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Abstract-This paper investigates the use of second-order 
methods to solve Markov Decision Processes (MDPs). Despite the 
popularity of second-order methods in optimization literature, 
so far little attention has been paid to the extension of such 
techniques to face sequential decision problems. Here we provide 
a model-free Reinforcement Learning method that estimates 
the Newton direction by sampling directly in the parameter 
space. In order to compute the Newton direction we provide the 
formulation of the Hessian of the expected return, a technique 
for variance reduction in the sample-based estimation and a 
finite sample analysis in the case of Normal distribution. Beside 
discussing the theoretical properties, we empirically evaluate the 
method on an instructional linear-quadratic regulator and on a 
complex dynamical quadrotor system. 

I. INTRODUCTION 

Policy search is a Reinforcement Learning (RL) approach 
that focuses on the search for the optimal policy of a Markov 
Decision Process (MDP) in a limited policy space. It has 
gained popularity as an approach for complex, real applica­
tions since it can deal with high-dimensional state and action 
spaces, while keeping the search limited to a task-appropriate 
predefined parametrized policy class. In particular, policy 
search has become the standard RL approach in robotics [1]. 

Policy-gradient approaches perform gradient ascent in the 
parametrized policy space in order to derive the optimal policy 
directly and not through the estimation of the optimal value 
function. Besides being effective in many complex RL prob­
lems [2], they enjoy stability and robustness guarantees [3]. 
In order to produce an unbiased estimate of the gradient 
in model-free settings they require non-zero probability for 
every action in every visited policy, so that stochastic policies 
need to be considered. In robotic applications, where the 
underlying model is slightly stochastic or even deterministic­
as the most of the industrial applications-stochastic policies 
are required to obtain a sufficient exploration of the domain, 
but collide with the need of interpratibility required by com­
mittees. Although several methods for variance reduction have 
been derived, the exploration in the action space may inject 
noise in the gradient estimate at every step. A second drawback 
is the use of stochastic policies since predictability of the 
policy behavior is a requisite in many robotic applications. 

In order to overcome such limitations, several algorithms 
have been designed to incorporate an exploration strategy in 
the parameter space, by perturbing the policy parameters [4]­
[6]. This is usually obtained through a parametric upper-
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level policy (or distribution) that selects the parameters of the 
(possibly deterministic) control policy. Among them, we focus 
on the Policy Gradients with Parameter-based Exploration 
(PGPE [6]) that exploits gradient ascent algorithms in order to 
find the optimal parametrization of the upper-level policy. The 
advantages are: I) less noisy estimate both from theoretical 
and empirical analysis [7]; II) possibility to exploit non­
differentiable policies. Furthermore, PGPE has been shown to 
outperform standard RL gradient approaches in many complex 
scenarios [8], [9]. 

Unfortunately, the PGPE inherits the main drawback of 
gradient approaches, i.e., that the choice of the step size 
can affect both performance and convergence. Attempts to 
design more advanced gradient methods are limited by the fact 
that conventional techniques, such as line search and Krylov 
subspaces, are not suited for MDP settings, where the model 
function is unknown [10]. As far as we know, [11] is the only 
notable exception that has investigated an automatic technique 
for selecting the step size in policy gradient approaches. 

A possible approach is to consider higher-order optimization 
methods. A popular search direction, maybe the most popu­
lar [12], is the Newton direction. Such direction is obtained 
from the second-order Taylor series approximation and, unlike 
steepest ascent direction, it is associated to a natural step size 
of 1. Moreover, Newton direction has a faster local conver­
gence rate than the plain gradient, usually quadratic [12]. The 
main drawback is that the estimation or even computation of 
the second derivatives is usually hard and error prone. 

After the analysis performed in [13], the RL literature has 
posed little attention to higher-order methods. In his work, 
Kakade showed that the estimate of the second derivatives 
of the policy expected return requires the knowledge of the 
MDP model. Recently, [14] have shown that, exploiting the 
trajectory-based definition of the Policy Gradient Theorem, 
it is possible to get rid of the knowledge of the model. In 
this paper, we will show that the hierarchical structure, or 
better the direct exploration in the parameter space, allows 
a simple derivation and estimation of the trajectory-based 
Hessian matrix. We also study the variance of the Hessian 
estimate in order to provide a finite sample analysis in the 
case of Gaussian distribution. 

