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Abstract

The power system is comprised of thousands of lines, generation sources, transformers,

and other equipment responsible for servicing millions of customers. Such a complex

apparatus requires constant monitoring and protection schemes capable of keeping the

system operational, reliable, and resilient. To achieve these goals, measurement is a

critical role in the continued functionality of the power system. However, measurement

devices are never completely reliable, and are susceptible to inherent irregularities; imparting

potentially misleading distortions on measurements containing high-frequency components.

This dissertation analyzes some of these effects, as well as the way they may impact certain

applications in the grid that utilize these kinds of measurements. This dissertation first

presents background on existing measurement technologies currently in use in the power

grid, with extra emphasis placed on point-on-wave (PoW) sensors, those designed to capture

oscillographic records of voltage and current signals.

Next, a waveform playback system, developed at Oak Ridge National Laboratorys Dis-

tributed Energy Communications & Control (DECC) laboratory was used for comparisons

between various line-post-monitor PoW sensors when subjected to different high-frequency

current disturbances. Each of the three sensors exhibited unique quirks in these spectral

regions, both in terms of harmonic magnitude and phase angle. A goodness-of-fit metric for

comparing an ideal reference sensor with the test sensors was adopted from the literature

and showed the extremes to which two test sensors vastly under performed when compared

to the third. The subsequent chapter analyzes these behaviors under a statistical lens, using

kernel density estimation to fit probability density functions (PDFs) to error distributions

at specific harmonic frequencies resulting from sensor frequency response distortions. The

remaining two chapters of the dissertation are concerned with resultant effects on applications
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that require high-frequency transient data. First, a detection algorithm is presented, and its

performance when subjected to statistical errors inherent in these sensors is quantified. The

dissertation culminates with a study on an artificial intelligence (AI)technique for estimating

the location of capacitor switching transients, as well as learning prediction intervals that

indicate the level of uncertainty present in the data caused by sensor frequency response

irregularities.
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Chapter 1

Introduction

The electric power grid is one of the most vast and complex systems in the world. The United

States Energy Sector is one of sixteen Critical Infrastructure Sectors defined by Presidential

Policy Directive 21. Every component is crucial to ensure that power is accessible to all

customers at all times of the day. It is imperative that when equipment failures happen, due

to either internal or external causes, contingencies and redundancies are in place to ensure

the continued flow of power to critical customers, such as hospitals, schools, and many others.

This dissertation studies the effects of inaccurate measurement systems on applications

used, or will be used, in the power system. It begins with a description of typical

measurement technologies used in the power grid, and some of their inherent limitations.

From there, two different crucial operations that involve the usage of high-frequency

voltage and current signals are studied, as well as their susceptance to false or erroneous

measurements.

1.1 Measurement of the Power System

Power is transported in the form of energized transmission and distribution lines connected

to electrical loads. Typically, power is generated at a few tens of kilovolts (kV), before being

stepped up through a power transformer to a suitable range for transmission level, which may

be as high as 750 kV, [1]. The amount of power supplied to a customer base is dependent

upon the amount of load connected to the system. The “load” in this case consists of the

1



end users and the number of items these users have connected to the grid. Heavy loads

(lower impedances) will draw more current (and therefore power) than lighter loads (higher

impedances).

There are, however, limitations to the amount of power a system can supply. Heavier

loads can lead to issues such as voltage instability and collapse, which can lead to cascading

failures across the larger grid as a whole; over-current, which may cause damage to

equipment; and frequency stability issues, such as under- and over-frequency, caused by

imbalance between generation and load. The need to continually monitor key points along

the grid is increasingly becoming more and more necessary to ensure proper operation of all

equipment, implement control functions, and provide situational awareness to utilities.

1.1.1 Common Power System Sensing Technologies

Instrument Transformers

One of the most common uses of power system measurement is protection systems.

Specifically, relays are devices capable of sending signals to circuit breakers to open or close

portions of a circuit when a problem arises. For example, if a short circuit occurs on one of

the phases of a transmission line (such as a line-to-ground fault), the nearest relay behind

the location of the fault will sense the excess current being drawn and will send a signal to

its circuit breaker to open, thus isolating the circuit and ceasing the flow of current into the

fault.

Relays are not interfaced directly with the transmission and distribution lines and

substation bus-work. The voltages and currents used for measurement are “stepped down”

through instrument transformers. Potential transformers (PTs) are shunt-connected devices

designed to provide high-accuracy, low-voltage representations of the behavior of the grid’s

higher voltages. This isolates the metering and protection equipment from dangerous high-

voltage levels of the grid while properly replicating the behavior of the grid voltage on the

low-voltage secondary. Similarly, current transformers (CTs) are series-connected devices

performing a similar function as PTs, the exception being that the current is stepped down

instead of voltage.

2



Instrument transformers, in addition to being vital to protection systems, are also used

for metering. Electric utilities bear the responsibility of ensuring that power distributed to

customers is stable and healthy, meaning that the power factor never dips below prescribed

limits. Metering circuitry is connected to the secondaries of instrument transformers placed

throughout transmission and distribution networks, and provide data for utilities to produce

accurate billing information for customers. Figure 1.1 shows some examples of common

PT/CTs.

Phasor Measurement Units (PMUs)

Towards the end of the 20th century, the integration of synchrophaser technology began to

boom. Also known as phasor measurement units (PMUs), synchrophasers are used exten-

sively for wide-area monitoring, control, and real-time situational awareness. Synchrophasers

possess the unique ability to digitally sample the sinusoidal voltage and currents to produce

accurate estimates of the instantaneous magnitudes and phase angles of the measured

quantities. Some of the key advantages of PMUs include their ability to synchronize to

an external timing signal such as GPS or IEEE 1588 Precision Timing Protocol (PTP), as

well as their ability to report the instantaneous fundamental frequency of the waveforms of

interest. The ability to capture frequency, as well as rate-of-change-of-frequency (ROCOF)

is a critical element in the assessment of grid frequency stability.

One of the most common uses of synchrophasers are for wide-area situational awareness.

One such example of this is the FNET/GridEye system. Operated and hosted at the

University of Tennessee and Virginia Tech, FNET/GridEye employs many frequency-

disturbance recorders (FDRs) across North America. These devices accurately measure

the frequency at different distribution-level locations and reports their findings in real-time,

and can be found at [2]. Figure 1.2 shows an example of the readings captured from these

devices on February 6, 2022, at approximately 6:24 PM, UTC. The color bands along the

top of the figure indicate how the various regions are drifting away from the fundamental

frequency (60 Hz). It can be seen from the figure that at the indicated time, much of the

west coast is experiencing between 0.07 and 0.09 Hz of over-frequency, whereas the east coast

is experiencing between 0.05 and 0.07 Hz of under-frequency conditions.

3



(a) Potential transformer (PT) (b) Current transformer (CT)

Figure 1.1: Common instrument transformers

Figure 1.2: Live capture of FNET/GridEye system on February 6, 2022
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Line-Post Monitors

Another emerging technology is the linepost sensor (LPs). These devices are typically

connected directly to the line post or on the bus-bar at distribution-level voltages. These

devices come in a wide variety of constructions and operating principles, and are typically

capable of sampling point-on-wave voltages and currents well into the kHz ranges. These

devices, while typically more both economically infeasible and bulky, provide measurement

capabilities that are not found with synchrophasers and instrument transformers (specifically

PTs). LPs are able to capture high voltages and currents at high sampling rates,

without conversion to lower-resolution magnitudes and phases (as with synchophasers), and

without transforming the voltages and currents down to lower levels (as with instrument

transformers). Figure 1.3 shows some examples of commercial LPs.

1.2 Limitations of Conventional Measurements

All sensors are prone to producing distorted versions of the quantities that are being

measured due to non-ideal characteristics of the sensors themselves. It is virtually impossible

for a sensing mechanism to perfectly reproduce the measured phenomena. In the subsequent

sub-sections, various sources of non-ideal signal behavior are discussed.

1.2.1 Instrument Transformer Accuracy

PTs and CTs are characterized by their accuracy class. Instrument transformer accuracy

classes are defined by their transformer correction factors (TCFs). For PTs, [3]:

TCF = RCF +
γ

2600
(1.1)

and for CTs:

TCF = RCF− β

2600
(1.2)

where RCF = 1 − (Ratio Error/100), Ratio Error is the degree to which the secondary

voltage and/or current faithfully represents the primary voltage and/or current applied
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through the transformer’s turns ratio, and γ and β are the phase angles, in minutes, of

the PT and CT, respectively.

Accuracy classes for metering are designated in such a way that the TCF of a transformer

is within the specified burden (i.e. secondary-connected impedance) limits for metered

(primary-connected) load between 0.6 and 1.0 power factor, lagging.

1.2.2 CT Saturation

The simplest form of CTs involve wires wound tightly around an iron core. The core of a CT,

when subjected to an alternating current in the primary winding, produces a magnetic field

of intensity H, corresponding to an alternating magnetic flux φ in the core. If the secondary

winding is connected to a burden, the alternating flux φ then induces an alternating voltage

across the secondary winding, therefore producing a secondary alternating current, [4].

The induced magnetic field H causes the dipoles in the iron core, termed “flux density”

(B), to align with the direction of the field, which is ultimately the cause of the alternating

flux φ. The strength of H is directly proportional to the magnitude of the primary current.

If the primary current’s induced flux exceeds the number of dipoles available in the iron core,

saturation will begin. Figure 1.4 shows example B-H curves; note the flattening that occurs

on the extremities of the curve as H increases in either direction.

Saturation is one of the key drawbacks of CTs, and limit these devices’ capability to

measure higher currents.

1.2.3 Line-post Monitor Frequency Response

Frequency response characteristics are eventualities that arise with any electro-mechanical

system. Higher frequency components, typically representative of transient behavior

(Section 1.3), are most susceptible to distortions caused by sensor frequency response

characteristics, as most sensors have a limited bandwidth, leading to attenuation of higher

frequencies (Figure 1.5). Frequency response theory is presented in further detail in

Chapter 2 Section 2.3.
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(a) Eaton GridAdvisor Insight RG235 (b) Lindsey Current & Voltage Monitoring Insulator

Figure 1.3: Line post sensors

Figure 1.4: Example B-H curve, [4]
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1.3 Power System Transients

The preceding sections of this chapter discuss common sensing and measurement techniques

commonly used in power systems. Certain voltage and current phenomena are much more

susceptible to inaccurate measurements and distortions than others. This section will

introduce the concept of power system transients, discuss mathematical theory behind said

transients, their sources, their effects on the grid, and the way that sensors will severely

distort them.

AC voltages and currents in the power system are sinusoidal in nature, oscillating at

60 Hz in North America and 50 Hz in many other parts of the world. This frequency is

often referred to as the fundamental frequency. Equipment is often rated for voltages and

currents oscillating at the fundamental frequency. This means that the same equipment

is not rated for higher-frequency operating points, and thus special care must be taken

to limit the amount of high-frequency components present in the 60-Hz waveforms. One

way to ensure this is to impose total harmonic distortion (THD) limits, as is the case with

DC/AC inverters. Another means of analysis that typically must be performed are transient

contingency studies. Transient over-voltages are a potentially dangerous phenomenon that

can adversely effect the life of power system equipment, and designs that alleviate or mitigate

the associated concerns should be observed.

1.3.1 Definition of “transient”

The general definition of the word “transient” per Merriam Webster is “passing especially

quickly into and out of existence”. There are two definitions of “transient” in the power

systems context, per IEEE 1159-2009, [5]: impulsive transients and oscillatory transients.

Impulsive transients are defined to be “a sudden non-power frequency change in the steady-

state condition of voltage or current that is unidirectional in polarity (primarily either

positive or negative)”, whereas an oscillatory transient is “a sudden, non-power frequency

change in the steady-state condition of voltage, current, or both, that includes both positive

and negative polarity values.”
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The term “polarity” in the above definitions refers to the transient’s number of zero-

crossings. Impulsive transients represent surges in either the positive or negative direction

with respect to the ordinate axis, and usually subside back to the original state before

its next zero-crossing. The most common example of an impulsive transient is a lightning

surge. Oscillatory transients, however, represent disturbances that contain one or more zero-

crossings before subsiding, and are usually high-frequency in nature. Oscillatory transients

are typically a result of sudden changes in the system state, such as switching operations,

inverter-based resources (IBRs), and resonant responses.

1.3.2 Sources of transients in the power system

Switching Operations

Many behaviors in the power system involve switching actions, which are characterized by

sudden changes in the steady-state operation of the system. Common examples of switching

operations include circuit breakers opening to interrupt high amounts of fault current,

capacitor banks energizing and de-energizing to adjust the amount of reactive power supplied

to the system, and load shifting from one circuit to another. Because the power system

is comprised of many different resistive (R), inductive (L), and capacitive (C) elements,

switching operations are often modeled in terms of RLC circuit combinations.

Resistive-inductive (RL) circuit models are often used to model power system compo-

nents, including transformer windings, rotating machines, and simple transmission lines. A

simplified RL circuit is given in Figure 1.8. To examine the behavior of the current passing

through the resistor R and inductor L, Kirchhoff’s voltage law (KVL) is applied to the loop

to obtain:

Emax sin (ωt+ φ) = Ri+ L
di

dt
(1.3)

The solution to this differential equation is the sum of both a general and particular solution.

Setting the left-hand side of (1.3) equal to zero and solving for i(t), the general solution

becomes

ig(t) = C1e
(R/L)t (1.4)
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Figure 1.5: Example of capacitor switching transients distorted by sensor with low-pass
characteristics. The red curve shows a simulated switching transient voltage signal, and
the blue curve represents the same signal as produced by a sensor with known frequency
response.

Figure 1.6: Example impulsive transient caused by a lightning strike

10



Figure 1.7: Example oscillatory transient caused by capacitor-bank energization

Figure 1.8: Simplified RL Circuit [6]
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The constant C1 may be obtained by setting (1.4) equal to zero and letting t = 0. This is

because at t = 0, the magnetic flux in the inductor is equal to zero, and when the switch

closes at t = 0, it is still zero because the current through an inductor may not change

instantaneously.

The particular solution ip(t) may be found as in [6] to be:

ip(t) =
Emax√

R2 + ω2L2
sin

[
ωt+ φ− tan−1

(
ωL

R

)]
(1.5)

Combining (1.4) and (1.5) yields

i(t) = ig(t) + ip(t) =

e(−R/L)t
{

−Emax√
R2 + ω2L2

sin

[
φ− tan−1

(
ωL

R

)]}
+

Emax√
R2 + ω2L2

sin

[
ωt+ φ− tan−1

(
ωL

R

)]
(1.6)

The first term in (1.6) represents a decaying DC component with initial phase θ = φ −

tan−1
(
ωL
R

)
. The second term represents the oscillating portion of the current. If θ = 0,

or an integer multiple of π, the DC component is zero and the current is oscillating in its

steady-state. If the switch closes at a time that causes θ = ± 90◦, the total transient current

will be at a maximum.

An LC circuit, which models a capacitor switching scenario, is shown in Figure 1.9. The

current through the capacitor may once again be solved for by applying KVL:

E = L
di

dt
+

1

C

∫
idt (1.7)

Assuming the voltage across the capacitor at time t = 0, the current is then found to be (as

described in [6]):

i(t) = E

√
C

L
sin (ω0t) (1.8)

where ω0 =
√
LC is the natural frequency of the circuit.
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The surge impedance of the circuit is Z0 =
√
L/C and determines the peak of the

transient current. The transient voltage across the capacitor may be shown to be:

Vc(t) = E − [E − Vc(0)] cos (ω0t)) (1.9)

When Vc(0) = 0, the transient voltage oscillates between [−2E, + 2E], and for Vc(0) = −E,

Vc(t) oscillates between [−3E, + 3E], indicating an overvoltage of three times the nominal

value, E.

A series RLC circuit is shown in Figure 1.10. KVL to obtain the current through this

circuit yields:

Emax sin (ωt+ φ) = L
di

dt
+

1

C

∫
idt+Ri (1.10)

Solving for i(t), as in [6], yields:

i(t) =
(
C1(t)e

λ1t + C2(t)e
λ2t
)

+
Emax√

R2 +
(

1
ωC
− ωL

) sin

[
ωt+ φ+ tan−1

( 1
ωC
− ωL
R

)]
(1.11)

When (R/2L)2 > 1/LC, the transient current is considered overdamped. When (R/2L)2 =

1/LC, then the transient is considered critically damped. Finally, when (R/2L)2 < 1/LC,

the transient current is oscillatory. Illustrations of these three cases are shown in Figure 1.11.

