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Abstract 
Modeling and Optimization of a Novel Chilled Ammonia 
Absorption Process and Amine-Appended Metal-Organic 

Frameworks for CO2 Capture 
 

Ryan Hughes 

 

Post-combustion capture is one of the leading technologies for CO2 abatement from 

anthropogenic sources which have contributed significantly to the rise of atmospheric 

greenhouse gases [1]. Specifically, solvent-based capture post-combustion processes are the 

industry standard but can suffer drawbacks such as high energy penalties and corrosion. In this 

work, two possible improvements are investigated which have been recently proposed in the 

literature. The first is aqueous ammonia as a capture solvent which has been shown to have 

several advantages including, but not limited to, a lower regeneration energy [2]. The second is a 

novel solid sorbent, an amine-appended metal-organic framework (MOF). The MOF exhibits 

several promising attributes, namely, a step-shaped adsorption isotherm which leads to lower 

working capacities and lower regeneration energies when compared to traditional solid sorbents 

[3]. The overall goal of this work is to develop rigorous mathematical models which can be used 

for process design and economic evaluation of these technologies. 

First, an integrated mass transfer model is developed for the chilled ammonia process (CAP). 

This model is developed using a simultaneous regression approach that has been recently 

proposed in the literature with parameter estimation performed using data from a pilot plant 

source and wetted-wall column. The optimally estimated parameters are shown to have a lower 

prediction error to validation data than parameters found in literature. The integrated mass 

transfer model is then used to develop a model for a novel chilled ammonia process. The process 

includes a NH3 abatement system which utilizes a reverse osmosis membrane to aid in separation 

and reduce the energy penalty. Simulation of the process shows that the membrane can 

significantly reduce the energy requirement of the reboiler, condenser, and cooler in the 



 
 

abatement section. Uncertainty of the estimated mass transfer parameters is quantified using a 

fully Bayesian approach which is demonstrated to show a significant reduction in the prediction 

uncertainty of key process indicators.  

Second, isotherm and kinetic models are developed for amine-appended MOFs, dmpn-

Mg2(dobpdc) and Mg2(dobpdc)(3-4-3). The step-shaped adsorption isotherms exhibited by these 

MOFs present a modeling challenge since many of the traditional isotherm models are unable to 

capture step transitions. Three isotherm models are examined in this work, a weighted dual-site 

Langmuir model found in literature, a dual-site Sips model developed in this work, and an 

extended weighted Langmuir model also developed in this work. Parameter estimation is 

performed using available isotherm data and it is shown that the models are able to predict the 

CO2 adsorption data well. A kinetic model is then developed using a linear driving force for 

mass transfer which does an excellent job at predicting time dependent TGA data. An additional 

goal of this work is development of a chemistry-based model for functionalized solid sorbents 

that aims to capture the underlying adsorption reaction mechanisms which are not typically 

considered in solid sorbent modeling. As part of this model, optimal reaction set selection is 

performed since the reaction pathways for dmpn-Mg2(dobpdc) are still relatively unknown. 

Parameter estimation is performed, and it is found that the chemistry-based model significantly 

outperforms the Sips isotherm model with regards to prediction error and other model building 

criteria. To aid in the evaluation of the commercial feasibility of the MOF, equation-oriented 

mathematical models for a fixed bed contactor and moving bed contactor are developed. The 

contactors are then to simulate industrial scale CO2 capture process for coal based and NGCC 

based flue gas. Using developed cost models, techno-economic analysis and optimization of 

these processes is then performed and it is found that efficient thermal management can make 

these MOFs viable alternatives for CO2 capture processes. 

 



iv 
 

Acknowledgements 
 

First, I would like to specifically thank my family for their support. To my mom and dad, for 

their love and encouragement throughout my entire life. To my wife Abbey, for her love and for 

being by my side throughout this journey. To my best friends Dax and Ellie, for keeping me 

company while working from home and reminding me to actually go outside and take them on a 

walk. 

I would also like to extend my deepest gratitude to my advisor Dr. Debangsu Bhattacharyya. I 

am thankful he believed in me and gave me the opportunity to continue my education. His 

insight, attention to detail, and thoroughness amazes me, and it has been a pleasure to learn from 

him. 

I am thankful for my committee members Dr. Fernando Lima, Dr. Jianli Hu, Dr. David Mebane, 

and Dr. Benjamin Omell for their knowledge and allowing me to present my research to them. I 

would also like to thank Michael Matuszewski for his ideas and support in my research. I would 

like to mention the group at Lawrence Berkeley National Laboratory for their support and 

discussion of amine-appended MOFs.  

