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Abstract 

As the popularity of shared micromobility is increasing worldwide, city governments are 

struggling to regulate and manage these innovative travel technologies that have several benefits, 

including increasing accessibility, reducing emissions, and providing affordable travel options. 

This dissertation evaluates the impacts of shared micromobility from the perspective of 

sustainable transportation to provide recommendations to decision-makers, planners, and 

engineers for improving these emerging travel technologies.  

The dissertation focuses on four core aspects of shared micromobility as follows: 1) Safety: I 

evaluated police crash reports of motor vehicle involving e-scooter and bicycle crashes using the 

most recent PBCAT crash typology to provide a comprehensive picture of demographics of 

riders crashing and crash characteristics, as well as mechanism of crash and crash risk, 2) 

Economics: I estimated the demand elasticity of e-scooters deployed, segmented by weekday 

type, land use, category of service providers based on fleet size using negative binomial fixed 

effect regression model and K-means clustering, 3) Expanding micromobility to emerging 

economies: Using dynamic stated preference pivoting survey and panel data mixed logit model, I 

assessed the intentions to adopt shared micromobility in mid-sized cities of developing countries, 

where these innovative technology could be the first wave of decarbonizing transportation sector, 

and 4) Micromobility data application: I identified five usage-clusters of shared e-scooter trips 

using combination of Principal Component Analysis (PCA) and K-means clustering to propose a 

novel framework for using micromobility data to inform data-driven decision on broader policy 

goals.  

Based on the key findings of the research, I provide five recommendations as follows: 1) 

decision-makers should be proactive in incorporating new travel technologies like shared 

micromobility, 2) city governments should leverage shared micromobility usage and operation 

data to empower the decision-making process, 3) each shared micromobility vehicles should be 

approached uniquely for improving road safety, 4) city governments should consider regulating 

the number of service providers and their fleet sizes, and 5) decision-makers should prioritize 

expanding shared micromobility in emerging economies as one of the first efforts to the 

decarbonizing transportation sector. 
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Chapter 1. Introduction 
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 Background 

Private motor vehicles have become an integral part of peoples’ lives during the past century. 

Construction of the interstates (freeways) supported the boom of private motor vehicles and 

allowed cities to expand mobility and accessibility to jobs and opportunities (Salingaros, 2006). 

However, such a sprawl development pattern increased the distance between where people lived 

and where they worked, consumed services, or went to school (Burchell & Shad, 1998). This, in 

turn, forced people to drive more and be reliant on private vehicles, which is also referred to as 

the cycle of automobile dependency (Litman & Laube, 2002; Newman & Kenworthy, 1999). 

Automobile dependency exacerbates urban transportation problems, such as air pollution, 

emissions, parking, congestion, social equity, and lack of mobility (Litman & Laube, 2002), 

contributing to issues like climate change and unsustainable urban development.  

Therefore, there is an urgency for a paradigm shift in urban transportation that reduces 

automobile dependency by providing more sustainable mobility options. Micromobility vehicles, 

such as bikes, e-scooters, and e-bikes, are one such emerging mobility solution that has 

maximum travel speeds up to 30 miles per hour, are lightweight (<500 lbs.), and are human- 

and/or electric-powered (SAE International, 2019). These attributes make micromobility ideal 

for urban trips less than 5 miles, which account for 60% of all vehicle trips in the United States 

(NHTS, 2017). The provision to briefly rent these vehicles for a trip is referred to as shared 

micromobility. 

The ridership of shared micromobility has been increasing rapidly in the United States within the 

past decade, as illustrated in Figure 1. Since 2010, people have completed 342 million shared 

bike and e-scooter trips, and the total number of yearly trips increased by 424 times in 2019 

compared to 2010 (NACTO, 2020). The shared bike and e-scooter trips are 11-12 minutes and 1-

1.5 miles on average (NACTO, 2020), which could replace 35% of all personal car or taxi trips 

under 2 miles (NHTS, 2017).  

I focus on shared e-scooters in this dissertation, which is the fastest-growing shared 

micromobility in the United States. The following subsections provide a background on the 

increasing popularity of shared e-scooters. The first subsection describes the recent evolution in 

mobility that enabled the widespread use of micromobility, while the second subsection 

summarizes the development of shared e-scooters.   
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Figure 1 Growth of shared micromobility from 2010-2019 (Source: NACTO (2020) 
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1.1.1 Evolution in shared micromobility 

The first public bike-share system was introduced in 1965 in Amsterdam, Netherlands, and bike-

share systems expanded in cities across Europe, North America, Asia, and Australia in the past 

decades (S. Shaheen, Guzman, & Zhang, 2012). New micromobility modes, including e-scooters 

and e-bikes, have also emerged recently. Development in travel technology, change in travel 

behavior, and business model innovations can be considered key drivers to the increased 

popularity of shared micromobility. 

Firstly, travel technology has improved the convenience of using micromobility vehicles and the 

efficiency of shared micromobility systems through innovations in geo-locating micromobility 

vehicles, digital payment, and motorization. A user can unlock micromobility vehicles through a 

Global Positioning System (GPS)-enabled smartphone app or physically locate the vehicles and 

scan a Quick Response (QR) code to unlock them. The geolocation feature also helps 

micromobility service providers track, locate, and manage vehicle fleets and improve system 

operation efficiency (Matute, Cohen-D'Agostino, & Brown, 2020). Digital payment options 

using smartphone apps, membership cards, and credit/debit cards have improved payment 

convenience by avoiding cash or coins like early bike-share systems. Partial or full motorization 

of micromobility vehicles and improvements in battery technology has increased the practical 

range and convenience of using micromobility vehicles (Cherry & Cervero, 2007). These 

technologies have supported the rise of shared e-scooter systems. 

Secondly, declining preference to own a private car and embracing a shared economy have 

influenced the change in travel behavior that supports micromobility. Millennials, the largest 

living generation at present who were born between 1982 and 2000, have a lower rate of driving 

licensure (Chang, Miranda-Moreno, Clewlow, & Sun, 2019), vehicle ownership (Fry, 2013), and 

Vehicle Miles Travelled (VMT) (Dutzik, Inglis, & Baxandall, 2014) than previous generations. 

Millennials tend to make fewer large investments, like houses and cars, or even avoid them 

entirely (Garikapati, Pendyala, Morris, Mokhtarian, & McDonald, 2016), while embracing a 

shared or circular economy, where they consume the product rather than acquiring ownership of 

the product. As a result, the adoption rate of the shared mobility is substantially high (Clewlow, 

2019), with the adoption rate of e-scooters being highest among other shared mobility like car-

share.  
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Finally, the business model of shared micromobility has evolved in the past decades, 

contributing to the realization of innovative concepts like Mobility-as-a-Service (MaaS), where a 

traveler can access and pay for various transportation services through a single app. While the 

first bike-share in Amsterdam collapsed due to bicycle theft and vandalism (DeMaio, 2009), the 

recent generation of micromobility is supported by geolocation features that allow for the 

monitoring of the location and status of the vehicle fleet. This has enabled the operation of 

dockless shared micromobility systems, where users can pick up and drop off vehicles anywhere 

within the designated service area. Furthermore, ride-hailing companies like Uber and Lyft, and 

automakers like Ford, have invested in the micromobility market to advance the MaaS concept 

(Bellan, 2021; Lyft, 2021).  

1.1.2 A brief overview of shared e-scooters 

E-scooters (or electric scooters), as shown in Figure 2, refers to electric motor-powered standing 

scooter with a top speed of up to 18 mph (SAE International, 2019). These emerging vehicles 

can either be personally purchased ($200-500 or more) or rented e-scooter vehicles made 

available by service providers (also referred to as shared e-scooters). To rent an e-scooter, a user 

can physically find an e-scooter or through a smartphone app, unlock the vehicle for a small fee 

(usually $1), and pay-per-minute cost (usually $0.15 – 0.35). Most service providers operate 

dockless fleets, allowing users to end the trip anywhere within the designated service area. Bird 

was the first service provider to launch dockless shared e-scooters in Santa Monica, USA, in 

2017 (Sisson, 2018), while other service providers promptly launched their own operations 

throughout the country.   

Although shared e-scooters are the most recent micromobility vehicles, they already account for 

two-thirds of the micromobility trips in the United States and are growing the fastest among 

other micromobility modes. While the total number of shared bikes, e-bikes, and e-scooter trips 

increased by 60% between 2018-2019, shared e-scooter trips increased by over 100% during the 

same period (NACTO, 2020). Shared e-scooter systems are also expanding across cities more 

rapidly than bike-share systems. In 2017, 43 cities had bike-share, and zero cities had shared e-

scooters, while in 2021, 51 cities had bike-share, and 92 cities had shared e-scooters (Bureau of 

Transportation Statistics, 2021).  
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Figure 2 Shared e-scooter (Credit: Arlington, VA) 
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Table 1 summarizes the benefits of shared e-scooter systems along with their limitations 

(Reinhardt & Deakin, 2020). This disruptive technology could provide inexpensive and 

convenient mobility options for short trips, with broader environmental, safety, and equity 

benefits. However, these benefits depend on several factors, including the type of modal shift, 

the level of e-scooter vehicle integration with road infrastructure, and e-scooter fleet distribution 

and pricing. Nevertheless, shared e-scooters can be considered one of the most promising 

mobility options in a sustainable urban transportation system.  

The response to shared e-scooter systems has been both positive and negative. Supporters of e-

scooters claim that they are inexpensive, convenient, and fun travel options, which could also 

integrate with public transit, to improve mobility, congestion, and emission. On the other hand, 

expanding shared e-scooters in several cities has also ignited major pushbacks, including tossing 

e-scooters in the ocean in Los Angeles, CA (Newberry, 2018) and cutting the brake wires in 

Austin, TX (Streicher, 2019). The mixed response of shared e-scooter systems can be explained 

in a Gartner Hype Cycle (Fenn & Time, 2007), a graphical illustration of the maturity, adoption, 

and social application of technology. Kovacevich (2019) developed the hype cycle for shared e-

scooters, as presented in Figure 3.  

The launch of the shared e-scooters was an innovation trigger, with huge expectations and 

minimum concerns about its impact. The excitement peaked at an inflated expectation point and 

started degrading with events like the deaths of a few e-scooter riders or improper sidewalk 

riding that affected other road users. The general expectations of e-scooter decreased with 

disappointment up to the trough of disillusionment. In the meantime, city governments started 

regulating shared e-scooters, and riding behavior are starting to improve, which has gradually 

increased the expectations. This phase is termed a slope of enlightenment that would eventually 

level over time, fulfilling the actual promise of shared e-scooter systems.  

I believe that shared e-scooter systems are currently on the slope of the enlightenment phase of 

the Gartner Hype Cycle. City governments are implementing permits and pilot programs to 

regulate shared e-scooters and targeting to achieve policy goals, such as improving accessibility 

in low-income areas by ensuring e-scooters are available in such areas. Moreover, there is a need 

for a systematic understanding of shared e-scooters impacts, including safety, demand, and 

environment, to integrate them into the current transportation system.  
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Table 1 Potential benefits and limitations of shared e-scooter systems (Adopted from Reinhardt and 

Deakin (2020)) 

Benefit Description  Limitations 

Environmental benefits, including 

greenhouse gas and other pollutants 

emissions reductions and less noise 

from 

automobiles 

Depends on mode shift from automobile to e-

scooters; Vehicle miles traveled (VMT) reduction 

also depends on trip lengths 

Congestion reduction  
Depends on mode shift from automobile to e-

scooters, location of use, time and day of use 

Better life cycle energy and 

environmental results than alternatives 

Depends on the longevity of e-scooters and scooter 

components, including batteries; it also depends on 

the feasibility and cost-effectiveness of vehicle 

repair, battery replacement, remanufacturing and 

recycling, waste disposal practices 

Affordable compared to other forms of 

transportation 

Unless subsidized, likely to be more costly than 

walking or biking; may or may not be more 

affordable than transit, private auto 

Can serve mobility-deprived 

neighborhoods 

Depends on how e-scooters are actually deployed 

and user interest, and comfort with them 

Health benefits from using active 

transportation 

May actually reduce activity if e-scooter travel 

replaces biking, walking; increased potential for user 

injury; may injure others in collisions or tripping 

incidents; some benefit for walking to and from 

pickup/dropoff, but the program is designed to 

minimize this 

Supports high-density development  Depends on how vehicles are deployed 
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Figure 3 E-scooter hype cycle (Source: Kovacevich (2019)) 
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 Research questions and contributions 

In this dissertation, I evaluate the impacts of shared e-scooters systems through the lens of 

sustainable transportation planning. One of the standard definitions of sustainable transportation 

is from the Ministry for the Environment, New Zealand, which defines it as “finding ways to 

move people, goods, and information in ways that reduce [transportation] impact on the 

environment, economy, and society” (Ministry for the Environment, 2003). These three aspects 

of sustainable transportation are also known as the triple bottom line. Figure 4 illustrates the 

balancing of environmental impacts of transportation, economic efficiency of the systems, and 

societal impacts within the sustainable transportation planning paradigm.   

My dissertation focuses on each bottom line of sustainable transportation, as highlighted in blue 

in Figure 4. The main research questions are as follows: 

1.2.1 Scrutinizing e-scooter crash and crash risk (societal bottom line of sustainable 

transportation)  

The increasing ridership of e-scooters ignited a policy debate on where e-scooters should be 

allowed on the roadways. E-scooter users preferred to ride on the bike lane if available (Portland 

Bureau of Transportation, 2019). On the other hand, some state legislatures initially banned e- 

scooter riders from bike lanes, often citing safety issues as e-scooters are motor-powered 

vehicles (Unagi, 2020). Therefore, I explored an overarching question of whether we should 

approach e-scooter safety the same as other micromobility modes, like bicycles. Considering 

only motor vehicle-involved collisions that cause severe injuries and fatality, I evaluated the 

safety issue through the following three research questions.  

Q1: Are crash characteristics and demographics of e-scooter and motor vehicle collisions 

different than that of bicycle and motor vehicle collisions? 

Q2: Is the collision mechanism of e-scooter and motor vehicle collisions (movement and 

location) different than that of bicycle and motor vehicle collisions? 

Q3: Are crashes or crash rates disproportionately higher at night than during the day? 
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Figure 4 Triple bottom line of sustainable transportation (Adapted from Todd Litman (2006)) 

  

ECONOMICS

Demand elasticity

Economic productivity

Local economic development

Resource efficiency

Affordability  

ENVIRONMENTAL

Modal shift

Energy use and emissions

Air pollution 

Climate change

Biodiversity

Habitat preservation

SOCIETAL

Safety

Crash risk

Equity

Public health

Community livability

Cultural heritage  
preservation

Public involvement

Trip 
clustering 



12 

 

Contributions:  This study makes three contributions to the transportation literature as follows: 

1) based on my knowledge, this study is the first of its kind to provide a comprehensive picture 

of e-scooter safety based on police crash reports through the understanding of crash 

characteristics and demographics of riders, 2) I implement the most recent crash typology to 

compares and contrasts e-scooter and bicycle crash location, and maneuver of e-scooter riders 

and motorists before the crash, and 3) I evaluate the daytime and nighttime crash risk that could 

help to improve e-scooter safety. Such information can be insightful for policymakers, 

transportation planners, and traffic engineers to design and implement the safe system approach 

to traffic safety. 

1.2.2 Demand elasticity of e-scooter vehicles deployed (economics bottom line of 

sustainable transportation) 

During the initial launch of shared e-scooters, service providers often flooded the streets with 

many vehicles, causing issues like the cluttering of sidewalks. City governments reacted to limit 

the total number of e-scooters operating within their jurisdiction by regulating the number of 

services providers and their fleet size, with provisions for adjusting the fleet size of the service 

providers based on system performance, like the number of trips per e-scooter vehicle per day. 

However, there is a lack of empirical analysis to evaluate the demand elasticities of e-scooter 

vehicles, which could be helpful in improving the utilization of e-scooters and the system's 

overall efficiency. The research questions for this topic are as follows: 

Q4: What is the demand elasticity of e-scooters deployed by service providers based on the fleet 

size, controlling for spatial factors, like built environment and socio-demographics, and temporal 

factors, such as weather? 

Q5: What is the land-use specific demand elasticity of e-scooters vehicles deployed by service 

providers based on the fleet size? 

Contributions: This topic of my dissertation makes three contributions as follows: 1) to my 

knowledge, this is the first study to evaluate the actual demand (e-scooter usage) and supply 

dimensions (vehicles deployed) of shared e-scooters, 2) I used a year-long geographically 

disaggregated e-scooter trip summary dataset and location of available e-scooters that updates 

approximately every five minute to control for unobserved spatial and temporal factors, 3) I 
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estimated the demand elasticity segmented by weekday/weekend, land use types, and shared e-

scooter service providers based on their fleet size, which can help city governments identify the 

appropriate size of shared e-scooter systems operating within their jurisdiction. 

1.2.3 Shared micromobility as the first wave of decarbonizing transportation in 

developing countries (environmental bottom line of sustainable 

transportation) 

Despite the immense benefits of shared micromobility, there are only a limited number of shared 

micromobility systems in mid-sized cities of developing countries (with more than 500,000 and 

less than 5 million in population), which makes an overwhelming majority of the world’s cities 

and have the highest population growth rate. Shared micromobility is affordable for users and 

does not require huge infrastructure investments, making this innovative transportation 

technology a potential leapfrogging alternative in developing countries. It can serve as a 

standalone system or complement transit or para-transit systems to improve their service while 

reducing the need for private motor vehicles. I aim to answer the following research questions in 

the context of mid-sized cities in developing countries: 

Q6: What are the main drivers of adopting shared micromobility modes, and what is the effect of 

sociodemographic factors? 

Q7: Which traditional travel modes would users replace with shared micromobility? 

Contributions: This study makes three main contributions as follows: 1) to my knowledge, it is 

the only large-scale study to evaluate shared micromobility usage focusing on mid-sized cities of 

developing countries, 2) I deployed a fully online and dynamic stated preference pivoting survey 

that improves the survey design in real-time by using users’ input data to add context in the 

subsequent questions, and 3) I focused on introducing shared electric-powered or human-

powered vehicles, which could contribute to the initial wave of electrification in the 

transportation sector of emerging economies. 
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1.2.4 Usage-based clustering of e-scooter trips (intersecting with all three bottom 

lines of sustainable transportation) 

When e-scooters were first launched in the United States, city governments found themselves 

behind in managing and regulating shared e-scooter operations within their jurisdiction. While 

many studies have implemented survey design to understand the usage of these emerging 

vehicles, they have limited data points and does not include information from all e-scooter trips. 

On the other hand, shared e-scooter systems collect trip data that includes geolocation and 

timestamp of the trip starting and ending location along with route data. Merging the trip data 

with contextual data, such as land use, transportation network, and weather, could enhance the 

understanding of e-scooter usage and help integrate shared e-scooter into the existing 

transportation systems. The research questions on this topic of the dissertation are as follows: 

Q8: What are the distinct e-scooter usage patterns based on temporal and spatial features and 

weather characteristics? 

Q9: How can spatial and temporal visualization improve understanding of e-scooter usage 

patterns? 

Contributions: These research questions make three contributions as follows: 1) Using a high 

spatiotemporal resolution e-scooter trip data, I propose an unsupervised machine learning 

technique to identify e-scooter usage patterns that complement existing survey-based studies, 2) 

the proposed method adds contextual information to the standardized micromobility data, which 

can be scalable across cities and vehicles, and 3) I applied visualization to illustrate the spatial 

and temporal patterns of e-scooter usage that provide an understanding of who, where, and why 

people use shared e-scooters. These findings can inform transportation agencies to make a data-

driven decision on such emerging vehicles’ safety, sustainability, and mode substitution. 

1.2.5 Estimating energy usage and emissions from micromobilty data 

Existing studies evaluating the environmental impacts of shared e-scooter systems have made 

assumptions on the usage phase of the Life Cycle Assessment (LCA) analysis, inducing the 

lifespan of e-scooter vehicles. Only a few studies have used micromobility data, which includes 

information like trip distance and battery power level that could better identify the parameters of 

the usage phase of LCA. Using Big Data that updates the location and status of deployed e-
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scooters every five seconds, I aim to assess the emissions and energy use of shared e-scooter 

systems. The two research questions of this objective are as follows: 

Q10: What is the operational related emission and energy use of the shared e-scooter system in 

Nashville, Tennessee, based on the Big Data (micromobility data)? 

Q11: Is there a difference between operational and usage emission and energy use between 

shared e-scooter service providers? 

Contributions: This chapter makes the following contributions: 1) to my knowledge, this is the 

first study to leverage micromobility data to evaluate the energy use and emissions of shared 

micromobility systems, 2) I implement a probabilistic framework for evaluating energy use and 

emissions that reflects the actual profile in the real world, 3) the study includes data from three 

service providers operating in the same city to evaluate differences the energy use and emissions 

profile.  

 Dissertation structure 

The remaining dissertation is organized into six chapters as follows: 

Chapter 2. Scrutinizing e-scooter crash and crash risk: This chapter compares motor vehicle 

involving e-scooter and bicycle crashes using standard crash typology as well as general 

characteristics and demographics of crashes (Nitesh R Shah, Aryal, Wen, & Cherry, 2021). The 

paper was published in the Journal of Safety Research and presented at the International Cycling 

Safety Conference in Lund, Sweden, in 2021. The chapter also includes an evaluation of the 

daytime and nighttime risk of an e-scooter crash (Nitesh R Shah & Cherry, 2022). The paper was 

published in the Findings Press and presented at the International Cycling Safety Conference in 

Dresden, Germany, in 2022. 

Chapter 3. Demand elasticity of e-scooter vehicle deployment: This chapter evaluates the 

demand elasticity of e-scooter vehicle deployment segmented by weekday type (weekday vs. 

weekend), land use types (CBD & commercial, university, park & waterfront, dense residence, 

and low-density periphery), and category of service providers based on their fleet size (large 

(>500), medium (500-250), and small (<250)) (Nitesh R Shah, Ziedan, Brakewood, & Cherry, In 

review). The paper is in review at the Transportation Research Part A: Policy and Practice. This 
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paper was presented at the Transportation Research Board Annual Meeting 2022 in Washington, 

D.C, and the Tennessee Section Institute of Engineers Summer Meeting 2022 in Gatlinburg, 

Tennessee. This research paper also received the second position in the Annual Student Paper 

Competition, Tennessee Section Institute of Transportation Engineers.   

Chapter 4. Shared micromobility as the first wave of the decarbonizing transport sector in 

developing countries: This chapter evaluates the effect of temperature, precipitation, and 

availability of bike lanes on the propensity to use bikeshare, e-bike share, and e-moped share in  

Kathmandu, Nepal, as a case study of developing countries (Nitesh R. Shah, Parajuli, & Cherry, 

In review). The chapter also assesses the model shift from existing modes if these new travel 

modes are available. The paper is accepted for presentation at the Transportation Research Board 

Annual Meeting 2023.   

Chapter 5. Usage-based clustering of e-scooter trips: This chapter identifies groups of shared 

e-scooter trips based on the usage using big data and machine learning techniques (Nitesh R 

Shah, Guo, Lee, & Cherry, In review). It also evaluates the temporal and spatial pattern of these 

clusters over a year to propose a framework to add contextual information to the micromobility 

data. The paper was presented at Transportation Research Board 100th Annual Meeting 2021 in 

Washington, D.C. This research paper also received first place in the 2021 Annual Student Paper 

Competition, Tennessee Section Institute of Transportation Engineers, and second place in the 

2021 Annual Student Paper Competition, Southern District Institute of Transportation Engineers. 

Chapter 6. Estimating energy usage and emissions from micromobility data: This chapter 

identifies the usage and operational phases of shared micromobility systems using high spatial 

and temporal resolution data to evaluate energy usage and emissions.  

Chapter 7. Main findings, recommendations, policy implications, and conclusion: This 

chapter summarizes the key findings of each chapter and provides recommendations to city 

governments, transportation practitioners, and researchers, along with its policy implications.  

Appendix: This chapter includes a description of the Shared Urban Mobility Device (SUMD) 

data used in Chapters 2, 3, 5 and 6, maps from Chapter 3, and a survey questionnaire from 

Chapter 4, and model selection criteria results from Chapter 6. 
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Chapter 2. Scrutinizing e-scooter crashes and crash 

risk 
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This chapter is based on two research papers as follows: 1) published by Nitesh Shah, Sameer 

Aryal, Yi Wen, and Christopher R Cherry titled “Comparison of motor vehicle-involved e-

scooter and bicycle crashes using standardized crash typology.” The paper was published in the 

Journal of Safety Research and presented at the International Cycling Safety Conference in 

Lund, Sweden, in 2021. 2) published by Nitesh Shah and Christopher Cherry with the title “The 

Chance of Getting Struck by a Car on an e-Scooter is Twice as High at Night.” The paper was 

published in the Findings Press and presented at the International Cycling Safety Conference in 

Dresden, Germany, in 2022. 

Abstracts 

Paper #1 

The market share of e-scooters in the United States has proliferated in cities: 86 million trips 

were made on shared e-scooters in 2019, a more than 100% increase compared to 2018. 

However, the interaction of e-scooters with other road users and infrastructure remains uncertain. 

This study scrutinized 52 e-scooter and 79 bicycle police-reported crashes in Nashville, 

Tennessee, from April 2018 to April 2020 from the Tennessee Integrated Traffic Analysis 

Network (TITAN) database. We used descriptive analysis and a recent prototype version of the 

Pedestrian and Bicycle Crash Analysis Tool (PBCAT) to classify crashes based on the locations 

of the crashes relative to roadway segments or intersections, as well as the maneuver of the 

motor vehicle and e-scooter/bicycle relative to the motor vehicle. Two crash typologies can 

explain the majority of e-scooter crashes, while bicycle crashes are distributed over several crash 

typologies. Additionally, 1 in 10 e-scooter- and bicycle-motor vehicle crashes leads to the injury 

or fatality of the e-scooter rider or bicyclist. Furthermore, we noted statistically significant 

differences in spatial and temporal distribution, demographics, lighting conditions, and crash 

distance from home for e-scooter and bicycle crashes. The police crash report provides a 

comprehensive picture of e-scooter safety complementing existing literature. We found that e-

scooter crash characteristics do not fully overlap with features of bicycle crashes. A generalized 

engineering, education, and enforcement treatment to reduce and prevent e-scooter and bicycle 

crashes, injuries, and fatalities might not result in equal outcomes for each mode. More rigorous 

enforcement could be implemented to deter e-scooters riders under the age of 18 years and e-

scooter safety campaigns could target female riders. 



19 

 

Paper #2 

Nighttime crash risk is higher across all modes of transportation. Despite regulatory pressure to 

intervene in nighttime e-scooter riding, there is limited understanding of the number of crashes 

and crash rates by daytime and nighttime. Motor vehicle-involved crashes are most dangerous. 

This study combined 82 police crash reports with data from 3.1 million shared e-scooter trips in 

Nashville, TN from September 2018 to January 2022 to evaluate the time-of-day and seasonal 

crash patterns, controlling for exposure. E-scooter crashes, with cars at least, are more likely to 

occur during the nighttime, as indicated by crash rates estimated from trip count as an exposure 

variable. 

 Introduction  

Most of the previous e-scooter safety studies have taken observational, survey-based, 

epidemiological, and news article mining approaches. However, these data sources and methods 

do not provide a comprehensive understanding of e-scooter safety and how it relates to other 

micromobility modes. This study contributes to the literature by applying standardized bicycle 

crash typology on both e-scooter and bicycle crashes in Nashville, Tennessee. The comparison of 

crash typology based on location and maneuver, as well as general characteristics and 

demographics of crashes, can inform targeted educational, design, and enforcement strategies to 

reduce e-scooter and bicycle crashes. 

The remaining chapter is organized as follows. The relevant literature is summarized in the 

review of the literature section. The methods section describes the data and crash typology 

framework, with findings in the results section. A discussion of the findings is provided in the 

discussion section. The conclusion section summarizes the chapter along with limitations and 

further research. 

 Review of literature 

This section is organized into three sub-sections. Relevant safety research approaches, including 

crash typology, is summarized in the first sub-section. The second sub-section provides an 

overview of prior e-scooter safety studies, while the last sub-section presents the research 

approach of this research. 
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2.2.1 Relevant safety research approaches 

Macro-level safety analysis evaluates the effect of traffic, roadway, and socio-demographic 

factors on crashes over a geographical space to provide countermeasures for a long-term 

perspective (Cai, Lee, Eluru, & Abdel-Aty, 2016). Micro-level crash analysis, on the other hand, 

can lead to better insights about the cause of the crash (Hertach, Uhr, Niemann, & Cavegn, 

2018), and help to identify solutions that can be applied over a short period. Moreover, traffic 

safety problems can be related to microscopic factors such as a specific design of the road 

segment or intersection (Huang et al., 2016).  

Crash typology analysis is one of the methods for the micro-level analysis of bicycle as well as 

pedestrian crashes. The National Highway Traffic Safety Administration (NHTSA) classified 

pedestrian (Snyder & Knoblauch, 1971) and bicycle crashes (Cross & Fisher, 1977), which was 

later refined for the development of the FHWA Pedestrian and Bicycle Crash Analysis Tool 

(PBCAT) (Harkey, Tsai, Thomas, & Hunter, 2006). This is the most common crash typology 

used in practice and contains 56 pedestrian crash types and 79 bicycle crash types based on a 

combination of the following factors: pedestrian, bicyclist, and motor vehicle direction of travel; 

traffic control type; location; user behavior; and other circumstances such as school bus-related 

crashes. 

Researchers have also developed other typologies to complement behavior- and circumstance-

based PBCAT crash typology. Schneider and Stefanich (2016) developed the Location-

Movement Classification Method (LMCM) crash typology that is based on location and 

movement characteristics of the crash. Other crash types consider the interaction between a 

bicycle and a motor vehicle (e.g., right hook, head-on, door) (City of Cambridge, 2014; Lusk, 

Asgarzadeh, & Farvid, 2015), as well as crash characteristics that include the movement patterns 

of the bicyclist/pedestrian and motor vehicle, roadway attributes, lighting, and weather 

conditions (Jermakian & Zuby, 2011; MacAlister & Zuby, 2015).  

These crash typologies can be used to identify design engineering and enforcement measures as 

well as educate people to reduce crashes. For example, “Motorists turned left into the path of 

bicyclist” crash type may be addressed by improving left turn infrastructure and operations, 

improving intersection lightning, and improving vehicle conspicuity. However, to the authors’ 

knowledge, the crashes of emerging modes like e-scooters have not been scrutinized using any 
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crash typologies. This research uses the latest prototype version of PBCAT developed by Libby 

Thomas, Mike Vann, and UNC Highway Safety Research Center (2020) to evaluate the 

similarities and differences between e-scooter and bicycle crashes. 

2.2.2 Prior e-scooter safety research 

Unlike motor vehicle as well as bicycle crashes, e-scooter crashes lack national or statewide 

standardization, which has led researchers to adopt a wide range of data sources to assess e-

scooter crashes. Emergency department and trauma center data is the most popular source to 

evaluate fatalities and the severity of injuries related to e-scooter crashes (Badeau et al., 2019; 

Beck, Barker, Chan, & Stanbridge, 2019; Sikka, Vila, Stratton, Ghassemi, & Pourmand, 2019; 

Trivedi et al., 2019). As a part of e-scooter pilot evaluation programs, city transportation 

agencies have adopted a combination of methods to assess e-scooter safety, which include 

surveys (Portland Bureau of Transportation, 2019) and hospital records (Austin Public Health, 

2019; City of Chicago, 2020).    

Several studies have evaluated e-scooter user behavior related to safety that is based on a survey 

or observation. Curl and Fitt (2019) surveyed 536 Lime e-scooter users in New Zealand and 

concluded that 90 percent of users used footpaths (sidewalks) to ride e-scooters, and safety was 

the primary concern among non-users. James, Swiderski, Hicks, Teoman, and Buehler (2019) 

surveyed 181 e-scooter riders and non-riders in Rosslyn, Virginia, and combined the results with 

observational parking behavior. The authors found that non-users perceived e-scooters as more 

dangerous than users perceived them. 

Researchers have also used news reports and social media to understand e-scooter crash 

characteristics and user behavior. Yang et al. (2020) analyzed nationwide news reports to 

identify 169 e-scooter crashes in the United States between 2017 and 2019 and evaluated general 

crash characteristics, such as severity, demographics, and locations. Similarly, Allem and 

Majmundar (2019) evaluated 324 posts from Bird’s official Instagram account and found that 

many depicted e-scooter users did not use protective gear like helmets.  

However, the data sources used in the current e-scooter safety literature are not a comprehensive 

representation of e-scooter crashes. For example, hospital records are often limited to small 

sample sizes can be biased towards severe injuries, and lack contextual transportation factors 
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(Tin, Woodward, & Ameratunga, 2013), while news reports are biased in terms of crash severity, 

time and place of the crash, as well as the road user type and the victim’s personal characteristics 

(De Ceunynck, De Smedt, Daniels, Wouters, & Baets, 2015). Furthermore, most crashes in those 

datasets include little information about the motor vehicle, which contributes to 80% of e-scooter 

rider fatalities (Santacreu, Yannis, de Saint Leon, & CRIST, 2020a). Therefore, there is a need to 

understand the interaction between e-scooters and motor vehicles and identify the most common 

crash typologies. To this end, we also hope to understand how e-scooter crashes differ from 

bicycle crashes to assess if e-scooter-specific safety strategies are warranted.  

Furthermore, the existing literature has a limited understanding of time-of-day and seasonal 

patterns of e-scooter crashes. While many e-scooter safety policies are based on the number of 

crashes (Austin Public Health, 2019; Santacreu, Yannis, de Saint Leon, & Crist, 2020b), 

accounting for exposure provides a measure of risk to inform effective safety strategies (Merlin, 

Guerra, & Dumbaugh, 2020). Nighttime crash risk is generally higher across all modes of 

transportation and we aim to quantify that relative risk for e-scooter use. 

2.2.3 Research objectives 

Most fatalities and severe injuries of e-scooter users involve a motor vehicle, while crash 

typologies focused on the interaction between micromobility and motor vehicles in the literature 

have only examined bicycle crashes. An evaluation of crash typology considering the location 

and maneuver of e-scooters and motor vehicles as well as a comparison with other micromobility 

modes, like bicycles, is lacking in the literature.  

E-scooters are smaller than bicycles, which allows them to navigate pedestrian traffic, yet they 

are also fast enough to travel among cars on the roadway. This flexibility allows e-scooter riders 

to change when and where they ride, such as switching from riding on a sidewalk to using a 

traffic lane to avoid groups of pedestrians. Moreover, many policies require scooters ride on the 

road, but park on the sidewalk in the furniture zone, implicitly endorsing riding between the 

domains. Such navigation might be unpredictable, thereby increasing the risk of a collision 

between an e-scooter and a car, resulting in unique crash types. Therefore, the research questions 

of this study are as follows: 
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1. Are crash characteristics and demographics of e-scooter and motor vehicle collisions 

different than that of bicycle and motor vehicle collisions? 

2. Is the collision mechanism of e-scooter and motor vehicle collisions (movement and 

location) different than that of bicycle and motor vehicle collisions? 

