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Abstract

In the first two chapters, we discuss mixed integer programming formulations in

Unit Commitment Problem. First, we present a new reformulation to capture the

uncertainty associated with renewable energy. Then, the symmetrical property of UC

is exploited to develop new methods to improve the computational time by reducing

redundancy in the search space. In the third chapter, we focus on the Tool Switching

and Sequencing Problem. Similar to UC, we analyze its symmetrical nature and

present a new reformulation and symmetry-breaking cuts which lead to a significant

improvement in the solution time.

In chapter one, we use convex hull pricing to explicitly price the risk associated

with uncertainty in large power systems scheduling problems. The uncertainty

associated with renewable generation (e.g. solar and wind) is highlighting the need

for changes in how power production is scheduled. It is known that symmetry in

the integer programming formulations can slow down the solution process due to

the redundancy in the search space caused by permutations. In the second chapter,

we show that having symmetry in the unit commitment problem caused by having

identical generating units could lead to a computational burden even for a small scale

problem. We present an effective method to exploit symmetry in the formulation

introduced by identical (often co-located) generators. We propose a cut-generation

approach coupled with aggregation method to remove symmetry without sacrificing

feasibility or optimality. In the third chapter, we focus on the Job Sequencing and

Tool Switching Problem (SSP), which is a well-known combinatorial optimization
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problem in the domain of Flexible Manufacturing Systems (FMS). We propose a new

integer linear programming approach with symmetry-breaking and tightening cuts

that provably outperformed the existing methodology described in the literature.
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Chapter 1

Convex Hull Pricing as a Risk

Mitigation Device in Unit

Commitment

1.1 Introduction

While the increase in renewable generation has helped produce cleaner and cheaper

electricity, the increased uncertainty that comes along with it has complicated

operations. Although decision making under uncertainty is a well developed branch

of operations research, stochastic variants of problems are typically much harder

to solve than their deterministic version. This poses a problem in many power

systems applications as actionable solutions to large-scale problem are needed quickly.

Further, there are market-design issues with implementing stochastic models. Markets

based on scenario-based solutions schedule generators before prices are known,

something that is unpalatable to generator owners.

Scheduling power generators is determined by solving unit commitment (UC)

problems; minimizing the total cost of production while guaranteeing that each

generator is given a feasible production schedule and that all demand is met.
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In conventional deterministic UC models, due to relatively low marginal costs of

renewables, optimal schedules tend to use as much renewable energy as possible.

However, these models ignore the cost associated with uncertainty, and the true

cost of these schedules might not be accurately accounted for in the model. If the

penetration of renewable energy is less than some threshold, the system can manage it

at a negligible cost, just as it handles the unavoidable variability in the load. Beyond

modest penetration levels, however, uncertainty must be characterized and risk should

be quantified to be able to integrate renewables into the mix of power resources while

maintaining reliability.

Existing risk management solutions to this challenge can be classified into the

following categories: market design, energy storage systems, and UC model building.

Currently, electricity market structures in the U.S. are built around the two-settlement

concept, which refers to the day-ahead and the real-time markets. Some studies

suggest the introduction of intra-day commitments in the U.S. energy markets as

renewable forecast uncertainty is significantly lower during intra-day markets than

in the day-ahead market Herrero et al., 2018; Tesfatsion, 2020. Grid-scale energy

storage technologies are widely believed to have the potential to increase power system

flexibility and to effectively integrate high shares of renewables Castillo and Gayme,

2014; Denholm and Hand, 2011; Zhang et al., 2016. However, storage integration

is still an ongoing challenge due to the high cost, low energy density, and complex

maintenance.

A variety of modeling approaches and solution strategies are proposed and applied

to UC problems for assessing the impacts of renewable integration and mitigating

the associated uncertainty. Robust, chance-constrained and Stochastic optimization

models are among the main approaches van Ackooij et al., 2018. Robust models

are based on worst-case outcomes and provide robust commitment schedules for

controllable generators (e.g., thermal generators) Jiang et al., 2011; Lorca et al.,

2016. Nevertheless, these models tend to be overly conservative and may not

be cost-effective An and Zeng, 2014. In chance-constrained optimization models
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some constraints (e.g., load constraints) must be satisfied with high probability

Bertsimas et al., 2012; Wang et al., 2011. However, these models are still

largely intractable as the probabilistic constraints may be non-convex and hard to

evaluate. Stochastic UC models are considered an important family of approaches

as they represent theoretical ideals among UC models and lead to cost savings and

reliability improvement. The uncertainty in these models is captured by a set of

discrete scenarios with associated probabilities which is usually large and leads to

computational intractability for solving large-scale problems. As a result scenario

selection strategies and decomposition methods (e.g., Benders’ decomposition, column

generation) have been subjects of intense research over the last two decades

Papavasiliou and Oren, 2013; Schulze and McKinnon, 2016; Tahanan et al., 2015;

van Ackooij et al., 2018; Zhao and Guan, 2015; Zheng et al., 2014, however,

implementing these methods might require a redesign of current markets.

The focus of this study is building a UC model that captures and mitigates the

uncertainty of wind integration in power supply. We provide a methodology that

explicitly quantifies the price of the risk using the concept of convex hull pricing (CHP)

Gribik et al., 2007, a pricing scheme that is based on the optimality of dual variables

associated with system-wide constraints (e.g, demand and transmission constraints).

CHP has been proposed in the context of the electricity market clearing process in

order to increase market transparency. One desirable property in CHP is that it

minimizes uplift payments Hua and Baldick, 2016; Schiro et al., 2015. Due to non-

convexities in the energy market that arise from operating characteristics, generators

may fail to recover their cost by selling energy at the given prices. In this case, the

independent system operators (ISOs) makes side payments, or uplift payments, to

participants to compensate them for their loss, encouraging them to follow the ISO’s

solution. Among the various pricing schemes, CHP represents a theoretical ideal that

supports efficient dispatch given the underlying non-convexities Chao, 2019.

We employ CHP to price the uncertainty associated with the variable wind and

include this price in the wind generator’s conventional operating costs. Performance

3



of the proposed model is evaluated by comparing it with stochastic and deterministic

UC models in terms of production cost and solution time. It is shown that the

proposed model outperforms the deterministic UC model and we gain the advantage

of the stochastic model, with modest additional computational efforts. As mentioned,

the stochastic model is an ideal cost-effective model, however, solving it requires

significant computational costs in practice. The efficiency of the proposed model is

examined with various wind penetration levels.

1.2 Model Formulation

In this section a UC model is presented that takes into account the uncertainty of

wind energy in power supply and provides a risk-aware optimal schedule of generation

units in the day-ahead market. The uncertainty is formulated using the concept of

convex hull pricing (CHP) and probabilistic distribution of wind power forecast.

1.2.1 A Primal Formulation for CHP

Consider the following deterministic mixed-integer linear UC problem:

z = min
∑
g∈G

cg(ug, pg) (1.1a)

s.t.
∑
g∈G

(Agpg +Bgug) + w = D (1.1b)

(ug, pg, cg) ∈ Πg, ∀g ∈ G (1.1c)

where ug, pg and cg denote the binary commitment vector, the continuous dispatch

vector and the cost vector of the schedule associated with ug and pg for generator

g ∈ G, respectively. Matrices Ag and Bg are the corresponding coefficients of the

variables, w denotes wind energy which is aggregated and represented as a single

resource, and demand D is met by a mixture of resources per constraint (1.1b).
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The set Πg represents the feasible schedules, dispatches and costs for each generator

g. These usually encode physical operating constraints like minimum and maximum

power outputs, minimum up and down times, and ramping constraints. The objective

(1.1a) minimizes the system operational costs of the conventional power generators.

Note that in this formulation the cost associated to the wind energy generation is

neglected.

Convex hull prices are determined through the Lagrangian relaxation of problem

(1.1) with respect to the supply-demand constraint (1.1b):

L(π(w)) = min
∑
g∈G

cg + π(w)T (D − Agpg −Bgug − w)

subject to

(ug, pg, cg) ∈ Πg, ∀g ∈ G.

Note that the dual vector π(w) is a function of w, the amount of wind contribution

to the system. The associated Lagrangian dual is:

max
π

L(π(w)). (1.2)

By definition Gribik et al., 2007, convex hull prices are the optimal solutions π(w)

to the problem (1.2). Alternatively, as shown in Hua and Baldick, 2016, convex hull

prices can be calculated as the dual optimal vector with respect to the supply-demand

constraint (1.3b) of the following linear program:

z(w) = min
∑
g∈G

cg(ug, pg) (1.3a)

s.t.
∑
g∈G

Agpg +Bgug + w = D (πCH(w)) (1.3b)

(ug, pg, cg) ∈ conv (Πg) , ∀g ∈ G (1.3c)

5



where conv(.) denotes the convex hull of a given set and πCH(w) denotes the CHP

vector (Figure 1.1). The objective function, z(w) is a non-increasing function in terms

of w and tracks the changes in the solution of the linear relaxation of problem (1.1)

when the wind generator contributes w unit to the system. It is known that z(w) is

piece-wise linear and its subgradient at w contains πCH(w) Bertsimas and Tsitsiklis,

1997.

One potential drawback of using problem (1.3) to obtain the convex hull prices

is that it requires explicit knowledge of the convex hull for each generator and

constructing it may be computationally challenging in the presence of ramping

constraints. Knueven et al., 2019 propose a Benders’ decomposition approach to

address this problem and demonstrate across a large set of test instances that their

decomposition approach only requires modest computational effort. As shown in

the same study, the prices can be obtained using “approximated” convex hull prices

(aCHP) which can be computed by solving problem (1.3) with the linear relaxation

of the set Πg in constraint (1.3c).

1.2.2 Wind Price Formation

Discrepancies between scheduled and actual wind production must be met by other

resources. CHP gives an accurate reflection of the cost of these resources, without

strictly identifying which resource will provide for the shortfall. If the wind production

is ϵ less than scheduled, for small ϵ, the cost to the system can be approximated as

ϵπ(wlp). However, at larger deviations, the CHP might not be an accurate prediction

for the true cost. In this case, for a better approximation, an integration over the

deviation is needed. This motivates the following approximation to the true cost of

deviation when wlp units of wind are scheduled:

c(wlp) =

∫ wlp

0

πCH(wlp − ϵ)Pr(w ≤ wlp − ϵ)dϵ. (1.4)
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Figure 1.1: CHP as a function of wind in a fixed time period
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In this formulation, c(wlp) represents the expected cost of wind uncertainty when

the wind realization is below wlp and Pr(·) denotes the probability distribution of

wind production.

Note that the function c(wlp) relies only on the probability distribution of wind and

the CHP, not the actual solution obtained for the UC instance. This cost function is

added to the objective function (1.1a) in order to reflect the cost of wind uncertainty.

Therefore, the proposed unit commitment (PUC) model reads as follows:

zPUC = min
∑
g∈G

cg(ug, pg) + c(w) (1.5a)

s.t.
∑
g∈G

Agpg +Bgug + w = D (1.5b)

(ug, pg, cg) ∈ Πg, ∀g ∈ G. (1.5c)

In the above formulation, the objective function aims to minimize the total generating

cost and the penalty of the risks due to the uncertainty of wind power.

A computationally tractable wind cost function is built based on its abstract

formulation. The probability density of the wind generation is assumed to follow

a uniform distribution. Please note that, if the wind generation follows a different

distribution (i.e. Weibull), it could be divided into smaller section that approximately

follow a uniform distribution, then the procedure described below would be valid for

this case as well. For a fixed single-hour time period t, various amounts of available

wind energy (e.g. 0 to 10% of the demand) is considered and for the remaining time

periods t ̸= t, the wind energy is set to its maximum capacity W . The wind prices,

πCH(w), is obtained by solving problem (1.3) for the interval [0,W ] and cluster the

prices using a K-means algorithm MacQueen et al., 1967. The wind cost function is

computed from equation (1.4). This is a quadratic function in terms of wlp, which

will be linearized before including it in the UC problem. Please see the following

example.

