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ABSTRACT 

 

Bacterial Contamination in Public ATAC-Seq Data and Alignment-Free Detection 
Methods 

Drake Aesoph 

 

ATAC-seq is a new high-throughput sequencing technology for measuring chromatin accessibility 

within genomic samples. It can be used to discover new information about open regions, 

nucleosome positions, transcription factor binding sites, and DNA methylation. It is especially 

useful when combined with other next-generation sequencing techniques, such as RNA-seq. 

Unlike previous technologies, however, ATAC-seq is more sensitive to bacterial contamination, 

which is a well-known problem in cell cultures that can lead to incorrect experimental results. 

Previous studies have measured the contamination in public RNA-seq data and found that 5%-

10% of samples were contaminated. In this report, we investigate the prevalence of contamination 

in ATAC-seq samples, rather than RNA-seq data, uploaded to the Sequence Read Archive using 

two popular alignment-based tools: Bowtie 2 and Kraken 2. We then develop an alignment-free 

method of detection using machine learning and a novel method of estimating DNA fragment 

lengths from paired-end ATAC-seq data. Our results show that around 5% of ATAC-seq samples 

are contaminated and our machine learning method is able to correctly classify 97% of samples as 

contaminated or not while using less computational resources than the alignment-based tools. 

Thus, our method shows promise as a preliminary rapid screening tool for contamination in labs 

with limited access huge to computational resources.
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Chapter 1: Introduction 
The first and arguably most important first step in working with data is verifying the quality 

of the data. Without this crucial step, any conclusions or discoveries made from analyses of the 

data may be completely invalid and pointless. Bioinformatics is a new and rapidly developing 

field, with hundreds of terabytes of data being produced from thousands of experiments through 

next generation sequencing (NGS). This data is often made publicly available for other researchers 

to freely reanalyze in new and interesting ways in their own research. One of the ways scientists 

publicly share their sequencing data is through the sequencing read archive (SRA) [1]. However, 

due to the incredibly high volume of data being uploaded to this service every day, quality control 

of the sequencing data relies on the lab that publishes the data. 

Recent studies found that reads originating from bacterial sources in next generation 

sequencing data are widespread in the public data landscape [2], [3], with some surveys estimating 

as much as 5% of RNA-seq samples are contaminated [4]. It has previously been shown how 

unwanted contaminants can invalidate experiments by altering results in unexpected ways, as 

described in [5]. Given the fact that new bioinformatics technologies are constantly being 

developed or improved upon, the scientific community has to continually develop new methods of 

fighting contamination. 

Previous studies on the prevalence of contamination in public data have only focused on 

RNA-seq, which made up the majority of data used in publications at the time. However, it is 

unclear if the pervasiveness of contamination in RNA-seq data also applies to newer technologies 

such as ATAC-seq, which may actually be more sensitive to contamination. We intend to perform 

a systematic scan for contamination on all available human ATAC-seq samples and compare 

results to existing scans on RNA-seq. 
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While scanning for contamination using current state of the art alignment-based tools, we 

found that they used a very large amount of computational resources. This was especially apparent 

given the extent of our study. Not all scientists have access to such high-performance 

computational resources. So, in order to help these scientists perform the crucial quality control 

step of checking for contamination on their own samples, we investigate an alignment-free method 

of contamination detection. 

The aims of this project are to 1) survey the prevalence of contamination in the SRA 

database and 2) develop an alignment-free method for a fast detection of bacterial contamination. 

 



3 
 

Chapter 2: Background and Literature Review 
2.1 The Genomic Landscape 

 DNA is an essential building block for all biology on earth. The DNA sequence consists 

of coding region for proteins which form the structure of our cells.  To control the transcription of 

certain regions of genomic DNA into protein, the promoter region of a gene and enhancers need 

to be accessible to transcriptional machinery known as the RNA Polymerases, a process referred 

to as epigenetic regulation [6], [7].  To measure and quantify the accessibility of these regions, a 

variety of epigenetic assays based on deep sequencing are currently available to profile genome-

wide landscape of chromatin accessibility including DNase-Seq, FAIRE-Seq, and ATAC-seq. 