3. Are crashes or crash rates disproportionately higher at night than during the day? 

 Methodology 

The research hypothesis was evaluated by analyzing e-scooter and bicycle crash records using 

descriptive analysis and PBCAT crash typology, as illustrated in Figure 5. The first sub-section 

describes the police crash reports, while the second sub-section provides an overview of the 

recent version of the PBCAT crash typology. 

2.3.1 Crash Report Data 

I accessed all the available e-scooter and bicycle crash reports between April 1, 2018 and April 

30, 2020 in Nashville, Tennessee that were reported by the police and documented in 

Tennessee’s Integrated Traffic Analysis Network (TITAN) (Tennessee Highway Safety Office, 

2020b). I relied on the tabulated crash data as well as narratives and crash diagrams to code 

specific information from the crashes. Although the TITAN dataset includes crash records 

throughout the state, I only analyzed crashes in Nashville, as e-scooter regulations differ between 

cities, which could influence riding behavior. Nashville additionally has the highest e-scooter 

deployment and usage amongst Tennessee cities, and crashes were consistently reported by two 

law enforcement agencies (Nashville Metro Police and Vanderbilt University Police). To legally 

ride a scooter in Nashville, a person must be 18 years or older, possess a valid driver’s license, 

yield to pedestrians, and follow the rules of the road. A rider must not ride on sidewalks nor 

drink and ride.  

This database includes crashes that involve a motor vehicle on public roadways, parking lots, and 

private driveways. The crash reports collect information on crash characteristics, general 

roadway characteristics, details of people and vehicles involved in a crash, as well as a narrative 

and a crash diagram describing the incident. Some crash reports include photographs. Incidents 

that do not involve motor vehicles, like e-scooter riders or bicyclists falling off or colliding with   
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Figure 5 Research design to evaluate e-scooter and bicycle crashes 
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each other are not included in the TITAN database. This analysis only includes motor vehicle-

involved crashes, which tend to be the most severe types of crashes, and evaluation of such 

incidents is essential in developing countermeasures that reduce bicycle- and e-scooter-motor 

vehicle crashes. 

I identified 33 unique e-scooter crashes in the TITAN database under the Non-Motorized 

Personal Conveyance category. E-scooter crashes were relatively consistently coded under this 

category several months after the launch of shared e-scooters in Nashville. In the early months of 

the launch, e-scooter crashes were reported as either bicycle or pedestrian crash types. Therefore, 

I used a text mining approach to identify these misclassified e-scooter crash reports by 

examining nine keywords (including company names) that may indicate an e-scooter 

involvement. The non-case sensitive search keywords are scooter, sumd, bird, lime, lyft, spin, 

jump, gotcha, and bolt. I used the pdfminer library in Python to read the narratives from the PDF 

format crash reports, which identified nine e-scooter crashes in the bicycle crash records and ten 

in the pedestrian crash records. With that, I identified a total of 52 unique e-scooter crashes in 

Nashville during this period.  

While the e-scooter crashes were mostly located in the downtown area of Nashville (Figure 1 

(b)), the TITAN database also contains bicycle crashes in the suburban areas. However, the road 

infrastructure and bicycle riding behavior are likely different in the suburban area than the city 

center, which may not be comparable to e-scooter crashes. Therefore, I identified bicycle crashes 

in the urban area by visualizing the crash locations in ArcGIS, and selected bicycle crashes 

within 1 mile of the nearest e-scooter crash. I extracted 79 bicycle crashes for the analysis.  

I consolidated a few variables that would allow a better comparison of the results. The redefined 

injury levels fall into three values: fatal, injury, and minor or no injury. Incapacitating and 

Suspected serious injury were classified as Injury, while No injury, Non-incapacitating evident, 

Possible injury, Suspected minor injury, and Unknown were classified as Minor or no injury. I 

also combined the clear and cloudy value of the weather condition field. Also, I extracted the 

home zip codes of the motorists as well as the bicyclists and e-scooter riders to calculate the 

distance of the crash location to their home to understand if they were Nashville residents or 

visitors. 
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2.3.2 Crash Typology  

The Pedestrian and Bicycle Crash Analysis Tool (PBCAT) crash typology framework is 

undergoing significant redevelopment in Summer 2020 (Libby Thomas et al., 2020). This 

analysis relies on version 3.0 of the framework that is expected for public release in Fall 2020. 

The PBCAT framework allows for consistent crash typology assignment and aims to understand 

factors that contribute to Vulnerable Road User (VRU) crashes. The framework classifies 

crashes based on the location of a crash (e.g., intersection) and the type of maneuver by the road 

users (e.g., left turn). Though relying on the most up-to-date version of the PBCAT framework, I 

also recorded other variables to compare e-scooter and bicycle crashes. The framework uses a 

series of codes that enable comparison between modes (Table 2). For example, the crash type “S-

CR” means that motor vehicle is going straight, while the vulnerable road user is crossing from 

the right of the motorist. 

2.3.3 Statistical Test 

The relatively small sample size of observed motor vehicle-involved e-scooter and bicycle crash 

records restricted the crash comparison to univariate statistical analysis. Most variables, such as 

gender, weather condition, and PBCAT typology, are categorical variables. I also converted 

continuous variables, like age and crash distance from home, into bins to further examine the 

distribution. I used Fisher’s Exact test of independence, which is more accurate than the chi-

square test for small samples, to evaluate if the distribution of the e-scooter crash depends on the 

distribution of bicycle crashes. I also used a t-test for continuous variables to evaluate the 

difference in means for e-scooter and bicycle crashes. 

2.3.4 Crash exposure analysis 

Building upon the crash database described earlier, I extracted identify 82 motor vehicle-

involved e-scooter crashes from September 2018 to January 2022. I acquired the Shared Urban 

Mobility Device (SUMD) dataset for e-scooter exposure for September 2018 to February 2020 

from the City of Nashville through a data request. Through a similar request, Populus 

Technologies, Inc, which currently curates e-scooter data for the City of Nashville, provided trip 

data through January 2022. I extracted dawn and dusk time for each day to identify the  
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Table 2 PBCAT crash typology 

              VRU                               

Maneuver 

 

 

Motorist   

Maneuver 

CR:  

Crossing 

from 

motorist’s 

right  

CL:  

Crossing 

from 

motorist’s 

left  

PS:  

Moving in 

same basic 

direction as 

the motorist  

PO: 

Moving in 

opposite 

direction 

as the 

motorist 

ND:  

Not 

moving 

or 

unknown 

direction  

OV:  

Pushing, 

on, or 

clinging to 

a motor 

vehicle 

UO: 

Unknown/ 

Other 

circumstances  

S:  

Going straight 

S-CR S-CL S-PS S-PO S-ND S-OV S-UO 

R:  

Turning right  

(or preparing to 

turn right) 

R-CR R-CL R-PS R-PO R-ND R-OV R-UO 

L:  

Turning left  

(or preparing to 

turn left)  

or making a U-

turn  

L-CR L-CL L-PS L-PO L-ND L-OV L-UO 

P:  

Parked (not in 

transport)  

P-CR P-CL P-PS P-PO -- P-OV P-UO 

D:  

Slowing or 

stopped in traffic 

(in transport) 

D-CR D-CL D-PS D-PO D-ND D-OV D-UO 

E:  

Entering roadway 

or traffic lane  

E-CR E-CL E-PS E-PO E-ND E-OV E-UO 

B:  

Backing up 

B-CR B-CL B-PS B-PO B-ND B-OV B-UO 

O:  

Other/Unknown 

O-C O-C O-P O-P O-ND O-OV O-UO 
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proportion of trips completed and crashes occurring during daytime and nighttime hours 

(Kennedy, 2020).  

I received hourly aggregated data from Populus with basic data cleaning (a total of 1,758,327 

trips from March 2020 to January 2022). I cleaned the SUMD trip dataset from September 2018 

to February 2020 following similar criteria as Populus (i.e., duplicates, trips with two or fewer 

GPS coordinates or more than five thousand GPS coordinates, and trips greater than seven 

hours). I also removed trips less than 200 feet, leaving 3,162,728 trip records throughout the 

study period for the analysis.  

Figure 6 summarizes the bi-monthly number of crashes, number of e-scooter trips, and the 

number of crashes per e-scooter trip (crash rate) segmented by day and night throughout the 

study period. We used the bi-monthly level of aggregation because some months did not have 

any daytime or nighttime e-scooter crashes. The number of daytime crashes was generally higher 

than the number of nighttime crashes, as illustrated in Figure 6 (a). The number of daytime trips 

was also higher than the number of nighttime trips, as illustrated in Figure 6 (b). However, 

nighttime crash rates were generally higher than daytime crash rates, as indicated in Figure 6 (c). 

I used negative binomial regression in Stata to evaluate the statistical difference in the daytime 

and nighttime crash rates, with the number of trips as the exposure variable. The dependent 

variable is the number of bi-monthly crashes, and the independent variable is a dummy variable 

indicating nighttime crashes. I removed the data for peak COVID-19 months between March 

2020 to May 2020, as there was low vehicular traffic. I also added a dummy variable for crashes 

observed between March 2020 to December 2020 as a control for COVID-19 since travel 

behavior was dramatically disrupted then. I also used dummy variables for bi-monthly 

observations to control for seasonal variation in e-scooter usage.  

 Results 

This section summarizes the key findings from the study, which are organized into two sub-

section. The descriptive analysis of the crashes is presented in the first sub-section, followed by 

the crash typology in the next sub-section.  
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(a)  

 

(b)  

 

(c) 

Figure 6 Bi-monthly number of e-scooter crashes, trips, and crash rates segmented by day and night 

a) number of crashes, b) number of trips, c) crash rates 
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2.4.1 Descriptive Analysis of Crashes 

I evaluated the differences in the characteristics of e-scooter and bicycle crashes that are not 

inherently included in the PBCAT crash typology. This sub-section summarizes the descriptive 

analysis of such characteristics.  

2.4.1.1 Temporal and Spatial Distribution 

Figure 7 (a) presents the monthly crashes of bicycles and e-scooters (represented as a percentage 

of total crashes of each mode) from April 2018 to April 2020, whereas the locations of crashes 

for both modes are plotted in Figure 7 (b). The first e-scooter crash was reported in May 2018, 

while the first peak of e-scooter crashes was observed in October 2018, and the crash rate peaked 

in May 2019. The peak of bicycle crashes during the study period was observed in August 2018 

with smaller subsequent peaks. The number of crashes for both modes increased during the 

summer of 2019. Figure 7 (b) illustrates that the e-scooter crashes were mostly concentrated in 

the city center of Nashville, whereas the bicycle crashes were more spatially dispersed.  

2.4.1.2 Crash Characteristics and Demographics  

Figure 8 shows the general characteristics and demographics of the bicyclists and e-scooter 

riders involved in crashes. The weather and light conditions of crashes of both modes are 

illustrated in Figure 8 (a) and Figure 8 (b), respectively. E-scooter and bicycle crashes have 

similar weather conditions (Fisher’s Exact test p-value=0.779) and lighting conditions (Fisher’s 

Exact test p-value=0.134). Most of the e-scooter and bicycle crashes occur in clear or cloudy 

weather conditions and daylight. Although not statistically significant, it is worth noting that e-

scooter crashes occurred more frequently in dark and lighted conditions than bicycles (26% vs. 

17%) and less frequently in no light condition (4% vs. 12%). It is likely that Downtown 

Nashville, where most of the e-scooter crashes occurred, is better lit during the nighttime than 

bicycle crash locations, mostly outside the city center on potentially unlit roads. 

Figure 8 (c) and (d) reflect the intoxication level of the bicycle/e-scooter riders and the motorists, 

respectively. There is no significant difference in the intoxication level (about 20%) among e-

scooter riders and bicyclists involved in the crash (Fisher’s Exact test p-value = 1.000) and 

motorists colliding with e-scooter or bicycle (Fisher’s Exact test p-value = 0.827). I found only  
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Figure 7. Temporal and spatial distribution of bicycle and e-scooter crashes 

(a) Temporal distribution, (b) spatial distribution 

  

(a) 

(b) 
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two motor vehicle-involved e-scooter crashes (4% of e-scooter-related crash in the study) 

involved intoxicated e-scooter riders, including one fatal crash. On the other hand, most 

bicyclists, e-scooter riders, and motor vehicle drivers were not reported to be intoxicated during 

other crashes. This contrasts findings that many injured scooter riders are intoxicated (Kobayashi 

et al., 2019). It is worth mentioning that most of the intoxication tests are based on observation of 

the police officer at a crash location, and they are not reliable unless the breath test is 

administered for both motor vehicle driver and bicycle/e-scooter rider.  However, 1 in 5 bicycle-

motor vehicle and e-scooter-motor vehicle crashes involved a hit and run, where motor vehicle 

drivers most often fled the crash scene. I found a few instances of bicyclists and e-scooter riders 

leaving the scene before police arrived for minor crashes. Thus, a significant number of motor 

driver intoxication data is not available, as the drivers fled in a hit-and-run event. 

The age distribution of bicyclists and e-scooter riders recorded in police crash reports are plotted 

in Figure 8 (e). E-scooter riders crashing with motor vehicles tend to be younger in age than 

bicyclists colliding with a motor vehicle (t-test p-value = 0.010 and Fisher’s Exact test p-value = 

0.021 for age group). Although the legal age to ride e-scooters in Nashville is 18 years, 13% of 

e-scooter riders crashing with motor vehicles were below 18 years old. 65% of e-scooter riders 

were below 30 years compared to only 47% of bicyclists in the same age group. Similarly, 

Figure 8 (f) indicates the gender distribution of bicyclists/e-scooter riders involved in a crash, 

which is statistically different (Fisher’s Exact test p=0.015). Males riding bicycles or e-scooters 

were more represented in crashes with a motor vehicle. Amongst crashes involving female 

riders, the proportion of e-scooter crashes is higher: 31% of e-scooter riders were females, while 

only 13% of bicyclists were females. This potentially reflects the higher proportion of women 

using scooters (Sanders, Branion-Calles, & Nelson, 2020).  

 

2.4.1.3 Crash distance from home 

Figure 9 summarizes the crash distance from home observed in the police crash report, estimated 

as the straight line distance of the centroid of the zip code of the driver or rider to the coordinates 

of the crash location. Figure 9 (a) shows a histogram of crash distance away from home for 

bicyclist/e-scooter riders. E-scooter riders are farther from home than bicyclists (Fisher’s Exact 

Test p=0.000). More than 70% of the bicyclists lived within 3 miles of the crash location, while 

only 7% lived more than 50 miles away. On the other hand, only 40% of the e-scooter riders 
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lived within 3 miles of the crash location, while approximately 38% of e-scooter riders lived 

more than 50 miles away. Though a substantial portion of e-scooter riders in the crash records 

appear to be visitors (e.g., tourists) in Nashville, a majority of scooter crash victims are local 

riders. In contrast, almost all bicyclists crashed within bicycling range of home.  

Similarly, Figure 9 (b) shows the histogram of crash site distance from home for the motorists 

involved in a crash with bicycles and e-scooters. This is important because drivers from 

suburban and rural areas outside the city might not be experienced driving around bicycle and 

scooter riders. I did not find a statistical difference in motorist’s crash distance crashing with an 

e-scooter or bicycle (Fisher’s Exact test p-value = 0.747). However, most vehicle drivers 

involved in crashes live outside the core area of Nashville compared to e-scooter and bicycle 

riders who tend to be more local.  

 

2.4.2 PBCAT Crash Typology 

I used the PBCAT tool to identify the locations and maneuver of bicycles and e-scooter crashes 

reported in Nashville. The general location of e-scooter and bicycle crashes (road type such as 

intersection and driveway) is similar (Fisher’s Exact test p-value = 0.644). Figure 10 summarizes 

the PBCAT typology on location factors. The vertical axis is a general crash location on vertical 

axes, and the horizontal axis is the bicycle or e-scooter rider’s location during the crash. 

As depicted in the diagram, most e-scooter and bicycle crashes occurred at an intersection (65% 

of e-scooter and 67% of bicycle crashes). Driveway-to-roadway junctions accounted for the 

second-largest number of crashes (17% of both e-scooter and bicycle crashes). Non-junctions 

along the roadway ranked third in the proportion of crash locations (13% of e-scooter and 14% 

of bicycle crashes). The distribution of bicycle crash locations is consistent with the national 

average (National Transportation Safety Board, 2019), and the locations of e-scooter crashes are 

similar to bicycle crash locations.  

In contrast, the motor vehicle maneuvers during a crash with an e-scooter are different than 

colliding with a bicycle (Fisher’s Exact test p-value 0.087), as illustrated in Figure 11. A motor 

vehicle turning left (L) contributed to 23% of e-scooter crashes and 9% of bicycle crashes, while 

the straight maneuver of the motor vehicle (S) accounted for 44% of e-scooter crashes and 31% 

of bicycle crashes. 33% of e-scooter and bicycle crashes occurred during the right maneuver of   
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Figure 8. General characteristics of bicycle and e-scooter crashes  

(a) weather condition, (b) light condition, (c) bicycle/e-scooter rider intoxication, (d) motorist 

intoxication, (e) age distribution of bicyclist and e-scooter riders, (f) gender distribution of bicyclist/e-

scooter rider  
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Figure 9. Crash distance from home 

 (a) bicyclist/e-scooter riders; (b) motorists 

  

(a) 

(b) 
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Figure 10. PBCAT typology – location  

 

 

Figure 11. PBCAT typology - maneuver  
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the motor vehicle (R). Other maneuvers of motor vehicles contributed to a fraction of crashes for 

both modes. 

Maneuvers of e-scooter riders before a crash is also different than bicyclists (Fisher’s Exact test 

p-value = 0.055), as illustrated in Figure 11. The maneuver of e-scooter riders or bicyclists from 

the right side of the motor vehicle (CR) contributed to the most frequent crashes; however, the 

proportion is much higher for e-scooter crashes (59% of e-scooter crashes as compared to 33% 

of bicycle crashes). These were often e-scooters or bicyclists riding on sidewalks, approaching 

intersections from the driver’s right side (opposite to drivers’ expectations). E-scooters moving 

in the same direction as a motor vehicle (PS) accounted for 20% of e-scooter crashes, whereas 

29% of bicycle crashes occurred for the same direction of maneuver. While other maneuver 

directions of e-scooters during crashes were not recorded in a substantial number, the maneuver 

of bicyclists from the opposite direction of the motor vehicle (PO) contributed to 17% of bicycle 

crashes, and maneuver from the left of a motor vehicle (CL) accounted for 12% of bicycle 

crashes. In summary, only two maneuvers (CR and PS) accounted for 80% of e-scooter crashes, 

whereas bicycle crashes were distributed among several maneuvers.  

2.4.2.1 Intersection Crashes 

Since more than 60% of the bicycle and e-scooter crashes occurred at an intersection, I further 

scrutinized these crashes. There is a strong difference in the distributions of e-scooter and bicycle 

crashes among the PBCAT crash typology (Fisher’s Exact test p-value = 0.033). Table 3 

summarizes the maneuvers of the motorists, bicyclists, and e-scooter riders at different locations 

of an intersection. The motor vehicle approaching the leg of an intersection is labeled as 

Entering, leaving the intersection as Exiting, and located in other areas of the intersection as 

Middle/other areas. 

As shown in the Table 3, only a few PBCAT crash types contain the majority of e-scooter 

crashes. The most common types of e-scooter crashes at an intersection were S-CR and R-CR, 

which accounted for 31% and 29% of all e-scooter intersection crashes, respectively. As depicted 

in Figure 12 (a), the S-CR crash type indicates a motor vehicle moving straight with an e-scooter 

arriving from the right of the motor vehicle, while the R-CR type indicates a motor vehicle 

turning right with an e-scooter arriving from the right. 12% of e-scooter crashes at intersections  
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Table 3 PBCAT crash typology at intersections 

Motorist 

maneuver 

Location at 

intersection 

CL: From 

the 

Motorist's 

Left 

CR: From 

the 

Motorists' 

Right 

PO: 

Opposite 

Direction as 

the 

Motorist 

PS: Same 

Basic 

Direction as 

the 

Motorist 

UO: 

Unknown/

Other 

Circumstan

ces 

Grand 

Total of 

motorist 

maneuver 

B S B S B S B S B S B S 

D: Slowing 

or Stopped 

Entering   2%     3%   2% 3% 

Middle / 

Other area    
2% 

       
2% 0% 

E: Entering 

Roadway  

Entering 

  
2% 

       
2% 0% 

L: Turning  

Left  

Entering    3%       0% 3% 

Exiting 2%  2%  12% 3% 6% 3% 2%  23% 6% 

Middle / 

Other area    
2% 

 
6% 

 
2% 

   
10% 0% 

O: Other/ 

Unknown 

 

         
3% 0% 3% 

R: Turning 

Right  

Entering  3% 10% 23%   8% 3% 4%  21% 29% 

Exiting   2% 6% 2% 6% 8%    12% 12% 

Middle / 

Other area  
2% 

 
2% 

       
4% 0% 

S: Going 

Straight 

Entering 2% 3% 2% 11%   2%   3% 6% 17% 

Exiting 2%   11%     4%  6% 11% 

Middle / 

Other area  
6% 9% 8% 9% 

      
13% 18% 

Grand total of either 

bicycle or e-scooter 

crashes 

13% 15% 33% 63% 19% 9% 25% 9% 10% 6%   

 Note: the percentage indicated in the table is the percentage of either bicycle or e-scooter crashes  

Legend: B = Bicycle and S = E-scooter 
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were S-CL, where a motor vehicle was moving straight and an e-scooter collided from the left of 

the motor vehicle.  

In contrast to the e-scooter crashes, the bicycle crashes are somewhat evenly distributed among 

the PBCAT crash typology. L-PO is the most common type with 17% of bicycle crashes at 

intersections. As depicted in Figure 12 (b), the L-PO crash type indicates a motor vehicle and 

bicycle traveling in opposite directions, and a collision occurs while the motor vehicle is turning 

left. The R-PS type accounts for 15% of bicycle crashes at intersections, where both the motor 

vehicle and bicycle are traveling in the same direction, and the motor vehicle turns right. Other 

bicycle crash typologies are R-CR, S-CR, and S-CL, each containing about 10% of bicycle 

crashes at the intersection. 

2.4.2.2 Severity Levels of Crash Typology 

Approximately 1 in 10 e-scooter- and bicycle-motor vehicle crashes led to an injury. The 

distribution of severity by location is similar for both bicycle and e-scooter crashes; most crashes 

with injury and minor/no or unknown severity occur at the intersection, followed by driveway 

access and non-junction. The only fatal e-scooter crash reported in Nashville during the study 

period occurred at an intersection when the motor vehicle was traveling straight, and the e-

scooter crossed from the right of the motor vehicle (S-CR).  

Four e-scooter riders were injured among the 52 e-scooter crashes, with none of the motorists 

being injured. The predominant crash types for these e-scooter crashes are (1) the motor vehicle 

entering roadway with the e-scooter rider crossing from the right (E-CR) in a driveway, (2) the 

motor vehicle moving straight with the e-scooter crossing from the right (S-CR) at an 

intersection, (3) the motor vehicle turning right with the e-scooter crossing from the left (R-CL) 

at an intersection, and (4) the motor vehicle moving straight with e-scooter also moving in the 

same direction (S-PS) along a non-junction roadway.  

Six out of 79 bicyclists were injured in bicycle-motor vehicle crashes, while none of the 

motorists were injured. Two such crashes occurred at intersections while the motor vehicle was 

moving straight and the bicyclist was crossing from the right side of the motor vehicle (S-CR). 

Two other crashes occurred while the motor vehicle was turning left with the bicyclist traveling 

in the same direction in the exiting leg of the intersection (L-PS). I reviewed one bicycle crash   
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Figure 12 Most common PBCAT crash typology at intersection 

(a) e-scooter, and (b) bicycle 

 

  

(a) (b) 
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each for motor vehicles turning right with a bicyclist moving in the same direction (R-PS) at the 

intersection (a typical “right hook” crash) and a motor vehicle moving straight with unknown 

maneuver for the bicyclist (S-UO) at a non-junction roadway.  

2.4.3 Crash exposure 

Figure 13 summarizes the total number of e-scooter crashes and bi-monthly crash rates by 

daytime and nighttime. Out of 82 motor vehicle-involved crashes, 60 (73% of all crashes) 

occurred during the daytime, while 22 (27% of all crashes) occurred during the nighttime. On 

average, we observed 2.6 crashes per 100,000 trips. When segmented by daytime and nighttime, 

the crash rate during the night was higher than during the daytime (4.8 vs. 2.2 crashes per 

100,000 trips).  

Table 4 includes the negative binomial regression model results of bi-monthly daytime and 

nighttime e-scooter crash rates. The model is statistically significant (probability of LR test 

statistics is 0.027). The dummy variable for nighttime crashes is significant, indicating that the 

likelihood of nighttime crashes is 1.81 times greater than daytime crashes. The COVID-19 

control is also significant, suggesting that the number of crashes decreased by a factor of 0.28 

during the peak pandemic era, when accounting for exposure.  

 Implications 

Based on the findings of bicycle- and e-scooter-motor vehicle crashes in Nashville, the following 

four subsections provide a discussion on the general crash characteristics of bicycles or e-

scooters colliding with a motor vehicle. The next two subsections emphasize the location and 

maneuver of bicyclists/e-scooter riders and motorists before the crash. 

2.5.1 Temporal and spatial distribution of crash 

I observed higher crash rates during the summer. A higher number of bicycle and e-scooter trips 

could contribute to an increase in exposure, as e-scooter ridership is predominantly high during 

weekends and summer months (N. R. Shah, 2020) and bicycle volumes are also higher in 

summer (Miranda-Moreno, Nosal, Schneider, & Proulx, 2013). Additional hours of daylight 

during the summer could also contribute to increased exposure. Therefore, educational 

campaigns on bicycle and e-scooter safety could be most effective during weekends and summer   
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(a)  

 

(b) 

Figure 13 Total number of e-scooter crashes and crash rates per 100,000 trips aggregated bi-monthly 

a) Distribution of daytime and nighttime crashes, b) Crash rates based on the number of trips 

 

 

Table 4 Results of the negative binomial regression of e-scooter crash rates aggregated bi-monthly 

Dependent variable: number of 

crashes 

Incidence Rate Ratio 

(IRR) 

Standard 

Error 

p-value 

Nighttime crashes (dummy variable) 2.81 0.50 0.034 

COVID-19 control (dummy variable) 0.28 0.15 0.018 

Constant 4.51 1.39 0.000 

Alpha 0.05 0.11  

Model statistics 

Time control Bi-monthly 

Number of observations 38 

Log-likelihood -59.31 

Probability of LR test 0.027 
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months, as ridership and crash rates are highest during these times. Furthermore, COVID-19 may 

have affected the crash rates at the end of the study period by contributing to lower motor vehicle 

traffic, a change in e-scooter/bicycle ridership, or a combination of both.  

The compact spatial distribution of e-scooter crashes around downtown Nashville and Vanderbilt 

University is consistent with the general e-scooter usage locations revealed by other studies (Bai 

& Jiao, 2020; N. R. Shah, 2020). E-scooters have high levels of exposure in this area, which is 

influenced by device availability, as most e-scooters are distributed in densely built 

environments. On the other hand, bicycle crash locations were also spread outside the core part 

of the city. E-scooter safety measures should be prioritized in downtown and university areas, 

while bicycle safety measures should also target areas further away from downtown areas. 

2.5.2 Crash characteristics 

Most of the e-scooter- and bicycle-motor vehicle crashes occur during daylight. However, the 

second-highest proportion of e-scooter crashes occurred during nighttime in lit conditions, 

whereas bicycle crashes occurred more frequently during nighttime in no-light conditions. E-

scooters are mainly used in the densely built environments of downtown Nashville and 

Vanderbilt University (N. R. Shah, 2020), which are usually well-lit, while bicycle crash 

locations, which are usually away from the core area of the city, might not have adequate 

lighting. Therefore, additional confounding factors other than lighting could contribute to e-

scooter crashes at night, whereas improving lighting at nighttime bicycle crash hotspots could 

reduce bicycle crash rates. 

Other crash characteristics can reveal safety implications to reduce e-scooter and bicycle-related 

crashes and injuries. Despite common perceptions, only a few e-scooter or bicycle riders were 

reported as intoxicated at the time of the crash, even in nighttime entertainment districts. But 1 

out of 5 crashes involved a hit-and-run, with most hit-and-run cases including motorists and a 

few cases of the bicyclist or e-scooter riders leaving the crash scene before the arrival of police. 

The reduction of such hit-and-run might require stronger education and enforcement, such as a 

surveillance camera at crash hotspots. Of those involved in crashes with motor vehicles, 1 in 10 

bicycle/e-scooter riders were injured while none of the motorists were injured. This 

disproportionate injury rate reinforces that bicyclist and e-scooters riders are vulnerable road user 

group who requires additional safety measures compared motor vehicles.  



44 

 

2.5.3 Demographics of crash victims 

Bicyclist and e-scooter riders who collided with a motor vehicle in Nashville were 

predominantly male. Amongst the crashes involving female riders, the proportion e-scooter 

crashes are higher than bicycle crashes (29% vs. 13%) in our police-reported data. Pilot 

evaluations of shared e-scooter programs also reported that approximately one-third of e-scooter 

riders are females (City of Chicago, 2020; Portland Bureau of Transportation, 2018). Women are 

generally more represented as e-scooter riders than as bicyclists. Therefore, the e-scooter safety 

campaign should also be geared toward female riders. 

The e-scooter riders crashing with a motor vehicle are younger than bicyclists involved in 

crashes. This does not necessarily prove that younger age groups have risky riding behavior, as 

younger demographics have higher ridership and crash exposure on e-scooters (Bai & Jiao, 2020; 

Caspi, Smart, & Noland, 2020; City of Chicago, 2020). The survey result of e-scooter pilot 

programs also found that these emerging modes are popular among the age group of 18 to 40 

years (Austin Public Health, 2019; City of Chicago, 2020). Adapting safety campaigns to the 

ridership age group could increase their effectiveness, such as e-scooter campaigns targeted 

towards younger adults and bicycle campaigns geared towards older age groups.  

I found that 13% of all e-scooter riders were below the age of 18 in our police crash report, 

despite the legal age of 18 to ride an e-scooter in Nashville. Although the crash report does not 

necessarily represent the actual ridership for this age group, a significant number of minors could 

be riding e-scooters. Organizations such as the American Academy of Pediatrics (AAP) do not 

recommend children below the age of 16 to operate e-scooters (Morgan, 2019). More vigilant 

enforcement, as well as educational strategies, by law enforcement agencies and advocacy 

groups could help discourage the use of e-scooters amongst this vulnerable age group. As e-

scooter service operators require users to upload a valid driver’s license before the first trip 

(Fawcett, Barboza, Gasvoda, & Bernier, 2018), the e-scooter service operators could also take 

proactive steps to ensure that their active users are above the legal age to operate e-scooters.  

2.5.4 Crash distance from home 

The home location of e-scooter riders, bicyclists, and motorists can influence riding or driving 

behavior and road safety approaches. Over 70% of bicyclists lived within three miles of the crash 
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location. Additionally, 38% of e-scooter crashes occurred more than 50 miles from home, 

compared to 7% for bicyclists. In the absence of extensively available bikeshare options, it is 

possible that a majority of bicyclists in Nashville own their bikes, and the limitation in the 

geographical coverage of bicycling could therefore explain the number of bicycle crashes near 

home. In contrast, shared e-scooters are more visible and accessible to visitors in Nashville, 

which could explain that a high number of e-scooters rider crashed more than 50 miles from 

home. Visitors using e-scooters might not be familiar with roadway and traffic conditions of 

Nashville, which could have led to crashes. Still, even in a tourist-oriented city, more than half of 

the crash-involved scooter riders are local to Nashville. 

Similarly, motorists involved in crash live further from home than e-scooter or bicycle riders. As 

e-scooters are popular in dense urban areas, motor vehicle drivers living in suburban or rural 

areas could be unfamiliar with the interaction of e-scooters, leading to crashes. Other studies 

have also found the crash distance from home as a significant predictor of mode of travel (Haas 

et al., 2015; Steinbach, Edwards, & Grundy, 2013).  

A combination of educational, wayfinding, and infrastructure improvements could reduce e-

scooter- and bicycle-motor vehicle crashes that involve visitors to metro areas. Educational 

efforts could focus on educating drivers to expect e-scooters and bicyclists when entering the 

downtown area, while visitors could be cautioned about the specific risk of riding e-scooters in 

the city. Multimodal street design that accommodates e-scooters in combination with well-visible 

signs and markings could also guide e-scooter users to avoid crash risks and dangerous 

infrastructure.  

2.5.5 Crash locations  

I did not find any difference in the distribution of e-scooter- and bicycle-motor vehicle crash 

locations by road type in the police crash report database of Nashville, Tennessee. Both bicycle 

and e-scooter crashes followed the national average distribution of bicycle crashes by location 

(NHTSA, 2008). Traffic designs, enforcement, and education for bicycle and e-scooter safety 

should prioritize intersections, as more than 60% of e-scooter- and bicycle-motor vehicle 

collisions occur at these locations. Protected intersection designs that slow down vehicles and 

emphasize vulnerable road users, such as raised pavements, can reduce conflicts among road 

users.  
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Safety measures to increase visibility of e-scooters and bicyclists can also reduce intersection 

crashes. I recommend intersection design to increase the conspicuity of e-scooters and bicyclists, 

and at night, combined with improved head and taillights and retro-reflectivity on bicycles and e-

scooters may help overcome this visibility challenge. The infrastructure design should be 

complemented with enforcement strategies and educational campaigns that deter traffic rule 

violations and risky behaviors. For example, the combination of corridor improvement approach 

and speed camera enforcement reduced the likelihood of incapacitating or fatal injury by 39% in 

Virginia (Hu & McCartt, 2016).  

2.5.6 Maneuvers before the crash 

Only a few PBCAT crash typologies could explain most e-scooter-motor vehicle crashes in 

Nashville, Tennessee. Of all e-scooter crashes, 54% occurred at an intersection with a motor 

vehicle traveling straight or turning right and an e-scooter rider entering the crosswalk from the 

right. Intersection safety designs, like curb extensions and raised pavement, can force drivers to 

reduce speed and check their far-side view for vulnerable road users. Removing right-turn-on-red 

allowance could reduce conflicts by allowing drivers to focus on traffic from all directions. 

Educating both motor drivers and e-scooter users on these common crash mechanisms could 

improve risk awareness and reduce such crashes.  

In contrast, bicycle-motor vehicle crashes were distributed among several PBCAT crash 

typologies. I found significant bicycle-related crashes in some maneuvers, such as a motor 

vehicle turning left while a bicycle was traveling in the opposite direction of the motor vehicle, 

but there were few such e-scooter crashes. We cannot reasonably speculate why those crash 

mechanisms differ. Nevertheless, the difference in crash typology distribution points to different 

collision mechanisms between e-scooter- and bicycle-motor vehicle crashes. Therefore, safety 

measures targeted towards bicycles, for example, might not reduce e-scooter crashes. 