The most related RL approach in the literature is the 
Natural gradient [2], [13]. The connection between the Natural 
gradient and second-{)rder methods resides in the fact that, 
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when the cost function is quadratic, the Fisher information 
matrix is equal to the Hessian matrix, and thus Newton's and 
the natural gradient methods are identical [15]. 

Approaches similar to the PGPE have been derived in the 
field of Evolutionary Strategies. The similarities (also pointed 
out in in [16]) reside in the fact that the policy improvement 
step is treated as a black-box optimization problem, see [17]. 
The closest algorithm to the proposed one is the Natural Evo­
lution Strategy (NES, [18]), which is a black-box optimization 
methods that exploits Natural Gradient information. It is worth 
noticing that Natural PGPE [19] and NES share the same 
algorithmic structure. 

In this paper we compare our approach with its predecessor 
PGPE (well known and empirically compared in RL literature 
also against ES and natural algorithms with perturbations in 
the parameter space) and also with Natural PGPE, which has 
similar second-order properties as the Newton update, just to 
remain in the same algorithmic framework. 

In Section III, we provide the Newton direction associated to 
the PGPE hierarchical structure and we show that the Hessian 
formulation is invariant to the introduction of a constant 
baseline. Such term is used to derive a low variance Hessian 
estimate (Section IV) directly from experience. The amount of 
variance reduction is also estimated. We further give a sample 
complexity analysis when the upper-level policy is a Gaussian 
distribution. Finally, the usefulness of the Newton method is 
demonstrated through experiments (Section V). 

II. PRELIMINARIES 

A discrete-time continuous Markov decision process (MDP) 
is defined as a 6-tuple (X, U, P, R, ,,(, D), where X is the 
continuous state space, U is the continuous action space, P 
is a Markovian transition model where P(x'lx, u) defines the 
transition density between state x and x' under action u, R : 
X x U ---+ IR is the reward function, such that R(x, u) is 
the expected immediate reward for the state-action pair (x, u), 
"( E [0, 1) is the discount factor for future rewards, and D 
is the distribution of the initial state. The control policy is 
characterized by a density distribution 1f( ·Ix) that specifies for 
each state x the density distribution over the action space U. 

We consider infinite horizon problems where the future 
rewards are exponentially discounted with "(. For each state 
x, we define the utility of following a stationary policy 1f as: 

Policies can be ranked by their expected discounted reward 
starting from the state distribution D: 

where T E 'II' is a trajectory of length T (possibly infinite) 
drawn from density distribution P (TI1f) with expected "(­

discounted return: R(T) = 'L,;=l "(
t-1R (xt,ut). The trajec-

tory probability is simply described by the following equation: 

T 

p(TI1f) = D(xo) II P(xklxk-l,Uk-l)1f(Uk-llxk-d· 
k=l 

Solving an MDP means finding a policy 1f* that maximizes 
the expected long-term reward: 1f* E arg max7rEIl I'D. For any 
MDP there exists at least one deterministic optimal policy that 
simultaneously maximizes V7r(x), 'Vx E X [20]. 

A. Policy Gradient 
We consider the problem of finding a policy that maximizes 

the expected discounted reward over a class of parametrized 
policies lIo = {1fo : 0 E IRd}, where 1fo is a compact repre­
sentation of 1f(ulx, 0) . 

The policy parameters can be updated following the di­
rection of the gradient of the expected discounted reward: 
0' 

= 0 + a;\loJD(O), where [2] 

\loJD(O) = hp(TIO)\loiogp(TIO)R(T)dT. 
Given that \loiog p( TIO) = 'L,;=l \loiog 1f (Ut IXt, 0) , the 
above equation shows that the differentiability of the ex­
pected return is related to the differentiability of the policy 
model. In general, integrating over all possible trajectories is 
practically unfeasible, and the gradient is estimated, e.g., by 
means of Monte Carlo simulations, as in the REINFORCE 
algorithm [10]. Standard policy-gradient approaches require 
actions to be stochastically selected according to parameter 
vector 0, resulting in high-variance gradient estimates [2]. 
Recently, a deterministic version of the policy gradient the­
orem was provided in [21]. Although the name suggests the 
absence of stochastic policies, this is not the case. In fact, 
in order to explore the entire state and action space, they 
exploit stochastic policies. The result is an off-policy learning 
algorithm that behaves according to a stochastic policy, but 
learns a deterministic target policy. 