Capacitor Bank Energization and De-energization

Reactive loads used in the power system are primarily inductive, meaning that the current

drawn by the load lags the supplied voltage. This causes the amount of real power supplied

by the system to decrease while the amount of reactive power increases. As reactive power is

not “usable” by loads, the power factor, which is analogous to the “efficiency” of the power

system supplying the load, decreases. The most common way of improving the power factor
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Figure 1.9: Simplified LC Circuit, [6]

Figure 1.10: Simplified RLC Circuit

Figure 1.11: Illustration of Damping Cases for RLC Circuit, [6]
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of a system is to supply capacitive reactive power through the use of switched capacitor

banks.

When a capacitor bank is in its discharged state, it is at ground potential (zero volts).

Upon initiating a switching operation of the capacitor bank, at which point contact with the

line occurs, the line voltage briefly falls close to zero volts due to the capacitor’s resistance

to instantaneous changes in voltage. Because of this sudden voltage drop, the current drawn

through the system will see the still-charging capacitor bank as a short-circuit, causing a

current inrush. This inrush current can reach up to the tens of thousands of amperes range,

and may oscillate at a frequency up to the tens of kilohertz. This inrush current will in turn

cause a transient overvoltage, which may reach as high as 2 per unit, [5]. The frequency of

oscillation depends on the impedances of the lines, loads, and capacitor banks. Figure 1.7

shows an example of an over-voltage with oscillatory ringing as a result of a capacitor bank

being switched into operation.

Traveling Wave Phenomena

When transmission lines are sufficiently long, they are typically modeled using distributed

parameter elements, meaning that electrical phenomena (voltage and current) are mathe-

matically modeled in terms of both space and time, rather than the typical time-dependent

variables seen in traditional circuit analysis. Assuming the transmission line may be broken

into individual “snippets” of length ∆x, each “snippet” is modeled as in Figure 1.12, where

R and L are the series resistance and inductance per unit length, and G and C are the shunt

conductance and capacitance per unit length, respectively. It can be shown, [7], that the

voltage and current may be represented by the sum of incident (vI) and reflected vR waves:

v(x, t) = vIe
−γx + vRe

γx (1.12)

i(x, t) =
vI
Z0

e−γx +
vR
Z0

eγx, (1.13)

where γ =
√

(R + jωL) (G+ jωC) = α + jβ is the propagation constant and Z0 is the

characteristic impedance of the line. When a fault occurs on a transmission line, high-

frequency transients are transmitted in both directions away from the fault. When this
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“incident” wave reaches a boundary (either physical - as with an open circuit or material

change, or electrical - as with a change in impedance) a portion of the wave is transmitted

through the boundary while the rest of the wave is reflected back. The reflection ρ and

transmission τ coefficients are given as

ρ =
Z1 − Z0

Z1 + Z0

(1.14)

τ =
2Z1

Z1 + Z0

(1.15)

where Z1 is the impedance of the new material or portion of the circuit.

1.3.3 Effects of transients on the power system

Transient Over-voltage (TOV)

Although transients occur in the microseconds-to-milliseconds time scale, the potential for

severe overvoltages and overcurrents still poses risks for equipment and personnel. LC

circuits, as in Figure 1.9, are typically used to model high-voltage circuit breakers. Transient

over-voltage (TOV) studies are crucial in the design of such circuit breakers. These breaker

designs need to be able to both withstand maximal TOV surges (1.9) and include protection

mechanisms for reducing the severity of the TOV.

Transient Recovery Voltage (TRV)

Transient recovery voltage (TRV) is the voltage that appears across the terminals of a circuit

breaker during the interruption of current. When current is interrupted in a circuit breaker,

specifically in sulfur hexafluoride (SF6) breakers, an arc is generated. Over time, typically on

the order of microseconds, the conductivity of the arc decreases as the instantaneous current

reaches zero. The TRV is a result of a balance in energy contained in the arc immediately

after extinction of the current. TRV may also be thought of as the voltage induced across

circuit breaker terminals in an attempt to keep the load and source voltages constant after

the extinction of the current through the breaker.
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The frequency of oscillation of TRV surges is:

fTRV =
1

2π
√
LC

(1.16)

where L is the short-circuit inductance of the supply-side circuit and C is the supply

capacitance.

If TRV is not properly considered when manufacturing and installing circuit breakers,

scenarios involving TRV can exceed the rated gap voltage, causing re-ignitions or re-strikes.

1.4 Dissertation Outline

This chapter presented conventional measurement capabilities currently used in the power

grid. These measurement devices (e.g. sensors), all have inherent imperfections in their

ability to completely replicate observed electrical phenomena. This is especially apparent

when these sensors are subjected to high-frequency disturbances in the form of transients.

The rest of this dissertation is structured in two parts: Chapters 2 and 3 analyze some of

the inherent effects on high-frequency transients due to imperfect sensors, whereas Chapters 4

and 5 examine just a few of the ways that these imperfections manifest in actual applications.

Chapter 2 provides basic background on the theory of linear systems, which will

be the prevailing assumption used in all subsequent experiments; namely that sensors

used to measure point-on-wave (PoW) quantities may be faithfully approximated using a

linear time-invariant (LTI) model. From there, various commercial-grade PoW sensors are

used to evaluate the production of various current disturbances containing high-frequency

components. In Chapter 3, the results in Chapter 2 are expanded upon and analyzed

statistically, using a different set of disturbance types. Kernel density estimation (KDE)

is used to approximate the probability density functions (PDFs) of the magnitude and phase

errors due to these sensor irregularities.

Chapter 4 begins to look at the effects of these distortions on applications for the

grid that rely on accurate measurements. This chapter in particular examines the effect

of sensor distortions on the accurate detection of high-frequency components of transient
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signals in the form of the energy detector. This dissertation culminates in Chapter 5,

in which a deep learning technique is used to identify the location of switching transient

signals. More importantly, an uncertainty quantification (UQ) component is introduced

that is able to reflect confidence (or lack thereof) of the model’s predictions when subjected

to sensors distortions of the kind introduced in Chapter 2. Finally, Chapter 6 concludes the

document and discuss future work ideas and opportunities leveraging the work presented in

this dissertation.
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Figure 1.12: Distributed Parameter Model of Transmission Line Segment
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Chapter 2

Non-Ideal Sensors’ Effects on Power

System Transients

This chapter presents a comparison of various common electrical disturbance events; namely

arcing, capacitor switching, and three-phase inrush, and the ways in which three different

sensing technologies are able to capture the finer details of the waveforms (i.e. high-frequency

content). The experiment utilized a data acquisition-and-playback feature that uses existing

data files and plays them through the various sensors via a current amplifier and arbitrary

function generator. It is important to note that the results of this experiment are not

meant to be treated as a recommendation for one sensing technology over another. This

experiment was conducted using Oak Ridge National Laboratory’s (ORNL) Distributed

Energy Communications & Controls (DECC) Laboratory and three commercially-available

medium-voltage (MV) line-post sensors.

This chapter first provides a literature survey on measurement problems in the power

system, followed by a brief refresher on the theory of linear systems. This then feeds into a

section on frequency response analysis. The proceeding section describes the mathematical

foundations for comparison between signals captured by both a reference sensor and the

equipment under test (EUT). Following this, a description of the playback-sensing system

developed at ORNL is presented, and the final section presents the results of the study along

with associated analysis and discussion.
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2.1 Background and Literature Review

As the power grid expands both in terms of customers and technology, so do the number of

complexities associated with protection and metering applications. Increasing numbers of

inverter-based resources (IBRs) penetrating the grid lead to a variety of issues that need to

be addressed, such as bi-directional power flows and increased harmonics. Thus collection

and accurate interpretation of voltage and current harmonic content is rapidly becoming of

paramount importance. For this reason, robust sensing technology is needed to ensure a

high level of confidence in captured waveforms.

As presented in Chapter 1, all electrical sensing equipment possesses some degree of

distortive characteristics, due to phenomena such as resonance, temperature, and saturation,

among others. Typically, sensors used for protection and metering (such as instrument

transformers) are designed to be extremely accurate for steady-state sinusoidal conditions at

the fundamental frequency (50 or 60 Hz). For example, standards such as IEC 61869-2, [8],

and IEC 61869-3, [9], for inductive current transformers (CTs) and potential transformers

(PTs), provide accuracy limits at the fundamental frequency. These sensor designs present

problems for applications monitoring harmonic content, limiting the ability to make accurate

decisions based upon the retrieved frequency information. IEC 60044-8 [10], describes

accuracy limits for instrument transformers in terms of ratio and phase errors. While

these metrics are typically used for characterization of the effectiveness of the individual

transformer effects, the ratio error may be modified into a simple percent error calculation.

Existing literature characterizes sensors in accordance with the ratio and phase errors

discussed above, [11, 12, 13, 14, 15]. Crotti et al. in [11] use a voltage-divider setup

along with a National Instruments (NI) PCI Extension for Instrumentation (PXI) data

acquisition system to characterize voltage and current transformers as well as their effects

on phasor measurement unit (PMU) measurements. In [13], techniques for metrological

characterization of CTs and VTs is performed using generated signals at the fundamental

frequency plus individual harmonic components.

In [14], Cataliotti et al. perform characterization of clamp-on CT’s under non-sinusoidal

situations. A compensation method for non-sinusoidal condition-based distortions for
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CT’s and VT’s is presented in [12], by using current and voltage harmonics obtained in

sinusoidal conditions to “correct” values obtained under non-sinusoidal conditions. In [15], a

compensation method based on the “Best Linear Approximation” theory is used to correct

for distortions of harmonic signals under non-sinusoidal conditions.

2.2 The Theory of Linear Systems

As discussed in Chapter 1, all sensing mechanisms will possess some degree of non-ideal

distortive characteristics. Such characteristics often manifest in the form of frequency

distortions. Frequency distortions are a direct consequence of a sensor or other measurement

device’s frequency response, which characterizes the gain, attenuation, and phase shift of

each frequency component induced by the measurement device in question. In this chapter,

common current waveform signatures are examined under different sensor responses and

compared in terms of the effects on their harmonic components.

Many real-world systems may be modeled as a linear system. In brief, a linear system is

one that satisfies both the additive and scaling properties. Mathematically, given two inputs

x1(t) and x2(t), a system T [·] is linear if it produces outputs y1(t) and y2(t) in the following

manner, [16]:

y1(t) + y2(t) = T [ax1(t) + bx2(t)] = aT [x1(t)] + bT [x2(t)] (2.1)

for arbitrary constants a and b at all times t.

It is often convenient to model systems as both linear and time-invariant. The time-

invariance property dictates that an input at any time t = n − k will produce system

response h(n− k). In other words, the system’s response function h(t) does not change over

time.

LTI systems give rise to the concept of convolution, namely that a system output is a

sum of the input x(t) multiplied against shifted iterations of the system response h(t).

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ (2.2)
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The convolution integral is a foundational operation in signal processing and provides a

useful tool for system analysis. When dealing with discrete-time systems, this integral is

represented as a sum:

y(n) =
∞∑

k=−∞

x(k)h(n− k) (2.3)

It describes the filtering operation of finite-impulse-response (FIR) filters. Systems

represented as FIR filters possess the property of linear phase, meaning that all frequency

components of a given input signal x(t) are shifted by the same amount.

Sensor systems acting on sinusoidal signals, however, may not possess this linear phase

property. Thus they need to be modeled as an infinite impulse response (IIR) filter:

y(n) =
N∑
k=0

bkx(n− k)−
M∑
l=1

aly(n− l) (2.4)

IIR filters are recursive in nature, and thus systems with response functions h(t) are never

bounded in t as FIR systems are.

2.3 Frequency Response

System responses h(t) are more usefully studied in their frequency domain representations,

H(ω), where H(ω) is simply the Fourier transform of h(t). This representation is often

referred to as the system’s frequency response, and is complex-valued. The frequency response

function of a system contains both magnitude and phase-shift information as functions of

frequency ω, calculated respectively as:

|H(ω)| =
√
<(H(ω))2 + =(H(ω))2 (2.5)

∠H(ω) = arctan

[
=(H(ω))

<(H(ω))

]
(2.6)

where <(x) and =(x) are the real and imaginary components of x. The magnitude

(sometimes referred to as the “gain”) |H(ω)|, signifies how much the system H(·) amplifies
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or attenuates input signals at frequency ω. Likewise, the phase ∠H(ω) contains information

on how the system shifts the initial phase of each frequency component of the input signal.

Commercial Sensor Frequency Response Curves

Figure 2.1 shows an example of non-ideal sensor frequency response vs one that is closer to

the ideal. The near-ideal magnitude curve shows a near-unity gain across the entire range of

frequencies studied. However, the non-ideal curve shows a sharp resonance at roughly the 2

kHz mark, followed by a sharp downward trend. Frequencies passing through the non-ideal

sensor in the immediate band around 2.5 kHz will be amplified by almost 50 times. Similarly,

all frequencies below 2.5 kHz experience a phase shift between 140 and 190 degrees.

2.4 Mathematical Formulation for Comparisons

It is necessary to employ metrics that accurately capture the degree of similarities and

differences between signals. For that reason, three techniques are discussed next: percent

error, phase difference, and goodness-of-fit, [17].

Under steady-state conditions, a distorted current in the power system can be represented

by a periodic function consisting of a 60-Hz fundamental wave written I1 amps and N

harmonics, written Ih amps, h = 2, . . . N , with the form:

i(t) =
√

2

[
I1 sin(ωt+ φ1) +

N∑
h=2

Ih sin(hωt+ φh)

]
(2.7)

where ω = 2π × 60 rad/s, and φh is the phase angle of harmonic h. A sensor measuring the

same signal will produce:

î(t) =
√

2

[
Î1 sin(ωt+ φ̂1) +

M∑
h=2

Îh sin(hωt+ φ̂h)

]
(2.8)

where (ˆ) indicates estimated parameters, and M < N due to sensor frequency response

limitations (e.g. bandwidth and sampling rate). However, this model does not hold for

non-steady-state situations.
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Figure 2.1: Commercial-grade near-ideal (red) and non-ideal (blue) sensor frequency
responses
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2.4.1 Percent Error

When characterizing sensor performance against the various harmonics, it is beneficial to

use the standard percent error formula:

eih =

∣∣∣∣∣ Îh − IhIh

∣∣∣∣∣× 100% (2.9)

The expression in (3.5) describes the percent difference between input current harmonic

amplitude Ih and measured current harmonic amplitude Îh. The percent error formula is a

common means of performance evaluation, and encompasses modified versions for gauging

performance of instrument transformers, as described by the ratio error in [10].

2.4.2 Phase Difference

Along with (3.5), the relative phase displacement between actual and measured harmonic

currents ∆φih may be calculated from [10] as:

∆φih = φh − φ̂h (2.10)

Harmonic amplitudes Ih and Îh and phase angles φh and φ̂h are obtained using the Fast

Fourier transform (FFT).

2.4.3 Goodness-of-Fit (GoF)

Riepnieks and Kirkham in [17] present a metric for evaluating the accuracy of PMUs based

on a comparison of the measurement model (the mathematical definition of the quantities

being measured) with the observed signal. We have adapted their “goodness-of-fit” (GoF)

metric by comparing a time series of measurements recorded from the sensor with that from

a reference or ground-truth sensor:

GoF = 20 log10

A√
1

N−m
∑N

k=1(ik − îk)2
, (2.11)
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where A is the amplitude of the signal model, N is the number of points in the time-domain

record, m is the number of parameters being measured (in this case, m = 1), ik is the

kth sample of the reference time-domain current, and îk is the kth sample of the sensor

time-domain current. The GoF is expressed in decibels (dB) in order to ensure the dynamic

range is compressed, and the root-mean-square error is in the denominator of (3.12), yielding

greater numbers for closer fits.

2.5 Waveform Playback System

At ORNL’s DECC lab, a signal playback system has been developed. This system employs

an National Instruments (NI) PXIe 5423 arbitrary waveform generator (AWG) that can

produce voltages emulating digital signals stored in comma-separated-value (csv) text files.