2.5.7 Crash exposure 

Possible reasons that e-scooter rides are riskier at night compared to daytime could be a) low 

conspicuity as e-scooters are small and are not equipped with powerful lights, b) low visibility 

due to poor lighting of streets that makes it difficult for motor vehicle drivers and e-scooter riders 

to be aware of their environment. I did not see strong evidence of alcohol impairment in the 
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police crash reports from drivers or e-scooter riders for the same crash dataset. The policy 

implication of the nighttime crash rate being higher than daytime could justify policy or 

technology interventions to improve the safety of e-scooter riders at night. Like other Vulnerable 

Road Users (VRU) (Ferenchak & Abadi, 2021), e-scooter riders are more vulnerable to crashes 

at night. Future research can perform exposure analysis on the network to identify riskier 

infrastructure and evaluate exposure with rider demographics (gender and age group) and riders' 

experience (first time vs. regular riders).  

2.5.8 Limitations and future research 

This study has several limitations. First, the relatively small sample size of the e-scooter and 

bicycle crashes did not allow rigorous multivariate statistical analysis. A breakdown of variables 

increases the degree of freedom to reduce the power of statistical analysis and mask any 

significant relationship. This limitation did not allow us to scrutinize the crash typology and 

injury severities further. Second, the results should not be generalized for every cities as this 

study is based on evaluation e-scooter and bicycle crashes with motor vehicle in Nashville, 

Tennessee and crashes tend to show spatial heterogeneity. Third, I only evaluated motor vehicle 

collisions, whereas bicycle and e-scooter crashes can also occur due to additional causes, such as 

falling and colliding with stationary objects.  

Furthermore, crashes are generally underreported as some of the non-injury and small property 

damage incidents are not reported to the police. Severity of crashes is reported by police and 

emergency department data is known to provide better diagnostic performance. Future work 

linking emergency department and crash data would illuminate this area. Finally, the crash 

database lacks exposure information, total ridership, that would allow for the evaluation of 

scalable risks relative to the number of road users and the use of infrastructure.  

Future research can combine methods and multiple data sources to provide better nuances of e-

scooter safety. For example, naturalistic data collection methods, like video cameras and sensors, 

can evaluate near-miss crashes involving e-scooters. The comparison of multiple crash 

databases, such as police crash reports and hospital data, can help to derive correction factors for 

estimating accurate crash statistics. Furthermore, a comparison of e-scooter safety among 

different cities could provide insights on the geographical heterogeneity of e-scooter crashes, as 

well as the impacts of certain safety-related policies, such as no riding on the sidewalk. It is 
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possible that tourists, students, or first-time riders are more prone to crashes with cars. 

Researchers can also explore crash severity and types of infrastructure used during the day or 

night as well as compare the crash rates over time. 

 Conclusion 

I evaluated two years of bicycle and e-scooter crashes in the urban part of Nashville, Tennessee, 

using the police crash report maintained by the Tennessee Department of Transportation. I noted 

differences in e-scooter- and bicycle-motor vehicle crashes in temporal and spatial distributions, 

crash characteristics, crash distance from home, and maneuver of motorists and bicyclists or e-

scooter riders before the crash. However, I did not find an apparent difference concerning the 

locations by road type of the crashes. I also found that nighttime e-scooter riding is twice as risky 

as daytime. Additionally, I made design, enforcement, and education recommendations to 

prevent and reduce those crashes in the future. Moreover, this study reinforces the importance of 

standardization of crash records that would better enable the data-driven evaluation of emerging 

transportation modes like e-scooters.  
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Chapter 3. Demand elasticity of e-scooter vehicle 

deployment  
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This chapter is based on a research paper by Nitesh R Shah, Abubakr Ziedan, Candace 

Brakewood, and Christopher Cherry titled “Shared E-Scooter Service Providers with Large Fleet 

Size Have a Competitive Advantage: Findings from E-Scooter Demand and Supply Analysis of 

Nashville, Tennessee.” The paper is in review at the Transportation Research Part A: Policy and 

Practice. This paper was presented at the Transportation Research Board Annual Meeting 2022 

in Washington, D.C, and the Tennessee Section Institute of Engineers Summer Meeting 2022 in 

Gatlinburg, Tennessee. This research paper also received the second position in the Annual 

Student Paper Competition, Tennessee Section Institute of Transportation Engineers (TSITE).   

Abstract 

Shared e-scooter systems are one of the fastest-growing micromobility modes in the United 

States. In response to service providers’ rapid deployment of e-scooter vehicles, several city 

governments have regulated shared e-scooters through permits and pilot programs, including the 

number of service providers, their fleet size, and provisions for expanding/downsizing the fleet 

size. However, the literature lacks an empirical analysis of the demand elasticity of shared e-

scooters. We used a negative binomial fixed effect regression to evaluate the demand elasticity 

of e-scooter vehicle deployment using the Shared Urban Mobility Device (SUMD) dataset from 

Nashville, Tennessee, between April 2019 and February 2020. This dataset included 

disaggregated e-scooter trip summary data and vehicle location data that updates approximately 

every five minutes. We also estimated land-use specific demand elasticity of e-scooter vehicle 

deployment by clustering Traffic Analysis Zones (TAZs) using the K-means algorithm. We 

found that the average daily demand elasticity of e-scooter vehicle deployment is inelastic (0.55). 

Service providers with large fleet sizes (>500) have a demand elasticity of e-scooter deployment 

that is 2.5 times higher than that of medium fleet-sized service providers (250-500). We also 

found a significant difference in demand elasticity of e-scooter deployment for land use types, 

with university and park & waterfront land uses having the highest elasticity values. These 

findings could be helpful for city governments to identify the optimal number of service 

providers and fleet sizes to permit so that demand is fulfilled without an oversupply of e-scooter 

vehicles in public spaces.   
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 Introduction 

Soon after the first launch of e-scooters in the United States (Santa Monica in 2017), e-scooter 

service providers rapidly expanded in other cities (Reinhardt & Deakin, 2020). Some city 

governments quickly moved to regulate scooter operators and introduced permits and pilot 

programs to control negative impacts, test the viability of e-scooters, and evaluate policies to 

manage public spaces. These permits and pilot programs have a wide range of dimensions to 

regulate the demand and supply of shared e-scooters, including the number of service providers 

allowed to provide service, each operator’s fleet size and limits, geographic bounds, and the 

potential for expansion and downsizing of operations (Janssen et al., 2020; NACTO, 2019). The 

fleet size influences the availability of e-scooters, with a required minimum number of e-scooter 

vehicles ensuring robust availability while a maximum cap limits oversupply. Several cities also 

have provisions for increasing or decreasing the total number of e-scooter vehicles deployed 

based on performance metrics (like riders per vehicle per day) or compliance with permits (such 

as the specific proportion of trips serving targeted service areas) (NACTO, 2019).  

These policy dimensions vary across cities without a common consensus on best practices (Ma et 

al., 2021). Most guidelines recommend that the city government determine the number of service 

providers and fleet size based on policy goals and metrics (like population size and density) and 

lessons learned from comparable cities (NACTO, 2019; Remix, 2018). Janssen et al. (2020) 

found that the number of service providers, their fleet size, and cities’ expansion/downsizing 

plans varied among ten cities comparable in population size and density, government structure, 

and level of bicycling infrastructure. They found that many cities changed and adapted these 

policies over time, either based on their own experience or learning from other cities. Moreover, 

the literature lacks an empirical analysis of the effect of the number of service providers and their 

fleet sizes on the volume of e-scooter trips.  

This chapter estimates the demand elasticity of deployed e-scooter vehicles by comparing actual 

demand (e-scooter usage) with supply dimensions (vehicles deployed). I use a nearly year-long 

geographically disaggregated e-scooter trip summary dataset and location of available e-scooters 

that updates approximately every five minutes for our analysis. The elasticity values segmented 

by weekday/weekend, land use types, and shared e-scooter service providers based on their fleet 
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size can help city governments identify the appropriate size of shared e-scooter systems 

operating within their jurisdiction.   

 Review of literature 

Several studies have investigated temporal and spatial characteristics influencing the demand of 

e-scooters, while few studies have considered the supply aspect of shared e-scooters. This 

section summarizes the existing studies in three subsections. Section 3.1.1 provides an overview 

of temporal factors (e.g., trip starting time and weather) influencing e-scooter trips, followed by 

spatial factors (e.g., land use and transportation infrastructure) in section 3.1.2. Section 3.1.3 

summarizes relevant studies that include the availability of e-scooter vehicles (supply side). 

3.2.1 Temporal factors influencing e-scooter trips 

E-scooter usage has a strong correlation with time (time-of-the-day, day-of-the-week, and 

month-of-the-year). McKenzie (2019) compared the e-scooter trip start times with bikeshare in 

Washington, DC to find that e-scooter use closely resembled casual bikeshare trips, with one 

daily peak in the evening and higher weekend peaks compared to other days of the week. 

Comparing e-scooter usage between Austin, Texas, and Minneapolis, Minnesota, Bai and Jiao 

(2020) found that the peak usage time of e-scooter varied between these two cities; Austin 

showed peak hour use in the afternoon and weekends, while the Minneapolis peak hour was in 

the evening. Previous shared e-scooter studies in Nashville found that the usage peaks in the 

evening and on weekends (N. Shah, 2020; Nitesh R Shah, Jing Guo, et al., In review).   

A few studies have found that weather and major events in the city affect e-scooter trip volume. 

Younes, Zou, Wu, and Baiocchi (2020) found that special events like the Cherry Blossom 

Festival and high gas prices significantly increased e-scooter usage in Washington, DC. The 

authors also found a negative influence of precipitation, humidity, and wind speed on hourly e-

scooter trip volume, but days with warmer temperatures had higher trip volume. Similarly, 

Mathew, Liu, and Bullock (2019) found that the number of trips dropped significantly for days 

with a mean temperature below freezing in the City of Indianapolis, Indiana.  
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3.2.2 Spatial factors influencing e-scooter trips 

Studies have found a significant relationship between the built environment and e-scooter usage. 

Bai and Jiao (2020) found that e-scooter trips predominantly occur in downtown and university 

areas in Austin, Texas, which corroborates the finding that most e-scooter crashes were observed 

in downtown and Vanderbilt University in Nashville, Tennessee (Nitesh R Shah et al., 2021). 

Several studies have found that land use density (e.g., commercial, public, and industrial) and 

diversity influence e-scooter usage (Bai & Jiao, 2020; Caspi et al., 2020; Hosseinzadeh, 

Algomaiah, Kluger, & Li, 2021a). Similarly, urbanism scores (e.g., walk, bike, and transit 

scores) and infrastructure-related variables, including transportation-related variables (e.g. 

proximity to transit stops), also impact the number of e-scooter trips (Bai & Jiao, 2020; 

Hosseinzadeh, Algomaiah, et al., 2021a).   

Studies exploring factors of e-scooter usage have found a correlation between socio-

demographic variables, like gender and age, and e-scooter trip demand using data aggregated at 

the Census Block Group (CBG) or Traffic Analysis Zone (TAZ) level. Caspi et al. (2020) found 

that low-income CBGs with student populations had higher e-scooter trips than low-income 

CBGs without a student population. Similarly, Hosseinzadeh, Algomaiah, Kluger, and Li 

(2021b) found a strong and positive correlation between e-scooter usage and TAZs with a higher 

percentage of 18-29 year-old male residential population. Survey-based studies have also found 

that e-scooters are popular among certain socio-demographic groups, mainly white younger 

populations in Santa Monica and San Francisco, California (City of Santa Monica, 2019; San 

Francisco Municipal Transportation Agency, 2019). 

3.2.3 E-scooter vehicle distribution and pricing among service providers 

Shared e-scooter usage is also influenced by the availability of e-scooter vehicles, which depends 

upon many factors, such as fleet deployment strategies and competition among multiple service 

providers. E-scooters have a relatively low unit cost, with the convenience of redistributing the 

fleet to maximize the profit for services providers (Button, Frye, & Reaves, 2020). Moran, Laa, 

and Emberger (2020) compared the geofences (service areas) of six e-scooter service providers 

over three months in Vienna, Austria. They found that e-scooter deployment was influenced by 

high/low usage location, hotspots of e-scooter vandalism and damage, and the convenience of e-

scooter collection for charging and rebalancing.  
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The presence of an e-scooter nearby strongly influences the user’s decision to make an e-scooter 

trip. Reck, Haitao, Guidon, and Axhausen (2021) evaluated the choice of using dockless e-

scooters (among two service providers), dockless e-bikes, and docked bikes considering vehicle 

density within a 2-minute walking distance at the trip origin, battery charge level, and price of 

the trip in Zurich, Switzerland. They found that higher vehicle density corresponded to higher 

use of e-scooters. On the other hand, the probability of e-scooter use was lower for battery power 

levels of less than 50%, with significant variation among the two service providers. This study 

did not evaluate the elasticity of e-scooter vehicles at a city level. 

3.2.4 Research objectives 

Existing studies have evaluated the temporal and spatial factors influencing the demand for e-

scooters, mostly without considering the effect of e-scooter availability and the presence of 

multiple service providers. However, there is evidence of e-scooter vehicle density affecting trip 

volume (Reck et al., 2021). Several recent studies have identified estimating the demand 

elasticities of e-scooter deployment at a city level as a key research gap (Button et al., 2020; Lo, 

Mintrom, Robinson, & Thomas, 2020). This study combines both demand and supply aspects of 

shared e-scooters with the following research objectives: 

1. Estimate the demand elasticity of e-scooters deployed (measured as e-scooter hours 

deployed) of service providers based on the fleet size, controlling for spatial factors, like 

built environment and socio-demographics, and temporal factors, such as weather  

2. Estimate the land-use specific demand elasticity of e-scooters vehicles deployed by 

service providers based on the fleet size  

The remainder of the chapter is organized into the following sections. Section two provides a 

brief description of the study design in the methodology section. Section three summarizes the 

model results, while section four highlights the study’s key findings. Finally, section five 

summarizes the study.     

 Methodology 

This section provides an overview of methods implemented to estimate the demand elasticities of 

shared e-scooters. Section 2.1 describes the study area and study duration, while section 2.2 



55 

 

explains data sources and processing. Section 2.3 includes the details of the model used in the 

study. 

3.3.1 Study area  

Nashville is the largest metropolitan area and the state capital of Tennessee, with a population of 

2 million in 2021 (U.S. Census Bureau, 2021). Mainly renowned for being the center of country 

music, Nashville is one of the region’s largest tourist destinations – 16.1 million people visited 

Nashville in FY 2019-20 (Music City, 2021). Downtown Nashville has diverse attractions, 

including entertainment, dining, cultural, and high-rise office buildings. It has seen a large 

growth in urban housing development in recent years. In terms of travel mode split, driving alone 

is the predominant mode for commuting in Nashville (80.8% of the working residents), followed 

by 9.4% carpool, 1% public transit, and 1.3% walking, according to the 2019 American 

Community Survey 5-Year Estimates (American Community Survey, 2019). 

INRIX ranked Nashville third among the cities of the United States for the potential success of 

micromobility considering the topography, climate, and proportion of trips with a short distance 

– 51% of trips in Nashville are less than 3 miles (Reed, 2019). Shared e-scooters were first 

launched in Nashville in May, 2018, and the City of Nashville started a pilot program in August, 

2018 (Tamburin, 2019). Seven e-scooter services providers (Bird, Jump, Bolt, Gotcha, Lime, 

Lyft, and Spin) were operating in the city during our study period of April 1, 2019, and February 

29, 2020. The study period was limited by the availability of a complete shared e-scooter dataset 

prior to April 1, 2019, as well as the beginning of the COVID-19 pandemic after February 29, 

2020. 

3.3.2 Data sources and processing 

I acquired the e-scooter trip summary and device availability dataset of Shared Urban Mobility 

Device (SUMD) data through a data request made to the City of Nashville. The e-scooter trip 

summary dataset includes the timestamped geolocation of trip origin and destination and basic 

trip information, such as trip distance and trip duration. After dropping duplicate records, there 

were 1,495,253 trips for all seven service providers during the study period. The SUMD trip 

summary dataset includes raw data, which could be recorded during the rebalancing of e-scooters 

and users unlocking e-scooters but not starting the trip. I removed 27% of the trips that were 
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unlikely e-scooter trips based on the following criteria: 1) trips distance less than 200 feet (22% 

of records), 2) trip distance more than 5 miles (5% of records), 3) trip duration less than 1 minute 

(less than 1% of records), and 4) trip duration more than 2 hours (4% of records). Some of the 

trip records were flagged under multiple abovementioned criteria. I retained 1,086,528 trips after 

the trip data cleaning process.  

The device availability dataset is the second SUMD dataset, which contains the geolocation of 

parked e-scooter vehicles with status information, updating approximately every five minutes. 

This dataset contains information on the supply of shared e-scooters, which is measured as e-

scooter-hours. Based on the average fleet size per day (or e-scooter-hours), I grouped seven 

shared e-scooter service providers into three categories as follows: large (>500 scooters or 

>12,000 e-scooter-hours), medium (250-500 scooters or 6,000-12,000 e-scooter hours), and 

small (<250 scooters or <6000 e-scooter hours). This grouping was to explore demand elasticity 

for the different service providers based on their fleet size and to remove the brand name of 

service providers to protect potentially sensitive market information.  

Figure 14 illustrates seven days' rolling average of e-scooter vehicles deployed (measured in e-

scooter hours) and the number of daily trips, segmented by day of the week (broken down into 

weekdays (Monday to Friday) and weekends (Saturday and Sunday)) and the fleet size of service 

providers. Figure 14 (a) illustrates the daily average number of e-scooter vehicles deployed over 

time, indicating a strong pattern among the large, medium, and small fleet-sized service 

providers. Figure 14 (b) shows that the e-scooter trip volume is much higher during the warmer 

months (April-July). I observed higher usage of e-scooter on weekend days than on weekdays, 

similar to findings of other studies (Bai & Jiao, 2020; McKenzie, 2019; N. Shah, 2020; Nitesh R 

Shah, Jing Guo, et al., In review). I also observed higher e-scooter vehicles deployed and a 

higher number of e-scooter trips during the summer. 

I aggregated datasets by Traffic Analysis Zone (TAZ) to control for factors that vary over space, 

such as built environment and socio-demographics. I obtained the TAZ boundary from the travel 

demand model of Nashville (Greater Nashville Regional Council (GNRC), 2021) and only 

retained 244 TAZs for the analysis. The inclusion criteria for the TAZs were to have an e-scooter 

deployment of more than 500 e-scooter-hours, which is equivalent to one e-scooter being 

deployed for a total of about 20 days throughout one year of the study period.  
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(a)  

 

(b) 

Figure 14 Seven days rolling average of e-scooters supply and demand aggregated daily by shared e-

scooter service providers’ category and weekday type 

a) E-scooters deployed (in e-scooter hours) b) E-scooter trips 
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Figure 15 illustrates the map of total e-scooter trips and vehicles deployed throughout the study 

period aggregated at the TAZ level. The pink hue (vertical color gradient in the map) represents 

the total number of scooter trips starting at each TAZs, while the blue hue (horizontal color 

gradient in the map) indicates the total e-scooter vehicle deployment per square mile by all 

service providers throughout the study period. Most e-scooter trips and vehicle deployments 

were in downtown Nashville, Vanderbilt University, and commercial areas in the periphery of 

downtown Nashville. When plotting the map by service provider groups (attached in the 

Appendix A2), I also observed a difference in e-scooter trips and deployment among these 

segments, suggesting that service providers’ service areas differ based on their fleet size. 

Based on the observation of Figure 14, Figure 15, and findings from the existing studies 

summarized in the background section, I aggregated both the e-scooter trip summary and device 

availability dataset in the following manner. The temporal unit of analysis is daily trips, and I 

also segmented data into weekdays (Monday to Friday) vs. weekend days (Saturday and Sunday) 

to control for temporal factors and capture the different demands by day of the week. The spatial 

unit of the analysis is TAZ to control for the built environment and socio-demographic factors. I 

also segmented e-scooter deployment by large, medium, and small fleet-sized shared e-scooter 

service providers. Table 5 summarizes the model variables, stacked by daily, weekday, and 

weekend. 

3.3.3 Modeling Framework 

This section provides an overview of the modeling framework in two subsections. The first 

subsection describes the model to estimate demand elasticities of shared e-scooter deployed, 

followed by methods for clustering TAZs to estimate heterogeneous elasticity estimates based on 

land use.  

3.3.3.1 Demand elasticities of all shared e-scooter deployed 

I applied fixed-effects regression techniques to estimate the elasticity of the shared e-scooters 

deployed. This approach allows us to explore the change in the number of shared e-scooters trips 

made as a function of the change in the number of vehicles deployed (Berrebi & Watkins, 2020; 

Watkins et al., 2021; Ziedan, Darling, Brakewood, Erhardt, & Watkins, 2021). Since the number 

of shared e-scooter trips is a non-negative integer, I used count models for this analysis. 
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Figure 15 Bivariate map of the total e-scooter trips and vehicles deployed at each TAZ throughout the 

study period 
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Table 5 Descriptive statistics of key variables used in the analysis 

Variables Mean 
Standard 

deviation 
Minimum Maximum 

Daily (N=88,572) 

Total number of trips starting in TAZ 11.8 28.1 0.0 974.0 

Total e-scooter deployed in TAZ (in e-

scooter-hours) 
139.5 212.1 0.0 3113.5 

E-scooter deployed among large fleet-sized 

service providers in TAZ (in e-scooter-

hours) 

79.5 119.1 0.0 2112.5 

E-scooter deployed among medium fleet-

sized service providers in TAZ (in e-

scooter-hours) 

47.5 94.0 0.0 2320.4 

E-scooter deployed among small fleet-sized 

service providers in TAZ (in e-scooter-

hours) 

12.5 46.5 0.0 1053.7 

Weekday (75,884) 

Total number of trips starting in TAZ 11.3 27.2 0.0 974.0 

Total e-scooter deployed in TAZ (in e-

scooter-hours) 
141.1 215.9 0.0 3113.5 

E-scooter deployed among large fleet-sized 

service providers in TAZ (in e-scooter-

hours) 

80.3 120.9 0.0 2112.5 

E-scooter deployed among medium fleet-

sized service providers in TAZ (in e-

scooter-hours) 

48.1 96.0 0.0 2320.4 

E-scooter deployed among small fleet-sized 

service providers in TAZ (in e-scooter-

hours) 

12.7 47.8 0.0 1053.7 

Weekend (N=12,688) 

Total number of trips starting in TAZ 14.3 33.0 0.0 695.0 

Total e-scooter deployed in TAZ (in e-

scooter-hours) 
130.1 187.7 0.0 2398.8 

E-scooter deployed among large fleet-sized 

service providers in TAZ (in e-scooter-

hours) 

74.8 107.6 0.0 1738.8 

E-scooter deployed among medium fleet-

sized service providers in TAZ (in e-

scooter-hours) 

43.9 81.6 0.0 1519.9 

E-scooter deployed among small fleet-sized 

service providers in TAZ (in e-scooter-

hours) 

11.3 37.9 0.0 893.1 
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Although Poisson regression is typically used for count data, I used negative binomial models as 

the shared e-scooters trip data are overdispersed (i.e., the variance is larger than the mean) 

(Washington, Karlaftis, Mannering, & Anastasopoulos, 2020). The probability equation for the 

fixed effect negative binomial model is as follows (Hausman, Hall, & Griliches, 1984; 

StataCorp, 2021):  

Pr(𝑌𝑖1 =  𝑦𝑖1 , … . , 𝑦𝑖1 =  𝑦𝑖𝑛𝑖
 | 𝑋𝑖 , ∑ 𝑌𝑖𝑡

𝑛𝑖
𝑖=1 =   ∑ 𝑦𝑖𝑡) 

𝑛𝑖
𝑖=1  

= 
𝛤( ∑ 𝜆𝑖𝑡

𝑛𝑖
𝑖=1

) 𝛤( ∑ 𝑦𝑖𝑡+1
𝑛𝑖
𝑖=1

)

𝛤( ∑ 𝜆𝑖𝑡
𝑛𝑖
𝑖=1

+ ( ∑ 𝑦𝑖𝑡
𝑛𝑖
𝑖=1

))
 ∏

𝛤( ∑ 𝜆𝑖𝑡
𝑛𝑖
𝑖=1

+𝑦𝑖𝑡)

𝛤(𝜆𝑖𝑡)𝛤(𝑦𝑖𝑡+1)

𝑛𝑖
𝑡=1          

The likelihood equation of the fixed effect negative binomial model is as follows: 
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𝑛𝑖
𝑖=1 )) +  ∑ {𝛤( ∑ 𝜆𝑖𝑡

𝑛𝑖
𝑖=1 + 𝑦𝑖𝑡) −

𝑛𝑖
𝑡=1

 𝑙𝑛𝛤( 𝜆𝑖𝑡 + 𝑦𝑖𝑡) − 𝑙𝑛𝛤(𝑦𝑖𝑡) − 𝑙𝑛𝛤(𝑦𝑖𝑡 + 1)}]   

where: 

λit = exp(xit β + offsetit) and  

wi is the weight for the ith group 

yit: dependent variable for group i during time t 

xit: explanatory variables for group i during time t 

I should note that I used the log scale of the variables so that the estimated coefficients could be 

interpreted as elasticities (Berrebi, Joshi, & Watkins, 2021). The entity fixed effect controls for 

any time-invariant unobserved variables for a TAZ that could affect e-scooter demand. The time 

fixed effect captures unobserved variables that happened during a specific week, for example, 

the NFL Draft weekend that had extreme increases in ridership.  

The equation of the model is as follows: 

E(𝑦𝑖𝑡|x𝑖𝑡) =   𝐸𝑋𝑃(𝛽 ∗  𝑥𝑖𝑡 +  𝛼𝑖𝐸𝐹𝑖 + 𝜌𝑡𝑇𝐹𝑡 + 𝜀𝑖𝑡) 

 Where: 
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yit: shared e-scooter trips for TAZ i during time t (day) 

xit: explanatory variables for TAZ i during time t (e.g., e-scooter counts for 

operators with different fleet sizes) 

𝐸𝐹𝑖: Entity fixed effect dummy, equal 1 for TAZ i and 0 otherwise 

𝑇𝐹𝑡: Time fixed effect dummy, equal 1 for the t
th

 period and 0 otherwise 

εit: dispersion parameter  

I estimated bootstrap standard error to control for possible heteroscedasticity and serial 

autocorrelation (Gonçalves, 2011). 

3.3.3.2 Clustering Traffic Analysis Zones (TAZs) 

Previous studies have found a strong spatial relationship between e-scooter usage and land use, 

where high e-scooter trips were observed in specific built environments such as downtown areas 

and university areas. In order to identify heterogeneous characteristics of TAZs that influence e-

scooter usage, I adopted a similar approach to Guzman, Beltran, Bonilla, and Cardona (2021), 

where authors used the clustering technique to identify Bus Rapid Transit (BRT) stations based 

on their spatial, temporal, and socio-demographic characteristics. This research uses a K-means 

clustering technique to categorize land use based on key built environment variables influencing 

e-scooter usage, as summarized in the background section. The TAZ clustering does not include 

dependent and explanatory variables of the negative binomial model described above.  

The K-means clustering method is one of the most common methods in data mining, which 

groups similar observations by separating each group as much as possible (MacQueen, 1967). 

The K-means algorithm uses squared Euclidean distance to measure the dissimilarity between 

observations as follows: 

𝑑𝑖𝑗
2 =  ∑(𝑥𝑖𝑣 − 𝑥𝑗𝑣)

2
=  ‖𝑥𝑖 − 𝑥𝑗‖

2
 

𝑝

𝑣=1

 

Where, 𝑑 is Euclidean distance, 𝑥 is the observation, 𝑖 and 𝑗 are observations, and 𝑝 is the 

number of variables. The algorithm minimizes the objective function of the squared difference 

between observation values in each cluster, and the corresponding cluster means as follows: 
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min(𝑊) = 𝑚𝑖𝑛 ∑ 𝑛ℎ ∑(𝑥𝑖 − �̅�ℎ)2

𝑖∈ℎ

𝑘

ℎ=1

 

Where 𝑊 is within-cluster similarity and 𝑘 is the total number of clusters.  

I used six variables for clustering TAZs: population density (in square miles), university housing 

density (in square miles), employment density (in square miles), intersection density (in square 

miles), the proportion of park area at each TAZ, and entropy, which is a measure of land use 

diversity in a TAZ. I obtained population density and university housing density data from the 

2020 Census at the census tract level (U.S. Census Bureau, 2021), with a higher spatial 

resolution than TAZ but overlapping boundaries. Therefore, I spatially joined the census tract 

with the TAZ boundary and aggregated these variables at the TAZ level. I acquired the 

employment density from the travel demand model of Nashville (Greater Nashville Regional 

Council (GNRC), 2021).  

I obtained intersection density from Open Street Map using the OSMnx library in Python 

(Boeing, 2017) and counted the number of intersections within each TAZs. I downloaded the 

park area boundary from the City of Nashville data portal (Metropolitan Government of 

Nashville and Davidson County, 2021). I spatially joined park data to estimating the proportion 

of park area of each TAZs. To estimate entropy, I manually scraped Google Map’s Point of 

Interest data for the City of Nashville and categorized land use into eight groups: basic amenities, 

entertainment, government institutions and organizations, hotels, restaurants, bars, retail and 

services, and transportation. Then, I used Shannon entropy to estimate the land use diversity 

using the following equation: 

𝐻 = − ∑(𝑝𝑖) ∗ log𝑛(𝑝𝑖)

𝑛

𝑖=1

 

Where, 𝐻is Shannon entropy, 𝑝𝑖 is the percentage of POIs in 𝑖𝑡ℎ category, and 𝑛 is the 

total number of categories  

I performed a standardized transformation of variables (mean of the transformed variable being 0 

and the standard deviation being 1), so that the values of each variable have a similar effect on 

the objective function and algorithm controls for outlier values. I used default opinions of the K-
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Means algorithm in Geoda open-source software, such as the K-means++ initialization method, 

150 initialization re-runs, and 1000 maximum iterations. To find the optimum number of 

clusters, I used a combination of Elbow Method plots and interpretation of clusters (Anselin, 

Syabri, & Kho, 2010).   

 Results 

This section summarizes the results of the analysis of elasticity of the e-scooter deployed, 

followed by the clustering of TAZs, and the results of land use specific elasticity of e-scooters 

deployed. 

3.4.1 Demand elasticities of all shared e-scooter deployed 

Table 6 summarizes the elasticity of deployed e-scooters on trip volume estimated by daily, 

weekday (Monday to Friday), and weekend (Saturday and Sunday) days. The top part of the 

table includes elasticity estimates of the total e-scooter deployment, while the bottom part 

summarizes the elasticity estimates of e-scooter deployment by service providers segmented 

based on their fleet size. The p-value of the Likelihood Ratio (LR) test is less than 0.025, 

representing a good fit for the models. All the estimates are statistically significant (p-value 

<0.01) and can be interpreted as demand elasticities. 

The demand elasticity of the total e-scooters deployed is 0.55, which suggests that a 1% increase 

in e-scooter deployment (measured in e-scooter-hours) would result in a 0.55% increase in e-

scooter trips on average in a TAZ. This estimated elasticity suggests that shared e-scooter 

demand is inelastic, similar to other transportation modes. When segmenting by the size of the 

service providers, larger fleet-sized services providers have a higher demand elasticity of e-

scooter vehicles deployed. Based on the weekly model, a 1% increase in the e-scooter 

deployment would result in a 0.36% increase in trip volume for larger fleet size service providers 

compared to 0.14% for medium fleet size. The e-scooter vehicle elasticity is 0.01% for small-

sized service providers. The elasticity estimate of the total e-scooter deployed is the sum of the 

elasticity estimates of service providers segmented by their fleet size. The total demand is a 

function of total e-scooter deployment in the first model, whereas the total demand is the 

function of e-scooter deployment of each service provider segmented by fleet size in the second  
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Table 6 Demand elasticity of e-scooter vehicles, segmented by service providers’ fleet size 

Estimated elasticity 

(Dependent variable: the daily 

number of e- trips) 

Average daily model Average weekday 

model (Monday to 

Friday) 

Average weekend 

day model (Saturday 

and Sunday) 

Log of all e-scooter vehicles 

deployed (per square miles) 

0.55*** (0.02) 0.55*** (0.02) 0.59*** (0.02) 

Constant -3.15*** (0.16) -3.08*** (0.16) -4.75*** (0.16) 

TAZ fixed effect Yes Yes Yes 

Time fixed effect Day Day Day 

Likelihood of model -191284 -161962 -27702 

P-value for Likelihood Ratio 

(LR) test 

0.000 0.000 0.000 

Number of observations 88,572    75,884    12,688    

Service providers segmented by fleet size 

Log of e-scooter vehicles 

deployed (per square miles) of 

large fleet-sized service 

providers’ 

0.36*** (0.01) 0.36*** (0.01) 0.38*** (0.02) 

Log of e-scooter vehicles 

deployed (per square miles) of 

medium fleet-sized service 

providers’ 

0.14*** (0.00) 0.14*** (0.00) 0.14*** (0.00) 

Log of e-scooter vehicles 

deployed (per square miles) of 

small sized service providers’ 

0.01*** (0.00) 0.01*** (0.00) 0.02*** (0.00) 

Constant -1.655*** (0.13) -1.584*** (0.13) -3.110*** (0.13) 

TAZ fixed effect Yes Yes Yes 

Time fixed effect Day Day Day 

Likelihood of model -191131 -161935 -27643 

P-value for Likelihood Ratio 

(LR) test 

0.000 0.000 0.000 

Number of observations 88,572    75,884    12,688    

Note: *** P < 0.01, ** P<0.05, * P<0.1, and standard errors in parenthesis  
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model. The sum of e-scooter deployment of three segmented service providers is the total e-

scooter deployment.  

The average demand elasticity estimate of e-scooter vehicles deployed on the weekend is slightly 

higher than on weekdays (0.59 vs. 0.55). However, the weekdays and weekend demand elasticity 

of e-scooter vehicles deployed is not much different compared to service providers' size. The 

weekend elasticity is 0.02 percentage points higher than the weekday estimate for large service 

providers and 0.01 percentage points higher for small-sized service providers but no different for 

mid-sized service providers.  

3.4.2 TAZ clustering 

I evaluated 11 K-means models, whose number of clusters ranged from 2 to 12 with an 

increment of one. Figure 16 illustrates the Elbow Plot of the Within Sum of Squares (WSS) for 

an incremental number of clusters, where there is a discontinuity around five clusters, and WSS 

does not drop substantially further. At least one cluster starting at six clusters had only one TAZ 

indicating a misbalance in the distribution of TAZs among the clusters. Interpreting five clusters, 

I obtained an additional cluster with a distinct residential land use attribute as compared to four 

clusters (please refer to the next paragraph for more details). Therefore, I concluded that five 

clusters were the optimum model based on the Elbow Plot and interpretation of clusters. 

Table 7 presents the summary of the optimum cluster model, including the average of six 

clustering variables, the number of TAZs in each cluster, and the ratio of population and 

employment densities for interpretation. Figure 17 illustrates the optimum clusters in a map of 

Nashville. Based on Table 7 and Figure 17, a brief description of each cluster is as follows: 

 Central Business District (CBD) & Commercial: This group has the highest average 

employment density and entropy among all clusters, indicating diversity in land use. On 

the other hand, the population and employment densities ratio is the least, suggesting a 

built environment predominantly for employment. When plotting the cluster map, the 

TAZs are in the CBD and commercial area of Nashville.  