B. PGPE 
In order to overcome the limits of policy gradient meth­

ods, the Policy Gradient with Parameter-Based Exploration 
(PGPE) was proposed in [6]. Unlike standard policy gradient, 
PGPE is able to directly exploit deterministic policies both 
for exploration and learning since stochasticity is encapsu­
lated in a higher control level. This property is particularly 
relevant in critical robotic and control applications where the 
interpretability of the target policy is a desiderata in order to 
avoid unpredictable behaviors during the operational phase. 
Another advantage of PGPE is that no assumption on the 
differentiability of the policy w.r.t. to the parameters 0 has 
to be enforced. As a consequence, [7] has shown that PGPE 
is able to reduce the variance in the gradient estimate w.r.t. to 
REINFORCE method. 

These advantages are obtained by replacing the exploration 
in the state-action space (Ut = 1f( Xt) + Et) with an exploration 
in the policy space (Ot = Ot + Et), where Et is an exploration 
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Fig. 1: PGPE hierarchical structure 

noise. PGPE introduces the concept of upper-level distri­
bution, i.e., a parametrized distribution 7T(Olp) , that selects 
the parameters of the control policy 7r( ulx, 0) . This setting 
configures a hierarchical structure where the actual control 
policy is the lower-level [1]. Graphical representation of the 
hierarchy is given in Figure 1. In this way, when deterministic 
control policies are exploited, the variance of trajectories is 
given only by the intrinsic variance of the MDP. 

Instead of directly finding the policy parameters 0, the 
goal of PGPE is to find the optimal hyperparameters p* E 
argmaxpEP J(p) , where J(p) = lEo�ii'(-lp)[JD(O)l. Accord­
ing to gradient-based optimization the hyperparameters pare 
updated following the gradient direction pi = P + ex V' pJ (p) , 
where 

The above equation shows that the requirement on the dif­
ferentiability of the policy model is dropped in favor of the 
differentiability of the upper-level distribution 7T( Olp) . 

III. SECOND ORDER PGPE 

The PGPE scheme can be simply extended to higher or­
der methods. In the standard policy-gradient framework, the 
computation of the Hessian matrix of the policy performance 
JD(O) requires the knowledge of the derivative of the Q­
function that is difficult to estimate since it requires the 
knowledge of the transition model [13]. In a recent work, 
Furmston et al. [14] have provided a Hessian estimate that is 
able to overcome such limitation by exploiting the trajectory 
based definition. The main issue related to this approach is 
that it requires stochastic policies (since it is just an extension 
to the second order derivatives of the standard policy gradient) 
that lead to a potentially high variability and error prone 
estimation of the Hessian matrix. However, the trajectory­
based formulation of the PGPE allows a simple derivation of 
the Hessian matrix that allows to exploit deterministic policies. 
Moreover, since we are optimizing a parameter vector that 
does not directly influence the transition or reward model, the 
knowledge and differentiability of these terms is not required. 

Theorem ID.I. Given an MDP M, an upper-level distribu­
tion 7T(Olp) and a parametric control policy 7r(ulx,O) , the 
(d x d) Hessian matrix of the expected ,-discounted return 

J(p) is given by 

HpJ(p) = l 7T(OIP) (V' p 10g7T(0Ip) (V' P 10g7T(0Ip) ) T 

+ Hp 10g7T(0Ip) )JD(O)dO. 

Since the following integral is always zero' 

lEo (V' p log 7T ( 0 I p) V' p log 7T ( 0 I p) T + H p log 7T ( 0 I p) ) 

= l V' p7T(Olp)V' plog7T(Olp) T + 7T(Olp)Hplog7T(Olp)dO 

= l V' p (7T(Olp)V' plog7T(Olp) ) dO 

= {" V' p (V' p7T(Olp) ) dO = Hp(l ) = 0, Je 
a baseline b that does not depend on the parameters 0 can be 
added to the gradient formula 

HpJ(p) = j� 7T(Olp) (V' p 10g7T(0Ip) (V' P 10g7T(0Ip) ) T 

+ Hp 10g7T(0Ip) ) (JD(O) - b) dO. (1) 

Section IV will derive the optimal baseline b'H for the PGPE 
Hessian as the term that minimizes the variance of the Hessian 
estimate. 