8



Example 1. Figure (1.2) represents the CHPs obtained from equation (1.3b) for a

fixed single-time period. By clustering the prices into three pieces with associated sub-

intervals [0, q1], [q1, q2] and [q2,W ], we obtain the constant prices πCH
1 , πCH

2 and πCH
3

for each respective interval (Figure 1.3). Now when wlp ≥ q2 the wind cost function

calculates as follows:

c(wlp) =

∫ q1

0

πCH
1

wlp − ϵ

W
dϵ+

∫ q2

q1

πCH
2

wlp − ϵ

W
dϵ+

∫ wlp

q2

πCH
3

wlp − ϵ

W
dϵ. (1.6)

The obtained wind cost function (Figure 1.4) is non-linear, therefore we piece-wise

linearize it prior including it in the objective function of the UC problem.

Figure 1.5 represents linearization by partitioning the interval [0,W ] into ten equal

sub-intervals and [bi, bi+1] with i ∈ {0, ..., 9}. Introducing two new set of decision

variables zi, i ∈ {0, ..., 10} and yj ∈ {0, 1}, j ∈ {0, ..., 10} we can find the piece-wise

approximation of the wind cost function with as following:

c(·) =
∑
i

zic(bi) (1.7a)

w =
∑
i

zibi (1.7b)

zi ≤ yi ∀i ∈ {0, ..., 10} (1.7c)

zi+1 ≤ yi + yi+1 ∀i ∈ {0, ..., 10} (1.7d)∑
j

yj = 1 (1.7e)

∑
i

zi = 1 (1.7f)

Here, in equation 1.7a and 1.7b the wind cost function and utilized wind energy

amount (wt) were set to their approximated values, while equations 1.7d - 1.7f were

used to force the model to pick proper linear combination of the calculated cost values

c(bi).
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Figure 1.2: Prices of wind energy.

Figure 1.3: Clustered prices of wind energy.
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Figure 1.4: Wind cost function.

Figure 1.5: Piece-wise linearization of the wind cost function.
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1.2.3 Nomenclature

Sets and indices

G Set of generators.

T Set of consecutive time periods {1, 2, ..., T}.

S Set of wind scenarios.

B Set of break points for discretizing the cost function.

Parameters

Lt Load (Demand) at time t (MW).

Rm
t Reserve at time t (MW) for model m ∈ {EV UC, SUC, PUC}.

P
g

Maximum power output for generator g (MW).

P g Minimum power output for generator g (MW).

RU g Ramp-up rate for generator g (MW/h).

RDg Ramp-down rate for generator g (MW/h).

SU g Startup ramp rate for generator g (MW/h).

SDg Shutdown ramp rate for generator g (MW/h).

UT g Minimum up time for generator g (h).

DT g Minimum down time for generator g (h).

Cg
cs Cold start cost of generator g.

Cg
hs Hot start cost of generator g.

Cg
nl No-load cost of generator g.
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Cld Lost demand cost.

bCg
p Production cost for each MW until break point b for generator g.

b
P g Maximum power output until break point b for generator g.

p̂t Percentage of demand Lt that is available as wind power, we assume: p̂1 =

p̂2 = . . . = p̂T .

p̂ts Percentage of demand Lt that is available as wind power in scenario s.

Wt Available wind capacity at time t.

Variables

ug
t Binary, 1 if unit g is on at t; 0 otherwise

vgt Binary, 1 if unit g starts up at t; 0 otherwise

wg
t Binary, 1 if unit g shuts down at t; 0 if otherwise

pgts Power output of generator g at time t for scenario s.

p̄gts Maximum available power output of generator g at time t for scenario s.

bq
g

ts Power output of generator g at time t until break point b for scenario s.

cgt Binary, Cold start status of generator g at time t.

hg
t Binary, Hot start status of generator g at time t.

windts Wind power used at time t for scenario s (MW).

Sts Slack power at time t for scenario s (MW).
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1.2.4 Expected Value Model

The expected value unit commitment (EVUC) model below minimizes the total

operational cost zEV UC considering wind generators in power supply. In this

formulation, there are three binary vectors ug, vg, and wg indicating commitment

status, startup, and shutdown status of generator g ∈ G. The vectors pg, pg, and cg

denote the dispatch, maximum power output, and associated cost for generator g.

The total cost zUCEV is composed from cold start Cg
cs and hot start cost Cg

hs,

no load cost Cg
nl and the production cost bCg

p for each generator g ∈ G and time

period t ∈ T . The production cost is discretized by break points b ∈ B in order

to capture the non-linearity by a piece-wise linear function. Constraints (1.8b) and

(1.8c) ensure that produced energy satisfies hourly demand and reserve requirements

for each time-period t ∈ T . In constraints (1.8d) and (1.8e), the expected capacity of

wind defines an upper bound on the usage of the wind power. The link between the

commitment, startup, and shutdown status of generators is given in constraint (1.8f).

The minimum up and down time of generators are given by constraints (1.8g) and

(1.8h). Constraints (1.8i) and (1.8j) define the link between shutdown and hot/cold

starts. Constraint (1.8k) makes sure that produced energy is within upper and lower

capacity bounds of each generator. The effect of ramp-up and ramp-down rates on

hourly electricity production is given in constrains (1.8l) and (1.8m). Constraints

(1.8n) and (1.8o) include maximum power output for each break point b and the

total power output at each time period t respectively.

zEV UC =min
∑
g

∑
t

(
Cg

csc
g
t + Cg

hsh
g
t + Cg

nlu
g
t+
∑
b

bCg
p
bqgt

)
(1.8a)

s.t.
∑
g

pgt + windt ≥ Lt ∀ t ∈ T (1.8b)

∑
g

p̄gt + windt ≥ Lt +REV UC
t ∀ t ∈ T (1.8c)

windt ≤ E(Wt) ∀ t ∈ T (1.8d)
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E (Wt) = Lt
p̂t
2

∀ t ∈ T (1.8e)

ug
t − ug

t−1 = vgt − wg
t ∀ t ∈ T (1.8f)

t∑
i=t−UT+1

vgi ≤ ug
t ∀ t ∈ [UT g, T ] (1.8g)

t∑
i=t−DT+1

wg
i ≤ 1− ug

t ∀ t ∈ [DT g, T ] (1.8h)

cgt ≤
DT g

C−1∑
i=DT

wg
t ∀ t ∈ [DT g, T ] (1.8i)

cgt + hg
t = vgt ∀ t ∈ [DT g

C , T ] (1.8j)

P gug
t ≤ pgt ≤ pgt ≤ P

g
ug
t ∀ t ∈ T (1.8k)

pgt − pgt−1 ≤ RU gug
t−1 + SU gvgt ∀ t ∈ T (1.8l)

pgt−1 − pgt ≤ RDgug
t + SDgwg

t ∀ t ∈ T (1.8m)

0 ≤ bqgt ≤
b
P g − b−1

P g ∀ t ∈ T , ∀b ∈ B (1.8n)

pgt =
∑
b

bq
g

t ∀ t ∈ T . (1.8o)

1.2.5 Stochastic Model

The stochastic unit commitment (SUC) model minimizes the total cost zSUC taking

into account the uncertainty of power output and power shortage by considering their

associated average cost for each scenario s ∈ S. This model formulates the standard

two-stage unit commitment problem. The commitment decisions are made in the

first stage so ug
s = ug for all s ∈ S and g ∈ G. Probability of scenario s is denoted

by Prs. Constraints (1.9b) and (1.9c) include calculation of supply shortage in load

and reserve requirement for each scenario. The usage of wind power is limited by

the constraint (1.9d) where p̂s is the percentage of demand that is predicted to be

satisfied by wind power for each scenario s ∈ S. Constraints (1.9e)-(1.9g) ensure that

generators’ upper/lower capacity limits, ramp-up/down rates, and startup/shutdown
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ramp rates are taken into account. Production cost curve break points are considered

in constraints (1.9h) and (1.9i) for each scenario.

zSUC =min
∑
g

∑
t

(Cg
csc

g
t + Cg

hsh
g
t + Cg

nlu
g
t )

+
1

|S|
∑
s

∑
g

∑
t

(∑
b

bCg
p
bqgts + CldSts

)
(1.9a)

s.t.
∑
g

pgts + windts + Sts ≥ Lt ∀ t ∈ T , ∀ s ∈ S (1.9b)

∑
g

p̄gts + windts + Sts ≥ Lt +RSUC
t ∀ t ∈ T , ∀ s ∈ S (1.9c)

windts ≤ Ltp̂ts ∀ t ∈ T , ∀ s ∈ S (1.9d)

P gug
t ≤ pgts ≤ pgts ≤ P

g
ug
t ∀ t ∈ T , ∀ s ∈ S (1.9e)

pgts − pg(t−1)s ≤ RU gug
t−1 + SU gvgt ∀ t ∈ T , ∀ s ∈ S (1.9f)

pg(t−1)s − pgts ≤ RDgug
t + SDgwg

t ∀ t ∈ [DT g, T ], ∀ s ∈ S (1.9g)

0 ≤ bqgts ≤
b
P g − b−1

P g ∀ t ∈ T , ∀b ∈ B, ∀ s ∈ S (1.9h)

pgts =
∑
b

bq
g

ts ∀ t ∈ T , ∀ s ∈ S (1.9i)

and (1.8f), (1.8g), (1.8h), (1.8i), (1.8j) ∀ s ∈ S. (1.9j)

1.2.6 Proposed Model

The objective function of the proposed model is the sum of wind cost c(·), lost demand

cost, and all other costs zUCEV . Constraints (1.10b) and (1.10c) are used to calculate

shortage of supply for providing hourly demand and reserve requirements. Constraint

(1.10d) prevents usage of wind power above the available capacity. Constraint (1.10e)
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is used to set the reserve to the maximum of demand and assigned wind.

zPUC =min zEV UC + c (windt) + CldSt (1.10a)

s.t.
∑
g

pgt + windt ≥ Lt ∀ t ∈ T (1.10b)

∑
g

p̄gt + windt + St ≥ Lt +RPUC
t ∀ t ∈ T (1.10c)

windt ≤ Ltp̂t ∀ t ∈ T (1.10d)

RPUC
t = max{Ltp̂t , windt} ∀ t ∈ T (1.10e)

and (1.8f − 1.8o). (1.10f)

1.3 Computational Experiments

The performance of the proposed unit commitment (PUC) model (1.5) is assessed in

terms of solution quality and CPU time with two alternative standard approaches:

stochastic and expected value models that denoted by SUC and EVUC respectively.

The SUC model minimizes the expected operational cost taking into account the

uncertainty of power output and power shortage by considering their associated

average cost for different scenarios. This model is a two-stage stochastic programming

with unit commitment decisions in the first stage and real-time generation and load

amount decisions in the second stage. The EVUC is a deterministic model that

minimizes the total operational costs while limiting wind capacity in power supply by

the expected value of wind profile over hourly time intervals in a given day. Hence,

the wind capacity for all time periods is bounded by the fixed quantity. This simple

though common in practice approach suffers from one major downfall, as it does

not include the variability of the wind generation in each time period. The optimal

generators’ schedule is risky as it may utilize wind power to its full capacity while the

wind realization might be lower. In the proposed model (PUC) the available wind is

a fraction of hourly demand and it is available in full capacity, although the amount
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of its utilization is penalized by its uncertainty cost in the objective function. The

novelty of this approach is recognition and quantification of the cost of uncertainty

and varaibility of the wind power generation in every hour in the deterministic UC

problem.

1.3.1 Computational Setup

All computational experiments were performed on a Lenovo T480s with Intel i7-8550U

processor and 16 GB RAM running Windows 10. Gurobi 8.0.1 with Python interface

is used for solving MIP and LP problems. Gurobi parameters were set to default for

solving all models.