This AWG produces analog voltages in the ± 2.4 V peak-to-peak range. These produced

voltages are then converted to current and amplified through an AE 7228 power amplifier,

modified to provide accurate frequency response within ±1% between 60 Hz and just under 5

kHz. The current is then stepped up using a KOR-11 15kV 400:5 T200CT whose frequency

response was measured to be flat at least up to 10kHz. On the high side of the step-up

transformer, a reference sensor is used to measure the actual current being fed into the

equipment under test (EUT, i.e. the sensors being evaluated). This is because a phase delay

of 20 µs is induced between the EUT signals and WG output signals due to the intermediate

equipment.

The Ultrastab 866 Precision Current Transducer (current ratio of 1500:1) was chosen to

serve as the reference sensor due to its extremely flat frequency response up to 100 kHz, and

is connected connected to a 10-ohm burden resistor to measure currents of several hundred

amps with accuracy better than 0.1 percent. The current signals also pass through the EUT

and the measurements are fed back into the data acquisition system (DAQ) for side-by-

side comparison with the reference sensor’s readings. See Figure 2.2 for a diagram of the

playback-sensing system.

The event recordings were sampled at a rate of 256 samples per cycle, or 15,360 Hz. To

remain faithful to the original recordings, the DAQ system samples the received reference
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and EUT signals at the same rate., and synchronizes them. Three sensors were used while

conducting the experiments, denoted hereafter as S1, S2, and S3. Each sensor works on a

different operating principle, and thus have different eccentricities.

2.5.1 Event Descriptions

In total there are 5 events used for study. Each of the 5 events consists of three current

phases (A, B, & C) with the exception of one, which only includes phases B & C. Phase A

from this particular event did not present any deformities found in the other two phases, so

it was discarded.

Fig. 4.3 shows current-vs.-time plots of the events under study. These events consist of

arcing (Fig. 2.3a), capacitor switching (Figs. 2.3b-2.3c), and three-phase inrush (Figs. 2.3d-

2.3e). All of the noticeable high-frequency contributions appear at the 2-second mark. In

Fig. 2.3a, phase C (orange, thick line) shows a noticeable “blip” at the inception of the arc,

whereas phase B (blue, thin line) shows an increase in amplitude for both the fundamental

and harmonic components present in the peaks and valleys of the waveform. The capacitor

switching events show clear high-frequency content in all three phases, the most extreme of

which happen in the “spikes” of phases B (orange, middle-thickness line) and C (green, thick

line). Similarly, the inrush events show high-frequency activity on all three phases.

2.6 Results and Discussion

Representative plots of sensor performance superimposed upon one another are shown in

Fig. 2.4. In Fig. 2.4a, current phase C for the arcing event is shown. It can be seen that

sensor S1 (solid thin line, blue) possesses high-frequency components all along the waveform

that are not seen in the reference (dashed, red) waveform. Sensor S2 appears upon inspection

to follow the reference waveform the closest, but it is not without noisy additions as well.

Sensor S3 has trouble responding to instantaneous events and appears to filter out higher

harmonics. Figs 2.4b-2.4c show example sensor responses to capacitor switching and inrush

events, respectively, which contain higher concentrations of harmonic content. S1 appears
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Figure 2.2: Waveform playback and DECC sensor system
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(b) Capacitor Switching 1
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(c) Capacitor Switching 2
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(d) Inrush 1
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Figure 2.3: Events used for study
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to be extremely sensitive to sudden high-frequency changes in the wave shape. This is due

to a very strong resonance in the kHz range.

Tables 2.1-2.3 show amplitude error and phase difference, as computed using (3.5) and

(2.10), for each of the events shown in Fig. 2.4. A six-cycle window (0.1 seconds) is used

in the FFT calculation, with FFT size equal to 4096 to ensure a small-enough frequency

resolution for extracting harmonic amplitudes and phases. Table 2.4 shows the fundamental

amplitude errors and phase differences for these events. Additionally, Table 2.4 shows the

mean harmonic errors and phase differences for each event across the 2nd through 35th

harmonics.

It is clear from the tables that S1 presents a significant phase drift across all frequencies

and events. S1 appears to actually lead the reference signal during steady-state conditions,

for reasons still unknown to the authors. Sensor S3 performs best under slow-changing

(i.e. steady-state) conditions, and does not respond well to sudden changes in amplitude or

frequency. S2 appears to perform the best across the board for all events.

Using the GoF metric defined in (3.12), each sensor’s performance may be characterized

as in Fig 2.5. The y-axis lists each of the events under study, the x-axis is the six-cycle (0.1

second) time window used, and each block represents a single cycle’s worth of GoF computed

using (3.12). It is clear from these figures that S1 performs poorly for the tested events.

S3 appears to work well for capacitor switching events, but is lackluster for capturing

the inrush and arcing events studied. S2 works best for capturing arcing, inrush event IN1,

and the capacitor switching events, but fails to faithfully reproduce the signals contained in

IN2. This is likely due to the fact that IN2 has much lower load current levels (15-20 amps

as opposed to 100+ amps in the other events), and thus the noise present in the signal is

amplified due to the sensor’s dynamic range (< 30 kA).
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(b) Capacitor switching 2 phase A
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Figure 2.4: Representative sensor responses

31



Table 2.1: Arcing phase C (AR-IC) harmonic amplitude/phase errors

Parameter
Harmonic No.

1 3 5 7 11 13 19

S1 (%) 2.3 30.3 108.4 178.6 70.3 246.3 287.5
S2 (%) 0.1 2.4 0.1 0.1 0.8 3.1 18.6
S3 (%) 0.8 42.3 83.4 85.9 40.5 47.2 42.5

S1 (◦) -22.8 -30.6 -59.2 -64.9 -119 35.7 -111
S2 (◦) -0.3 -0.5 0.1 0.4 -6.8 -0.1 12.3
S3 (◦) -1.3 -75.9 130.8 -149.2 16.8 -37.1 2.3

Table 2.2: Capacitor switching phase A (CS2-IA) harmonic amplitude/phase errors

Parameter
Harmonic No.

1 3 5 7 9 11 13

S1 (%) 2.7 19.7 42.5 78.7 9.5 230.5 135.2
S2 (%) 0.4 2.1 1.3 1.4 5.8 3.3 3.4
S3 (%) 0.3 47.1 31.6 21.4 32.5 60.2 16.1

S1 (◦) -22.8 -36.3 94.6 91 -68.3 -26.6 87.2
S2 (◦) -0.2 -1 -0.1 0.8 0.3 -1.4 -3.1
S3 (◦) 0.2 18.1 59.3 56.9 54.4 -1.2 48.3

Table 2.3: Inrush 2 Phase A (IN2-IA) harmonic amplitude/phase errors

Parameter
Harmonic No.

1 3 5 7 9 11 13

S1 (%) 3.8 47.7 100.1 122.6 59.7 132.4 158.1
S2 (%) 1.8 0.1 5.9 4.6 11.9 5.8 3.8
S3 (%) 0.6 71.7 75.8 70.9 50.9 64.8 66.4

S1 (◦) -21.7 -44.3 -48.5 -77.7 -78.3 56.3 -53
S2 (◦) 2.5 1.8 2.6 0.2 2.5 -1.1 108.3
S3 (◦) 1.1 23.1 -1 -119.6 -70.7 -146.8 36.45
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(c) S3 GoF heatmap

Figure 2.5: GoF for each sensor around the event of interest
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Table 2.4: Fundamental and average harmonic amplitude errors and phase differences for
events not shown in Fig. 2.4. Values in the two right-most columns are averages over all
non-fundamental frequencies.

Event
Fund. (%)
S1 S2 S3

Fund. (◦)
S1 S2 S3

Harm. (%)
S1 S2 S3

Harm. (◦)
S1 S2 S3

AR-IB 2.7 0.3 1.6 -22.9 -0.4 -1.4 66.8 5.6 11.1 -17.2 3.9 3.3
CS1-IA 3.1 0.4 1.3 -22.9 -0.6 0.3 142.5 8.3 8.1 -26.2 2.2 -0.2
CS1-IB 2.2 0.1 1.4 -23 -0.2 -1.6 524.7 14.5 46.3 -52.1 -3.3 -3.8
CS1-IC 3 1.2 0.8 -23.3 0.8 -1 538.3 14.9 23.4 -51.7 -4.4 21.9
CS2-IB 2.9 0.1 2.4 -23 -0.3 -1.7 631 30.4 37.4 -34.9 0.5 6.7
CS2-IC 3.1 0 0 -22.8 -0.3 -2.9 197.6 7,4 18.2 -15 -0.5 5.1
IN1-IA 3 1.3 2.5 -22.5 -0.3 -1.1 211.7 7.2 68.9 -41.8 -1.1 -18.9
IN1-IB 2.6 0 1.2 -22.8 -0.3 -1.7 72 6 24.3 0.9 0.5 6.1
IN1-IC 3.4 0 0.3 -22.7 -0.3 -2.3 46 23.1 16.9 -24.8 -0.3 0.5
IN2-IB 3.3 0.1 3.9 -23.1 -0.2 -3.1 607.2 15.4 31.5 -58.4 -9.3 18.2
IN2-IC 5.1 0.1 0.5 -22.5 -0.1 -3.3 390.7 11.8 35.5 -48 -4.7 32.8
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Chapter 3

Statistical Profiling of Non-Ideal

Sensor Responses to Transient Events

Chapter 2 presented the groundwork for this dissertation by examining frequency response

characteristics of medium-voltage sensors. In this chapter, these characteristics, and their

effects on high-frequency transient disturbances, are studied in a more in-depth manner.

Probability density functions (PDFs) of harmonic magnitude and phase error statistics are

estimated using kernel density estimation (KDE).

The advancement of power system observability has seen a dramatic shift in recent

decades through the deployment of synchrophasors, or phasor measurement units (PMUs).

PMUs provide the advantage of directly measuring voltage magnitude, phase angle,

frequency, and rate-of-change-of-frequency (ROCOF); quantities that would otherwise be

treated as latent variables through other measurement systems, requiring other real-time-

capable signal processing solutions to extract. In spite of these recent developments,

PMUs are typically only capable of measuring fundamental quantities; that is, information

contained in the frequencies beyond 50/60 Hz are lost.

3.1 Existing Work

Much work has been done on the analysis of errors resulting from PMU measurement chains.

In [18], the Gaussian assumption for PMU error is re-assessed, and corrected using Gaussian
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Mixture Modeling (GMM), a technique for describing distributions comprised of more than

one Gaussian “mode”. The flaw in the Gaussian assumption is further examined in [19]. The

authors in [20] explore various ways in which PMU error affect different applications, such

as power system disturbance location, oscillation detection, island detection, and dynamic

line rating. Analysis of PMU error for state estimation is also a burgeoning field of study

[21, 22, 23, 24].

There have been works published on the estimation of harmonic phasors in the form of

Ah = Ahe
jφh , in which harmonic h amplitude Ah, phase φh, frequency fh, and rate-of-change-

of-frequency (ROCOF) ROCOFh are the variables of interest. In [25] and [26], harmonic

phasors are modeled as complex exponential functions and solved for via a least-squares

approach applied to sampled frequency-domain models of the harmonic phasors. However,

as the sampling rate increases, the necessary computational burden increases dramatically,

to the point of being unable to perform the required matrix inversions on an 8-core machine.

Other techniques on extracting harmonic information from signals have been proposed

as well. The authors in [27] employ a series of frequency-modulated finite impulse response

(FIR) filters to estimate instantaneous harmonic parameters. A variation on the estimation

of signal parameters using rotational invariance technique (ESPRIT) was proposed in [28],

and in [29] in which the exact model order is estimated from the data rather than having to

be configured and tuned by hand. Literature on accurate harmonic measurement in general

is extremely sparse.

This study analyzes high-frequency transient electrical current waveforms captured by

equipment dubbed hereafter as “Point-on-Wave” (PoW) sensors. At present, most studies

concerning non-power frequency content of power system phenomena are reduced to total

harmonic distortion (THD) and power quality index computations [30]. Harmonics are

detrimental to the power system, and measures are typically taken to eliminate or reduce

their effects rather than study them. However, complete removal of harmonics in the power

system is almost impossible, and potential actionable information may be lost.

PoW sensors capture oscillographic representations of the measured phenomena, typically

sending the resultant analog measurements to a device capable of digitally sampling at high

rates. Two different commercially-available PoW sensors are compared with one another,
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as well as against a “reference” sensor, representing the ideal. Statistical analysis of the

harmonic amplitude and phase error for each sensor over a variety of transient current

waveforms is performed, including the estimation of non-parametric probability density

functions (PDFs) at each chosen harmonic. Note that equipment manufacturers will be

kept anonymous in this document to avoid any perceived endorsement of one technology

over another.

The motivation behind studying individual harmonic error probability distributions is

a simple one. In parameter or state estimation applications, measurements are typically

modeled mathematically in the form:

Ymeas(t) = Ytrue(t) + err(t), (3.1)

where err is an error term indicating random deviations between Ymeas and Ytrue. This

term is usually considered a lumped parameter, including contributions from systematic and

random errors. In the power system scope, Y is usually an electrical parameter of interest,

such as voltage magnitude, phase angle, or frequency. The work presented in this study

examines error of electrical current harmonics as a result of high-frequency disturbances and

characterizes the behavior of harmonic amplitude and phase error over a variety of dominant

harmonics frequencies.

Individual harmonic error distribution analysis has not been studied in-depth. We hope

this study will continue the advancement of the body of knowledge to be used for improving

power system observability and situational awareness.

The contributions of this chapter may be summarized as follows:

• Harmonic analysis of three distinct power system current disturbance types, two of

which are products of real-world scenarios: a current inrush event and a microgrid

switching “online” to the grid (i.e. a switch closing). The third disturbance is

simulated based on an electromagnetic transients program (EMTP) model of a wind

farm experiencing a short-circuit three-phase fault at its terminals, as measured at said

terminals. This event was included in this study to highlight extremely high harmonics

well into the 10’s of kHz by modifying the simulation step to a very small value.
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• Direct comparison of two commercial-grade distribution PoW sensors against a near-

idealized reference, in terms of amplitude percent error, amplitude residual error, and

phase difference.

• Analysis of the Gaussian (i.e. normal) distribution assumption of harmonic errors

using the Anderson-Darling test.

• Use of a non-parametric probability density function estimation technique, known

as kernel density estimation (KDE), to learn generalized distributions of harmonic

amplitude and phase errors. A mean-squared-error goodness-of-fit (GoF) metric is

used to quantify the results of this estimation process.

3.2 Harmonic Extraction

To capture non-fundamental frequency information, it is necessary to capture the frequency-

domain information of the received measurement waveform(s). This is typically accom-

plished through the computation of the Discrete Fourier Transform (DFT) via the Fast

Fourier Transform (FFT) algorithm. For a measured discrete-time signal x[n], its DFT

representation X(k) is computed as:

X(k) =
N−1∑
n=0

x[n]e
−j2πkn

N (3.2)

where the frequency at bin k may be computed as fk = kFs
N

, Fs is the sampling frequency,

N denotes the length of the FFT vector, and j =
√
−1. Because the frequency vector f̂

is discretized, estimation of the fundamental frequency is dependent on finding the nearest

frequency bin k̂, to the query frequency, in this case, 60 Hz:

k̂ = argmin
k

[(
f̂ − 60

)2]
(3.3)

ffun = f̂ [k̂], (3.4)
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where k̂ denotes the estimated FFT bin closest to 60 Hz, and ffun is the estimated

fundamental frequency obtained from the FFT. This value may be confirmed by finding

the maximum value in |X(k)|, because it is reasonable to expect the fundamental frequency

of power signals will be the dominant feature in the DFT magnitude spectrum. Harmonics

of this fundamental frequency can then be estimated by taking multiples of ffun. To extract

the corresponding harmonic frequency FFT bins, simply replace the query frequency (60

Hz in (3.3)) with h × ffun, where h = 2, . . . , H is the harmonic order, and H denotes the

maximum number of harmonics in the signal.

3.3 Statistical Analysis of Harmonics

Often error analysis is performed under the assumption of a Gaussian distribution - that is,

error is typically assumed to take the form of additive white Gaussian noise (AWGN). In

this section, error metrics for harmonic magnitudes and phases are presented. Two metrics

for harmonic amplitudes are first discussed: percent error and residual error. Phase error is

computed using a simple difference.