The best way to exploit the information about the local cur­
vature of the objective function is to follow Newton direction. 
Consider the following update rule: pi = p+/1p. The Newton 
step represents the amount of information that must be added 
to the actual point p so that the quadratic (second-order Taylor 
series) approximation of the objective function 

1 J(p' ) ;::::: J(p) + /1pTV' pJ(p) + 2/1pT HpJ(p)/1p 

is maximized. If HpJ(p) is not singular, then (HpJ(p) ) -l 
exists and the Newton step is defined as: 

/1p = - (HpJ(p) ) -l V' pJ(p) . 

We name this algorithm as Newton PGPE (N-PGPE). 
The main advantage of the Newton direction is that it is 

associated to a step size equal to 1. Newton methods are glob­
ally convergent2 if the Hessian matrix has a bounded condition 
number and is negative definite over all the iterations, and if 
the step lengths satisfy the Wolfe conditions [12]. Under these 
assumptions, they enjoy quadratic convergence rate near the 
stationary point leading to faster convergence rate than gradi­
ent ascent. Global convergence can be achieved also if each 
search direction satisfies the Zoutendijk condition [12], that 
is the search directions are never too close to orthogonality 
with the gradient. Latter conditions are stronger, but easier to 
check in RL settings than Wolfe conditions. 

Several numerical algorithms have been presented in the 
literature in order to mitigate such limitations. For a complete 
review we refer to [12]. 

I We made use of the equivalence (xV' y log(x) = V' yx) in the derivation. 
2010bal convergence refers to the property of the algorithm to converge to 

a stationary point from any point of the domain. 



IV. VARIANCE REDUCTION 

In this section we investigate the sample-based estimation 
of the terms involved in the N-PGPE. This section extends the 
variance analysis performed in [7] to second-order methods. 
As mentioned in the previous sections, both the gradient and 
the Hessian formula turned to be invariant under the addition 
of a constant baseline, yielding to the following modified 
estimates 

� 1 
N 

'Vp.:J(p,b'V) = N L 'Vplog7r (o(n)lp) (R (T(n)) -b'V) 
n=l 
N 

Hp.i(p,bH) = � L ('Vp log 7r(o(n) Ip) 'Vp 10g7r(0(n)lp) T 
n=l 

+ HplOg7r(o(n)lp) ) (R (T(n)) -bH) , 
(2) 

where the pairs (o(n), T(n)) are extracted independently. Note 

that the expected ,),-discounted return J D (O(n)) has been ap­
proximated by means of a a single trajectory via R(T(n)) [1]. 
As a consequence, the PGPE implementation requires to 

generate at every iteration a data set V = {o(n), T(n) } �=l
' 

Unfortunately we cannot obtain an unbiased estimate of the 
Newton direction 6.p = -(Hp.:J(p) ) -l 'V p.:J(p) from a sin­
gle data set V. This difficult estimation problem-estimation 
of product of dependent terms-has arised several times in 
RL (e.g., [22]) and can be overcome using double sampling. 
Precisely, we need two independent data sets VH and V'V of 

the form {o(n), T(n) } �=l 
for Hessian and gradient estimates, 

respectively. 
Concerning baselines, while the optimal baseline b� for the 

gradient estimate has been provided in [7], here we derive 
the optimal baseline for the Hessian estimate as the term that 
minimizes the variance 

b'H = arg�invar (Hp.i(p, b)) , 
where Var is the generalization of the variance to a random 
matrix.3 The following sections report the analysis in the 
general and Gaussian upper-level distribution cases. 

A. General case 
The following theorem gives the optimal baseline for the 

Hessian estimate under no assumption on the upper-level 
distribution. 

3Let X be a (p x q) matrix whose components Xij are random variables. 
We define the variance of the matrix as the variance of its vectorization [7], 
i.e., the sum of the variances of the individual components 

p q p.q Var(X) = l:l:var(Xij) = l:var(Yk), i=l j=l k=l 
where y = vec(X) is the pq-dimensional vectorization of X obtained by 
stacking its columns. 