The data used in this study is the same UC test instances reported in Knueven

et al., 2020b. This data-set was released by the US Federal Energy Regulatory

Commission (FERC), which consist of two sets of generators: the Winter and Summer

sets. The Summer data set is used in the computational study, that has 978 thermal

units of which 504 have irredundant hourly ramping constraints. Thermal instances,

real-time load, day-ahead reserves, and wind generation data for the year 2015 were

utilized to formulate a 24 hour scheduling horizon unit commitment problem. A

UC model with polynomial-sized convex hull formulation is used, which known as

3-bin model for a general thermal generator Knueven et al., 2018. In the data

set there were no information about generators previous status. It is assumed that

generators’ current status were on and they were operating at minimum power. The

set of instances are also available as part of the IEEE PES Power Grid Lib - Unit

Commitment benchmark library (https://github.com/power-grid-lib/pglib-uc).

1.3.2 Assessment Procedure

In the assessment of the three models SUC, EVUC and PUC, it is assumed that the

commitment decisions are made before the wind power generation is observed, and

economic dispatch decisions are determined after the observation of wind outcomes.
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The procedure started with building and solving the three unit commitment models

to find the risk-aware day-ahead optimal commitment schedule of the generators for

each model. A set of one hundred wind scenarios S is generated randomly, each one

with different wind capacity ranging in the interval [0,W t] for each hour. Then, while

fixing generators’ status to their optimal schedules, the associated dispatch problems

is solved for each wind scenario s ∈ S to get their respective optimal cost and power

output for both thermal and wind generators. The main purpose of solving the real-

time dispatch problems in this work is to examine the efficiency of the proposed model

in reducing the total operational costs. Random seed for the the scenario generation is

fixed, and the same scenario set S is used to solve economic dispatch of each model.

A different wind scenario set S0 is generated in order to build the SUC model to

observed unpredictable nature of the wind generation output. Figure 1.6 illustrates

the assessment procedure of the models.

1.3.3 Small Scale Results

In this section, the computational results on a small set of generators chosen from

the FERC data-set is presented. The relative performance of the models in terms of

run time and cost reduction is shown in Table 1.1. From the table it can be seen that

the EVUC model is faster than the PUC due to the wind cost function calculation

in the PUC. With the computational setup, the SUC is solvable by Gurobi within

a reasonable amount of time (less than 1 hour) for sets of generators of maximum

size 60. However, as expected, the SUC model outperforms the other two in terms

of cost reduction with saving slightly more than 0.5 % on average with respect to

EVUC model. The saving of PUC model relative to EVUC is approximately 0.5 %

on average which is a significant achievement comparing with SUC. The proposed

model, with significantly less computational costs, has a performance close to the

stochastic model in terms of cost reduction. Figure 1.7 represents graphically the

19



Figure 1.6: Solving procedure of EVUC, SUC and PUC models.

Table 1.1: Performance of the three models for a small set of generators

Run times(sec) Cost reduction relative to EVUC

# of generators EVUC SUC PUC SUC($) SUC(%) PUC($) PUC(%)

10 0 47 1 733 0.1 498 0.1

20 1 746 3 4795 0.4 4783 0.4

30 1 1060 4 9423 0.5 9302 0.5

40 2 1202 6 2219 0.4 2133 0.4

50 2 1723 9 9025 0.5 7747 0.5

60 2 1962 9 8819 0.6 8558 0.6

70 2 > 10 h 11 - - 21605 0.7

80 4 > 10 h 30 - - 25450 0.6

90 5 > 10 h 41 - - 58824 0.6
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Figure 1.7: Cost improvement of SUC and PUC with respect to EVUC for small
scale test set
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relative performance of the SUC and PUC models with respect to the EVUC model

in terms of cost saving at a small scale level.

1.3.4 Large Scale Results

In larger scale with about 1000 generators, only the performance of PUC and

EVUC models could be compared since solving the SUC model is computationally

intractable. To measure the performance of the PUC model, five levels of wind

penetrations are analyzed with equal increments of 5% from 10% up to 30%. Table

1.2 shows the average across five separate instances for each level of wind penetration.

The computational results which are reported in Tables 1.2, demonstrate that at

each penetration level the PUC model outperforms the EVUC. The run times for

building and linearizing the wind cost function is represented in WCF column.

Note that computations for WCF are done sequentially, solving 240 linear programs

varying the RHS of (1.3b) 10 times per time period. These computations can be

easily parallelized, leading to significantly shorter wall-clock times. Surprisingly,

the PUC instances actually solves faster than the EVUC model. With reasonable

parallelization, it PUC with the WCF can take less wall-clock time than the EVUC

model, leading to higher-quality schedules without impacting current operations.

1.4 Conclusion

In this study we proposed a risk-aware UC model in the presence of uncertain wind

power generation. The price of wind variability is captured by constructing a wind

cost function using CHP scheme. The proposed model mitigates the risk of wind

integration in power supply, provides risk-aware optimal commitment schedule of

generators, and minimizes the overall operational cost of the resource mix. The

computational results demonstrated the effectiveness of the of the proposed model

relative to the stochastic UC model and deterministic UC with wind uncertainty
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taken into account. An extension of the proposed model considers the temporal

correlation of wind power production which deserves future research.
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Table 1.2: Performance of EVUC and PUC models with various wind penetration
level

Average scenario costs ($) Run times(sec)

wind (%) EVUC PUC Reduction EVUC PUC WCF

10 73,406,115 73,073,499 332,616 160 120 325
15 71,589,676 71,431,922 157,754 180 141 376
20 69,960,659 69,910,216 50,443 197 130 433
25 68,663,582 68,565,969 97,613 209 123 502
30 67,436,116 67,232,866 203,250 222 119 587
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Chapter 2

Symmetry Breaking Cut

Generation for the Unit

Commitment Problem

2.1 Nomenclature

2.1.1 Indices and Sets

g ∈ G Thermal generators.

t ∈ T Hourly Steps.

[c, d) ∈ X g Feasible intervals of non-operation for generator g with respect to its

minimum downtime, that is, [c, d) ∈ T × T such that d ≥ c+DT g.

2.1.2 Parameters

UT g Minimum up time for generator g.

DT g Minimum down time for generator g.

SU g Startup ramp rate for generator g (MW/h).
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SDg Shutdown ramp rate for generator g (MW/h).

RU g Ramp-up rate for generator g (MW/h).

RDg Ramp-down rate for generator g (MW/h).

Dt Load (demand) at time t (MW).

Rt Spinning reserve at time t (MW).

P
g

Maximum power output for generator g (MW).

P g Minimum power output for generator g (MW).

TCg Time down after which generator g goes cold, i.e., enters state Sg.

cg Cost of production for generator g ($/MWh).

cR,g Cost of generator g running and operating at minimum production P g ($/h).

cC,g Cold start cost of generator g ($/h).

cH,g Hot start cost of generator g ($/h).

2.1.3 Variables

ug
t Binary, 1 if unit g is on at t; 0 otherwise.

vgt Binary, 1 if unit g starts up at t; 0 otherwise.

wg
t Binary, 1 if unit g shuts down at t; 0 otherwise.

pgt Power above minimum for generator g at time t (MW).

xg
[c,d) Binary, 1 if generator g is uncommited between shutdown time at c and startup

time at d, [c, d) ∈ X g; 0 otherwise.
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2.2 Introduction

Unit commitment (UC) is an optimization problem, which is used to find op-

timal schedule and production level of thermal generating units over a given

time period Bhardwaj et al., 2012. The committed units must satisfy technical

constraints while producing sufficient energy to cover the forecasted load and reserve

requirements. It has great practical importance because the effectiveness of generated

schedules has a strong economical impact on power generation companies Viana and

Pedroso, 2013.

UC is generally modelled as a mixed-integer linear problem (MILP) Knueven et al.,

2017, and its has a strongly NP-hard complexity Bendotti et al., 2017. Some studies

proposed heuristic methods to solve the problem López et al., 2013; Quan et al.,

2014; Saber et al., 2006; Saksornchai et al., 2005; Simopoulos et al., 2006; Victoire

and Jeyakumar, 2006; Yuan-Kang et al., 2013. But due to its economical significance

sacrificing from optimality is not preferred. Therefore, many researches focused on

tightening MILP formulation to have a better LP relaxation of the problem. This

approach was proven to be computationally effective and studied by Gentile et al.,

2017; Knueven et al., 2018; Morales-España et al., 2015; Morales-España et al., 2013;

Ostrowski et al., 2012.

Similar to other MILP problems, UC problem gets more computationally difficult

if it involves symmetrical property. In this context, symmetry means having at least

two identical generators with same performance settings and cost parameters. A single

location may have multiple generators of the same type which will lead to symmetry in

the MILP formulation. In this case, the solution process could take extra time as the

solver may explore different commitment combinations for identical generators. From

the cost reduction perspective, however, this search process is redundant because

symmetry in the problem can cause having multiple optimal solutions.
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In the UC literature, several methods presented to handle the symmetry. One

approach is to use an alternative branching strategies while examining branch-

and-bound tree. If the problem’s symmetry group have special structure orbital

branching could be strengthened Ostrowski et al., 2015; Ostrowski et al., 2011. Such

methods, however, require customized branching and are difficult to implement using

commercial solvers. Another method used in literature is to use symmetry breaking

cuts to eliminate symmetry in UC problem, see Alemany et al., 2014; Alemany et al.,

2016; Fu et al., 2019; Lima and Novais, 2016. In these studies, the commitment status

of identical generators were put in hierarchical order to prioritize their utilization.

The major drawback of this approach is to have extensive number of hierarchical

constraints which would increase the size of the LP relaxation. It was reported that

for large scale UC instances performance of solver decreases Lima and Novais, 2016.

For solving UC problem with symmetrical property, an alternative approach in

the literature is aggregating identical thermal generators into a single unit. It consist

three simple section: aggregation, solving the aggregated model, and disaggregation

to create schedules for individual units Sen and Kothari, 2002. Several studies

( Garcia-Gonzalez et al., 2008; Palmintier and Webster, 2011; Shortt and O’Malley,

2010) used aggregation to speed up the solution process, but they haven’t considered

all technical constraints of the generators, therefore, the found schedules were sub-

optimal. An exact aggregation was done by Knueven et al., 2017, they showed the

conditions under which such an aggregation can be done exactly. Their approach was

only effective for fast-ramping thermal generators, where the ramping constraints are

redundant. Decomposable formulations for slow-ramping generators tend to be very

large, such that the benefits from the aggregation outweigh the cost of the additional

variables and constraints. Slow-ramping generators are are generators thac cannot

ramp to full power in one time interval. Historically this has not been a problem as

slow-ramping generators, such as coal burning units, make up a small share of the
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production in many markets (such as CAISO and MISO). However, moving to sub-

hourly time horizons, such as 15 minute UC, would drastically increase the number

of slow-ramping generators, necessitating the need for new methods.

In this paper, we propose an aggregate and cut method that guaranties feasibility.

For the cases which a feasible disaggregation is impossible we a feasibility cut to

prevent such solutions. To improve the solution time further, we identify a pattern

of commonly used feasibility cuts that can be added to the aggregation model prior

to the cut-generation process.

