.2.1. The nozzle boundary conditions were defined as an inlet pressure of 1.0, a total
inlet temperature of 1.0, and an exit pressure of 0.7. These boundary conditions lead to a
nozzle flowfield featuring a normal shock. The resulting conservation variable and pressure
distribution is included in Fig.81b.

The optimization problem was defined as an inverse design problem, in which the
objective was to recover a target pressure profile. The objective metric was defined as
the root mean square of the difference between the current pressure and the target pressure

I = 1
2

∫ 1

0
(p− ptarget)2 dx . (8.8)

The optimizer was applied to modify the nozzle shape to recover the target profile. The
target pressure profile corresponds to a perturbed nozzle cross-section generated by adding
fourth-order b-splines to the baseline nozzle cross-section

89

htarget(x) = h(x) +
n∑

i=0
βBi,p(x) , n = 9 , (8.9)

where β are the 9 control points and B their basis functions. The b-spline basis functions
can be derived by means of the Cox-de Boor recursion formula [120] given as:

Bi,0 =

 1 if ti ≤ x < ti+1
0 otherwise (8.10)

Bi,k(x) = x− ti
ti+k − ti

Bi,k−1(x) + ti+k+1 − x
ti+k+1 − ti+1

Bi+1,k−1(x) k = 1, ..., 3 . (8.11)

The perturbed nozzle shape is compared to the baseline nozzle in Fig. 82a, and the pressure
profiles are compared in Fig. 82b.

A set of nested and one-shot optimization approaches were applied to the nozzle inverse
design problem. Optimization with the nested and traditional one-shot optimizer was
performed to establish a baseline that could be used to assess the value provided by the
ROM-based acceleration technique.

L-BFGS-B Optimization Baseline

To demonstrate the accumulated computational cost savings, the initial optimization study
utilized a traditional nested optimization approach. The L-BFGS-B optimizer was used to
perform design updates based on fully-converged primal and adjoint solutions. The metric for
reaching full convergence of the primal and adjoint was defined as completion of 20,000 fixed-
point iterations for each solution. This metric was selected by observing the convergence
histories of the initial design state, included in Fig. 83. From the figure it can be seen
that the primal solution and the fixed-point, primal time-stepping, adjoint solution are fully
converged by iteration 20,000, and some leeway is provided for designs that might converge
more slowly.

Following primal and adjoint solution convergence the design was updated using the L-
BFGS-B algorithm from [156]. The L-BFGS-B algorithm provided the step direction and the
step size δ was defined as 0.01 to maintain design solution stability through under-relaxation.
The resulting design update was

x(n+1) = x(n) + δ
[
H(n))

]−1
∇f(x(n)) . (8.12)

In total two hundred design cycles were completed, and the corresponding objective
function history is presented in Fig. 84. From the figure it can be seen that the optimizer
reduces the objective metric from O(100) to O(10−3). The gradient-based optimizer
makes fairly steady progress but appears to overstep the minimum three times during the
optimization. The recovered pressure profile and nozzle shape are compared with the target
and initial values in Fig. 85. The recovered nozzle does not perfectly match that of the target

90

profile. However as expected from the objective metric value, the recovered pressure profile
matches quite well. Thus, the optimization was successful. The mismatch in the nozzle
shape likely indicates that the inverse design problem was ill-posed and there exists multiple
nozzle profiles that recover the desired pressure profile. This is not particularly surprising,
because inverse design problems are notoriously challenging to define in a manner that avoids
multiple solutions.

For the purposes of evaluating the optimizer and various acceleration techniques recovery
of the target pressure profile is sufficient. The results of this nested optimization study
provide a useful benchmark, which will be used to assess the one-shot approaches in the
following.

One-shot Optimization Baseline

Next the nozzle inverse design problem was considered with a one-shot optimizer. A single
iteration of the one-shot optimizer employed here sequentially executed updates of the primal
solution, followed by the adjoint solution, and finally the design solution in a Gauss-Seidel
manner. In this manner, the solutions to each of the equations is converged simultaneously
as shown in Fig. 86.

The primal solution was advanced with a fifth-order Runge–Kutta scheme. The primal
time-stepping adjoint developed by automatically differentiating the primal solver was used
to perform fixed-point iterative updates of the adjoint solution. Finally, the steepest descent
algorithm was used to update the design. To maintain solution stability a step size of
δ = 0.000001 was selected so that the design update was:

x(n+1) = x(n) + δ∇f(x(n)) . (8.13)

In total five million one-shot iteration cycles were completed, and the corresponding objective
function history is presented in Fig. 87. From the figure it can be seen that the one-shot
optimizer monotonically decreases the cost function. Much of the progress is made early
(e.g., between iteration 1 and 500,000). Beyond this point the cost function is decreased at
a much slower rate. The slow convergence is likely attributable to vanishing gradients and
the small step size. As the design nears the local minimum the gradients approach zero and
the perturbation to the design becomes quite small stalling convergence. An adaptive step
size could be implemented to encourage continued reduction of the cost function. However,
the recovered pressure profile matches the target sufficiently well enough at the elbow that
the solution could have been halted prior to the convergence stagnation.

Examining the cost function versus time in Fig. 87b, it can be seen that early the one-
shot optimizer outperforms the traditional nested optimization approach. However, the
solution stagnates, and the nested optimization approach is able to overtake it after 2500
seconds. The pressure profile and nozzle shape recovered by the one-shot optimizer are
quite similar to those identified by the nested optimizer, and a comparison with the target
and initial values is included in Fig. 88. Again the recovered nozzle profile is not a perfect
match for the original perturbed nozzle, but the pressure profile is recovered very well.

91

The optimizer successfully minimizes the objective metric and recovers the desired pressure
profile. These results, illustrate the ability of the one-shot optimizer to identify good (if
not truly optimal) designs significantly faster than the nested optimization approach. The
results of this one-shot optimization study provide a useful benchmark, which will be used
to assess the ROM-accelerated one-shot approach detailed next.

ROM-Accelerated One-shot Optimization

Finally, the nozzle inverse design problem was considered with a one-shot optimizer
accelerated with the ROM-based acceleration technique employed to project the primal,
adjoint, and design solution to more converged solutions. The one-shot optimizer is identical
to that of the previous case, except for the addition of the ROM-acceleration technique.
To demonstrate proof of concept, initially only a single application was considered with
the snapshot collection parameters in Table 22. Each snapshot contained the full primal,
adjoint, and design state vectors concatenated into a single column vector. During the
solution the snapshots and their residuals were stored for use in the ROM-based acceleration
procedure. The snapshot basis vector technique detailed in Section 7.1.1 was considered. To
demonstrate proof-of-concept, the ROM-based acceleration was initially only applied once.
A comparison of the convergence rate using the one-shot optimizer with and without the
ROM-based acceleration is included in Fig. 89

From the figure it is apparent that the proposed ROM-based acceleration approach is
able to accelerate the primal, adjoint and design solution. Observing the region immediately
following the projection (at iteration 90,000) it can be seen that the residual of the primal
and adjoint solution initially jump up and the design solution residual drops an order of
magnitude. This signifies the projected flow and adjoint solution states are not perfectly
tuned to the new design. However, following iterations quickly damp out the initial
high-frequency behavior in the solution and reach residual values much lower than the
unaccelerated solution. Additionally, it can be seen that due to the solution stagnation
the unaccelerated solution is able to catch back up to the reduced-order model accelerated
solution if further projections are not performed.

The impact of the ROM-based acceleration on the design variables can be seen in the
Fig. 90 which presents the variable evolution over the iterative solution. The design variable
history shows reduced-order model-based acceleration technique projection causes discrete
jumps in the design variable value. Interestingly, it can also be observed that the values
jumped to compare well to the values reached asymptotically by the unaccelerated one-shot
solver.

Following this single application case, repeated application of the convergence accelera-
tion technique was performed using the snapshot collection parameters included in Table 23.
The convergence history of one-shot optimizer with repeated application of the ROM
acceleration technique is presented in Fig. 91. It is clear the primal, adjoint, and design
solution all converge more rapidly by employing the ROM-acceleration technique. However

92

perhaps even more importantly Fig. 92 the value of the cost function is also reduced more
rapidly using the ROM-acceleration technique.

Examining the figure it can be seen that cost function of the ROM-accelerated one-shot
optimizer no longer stagnates. Following the initial project, the ROM-accelerated one-shot
optimizer consistently outperforms the baseline one-shot and nested optimizers. A design
with a cost function value less than that of the best design identified by the nested optimizer
is found by the ROM-accelerated one-shot optimizer in 45% less time. This result illustrates
the value of the proposed ROM-acceleration technique applied to one-shot optimizers.

The pressure profile and nozzle shape recovered by the one-shot optimizer are quite
similar to those identified by the nested optimizer, and a comparison with the target and
initial values is included in Fig. 93. The recovered nozzle profile and the pressure profile are
quite similar to those found by the other optimizers. The lone caveat is the pressure profile
recovered by the ROM-accelerated one-shot is an order-of magnitude closer to the target
pressure. This is a result of the optimized design variables more closely matching those of
the target design variables as shown in Fig. 94.

93

Chapter 9

Conclusions and Recommendations

This dissertation was motivated by the desire to accelerate numerical optimization of
aerodynamic designs. Greater adoption of numerical optimization with high-fidelity
analysis tools like CFD, will markedly improve the aerodynamic design process. However,
greater adoption of mathematically formal simulation-based optimization approaches within
aerodynamic design depends upon a delicate balance of reducing computational costs
while maintaining accessibility. Techniques are needed to accelerate the simulation-based
optimization process, while remaining approachable enough to encourage adoption. The
contribution of this dissertation is associated with development and demonstration of a
reduced-order model-based method for accelerating the primal (flow), adjoint (sensitivity),
and design solutions independently and in combination.

9.1 Summary
A novel reduced-order model-based acceleration approach was developed. The approach
builds the reduced-order model online (during traditional iteration) by collecting snapshots
of the solution behavior. A linearity assumption is made, and the full-order system is
approximated by a linear combination of basis vectors developed using the solution snapshots.
The reduced-order model is then solved and used to project to an improved solution state.

Generalization of the technique was demonstrated by applying the reduced-order model
to accelerate:

1. Primal harmonic balance solvers

2. Continuous adjoint solvers

3. Discrete adjoint solvers

4. One-shot design solvers

The variations of the ROM acceleration technique available for each application were
discussed. Snapshot and covariance-based basis vectors were shown to work best for

94

primal solvers. For the adjoint solvers, proper orthogonal decomposition basis vectors were
shown to work best. Additionally, an approach for implementing the accelerated adjoint
strategy through reverse-mode automatic differentiated was detailed to facilitate the ease of
implementation and foster greater adoption. Finally, the ROM acceleration technique was
applied to accelerate a one-shot optimization approach using a snapshot basis.

Best practices for snapshot collection procedures were outlined. Delaying initial snapshot
collection, increasing iterations between snapshots, and adding snapshots were found to form
models with improved projections. While optimization of these parameters leads to improved
performance, the technique has been shown to be robust so long as a sufficient number of
snapshots is utilized. Additionally repeated application of the technique was consistently
proven to significantly reduce the computational cost.

The convergence acceleration technique was evaluated using the initial design cycles of
several inverse design problems. In these applications it was shown to consistently reduce
the computational cost of the primal and adjoint solution. Robustness was established
through utilization in a full design optimization, in which no fine tuning of the snapshot
collection parameters was performed (e.g., the same snapshot parameters were used during
the sensitivity calculation of each design cycle). The ROM acceleration technique was
demonstrated to accelerate the nested optimization processes by reducing the primal and
adjoint solutions. The ROM acceleration technique was also demonstrated to accelerate
simultaneously converging primal, adjoint, and design solutions in a one-shot optimization
approach.

The technique can be easily implemented into fixed-point iterative solvers, typically
the only change needed to existing solvers is the storage of the pre-convergent fixed-
point snapshot solutions and residuals. The ease of implementation and considerable
computational cost reductions of the proposed ROM technique highlight its value.

9.2 Future Work
The present work demonstrated the ability of the reduced-order model-based acceleration
technique accelerate steady and periodically unsteady flow solvers, continuous and discrete
adjoint sensitivity solvers, and a one-shot design optimization solver. Several numerical case
studies were performed to demonstrate proof-of-concept. However, future work is needed to
increase the impact on numerical optimization and aerodynamic design and foster greater
adoption. Recommendations for future work towards these objectives include:

1. Extension of the technique to more complex geometries and configurations specifically
concentrating on moving towards 3D geometries of aircraft.