 University: This cluster has the highest average university housing density, and the 

TAZs are located around Vanderbilt University. As suggested by the population and  
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Figure 16 Elbow plot indicating Within Cluster Squared Sum (WCSS) of clusters ranging from 2 to 12 
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employment densities ratio, these TAZs have a higher residential population than 

employment. 

 Park & waterfront: This group has the highest average proportion of park area and has 

the lowest land-use diversity, indicated by the entropy, among all clusters. As suggested 

by the population and employment densities ratio, the TAZs had more employment than 

the residential population.  

 Dense residence: The built environment of this cluster is mainly for population 

compared to employment, as indicated by the ratio of population and employment 

densities and the least average entropy compared to other clusters.  

 Low density periphery: This cluster includes TAZs with the least population and 

employment densities among other clusters. The map of these TAZs indicates that these 

are somewhat on the periphery of downtown Nashville, Vanderbilt University, and 

Centennial Park.  

3.4.3 Land use specific elasticities  

Similar to the general elasticities, Table 8 summarizes daily, weekday (Monday to Friday), and 

weekend (Saturday and Sunday) models for five TAZ clusters: CBD & commercial, university, 

park & waterfront, dense residence, and low-density periphery. The p-value of the Likelihood 

Ratio (LR) test is less than 0.025, representing a good fit for the models. All the estimates were 

statistically significant (almost all the coefficients had p-values < 0.01, and some had p-values < 

0.1). The top part of each table includes the demand elasticities of the total e-scooters deployed, 

whereas the bottom part contains the demand elasticities of e-scooters deployed by service 

providers segmented based on their fleet size.  

Figure 18 complements Table 6 and Table 8 by visually summarizing heterogeneous weekday 

and weekend demand elasticities and comparing them with the general daily elasticity. The 

demand elasticities are grouped into two levels; the first grouping is the land use clusters, with 

the labels on the top of the figure and separated by vertical lines. The second grouping is the 

weekday type, which is nested within each land use cluster and labeled at the bottom of the 

figure. The solid lines represent the heterogeneous demand elasticity of e-scooter vehicles, while 

the dotted lines indicate the general daily elasticity. 
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Table 7 Summary of optimum clusters 

Cluster labels/ 

variables 

Average 

populatio

n density 

(sq miles) 

Average 

university 

housing 

density 

(sq miles) 

Average 

employmen

t density 

(sq miles) 

Averag

e 

entropy 

Average 

proportio

n of park 

area  

Average 

intersectio

n density 

(sq miles) 

Numbe

r of 

TAZs 

Ratio of 

population 

and 

employmen

t densities 

CBD & 

Commercial 28555.2 7.4 137315.0 0.8 0.0 558.7 24 0.2 

University 70307.2 2080.2 32082.5 0.6 0.0 289.3 18 2.2 

Park & 

waterfront 8398.6 0.3 27328.2 0.5 0.4 228.5 15 0.3 

Dense 

residence 28015.2 18.3 13819.7 0.2 0.0 385.0 48 2.0 

Low density 

periphery 11608.3 26.1 12738.7 0.7 0.0 267.9 139 0.9 

Note: Red color indicates lower values while blue color indicates higher values among clusters 

 

 

 

Figure 17 Mapping of TAZs of the optimum clustering model 
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Table 8 Heterogeneous demand elasticity of e-scooter vehicles, segmented by land use and service providers’ based on fleet size 

TAZ cluster CBD & Commercial University Park & waterfront Dense residence Low density periphery  

Day-of-the-week Daily Weekday Weekend Daily Weekday Weekend Daily Weekday Weekend Daily Weekday Weekend Daily Weekday Weekend 

Log of all e-
scooter vehicles 

deployed  

0.496*** 

(0.04) 

0.474*** 

(0.01) 

0.578*** 

(0.02) 

0.689*** 

(0.07) 

0.687*** 

(0.12) 

0.672*** 

(0.04) 

0.626*** 

(0.07) 

0.622*** 

(0.02) 

0.65*** 

(0.04) 

0.567*** 

(0.03) 

0.569*** 

(0.01) 

0.555*** 

(0.03) 

0.522*** 

(0.02) 

0.517*** 

(0.00) 

0.551*** 

(0.01) 

Constant 
-1.94*** 

(0.44) 
-1.7*** 
(0.12) 

-4.3*** 
(0.28) 

-4.65*** 
(0.61) 

-4.63*** 
(0.20) 

-5.44*** 
(0.40) 

-3.47*** 
(0.92) 

-3.36*** 
(0.20) 

-5.39*** 
(0.46) 

-3.52*** 
(0.38) 

-3.55*** 
(0.19) 

-4.24*** 
(0.34) 

-2.8*** 
(0.18) 

-2.72*** 
(0.08) 

-4.42*** 
(0.15) 

TAZ fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time fixed effect Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day 

Likelihood of 
model 

-28071.8 -2.4e+04 -4.1e+03 -18283.2 -1.6e+04 -2.5e+03 -10679.7 -9.0e+03 -1.6e+03 -23953.1 -2.0e+04 -3.3e+03 -107168 -9.0e+04 -1.6e+04 

Likelihood Ratio 

(LR) test p-value 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Number of 
observations 

8712 7464 1248 6534 5598 936 5082 4354 728 16698 14306 2392 50457 43229 7228 

Service providers segmented by fleet size 

Log of e-scooter 

vehicles deployed 

of large fleet-sized 
service providers’ 

0.32*** 

(0.03) 

0.30*** 

(0.03) 

0.36*** 

(0.03) 

0.49*** 

(0.06) 

0.48*** 

(0.07) 

0.45*** 

(0.06) 

0.37*** 

(0.06) 

0.39*** 

(0.06) 

0.34*** 

(0.07) 

0.35*** 

(0.03) 

0.35*** 

(0.03) 

0.39*** 

(0.03) 

0.34*** 

(0.02) 

0.34*** 

(0.02) 

0.37*** 

(0.02) 

Log of e-scooter 

vehicles deployed 
of medium fleet-

sized service 

providers’ 

0.16*** 

(0.02) 

0.15*** 

(0.02) 

0.19*** 

(0.03) 

0.16*** 

(0.03) 

0.17*** 

(0.03) 

0.13*** 

(0.04) 

0.12*** 

(0.03) 

0.11*** 

(0.03) 

0.17*** 

(0.04) 

0.13*** 

(0.01) 

0.13*** 

(0.01) 

0.12*** 

(0.02) 

0.15***’ 

(0.00) 

0.15*** 

(0.00) 

0.15*** 

(0.00) 

Log of e-scooter 

vehicles deployed 

of small sized 
service providers’ 

0.01** 

(0.00) 

0.01** 

(0.00) 

0.01* 

(0.00) 

0.03*** 

(0.00) 

0.03*** 

(0.00) 

0.04*** 

(0.01) 

0.02* 

(0.01) 

0.02* 

(0.01) 

0.03** 

(0.01) 

0.02** 

(0.00) 

0.02** 

(0.00) 

0.02* 

(0.00) 

0.01*** 

(0.00) 

0.01*** 

(0.00) 

0.01*** 

(0.00) 

Constant 
-0.30 

(0.29) 

-0.10 

(0.35) 

-2.28*** 

(0.33) 

-2.94*** 

(0.58) 

-2.90*** 

(0.62) 

-3.52*** 

(0.54) 

-1.70* 

(0.94) 

-1.70*** 

(0.48) 

-3.01*** 

(0.54) 

-1.92*** 

(0.32) 

-1.90*** 

(0.35) 

-2.92*** 

(0.39) 

-1.49*** 

(0.15) 

-1.41*** 

(0.14) 

-3.02*** 

(0.18) 

TAZ fixed effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Time fixed effect Day Day Day Day Day Day Day Day Day Day Day Day Day Day Day 

Likelihood of 

model 
-28107 -23816 -4098 -18218 -15576 -2485 -10748 -9066 -1587 -24020 -20497 -3291 -106887 -90294.1 -15792.1 

Likelihood Ratio 
(LR) test p-value 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Number of 

observations  
8712 7464 1248 6534 5598 936 5082 4354 728 16698 14306 2392 50457 43229 7228 

Number of TAZs  24 24 24 18 18 18 14 14 14 46 46 46 139 139 139 

Note: *** P < 0.01, ** P<0.05, * P<0.1, and standard errors in parenthesis 



71 

 

 

(a) 

 

(b) 

Figure 18 Elasticity estimates of the number of vehicles deployed for land use segmentation 

a) Total e-scooters deployed b) E-scooter deployed by service providers segmented based on fleet-size 
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The heterogeneous demand elasticity of the total e-scooter vehicles deployed based on land use 

is different from the general daily elasticity of the total e-scooter vehicles deployed, indicated by 

the solid and dotted red lines in Figure 18 (a). The maximum difference in heterogeneous 

demand elasticity of e-scooter vehicles is for university land use, with more than 0.1 percentage 

point greater value than the general daily elasticity, followed by park & waterfront land use. 

Increasing e-scooter vehicle deployment would increase trips at a higher rate than other built 

environments. Furthermore, large fleet-sized service providers likely influence the overall 

difference in heterogeneous demand elasticity of e-scooter vehicles compared to medium and 

small fleet-sized service providers, as indicated by the solid blue, orange, and green lines in 

Figure 18 (b). The demand elasticity values of vehicles deployed by medium and small fleet-

sized service providers for all land use types are distributed around daily general elasticity 

estimates of the corresponding group of service providers. 

Unlike general elasticity estimates of e-scooter vehicles deployed, there is a difference in 

weekends and weekdays estimates for each land use segment, as indicated by the segmented 

solid red lines in Figure 18 (a). The demand elasticity of e-scooters deployed by all service 

providers is higher on weekends compared to weekdays for CBD & commercial, park & 

waterfront land use, and low density periphery land uses. In contrast, university and dense 

residence land-use types have the reverse pattern of higher weekday estimates than weekends. 

The difference in weekdays vs. weekends elasticity estimates is highest for CBD & commercial 

land use, with 0.11 percentage points. Increasing the supply of e-scooters at specific land use on 

certain weekdays can capture more e-scooter trip demand.  

Most of the day-of-the-week differences in demand elasticity of e-scooter vehicles deployed 

follow a similar pattern for all land-use groups with few exceptions, comparing the demand 

elasticity of all e-scooters deployed (Figure 18 (a)) with service providers’ segmentation (Figure 

18 (b)). For example, the demand elasticity of e-scooter vehicles of mid-sized service providers 

at parks & waterfront is higher on weekends than in other service provider groups, which 

influences the pattern of demand elasticity estimates of all e-scooter vehicle deployment. Such 

pattern difference could indicate that some service providers’ groups drive the e-scooter market 

at certain land use and weekday types.   
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 Discussion 

3.5.1 Demand elasticity of e-scooter vehicles deployed 

The demand elasticity of e-scooter vehicles deployed is positive and inelastic. The average 

demand elasticity of e-scooter vehicles is 0.55, with the elasticity value slightly greater on 

weekends compared to weekdays. Some land uses, such as university and park & waterfront 

areas, have much higher demand elasticity than the average estimates of the city. Previous 

studies also found a high volume of e-scooter trips around the university and downtown (Caspi et 

al., 2020; Hosseinzadeh, Algomaiah, et al., 2021a; Tuli, Mitra, & Crews, 2021). I also found a 

significant difference in demand elasticity of e-scooter vehicles deployed among land-use groups 

and weekday types (weekdays vs. weekends). Existing studies have also found higher demand 

for shared e-scooters during weekends (Bai & Jiao, 2020; McKenzie, 2019).  

This finding can be helpful for city governments to manage public spaces by allocating sufficient 

e-scooter parking during the weekends while using the space for other purposes on weekdays. 

Similarly, e-scooter service providers can mobilize their resources to deploy more e-scooters to 

meet the higher demand in particular land use areas and weekday types while redistributing the 

e-scooter vehicles to other areas at other times. E-scooter trip volume can be increased by 

deploying more e-scooters in CBD, commercial areas, parks, and waterfronts on weekends, 

while reallocating those e-scooter vehicles in university and dense residence areas on weekdays. 

However, increasing supply might not increase utilization rates for e-scooter operators, as the 

demand elasticity of e-scooter vehicles deployed is still inelastic. An extension of this work 

could be evaluating the utilization rates of e-scooter vehicles to assess the factors influencing the 

trip turnover of a vehicle.  

3.5.2 Number of shared e-scooter providers and their fleet size 

The demand elasticity of e-scooter vehicles deployed for a large service provider (fleet size more 

than 500) is 2.5 times more than mid-sized service providers (fleet size between 250 to 500) and 

36 times more than small service providers (fleet size below 250). Those service providers who 

started operating first and with a larger fleet could have a competitive advantage over others. 

First-time e-scooter users need to download an app on their phone, create a profile, and setup a 

digital payment method. Therefore, they are more likely to keep using the same service provider 
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if they consistently find e-scooters nearby when needed (Aman, Smith-Colin, & Zhang, 2021). 

Other factors, such as brand loyalty, marketing, and vehicle redistribution strategies, could also 

contribute to higher vehicle elasticity for service providers with larger fleet sizes.  

The lower vehicle elasticity of mid- and small-fleet-sized shared e-scooter providers indicates 

that shared e-scooters systems still have barriers to market entry for new service providers. 

Incumbent service providers with larger fleet sizes can dominate the market share and somewhat 

dictate the price, potentially reducing consumer benefits. On the other hand, a few shared e-

scooter service providers with larger fleet sizes are better at capturing the trip demand from the 

perspective of city governments in terms of shared e-scooter system efficiency. Small fleet-sized 

service providers would need to deploy more vehicles to capture the same demand, leading to 

issues like cluttering of sidewalks. A low trip turnover rate of e-scooter vehicles would also 

contribute to higher operational emissions related to collecting e-scooters for charging, 

distribution, and rebalancing the fleets (Hollingsworth, Copeland, & Johnson, 2019; Moreau et 

al., 2020). Spin, a nationwide shared e-scooter service provider, recently decided to stop 

operating in the cities without any regulations or limits on fleet size and the number of service 

providers (Herbert, 2020). The CEO of Spin explained that “[they were not] able to offer a 

reliable and high-quality service.” 

3.5.3 Limitations of the study and future research areas 

This study has several limitations. First, endogeneity could be present in the panel data model 

due to simultaneity between dependent and independent variables. Service providers might be 

changing their distribution strategy based on the observed demand, so the demand for e-scooter 

could also drive e-scooter deployment. Future studies might consider using other methods like 

instrumental variables or Dynamic Panel data regression. Second, I did not consider the spatial 

correlation between e-scooter usage and vehicle deployment. A few studies have found that 

spatial models better explain e-scooter demand compared to non-spatial models (Caspi et al., 

2020; Hosseinzadeh, Algomaiah, et al., 2021b). Finally, I used one week (including weekdays 

and weekends) as the temporal unit of our analysis and TAZs as the spatial unit, which does not 

capture time-of-the-day dynamics at higher spatial resolution. Future studies can further improve 

the temporal and spatial resolution of the analysis. An extension of this study could be to explore 

the cross elasticity of e-scooter deployed among service providers segmented on fleet size. Last, 



75 

 

this study relies on data that was collected in Nashville when there were many (seven) operators. 

Most cities (including Nashville) have since reduced the number of operators. Understanding the 

competitive landscape related to the number of operators is still an understudied area.  

 Conclusion 

With the increasing popularity of shared e-scooters, city governments are regulating the supply 

of shared e-scooters using permits and pilot programs. I estimated the demand elasticity of e-

scooter vehicle deployment, segmented by land use and weekday type (weekdays vs. weekends). 

I also estimated the demand elasticity of e-scooter vehicles deployed by grouping shared e-

scooter service providers based on their average daily fleet size. I found that the demand 

elasticity of e-scooter vehicles deployed varies by land use and week day type, and that service 

providers with larger fleet sizes (>500) could capture trip demand at a higher rate than service 

providers with medium fleet sizes (250-500) and small fleet sizes (<250).  

These findings can help city governments identify the appropriate number of shared e-scooter 

service providers and their fleet size to meet user demand without oversaturating streets and 

sidewalks with e-scooters. The higher demand elasticity of e-scooter vehicles for service 

providers with larger fleet sizes indicates that city governments should consider permitting fewer 

service providers with larger vehicle fleet sizes. Higher demand elasticity during the weekend for 

certain land use types suggests that city governments can also consider permitting dynamic e-

scooter fleet sizes that are higher during weekends while using the space for other purposes on 

weekdays. 
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Chapter 4. Shared micromobility as the first wave of 

decarbonizing transport sector in developing 

countries 
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This chapter is based on a research paper by Nitesh R Shah, Saurav Parajuli, and Christopher 

Cherry titled “Ride-hailing users are likely early adopters of shared micromobility in mid-sized 

cities of developing countries: A case study of Kathmandu, Nepal.” The paper is accepted for 

presentation at the 2023 Transportation Research Board Annual Meeting.   

Abstract 

While shared micromobility has been gaining popularity in developed countries, these innovative 

technologies have yet to penetrate the market of mid-sized cities in developing countries, which 

make up the overwhelmingly majority of cities in the world. Shared micromobility includes 

inexpensive systems that could drive the first wave of electrification in the transportation sector 

in these regions. We designed and implemented a dynamic stated preference pivoting survey and 

used a panel data mixed logit model to assess the effect of temperature, precipitation, and 

availability of bike lanes on the propensity to use bikeshare, e-bike share, and e-moped share, 

controlling for sociodemographic factors. Using Kathmandu, Nepal, as a case study, where 

shared micromobility does not currently exist, we also assessed modal shift from the existing 

travel modes. We found heavy rain negatively impacts users’ preference for shared 

micromobility, while users preferred e-moped share during cold temperatures. The effect of bike 

lane availability was positive but weak on bikeshare and e-bike share. Gender also had an effect 

on the choice of shared micromobility vehicles – females preferred e-mopeds over other 

vehicles. Ride-hailing users had a high preference for e-moped share, while introducing 

bikeshare and e-bike share caused a uniform modal shift among existing travel modes. We 

recommend that transportation agencies begin micromobility pilot programs by combining this 

study’s findings with best practices of existing micromobility programs. We also suggest 

collecting usage and operations data to empower data-driven decision-making. 

 Introduction 

The advent of smartphone apps and internet payment features has enabled the innovation of 

transportation technologies and the shared economy model, giving rise to shared micromobility 

modes, such as bikes, e-bikes, and e-scooters (Abduljabbar, Liyanage, & Dia, 2021). The 

micromobility sharing systems have soared in North America, Europe, and East Asia in past 

decades (National Association of City Transportation Officials, 2020; Wortmann, Syré, Grahle, 
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& Göhlich, 2021; Zhao et al., 2022), with the market predicted to be worth $500 billion by 2030 

(Figueroa). The rising popularity of shared micromobility can be attributed to convenience in 

short-distance travel and accessibility (Fishman & Allan, 2019; National Association of City 

Transportation Officials, 2020). A modal shift toward shared micromobility can offset private 

motorized vehicle trips to reduce overall emissions (Abduljabbar et al., 2021; Cazzola & Crist, 

2020) that frees up valuable space in urban areas, improving congestion and traffic safety issues. 

Shared micromobility can also integrate with other sustainable urban transportation systems, 

such as Transit-Oriented Development (TOD) and Mobility-as-a-System (MaaS) (Ziedan, Shah, 

et al., 2021), and can increase access to jobs and other destinations.  

Despite the immense benefits, there are only a limited number of shared micromobility systems 

in mid-sized cities of developing countries. According to the United Nations, mid-sized cities 

(with more than 500,000 and less than 5 million in population) make up an “overwhelming 

majority” of the world’s cities and have the highest population growth rate (DESA, 2011). 

Although a number of mass transit options exists, widespread use is limited by a number of 

factors, such as comfort, safety, reliability, and ease of access (Vergel-Tovar & Rodriguez, 

2018). The need for travel with speed and comfort in these urban areas has caused a proliferation 

of private vehicles, including cars and two-wheelers, at the expense of increased traffic fatalities, 

more congestion, poorer air quality, and higher emissions. Shared micromobility is an affordable 

option for users and does not require huge infrastructure investments, making this innovative 

transportation technology a potential leapfrogging alternative in developing countries. It can 

serve as a standalone system or complement transit or para-transit systems to improve their 

service while reducing the need for private motor vehicles.  

While most relevant studies on shared micromobility are based on large cities in affluent 

countries (Elmashhara, Silva, Sá, Carvalho, & Rezazadeh, 2022), this research focuses on mid-

sized cities of developing countries planning for shared micromobility systems. The information 

on users’ inclination to adopt and use these innovative technologies can help set goals, allocate 

budgets, and plan for infrastructure. I designed a stated preference survey and used a panel data 

mixed logit model to evaluate the factors influencing the choice of shared micromobility as well 

as assess the modal shift from existing travel modes. As a case study in Kathmandu, Nepal, I 

implemented the methods to assess the choice of bikeshare, e-bike share, and e-moped share 
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options if they were to be introduced. Although the policy and planning implications are based 

on the context of Kathmandu, the results and lessons can be cautiously generalizable in other 

cities of similar population sizes with diverse travel options. 

This study makes three main contributions to the literature on transportation as follows: 1) to my 

knowledge, it is the only large-scale study to evaluate shared micromobility usage focusing on 

mid-sized cities of developing countries, 2) I deployed a fully online and dynamic stated 

preference pivoting survey that improves the survey design in real-time by using users’ input 

data to add context in the subsequent questions, and 3) I focused on introducing shared electric-

powered or human-powered vehicles, which could contribute to the initial wave of electrification 

in the transportation sector of emerging economies.  

The remaining chapter is organized as follows: The first subsection synthesizes shared 

micromobility research in developing countries, while the second subsection summarizes factors 

influencing the use of shared micromobility. The last subsection includes the research objectives 

of the study. 

 Review of literature 

4.2.1 Shared micromobility in developing countries 

The overall travel behavior in cities of developing countries is different from developed 

countries, mainly due to transportation infrastructure influenced by factors like standards of 

living, cultural norms, and demographics. Motorized two-wheelers are the predominant private 

transportation mode in most South Asian and Southeast Asian cities (Elmashhara et al., 2022). 

Despite hopes that bikeshare or other shared micromobility could transform urban mobility in 

developing cities, barriers such as insufficient infrastructure, such as bikes deployed, lighting, 

and bike lanes, has been a primary deterrent for bikeshare (Sharmeen, Ghosh, & Mateo-Babiano, 

2021; Sombatphanit, Panyasakulchai, Chenyawanich, Adunyarittigun, & Chuenmanuse, 2020). 

A study in Penang, Malaysia, highlights the importance of outreach strategy, payment methods, 

and safety concerns pertaining to the addition of new bikeshare program in the city (Kadir, Ghee-

Thean, & Law, 2019). In India, Kathait and Agarwal (2021) found that most cities lack long-

term planning for these systems, leading to a lower investment return for shared micromobility 

companies.  
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The literature provides various tools for measuring the acceptability and perception of emerging 

travel modes, such as technology adoption models, perception analysis, and preference surveys. 

Öztaş Karlı, Karlı, and Çelikyay (2022) implemented an extended Unified Theory of Acceptance 

and Use of Technology (UTAUT2) model for assessing the acceptance of shared e-scooters in 

Turkey. The study found a positive association between the propensity to adopt new modes and 

the users’ familiarity with similar travel modes, performance potential, convenience, social 

influence, and price. Other studies have adopted factor analysis and structural equation modeling 

to assess adoption intentions of shared e-scooters (Eccarius & Lu, 2020b) and intentions to 

continue using bikeshare (Y. Liu, Huang, Wang, & Wang, 2020). Patel and Patel (2020) used the 

analytical hierarchy process (AHP) to assess barriers to bikeshare adoption from the 

stakeholders’ perspective.   

Several studies have adopted stated preference surveys to evaluate factors influencing emerging 

travel modes. Campbell, Cherry, Ryerson, and Yang (2016) implemented a stated preference 

pivoting method to determine factors that affect the modal shift choice from existing 

transportation modes to bikeshare and e-bike share in Beijing. The pivoting method allows for 

the designing of stated preference choice scenarios based on real previous choices made by 

survey participants that provide a reference point and familiar context to make a hypothetical 

decision. Most stated preference studies implement fractional factorial design to develop 

efficient stated preference surveys by reducing the number of choice sets while evaluating the 

effect of multiple factors, such as weather, vehicle characteristics, transportation infrastructures, 

and trip attributes (Abouelela, Al Haddad, & Antoniou, 2021; Farahmand, Gkiotsalitis, & Geurs, 

2021).  

4.2.2 Factors influencing shared micromobility  

Weather is one of the most prominent factors affecting shared micromobility trips. Shared 

micromobility ridership is negatively affected during extreme temperatures (Kim, 2018) and 

adverse weather conditions such as wind and rainfall (Campbell et al., 2016; Hosseinzadeh, 

Karimpour, & Kluger, 2021). Users prefer warm temperatures, with the highest demand for 

bikeshare at temperatures of 20–30 °C (Eren & Uz, 2020). Shared micromobility ridership is 

higher during the summer and spring and lowest during the winter, mainly due to weather factors 

(Elmashhara et al., 2022; Nitesh R Shah, Jing Guo, et al., In review). Rain not only reduces the 
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number of trips but also the length and duration of the trips (Lin, Weng, Liang, Alivanistos, & 

Ma, 2020; Robert B. Noland, 2021). However, research shows that, compared to human-powered 

vehicles, demand for electrified modes such as shared e-scooter and shared e-bikes are less 

affected by adverse weather and environmental conditions (Campbell et al., 2016; Hosseinzadeh, 

Karimpour, et al., 2021).  

The built environment and topographic features influence the ridership and preference for shared 

micromobility modes. Bikeshare riders favor routes with protected bike lanes (Sun, Mobasheri, 

Hu, & Wang, 2017) and traffic signals dedicated to bicycles, while e-scooter users also prefer 

similar road characteristics (W. Zhang, Buehler, Broaddus, & Sweeney, 2021). Economic hubs 

with higher population and employment density also have a high demand for shared 

micromobility trips (Elmashhara et al., 2022), and studies have found high ridership at locations 

with more docking stations and vehicle density (Nitesh R Shah, Abubakr Ziedan, et al., In 

review). Although steeper terrain is a deterrent for bikeshare users, e-bike share and e-scooter 

share riders do not avoid steep slopes as these motorized vehicles do not require extensive 

physical effort (Langford, Cherry, Yoon, Worley, & Smith, 2013; W. Zhang et al., 2021). 

However, users prefer bikeshare and e-bike share over e-scooter share on bumpy surfaces as e-

scooters have a smaller tire size and require an upright steering angle, making the vehicle less 

stable (W. Zhang et al., 2021).  

Shared micromobility is popular among certain demographics, with variation amongst specific 

modes. The majority of bikeshare, e-bikeshare, and e-moped share users are young, affluent 

males with a college degree (Aguilera-García, Gomez, & Sobrino, 2020; Kaviti, Venigalla, & 

Lucas, 2019; Maas, Attard, & Caruana, 2020; Reck & Axhausen, 2021). A few studies have 

found that e-scooter share has more female ridership than other micromobility modes (Reck & 

Axhausen, 2021; Nitesh R Shah et al., 2021). Some shared micromobility modes like e-scooters 

are also associated with social and recreational purposes in addition to commuting (Raptopoulou, 

Basbas, Stamatiadis, & Nikiforiadis, 2020). Other factors that affect the demand for shared 

micromobility are the availability of nearby public transportation facilities, access to bicycling 

infrastructure, attitudes and values towards new travel modes, and road safety factors (Eren & 

Uz, 2020; Ziedan, Shah, et al., 2021).  
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4.2.3 Research objectives 

With the focus on mid-sized cities of developing countries, this research implements a stated 

preference survey to assess users’ intentions to adopt shared micromobility systems that are new 

to the study area. This study evaluates three electric or human-powered micromobility vehicles: 

bikeshare, e-bike share, and e-moped share. I adopt the micromobility terminology proposed by 

the International Transport Forum (ITF) (Santacreu et al., 2020b). Bikes are two-wheelers 

propelled by the muscular energy of the rider, while e-bikes are pedal-assisted bicycles supported 

by an electric power unit that cuts off when a vehicle reaches approximately 25 km/h. E-mopeds 

are electric motor-powered vehicles with design speeds of 25-45 km/h operating only on the road 

lane. The suffix “share” indicates that users can rent a vehicle based on per-unit time or distance 

usage. These three vehicles encompass a wide range of features and are also similar to existing 

travel modes in the study area.  

The study also focuses on temperature, precipitation, availability of bike lanes, and key 

sociodemographic factors influencing the choice of shared micromobility systems. This study 

aims to answer the following research questions in the context of mid-sized cities in developing 

countries: 

1. What are the main drivers of adopting shared micromobility modes and what is the effect 

of sociodemographic factors? 

2. Which traditional travel modes would users replace with shared micromobility? 

 Methodology  

4.3.1 Study area  

Kathmandu is the capital of Nepal and among the world’s most densely populated and compact 

cities, with a population exceeding 2.5 million and an annual growth rate of four percent (World 

Bank, 2013). Motorized two-wheelers have emerged as the primary form of transportation during 

the last decade. In 2012, gasoline-powered two-wheelers made up 26 percent of trips in 

Kathmandu, a three-fold increase from 1991 (Japan International Cooperation Agency (JICA), 

2018). There was a staggering 65 percent increase in vehicle registration between 2012 and 

2017, with two-wheelers contributing 78 percent of the total registered vehicle fleet in 2017 
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(Department of Transport Management, 2017). Existing public transportation his hindered by 

lack of capacity, security, and reliability to serve rising travel demand (Gautam, Sapakota, 

Shrestha, & Regmi, 2019), further driving the rate of private motorization.  

Although widespread use of smartphones with internet access and online payment existed in 

Kathmandu, the COVID-19 pandemic further acted as a catalyst for the shift toward digitizing 

commodities (Didier, Feyen, Montanes, & Alper, 2021). The popularity of ride-sharing services, 

such as Tootle and Pathao, skyrocketed in Kathmandu during the pandemic (Hamal & 

Huijsmans, 2022). However, shared micromobility is yet to penetrate the market. The majority of 

all trips in Kathmandu (~70%) have short distances (average trips being 5 km) (Japan 

International Cooperation Agency (JICA), 2018), which is within the practical range of 

micromobility vehicles. These combined factors — the availability of background data related to 

transportation, residents’ familiarity with emerging technology components, and the majority of 

trips being within the practical range of micromobility — make this city an ideal location for the 

case study. 

4.3.2 Data collection and cleaning 

This research builds upon the experimental design framework of Campbell et al. (2016) by 

designing and implementing a fully online and dynamic stated preference pivoting survey and 

conducting several choice experiments from each survey participant. I included four attributes in 

our experimental design: temperature, precipitation, bike lane availability, and sensitivity level 

for travel cost and travel time, with three levels each. The levels of temperature are cold (<10 

°C), normal (10-25 °C), and hot (>25 °C), while the levels of precipitation are heavy rain, light 

rain, and sunny. I used three levels of attribute for bike lane availability: no bike lane, 

unprotected bike lane, and protected bike lane. I used sensitivities of -0.2, 0.0, and 0.2 to add 

variation in travel cost and travel time for the three modes. I estimated the base travel cost as a 

sum of the fixed cost and marginal cost per trip distance (in km). The fixed cost for bikeshare, e-

bike share, and e-moped share was assigned a value of Nepalese Rupees (NRs) 5, 7, and 10, 

respectively, while the marginal cost per km was assumed to be NRs 2, 5, and 20, respectively. 

The base travel time for bikeshare, e-bikeshare, and e-moped share was estimated using assumed 

travel speeds of 9.1 km/h, 12.1 km/h, and 20 km/h, respectively. I used the fractional factorial 

design with blocking technique in the statistical software JMP to generate a six scenario sets of 
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six scenarios each (a total of 36 scenarios), ensuring all attribute levels described above appeared 

at the same frequency in order to maximize the statistical power of the experiment (Rose & 

Bliemer, 2009). Each respondent randomly received six scenario question sets in the survey.  

I designed the survey in Qualtrics, which started with a short introduction explaining the purpose 

of the survey and a prompt for consent. I screened participants based on two criteria: 1) the 

participant’s age should be at least 18 years, and 2) the participant should have completed at least 

one trip between 0.5 km to 10 km within the past week. The first part of the survey prompted 

respondents to recall the most recent trip within the past week, recording trip distance, origin, 

and destination to create a familiar context for subsequent questions. The choice experiment was 

pivoted from this trip. In the second part, respondents were presented with a scenario of weather 

conditions and bike lane availability for the same trip and were asked to select their preferred 

traditional travel mode alongside entering the travel time and cost information for the selected 

mode (illustrated in Figure 19 (a)). For the same scenario, respondents were then asked to choose 

between bikeshare, shared e-bike, shared e-moped, and the chosen travel mode from the earlier 

question, which acted as a reference point (illustrated in Figure 19 (b)). In order to make an 

informed decision, travel time and cost along with road rules for travel modes, such as driving 

license requirements, pictorial illustration of bike lane type, and permission to ride in the bike 

lane, were summarized in a table. The last part of the survey contained questions about the 

sociodemographic information of the respondents, such as gender, level of education, and 

household income. Upon completing the survey, respondents received a NRs 50 (equivalent to 

USD 0.40) gift card of their choice.  

The online survey was designed in both Nepali and English so that the study could also include 

non-English speaking residents. The Nepali language is the most common language used in 

Kathmandu, and the English language is widely used for educational and business purposes. A 

participant could start the survey in either of the languages following one of two URLs or QR 

(quick response) codes and could toggle between English and Nepali at any point during the 

survey. I deployed the online survey in Kathmandu between May 2, 2022, and July 12, 2022, 

using the following mediums to recruit participants: 

 Distributing flyers in ten busy locations of Kathmandu, such as bus stops, intersections, 

and park areas. 
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(a) 

 

(b) 

Figure 19 Example of scenario question viewed by participants’ in Qualtrics 

a) First part of the scenario question, b) Second part of the scenario question 

  



86 

 

 Sharing the survey details on social media through Facebook groups and public pages, as 

well as through direct messages, including Facebook instant messages and emails.  

By the end of the study period, 1,241 participants started the survey, and 569 participants (47% 

of total participants) completed the survey, which included 300 from social media and 269 

participants who were recruited from flyers. A total of 151 participants (13% of participants 

starting the survey) were screened out, and 494 participants (41% of participants starting the 

survey) did not complete the survey. Of 569 participants, 66% completed the survey in English, 

while the remaining 34% used Nepali. To remove potential fraudulent responses, I dropped 

responses based on the following criteria: 1) 20 responses (4% of completed responses) with a 

fraud score of more than 30, which is a built-in metric developed by Qualtrics to detect 

fraudulent and bot responses, 2) 46 responses (8% of completed responses) completed in less 

than 5 minutes (median survey completion time was 11 minutes), and 3) 71 responses (13% of 

completed responses) that included the same new travel mode for all six scenarios, indicating a 

straightlining effect. I retained 2,544 data points from 424 responses for the analysis.  