I would also like to take the time to mention and thank my friends, colleagues, and staff in the 

Chemical and Biomedical Engineering Department at West Virginia University. I would like to 

mention Goutham Kotamreddy for his help and insight during my research, especially when it 

came time to troubleshoot Aspen simulations. The rest of Dr. Bhattacharyya’s research group 

have also been helpful to my research, especially Josh Morgan, Anderson Chinen, and Eli 

Hedrick.  

I would like to acknowledge the financial support from the CCSI2 program funded through the 

U.S. DOE (contract# 379419). 

 

  



v 
 

Table of Contents 

Cover ................................................................................................................................................ i 
Abstract .......................................................................................................................................... iv 
Acknowledgements ........................................................................................................................ iv 
Table of Contents ............................................................................................................................ v 
List of Figures ............................................................................................................................... vii 
List of Tables ................................................................................................................................ xii 
1. Introduction ............................................................................................................................. 1 

1.1. Aqueous Ammonia ........................................................................................................... 1 
1.2. Amine-appended Metal-organic Frameworks .................................................................. 2 
1.3. Research Objectives ......................................................................................................... 3 

2. Development of a Chilled Ammonia Absorption Process....................................................... 5 
2.1. Introduction ...................................................................................................................... 5 
2.2. Modeling of a NH3-CO2-H2O Absorption System ........................................................... 8 
2.3. Integrated Mass Transfer Model .................................................................................... 10 
2.4. Chilled Ammonia Absorption Process ........................................................................... 19 
2.5. Uncertainty Quantification ............................................................................................. 27 
2.6. Conclusions .................................................................................................................... 35 

3. Isotherm and Kinetic Models for dmpn–Mg2(dobpdc) and Mg2(dobpdc)(3-4-3) ................. 37 
3.1. Introduction .................................................................................................................... 37 
3.2. Isotherm Model Development ........................................................................................ 39 
3.3. Kinetic Model Development .......................................................................................... 48 
3.4. Conclusions .................................................................................................................... 50 

4. Chemistry-based Modeling for Functionalized Solid Sorbents ............................................. 51 
4.1. Introduction .................................................................................................................... 51 
4.2. Chemistry Model Equations ........................................................................................... 54 
4.3. Reaction Set Selection and Parameter Estimation ......................................................... 60 
4.4. Results ............................................................................................................................ 63 
4.5. Conclusions .................................................................................................................... 71 

5. Fixed Bed Contactor Modeling ............................................................................................. 73 
5.1. Introduction .................................................................................................................... 73 
5.2. Fixed Bed Modeling Equations ...................................................................................... 74 



vi 
 

5.3. Fixed Bed Model Validation and Parameter Estimation ................................................ 82 
5.4. Thermal Management Studies ........................................................................................ 86 
5.5. Conclusions .................................................................................................................... 88 

6. Moving Bed Contactor Modeling .......................................................................................... 90 
6.1. Introduction .................................................................................................................... 90 
6.2. Moving Bed Modeling Equations .................................................................................. 92 
6.3. Modeling Results............................................................................................................ 97 
6.4. Conclusions .................................................................................................................. 102 

7. Techno-economic Analysis and Optimization of Amine-Appended MOF Capture Processes ....... 103 
7.1. Analysis of dmpn-Mg2(dobpdc) for Coal-based Capture ............................................ 103 

7.1.1. Cost Model ............................................................................................................ 104 
7.1.2. Fixed Bed TSA Process ........................................................................................ 105 
7.1.3. Moving Bed TSA Process ..................................................................................... 119 

7.2. Analysis of Mg2(dobpdc)(3-4-3) for NGCC-based Capture ........................................ 137 
7.2.1. Cost Model ............................................................................................................ 137 
7.2.2. Fixed Bed TSA Process ........................................................................................ 139 
7.2.3. Conclusions ........................................................................................................... 150 

8. Final Remarks and Future Work ......................................................................................... 152 
Appendix ..................................................................................................................................... 156 

Appendix A: CAP Process Modeling ..................................................................................... 156 
Appendix B: Isotherm and Kinetic Modeling of dmpn-Mg2(dobpdc) ................................... 162 
Appendix C: Chemistry-based Modeling for Functionalized Solid Sorbents ........................ 167 
Appendix D: Contactor and Process Modeling ...................................................................... 168 
Appendix E: Presentations and Publications .......................................................................... 171 