Given a sensor under test (SUT), and an ideal reference sensor measuring the same

quantity side-by-side, the percent error at a specific harmonic amplitude h may be quantified

as, [31]:

errhI,% =

∣∣Ihsut − Ihref ∣∣
Ihref

. (3.5)

This quantity may be multiplied by 100 if it is desired to be expressed in percent. Otherwise,

0 ≤ errhI ≤ 1 is unitless, and provides a relative measure of the deviation of a measured

harmonic amplitude Ihsut from the reference harmonic amplitude Ihref . The residual harmonic

amplitude error may be calculated using:

errhI,res = Ihref − Ihsut. (3.6)

Similarly, the phase may be compared with a simple difference:

∆φhI = φhI,ref − φ
j
I,sut (3.7)
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where φhI,ref and φjI,sut represent reference and measured phase angles at harmonic order h,

respectively.

It is useful to determine the distributions of errhI,%, errhI,res, and ∆φhI . Knowing these

distributions of may allow measurement devices to make corrections if errors are suspected.

These distributions may also give insight as to if a particular sensor, measuring a particular

harmonic h, possesses systemic error (loosely equivalent to a bias), or if the error seems purely

random. The natural assumption is to assign Gaussian distribution to error quantities, but

as will be shown later in this work, that is not necessarily the case at each harmonic!

3.3.1 The Anderson-Darling Test

A common problem in statistical inference is determining a distribution, or family of

distributions, that a given sample has come from. It is often not sufficient to simply visualize

a histogram of data, and more rigorous methods are required to fully quantify the “goodness-

of-fit” of a distribution family to a given sample.

In [32], T. W. Anderson and D. A. Darling proposed a test statistic used for accomplishing

this. Given an ordered sample x1 ≤ x2 ≤ · · · ≤ xn with cumulative distribution function

F (x), compute

W 2
n = −n− 1

n

n∑
j=1

(2j − 1)G(xj), (3.8)

for

G(xj) = [log (F (xj) + log (1− F (xn−j+1)))] . (3.9)

Stephens in [33] notated the statistic W 2
n for various distributions at various significance

levels. For a test against a normal distribution with unknown parameters at a significance

level of p = 0.05, the “threshold” is 0.787. This means that if computation of W 2
n yields

a number greater than this threshold, the test will reject the hypothesis that the sample

x came from a normal distribution. MATLAB provides a simple function, adtest(), that

accepts a series of numbers as an input, and yields a 0 if the input sample likely came from

a normal distribution at a significance level of p = 0.05 or less and a 1 otherwise.
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3.3.2 Kernel Density Estimation (KDE)

Often a random sample does not appear to come from a known family of distributions. In this

case, nonparametric techniques are usually applied to estimate the distribution function f(x).

One of the more common approaches to this problem is that of Kernel Density Estimation

(KDE). A density function f describing the distribution of a random variable X may be

approximated as f̂h(x) using the kernel density estimator:

f̂h(x) =
1

hn

n∑
i=1

K

(
x− xi
h

)
, (3.10)

for some kernel function K and bandwidth, or smoothing parameter h. In many applications

the standard normal kernel is assumed:

K(x) =
1√
2π

exp
−(x2)

2
(3.11)

KDE essentially overlays the kernel function K over the data histogram, computes the kernel

function on the values of xi within the kernel, shifts the kernel function, and sums the result

(the summation in (3.10)), yielding a continuous function approximating the true density

f(x). The bandwidth parameter h controls the width of the kernel function. Ideally h would

be as small as possible, however too small an h will result in overfitting. Similarly, too large

an h will result in a curve that is too smooth. An example is shown in Figure 3.1.

Goodness-of-Fit using Root Mean Squared Error

A simple yet effective metric for gauging the goodness-of-fit (GoF ) of a probability density

estimate f̂ is a simple mean-squared error calculation between the empirical cumulative

distribution function (ECDF) calculated from the data, F̂ (x), and the estimated CDF F (x),

computed given the estimated density function f̂(x):

GoF =

√√√√ 1

N

N∑
i=1

(
F (xi)− F̂ (xi)

)2
(3.12)
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Ideally, the GoF for an estimated distribution function F̂ (x) will be as close to zero as

possible, indicating little deviation between F (x) and F̂ (x). Note that the GoF metric here

differs from that presented in Chapter 2.

3.4 Experimental Setup

Using the experimental setup from Chapter 2, each event was “played back” through the

sensor suite 100 times, yielding 100 comparisons between a sensor’s produced signal and

the reference sensor signal. In this chapter, only sensors S2 and S3 from Chapter 2 are

employed, as S1 showed extreme deviations from typical operation. These two sensors are

hereafter denoted as S1 and S2, respectively.

3.4.1 Event Descriptions

Three event types were studied: a current inrush event (denoted as E1), a microgrid close-in

event E2, and an event depicting a fault on the terminals of a wind farm connected to a

distribution system E3. Events E1 and E2 are from real world data, whereas the wind-fault

event was simulated in PSCAD, [34]. Events E1 and E2 were sampled at a different rate

(20 kHz and 30.72 kHz, respectively) due to the nature of their originating measurement

sources, and the sampling rate for the simulated event E3 was chosen to be 200 kHz to

obtain as many harmonics from the wind fault waveform as possible, as well as ensuring that

the Nyquist frequency (i.e 100 kHz) matched the frequency response limit of the reference

sensor.

Figure 3.2a-3.2c depict single-phase current waveforms produced by Sref , S1, S2. It can

be seen that in most cases, S2 produces a significant amount of noise. It can also be seen

by examination alone that, while S1 appears to follow Sref more closely at lower frequencies

(Figure 3.2a), it begins to deviate more at higher frequencies, (Figures 3.2b-3.2c).
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Figure 3.1: Example of KDE on data drawn from the standard normal distribution. The
blocks indicate the histogram of the raw data. The solid line indicates the best “fit”. The
dash-dotted line shows a case in which the value of h is too small. The lighter dotted line
shows a case of h being too large.

(a) Inrush Current Waveform (b) Microgrid Close-in Current Waveform

(c) Wind Fault Current Waveform

Figure 3.2: Event Waveforms
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3.4.2 Selecting Harmonics

For a given event waveform, it is not likely that every frequency component between 0 and the

Nyquist frequency Fs/2 will be present in the examined signal. For this reason, harmonics

were hand-picked from the prominent “peaks” in the waveform frequency spectra. Table 3.1

lists the chosen harmonics. Note that the fundamental frequency (60 Hz) is excluded due

to the large existing body of knowledge and design characteristics included to ensure peak

performance at this frequency.

3.5 Results

As mentioned in the previous section, 100 trials for each event play-through were conducted

using both sensors independently. After taking the FFT of each signal’s trial, the selected

harmonic amplitudes and phases were extracted.

3.5.1 Anderson-Darling: Testing for Normality

At this point, the distribution of each harmonic was tested using the Anderson-Darling test,

as described in Section 3.3. The xj’s used in (3.8) represent each of the three computed error

metrics. Tables 3.2-3.4 show the Anderson-Darling test results for both sensors. Clearly for

frequencies below the 50th harmonic (approximately), as produced by S1, exhibit normally-

distributed behavior (indicated with a 1 in the tables) with few exceptions (harmonics 7

for both residual amplitude and percent error, and 61 for just percent error). However,

it should be noted that the AD test does not definitively prove that a distribution follows

“normal” behavior; it computes the probability (the p-value) that the assumption of a normal

distribution is true. In other words, if p < 0.05, there is enough evidence to reject the

hypothesis that the given distribution is normal, implying that the result indicating allowable

rejection of the null hypothesis is statistically significant with α = 100% × (1 − p) = 95%

confidence.

Both amplitude metrics computed from S2 samples show non-normal behavior at

harmonics 37 and 49. The phase as captured by S2 has an interesting mix of normal and
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Table 3.1: Selected harmonics for each event of interest

Inrush Microgrid Close-in Wind Fault
2 3 7
3 5 14
4 7 149
5 9 195
6 12 232
7 13 270
11 17 389
13 18 427
17 19 464
23 20 501
27 21 600
31 23 659
37 25 697
49 27 734
61 29 854

31 892
33 1086
35 1124
37 1161
39 1281
41 1318
43 1360
47 1393
49 1550
51 1588

1625
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non-normal distributions, the most notable standout being the 7th harmonic exhibiting non-

normal qualities. However, the pattern shifts towards non-normal as the frequencies increase,

as with the wind fault case. Example non-normal distribution plots will be presented in

Section 3.5.2.

3.5.2 Distribution Fitting via KDE

As described in Section 3.3, KDE was used to estimate a continuous distribution from the

data samples obtained at each harmonic, for all three error metrics: percent amplitude error,

residual amplitude error, and phase error. Figures 3.3a-3.3b depict examples of predicted

normal and non-normal distributions, respectively. To the naked eye, Figure 3.3a does not

appear to be normally distributed, however there was not enough sufficient evidence in the

data to reject this hypothesis when performing the AD test on this particular harmonic.

Figure 3.3b shows a case of a harmonic amplitude’s distributions failing the AD test, and

the skewness of the distribution clearly reflects this. Also included in this figure are the

RMSE values for the estimated distributions. For more examples of estimated distributions

exhibiting non-normal behavior, see the harmonic error distributions for the wind fault case

in Appendix A.

3.5.3 Goodness-of-Fit

Each of the computed distributions were then tested against the empirical data by using

(3.12). The GoF results for both sensors’ harmonic distributions over all three events may

be seen in Tables 3.5-3.7. It can be seen that for both sensors, the RMSE tends to lie around

the 0.02− 0.03 mark, meaning that, on average, the probability of the harmonic amplitude

or phase error X being less than or equal to some value x differs by 0.02− 0.03 between the

empirical data CDF F (x) and the estimated CDF, F̂ (x).

Bold items in Tables 3.5-3.7 indicate higher RMSEs between the two sensors’ estimated

PDFs for a given metric. For example, in Table 3.5, KDE seemed to perform worse on

phase error for S2. However, in Table 3.6, S2’s estimated PDFs for phase error outperformed

those of S1. This goes to show that different sensors will yield different error distributions
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Table 3.2: AD results for inrush event distribution as seen by S1 and S2

Harmonic #
Amplitude (%) Amplitude (res.) Phase
S1 S2 S1 S2 S1 S2

2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 1 0 1 0 0 1
11 0 0 0 0 0 0
13 0 0 0 0 0 0
17 0 0 0 0 0 0
23 0 0 0 0 0 1
27 0 0 0 0 0 1
31 0 0 0 0 0 1
37 0 1 0 1 0 1
49 0 1 0 1 0 1
61 1 0 0 0 0 1

(a) Example Normal Fit: Histogram and
Estimated PDF

(b) Example Non-Normal Fit: Histogram and
Estimated PDF
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(d) Example Non-Normal Fit: Empirical and
Estimated CDFs

Figure 3.3: Normally-distributed (a), (c) estimated residual amplitude error for harmonic
# 7 as seen by S2 for the wind fault transient event, and non-normally-distributed (b), (d)
example harmonic # 1625.
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Table 3.3: AD results for microgrid close-in event distribution as seen by S1 and S2

Harmonic #
Amplitude (%) Amplitude (res.) Phase
S1 S2 S1 S2 S1 S2

3 0 0 0 0 0 0
5 0 0 0 0 0 0
7 0 0 0 0 0 0
9 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 0 0
17 0 0 0 0 0 0
18 0 0 0 0 0 0
19 0 0 0 0 0 0
20 0 0 0 0 0 0
21 0 0 0 0 0 0
23 0 0 0 0 0 0
25 0 0 0 0 0 0
27 0 0 0 0 0 0
29 0 0 0 0 0 0
31 0 0 0 0 0 0
33 1 0 1 0 0 0
35 0 0 0 0 0 1
37 0 0 0 0 0 0
39 0 1 0 1 0 1
41 0 0 0 0 0 0
43 0 0 0 0 0 1
47 0 0 0 0 0 0
49 0 1 0 1 0 0
51 0 0 0 0 0 0
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Table 3.4: AD results for wind-fault event as seen by S1 and S2

Harmonic #
Amplitude (%) Amplitude (res.) Phase
S1 S2 S1 S2 S1 S2

7 0 0 0 0 1 0
14 0 0 0 0 0 0
149 1 1 0 1 0 1
195 1 1 0 0 0 1
232 1 1 0 0 0 1
270 1 1 1 1 1 0
389 1 1 0 1 1 0
427 1 1 1 1 1 0
464 1 1 0 1 0 1
501 1 1 0 1 1 1
600 0 1 0 1 1 0
659 1 1 1 1 1 0
697 1 1 0 0 1 1
734 1 1 0 0 0 1
854 1 1 0 1 1 1
892 0 1 0 0 1 0
1086 1 1 1 0 1 0
1124 1 1 1 0 1 0
1161 1 1 1 0 1 1
1281 1 1 0 1 1 1
1318 0 1 1 1 1 0
1360 1 1 1 0 1 1
1393 1 1 1 0 1 1
1550 1 1 0 0 1 0
1588 1 1 1 1 1 0
1625 1 1 1 1 1 0
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over different harmonics, and that there is no “one-size-fits-all” solution to learning error

characteristics.

3.6 Conclusions

A fully situationally-aware power system is a goal that, while seemingly impossible to achieve,

is something worth pursuing. In this chapter, high-frequency transient power system current

disturbances and their distorted representations are analyzed through both statistical and

probabilistic lenses over a wide variety of harmonic frequencies. Harmonic amplitude error,

quantified in terms of percent and residual, largely showed characteristics of normally-

distributed behavior per the Anderson-Darling test for normality in the lower (i.e. less

than the 50th harmonic) frequencies.

As the harmonic frequency moves beyond this level, the error distributions tend to drift

away from normal behavior, as seen in the wind-fault event results. RMSE was used as an

indicator for goodness-of-fit between estimated distribution functions and empirical data,

showing the validity of the presented approach. The results presented in this chapter go

against the assumption that measurement error may be treated as a normally-distributed

quantity.
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Table 3.5: RMSE for Inrush Harmonic Distributions

Inrush

Harmonic
% res. Phase

S1 S2 S1 S2 S1 S2
2 0.020 0.022 0.019 0.022 0.022 0.020
3 0.019 0.023 0.019 0.023 0.024 0.023
4 0.017 0.019 0.017 0.019 0.019 0.022
5 0.017 0.023 0.017 0.023 0.023 0.023
6 0.021 0.020 0.022 0.020 0.018 0.021
7 0.030 0.027 0.030 0.027 0.020 0.028
11 0.023 0.023 0.023 0.022 0.021 0.022
13 0.024 0.026 0.024 0.026 0.019 0.020
17 0.020 0.020 0.020 0.021 0.019 0.019
23 0.026 0.021 0.026 0.022 0.022 0.037
27 0.021 0.023 0.022 0.023 0.026 0.022
31 0.023 0.021 0.023 0.022 0.022 0.062
37 0.022 0.027 0.020 0.026 0.022 0.035
49 0.020 0.026 0.019 0.023 0.022 0.026
61 0.031 0.022 0.028 0.022 0.020 0.039
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Table 3.6: RMSE for Microgrid Close-in Harmonic Distributions

Microgrid Close-in

Harmonic
% res. Phase

S1 S2 S1 S2 S1 S2
3 0.024 0.021 0.024 0.021 0.024 0.021
5 0.019 0.019 0.019 0.020 0.022 0.021
7 0.020 0.022 0.020 0.023 0.025 0.022
9 0.019 0.021 0.019 0.021 0.020 0.019
12 0.021 0.025 0.021 0.026 0.017 0.020
13 0.020 0.019 0.020 0.019 0.024 0.021
17 0.019 0.020 0.020 0.019 0.020 0.022
18 0.021 0.025 0.021 0.024 0.022 0.021
19 0.020 0.024 0.020 0.023 0.021 0.020
20 0.019 0.022 0.019 0.020 0.028 0.031
21 0.022 0.023 0.022 0.023 0.019 0.023
23 0.018 0.023 0.018 0.022 0.023 0.020
25 0.021 0.026 0.021 0.026 0.020 0.021
27 0.019 0.019 0.019 0.019 0.018 0.025
29 0.024 0.021 0.025 0.019 0.021 0.020
31 0.018 0.019 0.018 0.019 0.025 0.023
33 0.022 0.020 0.023 0.020 0.023 0.018
35 0.025 0.019 0.025 0.019 0.022 0.023
37 0.020 0.019 0.020 0.020 0.021 0.020
39 0.023 0.024 0.023 0.024 0.017 0.031
41 0.022 0.029 0.022 0.029 0.020 0.022
43 0.021 0.021 0.021 0.021 0.025 0.025
47 0.021 0.022 0.021 0.022 0.020 0.019
49 0.022 0.022 0.022 0.022 0.022 0.022
51 0.022 0.027 0.022 0.027 0.019 0.021
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Table 3.7: RMSE for Wind Fault Harmonic Distributions