Theorem IV.I. If 01, 02, ... ,ON are i.i.d., the optimal baseline 
for the Hessian estimate Hp.i(p, bH) in (2) is 

* IEe�iTClp) [JD(O)llg(O)II§ ] 
b H = 

-----=-----;o-------,,-----=-
IEe�iTClp) [llg(O)II§ ] 

where g(O) = vec(G(O)) is the vectorization ofG(O) and 
G(O) = 'V p 10g7r(0Ip) 'V P 10g7r(0Ip) T + Hp 10g7r(0Ip) · 

Given a generic baseline b, the variance reduction obtained 
through the optimal baseline b'H is 

Var(Hp.i(p, b) ) -Var(Hp.i(p, b'H) )  
(b -b* ) 2 

= N 
H 

IEe�iT('lp) [g(O)Tg(O)]. 
First, it is important to underline that, from a practical point 

of view, the optimal baseline can be computed in real time 
without requiring any additional storage of information, as 
happens for the gradient baseline b�. Second, considering a 
baseline different from the optimal one makes the variance to 
increase quadratically. 

B. Gaussian case 
The upper-level distribution 7r(Olp) is usually modeled as 

a Normal distribution N (OI M,� ) [1], [23], while the control 
policy u = 7r(xIO) is typically describe by a deterministic 
rule. Here we consider only the mean M E IRd to be the 
parameter to be tuned (i.e., p = M) while the covariance 
� = diag( ai , . . .  ,aJ) is a constant matrix. By keeping vari­
ance fixed the exploration is fixed to a certain level. However 
it would be straightforward to incorporate, at the cost of longer 
analytic derivations, the covariance matrix as a parameter, 
and several approaches have been presented in literature (e.g., 
diagonal covariance matrix with sigmoid representation or 
covariance factorization via Cholesky decomposition [24]). 
Moreover the complexity of the Hessian estimation would be 
o (d4) in case of a full covariance matrix, but this is true for 
any second order method (e.g., natural gradient). Under these 
settings several results on the Hessian estimate can be derived. 
Below we consider the following assumption 

Assumption IV.I. The reward model is positively bounded for 
any state-action pair (x, u) by R(x, u) E [Rmin, Rmax], with 
o < Rmin < Rmax. 

The previous assumption can be easily enforced by scaling 
the reward function without introducing any bias in the MDP 
solution. 

First, we analyze the variance of the Hessian estimate in 
N-PGPE. 

Lemma IV.2. Given a normal meta-distribution 7r( 0IM) = 

N(OI M,� ) where M is the parameter vector and � = 

diag( d, . . .  ,aJ) is a constant diagonal matrix, the variance 
of the Hessian estimate is bounded by 

� R�ax(l -')'T) 2 d d 1 
Var(Hp.:J(p,O) ) :S; N(l _,),) 2  � ff; alar 



This means that the variance is proportional to the squared 
bound of the inunediate reward, but decreases exponentially 
with the length T of the episode. Clearly it is inversely 
proportional to the number of samples N. 

As the reader may have noticed, Lemma IV.2 is given for the 
baseline-free Hessian estimate. The following lenuna exploits 
such result to derive an upper bound to the variance of the 
Hessian estimate with optimal baseline b'H . 

Lemma IV.3. Consider Assumption TV1. Given a normal 
meta-distribution 1i'(BltL) = N(BltL,�) where tL is the param­
eter vector and � = diag( O" i, ... , O"�) is a constant diagonal 
matrix, the variance of the Hessian estimate with optimal 
baseline b'H is bounded by 

var(Hpj(p, b'H ) )  

(1 - '"'yY)2 ( 2 2 ) 2:
d 
2:

d 
1 < --'----.:........:--". R -R · -2-2. - N(1 _,)2 max mIn 

i=l j=i O"i O"j 

The result in the previous Lemma combined with the 
Chebyshev's inequality allows to provide a high-probability 
upper bound to the Hessian approximation error using the N­
PGPE estimator given in Equation (2). 

Theorem IV.4. Consider Assumption lVl. Given a normal 
meta-distribution 1i'(BltL) = N(BltL,�) where tL is the param­
eter vector and � = diag( d, . . .  ,O"�) is a constant diagonal 
matrix, using the following number of samples (B(n) , T(n»): 

(1 -,T)2 
d d 

1 
N = 

E20(1 -,)2 (R�ax - R�in ) � f; O"rO"] , 

the Hessian estimate Hpj(p, b'H ) generated by N-PGPE is 
such that with probability 1 - 0 

IHpj(p,b'H ) -HpJ(p,b'H ) 1 � E. 