2. Reducing the memory requirements through better algorithms for formulating the basis
or reduced representation.

3. Consideration of techniques for use of the method within parallelized solvers featuring
domain decomposition.

95

4. Continued investigation of snapshot collection procedures and formalization of best
practices.

5. Application to one-shot optimizers with a quasi-Newton update.

96

Bibliography

97

[1] Akbarzadeh, S., Wang, Y., and Mueller, J. D. (2015). Fixed point discrete adjoint of
simple-like solvers. In 22nd AIAA Computational Fluid Dynamics Conference, page 2750.
47

[2] Albring, T. A., Sagebaum, M., and Gauger, N. R. (2016). Efficient aerodynamic design
using the discrete adjoint method in su2. In 17th AIAA/ISSMO multidisciplinary analysis
and optimization conference, page 3518. 1

[3] Anderson, W. K., Newman, J. C., Whitfield, D. L., and Nielsen, E. J. (2001). Sensitivity
analysis for navier-stokes equations on unstructured meshes using complex variables.
AIAA journal, 39(1):56–63. 5

[4] Anderson, W. K. and Venkatakrishnan, V. (1999). Aerodynamic design optimization
on unstructured grids with a continuous adjoint formulation. Computers & Fluids, 28(4-
5):443–480. 37

[5] Antoulas, A. C. (2005). Approximation of large-scale dynamical systems, volume 6. Siam.
9

[6] Bai, Z. (2002). Krylov subspace techniques for reduced-order modeling of large-scale
dynamical systems. Applied numerical mathematics, 43(1-2):9–44. 10

[7] Baur, U., Benner, P., and Feng, L. (2014). Model order reduction for linear and
nonlinear systems: a system-theoretic perspective. Archives of Computational Methods
in Engineering, 21(4):331–358. 9, 64

[8] Baysal, O. and Eleshaky, M. E. (1992). Aerodynamic design optimization using sensitivity
analysis and computational fluid dynamics. AIAA journal, 30(3):718–725. 6

[9] Baysal, O., Eleshaky, M. E., and Burgreen, G. W. (1993). Aerodynamic shape
optimization using sensitivity analysis on third-order euler equations. Journal of Aircraft,
30(6):953–961. 6

[10] Beran, P., Stanford, B., and Kurdi, M. (2010). Sensitivity analysis for optimization of
dynamic systems with reduced order modeling. In 48th AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace Exposition, page 1503. 9, 46

[11] Beux, F. and Dervieux, A. (1994). A hierarchical approach for shape optimization.
Engineering Computations, 11(1):25–48. 5

[12] Bischof, C., Carle, A., Corliss, G., Griewank, A., and Hovland, P. (1992). Adifor–
generating derivative codes from fortran programs. Scientific Programming, 1(1):11–29.
8

[13] Bischof, C., Corliss, C., Green, L., Griewank, A., Haigler, K., and Newman, P. (2003).
Automatic differentiation of advanced cfd codes for multidisciplinary design. 8

98

[14] Bischof, C. H. and Bücker, H. M. (2000). Computing derivatives of computer programs.
Technical report, Argonne National Lab., IL (US). 5

[15] Bischof, C. H., Bücker, H. M., and Rasch, A. (2004). Sensitivity analysis of turbulence
models using automatic differentiation. SIAM Journal on Scientific Computing, 26(2):510–
522. 6

[16] Blazek, J. (2015). Computational fluid dynamics: principles and applications.
Butterworth-Heinemann. xi, 16, 17, 24, 118, 119

[17] Bosse, T., Gauger, N. R., Griewank, A., Günther, S., and Schulz, V. (2014a). One-shot
approaches to design optimzation. Trends in PDE Constrained Optimization, pages 43–66.
61, 63

[18] Bosse, T., Lehmann, L., and Griewank, A. (2014b). Adaptive sequencing of primal,
dual, and design steps in simulation based optimization. Computational Optimization and
Applications, 57(3):731–760. 2, 62

[19] Brandt, A. (1982). Guide to multigrid development. In Multigrid methods, pages 220–
312. Springer. 33

[20] Bui-Thanh, T., Damodaran, M., and Willcox, K. E. (2004). Aerodynamic data
reconstruction and inverse design using proper orthogonal decomposition. AIAA journal,
42(8):1505–1516. 10

[21] Bui-Thanh, T., Willcox, K., and Ghattas, O. (2008). Model reduction for large-
scale systems with high-dimensional parametric input space. SIAM Journal on Scientific
Computing, 30(6):3270–3288. 77

[22] Cabay, S. and Jackson, L. (1976). A polynomial extrapolation method for finding limits
and antilimits of vector sequences. SIAM Journal on Numerical Analysis, 13(5):734–752.
10

[23] Cardoso, M. A. (2009). Development and application of reduced-order modeling
procedures for reservoir simulation. Stanford University. 10

[24] Carle, A., CH, B., and PA, N. (1994). Applications of automatic differentiation in cfd.
8

[25] Choi, S., Lee, K., Potsdam, M. M., and Alonso, J. J. (2014). Helicopter rotor design
using a time-spectral and adjoint-based method. Journal of Aircraft, 51(2):412–423. 9

[26] Christakopoulos, F. (2012). Sensitivity computation and shape optimisation in
aerodynamics using the adjoint methodology and Automatic Differentiation. PhD thesis,
Queen Mary University of London. 3

99

[27] Christakopoulos, F., Jones, D., and Müller, J.-D. (2011). Pseudo-timestepping
and verification for automatic differentiation derived cfd codes. Computers & Fluids,
46(1):174–179. xi, 1, 3, 8, 9, 46, 47, 48, 85, 87, 127

[28] Cinnella, P., Cappiello, E., De Palma, P., Napolitano, M., and Pascazio, G. (2004).
A numerical method for 3d turbomachinery aeroelasticity. In ASME Turbo Expo 2004:
Power for Land, Sea, and Air, pages 539–550. American Society of Mechanical Engineers.
4

[29] Clemens, M., Wilke, M., Schuhmann, R., and Weiland, T. (2004). Subspace projection
extrapolation scheme for transient field simulations. IEEE transactions on magnetics,
40(2):934–937. 10

[30] Cook, P., Firmin, M., and McDonald, M. (1977). Aerofoil RAE 2822: pressure
distributions, and boundary layer and wake measurements. RAE. 52

[31] Courant, R., Frederick, K., and Lewy, H. (1928). On the partial difference equations of
mathematical physics. Mathematische Annalen, 100:32–74. 26

[32] Cramer, E., Frank, P., Shubin, G., and Dennis, Jr., J. (1992). On alternative
problem formulations for multidisciplinary design optimization. In 4th Symposium on
Multidisciplinary Analysis and Optimization, page 4752. 61

[33] Da Ronch, A., McCracken, A. J., Badcock, K. J., Widhalm, M., and Campobasso, M.
(2013). Linear frequency domain and harmonic balance predictions of dynamic derivatives.
Journal of Aircraft, 50(3):694–707. xii, 54, 136

[34] Davidon, W. C. (1991). Variable metric method for minimization. SIAM Journal on
Optimization, 1(1):1–17. 3

[35] Djeddi, R. and Ekici, K. (2019). Fdot: A fast, memory-efficient and automated approach
for discrete adjoint sensitivity analysis using the operator overloading technique. Aerospace
Science and Technology, 91:159–174. 43, 44

[36] Djeddi, R. and Ekici, K. (2021). Novel expression-template-based automatic
differentiation of fortran codes for aerodynamic optimization. AIAA Journal, 59(1):88–
103. 1

[37] Djeddi, R., Howison, J., and Ekici, K. (2016). A fully coupled turbulent low-speed
preconditioner for harmonic balance applications. Aerospace Science and Technology,
53:22–37. 22, 72

[38] Djeddi, R., Kaminsky, A., and Ekici, K. (2017a). Convergence acceleration of fluid
dynamics solvers using a reduced-order model. AIAA Journal, 55(9):3059–3071. 11, 22,
65, 66, 67, 78

100

[39] Djeddi, R., Kaminsky, A. L., and Ekici, K. (2017b). Convergence acceleration of fluid
dynamics solvers using a reduced-order-model. AIAA Paper 2017-0726. 64, 65, 66

[40] Duta, M., Giles, M., and Campobasso, M. (2002). The harmonic adjoint approach to
unsteady turbomachinery design. International Journal for Numerical Methods in Fluids,
40(3-4):323–332. 7

[41] Edwards, J. W. and Thomas, J. L. (1989). Computational methods for unsteady
transonic flows. Unsteady Transonic Aerodynamics, 120:211–261. 3

[42] Ekici, K. and Hall, K. C. (2006). Fast estimation of unsteady flows in turbomachinery
at multiple interblade phase angles. AIAA journal, 44(9):2136–2142. 10, 66, 67, 71

[43] Ekici, K. and Hall, K. C. (2007). Nonlinear analysis of unsteady flows in multistage
turbomachines using harmonic balance. AIAA journal, 45(5):1047–1057. 4

[44] Ekici, K. and Hall, K. C. (2008). Nonlinear frequency-domain analysis of unsteady flows
in turbomachinery with multiple excitation frequencies. AIAA journal, 46(8):1912–1920.
4

[45] Ekici, K. and Hall, K. C. (2011). Harmonic balance analysis of limit cycle oscillations
in turbomachinery. AIAA journal, 49(7):1478–1487. 4

[46] Ekici, K., Hall, K. C., and Dowell, E. H. (2008). Computationally fast harmonic
balance methods for unsteady aerodynamic predictions of helicopter rotors. Journal of
Computational Physics, 227(12):6206–6225. 4

[47] Ekici, K., Hall, K. C., Huang, H., and Thomas, J. P. (2013). Stabilization of explicit flow
solvers using a proper-orthogonal-decomposition technique. AIAA Journal, 51(5):1095–
1104. 10

[48] Ekici, K., Hall, K. C., and Kielb, R. E. (2010). Harmonic balance analysis of blade row
interactions in a transonic compressor. Journal of Propulsion and Power, 26(2):335–343.
4

[49] Ekici, K. and Huang, H. (2012). An assessment of frequency-domain and time-domain
techniques for turbomachinery aeromechanics. In 30th AIAA Applied Aerodynamics
Conference, page 3126. 4

[50] Elliott, J. and Peraire, J. (1997). Practical three-dimensional aerodynamic design and
optimization using unstructured meshes. AIAA journal, 35(9):1479–1485. 7

[51] Etkin, B. (2012). Dynamics of atmospheric flight. Courier Corporation. 55

101

[52] Fransson, T. and Verdon, J. (1993). Panel discussion on standard configurations
for unsteady flow through vibrating axial-flow turbomachine-cascades. In Unsteady
aerodynamics, aeroacoustics, and aeroelasticity of turbomachines and propellers, pages
859–889. Springer. 81

[53] Gauger, N., Griewank, A., Hamdi, A., Kratzenstein, C., Özkaya, E., and Slawig, T.
(2012). Automated extension of fixed point pde solvers for optimal design with bounded
retardation. In Constrained Optimization and Optimal Control for Partial Differential
Equations, pages 99–122. Springer. 2, 63

[54] Giering, R. and Kaminski, T. (1998). Recipes for adjoint code construction. ACM
Transactions on Mathematical Software (TOMS), 24(4):437–474. 8

[55] Giering, R., Kaminski, T., and Slawig, T. (2005). Generating efficient derivative code
with taf: adjoint and tangent linear euler flow around an airfoil. Future generation
computer systems, 21(8):1345–1355. 6

[56] Giguere, P. and Selig, M. S. (1999). Design of a tapered and twisted blade for the nrel
combined experiment rotor. Technical report, National Renewable Energy Lab., Golden,
CO (US). 83

[57] Giles, M., Duta, M., and Mueller, J.-D. (2001). Adjoint code developments using the
exact discrete approach. In 15th AIAA Computational Fluid Dynamics Conference, page
2596. 52, 53, 133

[58] Giles, M., Pierce, N., Giles, M., and Pierce, N. (1997). Adjoint equations in cfd-duality,
boundary conditions and solution behaviour. In 13th Computational Fluid Dynamics
Conference, page 1850. 39

[59] Giles, M. B., Duta, M. C., M-uacute, J.-D., ller, and Pierce, N. A. (2003). Algorithm
developments for discrete adjoint methods. AIAA journal, 41(2):198–205. 1, 7