Wind Fault

Harmonic
% res. Phase

S1 S2 S1 S2 S1 S2
7 0.023 0.020 0.023 0.020 0.028 0.024
14 0.020 0.020 0.020 0.020 0.024 0.022
149 0.027 0.028 0.026 0.026 0.024 0.024
195 0.025 0.034 0.021 0.022 0.025 0.021
232 0.028 0.022 0.020 0.024 0.021 0.029
270 0.023 0.029 0.021 0.023 0.023 0.024
389 0.024 0.028 0.023 0.022 0.026 0.023
427 0.023 0.030 0.026 0.022 0.025 0.022
464 0.026 0.026 0.020 0.025 0.019 0.028
501 0.027 0.020 0.024 0.024 0.023 0.025
600 0.021 0.029 0.024 0.025 0.031 0.022
659 0.029 0.025 0.024 0.019 0.031 0.023
697 0.023 0.021 0.020 0.025 0.023 0.021
734 0.026 0.022 0.018 0.022 0.025 0.029
854 0.027 0.030 0.027 0.025 0.035 0.022
892 0.021 0.028 0.022 0.026 0.029 0.022
1086 0.026 0.025 0.023 0.019 0.039 0.024
1124 0.028 0.027 0.027 0.021 0.039 0.026
1161 0.021 0.020 0.022 0.020 0.035 0.028
1281 0.026 0.023 0.020 0.022 0.043 0.025
1318 0.025 0.026 0.021 0.022 0.025 0.021
1360 0.031 0.030 0.033 0.020 0.036 0.030
1393 0.030 0.025 0.024 0.026 0.040 0.030
1550 0.020 0.027 0.025 0.019 0.025 0.019
1588 0.025 0.031 0.022 0.021 0.058 0.023
1625 0.030 0.025 0.028 0.022 0.038 0.024
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Chapter 4

Detection of Corrupted Signals Using

the “Energy Detector”

The previous two chapters examined the way common off-the-shelf sensors are susceptible

to high-frequency distortions in their produced output waveforms. In this chapter, the

dissertation shifts its focus towards the examination of how these sensor irregularities effect

applications in the power grid, specifically with respect to the detection of high-frequency

events.

4.1 The “Detection Problem”

Modern protection and monitoring systems utilized in the power industry rely on accurate

detection of disturbances that may be indicative of undesirable behavior in the system. In

traditional relaying mechanisms, configurable current thresholds and sequence component

transforms provide simple means of detecting faults in order to send a trip signal to the

associated circuit breaker(s) to protect the system from drawing dangerous levels of fault

current.

Traditional faults are relatively simple to detect using existing hardware and software

systems. However, the power grid is quickly transitioning away from the familiar

unidirectional and radial system into a decentralized network of independently-operated

generating sources (e.g. microgrids) working in tandem with the existing infrastructure.
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The push for using renewable energy sources to supplement generation capacity poses the

challenge of operators not presently being equipped to recognize bidirectional power flows

and the subsequent voltage and current phenomena that result.

There are a wide variety of detection algorithms available in the literature. Many of

these algorithms, however, assume a certain (often very high) level of available computational

capability. For example, many works make use of the Discrete Wavelet Transform (DWT) for

detection of abrupt signal changes, an algorithm notorious for its computational complexity

due to a series of convolution operations at every iteration, [35, 36, 37, 38, 39, 40].

Time-frequency (TF) methods are popular in the literature, including the above-

mentioned DWT method. Another popular detection technique employs the Short-Time

Fourier Transform (STFT) and its variations, [41, 42, 43, 44, 45]. The STFT computes

the Fourier Transform over a specified window of the signal of interest. This process is

repeated until the entire signal has been analyzed, yielding a matrix of complex coefficients

that may be used to extract the frequency information of the signal as it varies with time.

One fundamental limitation of the STFT is the time-frequency uncertainty principle which

states ∆t∆ω ≥ 2π, [46]. This relation reveals that for an increase in time resolution

∆t, the frequency resolution ∆ω will decrease, and vice versa, as time and frequency

are fundamentally inversely-proportional quantities, therefore introducing uncertainty in

analysis using results of the STFT and its variants.

Other detection techniques require certain assumptions about the system under obser-

vation. In [47], a technique involving successive differences of points along the waveform

cycle is presented. This method assumes a fixed fundamental frequency, however it is widely

known that the power frequency in the U.S. can vary at 60 ± 0.1 Hz, [2]. Over time, the

detection algorithm will be subject to frequency drift which will lead to inaccurate results.

This chapter presents a novel yet simple parameter-agnostic power system event detection

algorithm to address the deficiencies defined above, as well as its performance against

transient signals that have been corrupted by the sensor irregularities discussed in previous

chapters. The energy detector, based on the theory developed in [48] and proposed initially in

[49], provides a simple yet computationally-efficient means of power system event detection

that is free of the dependence on signal parameter assumption.
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Contributions of this chapter include:

• Presentation of the energy detector for high-frequency power system event detection

• Evaluation of the energy detector’s performance when subjected to multiple types of

the same event when subjected to sensor frequency response errors.

• Comparison against other common detection algorithms, in most cases showing

superior performance in its capability to detect the precise start time.

4.2 The Energy Detector

This section presents the Energy Detector (ED), a parameter-agnostic algorithm capable of

quickly detecting the beginnings and endings of transient signals.

4.2.1 Signal Model

A voltage or current wave may typically be represented as a simple sine or cosine expression

with constant amplitude A, frequency f , and initial phase θ:

s(t) = A cos (2πft+ θ) (4.1)

It is assumed that none of these parameters change during the observation period (i.e.

measurement window).

Often these signals are captured by some sort of data acquisition (DAQ) system, the

first operation of which is that of analog-to-digital conversion (ADC). This process involves

digital sampling the incoming signal s(t) at a finite rate fs. The resultant digital signal at

sample index k may be approximated by

s[k] = A cos

(
2πf

k

fs
+ θ

)
(4.2)
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4.2.2 Algorithm Derivation

A captured signal r[k], through use of a sensor/DAQ system contains an unknown noiseless

signal s[k] (i.e. voltage or current in this case), additive noise n[k], system linear time-

invariant (LTI) impulse response approximation h[k], and contaminated disturbance f [k],

and can be expressed by the following equation [48]:

r[k] = s[k] ∗ h[k] + n[k] + f [k]

= s[k] ∗ h[k] + n[k] + q[k]pTq [k −Np] (4.3)

where “∗” denotes the linear convolution operator, q[k] 6= 0 denotes the random process

(e.g. transient) of interest, pTq is the windowing function that captures the duration of the

transient (short–term) portion of the waveform, and Np is the delay which determines the

temporal location of transient. The transient in this context (q[k]pTq [k −Np]) is treated as

a random process superimposed on the steady-state (i.e. 60 Hz) waveforms. This problem

may be boiled down to a simple hypothesis test where H0 : pTq[k] = 0 and H1 : pTq[k] 6= 0.

The decision statistic for the energy detector output ψ[k], can be expressed by the

equation:

ψ[k] =
N−1∑
i=0

|r[k − i]|2 ≥ γ, (4.4)

where N is the number of samples taken per “bin”, or windowing iteration. The conventional

energy detector calculates the associated energy of the received signal over a given duration

N and compares the resulting energy value(s) with a selected threshold.

For this work, the appropriate threshold value γ is determined empirically. After

computing ψ[k], the energy values may be sorted from lowest to highest, as in Fig. 4.1.

The point after the “elbow” at which the curve begins to flatten is chosen as γ. Threshold

selection may also be computed analytically. For derivation of this technique, please see

Appendix B.
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4.3 Experimental Setup

The experimental setup from chapters 2 and 3 was once again employed. Each event

described in the next subsection was “played back” through the EUT using the system

depicted in Fig. 2.2 100 times. This was done to simulate the energy detector’s capability of

detecting the same types of events over time - as sensors will have inherent variability that

cannot always be accounted for.

4.3.1 Event Descriptions

Three events were used in this study, depicted in Fig. 4.3. Events depicted in Figs. 4.3a-4.3b

are real-world recordings, and Fig. 4.3c shows a simulated event. The capacitor switching

event of Fig. 4.3a shows a sharp high-frequency current spike at the point of inception and was

sampled at 20 kHz. The event shown in Fig. 4.3b is from a small residential-scale microgrid

housed at Oak Ridge National Laboratory switching online to the main grid, where the

current was measured at the inverter and sampled at 30.72 kHz (512 samples/cycle). The

last event, Fig. 4.3c shows a simulated fault on the terminals of a wind farm taken from the

PSCAD example given in [34], sampled at 200 kHz.

4.3.2 Sensor Descriptions

Two sensors were independently used to serve as the EUT. The Lindsey 9670 35 kV class

line post monitor (Figure 4.2) was first used, possessing ≤ 1% accuracy in the current gain

up to 6 kHz as well as induced phase error of less than 10◦. The second sensor, a G&W

CVS-36-O 36 kV class, possesses a more erratic magnitude response, reaching a maximum

of 5% magnitude error and 10◦ phase error up to 6 kHz. The G&W sensor is rated for up

to 30 kA (as opposed to approximately 1 kA for the Lindsey sensor) and thus has a much

higher noise floor in the range of currents being used in this study.
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Figure 4.1: Elbow point

Figure 4.2: Laboratory setup with Lindsey sensor connected to driving CT
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(a) Switching event current waveform - sampled at 20 kHz.
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(b) Microgrid close-in current waveform - sampled at 30.72 kHz.
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(c) Wind fault current waveform - sampled at 200 kHz.

Figure 4.3: Events under study
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4.4 Results

Each event was recorded by the DAQ system 100 times after being passed through each

sensor individually. This was done to create a statistical “profile” of the detection start

times. Fig. 4.4 displays histograms of these detection times.

For the switching event depicted in Fig. 4.3a, the true start time is at 97.95 ms. As shown

in Fig. 4.4a, both the reference and Lindsey sensors’ waveforms are accurately detected by

the ED at the precise start of the event over all 100 trials. Waveforms produced by the

G&W sensor cause early detections four times.

The second event under study, the microgrid operation depicted in Fig. 4.4b, shows much

more dispersion amongst its detection times. The reference and G&W sensors interestingly

both exhibit more false positives than the Lindsey sensor. This is likely due to the amount of

noise present in the first 0.1 seconds of the signal. There is very little fundamental-frequency

current present in this time interval, which makes consistent energy estimation difficult.

The last event shown in Fig. 4.3, resulted in a very wide dispersion of detection times

for the G&W sensor (Fig. 4.4c), whereas the Lindsey sensor was able to produce waveforms

easily detectable at the start time correctly for each trial. The reference sensor, on the other

hand, shows some minor distribution amongst its detection times within a 2 ms window

(zoomed-in portion of Fig. 4.4c). The G&W sensor, as described in Section 4.3.2, has a

much higher allowable current range, yielding a higher noise floor capable of corrupting the

signals produced by this device.

4.4.1 Comparison with other detection algorithms

Here,the performance of the energy detector against two other detection algorithms proposed

in the literature is examined. The two detection algorithms used for comparison are the

discrete wavelet transform (DWT), as discussed in Section 4.1, and the ultra-fast transient

(UFT) detector, [47]. The algorithms were compared using two metrics: mean percent error

between the detected start time and the actual start time (black lines in Fig. 4.3) across

all 100 trials, and average deviation between the detected start time and actual start time

in terms of samples. It should be noted that as the sampling rate increases, the number
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(a) Distributions of detected switching event start times for all three sensors.

(b) Distributions of detected microgrid close-in event start times for all three sensors.

(c) Distributions of detected wind fault event start times for all three sensors.

Figure 4.4: Detection Time Distributions
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of samples to cover the same amount of time will increase. For example, 50 microseconds

sampled at 20 kHz equates to a single sample, however it takes 10 samples to represent the

same duration of time when sampled at 200 kHz.

For the switching and close-in events (Tables 4.1 and 4.2 respectively), the ED detector

vastly out-performed both the UFT and DWT, both in terms of percent error and average

sample deviation. This is likely due to the sensitivity to noise that the UFT and DWT

algorithms possess. Given the switching event in particular, the mean percent error for

the ED is shown to be essentially zero, for both the reference and Lindsey sensor signals.

The G&W sensor percent error in this case was still very good at -0.01%. Note that both

performance metrics can be positive or negative, indicating a late detection (negative for

sample deviation, positive for percent error) or early (vice versa). In the case of the microgrid

close-in event, the ED percent error never exceeds ±2%. The maximum average sample

deviation in this case was yielded from the reference sensor readings at 49.34 samples, or 1.6

ms (sampled at 30,720 Hz).

The wind fault event shows a case in which the ED under-performed with respect to

the UFT. This illustrates a pitfall of the ED, namely the need to select a threshold γ (see

(4.4)). This could potentially be overcome by adjusting N in (4.4) to be dependent upon the

sampling rate. Because the sampling rate has increased drastically (200 kHz in this case),

the number of energy bins calculated has grown considerably, making the choice of threshold

challenging. It should still be noted however that the percent error never exceeds 1%. The

maximum average sample deviation was -245.03 samples, corresponding to an average late

detection by 1.2 ms at 200 kHz, which is still less than a tenth of a cycle.

4.5 Conclusions

This study presented the application of the energy detector for high-frequency power system

event detection for three typical current disturbance types: capacitor switching, microgrid

switching, and the reaction of a wind farm to a short-circuit fault at its terminals. It

should be noted that this technique is waveform agnostic, meaning that it is not exclusive to

current. It was shown that the detector exhibits strong performance in detecting these
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Table 4.1: Switching Event Detection Comparisons

Switching
Ref. Lindsey G&W

ED Mean % Err. -1.417E-14 -1.417E-14 -0.01
UFT Mean % Err. 0.1 0.1 0.1
DWT Mean % Err. -0.641 -0.714 -0.714

ED Mean Sample Diff. 0 0 0.12
UFT Mean Sample Diff. -2.05 -2.04 -2.04
DWT Mean Sample Diff. 12.56 14 14

Table 4.2: Microgrid Event Close-in Detection Comparisons

Microgrid Close-In
Ref. Lindsey G&W

ED Mean % Err. -1.52 0.12 0.19
UFT Mean % Err. -6.43 -6.41 -6.41
DWT Mean % Err. 16.082 16.03 16.026

ED Mean Sample Diff. 49.34 -4 -6.34
UFT Mean Sample Diff. 208.98 208.5 208.5
DWT Mean Sample Diff. -522.8 -521 -521

Table 4.3: Wind Fault Event Detection Comparisons

Wind Fault
Ref. Lindsey G&W

ED Mean % Err. 0.31 -0.18 0.07
UFT Mean % Err. -2.37E-04 -1.25E-03 -1.25E-03
DWT Mean % Err. 0.692 0.688 -0.56

ED Mean Sample Diff. -245.03 140.65 -52.88
UFT Mean Sample Diff. 0.19 1 1
DWT Mean Sample Diff. -554.32 -551 449
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events through distortions caused by various commercial-grade sensors. One sensor in

particular, the G&W sensor, possesses a higher noise floor, therefore negatively influencing

the detector’s performance. It was also shown that the ED mostly out-performs other

common detection algorithms in the identification of the precise starting point of the events

under study. It should be noted that start times for each of the 100 trials were not picked

out individually. The start time references (Fig. 4.3) were taken from the original files, prior

to being introduced to the sensors. It is possible that the sensors distort the actual start

times for each of the 100 trials, therefore potentially distorting the error.
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Chapter 5

Uncertainty Quantification for

Switching Transient Signal Location

This chapter presents a machine learning application for capacitor switching transient

location, as well as the effects seen on its predictions by sensor distortions. It is widely

known that machine learning algorithms are extremely sensitive to bias and variance issues

arising from differences in training data samples and testing data samples. In this chapter,

a scenario is recreated in which a model is trained offline using simulated data from a

distribution grid, and then validated using “actual” data, collected from the “field”. This

“actual” data is emulated by applying a digital filter transfer function representative of one

of the sensors seen in the preceding chapters. It can be easily seen that results are negatively

effected in a big way if these data irregularities are not considered when initially training

the model.