References ................................................................................................................................... 174 

 

  



vii 
 

List of Figures 
Figure 2.1: Model performance using regressed parameters obtained from the WLS estimator vs. 
experimental data for (top) packed absorber columns [14] and (bottom) WWC [2] .................... 18 
Figure 2.2: Simplified process flow diagram for the base case CAP ........................................... 19 
Figure 2.3: Simplified process flow diagram for the CAP with membrane-assisted NH3 
abatement section .......................................................................................................................... 24 
Figure 2.4: Sensitivity of membrane H2O removal to required membrane area and energy 
requirement of the NH3 stripper reboiler ...................................................................................... 25 
Figure 2.5: Retentate mole fraction varying along the normalized length (0 = feed flow inlet) of 
the membrane ................................................................................................................................ 25 
Figure 2.6: Impact of membrane H2O removal on the energy requirements of the NH3 abatement 
system ........................................................................................................................................... 26 
Figure 2.7: UQ methodology flow diagram .................................................................................. 29 
Figure 2.8: MARS response surface validation using 10-fold cross validation (R2=0.98). (Left) 
Error histogram and (Right) parity plot comparing CO2 capture predictions ............................... 30 
Figure 2.9: Single parameter marginal probability density functions for prior and posterior 
distributions................................................................................................................................... 31 
Figure 2.10: Two-parameter prior (left) and posterior (right) probability distributions ............... 32 
Figure 2.11: Comparison of stochastic model generated using posteriors to experimental data. 
Experimental data presented with error bars representing ±1 standard deviation included in 
reporting of the data [14]. ............................................................................................................. 33 
Figure 2.12: Probability density function of CO2 capture percentage for operating conditions 
corresponding to experimental test ID 30 (Table A.1) ................................................................. 33 
Figure 2.13: Stochastic model results for energy requirements [MJ/kg CO2] of important 
equipment in the membrane-assisted CAP process generated using the posteriors. Results also 
generated considering 60% membrane water removal. 95% Confidence Intervals: [2.88 ≤ CO2 
Stripper Reboiler ≤ 2.99], [1.00 ≤ NH3 Stripper Reboiler ≤ 1.07], [2.44 ≤ CO2 Lean Solvent 
Chiller ≤ 2.55] ............................................................................................................................... 34 
Figure 3.1: Experimental CO2 adsorption isotherms for dmpn–Mg2(dobpdc) at the indicated 
temperatures (colored symbols) and fits (colored lines) using a dual-site Sips isotherm model 
(upper) and a weighted dual-site Langmuir isotherm model (lower). .......................................... 45 
Figure 3.2: Model validation results for the dual-site Sips model (upper) and weighted dual-site 
Langmuir model (lower). Experimental CO2 adsorption data for dmpn–Mg2(dobpdc) at 80 and 
90 °C are shown as colored symbols and fits to the data are shown as colored lines................... 45 
Figure 3.3: Experimental CO2 adsorption isotherms for Mg2(dobpdc)(3-4-3) at the indicated 
temperatures (colored symbols) and fits (colored lines) using the extended weighted Langmuir 
model............................................................................................................................................. 47 
Figure 3.4: Experimental data for time-dependent CO2 adsorption in dmpn−Mg2(dobdc) (colored 
symbols) and fits obtained using the linear driving force kinetic model (RMSE = 0.025). ......... 49 



viii 
 

Figure 4.1: Structure of ammonium carbamate chains (a) and mixed product of carbamate and 
carbamic acid (b). Carbamate chain formation shown using generic diamine and dmpn-
Mg2(dobpdc) shown in mixed structure figure [30]. .................................................................... 56 
Figure 4.2: Integer sensitivity results for model selection. AIC for varying combinations of chain 
formation reactions. Minimal AIC (-3418) is at N=2, M=1 (red bar). .......................................... 63 
Figure 4.3: Parameter estimation results for N=2 and M=1 for linear pressure scale (left) and 
logarithmic pressure scale (right). Symbols represent experimental data and lines represent 
model prediction. .......................................................................................................................... 65 
Figure 4.4: Optimal chemistry model (N=2, M=1) prediction of validation data. Symbols 
represent experimental data and lines represent model prediction. .............................................. 66 
Figure 4.5: Chemistry model heat of adsorption as a function of loading and temperature. ........ 67 
Figure 4.6: Loadings [mol/kg] of the species present in the optimal chemistry model (N=2, M=1). 
Left) Unreacted diamine (Am). Right) Adsorbed phase free CO2 (𝐶𝐶𝐶𝐶2 ∗). .................................. 68 
Figure 4.7: Prediction of chemisorbed CO2 loading and chemisorbed product distribution. Top) 
Total chemisorbed CO2 loading. Dashed line represents the maximum achievable loading 
(𝑄𝑄𝑄𝑄𝑄𝑄). Bottom) Fraction of chemisorbed CO2 contained in cooperatively adsorbed species B. 69 