[60] Giles, M. B. and Pierce, N. A. (1998). On the properties of solutions of the adjoint
Euler equations. Numerical methods for fluid dynamics VI. ICFD, pages 1–16. 6, 51

[61] Giles, M. B. and Pierce, N. A. (2000). An introduction to the adjoint approach to
design. Flow, Turbulence and Combustion, 65(3-4):393–415. 1, 6, 7

[62] Giles, M. B. and Pierce, N. A. (2001). Analytic adjoint solutions for the quasi-one-
dimensional euler equations. Journal of Fluid Mechanics, 426:327–345. xi, xii, 19, 37, 38,
50, 51, 78, 79, 130, 131

[63] Gopinath, A. and Jameson, A. (2006). Application of the time spectral method to
periodic unsteady vortex shedding. In 44th AIAA Aerospace Sciences Meeting and Exhibit,
page 449. 3, 4

102

[64] Gorrell, S. E., Car, D., Puterbaugh, S. L., Estevadeordal, J., and Okiishi, T. H.
(2006). An investigation of wake-shock interactions in a transonic compressor with digital
particle image velocimetry and time-accurate computational fluid dynamics. Journal of
turbomachinery, 128(4):616–626. 3

[65] Gray, J. S., Hwang, J. T., Martins, J. R., Moore, K. T., and Naylor, B. A.
(2019). Openmdao: An open-source framework for multidisciplinary design, analysis,
and optimization. Structural and Multidisciplinary Optimization, 59(4):1075–1104. 1

[66] Green, L. L., Newman, P. A., and Haigler, K. J. (1996). Sensitivity derivatives for
advanced cfd algorithm and viscous modeling parameters via automatic differentiation.
Journal of Computational Physics, 125(2):313–324. 8

[67] Griewank, A. (2006). Projected hessians for preconditioning in one-step one-shot design
optimization. In Large-Scale Nonlinear Optimization, pages 151–171. Springer. 62

[68] Griewank, A. and Faure, C. (2002). Reduced functions, gradients and hessians from
fixed-point iterations for state equations. Numerical Algorithms, 30(2):113–139. 62

[69] Griewank, A. and Faure, C. (2003). Piggyback differentiation and optimization. In
Large-scale PDE-constrained optimization, pages 148–164. Springer. 1, 2, 3, 62

[70] Griewank, A., Juedes, D., and Utke, J. (1996). Algorithm 755: Adol-c: a package
for the automatic differentiation of algorithms written in c/c++. ACM Transactions on
Mathematical Software (TOMS), 22(2):131–167. 1, 8, 44

[71] Griewank, A. and Walther, A. (2000). Algorithm 799: revolve: an implementation
of checkpointing for the reverse or adjoint mode of computational differentiation. ACM
Transactions on Mathematical Software (TOMS), 26(1):19–45. 1, 9

[72] Guenther, S., Gauger, N. R., and Wang, Q. (2016). Simultaneous single-step one-shot
optimization with unsteady pdes. Journal of Computational and Applied Mathematics,
294:12–22. 2, 62

[73] Haftka, R. T. (1985). Simultaneous analysis and design. AIAA journal, 23(7):1099–
1103. 1, 61

[74] Hall, K. C., Thomas, J. P., and Clark, W. S. (2002). Computation of unsteady nonlinear
flows in cascades using a harmonic balance technique. AIAA journal, 40(5):879–886. 4,
14

[75] Harlow, F. H. (2004). Fluid dynamics in group t-3 los alamos national laboratory:(la-
ur-03-3852). Journal of Computational Physics, 195(2):414–433. 3

[76] Hascoet, L. and Pascual, V. (2013). The Tapenade automatic differentiation tool:
principles, model, and specification. ACM Transactions on Mathematical Software
(TOMS), 39(3):20. 8, 43, 44

103

[77] Hazra, S., Schulz, V., Brezillon, J., and Gauger, N. (2005). Aerodynamic shape
optimization using simultaneous pseudo-timestepping. Journal of Computational Physics,
204(1):46–64. 2, 3, 62

[78] Hazra, S. B. (2008). Multigrid one-shot method for aerodynamic shape optimization.
SIAM Journal on Scientific Computing, 30(3):1527–1547. 61

[79] Hazra, S. B. and Schulz, V. (2004). Simultaneous pseudo-timestepping for pde-model
based optimization problems. Bit Numerical Mathematics, 44(3):457–472. 2, 62

[80] Hazra, S. B. and Schulz, V. (2006). Simultaneous pseudo-timestepping for aerodynamic
shape optimization problems with state constraints. SIAM Journal on Scientific
Computing, 28(3):1078–1099. 62

[81] He, L. and Denton, J. (1993). Three dimensional time-marching inviscid and viscous
solutions for unsteady flows around vibrating blades. In ASME 1993 International Gas
Turbine and Aeroengine Congress and Exposition, pages V001T03A033–V001T03A033.
American Society of Mechanical Engineers. 4

[82] Heres, P. and Schilders, W. (2004). Orthogonalisation in krylov subspace methods for
model order reduction. Scientific Computing in Electrical Engineering, 9. 10

[83] Heres, P. and Schilders, W. (2006). Krylov subspace methods in the electronic industry.
In Progress in Industrial Mathematics at ECMI 2004, pages 139–143. Springer. 10

[84] Hicks, R. M. and Henne, P. A. (1978). Wing design by numerical optimization. Journal
of Aircraft, 15(7):407–412. 2

[85] Hicks, R. M., Murman, E. M., and Vanderplaats, G. N. (1974). An assessment of airfoil
design by numerical optimization. 5

[86] Hirsch, C. (2002). Numerical computation of internal and external flows: volume 2:
computational methods for inviscid and viscous flows. Chichester [etc.]: John Wiley &
Sons. 29

[87] Hirsch, C. (2007). Numerical computation of internal and external flows: The
fundamentals of computational fluid dynamics. Butterworth-Heinemann. 16, 17

[88] Howison, J. and Ekici, K. (2013). Unsteady analysis of wind turbine flows using the
harmonic balance method. In 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition, page 1107. 22

[89] Howison, J., Thomas, J., and Ekici, K. (2015). Aeroelastic analysis of a wind turbine
blade using the harmonic balance method. Wind Energy. 4

[90] Howison, J. C. (2015). Aeroelastic Analysis of a Wind Turbine Blade Using the
Harmonic Balance Method. PhD thesis, University of Tennessee. 22, 29

104

[91] Huang, H. (2013). Shape optimization of turbomachinery blades using an adjoint
harmonic balance method. 45, 81

[92] Huang, H. and Ekici, K. (2011). A harmonic balance method for the analysis of unsteady
flows in cascades. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit, page 5752. 22

[93] Huang, H. and Ekici, K. (2013). An efficient harmonic balance method for unsteady
flows in cascades. Aerospace Science and Technology, 29(1):144–154. 22

[94] Huang, H. and Ekici, K. (2014). A discrete adjoint harmonic balance method for
turbomachinery shape optimization. Aerospace Science and Technology, 39:481–490. 2, 7,
8, 9, 81

[95] Iollo, A., Kuruvila, G., and Ta’asan, S. (1995). Pseudo-time method for optimal shape
design using the euler equations. Technical report, INSTITUTE FOR COMPUTER
APPLICATIONS IN SCIENCE AND ENGINEERING HAMPTON VA. 62

[96] Jameson, A. (1983). Solution of the euler equations for two dimensional transonic flow
by a multigrid method. Appl. Math. Comput, 13(3-4):327–355. 33

[97] Jameson, A. (1986). A vertex based multigrid algorithm for three dimensional
compressible flow calculations. In ASME Symposium on Numerical Methods for
Compressible Flow, Anaheim. 22

[98] Jameson, A. (1988). Aerodynamic design via control theory. Journal of scientific
computing, 3(3):233–260. 1, 6, 7, 37

[99] Jameson, A. (1991). Time dependent calculations using multigrid, with applications to
unsteady flows past airfoils and wings. In 10th Computational Fluid Dynamics Conference,
page 1596. 3

[100] Jameson, A., Alonso, J., and McMullen, M. (2002). Application of a non-linear
frequency domain solver to the euler and navier-stokes equations. In 40th AIAA Aerospace
Sciences Meeting & Exhibit, page 120. 4

[101] Jameson, A. and Baker, T. (1983). Solution of the euler equations for complex
configurations. In 6th Computational Fluid Dynamics Conference Danvers, page 1929.
31

[102] Jameson, A., Martinelli, L., and Pierce, N. (1998). Optimum aerodynamic design using
the navier–stokes equations. Theoretical and computational fluid dynamics, 10(1-4):213–
237. 6, 7

[103] Jameson, A., Schmidt, W., and Turkel, E. (1981). Numerical solution of the euler
equations by finite volume methods using runge kutta time stepping schemes. In 14th
fluid and plasma dynamics conference, page 1259. 23, 25

105

[104] Jaworski, A., Cusdin, P., and Müller, J. (2005). Uniformly converging simultaneous
time-stepping methods for optimal design. Evolutionary and Deterministic Methods for
Design, Optimization and Control with Applications to Industrial and Societal Problems,
EUROGEN. 3

[105] Jespersen, D. C. and Buning, P. G. (1985). Accelerating an iterative process by explicit
annihilation. SIAM Journal on Scientific and Statistical Computing, 6(3):639–651. 10

[106] Jones, D., Müller, J.-D., and Christakopoulos, F. (2011). Preparation and assembly of
discrete adjoint cfd codes. Computers & Fluids, 46(1):282–286. 8

[107] Kaminsky, A. L., Djeddi, R., and Ekici, K. (2017). An efficient reduced-order-model
for accurate projection of adjoint sensitivities. In 55th AIAA Aerospace Sciences Meeting,
page 0037. 2, 11, 66, 81, 87

[108] Kaminsky, A. L., Djeddi, R., and Ekici, K. (2018). Convergence acceleration
of continuous adjoint solvers using a reduced-order model. International Journal for
Numerical Methods in Fluids, 86(9):582–606. 11, 66, 86

[109] Kaminsky, A. L. and Ekici, K. (2016). Sensitivity and stability derivative analysis
using an efficient adjoint harmonic balance technique. AIAA Paper 2016-0808. xi, 7, 47,
118

[110] Kaminsky, A. L. and Ekici, K. (2019). Reduced-order model-based convergence
acceleration of reverse mode discrete adjoint solvers. Aerospace Science and Technology,
93:105334. 11, 66, 83

[111] Kim, S., Alonso, J. J., and Jameson, A. (2004). Multi-element high-lift configuration
design optimization using viscous continuous adjoint method. Journal of Aircraft,
41(5):1082–1097. 7

[112] Knoll, D. A. and Keyes, D. E. (2004). Jacobian-free newton–krylov methods: a survey
of approaches and applications. Journal of Computational Physics, 193(2):357–397. 67

[113] Kuruvila, G., Ta, S., et al. (1995). Airfoil design and optimization by the one-shot
method. 3

[114] Kusch, L. (2020). Robustness Measures and Optimization Strategies for Multi-Objective
Robust Design. Technische Universität Kaiserslautern. 61, 62, 63

[115] Kusch, L., Albring, T., Walther, A., and Gauger, N. R. (2018). A one-shot optimization
framework with additional equality constraints applied to multi-objective aerodynamic
shape optimization. Optimization Methods and Software, 33(4-6):694–707. 2, 62

[116] Landon, R. (2000). Naca 0012 oscillatory and transient pitching. Technical report,
AIRCRAFT RESEARCH ASSOCIATION LTD BEDFORD (UNITED KINGDOM). 54

106

[117] Lassaux, G. (2002). High-fidelity reduced-order aerodynamic models: Application to
active control of engine inlets. PhD thesis, Massachusetts Institute of Technology. 10

[118] Launder, B. E. and Spalding, D. B. (1983). The numerical computation of turbulent
flows. In Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pages
96–116. Elsevier. 16

[119] LeGresley, P. and Alonso, J. (2001). Investigation of non-linear projection for pod
based reduced order models for aerodynamics. In 39th Aerospace Sciences Meeting and
Exhibit, page 926. 10

[120] Leung, T. M. and Zingg, D. W. (2012). Aerodynamic shape optimization of wings
using a parallel Newton-Krylov approach. AIAA Journal, 50(3):540–550. 85, 90

[121] Li, H. and Ekici, K. (2018). An improved one-shot approach for modeling viscous
transonic limit cycle oscillations. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, page 0460. 3