2.2 ATAC-seq 

ATAC-seq (Assay for Transposase Chromatin) is a high-throughput sequencing 

technology developed to assay chromatin accessibility within genomes. Using ATAC-seq has 

facilitated the discovery of many features of the epigenetic landscape such as nucleosome positions 

and open regions. Compared to other methods, ATAC-seq is faster and more sensitive [8], [9]. 

ATAC-seq preferentially targets DNA sequences not protected by nucleosomes, for example 

active promoters, enhancers and mitochondrial DNAs. Also because of this feature, it is more 

sensitive to bacterial contaminants on the host cell or culture media [4]. 

2.3 Bacterial Contaminants in NGS 

There are many steps and materials involved in cell culture, and each one is a potential 

source of contamination. In response to an infection by an external source, a cell may alter its 

internal state, leading to differential gene expression and confounding experimental results. The 

cell is also then competing for resources with any bacteria that may be attempting to grow 

alongside it. Since bacterial contamination is not an uncommon phenomenon in cell culture, 
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existing literature has addressed its prevalence and introduce both molecular and computational 

tools for contamination detection [10], [11]. 

2.4 Prior Work on Computational Detection of Contamination 

In [12], the authors discuss the presence of mycoplasma contamination via a survey of 

NCBI’s RNA-seq archive which included 9395 samples from both rodents and primates. At the 

time, they found that 11% of the samples were contaminated. They then generated a generalized 

model and discovered 61 genes which were statistically associated with the mycoplasma-mapped 

read counts. The limitations of their paper, however, is that they only focused on RNA-seq libraries 

from cell cultures and only checked for mycoplasma, no other bacteria were considered. The 

majority of the RNA-Seq data targets messenger RNAs via polyA enrichment or ribosomal RNA 

depletion. Bacteria RNAs do not have polyA tails and most of the reads that map to mycoplasma 

are the very abundant ribosomal RNAs that escape the polyA enrichment. 

 In [4], the authors present a method for investigating the genomic origins of sequenced 

reads and perform a large-scale analysis of public NGS samples. The key contribution of this paper 

is their method to report reads as being “unique-species-hit” or “multi-species-hit” to distinguish 

reads that could not be assigned a single source species of origin. To get a representative sample 

of the contamination landscape in public data, they downloaded and used their method to scan 

human RNA-seq datasets from ENCODE and Illumina. They determined around 5% of 432 RNA-

seq samples were infected with mycoplasma. The paper included experimental data to support that 

ATAC-seq is more sensitive than RNA-Seq to report mycoplasma contamination. However, they 

did not address this question systematically by surveying public ATAC-seq libraries.  
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2.5 Current Tools and Services for Bacterial Detection 

 Over the years, there have been several tools developed to aid in the detection of 

contamination in NGS data. It is necessary for different tools to be developed as the technology 

producing NGS data is ever-evolving. New iterations of a procedure may change how or what the 

underlying data represents, which will make it incompatible with currently available tools. 

2.5.1 OpenContami 

 OpenContami [13] is a web-based application for detecting microbial contaminants by 

authors from the same group as [4]. It offers several features to the research community:  

1. User-friendly interface that allows users to upload their own data for analysis by 

the OpenContami pipeline. 

2. The user can optionally open or close records to the public domain. 

3. Results from users and public databases are continuously incorporated and used as 

a reference for future assessments. 

However, there are several limitations to this service. First, they require the user to process 

their data to produce a BAM file that includes host-unmapped reads and then manually determine 

and input the number of host-mapped reads to the service. The processing pipeline itself, while 

extremely thorough and in-depth, is also a very computationally expensive task and could not be 

run in a reasonable amount of time locally on most computers. Thus, it demands a supercomputer 

to host the server. Most of the samples analyzed by this site are RNA-seq data. As of the time of 

this writing, only 15 ATAC-seq samples have been processed and are included.  

