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Abstract

There is a vital need for sustainable solvents that can effectively replace conventional organic
solvents which are toxic and hazardous. Deep eutectic solvents (DESs) are a mixture of a
hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) which results in a depressed
melting temperature significantly below the parent compounds. They can be made from
cheap and renewable resources, and have advantageous properties, such as wide liquidus
and electrochemical windows, nonflammibility, and nontoxicity. However, the current state
of DESs has some general drawbacks including high viscosity and low ionic conductivity
compared to conventional solvents which reduces their appeal for commercial use. However,
there are an estimated 10! possible DESs that have yet to be explored. In order to rationally
investigate these options, a fundamental understanding of structure-property relationships
should be established. Therefore, this dissertation seeks to understand how composition,
local structure and dynamics, and interactions affect the macroscopic properties observed.
Here, we study two DESs in unprecedented detail: Ethaline, a 33mol% choline chloride
(ChCl) in ethylene glycol, and Glyceline, 33mol% ChCl to glycerol. We observed that for
both DESs, ChCl weakens but does not fully disrupt the hydrogen bonded network of the neat
HBD. This led to an increase in the rate of dynamics and therefore decrease in melting/glass
temperature. The trends in other properties were somewhat different between the two DESs.
In Glyceline, the fluidity, ionic conductivity, and dynamics were all enhanced at the eutectic
point. In Ethaline, we found that the actual eutectic composition is in the 15-20mol% ChCl
in ethylene glycol range. Additionally, the dynamics and ionic conductivity are enhanced in

this range, but not the fluidity (previously reported).
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troscopy are plotted as a function of inverse temperature. The solid lines
are fits obtained by the Vogel-Fulcher-Tammann equation. Parameters from
these fits can be found in Table 5.12. (b) The ¢, data for concentrations
of 0, 0.05, 0.5, 1, 2.5, 5, 10, 20, and 33mol% ChCI in glycerol plotted versus
radial frequency. The data is arbitrarily stacked to clearly show the evolution
of the sub-a relaxation with increasing ChCl concentration. The dashed black
line is a guide for the eyes to draw attention to the evolution of the sub-a
relaxation. (c) The ratios of the various characteristic rates obtained from
the dielectric spectra plotted versus mol% ChCl, at a constant 7'y /7', showing
that the slow relaxation is coupled to ion dynamics. (d) The ), data for
concentrations of 5, 10, 15, 20, 25, and 33mol% ChCl in EG plotted versus
radial frequency. The data is arbitrarily stacked to clearly show the evolution
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the Stokes-Einstein relation. . . . . . . . . . . . ..



5.24 Snapshots of the environment of choline in 5 and 33mol% ChCl in glycerol. (a)

Snapshot from a CMD simulation of slow reorienting choline in 5 mol% ChCI.
The white-red-tan molecule represents glycerol and the hydrogen-oxygen-
carbon atoms respectively. The white-red-aqua-blue molecule represents
choline and the hydrogen-oxygen-carbon-nitrogen atoms respectively. The
lime green molecule is the chloride anion. Choline is ’trapped’ within
homogeneous glycerol HBN. (b) Snapshot from a CMD simulation of fast
reorienting choline in 33mol% ChCl. Heterogeneities of species and charge
alternation weakens the HBN significantly, liberating choline cations to more

easily reorient within the HBN. . . . . . .. . ... ... ... ... ... ..
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Chapter 1

Introduction

1.1 Motivation

Liquids are ubiquitous, and needed in numerous areas of life. Many chemical processes,
emerging technologies, and products in everyday life rely on liquids for operation. Employing
liquids as solvents is perhaps one of their most prevalent uses. For example, solvents are
used in paints, inks, and personal care products to dissolve or disperse a solute of interest,
create a desired consistency, and can also evaporate quickly so the solute is applied and can
dry in an efficient manner specific to its use. However, many of the solvents used currently
present a threat to human and environmental health.[12] Therefore, a significant push toward
alternative solvents has been made to lighten the burden of these effects.

Classes of alternative solvents include but are not limited to renewable solvents (bio-
derived), ionic liquids, supercritical fluids, liquids polymers, and deep eutectic solvents.[12]
However, feasibility of these is contingent on their ability to be scaled up safely and
cost effectively with performance similar to conventional solvents, which is not currently
achievable for these mentioned materials. While many factors play a role in these materials
not being commercially viable yet, one important issue is the lack of insight into these
materials. A comprehensive understanding of these materials at a molecular level would

allow them to be rationally manipulated and improved. If these materials could have



their properties enhanced and be manufactured cheaper, they would be better prospects
for industrial solvents.