4.3.3 Descriptive statistics  

After the data cleaning process, 12% of choices were bikeshare, 11% of choices were e-

bikeshare, and 9% of choices were shared e-moped. The remaining 68% of choices were to 

continue using existing travel modes. Figure 20 illustrates the choice among shared 

micromobility vehicles and existing travel modes (base mode) for different levels of attributes 

from the experimental design. The labels in the figure represent the percentage of choices of the 

specific vehicle (labeled on the left side) with all three attribute levels grouped vertically. 

Bikeshare was popular for a protected bike lane, while e-bike share was common for an 

unprotected bike lane. Most participants chose e-moped share for the scenario without a bike 

lane. Given the scenario with heavy rain, most participants did not choose any shared 

micromobility vehicles and had a slightly higher inclination towards using micromobility in 

sunny weather compared to light rain. Participants preferred normal and hot temperature 

conditions for bikeshare and e-bike share but had a higher preference for shared e-moped in 

scenarios with cold temperatures.  
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Figure 21 summarizes the key demographics aggregated by the recruitment method of study 

participants. According to the most recent National Population and Housing Census (Central 

Bureau of Statistics, 2014), the gender split of Kathmandu is 52.3% male and 47.7% female. Our 

sample had a much higher proportion of male respondents, likely due to males traveling more 

than females and a higher willingness of males to participate in the survey. The sample data 

oversampled the 19-30 age group while under-sampling higher age groups, possibly due to the 

younger generation being more familiar with navigating online surveys. Similar studies have also 

sampled younger, educated, and male demographics (Campbell et al., 2016; S. A. Shaheen, 

Zhang, Martin, & Guzman, 2011), likely due to the inherent selection bias problem with 

intercept surveys. Respondents recruited through social media were more educated, had higher 

household incomes, and had more representation of females than participants recruited through 

flyers.  

4.3.4 Modeling framework 

I used discrete choice modeling to explain the individuals’ mode choice of shared micromobility, 

based on the assumption that an individual selects an alternative among given choices with 

maximum utility (Hensher & Johnson, 2018). Although the Multinomial Logit (MNL) model is 

the most popular discrete choice model for multiple alternatives, it assumes that the observed 

alternative components are independent and identical, which might be impractical in the real-

world choice scenario. Mixed Logit (ML) relaxes the Independence of Irrelevant Alternatives 

(IIA) assumption of MNL by allowing random taste variation, unrestricted substitution patterns, 

and correlation between unobserved factors (Train, 2009). The ML model is also recognized as a 

random parameter model, Mixed Multinomial Logit (MML) model, or hybrid logit model. 

Furthermore, ML can incorporate the effect of multiple observations from the same individual 

while also controlling for heterogeneity in the parameter of an attribute across populations using 

a random coefficient (Hensher & Johnson, 2018; Train, 2009). Several studies have found that 

the ML modeling framework performs better for behavioral specification than other logit models 

(Farahmand et al., 2021; Ye & Lord, 2014). 

The utility (𝑈𝑗𝑡𝑞) of an alternative 𝑗 ∈ (1, . . , 𝐽) in each choice 𝑡 of choice set 𝑇 by an individual 

𝑞 for the Mixed Logit (ML) model is provided in as follows (Farahmand et al., 2021): 
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Figure 20 Choice of travel modes aggregated by attribute levels of the study 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 21 Demographics of survey respondents aggregated by recruitment method 

a) Gender, b) Household income in Nepalese Rupees (NRs), c) Age group, and d) Education level 
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𝑈𝑗𝑡𝑞 = 𝐴𝑆𝐶 +  ∑ 𝛽𝑞𝑘𝑥𝑖𝑡𝑞𝑘

𝑘

𝑘=1

+ 𝜀𝑖𝑡𝑞 

Where, 𝐴𝑆𝐶 is an alternative specific constant explaining the deterministic part of the utility 

of each alternative 

𝑘 is the number of observed variables 

𝑥𝑖𝑡𝑞 is observed variables, including attributes of alternatives, sociodemographic of 

respondents, and context of decisions such as trip-specific components 

𝛽𝑞 is a vector of coefficients of independent variables for individual 𝑞, and  

𝜀𝑖𝑡𝑞 is an Independent and Identically Distributed (IID) random error term  

The probability that the individual makes a sequence of choices among alternatives is calculated 

using the following equation: 

𝐿𝑖𝑞(𝛽) = ∏ [
𝑒

𝑉𝑖𝑞
𝑡 (𝛽)

∑ 𝑉𝑖𝑞
𝑡 (𝛽)

𝐽
𝑗=1

]𝑇
𝑡=1   

Where, 𝑉𝑖𝑞
𝑡 (𝛽) is the observed part of the alternative utility related to parameter 𝛽 for choice 

𝑡 

I used the “cmxtmixlogit” command in STAT/SE 17 to estimate the panel data mixed logit 

model. I assigned travel time and travel cost variables as random parameters with normally 

distributed coefficients. I assigned the remaining variables as case-specific variables, including 

parameters that were the same for all alternatives in a given scenario (weather, precipitation, and 

bike lane availability), sociodemographic attributes of respondents (e.g., age, gender, and 

household income), and the context of the decision (e.g., original travel mode, and trip distance). 

Starting with a simple model with a few variables, I iterated models by adding/removing other 

variables to find the best model specification. I bootstrapped the standard error of parameter 

estimates by clustering estimates of each participant to control for possible heteroscedasticity and 

serial autocorrelation (Gonçalves, 2011). 

 Results 

Table 9 summarizes the results of the final model specification, which is statistically significant, 

as indicated by the 0.000 p-values of the model test statistic. I retained the travel cost and time 
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variable, although they were not statistically significant in the model, likely because there were 

insufficient observations for all levels of covariates. The precipitation variable has a positive 

coefficient and is statistically significant (p-value < 0.05) among all three shared micromobility 

modes. This means that light rain and sunny conditions are preferable compared to heavy rain for 

shared micromobility vehicles. The temperature variable is significant only for e-moped share, 

while the availability of bike lanes is statistically significant for e-bike share. I also explored the 

interaction of bike lane availability with other covariates, such as trip distance and gender, but 

still obtained statistically insignificant coefficient estimates for the bike lane availability variable.  

The coefficient of trip distance is negative and statistically significant (p-value < 0.025) for e-

moped share, indicating the choice of e-moped decreases with longer trip distance. The 

household income coefficient for e-moped share is positive and statistically significant (p-value 

< 0.025), suggesting higher income increases the use of shared e-moped. I dropped statistically 

insignificant variables collected in the survey, including trip purpose, a control for recruitment 

method, levels of education, and the number of household members and vehicles. 

The marginal effects plot in Figure 22 complements the model results in Table 9 by visually 

summarizing the effect of attributes (represented on the x-axis of each figure) on the probability 

of choosing a travel mode (represented on the y-axis of each figure). I only included the choice 

for shared micromobility in the figures as they are the main focus of the study. Figure 22 (a) 

illustrates that the probability of choosing all shared micromobility modes is the least during 

heavy rain. Figure 22 (b) indicates that there is not much difference in normal and hot 

temperature, while the choice of e-moped share is high in cold temperature. Figure 22 (c) 

suggests that e-bike share is preferred for an unprotected bike lane, and bikeshare is popular if a 

protected bike lane is available. However, the effect of bike lane type is not statistically 

significant in the choice of shared micromobility vehicles. Despite the description and 

photograph, because bike lanes are uncommon in Kathmandu, the respondents likely had little 

experiential basis to judge their utility. Figure 22 (d) shows that e-moped share is preferred by 

females, while the choice of bikeshare is greater among male users. Figure 22 (e) indicates that 

the preference for e-moped share increases with higher household income, but there is no 

significant influence of household income on bikeshare and e-bike share. Figure 22 (f) suggests 

that modal shift from the existing travel mode varies depending on the type of shared  
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Table 9 Model results 

Parameter 
Coefficient Robust std. 

err. 

P-value 

Random 

Parameter 

Travel time (minutes) 0.000 0.001 0.941 

Travel cost (NRs) -0.007 0.005 0.207 

sd(Travel cost) 0.007 0.001  

sd(Travel time) 0.042 0.006  

Continue using current mode base alternative 

Bikeshare Precipitation (base: heavy rain)    

Light rain 0.590 0.208 0.005 

Sunny 0.603 0.203 0.003 

Temperature (base: cold (<10 °C))    

Hot (10-25 °C) 0.183 0.163 0.262 

Normal (>25 °C) 0.184 0.148 0.215 

Bike lane availability (base: no bike 

lane) 
  

 

Protected 0.161 0.181 0.374 

Unprotected -0.127 0.152 0.404 

Gender (base: female)    

Non-binary/prefer not to say -0.138 0.967 0.886 

Male 0.652 0.225 0.004 

Trip distance (km) -0.049 0.037 0.187 

Household income (NRs) 0.001 0.003 0.702 

Original travel mode (base: private two-

wheeler) 
  

 

Walk/bicycle 0.473 0.259 0.068 

Public transit 0.123 0.243 0.611 

Two-wheeler ride hailing 0.457 0.407 0.262 

Private four-wheeler 0.004 0.320 0.989 

Four-wheeler ride hailing -0.934 0.522 0.074 

Others 1.497 1.072 0.163 

ASC -2.799 0.408 0.000 

E-bike share Precipitation (base: heavy rain)    

Light rain 0.722 0.197 0.000 

Sunny 0.731 0.196 0.000 

Temperature (base: cold (<10 °C))    

Hot (10-25 °C) 0.216 0.161 0.180 

Normal (>25 °C) 0.053 0.170 0.758 

Bike lane availability (base: no bike 

lane) 
  

 

Protected 0.145 0.167 0.385 
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Table 9 continued 

Parameter 
Coefficient Robust std. 

err. 

P-value 

 

Unprotected 0.299 0.137 0.029 

Gender (base: female)    

Non-binary/prefer not to say -0.244 0.722 0.735 

Male 0.233 0.232 0.316 

Trip distance (km) -0.026 0.037 0.481 

Household income (NRs) 0.003 0.003 0.292 

Original travel mode (base: private two-

wheeler) 
  

 

Walk/bicycle -0.002 0.259 0.994 

Public transit -0.329 0.222 0.138 

Two-wheeler ride hailing 0.184 0.394 0.640 

Private four-wheeler -1.042 0.408 0.011 

Four-wheeler ride hailing -1.027 0.513 0.045 

Others 0.147 1.235 0.905 

ASC -2.604 0.443 0.000 

E-moped share Precipitation (base: heavy rain)    

Light rain 0.599 0.242 0.013 

Sunny 0.560 0.239 0.019 

Temperature (base: cold (<10 °C))    

Hot (10-25 °C) -0.292 0.175 0.095 

Normal (>25 °C) -0.379 0.169 0.025 

Bike lane availability (base: no bike 

lane) 
  

 

Protected -0.054 0.215 0.803 

Unprotected -0.089 0.175 0.612 

Gender (base: female)    

Non-binary/prefer not to say -0.083 0.494 0.867 

Male -0.362 0.255 0.155 

Trip distance (km) -0.115 0.043 0.008 

Household income (NRs) 0.010 0.004 0.008 

Original travel mode (base: private two-

wheeler) 
  

 

Walk/bicycle 0.097 0.323 0.764 

Public transit -0.346 0.313 0.270 

Two-wheeler ride hailing 1.686 0.344 0.000 

Private four-wheeler -0.005 0.370 0.990 

Four-wheeler ride hailing 0.613 0.431 0.155 

Others 0.519 1.330 0.696 

ASC -2.280 0.484 0.000 
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Table 9 continued 

No of observations 10,176 

Number of cases 2,544 

Number of panels 424 

Log simulated Likelihood -2322.825 

Wald chi2 162.43 

Prob > chi2 0.0000 
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(a) 

 
(b)  

 

 
(c) 

 

(d)  

 

(e) 
 

(f) 
Figure 22 Marginal effects of choice of shared micromobility 

a) Precipitation, b) Temperature, c) Availability of bike lane, d) Gender, e) Household income in 

thousands of Nepalese Rupees (NRs), f) Modal shift 
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micromobility vehicles. Two-wheeler and four-wheeler ride-hailing users are more likely to 

choose e-moped share if this new mode was available. 

 Discussion 

4.5.1 Factors influencing the choice of shared micromobility  

The widespread adoption of innovative transportation technologies requires understanding how 

users choose to use these vehicles under various circumstances. Such information is helpful in 

successfully planning and budgeting for shared micromobility systems by estimating the demand 

and could help local governments prioritize infrastructure investments like bike lanes. The 

choice of e-moped share was highest among other shared micromobility vehicles during cold 

weather. Private two-wheelers are the predominant mode of travel throughout the year (Japan 

International Cooperation Agency (JICA), 2018) and are one of the fastest travel modes. People 

have likely adapted their travel behavior to cold weather, as Kathmandu has relatively cold 

climate conditions while indoor and vehicle air conditioning is not a standard. The effect of 

weather conditions should be interpreted with caution for other regions as travel behavior will 

likely be influenced by the general threshold of the local population.   

Consistent with other studies (Campbell et al., 2016; Hosseinzadeh, Karimpour, et al., 2021; 

Kim, 2018), I found that “heavy rain” negatively impacts the use of bikeshare, e-bike share, and 

e-moped share. In the past decade, the number of rainy days (including light rain) in Kathmandu 

has been 175 days on average, with most of the rainy days occurring from June to September 

(Prajapati et al., 2021). I did not observe a statistical difference between the “light rain” and 

“sunny” weather condition. Users could further adapt their travel behavior around shared 

micromobility systems by improving weather predictions with high temporal and spatial 

accuracy (Weyn, Durran, & Caruana, 2020). However, extreme weather conditions due to 

climate change could be one of the challenges in the electrification of transportation through 

shared micromobility in developing countries (Markolf, Hoehne, Fraser, Chester, & Underwood, 

2019). Transportation agencies should also consider micromobility systems in climate change 

resiliency strategies of transportation infrastructure and policy.  

Despite weak evidence, I found that the availability of bike lanes promotes the choice of low-

speed shared micromobility like bikeshare and e-bike share. It is possible that participants could 
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not infer the implications of bike lane availability on their travel behavior because bike lanes are 

a relatively new concept in Kathmandu. A protected bike lane did not exist in Kathmandu while 

conducting the survey. Unprotected bike lanes have been constructed in a few street segments 

within the past few years (Ojha, 2021); however, entry of unauthorized two-wheelers into the 

bike lanes during congestion and motor vehicle parking has reduced the effectiveness of existing 

bicycling infrastructure (Khanal, 2021), influencing the perception of the usefulness of bike lanes 

among participants. Although not incorporated in this study, connectivity of bicycling 

infrastructure throughout the rider’s travel route would be one of the critical factors influencing 

bicycling culture and the adoption of shared micromobility (Furth, Mekuria, & Nixon, 2016; 

Nitesh R Shah & Cherry, 2021),  

4.5.2 Modal shift from traditional travel modes   

Shared micromobility could be an inexpensive mobility solution for and hasten the electrification 

of transportation in mid-sized cities of developing countries, where the majority of trips are less 

than 10 km, which is within the practical range of shared and electric micromobility vehicles. 

Electrifying the two-wheeler fleet could result in significant urban air quality and greenhouse gas 

reduction improvements. Studies have found that shared micromobility can reduce the overall 

carbon footprint of the transportation sector through zero tailpipe emissions and modal shift from 

existing travel modes (Cazzola & Crist, 2020). I found that ride-hailing users (both two-wheeler 

and four-wheeler) had a higher inclination to use e-moped share and could be early adopters 

paving the way towards generating the critical mass needed to adopt these innovative mobility 

technologies (Chesbrough & Crowther, 2006). I found that introducing bikeshare and e-bike 

share would uniformly cause modal shift among private two-wheelers, public transit, ride-hailing 

two-wheelers, walking, and bicycling.   

Similar to other studies, I found that the majority of shared micromobility adopters were younger 

people with a higher household income. Demographic factors also contribute to the choice 

among micromobility vehicles; for example, females preferred e-moped share more than 

bikeshare. Several studies have found a preference for motor-assisted vehicles among females, as 

such vehicles can mix with traffic better and are perceived as safer to ride. A combination of 

policy incentives to subsidize shared micromobility for low-income households, educational 
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campaigns to highlight benefits, and investment in micromobility-friendly infrastructure could 

positively influence travel behavior to promote a broader modal shift from existing travel modes. 

4.5.3 Limitations of the study and future research areas 

Future research could address the following limitations of the study. First, I found weak evidence 

of the type of bike lanes influencing the propensity to use shared micromobility. It is likely that 

participants’ response to the availability of bike lanes is correlated with other variables that were 

not captured in this study. Other experimental design methods, such as augmented reality 

techniques, could provide better context to aid the decision-making of participants. Second, the 

study used categorical descriptions for factors like heavy rain, and future studies could quantify 

such factors to avoid ambiguous interpretation. Third, this research did not assess emissions 

reductions from introducing shared micromobility modes. Future studies could build a 

comprehensive model to evaluate the net emission reductions for various scenarios and also 

include other sustainable and innovative travel technologies. I was surprised that price and travel 

time did not enter the model significantly. This could be because I did not introduce enough 

price or travel time variability into the choice experiment. Future studies should more carefully 

specify this important variable. Finally, I found a difference in sociodemographic in the 

recruitment method for the survey among social media and flyer distribution. Studies could 

compare and contrast such differences to address possible biases generated by the survey 

recruitment method in the context of shared micromobility in developing countries. 

 Conclusions 

Micromobility modes could hold substantial promise for developing cities to pursue a low-

carbon mobility pathway. Understanding how successful such programs can be is important, 

particularly in the context of weather, infrastructure, and social norms. This study sets out to 

parameterize several factors that could influence bikeshare, e-bike share, and e-moped sharing 

models. From this study, city governments could start with a small-scale pilot program by 

combining the findings of this study. Cities like Bogotá have produced lessons on successfully 

implementing shared micromobility. I also encourage the collection of usage and operation data 

during the pilot program so that a data-driven performance evaluation can inform decisions to 

improve and scale up shared micromobility systems. These data could also support transportation 
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investment decisions, such as building bike lanes, promoting multimodal transportation systems, 

and adopting other innovative mobility solutions like Mobility-as-a-Service (MaaS). To realize 

the enormous potential of shared micromobility in promoting sustainable transportation in 

developing countries, I recommend a strategic partnership among local government and private 

entities with the technical support of non-profits and multilateral development banks.
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Chapter 5. Usage-based clustering of e-scooter trips 
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This chapter is based on a research paper by Nitesh R Shah, Jing Guo, Han D Lee, and 

Christopher Cherry titled “Why Do People Take E-Scooter Trips? Insights on Temporal and 

Spatial Usage Patterns of Detailed Trip Data”. The paper is in review at the Transportation 

Research Part A: Policy and Practice. The paper was presented at Transportation Research Board 

100th Annual Meeting 2021 in Washington, D.C. This research paper also received first place in 

the 2021 Annual Student Paper Competition, Tennessee Section Institute of Transportation 

Engineers, and second place in the 2021 Annual Student Paper Competition, Southern District 

Institute of Transportation Engineers.  

Abstract 

Electric scooters (e-scooters) are becoming one of the most popular micromobility options in the 

United States. Although there is some evidence of increased mobility, reduced carbon emissions, 

replaced car trips, and associated public health benefits, there is little known about the patterns of 

e-scooter use. This study proposes a framework for high-resolution analysis of micromobility 

data based on temporal, spatial, and weather attributes. As a case study, I scrutinized more than 

one million e-scooter trips of Nashville, Tennessee, from September 1, 2018, to August 31, 2019. 

Weather data and land use data from the Nashville Travel Demand Model data and scraping of 

Google Maps Point of Interest (POI) data complemented the trip data. The combination of 

Principal Component Analysis (PCA) and a K-means unsupervised machine learning algorithm 

identified five distinct e-scooter usage patterns, namely morning work/school, daytime short 

errand, social, nighttime entertainment district, and utilitarian trips. Among other findings, the 

most common use of e-scooters in Nashville was daytime short errand trips, contributing to 29% 

of all e-scooter trips. I found that 7% of all e-scooter trips resembled morning commuting to 

work or school. Only 16% of trips were classified as Nighttime Entertainment District trips. The 

average daily number of trips on a typical weekend was 81% higher than a typical weekday. I 

also found variation in e-scooter usage patterns over a year with high summer ridership patterns. 

The findings of this study can help city administrations, planners, and micromobility operators to 

understand when and where people are using e-scooters. Such knowledge can guide them in 

making data-driven decisions regarding safety, sustainability, and mode substitution of emerging 

micromobility.  
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 Introduction 

Cities have found themselves behind on managing and regulating e-scooter operations within 

their jurisdiction. Most e-scooter service providers distributed the devices in the street without 

any warning (Lazo, 2018), and the proprietary nature of these companies provide limited 

research opportunities (McKenzie, 2019). Although e-scooters can potentially increase mobility, 

reduce greenhouse gas emissions, decrease automobile use, and add health benefits (S. Shaheen 

& Cohen, 2019), there are several ongoing debates regarding their safety, operation, and actual 

impact on infrastructure and transportation systems.  

This chapter offers a framework for analyzing micromobility trips based on temporal, spatial, 

and weather attributes. The study contributes to the literature by examining, with unprecedented 

resolution, the spatiotemporal usage of shared electric scooters in a mid-sized metropolitan city 

of the United States. The findings of this study complement the survey-based studies, which are 

based on the responses of a sample of e-scooter users over a short duration, by identifying the e-

scooter usage patterns over a year. 

The chapter is organized into the following sections. The remainder of this section provides a 

brief background on the usage characteristics of micromobility, factors influencing shared 

scooter trips, and the research hypothesis. Section two describes the methodology, followed by 

the results in section three. The discussion can be found in section four, while section five 

contains the conclusion. 

 Review of literature 

5.2.1 E-scooter usage research approaches 

Previous studies have taken a survey and micromobility data analysis approach to understand the 

usage of e-scooters as an emerging transportation technology. The Portland Bureau of 

Transportation (2019) accomplished one of the earliest survey-based studies, where 28% of 

survey respondents said that they would not have made the trip if e-scooters were not available, 

but 34% of e-scooter trips by local residents and 48% of e-scooter trips by travelers were the 

substitution of an automobile. Studies in other cities, like Austin, Texas, and Denver, Colorado, 

also reported approximately a third of e-scooter trips replacing private automobile trips (City of 
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Austin, 2019; Denver City Council, 2019). The e-scooter operator Lime reported that 55% of e-

scooter trips in San Francisco, California, were related to work and school (Lime, 2018).  

While user intercept survey studies are informative on mode substitution and trip purpose of e-

scooter trips, the results might not necessarily be a complete representation of e-scooter usage. 

The location can be biased over e-scooter trip characteristics (Rayle, Dai, Chan, Cervero, & 

Shaheen, 2016); for instance, urban park areas could be overwhelmingly recreational, while e-

scooter trips in downtown areas could be utilitarian, like work-related trips. The intercept survey 

results are also affected by the time of data collection, with under-representation during night-

time and days with special events that result in a surge in e-scooter usage. Another limitation is 

the small sample size effect that influences the conclusion's reliability due to random error.  

Many city governments also collect Global Positioning System (GPS) based trip summary 

datasets from micromobility operators, which provides a unique opportunity to evaluate usage 

characteristics of micromobility using regression models like negative binomial and spatial 

regression. Bai and Jiao (2020) found that downtown and university areas are the most common 

area for e-scooter use in Minneapolis, Minnesota, and Austin, Texas. Caspi et al. (2020) also 

found that e-scooters are popular among younger demographics, with higher e-scooter usage in 

low-income areas that have a high student population compared to low-income areas without 

student populations.  

Although these studies incorporated spatial attributes of e-scooter usage using regression models 

such as Geographically Weighted Regression (GWR) and Generalized Additive Modeling 

(GAM) approaches, they lack an evaluation of detailed temporal characteristics and seasonal 

variations (Hosseinzadeh, Algomaiah, et al., 2021a). McKenzie (2019) evaluated both spatial and 

temporal attributes of shared e-scooter trips to compare with bikeshare trips in Washington, D.C. 

However, the author only used data from one e-scooter operator, although several operators 

provided service at the time. The study period was also less than five months. To our knowledge, 

a comprehensive spatiotemporal analysis of e-scooters lacks in the literature.  

Researchers have combined data mining methods to combine GPS travel data with 

sociodemographic data to evaluate spatiotemporal travel patterns. Jiang, Ferreira, and González 

(2012) used eigendecomposition and K-mean clustering on an activity-based travel survey to 

identify activity patterns in Chicago. Several studies have used a similar approach to evaluate 
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bikeshare usage. Xu et al. (2019) used the eigendecomposition method to understand the usage 

pattern of the dockless bikesharing system and its relationship with the built environment in 

Singapore. Bao, Xu, Liu, and Wang (2017) combined K-means clustering with Latent Dirichlet 

Allocation (LDA) to categorize the bikeshare trips in New York based on trip purpose.  

This chapter is an exploratory study using existing spatiotemporal analysis techniques on the 

unique dataset of emerging micromobility that complements survey-based and micromobility 

data-based studies in the literature. The e-scooter usage patterns identified from the 

micromobility data provide knowledge on when and where people use e-scooters, while a 

yearlong study period captures the seasonal variation.  

5.2.2 Factors influencing shared e-scooter trips 

Understanding the factors that influence travel choices (modes and routes) helps inform 

transportation planning and policy decision making (Tu et al., 2018; Zhou et al., 2017). While 

there are limited studies on factors influencing dockless e-scooter trips, there is extensive 

research on docked bikeshare systems. The general trip pattern of dockless e-scooters resembles 

the trip pattern of casual users of docked bikeshare systems in Washington, D. C. (McKenzie, 

2019) and dockless bikeshare systems in Indianapolis, Indiana, and Louisville, Kentucky 

(Mathew et al., 2019; Robert B Noland, 2019).  

Previous studies have found socio-demographics, built environment, and weather condition 

factors to determine bikeshare use. Socio-demographic attributes such as gender, median 

household income, population density, and automobile ownership have an influence on 

micromobility ridership (Buck & Buehler, 2012; Faghih-Imani & Eluru, 2015). Built 

environment indicators, such as land use mixture, and proximity to transit stations, correlate with 

shared bikeshare use (Wang, Lindsey, Schoner, & Harrison, 2016; Xu et al., 2019; Y. Zhang, 

Thomas, Brussel, & Van Maarseveen, 2017). Several studies have also found extreme weather 

conditions (hot or cold temperatures, precipitation, and snowfall) to decrease the use of shared 

micromobility (El-Assi, Mahmoud, & Habib, 2017).   

Some papers have explored the factors influencing shared e-scooter usage. The number of e-

scooter trips has a significant correlation with the time of the day and day of the week (weekday 

vs weekend), with the peak use occurring on afternoon or evening of weekends (Bai & Jiao, 
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2020; Caspi et al., 2020; Hosseinzadeh, Algomaiah, et al., 2021a). E-scooters usage was 

observed mainly in high population density areas (downtown), university, and commercial areas. 

Hosseinzadeh, Algomaiah, et al. (2021a) also found a positive correlation between e-scooter use 

and urbanism indices, such as Walk Score, Bike Score, and Transit Score, in Louisville, 

Kentucky.  

In a study of e-scooter use in Indianapolis, Mathew et al. (2019) found that the number of e-

scooter trips reduced significantly during rain and snow, although the trip distance and duration 

decreased only slightly. Other related studies on e-scooter safety, operation optimization 

(Ciociola, Cocca, Giordano, Vassio, & Mellia, 2020), and charging optimization (Masoud et al., 

2019) can also inform understanding of e-scooter usage. 

5.2.3 Research objective 

Some pilot studies rely on recall surveys, which are affected by response bias and small sample 

sizes. This study, on the other hand, takes a data-driven approach by examining all the e-scooter 

trips completed in a year to evaluate scooter use patterns.  

The research questions of the study to examine the spatiotemporal usage characteristics are as 

follows: 

1. What are the distinct e-scooter usage patterns based on temporal and spatial features and 

weather characteristics? 

2. How can spatial and temporal visualization improve the understanding of the e-scooter 

usage patterns? 

 Methodology 

The unprecedented spatial and temporal resolution, as well as the volume of micromobility data, 

requires state-of-the-art data analysis methods. This study proposes a conceptual framework for 

such research design in the first section of this chapter while presenting a case study of Nashville 

in the second section. 
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5.3.1 Research design 

The integration of GPS-enabled smartphones with micromobility operations has allowed the 

collection of trip-level data. Figure 23 illustrates the conceptual framework of the research 

design that evaluates the micromobility trip data by adding contextual information like the built 

environment. The proposed method relies on an unsupervised machine learning approach, as the 

micromobility trip-level data does not have intrinsic usage-related information. However, 

knowledge of general micromobility usage is important for planning and policy-level decisions.  

A brief description of each step in the research design is as follows:  

5.3.1.1 Input data 

The first step involves linking data on e-scooter trips and the built environment. The trip data 

collected by e-scooter operators include information such as distance, duration, location, and 

timestamp of origin and destination, and could also contain the GPS trace of the route. These 

scooter trip data, however, lack contextual information like built environment and weather 

attributes. The population, employment, parking, and intersection density, as well as land use 

mixture at origin and destination of the trip (measured by entropy) explain the built environment. 

The average daily temperature and precipitation on the day of the trip describe the weather 

attributes. Additionally, latent variables such as average trip speed and trip directness (ratio of 

route distance to Euclidian distance between origin and destination) explain the characteristics of 

trips.  

5.3.1.2 Unsupervised Machine Learning 

 

The second step entails unsupervised machine learning methods and associated pre-processing of 

the data. One advantage of an unsupervised approach is that it does not require a dependent 

variable and independently finds clusters within the data. As this study uses the K-means 

clustering algorithm, which utilizes distance-based optimization, I normalized the variables using 

the min-max technique to ensure the proportionate contribution of each variable in the cluster. 

The mathematical expression for min-max normalization is as follows: 

𝑥′ =
𝑥 − min (𝑥)

max(𝑥) − min (𝑥)
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Figure 23 Research design framework 
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Where 𝑥′ is the transformed value, and 𝑥 is the actual value. 

Next, the study used Principal Component Analysis (PCA) to reduce the number of variables of 

the input data for the K-means algorithm. PCA is a statistical tool that combines variables that 

could potentially be correlated into principal components that are linearly uncorrelated with each 

other (Jolliffe, 2011). Mathematically, for a given set of an input vector 𝑥𝑡(𝑡 =

1, … , 𝑙 𝑎𝑛𝑑 ∑ 𝑥𝑡 = 0)𝑙
𝑡=1 , where each input is of 𝑚 dimension.  

𝑥𝑡 = (𝑥𝑡(1), 𝑥𝑡(2), … , 𝑥𝑡(𝑚))
𝑇

 𝑓𝑜𝑟 (𝑚 < 𝑙) 

PCA transforms each vector 𝑥𝑡 linearly into a new set of 𝑠𝑡 by 𝑠𝑡 = 𝑈𝑇𝑥𝑡, where U is 𝑚 𝑥 𝑚 

orthogonal matrix whose 𝑖𝑡ℎ column is 𝑢𝑖, which is the 𝑖𝑡ℎ eigenvector of the sample covariance 

matrix. 

Some common clustering algorithms are K-means, Hierarchal clustering, and Gaussian Mixture 

Model (GMM). Using a subset of the data used in the paper, N. Shah (2020) found that using a 

combination of PCA and K-means clustering yields better clusters. The K-means algorithm 

clusters the data by separating observations into 𝑘 groups of equal variance by minimizing a 

criterion known as the inertia or within-cluster sum-of square (MacQueen, 1967). The 

mathematical expression of the criterion is as follows: 

𝐽 = ∑ ∑(||𝑥𝑖 − 𝑣𝑗||)
2

𝑛

𝑗=1

𝑘

𝑖=1

= 1 

Where, ||𝑥𝑖 − 𝑣𝑗||  is the Euclidian distance between a point, 𝑥𝑖, and a centroid, 𝑣𝑗 , iterated over 

all 𝑘 points in the 𝑖𝑡ℎ cluster, for all n clusters. 

To evaluate the performance of the K-means models, this study used the silhouette score, which 

measures how similar an observation is to its cluster. The silhouette coefficients range from -1 to 

+1, where a high value indicates a better match with its cluster and a poor match to neighboring 

clusters. Mathematically, the silhouette score is defined as the following: 

𝑆𝑖𝑙(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑏(𝑖)𝑎(𝑖))
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Where, 𝑎(𝑖) is a measure of how well 𝑖 is assigned to its own cluster, and b(𝑖) is the measure of 

how dissimilar 𝑖 is to its neighboring cluster. 

5.3.1.3  Post-processing 

In the final stage, the optimum clusters are interpreted through the aid of geospatial visualization. 

These maps of trip origin and destination of each cluster can explain the distribution of trip 

patterns across the city.  

5.3.2 Case study 

Using the aforementioned methodology, I conducted a case study analyzing all the e-scooter trips 

in Nashville, Tennessee for a year. The following sub-sections describe the study area, data 

sources, and data cleaning as well as preparation processes.  

5.3.2.1 Study area 

The study is based in Nashville, Tennessee, with a population of 1.9 million within the Nashville 

Metropolitan Area. According to a report published by INRIX, 51% of all trips taken in the 

United States during October 2018 were under 3 miles (Reed, 2019). The report ranked 

Nashville as the US city with the third-best potential for micromobility after Honolulu, Hawaii 

and New Orleans, Louisiana.  

Bird first introduced 100 e-scooters without coordinating with the Metropolitan Government of 

Nashville and Davidson County, Tennessee in May 2018. After banning e-scooters for a few 

months, the Nashville Metropolitan Planning Organization (MPO) started an e-scooter pilot 

program by regulating the e-scooters operators in a permit-based system. Seven e-scooter 

operators, namely Bird, Lime, Lyft, Spin, Jump, Gotcha, and Bolt Mobility, provide service in 

Nashville. 

5.3.2.2 Data source  

All the permitted e-scooters in Nashville are required to submit a device’s location and trip data 

sets as a condition of their permit, a Shared Use Mobility Device (SUMD) data standard was 

required by the city. This dataset is more detailed that the Mobility Data Specification (MDS) as 

it includes high-resolution GPS data along each trip. This analysis used the “Trip Summary” 
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dataset, which contains trip information such as trip start time, end time, route distance, trip 

duration, and start and end location. 

The study used land-use characteristics developed by the Nashville Activity-Based Model (RSG, 

2016), as well as Point of Interest (POI) data from Google Maps. The travel demand model 

developed a land-use tool that used several inputs such as employment and household data in the 

Traffic Analysis Zone (TAZ) level, census block level employment and household information, 

school locations and enrollment by grade, census block geographies, and parking data. I obtained 

the shapefile of data from the Nashville Area MPO. I complemented the land use data by 

manually scraping 7,215 POI from Google Maps at the locations of scooter activity.  

For weather data, this study used average daily precipitation and average daily temperature 

obtained from the Global Historical Climatology Network (GHCN). The GHCN is a database 

that contains historical daily temperature, precipitation, and snow records over global land areas. 

I extracted the subset of weather data from Nashville International Airport for the study period.  