[122] Liem, R. P., Kenway, G. K., and Martins, J. R. (2015). Multimission aircraft fuel-burn
minimization via multipoint aerostructural optimization. AIAA Journal, 53(1):104–122.
2

[123] Lions, J. L. (1971). Optimal control of systems governed by partial differential
equations problèmes aux limites. 6

[124] Liu, F., Cai, J., Zhu, Y., Tsai, H., and F. Wong, A. (2001). Calculation of wing flutter
by a coupled fluid-structure method. Journal of Aircraft, 38(2):334–342. 4

[125] Liu, Y., Zhang, W., and Kou, J. (2018). Mode multigrid-a novel convergence
acceleration method. arXiv preprint arXiv:1802.08962. 10

[126] Loeve, M. (1978). Probability theory, vol. ii. Graduate texts in mathematics, 46:0–387.
9

[127] Lozano, C. (2016). A note on the dual consistency of the discrete adjoint quasi-
one-dimensional euler equations with cell-centered and cell-vertex central discretizations.
Computers & Fluids, 134:51–60. 50

[128] Lozano, C. and Ponsin, J. (2012). Remarks on the numerical solution of the adjoint
quasi-one-dimensional euler equations. International Journal for Numerical Methods in
Fluids, 69(5):966–982. xi, xii, 6, 36, 38, 40, 50, 74, 130, 144

[129] Lucia, D. J., Beran, P. S., and Silva, W. A. (2004). Reduced-order modeling: new
approaches for computational physics. Progress in Aerospace Sciences, 40(1-2):51–117. 9,
64

107

[130] Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric
Turbulence and Radio Wave Propagation, 790:166–178. 10

[131] Luo, J., Xiong, J., Liu, F., and McBean, I. (2011). Three-dimensional aerodynamic
design optimization of a turbine blade by using an adjoint method. Journal of
Turbomachinery, 133(1):011026. 7

[132] Lyu, Z., Xu, Z., and Martins, J. (2014). Benchmarking optimization algorithms for
wing aerodynamic design optimization. In Proceedings of the 8th International Conference
on Computational Fluid Dynamics, Chengdu, Sichuan, China, volume 11, page 585. 2

[133] Mader, C. A. and Martins, J. R. (2014). Computing stability derivatives and their
gradients for aerodynamic shape optimization. AIAA Journal, 52(11):2533–2546. 54, 56

[134] Mader, C. A., RA Martins, J., Alonso, J. J., and Der Weide, E. V. (2008). Adjoint: An
approach for the rapid development of discrete adjoint solvers. AIAA journal, 46(4):863–
873. 8, 10

[135] Mader, C. A. and RA Martins, J. R. (2012). Derivatives for time-spectral
computational fluid dynamics using an automatic differentiation adjoint. AIAA journal,
50(12):2809–2819. 9

[136] Maple, R. C., King, P. I., Orkwis, P. D., and Wolff, J. M. (2004). Adaptive harmonic
balance method for nonlinear time-periodic flows. Journal of Computational Physics,
193(2):620–641. 4

[137] Markovinović, R. and Jansen, J. (2006). Accelerating iterative solution methods using
reduced-order models as solution predictors. International Journal for Numerical Methods
in Engineering, 68(5):525–541. 9, 11, 64, 77

[138] Martinelli, L. and Jameson, A. (1988). Validation of a multigrid method for the
reynolds averaged equations. In 26th Aerospace Sciences Meeting, page 414. 51, 52

[139] Martinelli, L., Jameson, A., and Grasso, F. (1986). A multigrid method for the navier
stokes equations. In 24th Aerospace Sciences Meeting, page 208. 25

[140] Martins, J., Alonso, J., and Reuther, J. (2002). Complete configuration aero-structural
optimization using a coupled sensitivity analysis method. In 9th AIAA/ISSMO symposium
on multidisciplinary analysis and optimization, page 5402. 1, 7

[141] Martins, J. R. (2022). Aerodynamic design optimization: Challenges and perspectives.
Computers & Fluids, 239:105391. 1, 6, 7, 37

[142] Martins, J. R., Alonso, J. J., and Reuther, J. (2001). Aero-structural wing design
optimization using high-fidelity sensitivity analysis. Technical report, NATIONAL
AERONAUTICS AND SPACE ADMINISTRATION MOFFETT FIELD CA AMES
RESEARCH CENTER. 1, 7

108

[143] Martins, J. R., Alonso, J. J., and Reuther, J. J. (2005). A coupled-adjoint sensitivity
analysis method for high-fidelity aero-structural design. Optimization and Engineering,
6(1):33–62. 1, 7

[144] Martins, J. R. and Ning, A. (2021). Engineering design optimization. Cambridge
University Press. 35

[145] Martins, J. R., Sturdza, P., and Alonso, J. J. (2003). The complex-step derivative
approximation. ACM Transactions on Mathematical Software (TOMS), 29(3):245–262. 5

[146] Masters, D. A., Taylor, N. J., Rendall, T., Allen, C. B., and Poole, D. J. (2017).
Geometric comparison of aerofoil shape parameterization methods. AIAA Journal. 5

[147] Mavriplis, D. J. and Jameson, A. (1990). Multigrid solution of the navier-stokes
equations on triangular meshes. AIAA journal, 28(8):1415–1425. 26

[148] McMullen, M. S. and Jameson, A. (2006). The computational efficiency of non-linear
frequency domain methods. Journal of Computational Physics, 212(2):637–661. 4

[149] Nadarajah, S. and Jameson, A. (2000). A comparison of the continuous and discrete
adjoint approach to automatic aerodynamic optimization. In 38th Aerospace Sciences
Meeting and Exhibit, page 667. 6, 37

[150] Nadarajah, S. and Jameson, A. (2007). Optimum shape design for unsteady three-
dimensional viscous flows using a nonlinear frequency-domain method. Journal of Aircraft,
44(5):1513–1527. 7

[151] Nadarajah, S., McMullen, M., and Jameson, A. (2003). Optimum shape design for
unsteady flow using time accurate and nonlinear frequency domain methods. AIAA Pap,
(2003-3875). 7

[152] Neidinger, R. D. (2010). Introduction to automatic differentiation and matlab object-
oriented programming. SIAM review, 52(3):545–563. 8

[153] Newman III, J. C., Taylor III, A. C., Barnwell, R. W., Newman, P. A., and Hou,
G. J.-W. (1999). Overview of sensitivity analysis and shape optimization for complex
aerodynamic configurations. Journal of Aircraft, 36(1):87–96. 36

[154] Nielsen, E. J. (1998). Aerodynamic design sensitivities on an unstructured mesh using
the Navier-Stokes equations and a discrete adjoint formulation. PhD thesis, Virginia Tech.
7

[155] Nielsen, E. J. and Anderson, W. K. (1999). Aerodynamic design optimization on
unstructured meshes using the navier-stokes equations. AIAA journal, 37(11):1411–1419.
7

[156] Nocedal, J. and Wright, S. J. (1999). Numerical optimization. Springer. 60, 90

109

[157] Özkaya, E. (2014). One-shot methods for aerodynamic shape optimization. PhD thesis,
Aachen. Zsfassung in dt. und engl. Sprache; Aachen, Techn. Hochsch., Diss., 2014. 62

[158] Özkaya, E. and Gauger, N. R. (2009). Single-step one-shot aerodynamic shape
optimization. In Optimal control of coupled systems of partial differential equations, pages
191–204. Springer. 2, 61, 63

[159] Philibert, J. (2006). One and a half century of diffusion: Fick, einstein, before and
beyond. Diffusion fundamentals, 4(6):1–19. 15

[160] Pierce, N. A. and Giles, M. B. (2000). Adjoint recovery of superconvergent functionals
from pde approximations. SIAM review, 42(2):247–264. 1

[161] Pulliam, T., Nemec, M., Holst, T., and Zingg, D. (2003). Comparison of evolutionary
(genetic) algorithm and adjoint methods for multi-objective viscous airfoil optimizations.
In 41st Aerospace Sciences Meeting and Exhibit, page 298. 2

[162] Ramsay, R., Hoffman, M., and Gregorek, G. (1995). Effects of grit roughness and
pitch oscillations on the s809 airfoil. Technical report, National Renewable Energy Lab.,
Golden, CO (United States). 83

[163] Rasch, A., Bucker, H. M., and Bischof, C. H. (2008). Automatic computation of
sensitivities for a parallel aerodynamic simulation. Parallel Computing: Architectures,
Algorithms and Applications. Advances in Parallel Computing, 15:303–310. 6

[164] Reuther, J., Jameson, A., Farmer, J., Martinelli, L., and Saunders, D. (1996).
Aerodynamic shape optimization of complex aircraft configurations via an adjoint
formulation. In 34th Aerospace Sciences Meeting and Exhibit, page 94. 1, 7

[165] Reuther, J. J., Jameson, A., Alonso, J. J., Rimlinger, M. J., and Saunders, D. (1999).
Constrained multipoint aerodynamic shape optimization using an adjoint formulation and
parallel computers, part 1. Journal of aircraft, 36(1):51–60. 1, 7

[166] Rewienski, M. and White, J. (2003). A trajectory piecewise-linear approach to model
order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE
Transactions on computer-aided design of integrated circuits and systems, 22(2):155–170.
10

[167] Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the
determination of the criterion. Philosophical Transactions of the Royal Society of London.
A, 186:123–164. 17

[168] Rowley, C. W. (2002). Modeling, simulation, and control of cavity flow oscillations.
PhD thesis, California Institute of Technology. 10

[169] Rowley, C. W. (2005). Model reduction for fluids, using balanced proper orthogonal
decomposition. International Journal of Bifurcation and Chaos, 15(03):997–1013. 79

110

[170] Rumsey, C. L., Sanetrik, M. D., Biedron, R. T., Melson, N. D., and Parlette, E. B.
(1996). Efficiency and accuracy of time-accurate turbulent navier-stokes computations.
Computers & Fluids, 25(2):217–236. 4

[171] Schilders, W. H., Van der Vorst, H. A., and Rommes, J. (2008). Model order reduction:
theory, research aspects and applications, volume 13. Springer. 9

[172] Shiriaev, D. and Griewank, A. (1996). Adol-f: Automatic differentiation of fortran
codes. Computational Differentiation: Techniques, Applications, and Tools, pages 375–
384. 44

[173] Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. i. coherent
structures. Quarterly of Applied Mathematics, 45(3):561–571. 10

[174] Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., and
Mavriplis, D. (2014). Cfd vision 2030 study: a path to revolutionary computational
aerosciences. 1

[175] Sobieszczanski-Sobieski, J. (1987). The case for aerodynamic sensitivity analysis. 5

[176] Somers, D. M. (1997). Design and experimental results for the s809 airfoil. Technical
report, National Renewable Energy Lab., Golden, CO (United States). 83, 84, 87, 88

[177] Spalart, P. and Allmaras, S. (1992). A one-equation turbulence model for aerodynamic
flows. In 30th aerospace sciences meeting and exhibit, page 439. 16, 18

[178] Spiker, M., Thomas, J., Hall, K., Kielb, R., and Dowell, E. (2006). Modeling
cylinder flow vortex shedding with enforced motion using a harmonic balance approach.
In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th, page 1965. 4

[179] STOKES, G. (1845). On the theories of internal friction of fluids in motion. Trans.
Camb. Philos. Soc., 8:287–305. 16

[180] Sutherland, W. (1893). Lii. the viscosity of gases and molecular force. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 36(223):507–531.
16

[181] Swanson, R. C. and Turkel, E. (1992). On central-difference and upwind schemes.
Journal of computational physics, 101(2):292–306. 24, 52, 53

[182] Ta’asan, S., Kuruvila, G., and Salas, M. (1992). Aerodynamic design and optimization
in one shot. In 30th aerospace sciences meeting and exhibit, page 25. 1, 61

[183] Tai, C.-H., Sheu, J.-H., and Tzeng, P.-Y. (1996). Improvement of explicit multistage
schemes for central spatial discretization. AIAA journal, 34(1):185–188. 27

111

[184] Taasan, S. (1995). Pseudo-time methods for constrained optimization problems
governed by pde. Technical report. 2, 62

[185] Thomas, J. P., Dowell, E. H., and Hall, K. C. (2002). Nonlinear inviscid aerodynamic
effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA journal,
40(4):638–646. 4

[186] Thomas, J. P., Dowell, E. H., and Hall, K. C. (2004). Modeling viscous transonic
limit cycle oscillation behavior using a harmonic balance approach. Journal of aircraft,
41(6):1266–1274. 4