5.1 The Transient Location Problem

The power system is one of the most complex systems in the world. The responsibility

of those that maintain and operate these systems is to ensure that uninterruptible, stable

power flow is provided to their customers. Evolving customer demands, along with increasing

penetration of renewables and distributed energy resources (DERs), require that the power

system be able to efficiently and dynamically control and monitor its state at all locations
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and times. These problems present the need for capabilities that enhance situational

awareness (SA), in many cases involving retrofitting new technology into existing systems

and equipment.

Total power system SA is not an easy task. It involves the installation of measurement

devices, communication systems, and processing equipment, as well as proper understanding

of the produced data. Power system electromagnetic behavior (i.e. voltage and current)

can be either easily-detectable (as in short-circuit current faults), or very subtle (as in high-

impedance arcing or short-duration transients). As such, being able to differentiate between

these subtle and unsubtle disturbances is extremely important.

The most famous example of failed SA technology is the 2003 Northeast Blackout. In

August of 2003, much of the northeastern part of the United States, along with parts of

Ontario and Quebec, Canada, were subjected to a blackout, affecting an estimated 50 million

people. Due to a software error in a utility’s alarm system, operators were not notified about

a 345 kV transmission line that was tripped due to contact with foliage. Due to the lack of

a proper alarm, the load was not properly re-distributed amongst the other lines and was

handed off to the 138 kV lines, which were not equipped to handle all of the extra burden,

causing a series of cascading failures, [50].

Similarly, in the Texas Interconnection, a failed surge protector on a combustion turbine

connected to a step-up transformer led to a fault during start-up for testing in May of 2021.

The associated circuit breaker tripped within three cycles, clearing the fault, and restoring

the system back to normal operation after an estimated loss of 192 MW. In addition to these

losses, a number of solar PV and wind plants saw reductions in active power production

caused by the fault; however, it was determined that this loss of renewable generation

was not caused by the fault itself. In the North American Electric Reliability Council’s

(NERC) September 2021 report on this disturbance (dubbed the “Odessa” disturbance), it

was found that this simultaneous loss of renewable generation during the fault time was

caused by “inverter-level or feeder-level tripping or control system behavior within the

resources”, [51]. The term “Smart Grid” originated from the idea of a fully autonomous

power system. Alongside traditional equipment such as transformers, lines, generators,

protection equipment, and more are power electronics, distributed generation, control
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devices, and communications infrastructure. These “extra layers” provide much of the grid’s

current ability to “self-govern”. However, the increased penetration of DERs and other

power electronics-based equipment means special attention must be paid to their potential

vulnerabilities, such as susceptibility to transient over-voltage (TOV).

TOV is a phenomenon in which short-duration voltage surges occur as a result of various

disturbances, such as lightning strikes and switching behavior. If equipment is not rated to

handle repeated exposure to these TOVs, the risk of damage to said equipment is significantly

increased, therefore leading to a potential loss of crucial communication and control. As such,

the need for adequate SA to handle decision-making processes based on these TOV signals

is needed.

One of the more comment pieces of equipment in any power system is the capacitor.

Capacitors are installed at various points in transmission and distribution grids for a variety

of reasons, including: voltage support, power factor correction, and reduction of harmful

harmonics. As such, a common source of TOV is capacitor switching transients.

Utility engineers will often employ control strategies at the capacitor bank location to

ensure the switching operation at each phase occurs at the voltage zero-crossing, therefore

nearly eliminating the amount of current inrush through the capacitor. Additionally, filters

may be placed near the capacitor bank to mitigate the production of harmonics. Therefore,

in many cases, the presence of TOV signatures in voltage waveforms may be indicative of

equipment malfunction, insufficient design and planning, or other issues that need addressing.

For the reasons mentioned above, this type of TOV signal is chosen for study in this

paper. The ability for monitoring equipment to not only identify that a TOV signal has

occurred, but also where it occurred provides valuable insight into the state of the associated

equipment. Engineers would then be able to pin-point exactly which capacitor bank(s) is

(are) contributing to the disturbance, and therefore know how to implement or adjust control

mechanisms to mitigate these issues. An example oscillatory capacitor switching TOV signal

is shown in Figure 1.5.

There have been a number of studies done on the location of such TOV signals. In [52],

signal energy is extracted to determine the direction of power quality (PQ) disturbances

relative to the measurement location. Similarly, the cross time-frequency distribution with
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Wigner kernel is used in [53] to determine the location of a switched capacitor transient

relative to the measurement location.

The studies conducted in [54, 55, 56] use the slope and polarity of the detected TOV itself

to determine which feeder of a distribution circuit originated the transient. A probabilistic

neural network is used to classify features obtained from the S-transform of capacitor

switching transients in [57]. The authors in [58] and [59] use disturbance indices to determine

the location of capacitor switching transients. This index varies according to when there is

a significant-enough change in energy typically characteristic of TOV signals.

5.2 Uncertainty quantification for TOV Signal Loca-

tion using Machine Learning

This work focuses on using convolutional neural network (CNN) models to classify, and

therefore locate, time-frequency representations of capacitor switching voltage transient

signals. CNNs are powerful in feature extraction and have achieved state-of-the-art

performance on a wide variety of classification tasks in smart grid domains. However, CNNs

are data-driven models and their prediction can be affected by inherent noise in the data

and uncertainty. Additionally, the data-driven CNN models usually produce reasonable

predictions when the data in the unseen testing sets have similar features to those in the

training set and can suffer from large extrapolation errors when the test data differs from the

training data, leading to overconfident predictions. Overconfident incorrect predictions can

be harmful, resulting in wrong decision-making and catastrophic failure in the smart grid

system. Therefore, it is crucial to identify whether the CNN predictions are reliable and if

the trained model is suitable for the unseen test data.

Uncertainty quantification (UQ) can help address the challenges of assessing the

trustworthiness of ML model predictions and model reliability when applied to changing

conditions and corrupted data. For training data, a well-calibrated UQ method can produce

an uncertainty bound that precisely encloses a specified portion of the data consistent with

the desired confidence level to consider the data uncertainty and assess the model prediction’s
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trustworthiness. For unseen test data, where the predicted values are not labelled, a high-

quality UQ method can produce a larger prediction uncertainty as this data has a greater

difference from the training set, indicating that the ML model is outside of the training

support and its predictions should be treated with extra caution to avoid overconfidence.

However, UQ for ML model predictions is challenging and the development of a high-

quality UQ method, which produces precise in-distribution uncertainty and identifies out-

of-distribution (OOD) samples, is even more challenging. Generally speaking, there are

two types of UQ-for-ML methods: prediction interval (PI) approaches, which quantify

uncertainty using intervals, and non-PI approaches, which quantify uncertainty using a

distribution. The non-PI approaches can be further divided into Bayesian and non-Bayesian

methods. Bayesian methods place priors on NN weights and then infer predictive posterior

distribution from the weight distribution [60, 61]. Its’ results are sensitive to the choice of

prior distributions, and it has been criticized for slow training, overconfident predictions,

and being impractical for large-scale ML applications. Non-Bayesian methods include

evidential learning [62] that places priors directly over the likelihood function and some

ensemble methods that do not use priors, such as deep ensembles, Monte Carlo dropout, and

anchored ensembling [63, 64, 65]. Recently, some methods used deterministic deep learning

for uncertainty estimation with some special NN architecture designs, such as the spectral-

normalized neural Gaussian process. These non-Bayesian methods usually involve a Gaussian

assumption which might not be satisfied in power system applications where data noise and

irregularities can manifest in the higher harmonics as skewed and non-Gaussian. They could

also suffer from an overestimation of the uncertainty in training data caused by the symmetric

uncertainty bound from the Gaussian assumption and result in an underestimation of the

uncertainty in extrapolation [66].

The PI methods provide a lower and upper bound for a prediction such that the target

falls between the bounds with a certain percentage. PIs directly communicate uncertainty,

providing more understandable information for decision-making. Additionally, they usually

do not involve distributional assumptions, making them particularly useful for scientific ML.

The most common techniques to construct PIs are the delta method (also known as analytical

method) [67, 68], methods that directly predict the variance (maximum likelihood method
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and ensemble method) [69, 70] and quantile regression method [71, 72]. Most recent PI

methods are developed on the high-quality principle—a PI should be as narrow as possible,

whilst capturing a specified portion of data. Khosravi et al. [73] developed the Lower Upper

Bound Estimation method, incorporating the high-quality principle directly into the NN loss

function for the first time. Inspired by [73], the QD approach in [74] defined a loss function

that can both generate a high-quality PI and optimize the loss using stochastic gradient

descent. Built on QD, the PIVEN method in [75] adds an extra term in the loss to enable

the calculation of point estimates and the PI method in [76] further integrates a penalty

function to the loss to improve the training stability of QD.

Recently developed PI methods [74, 75, 76] tend to design sophisticated loss functions

to obtain a well-calibrated PI. Although these works have achieved promising results, their

performance is sensitive to unusual hyperparameters introduced into their customized loss

functions. Since these hyperparameters are not commonly used, we have very little knowledge

and experience about how to properly choose them. In practice, these hyperparameters

usually need fine tuning [76] to achieve the desired performance, which makes these methods

less practical and less robust when deployed. Additionally, existing PI methods usually lack

a sufficient OOD identification capability, resulting in unreasonably narrow PIs for OOD

samples.

In this chapter, a new PI method is employed and integrated it with a CNN model

for determining the source location of capacitor switching TOV signals with a UQ

component. The method is called PI3NN, which calculates prediction intervals based on

three independent neural networks [77]. The first NN calculates the mean prediction,

and the following two NNs produce the upper and lower bounds of the interval. After

the three NNs’ training, and given a certain confidence level, PI3NN uses a root-finding

algorithm to precisely determine the uncertainty bound that covers the desired portion of

the data consistent with the confidence level. Additionally, PI3NN proposes a simple but

effective initialization scheme for OOD identification. PI3NN is computationally efficient

given the training of three networks; and for a different given confidence level, it just needs

to perform the root finding step to calculate the shifting coefficients to precisely determine

the corresponding interval. Additionally, PI3NN uses the standard mean squared loss and
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does not introduce extra hyperparameters, which enables robust prediction performance

and mitigates tedious parameter turning. Furthermore, PI3NN has an OOD identification

capability which can produce a wider uncertainty for the predictions outside of the training

data. Last but not least, PI3NN is generalizable to various network structures and applicable

to different data with no distributional assumptions, which makes it suitable for a wide range

of ML-based power system applications.

In previous works [77], PI3NN has been integrated into fully-connected, multilayer

perceptron (MLP) networks and its superior performance against several baselines using

a range of diverse datasets has been demonstrated. In this effort, this newly-developed

method is integrated with CNNs for capacitor switching TOV source location. The CNN

model used in this study has a substantially different architecture from the MLP networks

used in past works. In this implementation, the convolutional and fully-connected layers

of the CNN are first separated as two distinct sets of networks. For the first convolutional

network, the the feature information is extracted from its outputs and used as the inputs

for the fully-connected network. Then, the PI3NN technique is performed on this fully-

connected network, treated as an MLP problem. This design improves training reliability,

reduces the computational costs, and most importantly, reduces the requirement of large

training data.

In this study, two-dimensional time-frequency representations of TOV signals are

collected from post-processed sensor data. CNN networks first use convolutional layers to

extract the time-frequency features and then use fully-connected dense layers to map these

features to class labels for classification. The sensors used in this study are commercial-grade,

and as such typically produce highly-accurate signal representations at the fundamental

frequency, but are susceptible to corrupting voltage and current signals with high frequency

components (e.g. Figure 1.5). Additionally, these sensors could suffer from component

degradation which can further compound these frequency-response irregularities. This

suggests that the TOV signals contain noise and as such the distribution of the data may

change with time. This data, along with OOD uncertainties, greatly affect CNN model

predictions and their influence should be considered and evaluated when deploying CNNs

for classification. In this work, the PI3NN technique is used for CNN model prediction
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uncertainty quantification. The important UQ information not only enables trustworthy

predictions, but also allows utility engineers to know how ML model prediction accuracy

may degrade and allow stakeholders to abstain from decisions due to low confidence.

The main contributions of this chapter are as follows.

• Integration of a novel UQ method developed by the authors in [77] into CNN models to

facilitate SA in power distribution systems for accurate, credible predictions, thereby

avoiding catastrophic failures caused by overconfident predictions.

• Design of a CNN model identifying up to 96% correct transient switching locations,

spanning five utility distribution feeders.

• Reasonable quantification of the CNN model’s prediction uncertainty by both indicat-

ing when the model results can be trusted and if the system suffers from degradation.

The rest of this chapter is structured as follows. Section 5.3 introduces the UQ method

used for ML-based robust TOV signal location. In section 5.4 the simulation environment,

signal pre-processing stages, CNN model design, and integration of the UQ method into the

CNN model are all discussed. Results are presented in section 5.5, and section 5.6 concludes

the chapter.

5.3 PI3NN: Prediction Intervals from Three Neural

Networks

PI3NN uses a combination of the three separately trained NNs to learn the mean prediction

(i.e. point estimation), and the lower and upper bounds of the PI. PI3NN not only has the

nice properties that state-of-the-art PI methods have—such as requiring no distributional

assumption and producing tight PI bounds—but also embraces some exclusive advantages.

For instance, it introduces no extra hyperparameters, enabling robust training; and it is also

able to capture domain shift and reasonably quantify uncertainty on OOD samples.

PI3NN is generalizable to a variety of network structures. In this work, this newly-

developed method is integrated with CNNs for capacitor switching TOV source location. In
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the following, the general procedure of PI3NN for a fully-connected MLP network is described

and then its capability of OOD identification discussed. In Section 5.4.4, the integration of

PI3NN is introduced into CNN for robust and credible classification.

Procedure of PI3NN

The key idea of the PI3NN method is to construct the PI by training three neural networks

separately using the standard mean-squared error (MSE) loss and using root-finding methods

to define the upper bound U(x) and lower bound L(x). Let the mean, upper-, and lower-

bound neural networks be denoted by fω(x), uθ(x), and lξ(x), respectively. Here x

represents an input to the neural network, and the functions fω(x), uθ(x), and lξ(x)

represent the functions, approximated by each neural network, that act on x to produce the

mean and upper and lower bounds. The PI3NN method constructs the PI in the following

three steps.

Step 1: Train fω(x) to approximate the mean of f(x), E[f ]. This completely

follows the standard NN-based regression process using the MSE loss. The trained fω(x)

serves two purposes. The first is to provide a baseline to generate data for training uθ(x),

lξ(x) in Step 2; the second is to provide a point estimation of E[f ]. In this step, the well-

established regularization techniques are used (e.g. the conventional L1 and L2 penalties) to

avoid over-fitting.

Step 2: Train uθ(x), lξ(x) to learn the uncertainty profile. The trained fω(x)

is used as a baseline to generate two separate data sets, denoted by Dupper and Dlower,

respectively. Mathematically,

Dupper =
{

(xi, yi − fω(xi))
∣∣ yi ≥ fω(xi), i = 1, . . . , N

}
,

Dlower =
{

(xi, fω(xi)− yi)
∣∣ yi < fω(xi), i = 1, . . . , N

}
,

(5.1)

whereDupper andDlower include data points above and below fω(x), respectively. The number

of data points in Dupper and Dlower should be comparable when the MSE loss for training

fω(x) achieves a sufficiently small value. Next, Dupper is used to train uθ(x), and Dlower is

used to train lξ(x). To ensure that the outputs of uθ(x), lξ(x) are positive, the operation
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√
(·)2 is added to the output layer of both networks. The two NNs are trained separately

using the standard MSE loss, i.e.,

θ = argminθ
∑

(xi,yi)∈Dupper

(yi − fω(xi)− uθ(xi))2,

ξ = argminξ
∑

(xi,yi)∈Dlower

(fω(xi)− yi − lξ(xi))2.
(5.2)

Unlike the sophisticated losses in [63, 62, 76], the three NNs of PI3NN are trained using the

standard MSE without introducing unusual hyperparameters, which promises more robust

training.