5.3.2.3 Data cleaning  

Before preparing the data for analysis, I first cleaned the data for erroneous trips. Out of the 

1,546,920 scooter trips extracted from September 1, 2018 to August 31, 2019, I first removed 

25,711 trip records that had missing values. I also removed 17,857 trip records that had zero trip 

distance based on the GPS trace records. Next, I filtered out trip records that did not resemble 

usual scooter trips based on trip distance and duration. The median distance and duration of 

scooter trips is 0.21 miles and 10 minutes, respectively. I therefore removed 127,463 trips that 

were less than 60 seconds and greater than 180 minutes. I also deleted 182,529 trips that were 

less than 200 feet and greater than 10 miles. 

Further, I calculated the route directness of the remaining trips, which equals the ratio of the 

Euclidean distance between the trip origin and destination to the actual distance travelled 

obtained from GPS trace data. As it is impossible for the actual distance traveled to be shorter 

than the Euclidian distance, I also removed 123,540 trips that had a route directness ratio greater 

than 1. After completing the initial cleaning, 1,072,430 scooter trips remained, having removed 

474,490 trips (30% of the raw trip records).  
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5.3.2.4 Data preparation 

After the initial cleaning, I created a few latent variables from the trip records to describe trip 

characteristics. First, I calculated the average trip speed in miles per hour by dividing the trip 

distance by trip duration. I also added in average temperature and average precipitation data per 

date. 

Next, I created dummy variables to indicate the trip start time throughout the day, as well as 

weekend trips. The dummy variable “AM Peak” indicates an e-scooter trip starting between 7 am 

and 10 am, and “Day” represents trips between 10 am and 4 pm. Similarly, “PM Peak” includes 

trips from 4 pm to 8 pm, while “Night” indicates trips between 8 pm to 7 am. Since significant e-

scooter trips are completed between 4 pm on Friday and the end of the day on Sunday (see 

Figure 24 (a)), I also added a dummy variable to indicate weekend trips. 

As seen in Figure 24 (b), the number of e-scooter trips increased in March, peaked in May, and 

gradually decreased in June. There are some high spikes in daily e-scooter trips between April 

and June 2019. For example, April 27, 2019, which coincides with the National Football League 

(NFL) draft, has the highest daily trip count in Nashville. As the 15 days with the highest daily 

trips account for 13.6% of all trips, I created a dummy variable indicating the trips during special 

events in Nashville. 

After adding the latent variables, I used ArcGIS to create a grid of 250 m x 250 m squares 

(equivalent to 820 ft x 820 ft) for the Nashville area to link scooter trips with a built 

environment. First, I created an origin-destination (OD) matrix by intersecting the origin and 

destination location of scooter trips and cross tabulating on grid ID. Some of the squares had 

only a few scooter trip origins and destinations. Therefore, I removed squares with fewer than 2 

origin and/or destination points (equal to the 25th percentile threshold of trip volume among all 

squares). In this process, I removed 22,389 additional scooter trips (1.4% of raw trip records), for 

a total number of trips for the analysis of 1,050,041. 

Next, I calculated the average proportion of land-use type for each grid square, including central 

business district (CBD), urban, and suburban. These land-use variables were obtained from the 

MPO travel demand model aggregated at TAZ. I complemented the land use data by manually 

scraping POI data from Google Maps that I reclassified into eight categories: basic amenities, 
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(a) 

 

(b) 

Figure 24 Temporal usage pattern of scooter 

 (a) Scooter trips start time by time of day and day of the week and (b) Daily scooter trips over a year. 
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entertainment, government institutions and organizations, hotels, restaurants, bars, retails and 

services, and transportation. Then, I calculated the Shannon Entropy of each square to measure 

the land use diversity using the following equation: 

𝐻 = − ∑(𝑝𝑖) ∗ log𝑛(𝑝𝑖)

𝑛

𝑖=1

 

Where, 𝑝𝑖 is the percentage of POIs in 𝑖𝑡ℎ category and 𝑛 is the total number of categories  

In addition to land-use type, I added parking capacity, average population density, and average 

employment density for each square. I also estimated the intersection density per square mile for 

each square as a proxy of the road network. To do so, I made a query of roads within 500 m 

(equivalent to 1640 ft) from the center of the square using the OSMnx Python library (Boeing, 

2017).  

Table 10 presents the descriptive statistics of all the variables used in the study.  

 Results  

The results of this case study of Nashville are organized into three sections. The first section 

presents the PCA decomposition of variables, while the second section describes the results of 

K-means clustering, including the grouping of K-means to simplify the segmentation of e-

scooter usage. In the final section, I present the spatial and temporal characteristics of these 

grouped clusters. 

5.4.1 PCA decomposition 

This section presents the results of a principal component analysis, which indicates the 

significance of variables on the e-scooter trip data variance. Figure 25 illustrates the loading 

factor of 30 variables on the first ten principal components (PCs). While there is no specific 

consensus on what should be the correct number of PCs (Xu et al., 2019), I chose ten PCs, 

adopting the empirical rule proposed by Jolliffe (2011) to retain the number of PCs that explain 

at least 70% of the total variation in the data. The ten PCs in our study explained about 86% of 

the variation in the data.  
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Table 10 Descriptive statistics of variables used in the analysis 

Variable Name 
Type of 

variable mean/ count std min max 

Route distance (miles) Continuous 0.72 1.02 0.00 10.00 

Trip duration (minutes) Continuous 16.41 17.82 1.00 180.00 

Route directness ratio Continuous 0.55 0.30 0.00 1.00 

Average trip speed (mph) Continuous 2.97 2.97 0.00 304.29 

Average daily precipitation Continuous 0.14 0.35 0.00 4.00 

Average daily temperature   Continuous 64.75 14.61 24.00 85.00 

Proportion of CBD land use at origin Continuous 0.66 0.33 0.00 0.90 

Proportion of urban land use at origin Continuous 0.23 0.33 0.00 0.90 

Proportion of suburban land use at 

origin 

Continuous 0.00 0.01 0.00 0.60 

Proportion of rural land use at origin Continuous 0.00 0.00 0.00 0.00 

Average population density at origin 

(per sq. miles) 

Continuous 8137.08 4665.16 0.00 18555.69 

Average employment density at origin 

(per sq. miles) 

Continuous 74560.58 70045.31 24.54 229577.11 

Average parking density at origin (per 

sq. miles) 

Continuous 12622.29 16216.93 0.00 53492.32 

Intersection density at origin (per sq. 

miles) 

Continuous 536.47 144.46 20.72 808.08 

Entropy at origin Continuous 0.66 0.25 0.00 0.93 

Proportion of CBD land use at 

destination 

Continuous 0.66 0.33 0.00 0.90 

Proportion of urban land use at 

destination 

Continuous 0.23 0.33 0.00 0.90 

Proportion of suburban land use at 

destination 

Continuous 0.00 0.01 0.00 0.60 

Proportion of rural land use at 

destination 

Continuous 0.00 0.00 0.00 0.00 

Average population density at 

destination (per sq. miles) 

Continuous 8039.68 4619.75 0.00 18555.69 

Average employment density at 

destination (per sq. miles) 

Continuous 75594.81 70944.77 24.54 229577.11 

Average parking density at destination 

(per sq. miles) 

Continuous 12901.98 16402.38 0.00 53492.32 

Intersection density at destination (per 

sq. miles) 

Continuous 535.63 145.50 20.72 808.08 

Entropy at destination Continuous 0.64 0.27 0.00 0.93 

Trips on special event Dummy 142668 (13.6%)    

Weekend trips Dummy 265020 (25.2%)    

AM Peak trips (7 am to 10 am)  Dummy 72813 (6.9%)    

Daytime trips (10 am to 4 pm) Dummy 508505 (48.4%)    

Evening Peak trips (4 pm to 8 pm) Dummy 298641 (28.4%)    

Night trips (8 pm to 7 am) Dummy 170538 (16.2%)    
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These PCs are listed in descending order of proportion of variance. The color scale in the figure 

indicates the loadings, which is a measure of the contribution of variables in each of the principal 

components. A positive value of loading indicates a positive correlation between the variable and 

principal component, whereas a negative value indicates a negative correlation. A large value 

(either positive or negative) indicates that a variable has a strong effect on the corresponding 

principal component.  

The PCs are combinations of loadings of almost all variables except suburban and rural land-use 

variables. There is a strong correlation between e-scooter use and start time (hours of the day and 

day of the week) as well as the proportion of land use (CBD and urban). The route directness and 

average daily temperature also explain the pattern of trips. Furthermore, the loadings of PCA 

indicate contributions of population, employment, parking density, and land use mixture of 

origin and destination in e-scooter usage. I removed the intersection density variable since it did 

not add a meaningful interpretation of the clusters.  

5.4.2 Clustering 

The PCs described above were used to identify clusters of micromobility trips using the K-means 

algorithm. This section presents the evaluation of various K-means models, interpretation of the 

optimum model, and grouping of clusters for meaningful e-scooter trip characteristics. 

5.4.2.1 Evaluation of K-means models 

I evaluated 18 K-means models that ranged in the number of clusters between 2 to 19 and an 

increment of one. A K-means model with a low Davies-Bouldin (DB) Index and high silhouette 

score is desirable for the optimal model. The DB Index had one of its lowest troughs at 15 K-

means of clusters (as illustrated in the figure of Appendix A4.1 Clustering quality metrics). On 

the other hand, the silhouette score was highest at four K-means clusters, with subsequent peaks 

at 11 K-means clusters and 15 K-means clusters. Although the clustering performance indexes 

showed better values at higher numbers of K-means clusters, these additional clusters might not 

be practically distinct from others and would lead to higher computing costs (Naghizadeh & 

Metaxas, 2020). Therefore, I decided to select the model with 15 K-means clusters for 

interpretation, considering the values of both the DB Index and the silhouette score. 
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Figure 25 Loadings on the first eleven principal components of the scooter trip 
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5.4.2.2 Interpreting clusters 

Figure 26 summarizes the results of the optimum model selected for interpretation. Some K-

means clusters of the optimum model have similar origins and destinations, as well as trip start 

times and characteristics. Therefore, I combined clusters from the K-means analysis into five 

usage-grouped clusters to simplify the interpretation of e-scooter travel behavior in Nashville. 

These usage-grouped clusters are morning work/school trips, daytime short errand trips, social 

trips, nighttime entertainment district trips, and utilitarian trips. 

Each usage-grouped cluster has three subplots: a temporal attribute indicating trip start time in a 

day, a radar plot of trip attributes describing trip characteristics, and a radar plot of spatial 

attributes summarizing the built environment of origins and destinations. The values in the radar 

plot are normalized between 0 and 1 to make a comparison among clusters. 

Based on the attributes, I can describe the general trip characteristics of each K-means cluster. 

Trips in Cluster C8, for instance, were completed during the morning (7 am to 10 am), as shown 

by the temporal attribute plot. These trips are mostly on weekdays, have short distances, and 

have a direct route between the origin and destination (indicated by the high route directness 

ratio), as illustrated in the trip attributes plot. The origin and destination of these trips were 

mainly at Vanderbilt University and areas outside downtown Nashville, indicated by the higher 

values of urban land use and CBD, as shown in the spatial attributes plot. Therefore, e-scooter 

trips in Cluster C8 are morning trips mainly in Vanderbilt University and outside downtown 

Nashville resembling morning work/school trips. The remaining K-means clusters follow a 

similar interpretation. 

Table 11 presents the aggregated value of the spatiotemporal attributes and summary statistics of 

the five usage-grouped clusters. The values are color-coded such that shades of blue represent 

higher mean values among groups, whereas shades of red indicate lower values. The white 

background of the cell indicates mid values. Darker shades of red and blue indicate extreme 

values, whereas lighter shades represent less-extreme values.  

Based on Table 11, Figure 26, and heat map of origin and destination (included in the Appendix 

A4.2 Heat maps of origin and destination), a brief description of each usage-grouped cluster, 

including the list of K-means clusters, are as follows:  
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c)   

Figure 26 Clustering results grouped by usage 

a) Morning work/school trips, b) Daytime short errands, c) Social 
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e)   
Figure 26 continued 

d) Nighttime entertainment districts, e) Utilitarian 
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Table 11 Aggregated values of spatiotemporal attributes and summary statistics of usage-grouped clusters 

Variables 

Usage-grouped cluster name 

Morning 

work/school 

Daytime 

short 

errand Social 

Nighttime 

entertainment 

districts Utilitarian 

Route distance (miles) 0.68 0.71 0.68 0.67 0.86 

Trip duration (minutes) 13.07 17.13 16.53 15.07 17.36 

Route directness ratio 0.60 0.49 0.52 0.57 0.64 

Average trip speed (mph) 3.62 2.76 2.75 2.97 3.27 

Average daily temperature 65.55 64.63 65.22 65.41 63.40 

Proportion of CBD land use at 

origin 0.65 0.66 0.71 0.67 0.62 

Proportion of urban land use at 

origin 0.25 0.24 0.18 0.22 0.27 

Average population density at origin 7475.39 8983.54 9197.89 8310.11 5866.55 

Average employment density at 

origin 59800.97 79228.37 87626.72 80251.17 53642.39 

Average parking density at origin 9114.48 13559.66 15135.34 13708.41 8761.92 

Entropy at origin 0.63 0.69 0.70 0.67 0.56 

Proportion of CBD land use at 

destination 0.70 0.66 0.72 0.64 0.60 

Proportion of urban land use at 

destination 0.20 0.24 0.17 0.25 0.29 

Average population density at 

destination 8021.85 9037.09 9281.62 7909.03 5381.02 

Average employment density at 

destination 79262.92 85090.22 92812.85 74195.29 42925.37 

Average parking density at 

destination 13712.36 15033.61 16305.78 12265.58 6344.97 

Entropy at destination 0.66 0.68 0.70 0.63 0.52 

Percentage of weekend trips within 

cluster group 13.69 7.74 55.49 26.88 15.30 

Percentage of special day trips 

within cluster group 10.49 13.54 14.65 15.59 11.89 

Trip distribution among cluster group 

Percentage of trips by count 6.92 29.03 25.78 16.17 22.10 

Percentage of trips by Vehicle-

Miles Travelled (VMT) 6.48 28.24 24.20 14.86 26.21 

Percentage of trips by travel 

duration 5.51 30.30 25.97 14.84 23.38 

Note: Red color indicates lower values while blue color indicates higher values among clusters 
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Morning work/school trips: These e-scooter trips were made during the morning (7 am to 10 

am), mainly during the weekdays, with origin and destinations in downtown Nashville and 

Vanderbilt University. These trips have shorter route distances than most of the usage-grouped 

clusters and have a direct route between the origin and destination, as indicated by a higher-value 

route directness ratio. Such trips contribute to 7% of all e-scooter trips in Nashville and are likely 

for the purpose of commuting to work in downtown Nashville or going to class at Vanderbilt 

University. The individual K-means clusters included in the morning work/school usage-grouped 

cluster are as follows: 

 C8: Short trips during AM peak outside downtown Nashville including Vanderbilt 

University 

 C13: Short trips during AM peak in downtown Nashville 

Daytime short errand trips: These e-scooter trips were completed during the daytime (10 am to 

4 pm) in downtown Nashville mainly on the weekdays. These trips have the lowest route 

distance on average among all usage-grouped clusters. The low average travel speed of trips in 

this cluster, as compared to other usage-grouped clusters, indicates that e-scooter riders may 

have spent more time stopped at traffic signals. The average daily temperature of trips is also low 

among all usage-grouped clusters, which suggests that these trips were made on days with cooler 

temperatures. These trips make up 30% of all e-scooter trips in Nashville and resemble errand 

trips like going to lunch. The individual K-means clusters within this usage-group clusters are as 

follows: 

 C2: Trips in the commercial area nearby downtown Nashville, mostly on weekdays 

 C4: Daytime trips outside the downtown Nashville area 

 C12: Trips in downtown Nashville, mostly on weekdays 

Social trips: These trips exhibited characteristics that might be affiliated with social activities. 

The majority of these trips are completed during the weekend, mainly in the evening (4 pm to 8 

am), with some trips during the daytime. The origin and destination of these trips are the 

commercial areas of downtown and nearby Vanderbilt University, which have high entropy 
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values indicating high diversity in land use. Social trips contribute to 26% of all e-scooter trips in 

Nashville. The individual K-means clusters in the social usage-grouped cluster are as follows: 

 C3: Trips in downtown Nashville in the evening, mostly on weekdays 

 C10: Trips in the commercial area nearby downtown Nashville, mostly on weekends 

 C11: Evening weekend trips outside the downtown Nashville area, including areas like 

Centennial Park 

 C14: Trips in downtown Nashville in the evening, mostly on weekends 

Nighttime entertainment districts trips: These trips were completed at nighttime (8 pm to 6 

am), with origin and destinations nearby entertainment services, like bars. Compared to some 

usage-grouped clusters, these trips have a more direct path between origin and destination and 

are made on warmer days. Such trips make up 16% of all trips in Nashville. The individual K-

means clusters in this usage-grouped cluster are as follows: 

 C6: Trips outside downtown Nashville at night, mostly on weekends 

 C7: Trips in downtown Nashville at night, mostly on weekends 

Utilitarian trips: These trips were longer in route distance and had the highest value of route 

directness, indicating that these trips utilized shorter paths between origin and destination 

compared to other groups. These trips were completed throughout the day. The built 

environment of the origin and destination had different land-use types. For example, if the origin 

had a high proportion of CBD land use, then the destination was more likely to be urban land 

use. The utilitarian trips are likely to travel from origin to destination with the shortest route 

possible, as indicated by the highest route directness ratio among all usage-grouped clusters. 

Utilitarian trips make up 22% of all trips in Nashville. The individual K-means clusters in the 

utilitarian usage-grouped cluster are as follows: 

 C0: Trips starting at Vanderbilt University or outskirts and traveling within Vanderbilt 

University or towards the downtown Nashville 

 C1: Trips in downtown Nashville in the evening, mostly on weekends 
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 C5: Trips originating in downtown Nashville and traveling towards outskirts in the 

evening 

 C9: Trips from downtown Nashville to an outside area during the daytime, mostly on 

weekdays 

5.4.3 Characteristics of Usage-grouped clusters  

The following two subsections go into more detail on the spatial and temporal distribution of 

these usage-grouped clusters. 

5.4.3.1 Spatial distribution  

A big part of the e-scooter usage story is related to the spatial distribution of those trips. I can 

identify the origin and destination of trips, revealing a large component of the trip patterns. 

Figure 27 illustrates the spatial distribution of usage-grouped clusters in Nashville through chord 

diagrams. Figure 27 (a) represents the area within Nashville that I used to describe the spatial 

distribution; for instance, the “commercial” category includes the areas along the major 

commercial corridors, and the “park” category contains areas like Centennial Park. Figure 27 (b) 

- (f) summarize the origin and destination of each usage-grouped cluster among the areas 

represented in Figure 27 (a). The color of the arrow represents the starting location of a trip, and 

the direction of the arrow represents the ending location. The width of the arrow represents the 

volume of trips, with the units indicating the number of trips in thousands.  

Furthermore, the origin and destination of the e-scooter trips can be associated with specific 

usage-groups. For instance, trips starting and ending at Vanderbilt University are predominantly 

morning work/school and utilitarian. Additionally, the starting and ending locations of morning 

work/school and utilitarian trips are relatively evenly distributed among the area categories. In 

contrast, a large portion of daytime short errand, social, and nighttime entertainment districts 

trips start and end in downtown Nashville.  

5.4.3.2 Temporal distribution  

Analyzing a full year of e-scooter trip data enables us to understand e-scooter usage patterns 

based on time of the day, time of the week, and time of the year. Figure 28 (a) illustrates the  
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a) Boundary for chord diagram (b)  

  (c)  (d)  

  
(e)  (f)  

Note: The unit of the value on the axis is thousands. 

Figure 27 Spatial distribution of usage-grouped clusters 

 (a) Boundary for chord diagram (b) Morning work/school trips (c) Daytime short errands trips (d) Social 

trips (e) Nighttime Entertainment District trips, and (f) Utilitarian trips 
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average trip start times of the usage-grouped clusters throughout the day and week, while Figure 

28 (b) presents the daily usage pattern over the year. I used a 21-day rolling average to get a 

smoother trend over the yearly pattern, as the daily e-scooter trips have a high level of variation 

during weekends and special events in Nashville. 

Except for the utilitarian and morning work/school trips, all the other e-scooter usage-grouped 

clusters significantly increased during the weekends, as indicated in Figure 28 (a). The peak of 

social trips on the weekends is almost twice the peak of that on the weekdays. Similarly, the peak 

of the nighttime entertainment district trips is higher on Friday and Saturday than other days of 

the week. 

All usage-grouped clusters’ daily average trips increased during the summer months, as 

illustrated in Figure 28 (b), indicating higher e-scooter usage during warm weather. The number 

of e-scooter trips for all usage-grouped clusters is also higher at the end of September 2019 than 

at the beginning of September 2018 with increasing average daily trips, which suggests an 

increase in popularity of e-scooters after the first year of their launch in Nashville.  

Events in Nashville, like holidays and the NFL draft, also drive up the trip volume of specific 

usage-grouped clusters. There was a prominent surge in nighttime entertainment district trips 

during the NFL draft week in Nashville, while the trip volume of other usage-grouped clusters 

also increased during this period. During the Christmas and New Year holidays, there was an 

increase in the number of trips for daytime short errand, social and utilitarian trips, suggesting 

people visiting Nashville use e-scooters to get around the city. The Spring semester period 

(January to May) at Vanderbilt University also corresponds to the increasing number of 

utilitarian trips, which entails a significant number of trips starting and ending at the university 

area. 

 Implications 

The following section presents a discussion based on the analysis of the case study. The first 

section describes the value of the proposed framework, whereas the second section discusses the 

key findings of e-scooter usage patterns in Nashville. The last section identifies future research 

areas based on this study.  
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(a) 

  

(b)  
Figure 28 Temporal pattern of usage-grouped clusters of e-scooter 

 (a) Trip start time of usage-grouped clusters over day and week and (b) Trip distribution of usage-

grouped clusters over months 

  

NFL Draft End of spring 
semester Holiday season 
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5.5.1 High-resolution method to classify micromobility data 

When e-scooters were launched in the streets of the United States, many cities imposed a ban on 

these emerging vehicles as their impact on the transportation system was unknown. Cities 

eventually permitted micromobility service providers to operate under their jurisdiction with 

regulations, including data sharing. The data generated by micromobility devices is 

unprecedented to date, and has not been leveraged to its full potential to answer questions 

relevant to transportation stakeholders. The understanding of e-scooter usage can inform 

questions regarding safety, sustainability, and mode substitution of such emerging vehicles. A 

similar analytical framework could also be applicable for future transportation technologies like 

automated vehicles.  

To understand how people use e-scooters, transportation policymakers have adopted a 

combination of recall surveys from users and descriptive statistics of micromobility data 

(Portland Bureau of Transportation, 2019). However, the results of recall surveys have limited 

sample sizes and could also be affected by response bias, while descriptive statistics do not fully 

explain the usage patterns. The method presented in this study provides a framework that 

complements micromobility data with land use and weather datasets to add contextual 

information about usage. The unsupervised machine learning approach identifies distinct patterns 

of e-scooter usage to explain the segmentation of where and when people use e-scooters.  

I propose the use of the route directness ratio, in addition to essential trip information like trip 

start time, to classify various e-scooter usage patterns. For instance, utilitarian trips have a higher 

route directness ratio that indicates paths closer to the shortest distance. This analysis is only 

possible with route-level trace data. I also recommend that micromobility data standards, such as 

Mobility Data Specification (MDS), should allow storing and sharing of disaggregated location 

data as well as trace data with secured access to analysts and researchers. This information is 

essential for the high-resolution analysis of micromobility data.    

5.5.2 Nashville application  

Several temporal and spatial variables can explain the e-scooter usage pattern in Nashville. The 

trip start time in terms of the time of the day and day of the week has distinct patterns. The route 

directness ratio, which represents the difference between the shortest possible path and actual 
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route, is critical in explaining the variation in trip patterns. Furthermore, the land use type (CBD 

vs. urban) and mixture (homogenous vs. heterogeneous) are associated with e-scooter usage. 

Population, employment, and parking density also contribute to the spatial distribution of origin 

and destination. The effect of these variables on e-scooter usage is similar to previous studies of 

e-scooters (Bai & Jiao, 2020; Caspi et al., 2020) and bikeshare (Bachand-Marleau, Lee, & El-

Geneidy, 2012; Faghih-Imani, Eluru, El-Geneidy, Rabbat, & Haq, 2014). 

These temporal and spatial attributes can be used to identify distinct usage patterns of e-scooters. 

I found that 7% of e-scooter trips in Nashville were completed during morning peak hours, 

which might be for commuting purposes to work or school. Survey-based studies (Lime, 2018) 

and research analyzing micromobility data (Caspi et al., 2020) have also found some evidence of 

e-scooters being used for commuting. Utilitarian trips to travel between two locations contribute 

to 22% of all trips, indicating that e-scooters are not solely used for recreation purposes. The 

most common usage-grouped clusters in Nashville are daytime short errands like getting lunch, 

making up 29% of e-scooter trips. Social trips contribute to 26% of all e-scooter trips, while 

nighttime entertainment district trips make up 16% of e-scooter trips in Nashville. It is 

noteworthy to mention that there may be some overlap between social and nighttime 

entertainment district trips as trip origin and destination are similar for these usage but trip start 

times vary. Most of the e-scooter trips were observed in the downtown area and Vanderbilt 

University, similar to the findings of other studies (Bai & Jiao, 2020; M. Liu, Seeder, & Li, 

2019).  

The revealed-preference approach of e-scooter usage can supplement the stated-preference 

approach of trip purpose questionnaires in e-scooter pilot evaluations. While studies based on 

surveys evaluate the responses of users at specific times (Portland Bureau of Transportation, 

2019), this study of all micromobility trips throughout the year allowed us to examine the weekly 

as well as yearly change in usage patterns. The number of trips in all usage-grouped clusters 

peaked during the summer and increased over the analysis period in general. Several large-scale 

events in the city and outdoor activities attract more e-scooter users in the summer, while 

increasing usage indicates the popularity of e-scooters over time. During holidays like Christmas 

and New Year, the number of daytime short errand, social and utilitarian trips increased. 

Similarly, I observed a prominent surge in nighttime entertainment district trips during the NFL 
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draft period. These peaks suggest that e-scooters could be popular among tourists visiting 

Nashville for these events. 

Additionally, the trips peaked in the early afternoon on both weekends and weekdays. The 

average daily number of trips on a typical weekend is 81% higher than a typical weekday, with 

the highest peak on Saturday early afternoon. These findings are consistent with previous 

research of e-scooter use peaking in the afternoon (Bai & Jiao, 2020; Caspi et al., 2020; 

McKenzie, 2019).  

5.5.3 Limitations and future research 

Further studies can improve this analysis in several ways. First, the results of this method can be 

compared with survey results for validation. Another approach could be to use survey data in 

combination with micromobility data through semi-supervised machine learning methods, which 

classify clusters by combining a small subset of labeled data (obtained from surveys) with a 

larger subset of unlabeled data (micromobility data). Second, additional research can improve 

upon the data and modeling of the approach used in this analysis. The GPS trace data of e-

scooter trips could be linked with transportation network data to understand more nuanced travel 

behavior, like the average traffic volume of certain road segments. Spatial-based clustering 

algorithms, such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), 

could generate robust models for outliers. Future models could also account for e-scooter device 

availability, which influences the use of these vehicles.  

Third, the analysis framework of this paper can be applied to data standards, like MDS, to 

compare micromobility usage patterns across cities, and evaluate the impacts of various policies 

and regulations related to micromobility. Finally, the findings in this analysis are based on the e-

scooter activity in Nashville, Tennessee, which might not necessarily be the same in other cities. 

Future studies can compare e-scooter usage findings from different cities to develop a 

comprehensive summary of e-scooter use characteristics. 

 Conclusion 

This study proposes a novel approach to analyze high-resolution micromobility data based on 

unsupervised machine learning, which is further applied to the Nashville SUMD dataset as a case 
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study. Using a combination of PCA and a K-means clustering algorithm, I found five types of 

distinct e-scooter usage patterns: morning work/school, daytime short errand, social, nighttime 

entertainment district, and utilitarian trips. These usage-grouped clusters showed temporal and 

spatial characteristics that contribute to understanding e-scooter usage in Nashville across a year 

of study. 

The findings of this study can be useful to city administrations, planners, and micromobility 

operators. Decision-makers can use this information to make policies to ensure the safe and 

efficient operation of shared electric e-scooters. Transportation planners and designers can take a 

data-driven approach, such as the one described in this study, to better design and develop 

infrastructure and regulations to accommodate these emerging vehicles. The understanding of e-

scooter usage patterns can also help micromobility operators optimize e-scooter distribution and 

maximize revenues. 

 



131 

 

Chapter 6. Estimating energy usage and emissions 

from micromobility data 

  



132 

 

This chapter is based on a research paper by Nitesh R Shah, Yi Wen, and Christopher Cherry 

titled “Estimating energy use and emissions of shared e-scooters from micromobility data.”  

Abstract 

While shared micromobility data can be used to evaluate energy use and emissions of e-scooter 

systems, very few studies, have leveraged the full potential of the detailed data. I used a year-

long Shared Urban Mobility Device (SUMD) dataset to deconstruct the usage and operational 

phases of shared e-scooter systems in Nashville, Tennessee. Using Information Complexity 

(ICOMP) to identify the distribution of key variables of the usage and operational phases, I used 

Monte Carlo simulation to evaluate the overall energy use and emission per vehicle per km 

traveled as well as energy use and emissions estimates for the usage and operation phases. I 

found that the estimates were higher than other existing studies, and the energy use and 

emissions vary among service providers. The findings could be helpful for city governments and 

service providers to inform strategies for reducing overall emissions, like increasing the lifespan 

of e-scooter vehicles and the utilization rate. 

 Introduction 

The shared micromobility system is one of the fastest-growing businesses globally, with the 

potential to impact the environmental sustainability of urban mobility through 1) the reduction of 

operation emissions and 2) modal shift. In combination with high-density modes, such as transit 

and pooled car-sharing, micromobility can reduce car dependency by filling the gaps in mobility. 

Meanwhile, the integration of Smartphones and GPS technologies in micromobility services has 

allowed us to generate almost real-time vehicle location and detailed trip-level usage data. The 

adoption of Mobility Data Specification (MDS) has standardized such data across operators and 

cities.  

This study proposes a framework to implement standardized micromobility data, such as MDS, 

to evaluate the energy and emission impacts of the shared e-scooters. The proposed methodology 

complements the existing studies evaluating the emission of shared e-scooter systems by 

estimating the usage and operational parameter of the Life Cycle Assessment (LCA) using Big 

Data. The findings of the proposed analysis are expected to help city governments to understand 
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the overall environmental impact of shared e-scooters for data-driven strategies to manage their 

transportation-related sustainability impacts. 

This chapter is organized into the following sections. The review of the literature section 

provides an overview of existing studies, highlighting key findings. The methodology section 

describes the study area, data, and analytical framework. The result section includes the analysis 

results, while the implication and future research provide an interpretation of the results. The 

conclusion section concludes the chapter. 

 Review of literature 

6.2.1 Overview of prior studies 

Chester (2019), a consultant, assessed one of the early Life Cycle Assessment (LCA) of shared 

e-scooters using generic data and basic assumptions to find emissions between 198.9 g CO2e per 

passenger-km and 416.6 gm of CO2e per passenger-km. The author found that manufacturing 

contributed to most emissions, followed by the collection and redistribution of e-scooters. 

Hollingsworth et al. (2019) published a first peer-reviewed LCA analysis to find that the average 

emission of shared e-scooters in Raleigh, North Carolina to be 125.5 gm CO2e per passenger-km. 

Material and manufacturing contributed to 50% of the emission, while daily collection and 

charging contributed 43% of the emission. The authors found modal shift emission of shared e-

scooters to be 93.2 gm CO2 per passenger-km, assuming one e-scooter mile travelled displaces 

0.34 miles of personal cars, 0.11 miles of bus, and 0.08 miles of bicycle.   

In a study in Brussels, Moreau et al. (2020) found that shared e-scooters systems emitted 131 gm 

CO2-e per passenger-km, with material and manufacturing driving the majority of emissions. The 

authors estimated modal shift-related emission to be 110 gm CO2e, which is higher than the 

study by  (Hollingsworth et al., 2019). Moreau et al. (2020) argued that a large extent of e-

scooter trips replaced public transit trips in Brussels, while more car trips were replaced by e-

scooters in the United States, contributing to larger modal shift emission. Similarly, Severengiz, 

Finke, Schelte, and Wendt (2020) simulated emission impacts for a longer lifespan of scooters, 

various collection and distribution strategies, and battery charging methods.  
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Pierpaolo Cazzola (2020) compared the emission and energy impact of shared e-scooters with 

other modes to find that shared e-scooters have a lower footprint than private cars but higher than 

public transit and shared e-bikes. This study also considered the infrastructure component of the 

shared e-scooter systems, which was overlooked by previous studies. Furthermore, de Bortoli 

and Christoforou (2020) applied the Consequential Life Cycle Assessment (CLCA) approach to 

assess the broader environmental impact of shared e-scooter systems, such as rebound effects 

due to the system disruption.   

Most of these studies found that material and manufacturing drive most emissions of shared e-

scooter systems followed by collection and redistribution (shared e-scooter system operation). 

These studies made numerous assumptions in various phases of shared e-scooter systems, 

including the lifespan of e-scooters that influence emission related to material and manufacturing 

as well as distance traveled by service vehicles that influence shared e-scooter system operations. 

Few of these studies also considered various scenarios to account for the lack of available data 

and uncertainties of assumptions. The following sub-section provides a detailed overview of 

usage and operational phase assumptions better estimated from the shared micromobility data. 

6.2.2 Review of usage and operational phase assumptions 

The use of shared e-scooter systems depends upon the lifetime distance traveled and/or lifespan 

of e-scooters. The operational phase depends on the pick-up method and strategies of e-scooters 

for charging and redistribution, and charging frequency, location, and time of the day. Figure 29 

illustrates various usage and operational phase. Table 12 summarizes the average value of these 

parameters and ranges of values for the scenario analysis from the leading studies evaluating 

emission impacts of shared e-scooter systems. 

6.2.2.1 Usage phase  

Most of the LCA studies considered the average lifespan of the e-scooters between six months to 

one year as baseline. Few studies considered the minimum lifespan of e-scooters as one month 

based on the open data of Louisville, Kentucky (Griswold, 2019). E-scooters often have a short 

lifespan because of poor design of e-scooters, theft, vandalism, and use in deteriorated 

infrastructure like uneven pavements (Hollingsworth et al., 2019; Moreau et al., 2020). The 

maximum e-scooter lifespan varied between 2 and 2.5 years among studies, based on the battery 
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cycle lifespan and assumption on improved design of e-scooters (Hollingsworth et al., 2019; 

Pierpaolo Cazzola, 2020). 

The average daily distance traveled by e-scooters is another essential usage phase parameter in 

the LCA analysis. Based on the interviews with service providers, the studies assumed the 

average daily distance traveled by e-scooters was between 6 and 11 km, while different scenarios 

assumed the e-scooters traveled between 1 and 20 km daily on average. These studies estimated 

the average lifetime distance of e-scooters as the product of average lifespan and average daily 

traveled distance.  