2.5.2 Kraken 2 

Kraken 2 [14] is a tool for assigning taxonomic labels to sequencing reads. It is an updated 

form of the original Kraken [15] with much lower memory usage and better performance. It is 
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more similar to BLAST than other alignment tools because it is designed to classify reads from 

many species using a pre-built multi-specie database. The standard database most widely used with 

Kraken 2 includes the complete genomes for the bacterial, archaeal, and viral domains. The output 

of Kraken 2 is a report consisting of one line per input read, each with five fields: 

1. One letter code indicating the sequence was either classified or not. 

2. The sequence ID. 

3. The classified taxonomy ID. 

4. Length of the sequence in base-pairs. 

5. Space-delimited list indicating the LCA (lowest common ancestor) mapping of each k-mer 

in the sequence. 

Kraken 2 can convert these reports into sample-wide results for a human-readable summary 

of the taxonic makeup of individual samples. This summary includes information on the 

percentage of fragments covered by each taxon down to the species level [16]. Although Kraken 

2 has made major improvements in memory, disk space, and speed usage, it still requires a 

relatively high memory footprint as well as a CPU-intensive preprocessing step to construct the 

required database. 
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Chapter 3: Methods 

3.1 Data acquisition 

ATAC-seq data was downloaded from the sequencing read archive (SRA) [1] using NCBI 

tools [17]. To compile a list of all currently available ATAC-seq projects, we used a table provided 

by the ChIP-Atlas project [18]. ChIP-Atlas is a data mining suite for chromatin 

immunoprecipitation sequencing (ChIP‐seq) and DNase‐seq data, of which ATAC-seq is a part of. 

Single-cell ATAC and other project types were excluded before downloading. To save storage 

space, only 100,000 reads were downloaded for each run to serve as a representative sample. Due 

to data formatting issues, we started from the 10,000th read [19]. Runs were discarded from further 

analysis if they did not contain at least 100,000 reads. 

3.2 Alignment-based methods of contamination detection 

For determining the sources of contamination within each sample, we used both Bowtie 2 

[20] and Kraken 2 [14] to compare different approaches. Bowtie2 is commonly used for epigenetic 

sequencing analysis, while Kraken is preferentially used for metagenome analysis. 

3.2.1 Using Bowtie 2 

For Bowtie 2, whole genomes for several bacterial genera were downloaded using ncbi-

genome-download and compiled into an index using bowtie2-build. Some of the genera we 

included were: Acinetobacter, Alistipes, Anaerostipes, Clostridium, Mycoplasma, and 

Stenotrophomonas.  For each sample, we used the --un parameter to filter out reads mapping to 

the host species (hg38), vectors, and Escherichia coli, which is commonly used to synthesize 

proteins including the Tn5 enzyme used by ATAC-seq. See Figure 1 for a flowchart diagram of 

the alignment filtering process. Additional Bowtie 2 parameters used were --local, -X 1000, --no-
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mixed, --no-discordant, and --dovetail. We then recorded the percentage of fragments aligned to 

each bacterial index. If we found a sample had reads that could not be aligned to any species, we 

used SSAKE and NCBI BLAST to discover the origin species of those reads and added the genus 

to our Bowtie2 index collection for future scans. 

 

Figure 1 - Bowtie 2 contamination pipeline flowchart 

3.2.2 NCBI BLAST to Discover Novel Sources of Contamination 

 The Basic Alignment Search Tool (BLAST) is a bioinformatics resource for searching and 

aligning sequences hosted by the National Center for Biotechnology (NCBI). After inputting a 

source sequence, BLAST searches it against NCBI’s database of nucleotide or protein sequences 

to determine the source organism or vector [21]. It then provides a detailed report on the statistical 

likelihood of possible sources for each input sequence. We used SSAKE [22] to assemble 

sequences for BLASTing. 
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 The purpose of utilizing SSAKE and BLAST was to discover the source species of reads 

that could not be assigned using our current collection of Bowtie 2 indexes. We used the following 

pipeline to determine what species to add to our collection of genera to scan for: 

1. Filter out reads from known sources (hg38, vectors, current list of bacterial sources). 

2. Use SSAKE to reconstruct genomic sequences from the leftover reads of unknown origin. 

3. BLAST the reconstructed sequence. 

4. Inspect the report from BLAST for each sequence. If a sequence shows a statistically 

significant chance (E Value < 10-6) of being from an unaccounted-for bacterial species, 

then we add the index for its genera to our list. 