V. EXPERIMENTS 

In this section, results related to the numerical simulations 
of the proposed algorithms, in two continuous domains, are 
presented. While the Linear-Quadratic regulator (LQR) is a 
standard benchmark domain, the second domain, correspond­
ing to a full dynamical model of a quadrotor, aims at showing 
the capabilities of the algorithm in a complex domain. When 
necessary, we have used standard optimization techniques to 
preserve the correct direction of the Newton step [12]. 

A. Linear-Quadratic Regulator 
The first case of study is a discrete-time Linear-Quadratic 

regulator (LQR) with continuous state and action spaces [2]. 
The LQR problem is characterized by a transition model 
Xt+! = AXt + BUt, a deterministic policy Ut = B . Xt and 
a quadratic reward rt = -Qx; - Ru;. Since the aim of 
this domain is mere instructive we have limited our attention 
to the scalar scenario. If not explicitly given, the following 
parameters are used: A = B = Q = R = 1. 

Fig. 2: Parameters p of PGPE and N-PGPE as function of 
iterations, under different domain parametrizations. Where 
not explicitly stated, parameters are set to default values. 
Dashed horizontal line denotes the optimal parameter p* . N­
PGPE(b'H) and N-PGPE(O) are used to denote Newton PGPE 
with and without baseline. 

The advantage of the hierarchical structure resides in the 
possibility to use deterministic policies moving the stochastic­
ity into the upper-level policy 7r ( B I p) . Here we have chosen a 
Gaussian upper-level distribution 7r(Blp) = N(Blp;�) where 
B is the mean value and � = 0.012 is a constant variance. 

The values of the parameters used for all the experiments 
are the following ones: , = 0.99 and the initial state Xo = 10. 
For the estimation of the gradient and Hessian values a total 
of 2000 policies are evaluated based on a single episode of 30 
steps. Starting from Po = -0.1, experiments are ended when 
an 0.01-accurate4 upper-level distribution is found. 

As mentioned in Section III, one of the advantages of 
the N-PGPE methods is the absence of the step size D!. 

Here we show empirically that N-PGPE enjoys an almost 

4 Accuracy is evaluated w.r.t the optimal parameters p' which can be 
computed analytically. 



#Policies 
100 
500 
1000 
5000 
10000 
20000 

N-PGPE (b* ) 
29.7 ± 6.22 
18.5 ± 4.59 
15.7 ± 2.70 
8.5 ± 2.23 
5.8 ± 1.19 
4.4 ± 0.07 

Iterations 
N-PGPE (O) 

271.5 ± 8.73 
128.4 ± 6.21 
99.0 ± 6.84 
52.1 ± 3.91 
37.4 ± 1.96 
35.3 ± 4.37 

Natural PGPE 
11.66±1.17 
12.2 ± 0.66 

12.34 ± 0.42 
12.54 ± 0.16 
12.58 ± 0.15 
12.58 ± 0.14 

TABLE I: Convergence speed in LQR scenario. The table 
reports the number of iterations required by the algorithms, 
starting from Po = -0.1, to learn the optimal policy parameter 
p* = -0.6037 with an accuracy of 0.01, for different data 
set dimensions. Data are averaged over 100 runs and 95%­
confidence intervals are reported. 

"invariant" trend under domain changes. In contrast, PGPE and 
Natural PGPE require to tune the step size for the different 
domain parametrizations. Figure 2 compares the algorithms 
under slightly different domain parametrizations in a single 
explanatory run. While we have considered the state-of-art 
PGPE and Natural PGPE algorithms5, we have compared 
both the variants of N-PGPE, i.e., with and without baseline. 
Figure 2a shows that, using a hand-tuned constant step size for 
the PGPE, it is possible to outperform the N-PGPE algorithm. 
However, the tuned step size is good only for the current 
domain and as soon as the domain changes, a new step size 
must be identified. This is clear in Figure 2b where the step 
size for the standard domain (0: = 0.001 in Figure 2a) leads to 
divergence of the PGPE algorithm when the reward is doubled. 
Better performances are obtained by reducing the step size to 
0.0001. In the case in which the dynamics of the system are 
changed (Figure 2c), PGPE is less influenced by the initial 
step size since the model is slower than the original one, 
but better trends can be obtained using larger values. Natural 
PGPE showed similar shortcomings with respect to the choice 
of the step size. Given 0: = 0.5, Natural PGPE performed very 
similar to N-PGPE(O) in the first and third domain (namely, 
Figures 2a and 2c), whereas in the second parametrization 
(Figure 2b) its behaviour mimics N-PGPE(bH), but only in 
the initial iterations. However, a finer tuning of the step 
size 0: (set to 15) allowed Natural PGPE to show a rate of 
convergence very close to N-PGPE(bH) in the contractive 
domain. Nevertheless, employing the same value for 0: led 
Natural PGPE to diverge in the other domains. Concerning 
Newton approaches, this experiment underlines the relevance 
of the introduction of the baseline. In our tests the N-PGPE 
with baseline has proven to be always faster and more stable 
than the version without baseline. 