2.3 Symmetry in the Unit Commitment Problem

and its Effect

2.3.1 Base “3-Bin” Model

UC problem has multiple formulations presented in the literature Knueven et al.,

2020b. A “3-bin” UC MILP formulation are typically expressed in this form Carrión

and Arroyo, 2006a; Ostrowski et al., 2012:

min
∑
g∈G

∑
t∈T

cg(ug
t ,p

g
t ) (2.1a)

s.t.
∑
g∈G

pgt=Dt ∀t∈T ,∀g∈G (2.1b)

P gug
t≤pgt≤P

g
ug
t ∀t∈T ,∀g∈G (2.1c)

pgt−pgt−1≤RU gug
t−1+SU gvt−(P g−RU g)wt ∀t∈T ,∀g∈G (2.1d)

pgt−1−pgt≤RDgug
t+SDgwt−(P g−RDg)vt ∀t∈T ,∀g∈G (2.1e)

ug
t−ug

t−1=vgt−wg
t ∀t∈T ,∀g∈G (2.1f)

t∑
i=t−UT g+1

vgi ≤ug
t ∀t∈[UT g,T ],∀g∈G (2.1g)
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t∑
i=t−DT g+1

wg
i≤1−ug

t ∀t∈[DT g,T ],∀g∈G (2.1h)

ug
t ,v

g
t ,w

g
t∈{0,1},p

g
t∈R+ ∀t∈T ,∀g∈G (2.1i)

where (2.1a) shows sum of the costs associated with generator g producing an

output pgt over the scheduling horizon. Constraints (2.1b) makes sure that all the

demands are satisfied, while generated power doesn’t exceed from the its capacity

limitations (2.1c). Constraints (2.1d) and (2.1e) enforce ramping limits. Constraints

(2.1f) enforce the logical connection between the variables u, v, and w, and Constraints

(2.1g) and (2.1h) enforce minimum up and down times.

A symmetry in the UC may happen due to utilization of identical generators.

The two generator are called to be identical if all their specifications are same.

These specification are ramp-up/ramp-down rates, system-up/system-down rates,

minimum/maximum production levels, production cost, and so on. Note that

identical generators can have different statusus at the start of the planning horizon.

Having identical generators in the UC problems solved by ISO is common, because

a single power generator company may have two or more generator of same type in

their power plant.

Consider a small example with three group of identical generators with eight,

ten, and twelve generators in each group. If the optimal solution requires half of

the generators from each group to be committed, then number of combinations these

generators to be chosen will be:

(
8

4

)(
10

5

)(
12

6

)

In this example number of alternative solutions will be more than sixteen million. It

is obvious that there is no benefit of checking every alternative solution. However,

without any symmetry breaking cuts the solver may enumerate all these cases and

take longer time to solve it, and in some cases it won’t be able to solve within hours.
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There is a need for a new approach which exploits symmetry and prevent

redundant calculations. By avoiding symmetries, we can reduce the search space

significantly, therefore, improve the computation time.

2.3.2 Symmetry Exploiting Relaxation

For solving UC problem with identical generators an aggregated model could be

used Knueven et al., 2017. In the aggregated model the binary decision variables

for each identical generator group (u, v, w) are set to be integer and the generator

parameters (P , P , SU, SD) are adjusted accordingly. If the generators are fast-

ramping, in other words, they have redundant ramping constraint, then the traditional

3-bin formulation could be used, when UT ≥ 2 Knueven et al., 2017:

Put ≤ pt ∀t ∈ T (2.2a)

pt ≤ Put+(SU−P )vt+(SD−P )wt+1 ∀t ∈ T (2.2b)

ut−ut−1 = vt−wt ∀t ∈ T (2.2c)

t∑
i=t−UT+1

vi ≤ ut ∀t ∈ [UT,T ] (2.2d)

t∑
i=t−DT+1

wi ≤ 1−ut ∀t ∈ [DT,T ] (2.2e)

ut,vt,wt ∈ {0,1}, pt ∈ R+ ∀t ∈ T (2.2f)

Here, the Constraints (2.2c), (2.2d), (2.2e) are totally unimodular Malkin and

Wolsey, 2003, and they have integer decomposition property Baum and Trotter, 1978.

Knueven and Ostrowski, (2018) showed that it is be possible to generate feasible

schedule by disaggregating the found solution in the aggregation model.

Suppose that, we partition the set of generators G into three subset: non-identical

generators (G̸∼), identical with slow-ramping generators (GS), and identical with fast-

ramping generators (GF ). Here, G̸∼ = {g ∈ G | g ̸∼ g′ ∀g′ ∈ G\{g}}, G∼ = G\G ̸∼ ,
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GF = {g ∈ G∼ |RU g, RDg ≥ (P
g−P g)}, and GS = G∼\GF . After adjusting generator

parameters properly for the generator cluster (P
K
,PK,SUK,SDK,RUK,RDK), the

aggregated model for slow-ramping generator could be formulated as following master

problem:

MP
∑
K∈GS

∑
t∈T

(
cKPK

t +cR,KUK
t −cC,KV K

t

+(cH,K−cC,K)

 ∑
t′=t−T s,K+1

XK
[t′,t)

) (2.3a)

subject to

∑
K∈GS

(PK
t +PKUK

t )=Dt ∀t∈T (2.3b)

∑
K∈GS

rgt ≥Rt ∀t∈T (2.3c)

PK
t +RK

t ≤(P
K−PK)UK

t

−(P
K−SUK)V K

t ∀t∈T ,∀K∈GS
1 (2.3d)

PK
t +RK

t ≤(P
K−PK)UK

t

−(P
K−SDK)WK

t+1 ∀t∈T ,∀K∈GS
1 (2.3e)

PK
t +RK

t ≤(P
K−PK)UK

t

−(P
K−SUK)V K

t

−(P
K−SDK)WK

t+1 ∀t∈T ,∀K∈GS
>1 (2.3f)

PK
t +RK

t −PK
t−1≤RUK ∀t∈T ,∀g∈GS (2.3g)

PK
t−1−PK

t ≤RDK ∀t∈T ,∀g∈GS (2.3h)

UK
t −UK

t−1=V K
t −WK

t+1 ∀t∈T ,∀K∈GS (2.3i)

t∑
i=t−UTK+1

V K
i ≤UK

t ∀t∈[UTK,T ],∀K∈GS (2.3j)
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t∑
i=t−DTK+1

WK
i ≤|K|−UK

t ∀t∈[DTK,T ],∀K∈GS (2.3k)

t−DTK∑
t′=t−TCK+1

XK
[t′,t)≤V K

t ∀t∈T ,∀K∈GS (2.3l)

t+TCK−11∑
t′=t+DTK

XK
[t′,t)≤WK

t ∀t∈T ,∀K∈GS (2.3m)

PK
t ,RK

t ∈R+ ∀t∈T ,∀K∈GS (2.3n)

UK
t ,V

K
t ,WK

t ∈{0,...,|K|} ∀t∈T ,∀K∈GS (2.3o)

XK
[t′,t)∈{0,...,|K|} ∀[t′,t)∈XK,∀K∈GS (2.3p)

Here, the objective function (2.3a) minimizes total cost production, while

Constraints (2.3b) and (2.3c) ensure demand and reserve requirements are met,

and the remaining constraints describe the technical constraints for the aggregated

generators.

However, as mentioned above, this method works with generator without any

ramping constraint. If otherwise, the aggregated solution may not be disaggreageted

into a feasible schedule. Consider the following example with two generators identical

parameters. Assume that, RU = RD = 10, SU = SD = P = 20, and P = 40. In

aggregated model we will have the following transformation: UK, V K,WK ∈ {0, 1, 2},

where RUK = RDK = 20, SUK = SDK = PK = 40, and P
K

= 80. Given these

settings the following solution is feasible for the aggregated UC model:

uK =


2

2

1

 , pK =


80

60

40

 . (2.4)

At time period 1 both generators must work at their maximum capacity, and at

period 1 one generator must work at its maximum capacity. Then, there is at least
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one generator that works at its full capacity in these 3 periods. By decomposing this

solution, we get the following:

u =


1 1

1 1

1 0

 , p =


40 40

40 20

40 0

 . (2.5)

Clearly, this disaggregated solution is not feasible, because the second generator

violates the ramping constraint.

2.4 Cut Generation Approach

2.4.1 General Cut Approach

To model the UC with non-redundant ramping constraints packing dispatch polytopes

could be used to reformulate the constraints in a compact (polynomial-sized)

formulation, see Knueven et al., 2018. If a binary decision variable, y[a,b] shows

generator is committed in time interval [a, b], and I shows all possible intervals, then

for every t ∈ T constraints can be reformulated as:

A[a,b]p[a,b] + A
[a,b]

p[a,b] ≤ y[a,b]b
[a,b] ∀[a, b] ∈ I (2.6a)∑

[a,b]∈I

p[a,b] = p (2.6b)

∑
[a,b]∈I

p[a,b] = p (2.6c)

∑
{[a,b]∈I | t∈[a,b+DT ]}

y[a,b] ≤ 1 (2.6d)

y[a,b] ≥ 0 ∀[a, b] ∈ I (2.6e)

(p[a,b], p[a,b]) ∈ R2T
+ ∀[a, b] ∈ I (2.6f)
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Here, p
[a,b]
t represents power produced by the generator at time t, p

[a,b]
t represents

the maximum available power at time t. This reformulation could be used to used to

add a feasibility cut to the aggregated model.

Please note that, due to involvement of the large number of possible intervals (I),

formulation (2.6) is too big and computationally hard to solve. Therefore, instead of

using it directly we use it a tool for generating cuts.

Let (p∗, p∗, U∗, V ∗,W ∗) be a solution for the aggregated three-bin model. Let e

be the properly sized vector of 1’s. Consider the following sub problem.

SP z∗=min(z) (2.7a)

subject to

α A
[a,b]
t p

[a,b]
t +A

[a,b]

t p
[a,b]
t ≤

≤y[a,b]b
[a.b]

+ze ∀[a,b]∈I,∀t∈T (2.7b)

β
∑

{[a,b]∈I|t∈[a,b+DT ]}

y[a,b]≤|K|+z ∀t∈T (2.7c)

γ
∑

[a,b]∈I

p
[a,b]
t =p∗t ∀t∈T (2.7d)

δ
∑

[a,b]∈I

p
[a,b]
t =p∗t ∀t∈T (2.7e)

ϵ
∑

{[a,b]∈I|t∈[a,b]}

y[a,b]=U∗
t ∀t∈T (2.7f)

ζ
∑

{[a,b]∈I|t=a}

y[a,b]=V ∗
t ∀t∈T (2.7g)

η
∑

{[a,b]∈I|t=b+1}

y[a,b]=W ∗
t ∀t∈T (2.7h)

z∈R+,(p
[a,b],p[a,b])∈R2T

+ ,y[a,b]∈R+ ∀[a,b]∈I (2.7i)
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If the solution of the aggregated three-bin model (p∗, p∗, U∗, V ∗,W ∗) is feasible,

in other words decomposible, then the optimal solution for model (2.7) would be

zero. Otherwise, if z∗ > 0 then we can use the duals of constraints (α, β, γ, δ, ϵ, ζ, η)

to generate a cut for the aggregated three-bin model (Master problem). By strong

duality, z∗ = (β∗)T e+(γ∗)Tp∗+(δ∗)Tp∗+(ϵ∗)TU∗+(ζ∗)TV ∗+(η∗)TW ∗ > 0. Therefore,

by adding cut

(β∗)T e+ (γ∗)Tp∗ + (δ∗)Tp∗ + (ϵ∗)TU∗ + (ζ∗)TV ∗ + (η∗)TW ∗ ≤ 0,

we can cut of the solution (p∗, p∗, U∗, V ∗,W ∗) which is not a feasible solution for a

decomposed model. We will refer this cut as a feasibility cut (FC). These feasibility

cuts will be added to the master problem iteratively until z∗ for each group of identical

generators are zero. The cut generation procedure is visualized in Figure 2.1.

2.4.2 Enhancements

Commonly Found Cuts

In order to reduce the computational time, the generated feasibility cuts can be

analyzed to detect their pattern. Then, they could be added to the master problem

to decrease the number of the solved sub problems. Indeed, it was observed that some

of the feasibility cuts follow a specific pattern. Assume that, A and B are defined as

following:

A =

min(m,t)+1∑
i=0

(SUK − PK + iRUK − (P
K − P g))vKt−i

B =

min(n,T−t+1)+1∑
j=0

(SUK − P g + jRDK − (P
K − PK))wK

t+1+j
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Figure 2.1: Visualization of enhanced cut generation procedure.
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where

m = min(

⌈
P

g − SUK

RUK

⌉
, UTK +DTK + 1)

n = min(

⌈
P

K − SDK

RDK

⌉
, UTK +DTK)

Then, the pattern of the cuts could be shown by these two group of constraints:

pKt + rKt ≤ (P
K − PK)uK

t + A ∀K ∈ GS,∀t ∈ T (2.9a)

pKt + rKt ≤ (P
K − PK)uK

t +B ∀K ∈ GS,∀t ∈ T (2.9b)

In the first cut, the generators’ ramp-up limit (RU), startup rate (SU), and

total operation time were used to set the upper bound to the maximum possible

energy output, whereas, ramp-down limit (RD), shutdown rate (SD) were used for

the second. Here, GS represents the group of slow-ramping generators which have

identical characteristics.