[187] Thomas, J. P., Dowell, E. H., and Hall, K. C. (2010). Using automatic differentiation to
create a nonlinear reduced-order-model aerodynamic solver. AIAA journal, 48(1):19–24.
43

[188] Thomas, J. P., Hall, K. C., and Dowell, E. H. (2005). Discrete adjoint approach for
modeling unsteady aerodynamic design sensitivities. AIAA journal, 43(9):1931–1936. 6,
8

[189] Thress, J., Kaminsky, A., Djeddi, R., and Ekici, K. (2022). Monolithic one-shot
optimization for time-periodic flows using harmonic balance. AIAA Journal, 60(6):3539–
3554. 62

[190] Tiwary, S. K. and Rutenbar, R. A. (2006). Faster, parametric trajectory-based
macromodels via localized linear reductions. In Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, pages 876–883. ACM. 10

[191] Tjoa, I. B. and Biegler, L. T. (1991). Simultaneous solution and optimization
strategies for parameter estimation of differential-algebraic equation systems. Industrial
& Engineering Chemistry Research, 30(2):376–385. 62

[192] Turkel, E., Swanson, R., Vatsa, V., and White, J. (1991). Multigrid for hypersonic
viscous two-and three-dimensional flows. In 10th Computational Fluid Dynamics
Conference, page 1572. 31

[193] Van Der Weide, E., Gopinath, A., and Jameson, A. (2005). Turbomachinery
applications with the time spectral method. In 35th AIAA Fluid Dynamics Conference
and Exhibit, page 4905. 27

[194] Van Zante, D., Chen, J., Hathaway, M., and Chriss, R. (2008). The influence of
compressor blade row interaction modeling on performance estimates from time-accurate,
multistage, navier–stokes simulations. Journal of Turbomachinery, 130(1):011009. 3

[195] Vassberg, J. C. and Jameson, A. (2010). In pursuit of grid convergence for two-
dimensional euler solutions. Journal of Aircraft, 47(4):1152–1166. 54, 56, 84

112

[196] Veldman, A. (2005). Quasi-simultaneous viscous-inviscid interaction for transonic
airfoil flow. In 4th AIAA Theoretical Fluid Mechanics Meeting, page 4801. 52

[197] Wang, D. and He, L. (2010). Adjoint aerodynamic design optimization for
blades in multistage turbomachines—part i: Methodology and verification. Journal of
Turbomachinery, 132(2):021011. 7

[198] Wang, D., He, L., Li, Y., and Wells, R. (2010). Adjoint aerodynamic design
optimization for blades in multistage turbomachines—part ii: Validation and application.
Journal of Turbomachinery, 132(2):021012. 2, 7

[199] Wang, Q. (2009). Uncertainty quantification for unsteady fluid flow using adjoint-based
approaches. Stanford University. 9, 46

[200] Wang, Q., Moin, P., and Iaccarino, G. (2009). Minimal repetition dynamic
checkpointing algorithm for unsteady adjoint calculation. SIAM Journal on Scientific
Computing, 31(4):2549–2567. 8

[201] Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced
turbulence models. AIAA journal, 26(11):1299–1310. 16

[202] Willcox, K., Peraire, J., and White, J. (2002). An arnoldi approach for generation of
reduced-order models for turbomachinery. Computers & fluids, 31(3):369–389. 10

[203] Wolfe, W. and Ochs, S. (1997). CFD calculations of S809 aerodynamic characteristics.
AIAA Paper 97–0973. 88, 160

[204] Wright, S. and Nocedal, J. (1999). Numerical optimization. Springer Science, 35(67-
68):7. 3, 87

[205] Wu, H.-Y., Yang, S., Liu, F., and Tsai, H.-M. (2003). Comparison of three geometric
representations of airfoils for aerodynamic optimization. In AIAA Paper. Citeseer. 81

[206] Wynn, P. (1962). Acceleration techniques for iterated vector and matrix problems.
Mathematics of Computation, 16(79):301–322. 10

[207] Yang, Y.-J. and Shen, K.-Y. (2004). Nonlinear heat-transfer macromodeling for mems
thermal devices. Journal of micromechanics and microengineering, 15(2):408. 10

[208] Zhu, C., Byrd, R. H., Lu, P., and Nocedal, J. (1997). Algorithm 778: L-BFGS-B:
Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions
on Mathematical Software (TOMS), 23(4):550–560. 88

[209] Zou, X., Navon, I. M., Berger, M., Phua, K. H., Schlick, T., and Le Dimet, F.-X.
(1993). Numerical experience with limited-memory quasi-Newton and truncated Newton
methods. SIAM Journal on Optimization, 3(3):582–608. 85

113

[210] Zymaris, A., Papadimitriou, D., Giannakoglou, K., and Othmer, C. (2009). Continuous
adjoint approach to the spalart–allmaras turbulence model for incompressible flows.
Computers & Fluids, 38(8):1528–1538. 7, 42

114

Appendix

115

Table 1: Coefficients for hybrid multistage Runge–Kutta scheme

Stage α β

1 0.2500 1.0000
2 0.1667 0.0000
3 0.3750 0.5600
4 0.5000 0.0000
5 1.0000 0.4400

Table 2: Flow condition at far field boundary for one-dimensional flow.

Condition Extrapolated Specified
Subsonic inlet 1 2
Subsonic outlet 2 1
Supersonic inlet 3 0
Supersonic outlet 0 3

116

Figure 1: Nested gradient-based design-optimization flow chart.

117

(a) t0 (b) t0 + ∆T (c) t0 + 2∆T (d) t0 + 3∆T

(e) t0 + 4∆T (f) t0 + 5∆T (g) t0 + 6∆T

Figure 2: Sub-time level Mach number contours for a pitching NACA 0012. [109]

(a) Cell-vertex (b) Cell-centered

Figure 3: Spatial discretization using (a) cell-vertex and (b) cell-centered schemes [16].

118

Figure 4: The auxiliary control volume for derivative evaluation in a cell-centered
scheme [16].

Figure 5: Ghost cell indices across solid boundary.

119

(a) Subsonic (b) Supersonic

Figure 6: Characteristics at the flow inlet for (a) subsonic and (b) supersonic flow.

Figure 7: Typical convergence history of an explicit steady state solver.

120

(a) Multigrid cycle (b) p! (c) 2h (d) 4h

Figure 8: The multigrid cycle from fine to coarse and back. Here • denotes restriction and
◦ corresponds to prolongation.

(a) Restriction (b) Prolongation

Figure 9: Cell-centered multigrid (a) Restriction and (b) Prolongation. Here are the
centers of the fine grid and ■ is the center of the coarse grid.

121

Figure 10: Forward mode operator overloading for multiplication.

122

Figure 11: Code utilizing operator overloading.

123

Figure 12: Forward Mode Automatic Differentiation of Convective Flux Subroutine.

124

Figure 13: Simplified flow solver code.

Figure 14: Automatically differentiated flow solver code.

Figure 15: Reverse mode AD sensitivity calculation flow chart.

125

Figure 16: Simplified flow solver code.

Figure 17: Unsteady adjoint code from brute force automatic differentiation.

126

(a) (b)

Figure 18: (a) Pseudo-code for the forward pass and (b) Pseudo-code for the reverse pass
using brute force AD. Adapted from Christakopoulos et al. [27].

Figure 19: Pseudo-code for the reverse pass using the primal time-stepping adjoint AD
approach. Adapted from Christakopoulos et al. [27]

127

Table 3: RAE 2822 AGARD case parameters and computational corrections

Case Mach α αcor Re CL CD CM

AGARD Case 1 0.676 2.4◦ 1.83◦ 5.7× 106 0.566 0.0085 -0.082
AGARD Case 6 0.725 2.92◦ 2.44◦ 6.5× 106 0.743 0.017 -0.095
AGARD Case 9 0.73 3.19◦ 2.79◦ 6.5× 106 0.803 0.0168 -0.099

Table 4: RAE 2822 AGARD case 1 experimental and CFD results

Case Mach α Re CL CD CM

AGARD Case 1 0.676 2.4◦ 5.7× 106 0.566 0.0085 -0.082
Case 1 CFD Correction 0.676 1.83◦ 5.7× 106 0.562 0.0094 -0.083

Table 5: Computational cost for convergence acceleration techniques

Acceleration method Iterations Time (s)
Baseline 27155 1111.01
Residual smoothing 13440 791.91
1-level multigrid 8747 647.4
2-level multigrid 6989 602.35
2-level multigrid and residual smoothing 4798 526.82

Table 6: RAE 2822 AGARD case 6 parameters and computational corrections

Case Mach α Re CL CD CM

AGARD Case 6 0.725 2.92◦ 6.5× 106 0.743 0.017 -0.095
Case 6 CFD Correction 0.725 2.44◦ 6.5× 106 0.744 0.012 -0.088

128

0 0.5 1 1.5 2
x

0

0.5

1

1.5

2

2.5

C
ro

s
s
-s

e
c
ti

o
n

a
l

a
re

a

Figure 20: The cross-sectional area of the nozzle is defined by a sinusoidal decrease near
the throat.

0 10000 20000 30000 40000 50000
Iterations

-18

-16

-14

-12

-10

-8

-6

-4

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Flow solution

(a)

0 0.5 1 1.5 2
x

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

M
a
c
h

Analytic

Numeric

(b)

Figure 21: Fully subsonic nozzle solution (a) convergence history and (b) Mach number
distribution.

129

0 10000 20000 30000 40000
Iteration

-18

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Adjoint solution

(a)

0 0.5 1 1.5 2
x

-2.5

-2

-1.5

-1

-0.5

0

0.5

ψ
1
 Lozano

ψ
2
 Lozano

ψ
3
 Lozano

ψ
1

ψ
2

ψ
3

(b)

Figure 22: Adjoint solver (a) convergence history and (b) comparison of the adjoint solution
vector with that of Lozano and Ponsin [128].

0 0.5 1 1.5 2
x

0.00

0.50

1.00

1.50

2.00

2.50

M
a
c
h

Giles and Pierce

Present solver

(a)

0 0.5 1 1.5 2
x

-1

-0.5

0

0.5

1

ψ
1
 Giles and Pierce

ψ
2
 Giles and Pierce

ψ
3
 Giles and Pierce

ψ
1

ψ
2

ψ
3

(b)

Figure 23: Transonic nozzle (a) Mach number distribution and (b) adjoint vector solution
both match the values reported by Giles and Pierce [62].

130

0.5 1 1.5
x

0.50

1.00

1.50

M
a

c
h

Giles and Pierce

Present solver

(a)

0 0.5 1 1.5 2
x

-1.5

-1

-0.5

0

0.5

1

1.5

ψ
1
 Giles and Pierce

ψ
2
 Giles and Pierce

ψ
3
 Giles and Pierce

ψ
1

ψ
2

ψ
3

(b)

Figure 24: Shocked nozzle (a) Mach number distribution and (b) adjoint vector solution
match those of Giles and Pierce [62].

Figure 25: RAE 2822 viscous grid

131

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x/c

-1

0

1

C
p

Experimental

External

(a)

0 5000 10000 15000 20000 25000
Iteration

-14

-12

-10

-8

-6

-4

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Baseline
Residual smoothing

1-level multigrid

2-level multigrid

2-level multigrid and residual smoothing

(b)

Figure 26: (a) Pressure coefficient distribution and (b) convergence history for the RAE
2822 airfoil at AGARD case 1.

0 1 2 3 4
Angle of attack

0.2

0.4

0.6

0.8

1

C
L

Giles et al.
External

Figure 27: Lift coefficient for varying angles of attack over RAE 2822 at M = 0.725 and
Re = 6.5× 106

132

Table 7: A comparison of sensitivity values for AGARD case 6

Angle of Finite Difference Forward Adjoint Giles et al.[57]
Attack ∂CL/∂α ∂CL/∂α ∂CL/∂α ∂CL/∂α

0.0◦ 0.18107899396602 0.18140763446056 0.18140763446064 –
1.0◦ 0.18568505799621 0.18568442138793 0.18568442138789 –
2.0◦ 0.19174383003584 0.19174270151729 0.19174270151725 0.18150481

3.0◦ 0.14459725394822 0.14459765476313 0.14459765476312 0.13987362

Table 8: A comparison of sensitivity values at different iterations

Forward Adjoint
Iteration ∂CL/∂α ∂CL/∂α

1 −0.000149042721458 −0.000149042721454
100 −0.000148838511933 −0.000148838511934
1000 0.175702978918253 0.175702978918575
10000 0.181269644794812 0.181269644794956

Table 9: RAE 2822 AGARD case 9 parameters and computational corrections

Case Mach α Re CL CD CM

AGARD Case 9 0.73 3.19◦ 6.5× 106 0.803 0.0168 -0.099
Case 9 CFD Correction 0.734 2.79◦ 6.5× 106 0.807 0.0164 -0.090

1Provided for angle of attack range 1.4 < α< 2.4 .
2Provided for angle of attack range 2.4 < α< 3.4 .