6.2.2.2 E-scooter collection and redistribution phase 

Based on the interviews with service providers, the LCA studies considered gasoline and diesel-

powered vehicles as service vehicles for collecting and redistributing e-scooters, as shown in 

Figure 30. Depending on the location of the study, the tailpipe emission of these vehicles is 

assumed to be between 245 and 337 g CO2 equivalent per km. The scenario simulations assumed 

cleaner service vehicles, like electric vehicles and cargo e-bikes, to evaluate the emission 

impacts of using different service vehicles (Pierpaolo Cazzola, 2020; Severengiz et al., 2020). 

Studies also made assumptions on distance traveled by the service vehicles and the number of e-

scooters served each service vehicle per day. The assumed values varied between 4.4 and 13.7 

km per day per e-scooters served (Pierpaolo Cazzola, 2020). The route of the service vehicles is 

not likely optimized to minimize the emission impacts and distance/duration traveled. E-scooter 

service providers could also use several e-scooter pick-up and charging strategies, including 

battery swapping and mobilizing gig-workers.   

6.2.2.3 Battery charging phase 

Previous studies estimated the energy and emission impacts of battery charging based on the 

total energy required to charge e-scooters throughout the lifetime using two methods. The first 

group of studies assumed the energy demand for a full battery charging cycle to divide by 

average distance traveled per charge and multiplied average lifetime mileage (Hollingsworth et 

al., 2019; Moreau et al., 2020; Severengiz et al., 2020). On the contrary, Pierpaolo Cazzola 

(2020) assumed the electricity use per distance traveled by e-scooters and multiplied the average 

lifetime mileage.  
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Figure 29 Micromobility Service Operation (Source: Yi Wen) 

Table 12 Usage and operational phase assumptions from leading LCA studies of shared e-scooter systems 

Variable Unit 

Hollingsworth et 

al. (2019) 

Moreau et al. 

(2020) 

Pierpaolo Cazzola 

(2020)  
Severengiz et al. (2020) 

Average 

value 

Range 

of 

values 

Average 

value 

Range 

of 

values 

Average 

value 

Range 

of 

values 

Average 

value 

Range of 

values 

Use phase 

Daily distance 

travelled by e-

scooters 

km per 

day 

10.1 - 6.39 1.2 - 20 7.9 4 - 11.9 10.2 - 

Lifespan of e-scooters months 0.9 6 – 24 1 1 - 30 9.6 6 - 24 24 6 - 24 

Operation phase 

Vehicle used for 

collection/distribution  

- Van - 

ICE 

- Van - 

ICE 

- Van - 

ICE 

Van –

ICE,  

Van - ICE - 

Emission of operation 

vehicle 

g CO2 

e per 

km 

245.26 -  - 245.26 0 - 

245.26 

337 - 

No of e-scooters 

served  

per van 

per day 

21.9    10 5.6 - 

11.3 

200 100 - 200 

Distance travelled by 

collection vehicle 

km per 

day e-

scooter 

 0.96 - 

4.0 

 6.39 - 

20 

11.25  0.25  

Battery charging 

Battery capacity 

(Energy demand) 

kWh 0.335  0.334  0.335  0.015  

E-scooter mileage 

with full charge 

km 29  20 6.39 - 

20 

      

Emission of grid mix g CO2 

eq/kWh 

    563.7 0 - 

1061.8 

568  
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The energy and emission impact of battery charging is influenced by the electricity mix of the 

local grid system, which depends on the location and time of charging (Zivin, Kotchen, & 

Mansur, 2014). The study location of the previous studies was Raleigh, North Carolina 

(Hollingsworth et al., 2019), Brussels (Moreau et al., 2020), Germany (Severengiz et al., 2020), 

while Pierpaolo Cazzola (2020) used the global average emission of the electricity mix. Only 

Hollingsworth et al. (2019) considered the time of the day for charging e-scooters. Some of these 

studies considered the effect of renewable energy sources for charging e-scooters like solar that 

would reduce charging-related emissions.    

6.2.3 Research objective 

The existing Life Cycle Assessment (LCA) studies found that manufacturing, material, and 

collection, and redistribution of e-scooters are significant contributors to the emission and energy 

of shared e-scooters systems. In the absence of accurate data, most of these studies made 

assumptions related to LCA usage and operational phases that can be better estimated from the 

micromobility data. This study takes the Big Data approach to propose a framework for  

evaluating emission and energy use of shared e-scooter systems, with the following research 

question: 

Q10: What is the operational related emission and energy use of the shared e-scooter system in 

Nashville, Tennessee, based on the Big Data (micromobility data)? 

Q11: Is there a difference between operational and usage emission and energy use between 

shared e-scooter service providers? 

 Methodology 

6.3.1 Study area 

This research evaluates the sustainability impacts of shared e-scooter systems in Nashville, 

Tennessee, with a population of 1.9 million (U.S. Census Bureau). Renowned as the center of 

country music, Nashville attracts thousands of tourists every year (Music City). The downtown 

area includes diverse land use for entertainment, dining, cultural, and high-rise offices, and the 

metropolitan area has one of the highest growth in urban housing. According to INRIS, Nashville  
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Figure 30 Old and polluting truck used for micromobility collection and rebalancing (Credit: Chris 

Cherry) 
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is the third-best city in the United States for the potential success of micromobility, based on 

average trip distance, topography, and climate (Reed, 2019). The mode share of the Nashville 

metropolitan area is mostly driving alone (80.8%), followed by carpool (9.4%), public transit 

(1%), and walking (1%) (American Community Survey, 2019). 

The City of Nashville started a pilot program in the summer of 2018 to manage the shared e-

scooters, while the study period of this research is from September 1, 2018, to February 28, 

2020. The start of the study period is a few months after the shared e-scooters launch since the 

data is available. The study period ends before the COVID-19 pandemic, so the data is 

representative of the usual e-scooter usage and operation. Six service providers (Bird, Jump, 

Bolt, Gotcha, Lime, Lyft, and Spin) operated in Nashville during the study period. 

6.3.2 Data Source and processing 

I used the Trip Summary and Device Availability dataset of Shared Urban Mobility Device 

(SUMD) data acquired from the City of Nashville to identify the usage and operational phase of 

the shared e-scooter systems. The Trip Summary dataset includes trip-related information, such 

as trip distance, trip duration, timestamp, and geolocation of trip origin and destination. The 

Device Availability dataset includes timestamped geolocations of each deployed e-scooters with 

information about battery charge level. This dataset is updated every five minutes, which allows 

tracking of the location and charge level of each e-scooters to identify operational phases like 

charging and relocation. The "sumdID" variable, which is unique for deployed e-scooters, was 

used to merge these two datasets as well as estimate vehicle-level parameters such as the lifespan 

of each e-scooters and the total distance traveled. 

I only included e-scooter vehicles whose last day of operation was before February 1, 2022 (one 

month prior to the end of the study period) so that the e-scooter vehicles that were still active 

would be included in the analysis. I also dropped trip records that did not represent a typical e-

scooter trip record. By tracking the location and battery charge level over time in the Device 

Availability dataset, I identified three events for each e-scooters during the shared e-scooter 

operations as follows: 1) e-scooter vehicle pick up for charging: if the battery level increased 

more than 20% following timeframe, 2) trip: if the location of the e-scooter vehicle changed 

more than 60 meters between timeframe and the trip record was matched in Trip Summary 

dataset for same "sumdID" and timeframe, 3) redistribution: if the location of e-scooter vehicles 
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changed more 60 meters, battery level didn't decrease more than 5%, and no trip record was 

found in Trip Summary dataset. The dataset for four service providers was not complete; 

therefore, I dropped them from the studies. The study includes two of the major service providers 

operating in Nashville during the analysis period.  

6.3.3 Analytical framework 

The ISO standard of LCA includes goal and scope, inventory analysis, impact assessment, and 

interpretation. The functional unit of the analysis is one e-scooter vehicle per passenger-km 

traveled. This study will only focus on the usage and operational phase of the LCA, which is a 

significant contributor to emissions based on previous studies(Hollingsworth et al., 2019; 

Moreau et al., 2020; Pierpaolo Cazzola, 2020). Emission estimates for other LCA phases were 

based on the findings of the existing LCA studies (Pierpaolo Cazzola, 2020). I used the grid 

emission data of Nashville obtained from the city government of Nashville. Nashville has a grid 

emission of 562 lb CO2/MWh, which is lower than the national average of 884 lb CO2/MWh2 

(City of Nashville, 2022). I used the conversion factor from EPA to convert grid emission into 

the metric system (EPA, 2022).  

I identified the distribution of key usage and operational-related variables for each service 

provider using ICOMP (Bozdogan, 2000), which scores the model selection by also including 

the structural complexity that controls for risks of both insufficient and over parameterized 

models. ICOMP results are attached in Appendix A5. Then, I used the Simulink model builder to 

create the LCA model to estimate usage, operational emission, and energy following the 

framework illustrated in Figure 31. Using the "Sensitivity Analysis" plugin, I created 2000 

randomly sampled data points with the distribution obtained and performed a Monte Carlo 

simulation. 

 Results 

6.4.1 Exploratory analysis of shared e-scooter usage and operation 

Figure 32 illustrates the usage-related variables among the three service providers included in the 

analysis. Figure 32 a) includes the distribution of lifespan (in months), and Figure 32 b) provides 

the distribution of daily mileage (in km). The mean lifespan of e-scooter vehicles for service 
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providers #1, #2, and #3 is 6.5, 10.0, and 4.5 months respectively. The distribution of lifespan for 

each service provider is also different, likely due to the operational strategy of fleet among each 

service provider and usage of e-scooter vehicles. On the other hand, the distribution of each 

service provider's average daily mileage of e-scooter vehicles is similar but has different 

parameter values for the distribution. The mean value of the average daily mileage of e-scooter 

vehicles of all three service providers is below 1 km per day. This finding suggests that the actual 

e-scooter vehicle lifetime and daily mileage are not uniform, as assumed by previous studies 

(Hollingsworth et al., 2019).   

Figure 33 summarizes the operational-related variables of shared e-scooter operations. Figure 33 

a) illustrates the distribution of charge of e-scooter vehicles during pick-up for charging, 

indicating that service providers tend to pick up e-scooters mostly below 50% of battery level, 

except in the case of service provider #3. Figure 33 b) includes the distribution of frequency of 

charging of e-scooter vehicles (in days), which suggests that most of the shared e-scooters 

vehicles are charged every one-two day. Figure 33 c) illustrates the average daily rebalancing 

distance of e-scooter vehicles (in km), indicating the majority of e-scooters vehicles are 

redistributed about 0.5 km per day. The frequency of charging of e-scooter vehicles and average 

daily redistribution distance are similar among the three service providers. In contrast, the 

distribution of charge levels during pick-up for charging is different. 

Table 13 supplements Figure 32 and Figure 33 by summarizing the distribution and its 

parameters for the key usage and operational-related variables included in the analysis. I used 

piecewise distribution for variables that did not have specific distributions shape and included 

the cumulative distribution function (cdf) values. The table also includes the distribution of 

assumptions for operation vehicles used during recharging and redistribution of shared e-scooter 

vehicles. 

6.4.2 Monte Carlo simulation 

Figure 34 summarizes three service providers' total energy usage (per vehicle per km) and 

emissions (per vehicle per km). Figure 35 and Figure 36 illustrate the energy use and emissions 

for the usage and operational phase of shared micromobility operations. The usage phase energy 

use is greater than the operational phase. However, the operational emission is greater than the  
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Figure 31 Analytical framework to estimate energy use and emissions 
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Service provider #1 Service provider #2 

a) 

  

Service provider #1 Service provider #2 

b) 

Figure 32 Distribution of usage-related variables 

a) Lifespan (in months), and b) Daily mileage (in km) 
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Service provider #1 Service provider #2 

a) 

 

 

Service provider #1 Service provider #2 

b) 

Figure 33 Distribution of operational-related variables 

a) Battery charge level (percentage) during a pick-up, b) Frequency of pick-up for charging 

(days) 
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Service provider #1 Service provider #2 

c) 

Figure 33 continued 

c) Daily average redistribution distance per e-scooter vehicle (km) 
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usage phase. Using high emissions vehicles to pick up and distribute e-scooter vehicles and 

redistribute contributes to higher operational emissions.  

Table 14 summarizes the mean values of the total and the energy use and emissions phases. 

 Implications and future research  

I found that energy use and emissions value are higher than existing LCA studies of shared e-

scooters(Hollingsworth et al., 2019; Moreau et al., 2020; Pierpaolo Cazzola, 2020). The 

estimates from my analysis are higher for two main reasons as follows: 1) the distribution 

obtained from micromobility data is different from the assumptions made from existing studies, 

such as life span and daily mileage, that increased the estimate values, 2) the micromobility data 

includes the first generation e-scooter vehicles that had a lower lifespan and the deployed fleet 

had lower utilization rates as reflect in daily mileage. I also found that energy use and emissions 

differ among shared micromobility service providers, mainly due to their vehicle design 

reflecting the lifespan value and operational strategies’ differences.  

This study deployed the probabilistic framework to estimate the energy use and emission of 

shared micromobility systems using the micromobility data. These estimates better reflect the 

actual energy use emissions. City governments can adopt the framework used in the study to set 

emissions goals as well as track the real-time progress of service providers. Furthermore, the 

variable used in the framework can also be related to other policy goals, such as the utilization 

rate of e-scooter vehicles, that could inform city governments to make a data-driven decision on 

shared micromobility systems. 

Future studies can improve the analysis in several ways. First, studies can identify key factors 

influencing higher emissions, such as lifespan and daily usage, to perform sensitivity analysis. 

Such information can inform decision-makers to develop targeted policy goals. Second, other 

studies can evaluate hypothetical scenarios to evaluate the effect of new strategies on energy use 

and emissions. For instance, battery swapping and extended battery life could affect energy use 

and emissions differently. Finally, studies can implement other methods, such as Agent-Based 

Modelling (ABM), to test various operational strategies incorporating the behavior of people 

(demand) and operations (supply).  
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Table 13 Summary of distribution of usage and operational-related variables 

Variable /Service providers Bird Lime Data source 

Usage phase 

Lifespan (months) Weibull (9.5296, 3.0990) 

 

Gamma (24.5513, 0.4940) SUMD 

Daily mileage (km) Weibull (0.5245, 1.8683) Weibull (0.9372, 1.6125) SUMD 

Operational phase 

Battery charge level during 

pickup (Edge values (10 20 30 

40 50 60 70 80 90 100) 

Stepwise cdf (0 0 0.2315 

0.5232 0.6964 0.8370 0.9911 

1.0000 1.0000 1.0000) 

Stepwise cdf (0.0917 0.4169 

0.5720 0.7263 0.8353 0.9104 

0.9933 1.0000 1.0000 1.0000) 

SUMD 

Frequency of pick-up for 

charging (days) 

Exponential (3.7840) Inverse Gaussian (2.66316, 

3.7292) 

SUMD 

Average daily redistribution 

distance per e-scooter vehicle 

(km) 

Weibull (1.4222, 1.1376) Weibull (1.5739, 1.2163) SUMD 

Operational vehicle distance 

travelled from base to pick up 

location and back (km) 

Uniform (20, 40) Uniform (20, 40) Assumption 

Operational vehicle distance 

travelled between each scooter 

vehicle pick-up (km) 

Normal (0.5, 0.15) Normal (0.5, 0.15) Assumption  

Operational vehicle occupancy 

(percent) 

Normal (0.5, 0.15) Normal (0.5, 0.15) Assumption  

Operational vehicle capacity Uniform (40, 60) Uniform (40, 60) Assumption  

Distance between e-scooters 

during pickup (km) 

Normal (0.5,0.15) Normal (0.5,0.15) Assumption  
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Figure 34 Total energy and emission of shared e-scooter operations 
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D 

Figure 35 Energy usage by phase of shared e-scooter operations 
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Figure 36 Emissions by phase of shared e-scooter operations 
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Table 14 Mean emissions and energy by phase and service provider 

Measures Service provider 

#1 

Service provider 

#2 

Total energy per vehicle per km (MJ/km) 166844.4 1595.46 

Total usage phase energy per vehicle (MJ/km) 1967.628 11.2403 

Total operational phase energy per vehicle (MJ/km) 27.21043 11.45184 

Total emissions per vehicle per km (g CO2/km) 5419.638 2371.113 

Total usage phase emissions per vehicle (g CO2/km) 866.4295 11.2403 

Total operational  phase emissions per vehicle (g 

CO2/km) 1967.628 793.6135 
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 Conclusion 

Using the micromobility data and Monte Carlo simulation, I estimated the energy use and 

emissions of shared micromobility systems in Nashville, Tennessee. I found that the estimates 

were higher than other existing studies, and the energy use and emissions vary among service 

providers. City governments and service providers can use the findings of this study to inform 

strategies to reduce overall emissions, like increasing the lifespan of e-scooter vehicles and the 

utilization rate. Furthermore, the probability framework of the study can be helpful in decision-

making to incorporate uncertainties in the real world. For example, city governments can 

introduce the policy that a certain percentage of e-scooter fleets should have a longer life span 

than specific values to meet the emission goals. 
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Chapter 7. Main findings, recommendations, policy 

implications, and conclusion 

  



154 

 

The popularity of shared micromobility has grown exponentially in the past few years, further 

accelerated due to social distancing measures during the COVID-19 pandemic. On the other 

hand, city governments have struggled to regulate and manage these innovative mobility 

technologies, partly due to limited understanding of these new travel technologies. This chapter 

summarizes the key findings of the dissertation and provides several recommendations with 

policy implications.  

 Main findings  

In this section, I summarize the main findings of the impacts of shared e-scooters from the 

perspective of sustainable transportation (Chapter 2-6). While each chapter has an in-depth 

discussion of its results, this section highlights key findings centered around sustainable 

transportation principles.  

7.1.1 Scrutinizing e-scooter crashes and crash risk 

Evaluating police crash reports of e-scooters and bicycles in Nashville, Tennessee, over two 

years, I found notable differences between e-scooter and bicycle crashes in temporal and spatial 

crash locations, crash distance from home, demographics of riders, crash characteristics, crash 

risk, and maneuver of motorist and e-scooter riders or bicyclist before the crash. Most crashes of 

both modes occurred during the summer months. E-scooter crashes were mainly around 

downtown Nashville and Vanderbilt University, while bicycle crashes were spread outside the 

core part of the city. Over 70% of bicyclists involved in a crash lived within three miles of the 

crash location, whereas 33% of e-scooter crashes occurred more than 50 miles away from the 

home of the e-scooter rider. Although males are highly representative in bicycle and e-scooter 

crashes with a motor vehicle, female riders represent a higher rate of e-scooter crashes (31% vs. 

13%) when comparing the proportion of females involved in crashes among both modes. E-

scooter riders colliding with motor vehicles were younger than bicyclists crashing with motor 

vehicles. 13% of e-scooter riders crashing were below 18 years old, although the legal age to ride 

an e-scooter in Nashville is 18 years.  

Most e-scooter and bicycle crashes involving motor vehicles occurred in daylight and clear 

weather conditions, without any statistical significance between the two modes. However, the 

crash risk for e-scooter at nighttime is twice as much as at daytime when controlling for 
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exposure. Most e-scooter riders and bicyclists (>90%) were not intoxicated during crashes. 

While most of the motorist was also not intoxicated, one-in-five motorists fled the crash scene, 

and their intoxication status was unavailable. When comparing crash locations based on roadway 

characteristics, the majority of e-scooter and bicycle crashes with motor vehicles occurred at an 

intersection (>65% of all crashes). Only a few PBCAT crash typologies based on the maneuver 

of riders and motorists explained most of the e-scooter crashes in Nashville. In contrast, bicycle-

motor vehicle crashes were distributed among several crash typologies. Generalized engineering, 

education, and enforcement strategies to reduce and prevent e-scooter and bicycle crashes, 

injuries, and fatalities might not result in equal outcomes for each mode. More rigorous 

enforcement could be implemented to deter e-scooters riders under the age of 18 years, and e-

scooter safety campaigns could target female riders  

7.1.2 Demand elasticity of e-scooter vehicles deployment  

I evaluated the demand and supply aspects of shared e-scooter systems in Nashville, Tennessee, 

to estimate the demand elasticity of e-scooter vehicles deployed, segmented by land use and 

weekday type. I found that the demand for e-scooter vehicles deployed is 0.55, which is inelastic 

and similar to other transportation modes. The demand elasticity estimates of e-scooters 

deployed are slightly higher during the weekend than on weekdays (0.59 vs. 0.55), indicating 

that trips would increase at a higher rate when increasing e-scooter vehicle deployment during 

the weekend than on weekdays. When segmenting by the size of the service providers, the 

demand elasticity of e-scooter vehicles deployed for a large service provider (fleet size more than 

500) is 2.5 times more than mid-sized service providers (fleet size between 250 to 500) and 36 

times more than small service providers (fleet size below 250). Service providers with large fleet 

sizes have a competitive advantage over others. 

The demand elasticity of e-scooter vehicles deployed varies by land use type. Deploying e-

scooter vehicles at the university and park & waterfront will increase e-scooter trips at a higher 

rate than in other land use areas. E-scooter trips increase at a higher rate during weekends than 

on weekdays in Central Business District (CBD) & commercial, and park & waterfront land use 

types. I found that the demand elasticity estimates of e-scooter vehicles deployed by large 

service providers are higher and likely drive the overall demand elasticity estimate. The weekday 

and land use types demand elasticity estimates of large, medium, and small service providers do 
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not follow the same patterns, indicating that each service provider category has its own market 

based on location and day of the week.  

7.1.3 Shared micromobility as the first wave of the decarbonizing transport sector 

in developing countries 

Using a dynamic and online pivoting stated preference survey design, I evaluated the users’ 

propensity to adopt shared micromobility (bikeshare, e-bike share, and e-moped share) in the 

context of developing countries with Kathmandu, Nepal, as a case study. I found that weather 

factors influence the propensity to use shared micromobility, and heavy rain is a deterrent to 

using shared micromobility vehicles. Bikeshare and e-bike share are preferred during warm and 

normal temperatures, whereas e-mopeds have a high preference during cold weather. I found that 

the availability of bike lanes promotes the use of shared micromobility, despite weak statistical 

evidence. Protected bike lanes did not exist during the study period, and unprotected bike lanes 

were constructed in a few places. It is likely that survey respondents could not infer the 

implications of bike lanes availability, although pictures were included in the questionnaire, 

indicating the necessity of investment in bicycling (active transportation) infrastructure along 

with the public promotion of its benefits. 

Most shared micromobility adopters were younger demographics with a higher household 

income. Gender had an effect on the choice of micromobility vehicles; females preferred e-

moped, which is likely due to motor assistance to navigate better in mixed traffic and perceived 

as safer to ride. Ride-hailing users (both two-wheeler and four-wheeler) had the highest 

inclination to use shared micromobility vehicles, likely due to familiarity with technologies to 

find the ride and make a payment. These groups could be early adopters of shared micromobility 

in developing countries. Shared micromobility could be an inexpensive option to lead the 

electrification of transport sector in emerging economies, paving ways to further electrification 

of other travel modes. 

7.1.4 Usage-grouped clustering of e-scooter trips 

Using unsupervised machine learning techniques, I found five usage-grouped clusters of e-

scooter trips in Nashville, Tennessee. These clusters are as follows: 1) daytime short errand trips, 

2) utilitarian trips, 3) evening social trips, 4) nighttime entertainment district trips, and 5) 
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recreational trips. The nighttime entertainment district trips (in downtown Nashville and nearby 

Vanderbilt University) were the most popular e-scooter use in Nashville, contributing to 26% of 

all e-scooter trips. Several factors contributed to e-scooter trip patterns, including usage time 

(hour and day of the week), average daily temperature, population density, employment and 

parking density, and land use types. The route directness ratio, which represents the difference 

between the shortest possible path and the actual route, is critical in explaining the variation in 

trip patterns.  

Each of these groups has distinct spatial and temporal patterns. The majority of starting and end 

points of evening social and nighttime entertainment district trips were in downtown Nashville. 

In contrast, the origin and destinations of daytime short errand and utilitarian trips were 

somewhat evenly distributed in the city. The e-scooter usage rate of the usage-grouped clusters 

increased in general over the analysis period, peaking during the summer months. Several events 

in Nashville, such as the NFL draft and Christmas holiday, increased e-scooter trips indicating e-

scooters are popular among tourists visiting the city. Such big data and machine learning 

methods can supplement the stated-preference approach of understanding shared e-scooter usage 

to help the city manage and regulate shared e-scooter programs. 

 Recommendations and policy implications 

Based on the main findings of my research in the context of the transportation literature, I 

developed recommendations for decision-makers, transportation practitioners, and researchers 

for integrating emerging travel technologies, like shared e-scooters, into the existing 

transportation systems. Although a few datasets used in my analysis are a few years old, the key 

findings still apply in the present context. Shared micromobility ridership has recovered 

relatively more quickly than other travel modes like transit after COVID-19 disrupted general 

travel behavior (NABSA, 2022). While my research findings are based in Nashville, Tennessee, 

and Kathmandu, Nepal, these recommendations are generalizable across other cities and should 

be interpreted considering the local context. The recommendations are as follows: 

1. Decision makers should be proactive in incorporating new travel technologies like 

shared micromobility: Decision-makers should make unprecedented decisions to 

embrace these new mobility technologies in the existing transportation systems and 
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benefit from enormous potential to solve current issues of urban mobility. Legislative 

amendments might be necessary to redefine existing laws, and emerging travel modes 

should be incorporated in transportation master plans to regulate the new technologies to 

maximize the benefits while reducing unintentional consequences. Decision makers can 

adopt sustainable transportation approaches, such as Shared Mobility Principles for 

Livable Cities promoted by the New Urban Mobility Alliance (NUMO) (Chase, 2017), 

and learn from the best practices of shared micromobility from existing programs.  

2. City governments should leverage shared micromobility usage and operation data to 

empower the decision-making process: The integration of the Global Positioning 

System (GPS) enabled smartphones with shared micromobility allows collection of 

vehicle usage (e.g., trip starting and ending locations) and system operation (e.g., parked 

vehicle locations) data. I recommend city governments adopt data standards, such as 

Mobility Data Specification (MDS) and General Bikeshare Feed Specification (GBFS), 

that help cities to better manage shared micromobility operations within their 

jurisdictions, as well as help to integrate shared micromobility into multimodal trip 

planning. Data collected from shared micromobility systems should adhere to the data 

privacy rules, such as Managing Mobility Data compiled by the National Association of 

City Transportation Officials (NACTO), for responsible use of data and protection of 

individual privacy (NUMO, NABSA, & OMF, 2020). The historical and real-time data 

can help city governments plan and manage shared micromobility systems that are safe, 

equitable, and sustainable. 

3. Each shared micromobility vehicle type should be approached uniquely to improve 

road safety: While shared micromobility vehicles have many similarities, the user 

demographics, vehicle features, and user travel behavior might have different 

implications on road safety. I recommend that the safe system approach be taken to 

reduce fatalities and serious injuries through engineering, planning, and policy tools that 

accommodate human mistakes and injury tolerance. Although shared micromobility 

vehicles are inherently low-speed and cause less impact during a crash than other 

vehicles, there is a complex interaction between new mobility users and other road users. 

Shared micromobility provides technological tools to enhance road safety, such as 
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geofencing and sidewalk riding, but it should be complemented with other safety tools of 

the safe system approach.  

4. City governments should consider regulating the number of service providers and 

their fleet sizes: I recommend that the city government consider permitting fewer 

number of shared micromobility service providers with larger fleet sizes. Deploying a 

larger fleet size would also allow service provider to expand their service area and 

meeting the city’s equity goals while increasing profits and not fragmenting the market 

between service providers. However, fewer service providers could limit innovation and 

competition. I recommend city governments adopt dynamic fleet sizing based on the 

system-wide performance metrics that encourage service providers to improve the 

system's efficiency and meet the policy goals set by city governments.   

5. Decision makers should prioritize expanding shared micromobility in emerging 

economies as one of the first efforts to decarbonize the transportation sector:  Shared 

micromobility is one of the affordable options for users, does not require huge 

investments, and has enormous potential to reduce transportation emissions. I found that 

people are willing to use shared micromobility in mid-sized cities of developing countries 

(with more than 500,000 and less than 5 million in population), which make up a 

majority of the world’s cities and have the highest population growth (DESA, 2011). 

Early adopters are users who are familiar with technologies such as smartphone apps and 

online payment systems. Weather, bicycling infrastructure, and demographic factors 

influence the choice of shared micromobility vehicles. Such knowledge, coupled with the 

best practices of successful programs in developed countries and megacities of 

developing countries, could make this innovative transportation technology a potential 

leapfrogging alternative in mid-sized cities of developing countries. 

The policy implications of the recommendations mentioned above are as follows: 

7.2.1 A proactive approach to regulating shared micromobility 

Since the initial deployment of shared micromobility vehicles, many authorities have slowly 

adopted a regulatory framework to integrate these new travel technologies within the existing 

transportation systems. One of the fundamental discussions is whether to regulate shared 
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micromobility vehicles in urban spaces similar to other private and public vehicles or use public 

spaces similar to street vendors like food trucks (ITF, 2021). There is a need to regulate shared 

micromobility systems with a focus on building infrastructures to move people and goods and to 

improve accessibility, equity, sustainability, and safety. While the mobility requirements differ 

from city to city, a common rule should apply across (US) states or nations while being flexible 

enough to adapt to the local context. Such a law should identify micromobility as a vehicle class 

based on their similar operation characteristics such as speed and size.  

Shared micromobility regulations should target broader environmental, safety, and 

socioeconomic goals, driven by sustainable transportation principles and outcome-based metrics. 

Several agencies, including the NACTO and the International Transport Forum (ITF), have 

compiled best practices of shared micromobility programs to identify several policy goals that 

can be somewhat transferable across cities and nations (ITF, 2021; NACTO, 2019). As an 

illustration of the proactive approach to regulating shared micromobility, France replaced its 

transportation law with a mobility law called Loi d’orientation des mobilités (LOM) (French 

Government, 2019). The updated law provides the authority to regulate e-scooters to the city 

government beyond the conventional transportation law (Highway Code). The regulations 

framework is included in Box 1. 

7.2.2 Data-driven decisions for managing and integrating shared micromobility 

Shared micromobility is an innovative technology that allows cities to manage public space 

digitally as well as provide users with real-time data to make decisions for completing a 

multimodal trip seamlessly. Agencies can adopt data standards to consistently collect and 

implement data for planning, regulating, and integrating shared micromobility systems with 

other travel modes. These data standards can be broadly grouped into two categories as follows: 

1) agency-facing data standards, such as Mobility Data Specification (MDS), that provides 

system-level data like historical trip and fleet locations for managing shared micromobility 

systems, and 2) user-facing data standards, such as General Bikeshare Feed Specification 

(GBFS), that enables information sharing across platforms for multimodal trip planning for 

users.  
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Box 1: Regulation of micromobility in France 

In France, users of electric scooters must comply with the requirements of the Code de la Route 

(Highway Code). In urban areas, users must use bicycle paths when available or roads limited to 50 

km/h or less. The maximum speed limit for scooters is set at 25 km/h. In addition: 

 E-scooters are not allowed on sidewalks (fine of EUR 135) unless authorized by the mayor. In 

this case, the maximum speed is 6 km/h only for non-electric vehicles   

 Users must be at least 12 years old  

 Carrying additional passengers is prohibited 

 The use of headphones is prohibited  

 Parking on the sidewalks is authorized, provided it does not obstruct pedestrians. The mayor 

can decide to forbid it. For instance, in Paris, parking of shared e-scooters on the sidewalks is 

illegal and subject to a fine of EUR 49 for users 

The 2019 Loi d’orientation des mobilités (LOM) is a national framework that accounts for public 

space occupation by free-floating services. Operators require a permit from local authorities through 

tender or expression of interest. Article 41 of the law instructs authorities on regulating free-floating 

services:  

1. Data sharing: Public authorities can ask operators to share data (General Data Protection 

Regulation (GDPR) format) to ensure compliance with licensing criteria. The number of 

available vehicles, number, duration and length of trips, origin destination, and the number of 

unique users, are among the most common data required.  

2. Fleet size: The LOM allows public authorities to cap fleet sizes. Caps must take into account 

the minimum fleet size required for a service to be economically viable, and the maximum 

fleet size should not flood the public space with shared vehicles. Public authorities can choose 

to leave fleet sizes and number of operators unregulated or to deliver a limited number of 

permits via the competitive tender procedure.  

3. Spatial conditions for vehicle deployment: The law allows local authorities to define the 

operational area (including parking and no-ride zones) after consultation with operators.  

4. Compliance with riding and parking rules: In addition to the Highway Code, the LOM allows 

public authorities to implement additional rules, especially in places of potential conflicts with 

other road users. Operators have to use technical means such as GPS solutions to enforce 

safety rules.  
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Box 1 continued 

5. Removal of unavailable vehicles: Permits can set requirements and deadlines for removal of 

any out of order vehicle to avoid impeding access in public spaces. It also allows for removal 

requirements for specific situations, such as for operators withdrawing from a city. A good 

practice is set at between 24 and 48 hours for light vehicles situations, such as for operators 

withdrawing from a city.  

6. Polluting emissions and greenhouse gases: Electric vehicles are preferred and full-lifecycle 

costs are to be considered.  

7. Advertising restrictions on the vehicles: Local authorities are authorized to ban advertising, 

other than for the shared mobility service itself, on the shared vehicles.  

8. Respecting neighborhood tranquility: Public authorities need to take into account noise 

pollution impacts (including maintenance, charging, removal of vehicles, or vehicles’ alarms). 

Adapted from French Government (2019) and ITF (2021) 
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Several applications of the agency-facing and user-facing data standards in managing the new 

travel technologies are illustrated in Box 2. MDS data standard uses Application Programming 

Interfaces (API) protocols to safely transfer data between service providers and cities as well as 

allows consistency across systems within and across cities. City governments have leveraged 

usage and operations data to achieve broader policy goals, such as equity and safety, using the 

data collected through MDS. The MDS is also working to expand its scope to manage imminent 

mobility technology, such as autonomous fleets digitally. Similarly, GBFS includes a real-time 

data of locations of available vehicles with information of service provider’s information, cost of 

using the vehicles, and policy information like speed limits and parking zones. This data 

specification is a foundation for the (multimodal) trip planning and Mobility-as-a-Service 

(MaaS), including integrated trip planning and payment components. 

7.2.3 Safety approach to shared micromobility 

In a safe systems approach to transportation safety, travel behavior is critical to reducing 

fatalities and serious injuries. People using micromobility vehicles interact with other road 

elements based on the characteristics of the vehicle (e.g., motor assistant, the position of riding, 

etc.), infrastructure available (e.g., bike lane, an average speed of motor vehicles, etc.), and 

demographics of rider (e.g., younger demographics for shared e-scooters compared to bicycle 

share). New mobility, like shared e-scooters, also opens technological tools to enforce and 

encourage better riding behaviors and parking compliance to improve micromobility safety. For 

instance, sidewalk riding of shared e-scooters is illegal in most cities, mainly due to speed 

differential with pedestrians leading to conflict; however, many e-scooter riders feel safer riding 

on the sidewalk than on road lanes. Several shared e-scooter operators have developed sidewalk 

detection technology that recognizes riding on the sidewalk and slows the rider’s speed to reduce 

speed deferential with pedestrians (Hellman, 2022). Similarly, augmented reality technology can 

improve parking compliance by using a smartphone camera to identify the e-scooter parking 

location at the end of the ride as well as verify the parking compliance rules (Bellan, 2022). 