Simultaneous On/Off

The computational time could be further decreased by considering a special case with

on/off status of the generators. We first provide a theorem regarding the relationship

between aggregated schedules and the power output of identical generators.

Theorem 2.1. Consider identical generators g1, g2, . . . , gn ∈ GS, and assume that

in optimal solution of the aggregated model (MP ) all of them are on or off at the

same time. Then, the solution to the aggregated model is feasible in the disaggregated

model.

Proof. Assume that there are n identical generators with the set N and pKt shows the

aggregated power generation at time t, where pKt =
∑

g∈N pgt . Similarly, RUK and
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RDK shows the aggregated ramping limits, where RUK = n×RU and RDK = n×RD.

After solving the master problem (MP ), the resulting aggregated generator schedule

should satisfies the following ramping constraints.

pKt − pKt−1 ≤ RUK ∀t ∈ T (2.10a)

pKt−1 − pKt ≤ RDK ∀t ∈ T (2.10b)

If all generators are on and off at the same time, we can choose the production

of each individual generator in a way that for every time period t the aggregated

production pKt is equally divided between n identical generators, where pgt = pKt /n.

In this case, by dividing both side of inequalities in (2.10) we will get:

pgt − pgt−1 ≤ RU ∀g ∈ N ,∀t ∈ T (2.11a)

pgt−1 − pgt ≤ RD ∀g ∈ N ,∀t ∈ T (2.11b)

Inequalities in (2.11) show that the disaggregated generator schedule is also

satisfying ramping limitations. ■

From the Theorem 2.1, if we have aggregated schedule with all generators are on

or off at the same time (S.O.F), then there is no need to solve the sup problem (SP )

in this case, as it already leads to a feasible disaggregated schedule. For improving

the computational time, the solution approach could be updated to avoid solving the

sub problem if such special case is detected.

2.5 Performance Comparison

2.5.1 Comparison Overview

We demonstrate the performance of the new reformulation which uses aggregation

with the “3-bin” formulation proposed by Knueven et al., 2020a. Note the proposed
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reformulation will have three main section. In first section, we have constraints for

non-identical thermal generators (G̸∼), in second section we will have the proposed

approach for identical slow-ramping generators (GS), and in third section we will use

the approach proposed by Knueven et al., 2017 to model fast-ramping generators

(GF ). These three models have common demand and reserve constraints, whereas

their corresponding production costs are minimized in the objective function (see the

Appendix for details). From now on, we will be referring this reformulated model as

“R”. We will refer the improved model as “R+SOF+CFC”. In the improved model

we are considering simultaneous on/off cases (SOF) and adding commonly found cuts

(CFC) to the model for increasing the performance.

2.5.2 Data Sets Description

Two unit commitment test sets from the literature were used to test the effectiveness

of the proposed aggregation approach. The first data set was taken from Ostrowski

et al., 2012. We refer to these instances as the ”Academic” instances, they are

constructed by replicating the thermal generators originally introduced in Carrión

and Arroyo, 2006b and Kazarlis et al., 1996. Replication of these generator have

been used to generate large UC instances in many UC studies Borghetti et al., 2001;

Borghetti et al., 2003; Feizollahi et al., 2015; Frangioni and Gentile, 2006, 2009;

Frangioni et al., 2008a, 2008b; Jabr, 2012; Morales-España et al., 2015; Yang et al.,

2015; Yang et al., 2014. There are 8 different generators in these data set with three

fast-ramping generators. We create 20 instance where total number of generators in

each instance range from 28 to 187 by replicating the generators, see Table 2.1. The

reserve level was set to be 3% of system demand, where hourly demand was set to be

a percentage of total system capacity ranging from 58% to 91%. Scheduling horizon

of 24 hour was used with time unit set to 1 hour. For further detail please refer

to Knueven et al., 2017.
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The second set UC instances are based on real-world data acquired from the

California Independent System Operator (CAISO). There 20 instances with 610

thermal generators each. Among them 400 are unique generators, 210 are fast-

ramping generators, and there are no identical slow-ramping generators in the hourly

UC instances. However, when considering a 15-minute time horizon, many of

these generators became slow-ramping. . Generators parameters (RU,RD,UT,DT )

were modified in accordance with the unit time, which eliminated all fast-ramping

generators. The resulting data set had 210 slow-ramping generator which can be

clustered into 66 groups. Eliminating fast-ramping generators from the data set

helped to test the proposed approach solely without taking benefit of computation

performance improvement introduced by Knueven et al., 2017. Spinning reserve was

set to 3% of demand. Wind supply with 0%, 1%, 3%, and 5% of the demand were

used, where they at as negative demand. Besides, a theoretical 40% wind supply was

tested to check its effect on solution time. For further detail about these data set

please refer to Knueven et al., 2020a.

All computational experiments were conducted on a Lenovo T480s laptop with

Intel i7-8550U processor, for a total of 4 cores, 8 threads, an 16GB of RAM, running

on the Windows 10 operating system. The Gurobi 8.0.1 MILP solver was used in all

experiments.

2.5.3 Academic Instances

For all test cases a time limit of two hours (7200 sec.) was imposed. If the solution

couldn’t be found in given time we report the percentage optimality gap in the

parenthesis. The Academic instances are computationally easy compared to CAISO

instances. Except three instances the all instances in the data set are solvable by

“3-bin” model. Average run time of “3-bin” model for the seven solvable instances

are approximately 381 seconds, see Table 2.2.
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Table 2.1: Academic Instances: Number of Generators of Each Type

Generator

1 2 3 4 5 6 7 8

1 12 11 0 0 1 4 0 0 28
2 13 15 2 0 4 0 0 1 35
3 15 13 2 6 3 1 1 3 44
4 15 11 0 1 4 5 6 3 45
5 15 13 3 7 5 3 2 1 49
6 10 10 2 5 7 5 6 5 50
7 17 16 1 3 1 7 2 4 51
8 17 10 6 5 2 1 3 7 51
9 12 17 4 7 5 2 0 5 52
10 13 12 5 7 2 5 4 6 54
11 46 45 8 0 5 0 12 16 132
12 40 54 14 8 3 15 9 13 156
13 50 41 19 11 4 4 12 15 156
14 51 58 17 19 16 1 2 1 165
15 43 46 17 15 13 15 6 12 167
16 50 59 8 15 1 18 4 17 172
17 53 50 17 15 16 5 14 12 182
18 45 57 19 7 19 19 5 11 182
19 58 50 15 7 16 18 7 12 183
20 55 48 18 5 18 17 15 11 187

Problem
Total
Gens
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On the other hand, reformulated model was able to solve all test instances with

the mean value of 28.4 seconds. it appears that, the solved sub-problem (SP) and

added feasibility cuts (FC) are not related to total number of generators in each

instances. The improved model was able to solve all instances even faster with an

average of 16.7 seconds. The added commonly found cuts (CFC) helped to reduce

number of sup-problems and added feasibility cuts. In all instances the reformulation

helped to reduce the scale of the problem significantly. We reported number of the

rows (Row), columns (Col), and non zero entries (NZ) in the pre-processed model

in Table 2.3. For the “3-bin” model we can see that the scale in increasing as the

number of identical generators increase in the instances. However, it had slow to no

effect to the reformulated model. The improved model had slightly larger scale which

is correlated with added CFC.

2.5.4 CAISO Instances

For CAISO instances only 6 of the 20 instances were able to be solved using the

base formulation, see Table 2.4. However, all of the instances could be solved by the

proposed model with an average time of 1435 seconds. In each of the instances, the

number of the added feasibility cuts is no more than 10. One reason for having less

feasibility cuts is added commonly found cuts, as CFC includes some of the feasibly

cuts. The second reason is that the majority of the solutions found by sub problems

were decomposable; approximately half of those cases could be detected and avoided

by checking simultaneous on/off cases (SOF).

For the “3-bin” model number of rows, columns, and non-zero elements were

82938, 74993, and 402296 respectively. Where it was 64182, 58716, and 323461 for

the proposed model. The difference in the scale was around 20%, however, it had a

significant affect on the performance.
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2.6 Conclusion

Having identical generators in power system network can cause symmetry in the UC

MILP formulation. It cause redundancy in search space therefore slows down solution

process, which is usually the case in the real-world UC instances. Our cut generation

method coupled with aggregation approach helps to eliminate symmetry without

sacrificing feasibility or optimality of the found schedule. We have shown that, the

proposed method could help to reduce computational time significantly where the

traditional methods took longer time to solve or fail to find the optimal solution.
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Table 2.2: Computational Results for Academic Instances

3-bin R R + SOF + CFC

Instance Time SP FC Time SP FC SOF CFC Time

1 146 38 6 6 24 4 0 142 4
2 (0.016) 80 10 8 60 5 0 284 6
3 207 252 22 20 183 20 3 426 17
4 47 104 17 12 52 5 0 284 5
5 2443 195 34 30 145 17 0 355 18
6 57 198 29 31 184 16 14 426 15
7 37 96 10 8 56 4 0 284 5
8 143 312 54 64 166 13 2 426 21
9 416 282 57 45 90 13 0 426 11
10 (0.015) 210 37 33 203 20 7 426 17
11 326 160 21 14 76 8 4 355 10
12 (0.013) 198 31 22 198 27 0 426 19
13 755 282 35 37 203 28 1 426 20
14 399 180 34 20 180 35 0 355 23
15 153 198 43 41 169 30 5 426 32
16 82 165 31 30 90 8 0 355 12
17 73 270 44 41 239 40 1 426 27
18 63 228 39 33 143 18 7 426 22
19 1040 246 38 29 119 17 1 426 17
20 83 234 48 44 187 36 11 426 32
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Table 2.3: Problems Scale for Academic Instances

3-bin R R + SOF + CFC

Instance Row Col NZ Row Col NZ Row Col NZ

1 3973 4364 26247 655 863 3998 747 863 4546
2 5085 5293 33274 817 979 4538 1001 979 5718
3 6388 6805 38693 1334 1634 7349 1564 1634 8845
4 6276 7083 36112 1163 1418 6446 1301 1418 7310
5 7162 7823 42532 1264 1610 6911 1494 1610 8407
6 7093 8009 38947 1338 1634 7259 1568 1634 8755
7 7147 7978 41741 1366 1634 6995 1472 1634 8567
8 7306 7851 42070 1336 1634 7323 1566 1634 8819
9 7559 8091 44444 1231 1445 6700 1431 1445 8112
10 7696 8576 42885 1340 1634 7271 1570 1634 8767
11 18473 19732 102163 1058 1192 5613 1210 1192 6697
12 21992 24423 118044 1336 1634 7247 1566 1634 8743
13 22245 24151 119919 1338 1634 7259 1568 1634 8755
14 24303 25891 138155 1264 1610 6987 1494 1610 8483
15 23939 26506 128219 1338 1634 7247 1566 1634 8743
16 24187 26703 129789 1366 1634 7163 1520 1634 8679
17 26156 28478 140737 1336 1634 7247 1566 1634 8743
18 26006 28869 140034 1338 1634 7259 1568 1634 8755
19 25998 28808 139917 1366 1634 7331 1566 1634 8743
20 26538 29639 140940 1338 1634 7259 1568 1634 8755
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Table 2.4: Computational Results for CAISO Instances

3-bin R + SOF + CFC

Instance Time SP FC SOF CFC Time

2014-09-01 0% 4306 1131 0 651 1631 540
2014-12-01 0% (0.026) 1307 1 673 1631 1366
2015-03-01 0% (0.016) 1480 1 566 1631 675
2015-06-01 0% (0.032) 1123 1 329 1631 1588
2014-09-01 1% 4643 857 1 463 1631 526
2014-12-01 1% (0.012) 1651 1 791 1631 1152
2015-03-01 1% 6025 2000 3 828 1631 1164
2015-06-01 1% (0.013) 1236 0 414 1631 1314
2014-09-01 3% (0.011) 1834 4 1070 1631 715
2014-12-01 3% (0.012) 1328 0 784 1631 935
2015-03-01 3% 5732 2265 7 1101 1631 1156
2015-06-01 3% (0.019) 1850 1 658 1631 1890
2014-09-01 5% 3815 1053 5 531 1631 469
2014-12-01 5% (0.012) 1320 1 594 1631 859
2015-03-01 5% 6041 1443 4 735 1631 1299
2015-06-01 5% (0.021) 1727 2 583 1631 2064
2014-09-01 40% (0.032) 1393 10 1445 1631 3345
2014-12-01 40% (0.042) 1575 10 1725 1631 4570
2015-03-01 40% (0.012) 1166 4 1012 1631 1301
2015-06-01 40% (0.026) 1313 8 1327 1631 1773
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Chapter 3

Exploiting Symmetry for the Job

Sequencing and Tool Switching

Problem

3.1 Introduction

Flexible Manufacturing System (FMS) is an automated production method that is

developed to increase efficiency and flexibility in production planning. FMS is mainly

applied in metal working industries to automate production and in microelectronic

companies for memory allocation McGeoch and Sleator, 1991; Tang and Denardo,

1988a.