133

0 1 2 3 4
Angle of Attack

0.2

0.4

0.6

0.8

1

C
L

Giles el al.
External
∂ C

L
 / ∂ α

Figure 28: AGARD Case 6 lift coefficients and sensitivity to angle of attack.

-0.2 0 0.2 0.4 0.6 0.8 1
x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
P

Experimental

External
Swanson & Turkel

(a) (b)

Figure 29: (a) Pressure coefficient and (b) Mach contours for the RAE airfoil at M = 0.734,
α = 2.79◦, and 6.5× 106.

134

Figure 30: NACA 0012 inviscid grid

135

(a) t0 (b) t0 + ∆T (c) t0 + 2∆T (d) t0 + 3∆T

(e) t0 + 4∆T (f) t0 + 5∆T (g) t0 + 6∆T

Figure 31: Harmonic balance unsteady Mach number contours for unsteady NACA 0012
case at each sub-time.

-0.04 -0.02 0 0.02 0.04
-0.4

-0.2

0

0.2

0.4

3 harmonics

5 harmonics

7 harmonics

Ronch time accurate solution

C
N

α (rad)

(a)

-0.04 -0.02 0 0.02 0.04
-0.02

-0.01

0

0.01

0.02

3 harmonics

5 harmonics

7 harmonics

Ronch time accurate

C
m

α (rad)

(b)

Figure 32: NACA 0012 (a) normal force and(b) pitching moment coefficients vs. α. Note:
Ronch data is digitized from Ref.[33]

136

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

7 harmonics

Ronch time accurate

M
ea
n
(−

C
p
)

x/c

(a)

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4 7 harmonics

Ronch time accurate

Im
a
g
(−

C
p
)

x/c

(b)

Figure 33: NACA 0012 (a) zeroth and (b) first harmonic imaginary unsteady surface
pressure coefficient distribution

-0.005 0 0.005
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

solution

1 harmonic

2 harmonics

3 harmonics

derivative estimate

C
L

α (rad)

Figure 34: Typical harmonic balance solutions: CL vs. α for an oscillating flat plate

137

-0.0004 -0.0002 0 0.0002 0.0004
-0.006

-0.004

-0.002

0

0.002

0.004

0.006

1 harmonic

2 harmonics

3 harmonics

derivative estimate

α̇ (rad/s)

R
C

i

Figure 35: Typical harmonic balance solutions: RCL
vs. α̇ for an oscillating flat plate

Figure 36: NACA 0012 inviscid grid

138

0 0.1 0.2 0.3 0.4 0.5
Reduced frequency (k)

3

4

5

6

7

Harmonic balance NACA 0012
Harmonic balance flat plate

Theodorsen

C
L

α

(a) CLα

0 0.1 0.2 0.3 0.4 0.5
Reduced frequency (k)

-2

-1.8

-1.6

-1.4

-1.2

-1

Harmonic balance NACA 0012
Harmonic balance flat plate

Theodorsen
C

m
α

(b) Cmα

0 0.1 0.2 0.3 0.4 0.5
Reduced frequency (k)

-30

-25

-20

-15

-10

-5

0

Harmonic balance NACA 0012
Harmonic balance flat plate

Theodorsen

C
L

α̇

(c) CLα̇

0 0.1 0.2 0.3 0.4 0.5
Reduced frequency (k)

-2

0

2

4

6

Harmonic balance NACA 0012
Harmonic balance flat plate

Theodorsen

C
m

α̇

(d) Cmα̇

Figure 37: NACA 0012 time-spectral stability derivative verification

139

0 0.1 0.2 0.3 0.4 0.5
Reduced frequency (k)

3

4

5

6

7

Harmonic balance NACA 0012
Harmonic balance flat plate

Theodorsen
Adjoint static derivative

Adjoint dynamic stability derivatives

C
L

α

Figure 38: Comparison of adjoint dCLα/dk derivatives with time-spectral dynamic stability
profile

0 0.1 0.2 0.3 0.4 0.5
Reduced frequency (k)

-15

-10

-5

0

finite difference
adjoint sensitivities

d
C

L
α
/
d
k

Figure 39: Comparison of dCLα/dk calculated via an adjoint approach and finite difference

140

Table 10: Snapshot collection parameters for the varied initial snapshot location cases

Initial Snapshot Snapshot Convergence Percent
Case Snapshot Count Interval Iteration Reduction (%)
Baseline - - - 50,494 -
First snapshot at 10,000 10,000 401 10 33,762 33.1%
First snapshot at 11,000 11,000 401 10 31,924 36.8%
First snapshot at 12,000 12,000 401 10 32,031 36.6%
First snapshot at 13,000 13,000 401 10 32,881 34.9%
First snapshot at 14,000 14,000 401 10 34,016 32.6%

Table 11: Iteration reduction for increasing snapshot count

Case First snapshot Snapshot span Converge Reduction Time
(Iteration) (Iterations) (Iteration) (%) (Normalized)

Baseline - - 31175 - 1.0
11 snapshots 500 320 28790 7.65 0.935
21 snapshots 500 320 26361 15.44 0.859
41 snapshots 500 320 20230 35.11 0.663
81 snapshots 500 320 14656 52.99 0.499
161 snapshots 500 320 15595 49.98 0.550

141

Figure 40: RAE 2822 viscous grid.

142

-0.2 0 0.2 0.4 0.6 0.8 1
x/c

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Subtime 1
Subtime 2
Subtime 3
Subtime 4
Subtime 5

Figure 41: Surface pressure distributions for the five harmonic balance sub-time solutions.

0 20000 40000 60000 80000 1e+05
Iteration

-20

-16

-12

-8

-4

L
o
g

1
0
(G

lo
b
a
l
R

e
s
id

u
a
l)

Figure 42: Unaccelerated harmonic balance primal solution convergence history.

143

0 10000 20000 30000 40000 50000 60000
Iterations

-20

-15

-10

-5

L
o
g

1
0
(G

lo
b
a
l
R

e
s
id

u
a
l)

Baseline (No Acceleration)

First Snapshot at 10K iterations

First Snapshot at 11K iterations

First Snapshot at 12K iterations

First Snapshot at 13K iterations

First Snapshot at 14K iterations

Figure 43: Comparison of the convergence history of the primal harmonic balance solver
accelerated with the reduced-order model-base acceleration technique.

0 10000 20000 30000 40000
Iteration

-18

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Adjoint solution

(a)

0 0.5 1 1.5 2
x

-2.5

-2

-1.5

-1

-0.5

0

0.5

ψ
1
 Lozano

ψ
2
 Lozano

ψ
3
 Lozano

ψ
1

ψ
2

ψ
3

(b)

Figure 44: Adjoint solver (a) convergence history and (b) comparison of the adjoint solution
vector with that of Lozano and Ponsin [128].

144

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
al

 r
es

id
u
al

)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

Figure 45: Convergence history achieved by varying snapshot count: increased snapshot
quantities improve convergence acceleration

0 0.5 1 1.5 2
x

0

0.1

0.2

0.3

0.4

0.5

 ψ
1

Fully converged

Last snapshot

Projection (11 snapshots)

Projection (21 snapshots)

Projection (41 snapshots)

Projection (81 snapshots)

Projection (161 snapshots)

(a)
0 0.5 1 1.5 2

x

-2.5

-2

-1.5

-1

-0.5

0

 ψ
2

Fully converged

Last snapshot

Projection (11 snapshots)

Projection (21 snapshots)

Projection (41 snapshots)

Projection (81 snapshots)

Projection (161 snapshots)

(b)
0 0.5 1 1.5 2

x

0

0.05

0.1

0.15

 ψ
3

Fully converged

Last snapshot

Projection (11 snapshots)

Projection (21 snapshots)

Projection (41 snapshots)

Projection (81 snapshots)

Projection (161 snapshots)

(c)

Figure 46: Projected adjoint vector profiles offer considerable improvement over the adjoint
vector profile of the most converged snapshot.

145

0 0.5 1 1.5 2
x

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

L
o

g
1

0
| ψ

P
ro

j
-

ψ

1
|

Last snapshot

Projection (11 snapshots)

Projection (21 snapshots)

Projection (41 snapshots)

Projection (81 snapshots)

Projection (161 snapshots)

(a)
0 0.5 1 1.5 2

x

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

L
o

g
1

0
| ψ

P
ro

j
-

ψ

2
|

Last snapshot

Projection (11 snapshots)

Projection (21 snapshots)

Projection (41 snapshots)

Projection (81 snapshots)

Projection (161 snapshots)

(b)
0 0.5 1 1.5 2

x

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

L
o

g
1

0
 |

ψ
P

ro
j

-

ψ

3
 |

Last snapshot

Projection (11 snapshots)

Projection (21 snapshots)

Projection (41 snapshots)

Projection (81 snapshots)

Projection (161 snapshots)

(c)

Figure 47: The differences between the projected adjoint vector profiles and converged
values show that the projections significantly improve the present solution.

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
al

 r
es

id
u
al

)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(a)

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o

g
1

0
(G

lo
b

a
l
re

s
id

u
a

l)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(b)

Figure 48: Multiple applications of the convergence acceleration technique (a) using double
precision reaches an artificial convergence limit but (b) using quadruple precision eliminates
this limit.

146

Table 12: Acceleration performance for increasing snapshot counts

Case First snapshot Interval Convergence Reduction Relative reduction
(Iteration) (Iterations) (Iteration) (%) (%)

Baseline - - 31175 - -
11 snapshots 2 32 33144 -6.32 -
11 snapshots 500 32 28792 7.64 13.13
21 snapshots 2 16 27239 12.14 -
21 snapshots 500 16 26361 15.44 3.75
41 snapshots 2 8 26296 15.65 -
41 snapshots 500 8 20230 35.11 23.07
81 snapshots 2 4 27666 11.26 -
81 snapshots 500 4 10613 65.96 61.64
161 snapshots 2 2 25403 18.51 -
161 snapshots 500 2 7946 74.51 68.72

Table 13: Iteration reduction for increasing snapshot count with a single application

Case First snapshot Snapshot span Converge Reduction Time
(Iteration) (Iterations) (Iteration) (%) (Normalized)

Baseline - - 11267 - 1.0
Multigrid (1 level) - - 4755 57.80 0.674
Multigrid (2 levels) - - 3967 64.80 0.756
11 snapshots 1500 640 10971 2.63 0.991
21 snapshots 1500 640 9514 15.56 0.883
41 snapshots 1500 640 9368 16.85 0.893
81 snapshots 1500 640 5899 47.65 0.659
161 snapshots 1500 640 6236 44.65 0.788

147

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2
L

o
g

1
0
(G

lo
b

al
 r

es
id

u
al

)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(a)

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o

g
1
0
(G

lo
b

al
 r

es
id

u
al

)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(b)

Figure 49: Convergence acceleration using orthogonal basis vectors with snapshot collection
beginning at (a) iteration 500 and (b) iteration 2.

0 10000 20000 30000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o

g
1

0
(G

lo
b

a
l
re

s
id

u
a

l)

Traditional method
Iteration 2
Iteration 500
Iteration 1000
Iteration 1500
Iteration 2000
Iteration 2500
Iteration 3000
Iteration 4000
Iteration 5000
Iteration 6000
Iteration 7000
Iteration 8000

Figure 50: Delaying the first iteration location for the 41 snapshot case improves projections
until a gradual plateau is reached.

148

0 1000 2000 3000 4000 5000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2
L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Traditional method
41 snapshots

81 snapshots

161 snapshots

(a)

0 1000 2000 3000 4000 5000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Traditional method
41 snapshots

81 snapshots

161 snapshots

(b)

Figure 51: Convergence acceleration using multiple applications of the POD-based
correlation technique with snapshot collection beginning at (a) iteration 2 and (b) iteration
500.