Species discovered using this method are Staphylococcus Aureus, Ralstonia Solanacearum, 

Bos Mutus, and Cervus Elaphus.   

3.2.3 Using Kraken 2 

To use Kraken 2, we downloaded and built the standard database, which includes the 

complete genomes for bacterial, archaeal, and viral domains, along with the human genome and a 

collection of known vector sequences. Kraken 2 was run on each sample and the final report was 

saved for further processing and analysis. 

3.3 Our alignment-free, machine learning-based method 

 One active and interesting field of study is alignment-free analysis of NGS data. As we 

found when using Bowtie 2, aligning short-reads to a reference genome can be quite costly in terms 

of processing time and storage space, so finding ways to gain valuable information about 

sequencing data while skipping the alignment step would be a great way to improve the 

computational efficiency of our research. 
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 For this report we devised a method to estimate the percentage of reads in a sample 

originating from the bacterial domain. The basis for our method is the fact that ATAC-seq data 

from human cells shows a particular pattern in the distribution of the length of DNA fragments. 

This is due to the presence of chromatin -DNA wrapping around nucleosome composed of histone 

proteins- in eukaryote but not in bacteria. 

 

Figure 2 - ATAC-seq fragment length distributions 

Figure 2 shows that ATAC-seq fragments mapped to human and mycoplasma are 

distinctive in fragment size distribution. On the left is the average distribution of fragment sizes 

from reads mapped to the human genome for all 20,000 samples. The graph on the right is the 

average distribution of fragment sizes from reads mapped to Mycoplasma. 

Although the distributions are quite similar, there are two differences that we can use to 

distinguish them from each other. The first difference is the local maximum peak in the human 

plot at around 200bp (base pairs) and another at around 400bp. These peaks are caused by 

nucleosomes, which are structures made up of DNA coiling around a core of histones. Each coil 

is approximately 146bp long and connected by 80bp long linker DNA regions. In ATAC-seq, the 

hyperactive transposase Tn5 is more likely to slice the DNA somewhere within the linker DNA 
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region, resulting in a peak every 200 base pairs [23]. On the other hand, bacteria do not have 

nucleosomes, so this pattern does not appear in its distribution. 

The second difference is that the human fragment lengths have a distinct 10.5bp sine wave 

pattern. This is due to the natural twisting structure of the DNA causing base pairs facing away 

from the nucleosome to be more exposed and therefore more likely to be sliced. As mentioned 

previously, bacteria do not have nucleosomes so this phenomenon does not occur. 

 To make use of these distinctive differences, we can use our novel method of estimating 

the lengths of DNA fragments in paired FASTQ files and build a classification or regression 

machine learning model to detect contamination. This would give us a method of scanning samples 

for bacterial contamination without doing alignment, which would be much more efficient. The 

input to our model is constructed by first using our method to estimate all the fragment lengths 

from a sample and then applying the normalization procedure described in section 3.3.2, giving us 

a final array of 60 elements, which is then used as input to the machine learning model. See Figure 

3 for a flowchart diagram of the process. For the classification model, the output is an indication 

if the sample is predicted to be more than 20% contaminated. For our regression model, the output 

is a value between 0 and 100 that represents the percentage of reads that originated from bacterial 

sources. For training, we used the percentage reported under the bacterial domain from Kraken 2, 

as that is currently the most accurate tool available. 
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Figure 3 - Machine learning contamination pipeline flowchart 

 3.3.1 Estimating fragment length distribution via pattern matching 

 In order to understand how to estimate fragment lengths from ATAC-seq data without 

aligning to a reference genome, we must first introduce the structure in which the data is stored. 

ATAC-seq sequencing data is commonly stored in the pair-end FASTQ format. This format was 

invented in the early 2000’s at the Wellcome Trust Sanger Institute by Jim Mullikin [24]. Each 

FASTQ file is made up of many records called a “read”. Each read contains 4 lines of information: 

1. A sequence identifier with information pertaining to the run or sample. This is non-standard 

and provides different information depending on how the FASTQ file was generated. 