We also tested the performance of the algorithms under 
different data set dimensions. In particular, since both the 
domain and the policy are deterministic, we have fixed the 
number of episodes and steps used to estimate JD(o(n)) to 
1 and 30, respectively. For the Natural PGPE, we manually 
tuned the step size so as to achieve the better performance 

5 It is weU known that the best performances of the PGPE are obtained 
using the optimal baseline. 

in terms of convergence rate (0: = 3). The free parameter 
is the number of samples drawn from the upper-level policy. 
As shown in Table I the Natural PGPE has proved to be more 
robust than the Newton-based approaches, but only after a fine 
tuning of the parameter 0:. The experiments have also proved 
that N-PGPE(bH) is much more robust than the N-PGPE(O) 
when few policies are drawn, obtaining good performance with 
only 100 samples. The gap decreases as the number of policies 
increases, but it still remains significant with an extremely 
high number (20000) policy samples. Clearly second-order 
approaches require more samples than first-order ones for a 
correct estimate of the search direction, due to the presence 
of additional d2 values to be estimated (i.e., the Hessian and 
the Fisher Information matrices). 

B. Quadrotor 
The second case study is an under actuated 6 DoF quadro­

tor [25], whose mathematical model is described by the 
following differential equations: 

jj 

i 

= L;=l bn;cos'if; cos¢sin e + sin ¢sin 'if; 

= L;=l b n;sin 'if; cos ¢ sin' -sin ¢ cos 'if; 
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= L;=l bn;cosecos¢ -9 

I -I m 

= _y 
__ 

z qr + Ql(n� -n§) - J= q nR Ix Ix Ix 

= 

Iz-Ixpr+Ql(n�_ ni)_ J=pnR Iy Iv Iy 

I -I x Ypq + ..4.(_n2 + n2 _ n2 + n2) Iz Iz 1 2 3 4 

= P + q sin ¢ tan e + r cos ¢ tan e 

= q cos e - r sin e 

= qsinq, + rCosq, 
cos II cos II 

(3) 

These equations are derived based on Newton-Euler formal­
ism. Let I be the right-hand inertial frame and B the right­
hand body-fixed frame. The tuple (x, y, z) E I is the position 
of the center of mass of the quadrotor and the Euler angles 
(¢, e, 'if;) E I describe the orientation of the rigid body. 

In the system (3), I = diag(Ix'!y,!z) E Band m are 
the constant inertia matrix and the overall mass of the flyer, 
I is the horizontal distance from the propeller center to CoG 
and 

9 
denotes the acceleration due to gravity. Furthermore, 

w = [p, q, r] E B is the body angular velocity, ni represents 
the i-th rotor angular velocity, nR is the overall residual rotor 
angular speed and Jm is the total rotational moment of inertia 
around the propeller axes. Finally, band d are the thrust and 
drag coefficients, respectively. 

The quadrotor dynamics (3) is a highly non-linear, Multi­
Input Multi-Output (MIMO), strongly coupled and under 
actuated. A common approach for quadrotors consists in a 
hierarchical control architecture: neglecting the control of 
the rotor rotational speed, the lowest level is in control of 
vehicle attitude, and the top level is in control of position 
along a trajectory. Hence, the position control loop provides 
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Fig. 3: Nominal trajectory t(t). 
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Fig. 4: Reward signal along the quadrotor trajectory, both with 
d1 (top) and d2 (bottom) distance functions. The simulation 
lasts 408, only the relevant part is shown in figure. 

attitude set points for the attitude controller, resulting in nested 
feedback loops. 