While technology aids in enforcing safe riding behaviors, educating users on how to ride safely 

is also necessary. Although there might be some familiarity with some of the features of shared 

micromobility, they are new technologies, and users might not be able to comprehend the safety 

features and safe riding behavior fully. Several cities require shared micromobility service  
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Box 2: Applications of MDS and GBFS data 

The Open Mobility Foundation (OMF) is developing Mobility Data Specification (MDS) for data 

governance and creating urban mobility management tools to help transportation agencies achieve 

their mobility goals. Some of the case studies of MDS applications highlighted by the OMF are listed 

as follows: 

Vehicle Caps: Determine the total number of vehicles per operator in the right of way 

Distribution Requirements: Ensure vehicles are distributed according to equity requirements 

Injury Investigation: Investigate injuries and collisions with other objects and cars to determine 

roadway accident causes 

Restricted Area Rides: Find locations where vehicles are operating or passing through restricted 

areas 

Resident Complaints: Investigate and validate complaints from residents about operations, parking, 

riding, speed, etc., usually reported through 311 

Infrastructure Planning: Determine where to place new bike/scooter lanes and drop zones based on 

usage and demand, start and end points, and trips taken 

General Bikeshare Feed Specification (GBFS), first introduced by the North American Bikeshare and 

Scootershare Association (NABSA) in 2015, is the major data standard for real-time micromobility 

data across systems from more than 45 countries. The following figure illustrates the integration of 

micromobility in trip planning on Google Maps and Transit App. 

 

GBFS application in Google Maps and Transit App (Picture Credit: NABSA) 

Adapted from OMF (2022) and NABSA (2021) 
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providers to educate first-time users on riding rules and provide proof of driving license. Some 

service providers have also launched websites for comprehensive education on safe road 

behavior with e-scooters (Vio, 2020). On the other hand, educating the differences of safe riding 

among shared micromobility vehicles is also necessary. For instance, motor-assisted vehicles 

such as e-scooter and e-bikes have different riding patterns and risk-taking behavior than 

bicycles, leading to different crash mechanisms. An educational campaign should incorporate 

such patterns to promote safe riding. Box 3 illustrates a comparative safety campaign from the 

Los Angeles county office for shared e-scooters and bikeshare, where messaging incorporates 

difference in vehicle features and general riding behavior (Los Angeles County, 2022). 

7.2.4 Public space and regulating shared e-scooter service providers and their fleet 

size 

Several studies have highlighted the disproportionate urban and infrastructure investment for 

cars compared to other transportation modes and their relative mode share (ITF, 2022), as 

illustrated in Figure 37. To achieve mobility goals, cities need to prioritize other sustainable 

transportation modes, including micromobility. City planners should reimagine the use of public 

space and allocate equitable space to micromobility vehicles by building dedicated bike lanes, 

sidewalks, and parking spaces. Although the initial deployment of shared e-scooters caused 

issues like improper parking and blocking sidewalks, city governments investing in 

micromobility-friendly infrastructures, like Paris and London, have significantly improved 

parking compliance. A combination of expanding designated e-scooter parking areas and in-app 

parking enforcement increased parking compliance from 35% to 97% in Paris (Dott, 2021).     

On the other hand, the relatively cheaper unit cost of e-scooter vehicles encourages service 

providers to increase the deployment of e-scooters exponentially. City governments should 

regulate the number of service providers and their fleet size so that the deployed vehicles 

improve mobility in the city without oversupplying. Fewer service providers with larger fleet 

sizes avoid market fragmentations and improve service provider’s profitability. However, this 

strategy could reduce competition among service providers and stifle innovation. A dynamic 

fleet size of service providers based on performance metrics could allow expansion and equitable 

operation across cities and provide incentives for service providers to improve service quality  
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Box 3: Educating about e-scooter and bicycle safety 

The same rules for helmet and rider safety apply to all modes of personal transportation – 

including skateboards, roller skates, rollerblades, bicycles, and scooters. 

Report Safety Issues – If you see something, say something. If you see debris in the bike lane, 

blocked lanes, or other safety hazards, let the County know by calling (800) 675-HELP. If there’s 

something wrong with your bike/scooter, stop riding and report the problem to the rental company. 

  

Age guideline: Shared Electric Scooters are for 

riders aged 18+ ONLY. 

Under 10? Supervision may be needed: 

Young children should NOT ride at night or in 

the street unsupervised. Young children riding 

on the sidewalk should ride slowly and be 

prepared to stop quickly, especially at driveways 

and intersections. 

Practice before the ride: Find a safe place to 

practice before you ride for the first time. The 

practice place should have little to no car traffic. 

New at this? Take a bike riding class! Ask 

your local bike coalition or nearest bike shop for 

resources: la-bike.org 

Wear a helmet that fits properly EVERY 

time you ride: A properly fitted helmet is the 

best way to prevent death and serious injuries in 

a crash. 

Protect your head: Wear a helmet that fits 

properly EVERY time you ride. A properly 

fitted helmet is the best way to prevent death 

and serious injuries in crashes. If you are under 

18, it’s the law. 

Adjust the scooter for your body: Scooter 

handlebars should be around the height of your 

waist when standing on the deck. 

Adjust the bike for your body and don’t 

carry anyone else: Change the seat height with 

your foot on the pedal, your fully extended legs 

should have a slight bend. Don’t carry anyone 

else.  

Don’t ride on the sidewalk and go with the 

flow: Ride in the bike lane, if available. If riding 

in the street, ride as far to the right as you can. 

Go with the flow. Always ride in the direction of 

traffic. 

Be visible and go with the flow: Wear bright-

colored clothes in the daytime and light-colored 

or reflective clothing at night; and don’t ride 

where it’s dark or poorly lit unless your bike has 

a front light and rear reflector. Go with the flow. 

Always ride in the direction of traffic. 
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Box 3: continued 

  

Make sure the scooter is in good condition: 

Before riding, check the brakes are working and 

tires are properly inflated. If you’re riding at 

night, make sure you have a light on the front 

and a red rear reflector on the back.  

Make sure the bike is in good condition: 

Before riding, check that brakes are working and 

tires are properly inflated. If you’re riding at 

night, make sure you have a light on the front 

and a red reflector on the back. 

Stay focused, sober, and alert: Stay aware of 

the traffic around you, watch for an obstacle in 

your path, and avoid gravel, potholes, cracks, 

and other hazards that could make you fall. 

Remember, alcohol and drugs will impair your 

ability to scoot safely and stay alert, just like 

driving. 

Stay focused, sober, and alert: Stay aware of 

the traffic around you, watch for an obstacle in 

your path, and avoid gravel, potholes, cracks, 

and other hazards that could make you fall. 

Remember, alcohol and drugs will impair your 

ability to bicycle safely and stay alert, just like 

driving. 

Obey all traffic laws, watch for pedestrians, 

and keep your eyes and ears open: All the 

rules of the road apply to scooters, too – obey 

traffic signs, signals, and lane markings. Slow 

down and/or stop when you approach 

pedestrians. Dismount in crosswalks and walk 

your scooter across the street. Give pedestrians 

priority. Keep your eyes and ears open. Put 

away your phone while riding, and never wear 

headphones that cover both ears and earplugs in 

both ears (except hearing aids). 

Obey all traffic laws and don’t ride on the 

sidewalk, unless you’re under 10: All the rules 

of the road apply to bicyclists, too – obey traffic 

signs, signals, and lane markings. Ride in the 

bike lane, if one is available. If riding in the 

street, ride as far to the right as you can. If 

you’re on a bike and the lane is narrow, it may 

be safer to “take” the lane by riding in the 

middle, rather than “share” the lane with a 

vehicle. Watch out for pedestrians. Slow down 

and/or stop when approaching pedestrians. 

Dismount in crosswalks and walk your bike 

across the street. Give priority to pedestrians.   
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Box 3: continued 

  

Don’t carry anyone else and park 

responsibly: Scooters should always be ridden 

alone; and could tip over if someone else rides 

with you! Park responsibly. When you’re done 

with your ride, be considerate and park the 

scooter where it won’t block the sidewalk, 

building entrances, or ADA ramps. 

Keep your eyes and ears open: Put away your 

phone while riding, and never wear headphones 

that cover both ears and earplugs in both ears 

(except hearing aids). 

Be visible, predictable, and ride in a single 

file: Help drivers know what you are about to 

do. Signal before changing lanes or before 

making a turn by raising and pointing your arms 

in the direction you intend to go. Ride straight 

and do not swerve in and out of traffic. Ride in 

single file. This will help vehicles navigate 

safely around you and the people you are riding 

with. Be visible. Wear bright-colored clothes in 

the daytime and light-colored or reflective 

clothing at night; and don’t ride where it’s dark 

or poorly lit unless your scooter has a front light 

and rear reflector.  

Be predictable, and ride in a single file: Help 

drivers know what you are about to do. Signal 

before changing lanes or before making a turn 

by raising and pointing your arms in the 

direction you intend to go. Ride straight and do 

not swerve in and out of traffic. Ride in single 

file. This will help vehicles navigate safely 

around you and the people you are riding with.  

Adapted from Los Angeles County (2022) 
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and operational efficiency. Box 4 highlights some of the performance metrics for dynamic fleet 

sizing proposed by NACTO (NACTO, 2019).   

7.2.5 Expanding shared micromobility in emerging economies 

Shared micromobility can be the first wave of electrification in the mid-sized cities of emerging 

economies. However, the modal substitution of shared micromobility is critical to reducing the 

net transportation emissions. The modal shift needs to happen from vehicles with higher 

emissions. Meanwhile, shared micromobility must be easily accessible to widespread users so 

that these new travel technologies are common travel modes. Shared micromobility systems 

should adapt to the local context (such as culture, travel behavior, technological and road 

infrastructures, and political/institutional conditions) and promote the benefits of new travel 

technologies to reach broader users. 

One approach to introducing shared micromobility would be proactively integrating these new 

travel modes into the existing transportation systems. Such integration would promote 

multimodal transportation through physical infrastructure (e.g., building bicycling lanes and 

docking stations), payment (e.g., online transactions), informational (e.g., access to the location 

of nearby vehicles), and institutional (e.g., cooperation between agencies). Box 5 lists the 

recommendations from the Institute for Transportation and Development Policy (ITDP) on 

integrating shared micromobility in the context of developing countries (ITDP, 2021).  

 Areas of future research 

This section provides a high-level overview of future research on shared micromobility, while 

the individual chapter provides an in-depth discussion of the specific topics. First, researchers 

can use standardized micromobility data to develop policy tools that support data-driven 

decisions on managing and improving shared micromobility systems. The data collected from 

the shared micromobility can support broader goals, such as carbon emission reduction, 

accessibility, and safety. While shared micromobility data includes more detail than many other 

travel modes, several critical information, such as the actual lifespan of e-scooter vehicles and 

operations-related data, are still missing. Future research could develop tools to incorporate this 

information into the micromobility data to provide a comprehensive dataset.   
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Figure 37 Space occupied by different travel modes (m2 per hour) (Credit: ITF (2022) 
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Box 4: Performance metrics for dynamic fleet sizing 

 Number of trips per scooter per day measured over an identified time frame: If a service 

provider meets this performance measure, they are allowed to increase their fleet size, but 

should decrease fleet size if they fail to meet the service performance measures. 

 Number of trips per scooter per day originating or ending in city-identified targeted 

service areas: If a service provider meets/exceeds performance standards for available 

vehicles in areas with poor transit access and/or low rates of car ownership, they are permitted 

to increase their fleet size. If an operator fails to meet performance measures, the allowed fleet 

size decreases. 

 Strategies that address barriers to use: Service providers may increase the fleet size if they 

meet targets for providing services to target groups such as unbanked populations or providing 

adaptive vehicles. 

 Strategies that encourage preferred parking or riding behaviors: If a service provider 

demonstrates actions to meet the city’s goals for parking and use, they are permitted to 

increase their fleet size. 

 Permit compliance: Cities could adjust the allowed fleet size to reflect compliance 

infractions, measured in the number of infractions per established timeframe. 

Adapted from NACTO (2019) and ITF (2021) 

Box 5: Integrating micromobility in developing countries 

 Ignite momentum for integration and developing strong working relationships with private 

operator(s) 

 Move beyond operational regulation and toward intermodal integration 

 Explicitly link integration to a goal of expanded access, especially by sustainable transport 

modes 

 Consider integration in steps, starting with physical integration 

 Identify shifts in travel demand (due to COVID-19 or other major events), internal factors 

such as contracts up for renewal, or similar opportunities that could help facilitate integration 

Adapted from ITDP (2021)  
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Second, future studies can explore the equity impacts of shared micromobility and identify 

barriers to low-income demographics using these new mobility solutions. Several cities have 

identified equity zones and capped minimum service requirements for service providers in these 

areas. Future research could evaluate the efficacy of such policies as well as explore targeted 

policies that increase mobility and accessibility to opportunities for the minority population 

through micromobility. The research findings could support policy decisions like subsidized 

payments, while micromobility data could supplement the performance evaluation to promote 

equity goals. 

Third, there is a limited understanding of the impacts of recent-generation micromobility 

vehicles, which are sturdily built and have a longer lifespan than first-generation e-scooters. The 

vehicle design has also been evolving, such as three-wheeled e-scooter, battery-swapping 

designs, and seated e-scooters. Researchers can evaluate the effect of recent designs on various 

aspects, including safety, sustainability, user experience, and overall system performance. Future 

research could also focus on improving the system efficiency of the shared micromobility, 

reducing the overall energy use and emissions. 

 Conclusion 

Shared micromobility vehicles are low-speed vehicles that are affordable, low-emission, and 

efficient systems for urban mobility. While the worldwide popularity and deployment of shared 

micromobility have increased in the past few years, little is known about its impacts on the 

existing transportation systems. Decision makers, planners, and engineers can use the 

recommendations based on the dissertation's key findings to improve shared micromobility 

systems and achieve broader policy goals, including safety, accessibility, equity, and 

sustainability.  
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A1. SUMD data 

I used the Trip Summary and Device Availability dataset of Shared Urban Mobility Device 

(SUMD) data acquired through a data request made to the City of Nashville. The Trip Summary 

dataset includes trip-related information, such as trip distance, trip duration, timestamp and 

geolocation of trip origin and destination, as illustrated in Figure A1.1. 

Table A1.1 summarizes the data description of the trip dataset.  

The Device Availability is another dataset of SUMD, which includes timestamped geolocations 

of each deployed e-scooters with information about battery charge level, as illustrated Figure 

A1.2. This dataset updates every five minutes.  

Table A1.2 summarizes the data description of the device availability dataset.  

A2. The spatial plot of demand elasticity  

Figure A2.1, Figure A2.2, and Figure A2.3 illustrate the spatial distribution of e-scooter trips and 

deployment (measured in hours per square miles) for large, medium, and small service provider 

groups. The color bands for e-scooter trips and deployment for these three figures represent 

different values, as indicated in the respective legends.  
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a) Data specification 

 

b) Sample plot 

Figure A1.1 SUMD’s Trip Summary example data 
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Table A1.1 Data description of SUMD trip dataset 

Field Name Description Example 

pubTimestamp Timestamp of SUMD pulled "2018-09-01T18:25:43.511Z", 

Company Name Company Name "Example Co.", 

Type of SUMD "Standard or "Powered" "Powered", 

SUMD Group Name of the SUMD group "Scooter", 

Trip record number 3 letter company acronym + consecutive 

trip #, Xxx#, xxx#+1, xxx#+2, ... 

"EXC01", 

SUMD ID number SUMD Type + Unique identifier for 

every SUMD, determined by company 

"PoweredEXC00001", 

Trip duration Minutes "2.352", 

Trip distance Feet "1024.8934", 

Start date n/a "2018-09-01", 

Start time n/a "08:12:43", 

End date n/a "2018-09-01", 

End time n/a "08:15:01", 

Start latitude Point location X "36.153816671", 

Start longitude Point location Y "-86.76871038", 

End latitude Point location X "36.159953125", 

End longitude Point location Y "-86.77837077", 

Trip Route Sequential GPS coordinates for entire 

trip duration at a minimum collection 

frequency of one per 30 seconds. 

[["36.153816671", "-

86.76871038”], 

["36.157768018", "-

86.77652629”], 

["36.156312719", "-

86.77563580”], 

["36.154770766", "-

86.77289994"], 

["36.154562860", "-

86.77009972"], 

["36.159953125", "-

86.77837077"]] 
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a) Data specification 

 

b) Sample data 

Figure A1.2 SUMD’s Device Availability example data 
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Table A1.2  Data description of SUMD device availability dataset 

Field Name Description Example 

pubTimestamp  Timestamp of SUMD pulled 
2018-09-01T18:25:43.511Z 

 

Latitude  Point location X 36.153816671 

Longitude  Point location Y 
-86.76871038 

 

SUMD ID number  

SUMD Type + Unique 

identifier for every SUMD, 

determined by 

company 

PoweredEXC00001 

 

Type of SUMD  “Standard” or “Powered” 
Powered 

 

Fuel/charge level  
Ratio of charge level to full 

charge (50.1234%) 

78.4862 

 

SUMD Group  

Name of the SUMD group 

(“bicycle”, “tricycle”, 

“scooter”, 

“hover board”, “skateboard”, 

“pedal car” or "other”) 

Scooter 

 

Current rental rate 

per minute 
In dollar 

0.48 
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Figure A2.1 Bivariate map of the total e-scooter trips and vehicles deployed at each TAZ throughout the 

study period for large service providers’ group 
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Figure A2.2 Bivariate map of the total e-scooter trips and vehicles deployed at each TAZ throughout the 

study period for medium service providers’ group 
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Figure A2.3 Bivariate map of the total e-scooter trips and vehicles deployed at each TAZ throughout the 

study period for small service providers’ group 
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A3. Micromobility survey 

A3.1 Consent 

Research Study Title: 

Micromobility acceptance in mid-sized cities of developing countries: A case study of 

Kathmandu, Nepal  

Researcher(s):  

 Nitesh Shah, University of Tennessee, Knoxville 

 Chris Cherry, University of Tennessee, Knoxville 

We are asking you to be in this research study because you live in the study area and might be 

eligible for the study. You must be age 18 or older to participate in the study. The information in 

this consent form is to help you decide if you want to be in this research study. Please take your 

time reading this form and contact the researchers to ask questions if there is anything you do not 

understand. 

Why is the research being done? 

The purpose of the research study is to understand the choice of shared micromobility vehicles 

(e.g. bikeshare, shared e-bike, and shared e-scooters) in Kathmandu, Nepal. 

The research team is receiving funding from W.K. McClure Scholarship for the Study of World 

Affairs from the University of Tennessee. 

What will I do in this study? 

If you agree to be in this study, you will complete an online survey. The survey includes 

questions about your recent travel in the city, choice of travel mode for given scenarios, and 

sociodemographic information and should take you about 15 minutes to complete. You can skip 

questions that you do not want to answer.  

There are four parts of the survey questions as follows: 

Part 1: Screening questions to verify your eligibility for the survey 
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Part 2: Travel diary for your recent travel within the city 

Part 3: Questions to understand your choice of new micromobility modes 

Part 4: Sociodemographic questions to understand your background 

Can I say “No”? 

Being in this study is up to you. You can stop up until you submit the survey. After you submit 

the survey, we cannot remove your responses because we will not know which responses came 

from you. 

Are there any risks to me? 

We don’t know of any risks to you from being in the study that is greater than the risks you 

encounter in everyday life. 

Are there any benefits to me? 

We do not expect you to benefit from being in this study. Your participation may help us to learn 

more about the adoption of shared micromobility in Kathmandu, Nepal. We hope the knowledge 

gained from this study will benefit others in the future. 

What will happen with the information collected for this study? 

The survey is anonymous, and no one will be able to link your responses back to you. Your 

responses to the survey will not be linked to your computer, email address or other electronic 

identifiers. Please do not include your name or other information that could be used to identify 

you in your survey responses. Information provided in this survey can only be kept as secure as 

any other online communication. 

Information collected for this study will be published and possibly presented at scientific 

meetings.  

Will I be paid for being in this research study? 
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You will be paid Rs. 50 for being in this study. If you are eligible for the survey and once you 

have completed the survey, you will be asked to enter your email address and phone number 

where we will issue a gift card within 48 hours of submitting the response. Please note that your 

email address and phone number can not be linked to your response. Each participant will be 

paid only once through a gift card or balance transfer to the provided phone number or email 

address. 

Who can answer my questions about this research study? 

If you have questions or concerns about this study, or have experienced a research-related 

problem or injury, contact the researchers, 

 Nitesh Shah, Email: nshah12@vols.utk.edu, Phone no: +977-9849500135, +1-865-244-

8260 

 Chris Cherry, Email: cherry@utk.edu, Phone no: +1-865-974-7710 

For questions or concerns about your rights or to speak with someone other than the research 

team about the study, please contact: 

Institutional Review Board 

The University of Tennessee, Knoxville 

1534 White Avenue 

Blount Hall, Room 408 

Knoxville, TN 37996-1529 

Phone: +1-865-974-7697 

Email: utkirb@utk.edu 

Statement of Consent 

I have read this form, been given the chance to ask questions and have my questions answered. If 

I have more questions, I have been told who to contact. By selecting “I Agree” below, I am 

providing my signature by electronic means and agree to be in this study. I can print or save a 

copy of this consent information for future reference. If I do not want to be in this study, I can 

select “I Do Not Agree” to exit out of the survey. 
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I agree to participate 

I do not agree to participate 

 

A3.2 Part 1: Screening questions to verify your eligibility for the survey 

What is your age group? 

Below 18 

19-30 

31-40 

41-50 

51-60 

61+ 

Please think about a trip you made within last week that was between 0.5 km (about a 5-minute 

walk) to 10 km (about a 15-minute drive) in distance. As illustrated by the arrows in the below 

figure, a trip is traveling between two locations (e.g. home to office or home to bus stop) by any 

travel mode, such as walking, motorbike, and taxi/Pathao/Tootle.  
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Did you make a trip within last week that was more than 0.5 km (about a 5-minute walk) and less 

than 10 km (about a 15-minute drive)?  

Yes 

No 

 

Please estimate the trip distance in km: 

 

 

 

A3.3 Part 2: Travel diary for your recent travel within the city 

Please answer the following questions about the trip you thought of. 

Where did you start the trip? 

Home 

Work 

School/ University 
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Bus stop 

Shop 

Restaurant/ Cafe 

Others  

 

Where did you end the trip? 

Home 

Work 

School/ University 

Bus stop 

Shop 

Restaurant/ Cafe 

Others  

 

What was the purpose of the trip? 

Work 

School 

Shopping 

Family (e.g. picking up kids from school) 

Social (e.g. visiting friend) 

Running errand 

Others  

 

What was the mode of the trip? 

Bus/ micro-bus/ tempo 
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Drive motor bike/ scooter 

Passenger in motor bike/ scooter 

Drive personal car 

Passenger in car 

Bicycle 

Taxi/ Four-wheeler Pathao/Tootle 

Two-wheeler Pathao/Tootle 

Walking 

Others  

 

A3.4 Part 3: Questions to understand your choice of new micromobility modes 

In this section, you will be given six scenarios. In each scenario, you will be given a 

situation for the trip information you provided in the previous section. First, you will have 

to choose among the existing travel modes in Kathmandu and enter travel time and travel 

cost.  

A sample question is provided below for a hypothetical person who reported a 2 km trip from 

home to work: 

Suppose it is hot, raining lightly, and the route has no bicycle lane (illustrated in the picture 

below). You have to complete the trip you mentioned in the previous section (2 km trip 

from home to work). 
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In this scenario, which travel mode would you prefer?  

 Bus/micro/tempo 

 Motorbike/scooter 

 Car 

 Two-wheeler Pathao/Tootle  

 Four-wheeler Pathao/Tootle 

 Taxi 

 Walking 

 Bicycling 

 Others 

      

 What would the approximate travel time be (in minutes)? 

 

 What would the approximate trip cost be in Rupees? (including fare, parking, and approximate 

fuel) 

 

 

The next page will display your travel mode choice, and three shared micromobility modes 

(bicycle share, shared pedelec e-bicycle, and shared electric scooter). Similar to Pathao and 

Tootle, you don't need to own any of these vehicles. You need to pay for using the service and 
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drive it yourself. A user can rent these new transportation modes by first locating a vehicle either 

at a docking station or through a smartphone app. A fee is required to unlock the vehicle, which 

can be paid either by cash/coin or through digital payment methods. At the end of the travel, 

these vehicles can be returned to the nearby docking station or designated parking area. A brief 

description of each of these modes is summarized as follows: 

Bicycle share: It is 

a conventional 

bicycle (as illustrated in 

the figure on the right), 

which users can ride 

following road rules 

similar to private 

bicycles. A driving 

license is not required 

and riders can use the 

bicycle lane if available. 
 

Shared pedelec e-bicycle: 

It is an electric bicycle 

(as illustrated in the 

figure on the right), 

which has a pedal and 

electric motor to assist in 

riding. Similar to bicycle 

share, a driving license is 

not required and users 

can ride in the bicycle 

lane if available.  
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Shared electric 

scooter: It is an electric 

scooter (as illustrated in 

the figure on the right), 

which is similar to a 

petrol-powered scooter 

but instead powered by a 

battery. Similar to the 

road rules of riding a 

petrol-powered scooter, a 

user needs to have a 

driving license and 

cannot use a bicycle 

lane.  

 

 

For the second question in each scenario, you will be asked to choose a travel mode among 

four options, where features of the micromobility vehicles along with travel time and travel cost 

will be summarized in a table.  

For the same hypothetical person above, a sample question is provided below: 

Now suppose you had an opportunity to use either the mode previously selected or among shared 

micromobility modes: bicycle share, shared pedelec e-bicycle, or shared electric scooter 

(illustrated in the table below with a description of key features and picture). Similar to Pathao 

and Tootle, you don't need to own any of these shared micromobility vehicles. You need to 

pay for using the service and drive it yourself. Also suppose it is hot, raining lightly, and the 

route has no bicycle lane (illustrated in the picture below) throughout the 2 km trip from home 

to work. 
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The travel time and cost for the trip above are as follows: 

 Mode Motorbike/scooter Bicycle share 

Shared 

pedelec e-

bicycle 

Shared 

electric 

scooter 

 Picture -  

   

Required 

physical effort 
-  Entirely  

Some, assisted 

by motor 
None 

License 

required?  
-  No No Yes 

Allowed in 

bicycle lane? 
-  Yes Yes No 

Travel time (in 

minutes) 
10 20 15 10 

Cost (in 

Rupees) 
23 10 25 80 

 

In this scenario, which new travel mode would you choose for the trip? 
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 Motorbike/scooter 

 Bicycle Share 

 Shared pedelec e-bicycle 

 Shared e-scooter 

 

Phew! That was a lot of information. Please click the next button to continue. 

Scenario 1 of 6:  

Suppose it is hot (>25 °C), raining lightly, and the route has unprotected bicycle 

lane (illustrated in the picture below). You have to complete the trip you mentioned in the 

previous section (4 km trip from Bus stop to Home). 

 

 

In this scenario, which travel mode would you prefer?  

Bus/micro/tempo 

Motorbike/scooter 

Car 

Two-wheeler Pathao/Tootle 

Four-wheeler Pathao/Tootle 

Taxi 

Walking 

Bicycling 
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Others  

What would the approximate travel time be (in minutes)? 

 

 

What would the approximate trip cost be in Rupee? (including fare, parking, and approximate 

fuel)  

 

 

 

Now suppose you had an opportunity to use a bicycle share, shared pedelec e-bicycle, or shared 

electric scooters (illustrated in the table below with a description of key features and 

picture). Similar to Pathao and Tootle, you do not need to own the vehicle. You would need 

to pay for using the service and would need to drive it yourself. Also suppose it is hot (>25 °C), 

raining lightly, and the route has unprotected bicycle lane (illustrated in the picture below) 

throughout the 4 km trip from Bus stop to Home. 

 

 

The travel time and cost for the trip above are as follows: 
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 Mode 
Two-wheeler 

Pathao/Tootle 
Bicycle share 

Shared pedelec 

e-bicycle 

Shared 

electric 

scooter 

 Picture -  

   

Required 

physical effort 
-  Entirely  

Some, assisted 

by motor 
None 

License 

required?  
-  No No Yes 

Allowed in 

bicycle lane? 
-  Yes Yes No 

Travel time (in 

minutes) 
10  25▲  20▲  10 = 

Cost (in 

Rupees) 
150  10▼  25▼  75▼ 

 

In this scenario, which travel mode would you choose for the trip? 

Two-wheeler Pathao/Tootle 

Bicycle share 

Shared pedelec e-bicycle 

Shared electric scooter 

 

Five more sets of scenario questions were included in the survey.  
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A3.4 Part 4: Sociodemographic questions to understand your background 

Below are some attributes that were not included in the choices above. How important are the 

following vehicle attributes when deciding to use any modes of travel? 

  

Not at all 

important 

Slightly 

important 

Moderately 

important 

Very 

important 

Extremely 

important 

Stylish/Fashionable 
     

Comfortable 
     

Luggage 

Compartments      

Road Safety 
     

COVID-19 Safety 
     

Reliability 
     

Fuel efficiency 
     

Which gender do you identify yourself as? 

Male 

Female 

Non-binary / third gender 

Prefer not to say 

How much schooling have you completed? 

No education 

Primary school 



 

215 

 

Secondary school 

High school 

Bachelor 

Master 

Doctoral or similar 

How many people are there in your household? 

1 

2 

3 

4 

5 

6 

7 

8 

9 

More than 10 

How many of each type of vehicle do you or other members of your household have? 

Bicycles  

Motorbike and scooter  

Cars  

Others  

Total  

 

Do you have a location to park a vehicle at home? 
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Yes 

No 

How often do you use online payment (e-Sewa, Khalti)? 

Never 

Sometimes 

Always 

What is your average monthly household income (combined income for all adults)? 

Less than Rs 5,000 

Rs 5,000 - 20,000 

Rs 20,000 - 35,000 

Rs 35,000 - 50,000 

Rs 50,000 - 65,000 

Rs 65,000 - 70,000 

Rs 70,000 - 85,000 

Rs 85,000 - 100,000 

More than 100,000 

Where do you live? 

Region       

Locality 
 

If you have anything more to say about these new transportation modes (bikeshare, shared e-

bike, and shared e-scooters), please drop your comments below. 
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A4. Trip clustering 

The code for the analysis can be found in the following GitHub repository: 

https://github.com/niteshshah12/E-scooter-trip-pattern-analysis-of-Nasvhille  

 

This section also includes two supplemental materials: a summary of clustering quality metrics 

and heat maps of the origin and destination of each K-means cluster of the optimal model. 

A4.1 Clustering quality metrics 

The graph illustrating the clustering quality metrics are as follows: 

A4.2 Heat maps of origin and destination 

The heat maps of the origin and destination of each K-means cluster are as follows: 

A5. Distribution fitting for micromobility emissions and energy usage 

Table A5.1 and Table A5.2 includes the results of model selection criteria for the distribution of 

usage and operational variables of Service Provider #1 and #2 used in the Chapter 6.  
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Figure A4.1 DB index of K-mean clusters 

 

Figure A4.2 Silhouette score of K-mean clusters 
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Figure A4.3: Origin and destination heat map of Cluster C0 

 

Figure A4.4: Origin and destination heat map of Cluster C1C1 
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Figure A4.4: Origin and destination heat map of Cluster C2 

 

Figure A4.5: Origin and destination heat map of Cluster C3 
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Figure A4.6: Origin and destination heat map of Cluster C4 

 

Figure A4.7: Origin and destination heat map of Cluster C5 
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Figure A4.8: Origin and destination heat map of Cluster C6 

 

Figure A4.9: Origin and destination heat map of Cluster C7 
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Figure A4.10: Origin and destination heat map of Cluster C8 

 

Figure A4.11: Origin and destination heat map of Cluster C9 
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Figure A4.12: Origin and destination heat map of Cluster C10 

 

Figure A4.13: Origin and destination heat map of Cluster C11 
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Figure A4.14: Origin and destination heat map of Cluster C12 

 

Figure A4.15: Origin and destination heat map of Cluster C13 
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Figure A4.16: Origin and destination heat map of Cluster C14 
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Table A5.1 Model selection criteria of usage and operational variables of Service Provider #1 

Variable Distribution AIC CAIC BIC ICOMP 

Usage phase 

Lifespan (months) Lognormal 1,923 1,933 1,931 1,921 

Exponential 1,940 1,945 1,944 1,941 

Gamma 1,671 1,681 1,679 1,669 

Weibull 1,313 1,323 1,321 1,310 

Inverse Gamma 1,989 1,999 1,997 1,987 

Daily mileage (km) Lognormal -1,180 -1,170 -1,172 -1,183 

Exponential -996 -991 -992 -997 

Gamma -1,027 -1,017 -1,019 -1,031 

Weibull -905 -895 -897 -909 

Inverse Gamma -1,037 -1,027 -1,029 -1,040 

Operational phase 

Frequency of pick-up 

for charging (days) 

Lognormal 171,433 171,453 171,451 171,434 

Exponential 81,178 81,189 81,188 81,179 

Gamma 124,939 124,959 124,957 124,936 

Weibull 136,413 136,434 136,432 136,410 

Inverse Gamma 120,848 120,869 120,867 120,849 

Average daily 

redistribution distance 

per e-scooter vehicle 

(km) 

Lognormal 252,276 252,297 252,295 252,276 

Exponential 39,078 39,089 39,088 39,078 

Gamma 11,359 11,380 11,378 11,357 

Weibull -11,411 -11,390 -11,392 -11,413 

Inverse Gamma 202,108 202,130 202,128 202,107 
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Table A5.2 Model selection criteria of usage and operational variables of Service Provider #2 

Variable Distribution AIC CAIC BIC ICOMP 

Usage phase 

Lifespan (months) Lognormal 1,165 1,176 1,174 1,162 

Exponential 1,753 1,759 1,758 1,754 

Gamma 1,105 1,116 1,114 1,102 

Weibull 1,269 1,280 1,278 1,265 

Inverse Gamma 1,153 1,164 1,162 1,150 

Daily mileage (km) Lognormal 18 28 26 14 

Exponential -506 -500 -501 -507 

Gamma -1,029 -1,018 -1,020 -1,032 

Weibull -1,769 -1,758 -1,760 -1,771 

Inverse Gamma 70 81 79 67 

Operational phase 

Frequency of pick-up for 

charging (days) 

Lognormal 154,132 154,152 154,150 154,132 

Exponential 150,490 150,500 150,499 150,489 

Gamma 196,091 196,112 196,110 196,088 

Weibull 194,030 194,051 194,049 194,027 

Inverse Gamma 128,203 128,223 128,221 128,201 

Average daily 

redistribution distance 

per e-scooter vehicle 

(km) 

Lognormal 238,001 238,022 238,020 238,000 

Exponential 56,968 56,979 56,978 56,968 

Gamma 15,161 15,182 15,180 15,158 

Weibull -22,270 -22,248 -22,250 -22,272 

Inverse Gamma 196,279 196,300 196,298 196,277 
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