2. The sequence (a string of A, C, T, and G in ASCII). 



13 
 

3. A separator line, which starts with a ‘+’ character. This line may optionally provide more 

information about the sequence or comments. 

4. The base call quality scores. These are encoded characters paired with the sequence that 

show the quality of each base-pair in the sequence. 

Additionally, most ATAC-seq samples are “paired-end”, meaning that nucleotide sequences 

were read from both ends of the DNA fragment and stored in paired FASTQ files. Read 1 starts at 

the 5’ end of the DNA strand and extends towards the 3’ end along the forward DNA strand. Read 

2 starts at the 3’ end of the DNA strand and extends towards the 5’ end along the reverse DNA 

strand [25]. These reads are stored in separate FASTQ files where the filename matches either 

Database_RunID_[12].fastq following the sequence read archive format or 

SampleName_SampleNumber_Lane_R[12]_FlowCellIndex.fastq.gz following the Illumina-style 

format [26]. By finding the overlap between the paired reads we are able to estimate the original 

length of the DNA fragment from which that read came from (Figure 4). 

 

 

Figure 4 - Illustration of estimation of DNA fragment length 
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Figure 4 is an illustration of how the estimation algorithm works for an example DNA 

fragment. R1 has been shifted over to show the overlapping sequence pattern. To calculate the 

total length of the fragment in base pairs, add the lengths of R1 and R2 together and subtract the 

length of the overlapping region. In this example, |R1| = |R2| = 22 and |overlap| = 10, so the length 

of the fragment is 34. The sequence for R2 has already been translated to its reverse complement 

for this example. 

In brief, our algorithm is based on simple pattern searching except we report a match when 

we are able to match until the end of the text, not until the end of the pattern like in most pattern 

searching problems. We also require a minimum overlap length of at least 15 base pairs to prevent 

falsely reporting a length in the rare case where sequences overlap purely by chance. A description 

of the naïve algorithm follows: 

Input: 
R1 = read 1, a string of the letters ACTG representing the sequence 
R2 = read 2 

1. L = length(R1) 
2. Frag_length = 0 
3. i = 0 
4. shift=0 
5. found=false 
6. while (shift < L – 15 & !found) 
7. { 
8. while (R1[i] == R2[i + shift] & i + shift < L) 
9. { 
10. i = i+1 
11. } 
12. if (i + shift == L) 
13. { 
14. found = true 
15. break 
16. } 
17. shift = shift+1 
18. if (found) 
19. Frag_length = L + shift 
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20. return Frag_length 
After applying this algorithm, we can obtain a fairly accurate estimate size of the fragments 

where the length is greater than L but less than 2*L-15. Of course, this algorithm can be improved 

by utilizing known pattern searching techniques such as the KMP method. 

3.3.2 Normalizing Distribution Frequency via FFT 

 As stated previously, our algorithm can only estimate the size of the fragments whose 

length are less than 2*L-15 but greater than or equal to L. The issue with this is that ATAC-seq 

libraries have different read lengths due to differences in protocol or sequencing machine used. So 

for example, if one library has a read length of L=51 for all runs, then we can only estimate the 

lengths for fragments in the range [51, 86]. Whereas for a different library with a read length of 

L=76, we can make estimates in the range [76,136].  In order to increase similarity and 

comparability between libraries, after calculating the distribution I, we shift each element in the 

array to the left L times so that the minimum length for each library is always 0. We then remove 

reads greater than 120bp and apply a Fourier transform to I. 

The rationale behind using this transformation is that the shape of the distribution is more 

important for the model to learn and not the actual values. Specifically, we need the machine 

learning model to recognize the 10.5bp periodicity sine wave pattern due to the twisting structure 

of DNA, see Figure 8. After applying the shift, the sine wave will be out of phase when comparing 

libraries with different read lengths, which could make recognizing that pattern more difficult for 

a neural network. Applying the Fourier transform and taking only the real coefficients effectively 

removes the phase information and calculates the magnitude of the 10.5bp pattern for us, which is 

less pronounced in bacteria, see Figure 2. Also recall earlier we mentioned that the shape of the 

distribution is different for bacterial reads due to nucleosomes. See Figure 5 for an example 
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fragment length distribution before and after this transformation. Despite this library having a 

small read length, we can still note the higher energy around the 11th and 12th coefficients in the 

frequency domain graph, which corresponds to the magnitude of the 10.5bp pattern. 