One of the emerging classes of alternative solvents, deep eutectic solvents, are of specific
interest as they are usually made from readily available, cheap components (that could
be produced from renewable resources). They are considered to be highly tunable as
their synthesis is merely mixing two or more compounds together until a uniform liquid
is obtained. However, they have some outstanding issues that also prevent them from being
viable large-scale. For example, typically, their viscosities are higher and ionic conductivities
are lower than other solvents used industrially. As these are “designer solvents”, these issues
could be addressed if their chemistry was engineered using knowledge of structure-property
relationships. To elucidate these relationships is to have predictive knowledge in tailoring
DES for specific applications, which would be incredibly useful in advancing this class of
alternative solvents.

This dissertation seeks to answer the following questions relating to this knowledge gap:

1. Is the eutectic composition the optimal point for most advantageous physicochemical

properties?

2. Should the eutectic point be considered a single molar composition or a range of

compositions?

3. How do the local structures and microscopic dynamics evolve with variation of

composition of the mixtures approaching the eutectic concentration
4. How do spatial and temporal heterogeneities influence the macroscopic properties?

The research presented in this dissertation was carried out with a goal of unraveling
fundamental, yet crucial, information about a class of non-aqueous solvents that could
replace conventional organic solvents. DESs are studied in unprecedented detail to probe
the relationship between composition, local structure and dynamics to the macroscopic
properties observed. We demonstrate how the physicochemical properties are directly related

to temporal and spatial heterogeneities which evolve with varying composition.



1.2 Outline

This dissertation consists of 6 total chapters. Chapter 2 is a scientific literature review of
history, theory, and current progress in relevant liquids. Chapter 3 gives an overview of
the experimental methods as well as theory and analytical techniques used to study and
understand the proposed materials. Chapters 4 and 5 provide the results found concerning
fundamental relationships in deep eutectic solvents. Finally, 6 summarizes the results and
answers the questions asked in the above section with insight and context into how they fit
into broader fields.

Chapter 2 first overviews what liquids and glasses are in Section 2.1, as well as the
glass transition phenomena and available theories to understand it. Then, the application
of liquids as solvents is discussed in Section 2.2 as well as the issues they present as
toxic compounds. The need for “alternative solvents” is explained, where ionic liquids are
introduced in Section 2.3. While ionic liquids have advanced the field of green chemistry,
they present their own issues. Therefore, the incentive to study deep eutectic solvents as
green solvents is clear. The history, properties, and state of literature regarding DESs is
discussed in Section 2.4, ending with the current knowledge gap therefore motivating work
for this dissertation.

Chapter 3 goes over the experimental techniques chosen to study DESs in this
dissertation. The methods chosen were differential scanning calorimetry (Section 3.1),
dynamical mechanical spectroscopy (Section 3.2), and broadband dielectric spectroscopy
(Section 3.3 ). The theory and history behind these methods are discussed, as well as the
methods of analyzing data obtained from these techniques. There is an emphasis specifically
on how these methods are useful in shedding light into deep eutectic solvents.

Chapter 4 discusses the impact of composition on the properties in a prototypical DES.
Results show that the actual eutectic composition of this mixture is different from what has
been historically reported. We show that by operating at the newfound composition, the

orientational and solvent dynamics as well as ionic conductivities are enhanced.



Chapter 5 uses a conglomerate of work among expert collaborators to create a full picture
of how local structure and dynamics effect the macroscopic properties of two DESs. It is
demonstrated that as salt is added to the hydrogen bond donor, the ions form hydrogen bonds
with the donor, which decreases but does not fully disrupt the hydrogen bonded network of
the system. This leads to the melting and glass transition temperature depression as well as
enhanced physicochemical properties.

Lastly, Chapter 6 summarizes the results found in the previous two chapters and provides
answers for the scientific questions asked. The broader implications of this work is discussed

as well as the outlook and future work that should be considered.



Chapter 2

Literature Review

In this chapter, an overview of liquids and solvents will be given to provide context and
motivation for the work completed in this dissertation contributing to the bigger picture
being painted. First, liquids are generally defined. The glass transition will be explained
and theory behind it will be discussed as well as the gap in knowledge that is still
present. Second, conventional organic solvents and their outstanding issues will be discussed,
providing the motivation for alternative, green solvents. Ionic liquids will be defined and
discussed, touching on their appeal and efforts made to optimize them. Finally, deep eutectic
solvents will be considered. The history and development of these materia