Tool management plays a critical role for achieving high productivity in FMS

Konak et al., 2008. Early researches refer to this class of problem as a Loading

problem Eilon and Christofides, 1971; Rupe and Kuo, 1997; Stecke and Solberg,

1981, many recent studies refer to it as Job Sequencing and Tool Switching problem

(SSP) Calmels, 2019, 2022; da Silva et al., 2021. In a general SSP, different jobs

are processed in a single machine. Each job requires a different set of tools and

the machine’s tool magazine needs to be adjusted accordingly. It is not possible to
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process all jobs without switching the tools, because of the limited magazine capacity.

Therefore, the jobs need to be ordered in a way that minimizes the total number of

tool switch. The sequencing problem (SP) was proven to be NP -hard Crama et al.,

1994, therefore SSP is also belong to NP -hard problem class, as it is more general

form of SP.

Symmetry in SSP was first studied by Ghiani et al., 2007. They observed that a

sequence of jobs and its reverse order sequence requires the same number of tool

switches. They used this property to improve the branch-and-bound procedure

developed by Laporte et al., 2004. The same symmetry property was used by Ghiani

et al., 2010 to improve the branch-and-cut procedure and generate a better lower

bound. da Silva et al., 2021 introduced a symmetry-breaking constraint to enforce

the job that requires the most number of tools to be processed in the first half of

the processing sequence. It helped to partially eliminate the symmetrical property

introduced by Ghiani et al., 2007, and reduced the search space.

In this study, we improve symmetry exploitation by introducing new symmetry-

breaking cuts. The SSP was reformulated as a job grouping and sequencing as a

multi-commodity flow. One source of symmetry is to have multiple jobs with each

use different set of tools and the union of these tool sets doesn’t exceed the magazine

capacity. In this case, any processing order of these jobs would not change the number

of switch count and it will lead to symmetrical and non-dominant solutions. This case

is prevented by reformulation of the model. Another type of symmetry is caused by

having a job that could be processed in multiple position of the processing order, as

the tools required for that job is a subset of multiple magazine setups. The symmetry-

breaking cuts are added to the model to eliminate this and other symmetry types to

reduce the search space and improve the computation time. A computation study was

conducted by using the available data in the literature which has 1050 test instances

to test the performance of the proposed approach.
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3.2 Problem Description

Let N = {1, . . . , N} represents the set of jobs that need to be processed in a single

machine. Each job (i) requires a set of tools (Ti) from the tool set T = {1, . . . ,M}

to be loaded into the magazine before processing the job. The machine has tool

capacity C, and for feasibility, it is assumed that |Ti| ≤ C. The objective is to find

the sequence of jobs that minimizes the tool number of switches.

The assumptions are the following: (I) the tool sockets are indifferent and each

tool requires a single slot, (II) tool changing times are constant and are identical for

all tools, (III) the jobs and the required tools for each job are known in advance, (IV)

the required tools for any job doesn’t exceed the magazine capacity, (V) the tools

do not break or wear out, (VI) the first job in the sequence doesn’t require any tool

switch.

An example of an SSP instance is shown in Table 3.1. The first row shows the jobs

and columns represent the required tools for each job (Ti). In this example, there are

8 tools in total and the magazine capacity is 7. Table 3.2 shows the optimal solution

of the instance presented in Table 3.1. In the first row, the optimal sequence of the

jobs is given. The unloaded tools are underlined and the loaded tools are given in

bold. First, the magazine needs to be loaded with the first six tools and the first

six jobs can be processed. Then after job 7, tool 1 need to be replaced with 8. The

remaining six jobs can be processed without any tool switches. The last row in Table

3.2 shows the number of tools switch before each job. In total, two switches are

required to process all jobs.

In fact, the solution presented in Table 3.1 is only one of the alternative solutions

among many. From the alternative visualization of the same instance shown in Table

3.3, it can be clearly seen that any permutation of the first or last six jobs within

itself would lead to the same results. Switching the order of the first and last six jobs

would also not change the total number of switches. In total, for the given instance,
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Table 3.1: An example of SSP instance, visualization (a).

Jobs 1 2 3 4 5 6 7 8 9 10 11 12 13

Tools 1 1 1 1 1 1 2 2 2 2 2 2 3
2 2 2 2 2 3 3 3 3 3 3 4 4
3 3 3 3 4 4 4 4 4 4 5 5 5
4 4 4 5 5 5 5 5 5 6 6 6 6
5 5 6 6 6 6 6 6 7 7 7 7 7
6 7 7 7 7 7 7 8 8 8 8 8 8

Table 3.2: The optimal solution of SSP instance shown in Table 3.1.

Jobs 1 2 3 4 5 6 7 8 9 10 11 12 13

Tools 1 1 1 1 1 1 1 2 2 2 2 2 2
2 2 2 2 2 2 2 3 3 3 3 3 3
3 3 3 3 3 3 3 4 4 4 4 4 4
4 4 4 4 4 4 4 5 5 5 5 5 5
5 5 5 5 5 5 5 6 6 6 6 6 6
6 6 6 6 6 6 6 7 7 7 7 7 7
7 7 7 7 7 7 7 8 8 8 8 8 8

Switch 0 0 0 0 0 0 0 1 0 0 0 0 0
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Table 3.3: An example of SSP instance, visualization (b).

Jobs

Tools 1 2 3 4 5 6 7 8 9 10 11 12 13

1 • • • • • • ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝

2 • • • • • ⃝ • • • • • • ⃝

3 • • • • ⃝ • • • • • • ⃝ •

4 • • • ⃝ • • • • • • ⃝ • •

5 • • ⃝ • • • • • • ⃝ • • •

6 • ⃝ • • • • • • ⃝ • • • •

7 ⃝ • • • • • • ⃝ • • • • •

8 ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ ⃝ • • • • • •

Note: If tool t is required for job i (•) symbol is used, otherwise (⃝) is used.
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there are at least 6! · 6! · 2 · 13 =13,478,400 alternative or non-dominating optimal

solutions.

3.3 Literature Review

The SSP was formally introduced by Tang and Denardo, 1988a. They demonstrated

an exact method to solve SSP and tightened the constraints for better performance.

Upon the slow performance of the exact method, they developed a Keep Tool Needed

Soonest (KTNS) algorithm to find minimum tool switches. This algorithm works

under the condition that the order of jobs is known. By combining this method

with a Greedy Perturbation (GP) heuristic they could solve small instances very fast.

However, it was inefficient for large instances.

Following this study different variants of SSP were studied in the literature. In

tool size variation non-uniform tool sizes were considered with the relaxed capacity

constraints Crama et al., 2007; Hirvikorpi, Salonen, et al., 2006; Matzliach and

Tzur, 2000; Rupe and Kuo, 1997. Multiple machines variation specially focused

on parallel machines with uniform or non-uniform magazine capacities Fathi and

Barnette, 2002; Gökgür et al., 2018; Özpeynirci et al., 2016; Van Hop and Nagarur,

2004. Multi-objective variation considers the objective of minimizing tool switching

instants and minimizing the number of tool switches simultaneously Baykasoğlu and

Ozsoydan, 2017, 2018; Mauergauz, 2017; Solimanpur and Rastgordani, 2012. In tool

wear variation tool lifetimes are assumed to be either deterministic Dadashi et al.,

2016; Hirvikorpi, Nevalainen, et al., 2006 or stochastic Farughi et al., 2017; Hirvikorpi

et al., 2007. In this study, we will focus on uniform SSP, which is the most popular

variation of SSP Calmels, 2019. In this variation tool sizes are uniform and sequence-

independent set-up times are used Chaves et al., 2016; Paiva and Carvalho, 2017;

Schwerdfeger and Boysen, 2017; Tang and Denardo, 1988a.

In terms of solution methods used in the uniform SSP literature, heuristic

algorithms were used in the majority of the studies Ahmadi et al., 2018; Al-Fawzan
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and Al-Sultan, 2003; Amaya et al., 2020; Chaves et al., 2016; Mecler et al., 2021; Paiva

and Carvalho, 2017; Salonen et al., 2006; Schwerdfeger and Boysen, 2017. However,

these methods do not guarantee the optimality of the solution, and in general, they

are focused on finding a better sub-optimal solution in a reasonably short time frame.

Therefore, in this study, we focus on finding an efficient exact method and compared

it with the existing literature.

In the uniform SPP literature, there are very few studies that proposed an exact

method to solve the problem. Following the mentioned work of Tang and Denardo,

1988a, Laporte et al., 2004 proposed a reformulation of SSP that provides a better

lower bound compared to Tang 1988. Their model is effective with instances up to

25 jobs.

Some of the studies used branch-and-bound methods to improve the solution

process. Karakayalı and Azizoğlu, 2006 proposed a branch-and-bound algorithm

that is refined by precedence relations and combined with lower and upper-bound

improvement techniques. Ghiani et al., 2007 explored symmetrical property of SSP

to improve branch-and-bound algorithm developed by Laporte et al., 2004. The same

authors proposed a reformulation of SSP as a nonlinear least cost hamiltonian cycle

problem and generated a branch-and-cut algorithm Ghiani et al., 2010. This method

was able to solve several instances with 45 jobs that couldn’t be solved by the previous

methods presented in the literature.

More recent studies focused on developing a tighter formulation of SSP. Catanzaro

et al., 2015 proposed three MIP models that were tighter than the model proposed

by Laporte et al., 2004. They showed that their approach improved the lower bound,

compared to the previous studies. However, their models were unable to solve large

instances, due to an increased number of variables and valid constraints. da Silva

et al., 2021 proposed a multi-commodity flow model presented for SSP. Their approach

helped to improve Linear Programming (LP) relaxation and therefore has a better

lower bound compared to previous studies.
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Please note that minimizing the number of tool switching instants problem (TSIP)

is different than SSP. This class of problem also is referred to as the job grouping

problem in the earlier literature Ham, 1985; Kusiak, 1986; Tang and Denardo, 1988b.

TSIP is a problem in P, and a polynomial algorithm for TSIP was developed by

Adjiashvili et al., 2015. The branch-and-bound based algorithm developed by Furrer

and Mütze, 2017 could solve TSIP with 2650 jobs in less than 1 second.