Step 3: construct the PI via root-finding methods. Note that uθ(x), lξ(x) do

not directly represent the upper and lower bounds of the PI. Instead, they only approximate

the difference between the data and fω described by the datasets Dupper and Dlower. In this

work, the upper and lower bounds of the PI are defined as:

U(x) = fω(x) + αuθ(x),

L(x) = fω(x)− βlξ(x),
(5.3)

where α and β are two unknown scalars. For a given quantile γ ∈ [0, 1], the bisection method

is used to determine the value of α and β by finding the roots of the following equations:

Qupper(α) = 0,

Qlower(β) = 0
(5.4)

where

Qupper(α) =
∑

(xi,yi)∈Dupper

1yi>U(xi)(xi, yi)−
N(1− γ)

2

Qlower(β) =
∑

(xi,yi)∈Dlower

1yi<L(xi)(xi, yi)−
N(1− γ)

2
,

(5.5)
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where N is the number of samples in Dtrain and 1(·) is the indicator function, defined by

1yi>U(xi)(xi, yi) =

1, if yi > U(xi),

0, otherwise,

and

1yi<L(xi)(xi, yi) =

1, if yi < L(xi),

0, otherwise,

which count how many training samples are outside the interval [L(x), U(x)].

When the root-finding problems in (5.5) are exactly solved (i.e., Qupper(α) = Qlower(β) =

0), the number of training samples falling in [L(x), U(x)] = [fω−βlξ, fω+αuθ] will be exactly

Nγ. In this way, the prediction interval method can produce an accurate uncertainty bound

that precisely encloses a specified portion of data with a narrow interval width. Moreover,

this prediction interval calculation does not impose any distributional assumptions to enable

a general application.

Identifying out-of-distribution (OOD) samples

When using the trained model fω(x) to make predictions for x 6∈ Dtrain, it is required that

the UQ method can accurately identify the OOD samples and reasonably quantify their

uncertainty, i.e., for x 6∈ Dtrain, the PI’s width increases with the distance between x and

Dtrain. PI3NN achieves OOD identification by properly initializing the output layer biases

of uθ and lξ. Specifically, the following operations are added into the Step 2 before training

uθ and lξ.

• Define uθ and lξ as fully-connected ReLU networks, and initialize their weights and

biases using the default option.

• Compute the mean outputs µupper =
∑N

i=1 uθ(xi)/N and µlower =
∑N

i=1 lξ(xi)/N using

the training set Dtrain and initial weights and biases.

• Modify the biases of the output layers of uθ and lξ to c µupper and c µlower, where c is a

relatively big number (e.g., c = 15 in this study).
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• Follow the rest of Step 2 to train uθ and lθ using the MSE loss.

Through the above initialization strategy, the outputs of networks uθ(x) and lξ(x) will be

larger for the OOD samples than the in-distribution data. Then after calculating the positive

values of α and β in Step 3, it will correspondingly produce the larger uncertainty bounds

[L(x), U(x)] for the OOD samples to indicate that their predictions are of low confidence.

We use the PI width to measure the size of the uncertainty bound, which is defined as,

PI width = U(x)− L(x) = αuθ(x) + βlξ(x). (5.6)

The key ingredient in this OOD identification strategy is the modification of the biases

of the network output layer. It is known that a MLP dense network is formulated as a piece-

wise linear function. The weights and biases of hidden layers define how the input space is

partitioned into a set of linear regions; the weights of the output layer determine how those

linear regions are combined; and the biases of the output layer act as a shifting parameter.

These network weights and biases are usually initialized with some standard distributions,

e.g., uniform U [0, 1] or Gaussian N [0, 1], as default options. Setting the output layer biases

to cµupper and cµlower with a large value of c will significantly lift up the initial outputs

of uθ and lξ. During the training, the loss in (5.2) will encourage the decrease of uθ(x)

and lξ(x) only for in-distribution data (i.e., xi ∈ Dtrain), not for OOD samples. Therefore,

after training, uθ(x) and lξ(x) will be larger in the OOD region than in the in-distribution

region (see Figure 1 in [77] for an illustration). Correspondingly, the PI width of the OOD

samples will be larger compared to that of the training data, based on which we identify

the data/domain shift. Note that the exact value of c does not matter much, as long as it

is a large positive value, e.g., c = 15 in this study. For training data, PI3NN will produce

prediction intervals precisely enclosing γ × 100% portion of data for a given confidence level

γ ∈ [0, 1] no matter how large the c value is, although a larger c in the network initialization

may take a slightly longer training time for convergence.

For the unseen testing data, if they are in-distribution with similar input features as the

training set, PI3NN will produce uncertainty bounds with a similar width as the training

data despite the large c value. If the test data are OOD (i.e. outside of the training set
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support), PI3NN will produce a larger PI width than that of the training data. The larger

the c value is, the wider the PI width. Then, by comparing the PI widths of the test data

with those of the training data, we diagnose whether the unseen test data are in-distribution

or OOD to quantify the trustworthiness of the ML model predictions. For OOD samples,

it is not expected to accurately predict them, due to data-driven ML model deficiency, but

more importantly it is to identify them to avoid overconfident predictions and provide a

guidance for data collection to improve the predictability.

5.4 Experimental Setup

5.4.1 Distribution grid model

A series of four 12.47 kV distribution feeders, modeled after actual feeders belonging to

a partner utility company, were constructed in PSCAD transient simulation software. An

anonymized version of the grid topology is shown in Figure 5.1. Note that the topology

contains hundreds of electrical nodes, but the specifics of this information has been excluded

from the paper. Four parallel-connected, wye-grounded capacitor banks were placed at each

of the ten chosen nodes, encircled in the figure. The capacitance values were chosen such

that applying all four banks at once improves the power factor at that node to as close to

1.0 as possible. The values of each capacitor bank are given in Table 5.1.

A base-case power flow simulation, without any shunt capacitors switched on, was used

to obtain the nominal real (P ) and reactive (Q) power flows at each bus. The capacitance

values were then computed from the following well-known relationship governing reactive

power supplied by a capacitor:

C =
Q

2πfV 2
(5.7)

where C is the capacitance, V is the RMS voltage, and f is the system frequency (60 Hz).

In addition to the capacitor banks, measurement points (i.e. “sensors”) were placed at

each node to collect voltage measurements during the simulation, which are then exported to

files for off-line use. Each sensor captures voltage waveforms over a few different operating

variables:
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• Load profiles for each feeder over a 24-hour period were obtained from the utility.

Simulations were carried out at the minimum, maximum, and mean load values applied

equally across each load tap of the associated feeder.

• At each bus, the transient “switch-on” period was varied at 20 points along one cycle

of the voltage waveform, yielding best-case, worst-case, and in-between scenarios for

each bus.

• Simulations were performed on each of the preceding two operating conditions for one,

two, three, and four capacitor banks switched on simultaneously.

Three load profiles, 20 switch-on times, and four capacitor bank combinations result in 240

unique operating conditions for each bus. For each operating condition, simulated one bus

at a time, the sensors at each node record a waveform for the duration of the simulation.

This then leads to a total of 2,400 sets of three-phase voltages for each bus’s disturbance

contributions. Multiplying this number by 10, to account for all buses’ operating scenarios,

yields to a data set of size 24, 000×N×3, where N is the length of the captured disturbances,

and the third dimension is to account for all three voltage phases.

5.4.2 Data Structure and Preprocessing

The simulations were run with a time step of ∆t = 20 µs, or 50 kHz. To reduce the amount of

data needed to train the neural network, the three phases were combined using the α-modal

voltage obtained from the αβγ transformation for three-phase signals, [78]:

Vα =
2

3
VA −

1

3
(VB − VC) , (5.8)

where VA, VB, and VC represent the phase A, B, and C voltages, respectively. This signal

transformation runs the slight risk of information loss due to destructive interference, however

it is believed that this loss is minimal and doesn’t result in a reduction in performance of

the prediction model.

After collecting all 24, 000 samples and performing the αβγ transformation, the data was

curated to remove samples that did not possess enough identifying harmonic content. This
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Figure 5.1: Anonymized Distribution Grid

Table 5.1: Derived capacitance values

Bus Q needed (MVAr) C (per capacitor, µF)
1 14.27 122
2 1 8.5
3 2.159 17
4 0.3 2.55
5 0.3 2.55
6 3 25.5
7 0.03 0.256
8 3 25.5
9 7.4 63.1
10 0.03 0.256
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(b) Spectrogram transformation of Vα

Figure 5.2: Example Vα and its spectrogram representation
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was accomplished by first applying min-max normalization to each sample after computing

its gain in decibels:

X i
dB = 20 log10

∣∣X i
∣∣ (5.9)

X i
n =

X i
dB −minX i

dB

maxX i
dB −minX i

dB

where X i denotes the ith α-transformed voltage signal. If X i
n does not possess any frequency

content above the 7th harmonic (420 Hz) exceeding 35% of the fundamental frequency’s

amplitude, that signal is discarded from the signal set. The threshold of 35% was determined

empirically after examining different thresholds and their associated waveform plots. This

is due high-frequency transients being filtered out before they reach remote sensors. For

example, per Figure 5.1, if a transient with high-frequency components originated at bus

5, it may simply appear as a normal sine wave at bus 10. These signals were pruned from

the signal set to remove as much ambiguity as possible. In total, only 1, 346 samples were

discarded, or 5.6%. The remaining data set consisted of 22, 654 samples.

After transforming the voltage signals into their α-modal components and curating

the signal set, the signals are then transformed into spectrograms. Spectrograms are two-

dimensional representations of one-dimensional signals, capturing both time and frequency

information simultaneously. The short-time Fourier transform (STFT) with a Gaussian

window was used to compute the signal spectrograms. The resulting coefficients are complex-

valued due to the FFT computation. Thus, these coefficients are then squared to obtain real

values and accentuate larger values, while also attenuating smaller ones. Figure 5.2b shows an

example spectrogram plot of the TOV signal shown in Figure 5.2a. The blue regions indicate

regions where the Gaussian window used in the spectrogram “zeroes out” the extremeties

of the signal at each shift of the window (approximately 9-10 ms in the figure). Note how

the energy in frequencies up to 3 kHz increases in the spectrogram at the same time that

transient behavior is observed in the time-domain signal (roughly 100 ms in Figure 5.2a).

The final pre-processing stage involves duplicating the data set twice, each with varying

levels of additive white Gaussian noise (AWGN) superimposed on the data. Each duplicated

set was incorporated with noise to ensure signal-to-noise (SNR) ratios of 35 and 20 dB.
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5.4.3 Classification model architecture

A CNN was chosen for this work due to CNNs’ strong capability for feature extraction. The

CNN architecture consists of three convolutional layers, each with a 2×2 max pooling layer,

four fully-connected layers, an output layer with 10 units (representing the chosen “bus”),

and dropout layers placed before the second-to-last fully-connected layer and immediately

preceding the output layer, with dropout probabilities of 0.25 and 0.3, respectively. Every

layer uses the rectified linear unit (ReLU) activation function. The loss function used during

training was the Kullback-Leibler (KL) Divergence.

Filter sizes of 5 were chosen to ease some of the computational burden on the spectrogram

images, and due to the assumption that features on the spectrograms will likely be spread over

larger regions, thus reducing the need for smaller filter sizes to capture minute details. The

network structure (number of layers, sizes, etc.) was chosen based on trial-and-error, in which

the authors studied a number of different architectures. Dropout layers were incorporated

to ensure the network was not over-fitting.

Training was performed on an NVIDIA DGX A100 system running Linux Ubuntu SMP

with 8 GPU cores. The Adam optimizer with learning rate set to 0.001 was used. During

training, the spectrograms are min-max normalized, to ensure all values lie in [0, 1]. A

batch size of 256 was chosen during training, and training lasted for 1000 epochs. A 75/25%

train/test split was used.

5.4.4 Setup for PI3NN

The CNN model can be viewed as a combination of two components: the feature extraction

portion (ending at the flattening layer) and the classification portion (starting from the first

fully connected layer). The convolution and pooling layers perform feature extraction from

the data, and the fully connected layers then act as a classifier on top of these features.

To develop a PI3NN framework for this classification problem, a transfer learning approach

is adopted, which re-uses the CNN model for the feature extraction part and replaces the

fully-connected classification part with PI3NN to provide the prediction with quantified

uncertainty. Thus, the inputs of the PI3NN are feature vectors of size 23, 040, obtained
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by funneling the images through the feature extraction portion of the pre-trained CNN

model. The outputs are 10-D vector created by one-hot-encoding of original labels. It is

worth noting that because the PI3NN framework does not require retraining of the feature

extraction, which carries most of the cost for classification problems, it could be trained to

calculate the PI and provide the uncertainty estimation for a given confidence level quickly,

within minutes for the test case in this paper. Once trained, the PI3NN model can be

deployed to produce predictions on new input queries in real-time.

Three neural networks are trained in this framework: fω to predict the output vectors,

and uθ and lξ to approximate upper and lower variance of those predictions. These networks

use the same architecture as the classification portion of the CNN models; i.e., five fully-

connected layers with the ReLU activation function. Moreover, the biases of the output

layers of uθ and lξ are initialized to c µupper and c µlower, where c = 15 to encourage OOD

identification. The MSE loss function was used as described in Section 5.3. The loss

function was applied directly to the predictions of the classification models, without any

correcting/calibrating step. However, in case of imbalanced datasets, calibrated outputs

with, e.g., Platt scaling [? ? ] or Isotonic Regression [? ], can be beneficial to our

framework. The Adam optimizer with learning rate 0.001 is used to train fω, allowing for a

maximum of 8, 000 training epochs. For uθ and lξ, stochastic gradient descent with learning

rate 0.01 was used, allowing for a maximum of 4, 000 training iterations. The neural network

architectures for the base CNN and the PI3NN framework built on pre-trained CNN model

are shown in Figure 5.3.

5.4.5 Sensor Frequency Response Distortions

To capture the effects of frequency distortions caused by common medium-voltage sensors,

the amplitude and phase responses were obtained in a laboratory from one of said sensors.

This particular sensor has a -3 dB bandwidth of roughly 2600 Hz and a maximum phase

distortion of 30◦ at 10 kHz.

The curated dataset of three-phase voltage waveforms, described in the preceding

sections, is passed through an infinite impulse response (IIR) digital representation of this
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Figure 5.3: (Left) The neural network architectures for the base CNN. (Right) PI3NN
framework is built on the pre-trained CNN model and accepts feature vectors as the inputs
(right).
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particular sensor’s frequency response. It should be noted that the signals themselves are

filtered, not the spectrogram images.

The CNN model is first trained and tested using the original dataset, and the subsequent

set of filtered data represents the OOD data to be validated against the PI3NN UQ technique.

It was anticipated that data that has been corrupted (i.e. filtered) will tend to force the

model to make predictions that are less confident than those corresponding to data it has

already seen. Therefore, the PI width should be larger, on average, than that of an original

data sample.

5.5 Results and Analysis

The initial CNN model, prior to the application of UQ via PI3NN, achieved roughly 96%

accuracy for both the training and testing sets. When applied to the set of filtered data, this

model achieved 70% accuracy, indicating that the distortion introduced to the data in the

filtering process hinders the prediction capability of the CNN model. We train the PI3NN

framework on the whole set of original data and tested it on the corrupted (i.e. “filtered”)

data. The method has 96.81% and 69.84% accuracy on the original and corrupted data,

respectively. This agrees with the base CNN classifier. The accuracy-per-class of PI3NN

obtained upon completion of the training stage of the mean output network, fw(x), is

shown in Table 5.2 (left), where the results on the training and testing set are presented

in the middle and right columns of the table, respectively. Also shown are the results in

another multi-class metric, the F1-score, in Table 5.2 (right).