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Traditional method
1 span delay

3 span delay

5 span delay

9 span delay

13 span delay

15 span delay

Figure 52: Convergence acceleration using multiple applications of the POD-based
correlation technique stabilized by increasing the delay between acceleration cycles for 21
snapshots

149

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Traditional method
21 snapshot (13 span delay)

41 snapshot (13 span delay)

Figure 53: Convergence acceleration using multiple applications of the POD-based
acceleration technique delayed 13 spans.

0 10000 20000 30000 40000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

Traditional method
16 iteration interval
24 iteration interval
32 iteration interval
48 iteration interval
64 iteration interval

Figure 54: Convergence acceleration using multiple applications of the POD-based
correlation technique with 21 snapshots varying the iteration interval between snapshots.

150

0 2000 4000 6000 8000 10000
Iteration

-16

-12

-8

-4

L
o

g
1
0
(G

lo
b

a
l
re

s
id

u
a

l)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

(a)

0 2000 4000 6000 8000 10000
Iteration

-16

-12

-8

-4

L
o

g
1
0
(G

lo
b

a
l
re

s
id

u
a

l)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(b)

0 2000 4000 6000 8000 10000
Iteration

-16

-12

-8

-4

L
o

g
1
0
(G

lo
b

a
l
re

s
id

u
a

l)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(c)

0 2000 4000 6000 8000 10000
Iteration

-16

-12

-8

-4

L
o

g
1
0
(G

lo
b

a
l
re

s
id

u
a

l)

Traditional method
11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

(d)

Figure 55: Convergence acceleration using orthogonal basis vectors with snapshot spans of
(a) 80 iterations, (b) 160 iterations, (c) 320 iterations, and (d) 640 iterations

151

0 2000 4000 6000 8000 10000 12000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
al

 r
es

id
u
al

)

Traditional method
Multigrid (1 level)

Multigrid (2 levels)

11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

Figure 56: Convergence acceleration using orthogonal basis vectors applied once.

0 1000 2000 3000 4000 5000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o

g
1
0
(G

lo
b

al
 r

es
id

u
al

)

Traditional method
Multigrid (1 level)

Multigrid (2 levels)

11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

Figure 57: Convergence acceleration using orthogonal basis vectors applied once to the
multigrid scheme

152

Table 14: Iteration reduction for increasing snapshot count with a single application applied
to the 1 level multigrid scheme

Case First snapshot Snapshot span Converge Reduction Time
(Iteration) (Iterations) (Iteration) (%) (Normalized)

Baseline - - 11267 - 1.0
Multigrid (1 level) - - 4755 57.80 0.674
Multigrid (2 levels) - - 3967 64.80 0.756
11 snapshots 500 320 4139 63.26 0.588
21 snapshots 500 320 3235 71.29 0.476
41 snapshots 500 320 3075 72.71 0.484
81 snapshots 500 320 1856 83.53 0.366
161 snapshots 500 320 2143 80.98 0.502

Table 15: Iteration reduction for increasing snapshot count with multiple applications
applied to the 1 level multigrid scheme

Case First snapshot Snapshot span Converge Reduction Time
(Iteration) (Iterations) (Iteration) (%) (Normalized)

Baseline - - 11267 - 1.0
Multigrid (1 level) - - 4755 57.80 0.674
Multigrid (2 levels) - - 3967 64.80 0.756
11 snapshots 500 320 2778 75.34 0.454
21 snapshots 500 320 2183 80.62 0.379
41 snapshots 500 320 2342 79.21 0.466
81 snapshots 500 320 1766 84.33 0.465
161 snapshots 500 320 2172 80.72 0.878

153

0 1000 2000 3000 4000 5000
Iteration

-16

-14

-12

-10

-8

-6

-4

-2

L
o

g
1
0
(G

lo
b

al
 r

es
id

u
al

)

Traditional method
Multigrid (1 level)

Multigrid (2 levels)

11 snapshots

21 snapshots

41 snapshots

81 snapshots

161 snapshots

Figure 58: Convergence acceleration using orthogonal basis vectors applied multiple times
to the multigrid scheme

154

Figure 59: Perturbed 10th standard inviscid HOH grid

155

0 500 1000 1500
Iteration

-20

-15

-10

-5

0

L
o
g

1
0
(G

lo
b
al

 R
es

id
u
al

)

Flow solution global residual

Sensitivity solution global residual

Basis vector locations

Figure 60: Convergence of global sensitivity residual of first design cycle.

0 0.2 0.4 0.6 0.8 1
x/c

-1

0

1

C
p

Target

Initial
Optimized

(a)

0 0.2 0.4 0.6 0.8 1
x/c

-0.05

0

0.05

0.1

y

Target

Initial

(b)

Figure 61: The initial, target and optimized (a) surface pressure distribution and (b) blade
shape

156

0 20000 40000 60000 80000
CPU time (s)

0.001

0.01

0.1

C
o

st
 f

u
n

ct
io

n

Traditional adjoint

Projected adjoint

Figure 62: Comparison of cost function reduction versus CPU time for the traditional and
projected adjoint sensitivity methods.

157

0 10 20 30 40 50
design variable

0.0001

0.001

0.01

0.1

1

P
er

ce
n

t
d

if
fe

re
n

ce
 f

ro
m

 c
o

n
v

er
g

ed
 s

en
si

ti
v

it
y

 v
al

u
e Final basis vector

Projected

Figure 63: Percent difference from converged sensitivity values for each design variable at
initial design point

0 5 10 15 20 25
Design cycle

0.001

0.01

0.1

1

10

100

P
er

ce
n
t

d
if

fe
re

n
ce

 f
ro

m
 c

o
n
v
er

g
ed

 s
en

si
ti

v
it

y

Final basis vector
Projected

Figure 64: Percent difference from converged sensitivity values for each design cycle of
design variable 12

158

0 10 20 30 40 50
Design variable

0.01

0.1

1

10

P
er

ce
n
t

d
if

fe
re

n
ce

 f
ro

m
 c

o
n
v
er

g
ed

 s
en

si
ti

v
it

ie
s

Final basis vector
Projected

Figure 65: Average percent difference from converged sensitivity values for each design
cycle over all design cycles

159

Table 16: Snapshot collection parameters for the varied snapshot cases.

Case Snapshot count Snapshot interval First snapshot
201 Snapshot case 201 2 1000
101 Snapshot case 101 4 1000
51 Snapshot case 51 8 1000
26 Snapshot case 26 16 1000

Table 17: Snapshot collection parameters for the varied initial snapshot location cases

Case Snapshot count Snapshot interval First snapshot
Started at 500 101 4 500
Started at 1000 101 4 1000
Started at 1500 101 4 1500
Started at 2000 101 4 2000

Table 18: Computation cost comparison of each sensitivity approach to reach ∥R̄(Ū)∥2 =
1× 10−15

Sensitivity Calculation Approach Iterations Normalized CPU Time
Brute force adjoint 46114 1.00
PTS adjoint 46114 0.81
PTS adjoint with POD acceleration 8810 0.20
PTS adjoint with Covariance acceleration 7007 0.17

Table 19: Comparison of loading coefficients for the NREL S809 airfoil.

Case α Re CL CD CM

Present Solver 0.0◦ 2.0× 106 0.1335 0.0119 -0.0395
CFD-ACE [203] 0.0◦ 2.0× 106 0.1324 0.0108 -0.0400
Experiment 0.0◦ 2.0× 106 0.1469 0.0070 -0.0443

160

(a) (b)

Figure 66: Inviscid O-type computational grids for: (a) the NREL S809 airfoil (target),
and (b) the RAE 2822 airfoil (initial). Both grids are made up of 201× 70 nodes.

161

Table 20: Snapshot collection parameters for the viscous flow case.

Case Snapshot count Snapshot interval First snapshot
Viscous ROM 201 10 4000

Table 21: Computational cost comparison of design optimization

Sensitivity Calculation Approach CPU Time
PTS adjoint 1.00
PTS adjoint with Covariance acceleration 0.43

Table 22: Snapshot collection parameters for the nozzle one-shot optimization case with a
single acceleration.

Case Snapshot count Snapshot interval First snapshot
ROM-accelerated One-shot Solver 401 100 50000

Table 23: Snapshot collection parameters for the nozzle one-shot optimization case.

Case Snapshot count Snapshot interval First snapshot
ROM-accelerated One-shot Solver 401 200 40000

162

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Somers NREL S809 exeperimental data [47]

Somers NREL S809 panel method [47]

Present solver NREL S809 (Target design)

Present solver RAE 2822 (Initial design)

Figure 67: Comparison of surface pressure distributions for the NREL S809 and RAE 2822
airfoils.

163

0 5 10 15 20 25 30
Design variable

-0.5

0

0.5

1

S
e

n
s
it
iv

it
y

Brute force adjoint

PTS adjoint

Figure 68: Comparison of the sensitivity values calculated via the brute force and primal
time-stepping adjoint approaches.

164

Figure 69: Convergence history of the brute force and primal time-stepping adjoint.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

-20

-15

-10

-5

0

L
o

g
1

0
(G

lo
b

a
l
re

s
id

u
a

l)

PTS adjoint no acceleration

Covariance acceleration 201 snapshots

Covariance acceleration 101 snapshots

Covariance acceleration 51 snapshots

Covariance acceleration 26 snapshots

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Iteration

-20

-15

-10

-5

0

L
o

g
1

0
(G

lo
b

a
l
re

s
id

u
a

l)

PTS adjoint no acceleration

Covariance acceleration started at iteration 500
Covariance acceleration started at iteration 1000
Covariance acceleration started at iteration 1500
Covariance acceleration started at iteration 2000

(b)

Figure 70: Comparison of the convergence history of the primal time-stepping adjoint
accelerated with reduced-order models built using: (a) different snapshot quantities, and (b)
varied initial snapshot collection iterations.

165

Figure 71: Convergence history of the traditional and accelerated primal time-stepping
adjoint.

166

0 20 40 60 80 100
Pod Mode

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

E
ig

e
n
v
a
lu

e

Projection 1

Projection 2

Projection 3

Figure 72: Eigenvalue distribution of POD basis for the first three acceleration projections.

0 10000 20000 30000 40000 50000 60000
Time (s)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

C
o

s
t

fu
n

c
ti
o

n
 v

a
lu

e

PTS adjoint

PTS adjoint with covariance

(a)

0 5 10 15 20 25
Design cycle

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

C
o
s
t
fu

n
c
ti
o
n
 v

a
lu

e

PTS adjoint

PTS adjoint with covariance

(b)

Figure 73: Cost function history of the L-BFGS optimizer with sensitivities calculated via
the PTS adjoint approach with and without the ROM acceleration over (a) CPU time and
(b) design cycle.

167

-0.2 0 0.2 0.4 0.6 0.8 1
x

-1.5

-1

-0.5

0

0.5

1

1.5
C

p

RAE 2822 (Initial design)

NREL S809 (Target design)

Design 25

(a)

0 0.2 0.4 0.6 0.8 1
x

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

y

RAE 2822 (Initial design)

NREL S809 (Target design)

Design 25

(b)

Figure 74: Comparison of the initial, target, and optimized (a) surface pressure profiles.
and (b) airfoil surfaces.

(a) (b)

Figure 75: Viscous grids for the (a) NREL S809 (target design) and (b) RAE 2822 (initial
design) airfoils. Both grids have 257 × 127 nodes in the streamwise and normal directions,
respectively.

168

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

Experimental NREL S809

CFD-ACE solver NREL S809 [Wolfe]

NREL S809 (Target design)

RAE 2822 (Initial design)

Figure 76: A comparison of the surface pressure distribution of the NREL S809 airfoil.

0 5 10 15 20 25 30
Design variable

-1.5

-1

-0.5

0

0.5

1

S
e

n
s
it
iv

it
y

Brute force adjoint

PTS adjoint

PTS adjoint with covariance acceleration

Figure 77: The adjoint sensitivity values of the b-spline control points at the initial design.
Design variables 1-15 modify the top surface and 16-30 control the bottom surface.

169

Figure 78: Convergence history of the primal time-stepping adjoint sensitivity approach
for the viscous flow case with and without the ROM acceleration.

0 50000 100000 150000 200000 250000 300000
Time (s)

1e-05

0.0001

0.001

0.01

0.1

1

10

L
o
g

1
0
(G

lo
b
a
l
re

s
id

u
a
l)

PTS adjoint

PTS adjoint with covariance

(a)

0 5 10 15 20 25
Design cycle

1e-05

0.0001

0.001

0.01

0.1

1

10

C
o
s
t
fu

n
c
ti
o
n
 v

a
lu

e

PTS adjoint

PTS adjoint with covariance

(b)

Figure 79: History of the cost function for L-BFGS-B optimizer using PTS adjoints
calculated with and without acceleration over (a) CPU time and (b) design cycle.