 

Figure 5 - Example fragment length distribution 

3.3.4 Deep learning architecture 

 In order to develop a simple neural netwsork model that can estimate the overall level of 

contamination in future ATAC-seq samples, I used the Keras [27] and sklearn [28] python 

packages. I chose these tools as they provide convenient high-level interfaces to a multitude of 

common machine learning and artificial intelligence procedures. 
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 I experimented with several different architectures, activation functions, dropout rate, 

losses, and optimizers. I found that large, wide architectures would quickly overfit to the training 

data and would not perform well on the testing data for performance assessment. This is possibly 

due to having a rather limited number of samples to use for training, especially contaminated 

samples. To help the neural network learn the more abstract features of the data and prevent it 

from simply memorizing the input data, I used a smaller neural network. 

The architecture I eventually settled on is the following: 

1) Input layer with a shape of 61x1. It has only 61 features because after limiting the range 

of fragment lengths to 120 and computing the discrete Fourier transform the results include 

both positive and negative-frequency terms. In our case, the negative-frequency terms are 

just inverted copies of the positive-frequency terms and provide no information, so are 

discarded. 

2) Dense layer with 64 nodes activated via the standard ReLU function: max(x, 0). 

3) 4 Dense layers with 128 nodes each also using the ReLU function. 

4) Dense layer with 64 nodes, this time using a sigmoid activation function: 

1 / (1 + exp(-x)). 

5) Output layer with a single node. 

3.3.5 Training & Validation: Regression 

For training, I reserved 30% of the samples for testing and 70% for training. I used the 

Adam optimizer algorithm, [29] which is a computationally efficient extension to stochastic 

gradient descent that works well with noisy data [30]. The rationale is that the data we are working 

with was generated in real-world lab conditions using differing protocols. To compute the loss 

during training and testing, I used the mean squared error loss function. The mean squared error 
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loss function computes the mean of squares of errors between labels and predictions using the 

formula 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1   where Y represents the true values and Ŷ represents the 

predicted values from the neural network. 

3.3.6 Training & Validation: Classification 

 For training the classification model, we defined all samples with >20% of reads 

originating from bacterial sources according to Kraken 2 as being contaminated. We used a similar 

model as in the previous section, except using binary cross entropy as our loss function and binary 

accuracy as a metric for monitoring. After training several of these models, we saw that although 

the accuracy was reported to be greater than 95%, it would sometimes completely misclassify all 

the contaminated samples. This was because our dataset was heavily imbalanced and we needed 

to find a method to mitigate this issue. 

 To force our model to be more sensitive to contaminated samples, we used a method known 

as naïve random over-sampling implemented in the imbalanced-learn python library [31]. This 

method generates new samples by randomly sampling from the currently available samples. Using 

this, we were able to generate a new dataset where the distribution between the contaminated and 

non-contaminated samples was the same. This greatly increased the model’s accuracy in 

identifying the contaminated samples, while introducing some false positives, which we 

considered to be more acceptable than false negatives for our specific use case. 

All models were saved using Kera’s model.save function and the correlation between the 

predicted contamination values from the model and actual values were inspected using Matplotlib, 

see Figure 9 [32].  



19 
 

Chapter 4: Results 
 In this section we summarize our findings on the prevalence of contamination found in the 

SRA database and the accuracy of our method for estimating fragment lengths from raw ATAC-

seq FASTQ files, as well as the results from our machine learning models.  

4.1 Prevalence of Contamination in SRA Database 

 After downloading each run stored in the SRA database and performing a systematic scan 

of bacterial contaminants via the 2 different alignment-based methods, we found that between 3-

5% of the 20,000 samples have over 20% of their reads possibly originating from bacterial sources. 

Kraken 2 reports 4.8% of the samples pass this contamination threshold, while Bowtie 2 reports 

3.5%. Figure 7 shows the top 10 sources of contamination for each tool.