It can be seen that buses 7 and 10 have subpar accuracies of 90.46% and 73.52% each

(and similarly, relatively low F1-scores at 82.82% and 80.45%), indicating that these buses’

transient voltage signals are not easily recognized by the model during training. This is

likely due to the low magnitude of oscillations induced by the capacitors installed at those

buses (see Table 5.1). Additionally, many of these data samples have been excluded from the

data set following the curation stage described in Section 5.4.2 due to their limited frequency

content.
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(a) Original (non-filtered) signal data PDFs

(b) Filtered signal data PDFs

Figure 5.4: Probability density functions (PDFs) of the PI width for the correct and
incorrect predictions, collected over all buses.
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Following the training of fw(x), networks uθ(x) and lξ(x) are trained to estimate the

uncertainty of the PI3NN mean output. The uncertainty of the prediction is characterized by

the PI width, (5.6). Smaller PI widths indicates higher confidence in a predicted sample’s

class, whereas larger widths indicates higher uncertainty. Here, a PI width with quantile

γ = 0.95 is considered and the distribution of PI widths over each bus (class) is investigated.

Note that this analysis does not significantly change if γ takes other moderately large values

(γ > 0.7).

The capability of PI3NN is next evaluated in estimating the certainty of output

predictions. Figure 5.4 shows the probability density functions (PDF) of the PI width

for the correctly labeled and incorrectly labeled signals collected over all buses. It can be

seen that the PDFs shift to the right for incorrectly labeled signals, indicating that the PI

widths are larger and that the model is less certain about these signals. For the original

signal set, the PDFs are highly separable: most of correct predictions have a PI width less

than 0.2 and all of the incorrect predictions have a PI width larger than 0.2. The difference

is less prominent for the filtered signal set. Here, the support of both PDFs are overlapped.

Both have peak at 0.1, however the PDF for incorrect predictions (orange) also has a second

peak at 0.6. It can be observed that the PI widths of correct predictions are distributed

analogously to the original case. However, the model seems more certain about its incorrect

predictions. This is likely because a considerable portion of samples from buses 1, 3, 6, 8, and

9 are now incorrectly labeled due to the filtering process, and the model assigns them new

labels with a similar level of certainty. These findings suggest that in the feature space, data

belonging to these problematic buses may not be well-separated. In other words, such as

a small distortion (from sensor-based filtering) can move them completely into the decision

boundary of other buses.

Figure 5.5 shows the distribution of prediction interval widths for each class, for both the

original and filtered signal sets. Buses 1, 3, 6, 8, and 9 are the closest, in terms of electrical

distance, to the “center” of the grid, with bus 1 named as the source bus (Figure 5.1). As

transient signals are captured at every bus for each switching instance, transients that occur

at bus 5 are near-unrecognizable by the time they reach, for instance, bus 10. Those closest
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to the electrical center of the grid have less distance to travel, and thus the filtering effects

of the grid itself are lessened.

For this reason, the aforementioned buses have smaller variance around the mean of their

prediction interval distributions. Similarly, their corresponding filtered signal sets show little

shift in mean along with only a slightly larger variance. This indicates that the model, when

switching signals from these buses are captured by the non-ideal sensor used in this study,

are more likely to produce confident predictions.

Coinciding with Figure 5.5, Table 5.3 shows the per-class mean and standard deviation

PI width for both original and filtered signal sets. It can clearly be seen that these first-

and second-order PI statistics (in bold) for the filtered data sets indicate shifted, wider

distributions. This naturally leads to the conclusion that signals corrupted by sensor

irregularities lead to less confident predictions by the CNN model. For each bus, the mean

of the distribution has been shifted, indicating an average higher uncertainty of the filtered

data set. Further confirming this are the standard deviations of each bus; the distribution

of the filtered signal set are wider than those of the corresponding original signal set.

5.6 Conclusions

To ensure continuous and reliable situational awareness of the power system, it is important

for responsible parties to take appropriate action and put the necessary technologies in place.

Traditional ML-based methods for monitoring and autonomous decision-making typically

only provide point estimates for their predictions, and the developed models’ confidence levels

are almost entirely ignored. This paper presents a methodology for not only predicting the

source location of capacitor transients, but for also providing prediction intervals, thereby

gauging the overall confidence (or lack of) in the model’s predictions. The value of the

technique was verified by exposing the trained model to transients that had been corrupted

by a non-ideal sensor’s frequency response function, taken from an actual commercial-grade

medium voltage distribution system sensor. It is shown that the PI3NN technique allows for

users to quantify the amount of uncertainty, or even risk, associated with a given prediction,
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Table 5.2: Accuracy (left) and F1-score (right) by bus

Bus Original Filtered
1 100% 93.37%
2 97.88% 78.71%
3 99.96% 63.49%
4 94.09% 59.96%
5 97.67% 58.60%
6 100% 66.71%
7 90.46% 59.98%
8 100% 56.47%
9 100% 99.41%
10 73.52% 41.73%

Bus Original Filtered
1 100% 95.52%
2 98.89% 65.32%
3 99.98% 66.46%
4 95.32% 59.71%
5 95.32% 63.31%
6 100% 61.71%
7 82.82% 53.05%
8 100% 69.99%
9 100% 97.69%
10 80.45% 45.57%

Table 5.3: Width of PI

Bus
Original

Mean
Filtered
Mean

Original
Std.

Filtered
Std.

Original
Skewness

Filtered
Skewness

1 0.045 0.067 0.036 0.071 1.6 4.473
2 0.217 0.298 0.215 0.260 1.688 1.031
3 0.093 0.130 0.068 0.111 1.476 2.801
4 0.198 0.275 0.203 0.247 1.427 0.817
5 0.221 0.308 0.228 0.278 1.501 0.857
6 0.065 0.095 0.051 0.091 1.525 3.561
7 0.257 0.326 0.189 0.214 1.007 0.66
8 0.071 0.101 0.055 0.096 1.556 3.218
9 0.071 0.102 0.056 0.096 1.535 3.192
10 0.277 0.354 0.211 0.238 1.063 0.662

Figure 5.5: PI width distributions
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contributing to the overall awareness of the power system’s operating state at any given

time.

These results can be further reinforced by examining multiple sensors with varying

frequency response characteristics to quantify the degree of uncertainty introduced into the

model’s predictions and their correlations with the associated frequency response functions.
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Chapter 6

Conclusions and Future Work

Applications that require the use of high-frequency waveform phenomena produced by

power system sensors traditionally do not consider the effects of sensor distortions on

said waveforms. This dissertation shows some of the effects on various advanced power

system applications, including detection and classification problems. It was first shown that

frequency response characteristics of line-post sensors have significant impacts on the high-

frequency components of transient events (Chapter 2). It was shown that using percent error,

phase difference, and goodness-of-fit metrics that various sensors possessing these frequency

response irregularities have trouble reproducing certain events of interest (Tables 2.1-2.3).

These findings are further expanded upon in Chapter 3, in which statistical evaluation

of the performance of two of these sensors is presented. For various current transient

disturbances, including a capacitor switching event, a microgrid close-in, and a simulated

fault on the terminals of a wind farm, the harmonic error distribution tended to drift away

from a normal distribution, per the Anderson Darling Test for Normality. This contrasts

with the common assumptions of the way error of measured quantities is distributed. The

plots of percent error distributions, as estimated using KDE (see plots in Appendix A) show

significant deviations from the normal distribution in the higher harmonics.

Chapters 2 and 3 illustrate some of the effects on measurement of high-frequency signals

using commercial off-the-shelf line-post monitor sensors. The remainder of this dissertation

examined the way these irregularities effect applications that require accurate representation

of high-frequency transients.
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Detection is the fundamental operation that must be successfully completed before any

other application can proceed. Inaccurate pin-pointing of the start and end of transient

signals can lead to inaccurate event diagnoses, improper parameter computations (i.e.

fundamental and harmonic active and reactive power quantities), and false protection

equipment statuses. For this reason, a detection algorithm was developed in this dissertation

to address some of the concerns brought to light in Chapters 2 and 3.

In Chapter 4, an algorithm used for automated detection of these types of signals is

presented in the form of the energy detector, requiring no assumptions of the underlying

signal model. It was shown that this algorithm exhibits good performance for detection of

high-frequency transients when subjected to signals that have been distorted by these types

of sensors. Additionally, a comparison was performed against two other detection algorithms

found in the literature: the “ultra-fast transient” (UFT) detector, and a detector based on

the maximal-overlap discrete wavelet transform (MODWT). After a signal is successfully

detected, it may be used for other purposes properly.

The final chapter of this dissertation examines the way sensor frequency response

distortions affect applications that use these detected signals. In particular, a machine

learning-based application is studied, with the goal of quantifying the uncertainty of

predicted results and how that uncertainty shifts when subjected to distorted signals. In

Chapter 5, an uncertainty quantification (UQ) technique for deep learning is presented in

the context of the location of capacitor switching transients. These are a very common form

of transient disturbance, as described in Chapter 1.3.2.

A convolutional neural network (CNN) is used as the “feature extractor” on time-

frequency representations of capacitor switching voltage event waveforms. From there, the

PI3NN technique is used for determining prediction intervals on the estimated location of

a given signal. This essentially means that, once the CNN predicts the location that the

signal originated from, associated uncertainty bounds are placed on that result, analogous to

confidence intervals. It was shown that the performance of this technique when subjected to

“clean” (i.e. ideal) signals vs. those after being subjected to typical sensor distortions results

in much larger prediction interval widths, indicating an increase in uncertainty associated

with predicted signal locations.
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6.1 Future Work

The contents of this dissertation were primarily concerned with the study of frequency

response-induced errors in high-frequency transient signals. There are of course other

sources of error, such as those resulting from external temperature variations and life cycle

degradation of sensors and equipment, to name just a few. It will be necessary to characterize

dynamic and shifting errors on these types of signals for real-world deployment of advanced

AI applications. Some other potential applications outside of the scope of this dissertation

that should be considered include:

Fault location via traveling waves:

An emerging technique for the location of faults in transmission and distribution systems

involves detecting very high-frequency traveling waves at extremely precise moments in time.

With multiple measurement apparatuses deployed throughout an electrical network capable

of capturing the various reflected and incident waves resulting from a fault, the location is

able to be deduced from the relative detection times of these waves. Filtering characteristics

described in this dissertation will of course have a significant impact on the collection of these

high-frequency waves, and methods need to be developed to account for these distortions.

Measurement device placement:

Eliminating sources of error such as those presented in this dissertation may not always be

feasible. Additionally, it is also well-known that high-frequency signals will filter out more

quickly than lower-frequency ones over large electrical distances due to the nature of the

capacitive and inductive properties of the lines and connected loads. It may be necessary

to identify locations that these network-induced distortions are minimized, and use these

locations to place PoW sensors.

Synthetic Data Generation

One of the potential outcomes of the results presented in Chapter 3 is advanced synthetic

data generation. The derived non-parametric distributions may be used to augment synthetic
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data such that they represent data corrupted by these kinds of sensors. This could be

accomplished by developing a generative model.

This process could be further aided by taking into account uncertainties not necessarily

arising from the sensors themselves, but also from electrical properties used in the data

generating processes (e.g. EMTP models). For example, transmission line impedances are

often lumped or approximated based on standards or “base cases”. It is also extremely

difficult to get an accurate measure of line impedance from existing equipment. These

assumptions will lead to further uncertainty components.

This generative process would allow for creating more representative and robust datasets

to address the effects on machine learning applications, as presented in Chapter 5. A training

set that contains a more diverse set of data scenarios will yield better prediction results with

lower uncertainty.
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Appendices

A Harmonic Event Distribution KDE Plots

The distributions shown in Figs. A.1-A.5 represent the percent error distributions, both

empirical (blue, histogram plots) and estimated via KDE (red, solid lines) for the wind fault

event as depicted in Chapter 3.
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(a) Harmonic order 7 (b) Harmonic order 14

(c) Harmonic order 149 (d) Harmonic order 195

(e) Harmonic order 232 (f) Harmonic order 270

Figure A.1: Wind fault G&W error statistics for harmonic indices 1-6 (from Table 3.7)
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(a) Harmonic order 389 (b) Harmonic order 427

(c) Harmonic order 464 (d) Harmonic order 501

(e) Harmonic order 600 (f) Harmonic order 659

Figure A.2: Wind fault G&W error statistics for harmonic indices 7-12 (from Table 3.7)
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(a) Harmonic order 697 (b) Harmonic order 734

(c) Harmonic order 854 (d) Harmonic order 892

(e) Harmonic order 1086 (f) Harmonic order 1124

Figure A.3: Wind fault G&W error statistics for harmonic indices 13-18 (from Table 3.7)
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(a) Harmonic order 1161 (b) Harmonic order 1281

(c) Harmonic order 1318 (d) Harmonic order 1360

(e) Harmonic order 1393 (f) Harmonic order 1550

Figure A.4: Wind fault G&W error statistics for harmonic indices 19-24 (from Table 3.7)
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(a) Harmonic order 1558 (b) Harmonic order 1625

Figure A.5: Wind fault G&W error statistics for harmonic indices 25-26 (from Table 3.7)
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B Energy Detector Algorithm: Analytical Derivation

of Threshold γ

In Chapter 4, it was mentioned that the presence of a transient may be expressed as a

hypothesis test in which the null hypothesis H0 represents the case in which a transient

does not exist in the observation window, and H1 otherwise. In this appendix, an analytical

method for approximating the threshold γ for (4.4) is presented via Maximum Likelihood

Estimation.

For the case in which there is no transient (i.e. H0 : pTq[k] = 0), the probability density

function (PDF) of the energy values ψ[·] is expressed as a chi-squared distribution with N

degrees of freedom, which of course assumes that each element of r[k] in the sum of (4.4) is

normally-distributed with mean 0 and unit variance:

fχ2
N

(ψ) =
ψ(N/2)−1e−

ψ
2

2N/2Γ (N/2)
(B.1)

where Γ (·) denotes the Gamma function. Similarly, for the case in which a transient is

present (H1 : pTq 6= 0), the PDF may be represented as a noncentral chi-square distribution

with parameter m and N degrees of freedom:

fχ2
N,m

(ψ) =
1

2

(
ψ

m

)N/4− 1
2

e−
m+ψ

2 J(N/2)−1

(√
mψ
)

(B.2)

where m =
∑N−1

i=0 µ2
i represents a random variable equal to the sum of the squared means of

the ri’s, and Jk (·) denotes the kth order modified Bessel function of the first kind.

The probability of detection and probability of false alarm may be analyzed by

Pr (χ2
N > λH1) and Pr

(
χ2
N,m > λH0

)
, respectively. Here, Pr (χ2

N > λH1) = Qh

(√
2γ,
√
λ
)

is the generalized Marcum-Q function, λ represents the decision threshold, and γ represents

the instantaneous signal-to-noise ratio (SNR). Thus it is important to find the value of γ

that satisfies (4.4).

112



0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

f 2

N

( )

f 2

N,m

( )

Pr( 2
N

>  H
1
)

(a) Probability of detection

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

f 2

N

( )

f 2

N,m

( )

Pr( 2
N,m

>  H
0
)

(b) Probability of false alarm

Figure B.1: Example probability distributions in blue (B.1) and red (B.2)
along with decision probabilities.
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B.1 Maximum Likelihood Estimation for Threshold Selection

Given the signal model in (4.2), error residuals e[k] at high SNRs may be tracked at each

point k using:

e[k] = r[k]− A cos

(
2πf

k

fs
+ θ

)
≈ w[k] + q[k]pTq[k −Np] + εN (B.3)

This equation simply represents the portions of the original signal not captured in the

model r[k], and the measurement noise w[k]. For a 60-Hz signal with additive white Gaussian

noise (AWGN) and a high-frequency transient superimposed on top of it, e[k] would simply

be the sum of the noise component and the transient. This formulation is suitable for

determining the threshold value independent of the original signal’s magnitude.

Finding a suitable threshold value is simply a problem of estimating the variance of this

quantity. Simple Maximum Likelihood Estimation (MLE) can be used to accomplish this.

The MLE solution to this problem, Θ, may be found as:

Θ = argmax
σ2
e

{
µe =

1

Np

Np−1∑
k=0

e[k], σ2
e =

1

Np

Np−1∑
k=0

(e[k]− µe)2
}

(B.4)

≈ argmax
σ2
q

{
µq =

1

Np

Np−1∑
k=0

e[k], σ2
q =

1

Np

Np−1∑
k=0

(e[k]− µq)2
}

(B.5)

where µe is the mean of e[k], approximate equivalence between the two expressions is

established from (B.3) and the fact that E[w[k]] = 0. Finally, the threshold γ may be

found by:

γ = σ2
w + ασ2

q (B.6)

where σ2
w is the noise power and 0 < α < 1.
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