170

-0.2 0 0.2 0.4 0.6 0.8 1
x

-1.5

-1

-0.5

0

0.5

1

1.5

C
p

RAE 2822 (Initial design)

NREL S809 (Target design)

Design 25

(a)

0 0.2 0.4 0.6 0.8 1
x

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

y

RAE 2822 (Initial design)

NREL S809 (Target design)

Design 25

(b)

Figure 80: Comparison of the initial, target, and optimized (a) airfoil surfaces and (b)
surface pressure profiles.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

y

Initial Design

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

ρ

ρu

ρE
p

(b)

Figure 81: Inverse design problem (a) nozzle cross-section area and (b) flow solution of
initial design.

171

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

y

Initial Design

Target Design

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

p

Initial Design

Target Design

(b)

Figure 82: Comparison of the inverse design problem initial and target (a)nozzle cross-
section area and (b) pressure profile.

0 5000 10000 15000 20000
Iteration

-20

-15

-10

-5

0

L
o
g

1
0
(G

lo
b
a
l
R

e
s
id

u
a
l)

Primal
Adjoint

Figure 83: Convergence history of the primal, brute-force adjoint, and time-stepping adjoint
sensitivity approach for the initial nozzle design.

172

0 50 100 150 200
Design cycle

0.0001

0.001

0.01

0.1

1

C
o

s
t

fu
n

c
ti
o

n

(a)

0 500 1000 1500 2000 2500 3000
time (s)

0.0001

0.001

0.01

0.1

1

C
o
s
t
fu

n
c
ti
o
n

(b)

Figure 84: Cost function history over (a) each design cycle and (b) time.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

y

Initial Design

Target Design

Optimized Design

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

p

Initial Design

Target Design

Optimized Design

(b)

Figure 85: Comparison of the (a) nozzle cross-section and (b) pressure profile recovered by
the L-BFGS-B optimizer.

173

0 1e+06 2e+06 3e+06 4e+06 5e+06
Iteration

-15

-10

-5

0

L
o
g

1
0
(G

lo
b
a
l
R

e
s
id

u
a
l)

Primal
Adjoint

Design

Figure 86: Convergence history of the primal, adjoint, and design equations solved via a
one-shot optimization approach.

0 1e+06 2e+06 3e+06 4e+06 5e+06

Iteration

0.0001

0.001

0.01

0.1

1

10

C
o
s
t
fu

n
c
ti
o
n

One-shot

(a)

0 1000 2000 3000 4000 5000
Time (s)

0.0001

0.001

0.01

0.1

1

10

C
o

s
t

fu
n

c
ti
o

n

L-BFGS-B
One-shot

(b)

Figure 87: Cost function history over (a) each design cycle and (b) time.

174

0 0.2 0.4 0.6 0.8 1
x

1

1.5

2

2.5

3

y

Initial Design

Target Design

Optimized Design (L-BFGS-B)

Optimized Design (One-shot)

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

p

Initial Design

Target Design

Optimized Design (L-BFGS-B)

Optimized Design (One-shot)

(b)

Figure 88: Comparison of the (a) nozzle cross-section and (b) pressure profile recovered by
the one-shot optimizer.

0 1e+05 2e+05 3e+05 4e+05 5e+05
Iteration

-12

-10

-8

-6

-4

-2

L
o
g

1
0
(G

lo
b
a
l
R

e
s
id

u
a
l)

Primal
Adjoint

Design

Primal (Accelerated)

Adjoint (Accelerated)

Design (Accelerated)

Figure 89: Convergence history of the primal, adjoint, and design equations solved via
a one-shot optimizer with a single application of the reduced-order model acceleration
technique.

175

0 1e+05 2e+05 3e+05 4e+05 5e+05
Iteration

-0.05

0

0.05

D
e

s
ig

n
 v

a
ri
a

b
le

Design variable 1

Design variable 2

Design variable 3

Design variable 4

Design variable 5

Design variable 6

Design variable 7

Design variable 8

Design variable 9

Design variable 1 (Accelerated)

Design variable 2 (Accelerated)

Design variable 3 (Accelerated)

Design variable 4 (Accelerated)

Design variable 5 (Accelerated)

Design variable 6 (Accelerated)

Design variable 7 (Accelerated)

Design variable 8 (Accelerated)

Design variable 9 (Accelerated)

Figure 90: Design variable history for the one-shot optimizer with a single application of
the reduced-order model acceleration technique.

0 5e+05 1e+06 1.5e+06 2e+06
Iteration

-11

-10

-9

-8

-7

-6

-5

-4

L
o
g

1
0
(G

lo
b
a
l
R

e
s
id

u
a
l)

Primal
Adjoint

Design

Figure 91: Convergence history of the primal, adjoint, and design equations solved via the
ROM-accelerated one-shot optimization approach.

176

0 5000 10000 15000 20000
Time (s)

1e-05

0.0001

0.001

0.01

0.1

1

10

C
o
s
t
fu

n
c
ti
o
n

L-BFGS-B
One-shot
One-shot with ROM acceleration

(a)

0 1000 2000 3000
Time (s)

1e-05

0.0001

0.001

0.01

0.1

1

10

C
o

s
t

fu
n

c
ti
o

n

L-BFGS-B
One-shot
One-shot with ROM acceleration

(b)

Figure 92: Cost function history over (a) each design cycle and (b) time.

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5

2

2.5

3

y

Initial Design

Target Design

Optimized Design (L-BFGS-B)

Optimized Design (One-shot)

Optimized Design (One-shot with ROM acceleration)

(a)

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

0.8

1

p

Initial Design

Target Design

Optimized Design (L-BFGS-B)

Optimized Design (One-shot)

Optimized Design (One-shot with ROM acceleration)

(b)

Figure 93: Comparison of the (a) nozzle cross-section and (b) pressure profile recovered by
the ROM-accelerated one-shot optimizer.

177

0 2 4 6 8
Design Variable

-0.1

-0.05

0

0.05

0.1

0.15

S
e

n
s
it
iv

it
y

Initial Design

Target Design

Optimized Design (L-BFGS-B)

Optimized Design (One-shot)

Optimized Design (One-shot with ROM acceleration)

Figure 94: Comparison of the optimized design variable values from each optimization
approach.

178

Vita

Andrew Kaminsky was born in Knoxville, Tennessee to Anne and Larry Kaminsky. He
attended Farragut High School with his younger brother, Rob, and graduated in 2008.
Andrew completed his undergraduate degree in Mechanical Engineering with a minor
in Aerospace Engineering at the University of Tennessee, Knoxville and graduated in
2012. During his undergraduate studies, he interned at Oak Ridge National Laboratory
in the Neutron Facilities Development Division through multiple Science Undergraduate
Laboratory Internships (SULI), a Higher Education Research Experience (HERE) internship,
and a Nuclear Engineering Science Laboratory Synthesis (NESLS) internship. Under these
internships his mentors Ashraf Abdou, Mark Wendel, and Bernie Riemer first introduced him
computational fluid dynamics, which he applied to model the liquid mercury flows within
the Spallation Neutron Source target.

Following graduation, Andrew immediately began pursuit of his Ph.D. in Mechanical
Engineering at the University of Tennessee, under the guidance of Dr. Kivanc Ekici as a
joint Mechanical, Aerospace, and Biomedical engineering (MABE) chancellor’s fellow and a
Bredesen Center for Interdisciplinary Research and Graduate Education Energy Science
and Engineering fellow. Through Dr. Ekici’s mentorship, Andrew discovered his love
for numerical optimization and aerodynamic design. During his graduate degree Andrew
was elected President of the Graduate Association of MABE. As president he developed a
STEM Outreach Program through the ASME’s Diversity Action Grant. Andrew has been
recognized by the University for his research with the Chancellor’s Award for Extraordinary
Professional Promise and his community outreach with the MABE Student Leadership and
Outreach Award.

During his graduate studies, Andrew accepted a position with CFD Research Corpora-
tion, located in Huntsville, Alabama. His role at CFD Research has allowed him to continue
pursuing his passion for efficient aerodynamic design. Andrew lives in Huntsville with the
true highlights of his life, his wife Courtney and his daughters Eleanor and Emily.

179

	Towards Reduced-order Model Accelerated Optimization for Aerodynamic Design
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	Nomenclature

	1 Introduction
	1.1 Motivation
	1.2 Background and Related Work
	1.2.1 Optimization
	1.2.2 Flow Simulation via Computational Fluid Dynamics
	1.2.3 Sensitivity Analysis
	1.2.4 Reduced-order modeling

	1.3 Contributions to the State of Art
	1.4 Outline
	1.5 Related Published Works

	2 Governing Flow Equations
	2.1 The Navier-Stokes Equations
	2.1.1 The Perfect Gas Model
	2.1.2 The Spalart-Allmaras Turbulence Model

	2.2 The Euler Equations
	2.2.1 Quasi-1D Euler Equations

	2.3 The Harmonic Balance Equations

	3 Numerical Approach
	3.1 Non-Dimensionalization
	3.2 Spatial Discretization
	3.2.1 Cell-Centered Discretization

	3.3 Temporal Discretization
	3.4 Discrete Boundary Conditions
	3.4.1 Solid Wall Boundaries
	3.4.2 Far Field Boundaries

	3.5 Convergence Acceleration Techniques
	3.5.1 Local Time-Stepping
	3.5.2 Residual Smoothing
	3.5.3 Multigrid

	4 Sensitivity Equations and Analysis
	4.1 Derivation of the Direct Approach
	4.2 Derivation of the Adjoint Approach
	4.2.1 Continuous adjoint method

	4.3 Automatic Differentiation
	4.3.1 Forward mode automatic differentiation
	4.3.2 Reverse mode automatic differentiation

	5 Validation and Verification
	5.1 Quasi-1D Flow through a Nozzle
	5.1.1 Nozzle with subsonic flow field
	5.1.2 Nozzle with subsonic inlet supersonic outlet
	5.1.3 Nozzle with shocked flow

	5.2 Viscous 2D flow over an RAE2822 Airfoil
	5.2.1 AGARD Test Case 1
	5.2.2 AGARD Test Case 6

	5.3 Inviscid 2D Flow over an Oscillating NACA0012 Airfoil
	5.4 Inviscid 2D Flow over a Plunging NACA0012 Airfoil
	5.4.1 Time-spectral Stability Derivative Method
	5.4.2 Unsteady Adjoint Sensitivity Verification for Dynamic Stability Derivatives

	6 Optimization methods
	6.1 Traditional Gradient-Based Optimization
	6.1.1 Steepest Descent Method
	6.1.2 Newton's Method
	6.1.3 Quasi-Newton Broyden, Fletcher, Goldfarb, and Shanno

	6.2 One-Shot Gradient-Based Optimization
	6.2.1 Single-step One-shot Optimization
	6.2.2 Pseudo-time Stepping One-shot Optimization

	7 Reduced-Order Modeling
	7.1 Reduced-Order Model-based Convergence Acceleration of Fixed-Point Iterators
	7.1.1 Reduced-order Model Acceleration with Snapshot Basis Vectors
	7.1.2 Reduced-order Model Acceleration with Covariance Basis Vectors
	7.1.3 Reduced-order Model Acceleration with Orthogonal Basis Vectors

	8 Demonstration of Reduced-order Model Acceleration
	8.1 Acceleration of an Unsteady Harmonic Balance Solution
	8.1.1 Flow over an Oscillating RAE 2822 Airfoil

	8.2 Acceleration of a Continuous Adjoint Solver
	8.2.1 Case 1: fully subsonic nozzle
	8.2.2 Nozzle with subsonic inlet supersonic outlet
	8.2.3 Nozzle with shocked flow

	8.3 Accelerated Nested Optimization Study through Projected Discrete Adjoint Sensitivities
	8.3.1 Sensitivity Projection for Inverse Design of a 2D Cascade

	8.4 Acceleration of a Nested Optimization Scheme
	8.4.1 Inverse Design of NREL S809 Airfoil in Inviscid Flow Field
	8.4.2 Inverse Design of NREL S809 in a Viscous Flow Field

	8.5 Acceleration of a One-shot Optimization Scheme
	8.5.1 Inverse Design of Converging-Diverging Nozzle

	9 Conclusions and Recommendations
	9.1 Summary
	9.2 Future Work

	Bibliography
	Appendix
	Vita