 

Figure 6 - Percentage of Human Reads That Also Map to Bacteria 
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 Figure 6 shows why we chose a threshold of 20% to mark a sample as contaminated. Due 

to the nature of genetics, there is expected to be some overlap in the DNA sequences of bacteria 

and humans. To determine the amount of overlap, we first filtered all the samples to only reads we 

could map to human, and then scanned those reads for bacterial contamination using Kraken 2. 

The majority of samples showed 0% of their reads as possibly originating from the bacterial 

domain, but there were some outliers that still reported up to 20%. 

 

 

Figure 7 - Top sources of contamination 
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As expected, the most common source of contamination originates from the order 

Mycoplasmatales, of which Mesomycoplasma is a genus of. On the other hand, we were surprised 

that out of the top sources, the only other one in common between the two tools were 

Stenotrophomonas. A possible explanation for this is that Kraken 2 has a much larger and more 

complete database of bacterial genera, as well as the mutual exclusion feature mentioned 

previously. 

4.2 Performance of Fragment Length Estimation Algorithm 

  

  
Figure 8 - Hierarchical clustering heatmap of estimated fragment length distributions 

 Figure 8 is a hierarchical clustered heatmap showing the fragment length distribution for 

two ATAC-seq studies. Each row is a separate sample, and each column is a fragment length. The 
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color intensity at each point is represents how many fragments from a sample has a specific length. 

The minimum length in this figure is 120 and the maximum is 280.  

As you can see, a regular 10.5bp periodicity is visible in the fragment size distributions. 

This pattern is caused by the pitch of the DNA strands exposing certain regions more readily to 

the hyperactive transposase Tn5 while wrapping around a nucleosome [23]. Also visible in Figure 

8 is the difference in the minimum and maximum estimable fragment lengths for two different 

studies.  
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4.3 Performance of Neural Network Model 
4.3.1 Regression Accuracy 

After our experiments with different architectures, loss functions, and sampling methods, 

the best mean squared error we could achieve was MSE = 30. 

 

Figure 9 - Scatter plot of actual vs predicted contaminated values 

Figure 9 is a scatter plot of the actual contaminated values on the x-axis and the predicted 

values on the y-axis. The red line shows the hypothetical ideal regression line (a perfect one to one 

correlation between the two values), the further away a point is from this line, the greater the error.  

Due to the relatively low accuracy of our regression model, but signs that there is some 

correlation, we hypothesized that accuracy and usability may be improved if we restated our goal 
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as a classification problem. For example, labelling a sample with greater than 20% of its reads as 

“contaminated” and training a model to classify a sample as either contaminated or not may 

perform better than trying to predict exact percentages. 

4.3.2 Classification Accuracy 

 Preliminary classification results looked much better than our attempt at regression, with a 

reported accuracy of 95%. However, this number was misleading, as it was simply labelling all 

samples as “not contaminated”, which made up the majority of the dataset. To teach the model to 

be more sensitive to contamination we used naïve random oversampling to handle the data 

imbalance problem. This introduced a few false positives, but greatly improved its ability to 

identify contamination, as seen in the confusion matrix shown in Figure 10. The result is a 97.07% 

overall accuracy in classifying the samples, see Table 1. 

Table 1 - Classification model statistics 
 

precision recall f1-score 
FALSE 0.98 0.99 0.98 
TRUE 0.79 0.68 0.73 
accuracy 

  
0.97 

macro avg 0.88 0.83 0.86 
weighted avg 0.97 0.97 0.97 
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Figure 10 - Confusion matrix 

4.4 Speed and Memory Usage  

 To measure the performance of each of the approaches, we used the GNU time utility. We 

ran each tool 3 times using the same samples for each and calculated the averages for each tool. 

Table 2 - Single sample performance statistics 

Tool User time System time Elapsed "Wall clock" time Maximum memory usage (kb) 
Bowtie 2 29.58 2.86 00:32.9 3,777,493 
Kraken 2 0.67 2.24 00:03.0 39,552,625 
our_method 19.30 7.03 00:14.5 454,269 

 Table 2 shows the time and memory results from running each of the three tools on a single 

ATAC-seq sample, with no parallelization or multi-threading enabled. We found that Kraken 2 
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was the fastest by an order of magnitude and used about 40GB of memory. Bowtie 2 was much 

slower and used 3.6GB. Our machine learning method was slower than Kraken 2, but faster than 

Bowtie 2 while using only 0.4GB. Due to the lower memory requirements of our tool, we 

hypothesized that it may be more conducive to parallelization than the others. 