Contrary to TSIP, SSP is an NP -hard problem Crama et al., 1994; Karakayalı

and Azizoğlu, 2006. The exact formulations used for solving SSP are not efficient in

terms of solution time. There is a still need for improving existing exact methods and

tighter formulations Calmels, 2019.

3.4 New MILP reformulation for the SSP

3.4.1 Job Grouping and Sequencing

Let B = {1, . . . , K} represents a set of job groups or bins where the jobs are clustered.

First, the main decision variables and constraints of the proposed JGS model are

presented. Then, Symmetry Breaking Cuts and Performance Improvement Cuts,

which are added to the JGS model to reduce the search space and speed up the

solution process are shown.

Decision Variables:

xik Binary, 1 if job i is placed at bin k; 0 otherwise.

ytk Binary, 1 if tool t is in bin k; 0 otherwise.

vtk Binary, 1 if tool t is loaded to bin k; 0 otherwise.

wtk Binary, 1 if tool t is removed from bin k; 0 otherwise.
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JGS Model

min
T∑
t=1

K∑
k=2

vtk (3.1a)

s.t.
∑
k∈B

xik = 1 ∀i ∈ N (3.1b)

∑
t∈T

ytk = C ∀k ∈ B (3.1c)

xik ≤ ytk ∀t ∈ Ti,∀k ∈ B,∀i ∈ N (3.1d)

ytk = yt(k−1) + vtk − wtk ∀t ∈ T ,∀k ∈ B. (3.1e)

Here, the objective function (3.1a) minimizes the number of tool switches starting

from the second bin. Constraint (3.1b) ensures every job is placed in one of the

bins, Constraint (3.1c) ensures number of the tools in the magazine is equal to the

capacity, Constraint (3.1d) ensures that if a job placed in a bin then all necessary

tools required for that job are available, Constraint (3.1e) is used for ensuring the

relationship between loaded, unloaded and existing tools.

Symmetry Breaking Cuts

If a job could be done earlier then it shouldn’t be delayed. The job need to be

processed as soon as all necessary tools are available. Constraint (1f) ensures this

condition:

xik ≤
∑
t∈Ti

vtk ∀k ∈ B,∀i ∈ N . (1f)

If no tool is added to a bin then that bin is redundant. Constraint (1g) ensures that

redundant bins are placed towards the last bins:

C
∑
t

vtk ≥
∑
t

vt(k+1) ∀k ∈ B. (1g)
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If no tool is removed from a bin, then it means that the following bin is redundant.

Constraint (1h) ensures that, if no tool is removed from a bin at position k then don’t

remove any tool from later bins:

C
∑
t

wtk ≥
∑
t

wt(k+1) ∀k ∈ B. (1h)

Constraint (1i) ensures that, if a tool could be removed from the magazine then it is

removed as soon as possible:

∑
(i| t∈Ti)

xi(k−1) ≥ wtk ∀t ∈ T ,∀k ∈ B. (1i)

If job i is not done until bin k and at bin k all necessary tools for job i are available,

then Constraint (1j) ensures that job i is placed at bin k:

xik ≥ 1−
k−1∑
b=1

xib +
∑
t∈Ti

ytk − |Ti| ∀k ∈ B,∀i ∈ N . (1j)

Constraint (1j) could be also written alternative, as:

k∑
b=1

xib ≥
∑
t∈Ti

ytk − |Ti|+ 1 ∀k ∈ B,∀i ∈ N . (1k)

Performance Improvement Cuts

Assume that a binary decision variable zk is equal to 1 if, there is at least one job

placed at bin k, 0 otherwise. Two more constraints are required for linking this new

decision variable to the rest of the model:

zk ≥ xik ∀k ∈ B,∀i ∈ N (1l)

zk ≤
∑
t

vtk ∀k ∈ B. (1m)
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Constraint (1l) makes sure that if there is at least one job in bin k, then bin k should

be available, Constraint (1m) ensures that if no tools are added to bin k, then bin k is

not available. After taking care of the new decision variable, the following constraints

could be considered for tightening the proposed formulation:

zk ≥ zk+1 ∀k ∈ B. (1n)

Constraint (1n) ensures that, if a bin is not utilized then later bins are also not

unitized. This condition will prevent empty bins to be scattered among the bins,

instead, they will be accumulated towards the end of the order.

The next two cuts are generated by using graph theory. Assume that, G = (V,E)

has V = N and edges between vertices if two jobs couldn’t be placed in the same

bin. The limited magazine capacity doesn’t allow job i and j to be placed into the

same bin if the |Ti ∪ Tj| > C condition is satisfied. Assume that L = {1, . . . , L}

represents set of cliques, and Ol represents set of jobs in the clique l, where l ∈ L,

and P = {1, . . . ,maxl {Ol}}. By using these notations the following cuts could be

defined:

zk ≥
∑
i∈Ol

xik ∀l ∈ L,∀k ∈ B (1o)

zk = 1 ∀k ∈ P. (1p)

Constraint (1o) ensures that the jobs that form a clique in graph G are not placed in

the same bin. Constraint (1p) ensures that the number of available bins is at least

equal to maximal clique size, and the available bins are positioned first among all

bins. All decision variables in this model are set to binary:

xik, ytk, vtk, wtk, zk ∈ {0, 1} ∀t ∈ T ,∀k ∈ B,∀i ∈ N . (1q)
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3.4.2 Job Grouping and Sequencing as a Multi-commodity

Flow

The symmetry-breaking and tightening cuts in JGS model improves the upper-bound

by reducing the search space. This model could be further improved by adopting a

multi-commodity flow approach developed by da Silva et al., 2021, which will help to

have better lower-bound.

Consider the graph in Figure 3.1. Here, the blue nodes S,R,D represent starting

tools, tool repository, and detached tools, respectively. The red nodes are used for

bins and the green nodes for jobs. The straight arrows represent the flow of tools,

and the dashed arrows show the possible placement of jobs (N ) into bins (B). A tool

sent to the repository (R) could be re-used, however, detached tools (D) can not be

used again.

Assume that a binary decision variable fabt is equal to 1, if tool t is transferred

from node a to b, where a ∈ {S,R,B} and b ∈ {R,D,B, }; 0 otherwise. The new

Job Grouping and Sequencing as a Multi-commodity Flow model could be written as

follows:

JGSMF Model

min
∑
t∈T

K−1∑
k=1

fkDt +
∑
t∈T

K−2∑
k=1

fkRt (3.2a)

s.t.
∑
k∈B

xik = 1 ∀i ∈ N (3.2b)

∑
t∈T

f(k−1)kt = C ∀k ∈ B (3.2c)

xik ≤ f(k−1)kt ∀t ∈ Ti,∀k ∈ B,∀i ∈ N

(3.2d)

fS1t + fSRt = 1 ∀t ∈ T (3.2e)
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Figure 3.1: Multi-Commodity Flow Graph.
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∑
k∈B

fkDt = 1 ∀t ∈ T (3.2f)

f(k−1)kt + fRkt = fk(k+1)t + fkDt + fkDt ∀t ∈ T ,∀k ∈ B (3.2g)

f(K−2)(K−1)t + fR(K−1)t = f(K−1)Kt + f(K−1)Dt ∀t ∈ T (3.2h)

f(K−1)Kt = fKDt ∀t ∈ T (3.2i)

fSRt +
K−2∑
k=1

fkRt =
K−1∑
k=1

fRkt ∀t ∈ T (3.2j)

xik ≤
∑
t∈Ti

fR(k−1)t ∀k ∈ B,∀i ∈ N (3.2k)

C
∑
t∈T

fR(k−1)t ≥
∑
t∈T

fRkt ∀k ∈ B (3.2l)

C
∑
t∈T

f(k−1)Dt ≥
∑
t∈T

fkDt ∀k ∈ B (3.2m)

∑
(i| t∈Ti)

xi(k−1) ≥ f(k−1)Dt ∀t ∈ T ,∀k ∈ B (3.2n)

k∑
b=1

xib ≥
∑
t∈Ti

f(k−1)kt − |Ti|+ 1 ∀k ∈ B,∀i ∈ N (3.2o)

zk ≥ xik ∀k ∈ B,∀i ∈ N (3.2p)

zk ≤
∑
t∈T

f(k−1)Dt ∀k ∈ B (3.2q)

zk ≥ zk+1 ∀k ∈ B (3.2r)

zk ≥
∑
i∈Ol

xik ∀l ∈ L,∀k ∈ B (3.2s)

zk = 1 ∀k ∈ P (3.2t)

xik, zk, fabt ∈ {0, 1} ∀(a, b) ∈ {S,R,D,B}, ∀t ∈ T ,∀k ∈ B,∀i ∈ N .

(3.2u)

Here, the objective function (3.2a) minimizes the flow on arcs (k,D) and (k,R),

k ∈ B, which corresponds to tool switches. Constraint (3.2b) ensures that every

job is placed into one of the bins, Constraint (3.2c) enforces the capacity limit,
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Constraint (3.2d) makes sure that if a job placed into a bin then all necessary tools

are available. Constraint (3.2e) enforces that all the tools are available at the start,

similarly, Constraint (3.2f) enforces that all tools are removed at the end. Constraint

(3.2g), (3.2h), (3.2i), (3.2j) are used for ensuring the flow balance in intermediate

nodes. Similar to the JGS model, Constraints (3.2k), (3.2l), (3.2m), (3.2n), (3.2o)

are used as symmetry-breaking cuts, and Constraints (3.2p), (3.2q), (3.2r), (3.2s)

are used for tightening the formulation. Finally, Constraint (3.2u) enforces that all

decision variables are binary.

3.4.3 Solution Procedure

The JGSMF model has K(3M+N+K+5)−2 decision variables and K(MN+3N+

2M + L+ 5) + 5M +N +maxl {Ol} constraints. In this formulation, all parameters

are fixed, except the number of bins (K), which affects problem size significantly.

Having N bins (K = N) would be sufficient to solve the problem, but it will be

computationally difficult. On the other hand, having very few bins may lead to

an infeasible solution because of the capacity constraint, or can cause to have an

infeasible or non-optimal solution.

The proposed solution has three phases (P1, P2, P3). In first phase (P1) B1 bins

are used in JGSMF model and solve it to optimality to find an initial solution. In

the beginning B1 is set to B0, where B0 = max(5,min[maxl {Ol}, N ]). The number

of optimal switches (S1) gives an upper-bound (UB) to the SSP. If it is infeasible, B1

is incremented by 2 and solved repetitively until the feasible solution is found or the

time limit (T1) is reached.

In second phase (P2), number of bins are set to B2, where B2 = B1+1. If optimal

switches in the second phase (S2) is equal to S1 then it is terminated, otherwise, UB

is updated. The problem is resolved by incrementing B2 by 1 and corresponding S2

is found. The process continued until the time limit (T2) is reached or there is no

reduction in optimal switch (S2) in comparison to the previous run.
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In the third phase (P3), additional constraints are added to the JGSMF model

to fix the flow between each bin and all bins are fixed to be open. Constraint (3.3a)

and (3.3b) are used to fix the flow to 1, Constraint (3.3c) is used to set all bins to be

open:

∑
t∈T

fkRt + fkDt = 1 ∀k ∈ {1, . . . , K − 2} (3.3a)

∑
t∈T

f(K−1)Dt = 1 (3.3b)

zk = 1 ∀k ∈ B. (3.3c)

If it is known that S switch is a feasible answer to an SSP problem, then S + 1

bins should be sufficient enough to solve JGSMF model. At the end of phase two,

it is clear that S2 + 1 bins would be sufficient enough. Therefore, the bins in P3 are

fixed to B3, where B3 = S2, to test the feasibility of solving the problem with 1 less

switch. If it is infeasible, then it means that B3 switches are optimal, otherwise B3 is

decremented by 1, UB is updated, and the problem is solved again. P3 is terminated

if an infeasible solution is found or the time limit (T3) is reached. The solution

procedure is described in Figure 3.2. Here, {t1, t2, t3} represents solution time of an

instance of procedure {P1, P2, P3} respectively.