More precisely, the six degrees of freedom of the system, 
namely the position (x,y,z) and the orientation (qy,B,'i/J), are 
managed by six PD regulators which are obtained by means 
of a classical design in frequency domain. The gains of these 
six regulators represents the upper-level policy parameters 
P = [kx, ky, kz, kq" ke, k-,p]T to be optimized. Since the main 

PGPE N-PGPE (b* ) N-PGPE (O) NaturalPGPE 
-187 -152 -204.9 -192 

-13.58 -11.7 -12.9 -11.5 

TABLE II: Cumulative return associated to an entire trajec­
tory. The values associated to the initial parameters Po are 
Rd1 (T ) = -225.6 and Rd2 (T ) = -14.45, respectively for the 
distance function d1 (. , .) and d2 (., .). 

task of the quadrotor is to follow the desired trajectory 
t(t) = (x(t), fj(t), z(t)), t ?: 0, in Figure 3, we set the one­
step reward function as the distance between the measured 
trajectory �(t2 = (x(t), y(t), z(t)) and the reference one, i.e. 
Tt = -d(�t, �t). 

For the numerical experiments, the following parameters 
have been employed. The initial mean values of the upper­
level distribution have been derived from an empirical study, 
and they are Po = [1, -1,80,0.8,0.8, 1.6]T , whereas the ma­
trix � = 1.0.012 is the constant covariance. A number of 4000 
policies are extracted from the upper-level distribution for the 
gradient, the Hessian and the Fisher matrices estimation, and 
a maximum of 100 iterations are allowed to achieve algorithm 
convergence. The dynamical system (3) is integrated by using 
Dormand-Prince integration method. 

Table II reports the performance obtained by the quadrotor 
when the gains of PD regulators are optimized by means of 
the proposed algorithms. 
In this test we considered two different distance measures, 
namely the I-norm distance, d1(x, y) = Ilx -Ylh, and the 
squared 2-norm distance d2(x, y) = Ilx - YII�. While all 
the algorithms improve the reward value associated to the 
initial parameters Po, the N-PGPE(bH) outperforms both the 
N-PGPE(O) and the Natural PGPE, as well as the PGPE. A 
pictorial representation of this is shown in Figure 4. 
Nevertheless, the step size ex = 10-4 employed by PGPE 
when the d1 distance function is used leads to unsatisfactory 
results when the reward function employs the distance d2 (the 
upper-level distribution remains essentially the same). Indeed, 
a new step size ex = 10-2 has been implemented to reach 
better results (see Table II). Also Natural PGPE required a 
tuning phase for the parameter ex, respectively, set to 1 and 5 
for the distance functions d1 and d2. 
On the other hand, both the variants of N-PGPE (with and 
without baseline) are able to adapt to the change of the reward 
function without compromising their performances. Still, the 
introduction of the baseline has proved to make the difference 
in the convergence speed and in the quality of the obtained 
solution. 

VI. CONCLUSIONS 

While RL literature has mainly focused on standard and 
natural gradient methods, this work provides a wide analysis 
of Newton methods in RL. As we know, the only notable 
exception is the work by Furmston [14]. In Sections III and IV 
we have derived the hierarchical fonnulation of the Hessian 
matrix for the PGPE and shown (theoretically and empirically) 
that the variance of the estimate can be reduced by adding 



a constant baseline, as happens for policy-gradient methods. 
Second-order methods mitigate the problems of the tuning of 
the step size that affects the gradient methods. Experiments 
confirm the intrinsic capacity of adaptation of N-PGPE to 
changes in the transition or reward model. However this ad­
vantage comes to the price of double sampling for obtaining an 
unbiased estimate of the Newton direction. Other techniques 
have been presented in literature in order to overcome this 
difficulty, e.g., two timescale algorithms. It will be interesting 
to analyze the applicability of such methods to the estimation 
of the Newton direction. 

Finally, since the estimation of the Hessian matrix is known 
to be tough [12], we think that will be interesting to investigate 
Quasi- or modified Newton solution concepts. The former 
aims to provide robust optimization algorithms that leverage 
on the theoretical properties of the Hessian, the latter removes 
the problem of computing the Hessian by using an approxi­
mation based on change in the gradient between iterations. 
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