Table 3 - 200 Sample Multi-Threaded Performance 

Tool User time System time Elapsed "Wall clock" time Maximum memory size (kb) 
Bowtie 2 26401.20 8271.75 11:09.3 16,805,203 
Kraken 2 339.97 556.92 00:45.1 53,591,052 
our_method 4343.20 60.83 01:36.8 419,117 

Table 3 shows the results from running each tool on 200 samples in parallel. To efficiently 

utilize available cores and file I/O, we tuned the number of threads and parallel instances of each 

program. For Bowtie 2, we used 8 threads per process and ran 8 alignment jobs in parallel. 

Additionally, we used the --mm option to load the indexes into shared memory that can be used 

by each instance, reducing loading times and decreasing overall memory usage. For Kraken 2, we 

used 4 threads and ran 16 processes in parallel. Kraken 2 also provides a --memory-mapping 

option, which we utilized. Since our method for estimating fragment lengths is only single-

threaded, we ran 64 of them in parallel, compiled an array of the completed results, and ran the 

prediction model only once on the final array. This idea proved quite effective at optimizing 

parallel performance, as our method shows a 29X speedup when run in parallel, compared to a 

13X speedup for Kraken 2 or a 9.5X speedup for Bowtie 2. Speedup is defined as the ratio of serial 

execution time to parallel execution time [33]. 

All tests were performed on a computer with 2 Xeon Gold 6242 CPUs @ 2.8GHz and 

512GB of RAM, 64 cores in total. 
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Chapter 5: Conclusion & Discussion 
5.1 Discussion 

In this research, we perform a systematic scan on human ATAC-seq samples publicly 

available from the SRA database and find around 5% of the samples contain traces of bacterial 

contamination, mainly originating from mycoplasma. This implies the proportion and source of 

contamination in public ATAC-seq data parallels previous reports pertaining to public RNA-seq 

samples [2], [12]. Since samples are uploaded as-is to SRA, the task of quality control falls upon 

the researchers who wish to utilize this vast resource of experimental data. This can lead to the 

pollution of public databases and waste the time of future researchers who draw false results from 

the contaminated data [34]. 

To explore the current state of the available tools for quality control, we compare several 

common alignment-based methods of contamination detection, namely Bowtie 2 and Kraken 2. In 

the interest of researching alignment-free methods of analysis of genomic sequences, we train a 

neural network to detect contaminated samples based on the sample’s distribution of DNA 

fragment lengths. Our model achieves an accuracy of 97% and uses an order of magnitude less 

memory than current state of the art alignment methods. 

Upon completion of the Bowtie 2 pipeline, we have implemented it as a key quality control 

step in our lab. It has been used to scan over 1,000 samples sent to us by collaborators before we 

begin further data analysis. 

The code for this project is available on GitHub: https://github.com/Hu-sLab/Bacterial-

Contamination-in-ATAC-seq  

https://github.com/Hu-sLab/Bacterial-Contamination-in-ATAC-seq
https://github.com/Hu-sLab/Bacterial-Contamination-in-ATAC-seq
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5.2 Limitations of This Work 

The main limitation of this work is that we purposefully limited our scope to human ATAC-

seq samples. The contamination landscape may be quite varied for different organisms. For 

example, cells collected from experimental mice without culture would be less likely exposed to 

mycoplasma. Future work could include data from single-cell ATAC-seq experiments, which is 

an even newer technology that requires some specialized processing. 

A limitation of our machine learning model is that our dataset is rather small and 

unbalanced for efficient and accurate training, given that there are far less contaminated samples 

than normal samples. Future work may look into utilizing more sophisticated forms of synthetic 

data generation or data augmentation techniques to help mitigate this issue. Our fragment length 

estimation approach may also be able to be combined with other alignment-free analyses methods 

such as k-mer frequency. 
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