Among the three phases, P1 uses the lowest number of bins, therefore it is the

fastest. The time limit of P1 is set to the maximum given time (1 hour). If a test

instance is not solved within this time then it is reported as unsolved, the remaining

time is divided equally between P2 and P3.
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Figure 3.2: The Flow of Solution Process.

64



3.5 Computational Analysis

3.5.1 Comparison Overview

We demonstrate a performance comparison of the proposed reformulation supported

by the solution process described in Figure 3.2. From now on, we will be referring

to the proposed approach as JGSMF. It will be compared with the fastest known

method in the literature (SSPMF) developed by da Silva et al., 2021.

All computational experiments were performed on a server with AMD Ryzen

Threadripper 2950X 16-Core processor and 64 GB RAM running Ubuntu 18.04.6

LTS. Gurobi 8.0.1 with Python interface is used for solving the the MIP problems.

The solution time is limited to 3600 seconds. The remaining Gurobi parameters were

set to default for solving all instances. If an instance is not solved within the given

time the optimality gap is reported.

3.5.2 Data Set Description

The dataset presented by Yanasse et al., 2009 was used to test the effectiveness of

the proposed approach. In this database, there are five clusters, and in each cluster,

there are 8-15 groups, and in each group, there are 10-130 instances. Among the five

clusters, the one with the fewest number of jobs is eliminated as it could be easily

solved by the two compared methods and the previous methods presented in the lit-

erature. The resulting data set has 1050 instances in total. These test instances could

be accessed at (https://sites.google.com/site/antoniochaves/publications/data).

There is a condition that could improve the solution time of a test instance. If a

set of required tools for job i is a subset of required tools of job j (Ti ⊆ Tj), then job

j is referred as dominating job. In such a case, all dominated jobs could be emitted

from the job set (N ) prior to the modeling in order to reduce the complexity of the

problem. Then, after finding the optimal job processing sequence they could be added
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to the sequence by placing it right after the dominating job. It is worth mentioning

that, none of the tested instances has such a condition.

3.5.3 Performance Comparison

The comparison was made first by comparing the number of instances solved to

optimality (O) out of I instances. If the number of solved instances are the same

then the average run time of solved instances (R) are compared. The superior result

is presented in bold font. If some of the instances could not be solved in a given time

limit then optimality gaps of commonly unsolved instances (G) were reported.

The size of the problem in each test cluster and an overview of the computational

study is presented in Table 3.4. Here, the range of jobs (N), required tools (M), and

magazine capacity (C) are given in respective order. The total number of instances in

each group is represented by TI, and TO shows the total number of optimally solved

instances.

Both methods were able to solve all instances in data cluster A. On average, the

SSPMF method is faster than JGSMF method, see Table 3.5. However, this difference

is usually few seconds where almost all instances were solved under a minute. JGSMF

solves the model in each phase (P1, P2, P3), therefore, solution speed slowed down for

the easy instances.

As the problem size gets slightly increased JGSMF was able to solve more test

instances, see Table 3.6. Approximately 16% more instances could be solved with

JGSMF and the average solution time is faster for these solved instances for data

cluster B. In terms of the average optimality gap for commonly unsolvable cases,

JGSMF is slightly (1.4%) better than SSPMF. In comparison to data cluster A, the

run times difference is getting significantly bigger for data cluster B, see Figure 3.3.

The yellow and green coloured box plots in Figure 3.3, 3.4, 3.5 represents SSPMF

and JGSMF, respectively.
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Table 3.4: Overview of the problem size and number of solved instances.

SSPMF JGSMF

Cluster N Range M Range C Range TI TO TO

A 9-9 15-25 5-20 370 370 370

difference: +0%

B 15-15 15-25 5-20 340 227 263

difference: +16%

C 20-25 15-25 5-20 260 114 169

difference: +33%

D 10-15 10-20 4-12 80 71 75

difference: +5%
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Table 3.5: Computational results for the data cluster A.

SSPMF JGSMF

Group N M C I O R G O R G

A1 9 15 5 10 10 4.7 - 10 11.8 -
A2 9 15 10 30 30 3.0 - 30 6.9 -
A3 9 20 10 20 20 8.7 - 20 31.4 -
A4 9 20 15 50 50 4.6 - 50 11.0 -
A5 9 25 10 20 20 12.5 - 20 73.2 -
A6 9 25 15 40 40 9.6 - 40 45.8 -
A7 9 25 20 130 130 5.0 - 130 16.1 -
A8 9 20 5 10 10 6.2 - 10 14.4 -
A9 9 20 10 10 10 0.1 - 10 0.1 -
A10 9 20 15 10 10 0.2 - 10 0.04 -
A11 9 25 5 10 10 1.9 - 10 3.3 -
A12 9 25 10 10 10 0.1 - 10 0.1 -
A13 9 25 15 10 10 0.03 - 10 0.1 -
A14 9 25 20 10 10 0.02 - 10 0.1 -
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Table 3.6: Computational results for the data cluster B.

SSPMF JGSMF

Group N M C I O R G O R G

B1 15 15 5 10 7 579 0.12 9 316 0.12
B2 15 15 10 30 25 470 - 30 284 -
B3 15 20 5 10 7 1107 0.05 8 527 0.05
B4 15 20 10 30 22 957 0.19 22 661 0.11
B5 15 20 15 60 44 949 0.20 50 463 0.19
B6 15 25 5 10 5 1934 0.14 3 1639 0.16
B7 15 25 10 30 16 802 0.24 19 827 0.34
B8 15 25 15 60 30 952 0.26 40 540 0.23
B9 15 25 20 100 71 584 0.24 82 452 0.22
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Figure 3.3: Comparison of the solution times for the instances in cluster A and B,
that are solved with both methods.
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In data cluster C, 33% more instances are solvable by JGSMF, see Table 3.7. The

average run time of the JGSMF is higher as it additionally contains the run time

of the instance that is not solvable by SSPMF. The optimality gap for commonly

unsolvable cases with JGSMF is 39% less than SSPMF.

The performance differences for data cluster D are almost identical where only four

(5%) more instances were solved by JGSMF. The run time distribution of commonly

solved instances in Figure 3.4 shows that majority of run times are close to zero for

data clusters C and D. In one test case (C7) the average run time of commonly solved

instances by SSPMF is significantly higher than JGSMF, however, in the rest of the

cases their performance is either very close or JGSMF performed better.

In general, there are few instances in that JGSMF is outperformed by SSPMF.

The optimality gap of commonly unsolved instances shows a similar result, see Figure

3.5. By analyzing these instances it was seen that the higher run time of JGSMF was

caused by assigning a small number to the initial bin count (B0). Therefore, more

time was spent to complete P1 to get a feasible bin count, and there was little or no

time left for processing P3.

3.6 Conclusion

In this research, we studied an NP -hard combinatorial optimization problem arising

from manufacturing systems, the Job Sequence and Switching Problem. A new

reformulation was proposed to model SSP as a Job Grouping and Sequencing with

a Multi-commodity Flow. The symmetrical property of SSP was exploited and

symmetry-breaking cuts were added to the model to reduce the search space and

speed up the solution process. The formulation is tightened further by converting SSP

to an undirected graph and using maximum clique size as an initial bin count. To get

the maximum performance from the proposed reformulation the solution procedure

is divided into three phases and in each phase, the model was solved iteratively until

the optimality of the solution was guaranteed.

71



Table 3.7: Computational results for the data cluster C.

SSPMF JGSMF

Group N M C I O R G O R G

C1 20 15 5 10 0 - 0.44 1 802 0.26
C2 20 15 10 20 10 138 0.50 17 412 0.08
C3 20 20 5 10 0 - 0.35 1 921 0.27
C4 20 20 10 10 6 33 0.14 7 12 0.08
C5 20 20 15 30 12 71 - 30 381 -
C6 20 25 5 10 0 - 0.36 1 2487 0.32
C7 20 25 10 10 6 74 0.06 8 350 0.06
C8 20 25 15 40 10 1 0.44 10 0.2 0.33
C9 20 25 20 40 26 4 0.41 37 83 0.12
C10 25 15 10 10 8 993 - 10 215 -
C11 25 20 10 10 1 19 0.21 2 487 0.13
C12 25 20 15 10 1 3485 0.39 7 2010 0.24
C13 25 25 10 10 3 130 0.19 1 9 0.15
C14 25 25 15 10 10 7 - 10 1 -
C15 25 25 20 30 21 8 0.40 27 3 0.13
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Table 3.8: Computational results for the data cluster D.

SSPMF JGSMF

Group N M C I O R G O R G

D1 10 10 4 10 10 6 - 10 10 -
D2 10 10 5 10 10 4 - 10 4 -
D3 10 10 6 10 10 0.4 - 10 0.2 -
D4 10 10 7 10 10 0.04 - 10 0.04 -
D5 15 20 6 10 8 1255 0.25 8 840 0.25
D6 15 20 8 10 5 444 0.20 7 4 0.06
D7 15 20 10 10 9 4 - 10 4 -
D8 15 20 12 10 9 98 - 10 8 -
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Figure 3.4: Comparison of the solution times for the instances in cluster C and D,
that are solved with both methods.
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Figure 3.5: Comparison of the optimality gaps for the instances that couldn’t be
solved with either methods.
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The conducted computational study showed that as the size of the problem grows

the proposed method was able to solve up to 33% more instances compared to the

state-of-the-art method. The optimality gap was reduced up to 39% for the large

instances that are not solvable within the given time threshold.
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Baykasoğlu, A., & Ozsoydan, F. B. (2018). Minimisation of non-machining times in

operating automatic tool changers of machine tools under dynamic operating

conditions. International Journal of Production Research, 56 (4), 1548–1564.

Bendotti, P., Fouilhoux, P., & Rottner, C. (2017). On the complexity of the unit

commitment problem. optimization online.

Bertsimas, D., Litvinov, E., Sun, X. A., Zhao, J., & Zheng, T. (2012). Adaptive

robust optimization for the security constrained unit commitment problem.

IEEE transactions on power systems, 28 (1), 52–63.

Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization (Vol. 6).

Athena Scientific Belmont, MA.

Bhardwaj, A., Kamboj, V. K., Shukla, V. K., Singh, B., & Khurana, P. (2012). Unit

commitment in electrical power system-a literature review. 2012 IEEE in-

ternational power engineering and optimization conference Melaka, Malaysia,

275–280.

Borghetti, A., Frangioni, A., Lacalandra, F., Lodi, A., Martello, S., Nucci, C., &

Trebbi, A. (2001). Lagrangian relaxation and tabu search approaches for the

unit commitment problem. 2001 IEEE Porto Power Tech Proceedings (Cat.

No. 01EX502), 3, 7–pp.

Borghetti, A., Frangioni, A., Lacalandra, F., & Nucci, C. A. (2003). Lagrangian

heuristics based on disaggregated bundle methods for hydrothermal unit

commitment. IEEE Transactions on Power Systems, 18 (1), 313–323.

78



Calmels, D. (2019). The job sequencing and tool switching problem: State-of-

the-art literature review, classification, and trends. International Journal of

Production Research, 57 (15-16), 5005–5025.

Calmels, D. (2022). An iterated local search procedure for the job sequencing and tool

switching problem with non-identical parallel machines. European Journal of

Operational Research, 297 (1), 66–85.

Carrión, M., & Arroyo, J. M. (2006a). A computationally efficient mixed-integer linear

formulation for the thermal unit commitment problem. IEEE Transactions on

Power Systems, 21 (3), 1371–1378. https://doi.org/10.1109/TPWRS.2006.

876672

Carrión, M., & Arroyo, J. M. (2006b). A computationally efficient mixed-integer linear

formulation for the thermal unit commitment problem. IEEE Transactions on

power systems, 21 (3), 1371–1378.

Castillo, A., & Gayme, D. F. (2014). Grid-scale energy storage applications in

renewable energy integration: A survey. Energy Conversion and Management,

87, 885–894.
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