Figure 4.8: Left) Prediction of physisorbed CO2 loading and right) fraction of total loading which 
is physisorbed................................................................................................................................ 71 
Figure 5.1: Diagram of a fixed bed reactor ................................................................................... 76 
Figure 5.2: Comparison of breakthrough model prediction (black trace) and experimental 
breakthrough data (blue trace). The normalized outlet concentration, C/C0, represents the 
concentration of gas phase CO2 exiting the bed relative to gas phase CO2 entering the bed (root 
mean squared error = 0.051). ........................................................................................................ 84 
Figure 5.3: Fit of the Mg2(dobpdc)(3-4-3) heat of adsorption surrogate model. Open circles 
represent fitting data and solid line represents model prediction. ................................................ 84 
Figure 5.4: Comparison of Mg2(dobpdc)(3-4-3) breakthrough model prediction (black trace) and 
experimental breakthrough data (blue trace). The normalized outlet concentration, F/F0, 
represents the concentration of gas phase CO2 exiting the bed relative to gas phase CO2 entering 
the bed. .......................................................................................................................................... 86 
Figure 5.5: Modeled breakthrough curves for isothermal and adiabatic case studies discussed in 
the text. The normalized outlet concentration C/C0 represents the concentration of gas phase CO2 
exiting the bed relative to gas phase CO2 entering the bed. Vertical lines correspond to the 
breakthrough times for each scenario. .......................................................................................... 87 
Figure 5.6: Dynamic loading (upper) and temperature (lower) profiles at the entrance, middle, 
and exit of the bed for the adiabatic case study. ........................................................................... 88 
Figure 6.1: Diagram of a moving bed reactor (Kim et al., 2016) [85] ......................................... 92 
Figure 6.2: Adsorber steady-state response to a 50% decrease in solids flow. z/L represents the 
normalized length of the bed with 0 corresponding to the bottom of the bed. ............................. 99 



ix 
 

Figure 6.3: Desorber steady-state response to a +/-50% change in solids flow. z/L represents the 
normalized length of the bed with 0 corresponding to the bottom of the bed. ............................. 99 
Figure 6.4: Adsorber lean loading input disturbance. ................................................................. 100 
Figure 6.5: Dynamic adsorber response of instantaneous CO2 capture (left) and rich CO2 loading 
(right). ......................................................................................................................................... 100 
Figure 6.6: Desorber rich solids temperature input disturbance. ................................................ 101 
Figure 6.7: Dynamic desorber response of lean CO2 loading (left) and gas phase CO2 mole 
fraction of the exit gas (right). .................................................................................................... 101 
Figure 7.1: Configuration steps for the basic TSA process (upper) and the modified TSA process 
(lower). ........................................................................................................................................ 107 
Figure 7.2: Simplified diagram of the parallel bed configuration used in modeling the basic TSA 
cycle. A process that uses n beds is shown, with dashed lines representing the possibility of 
introducing more beds................................................................................................................. 107 
Figure 7.3: Equivalent annual operating cost (EAOC) versus flue gas residence time for the basic 
dmpn-Mg2(dobpdc) TSA process (upper) and the modified dmpn-Mg2(dobpdc) TSA process 
(lower). Different colored data points indicate cost variations resulting from changing the bed 
temperature and flue gas temperature at the beginning of the adsorption step. The horizontal line 
in both plots represents the EAOC for the state-of-the-art MEA system as discussed in the text.
..................................................................................................................................................... 110 
Figure 7.4: Profiles for breakthrough time vs. residence time for the modified TSA process and 
basic TSA process for dmpn-Mg2(dobpdc). ............................................................................... 111 
Figure 7.5: Basic dmpn-Mg2(dobpdc) fixed bed TSA dynamic profiles .................................... 112 
Figure 7.6: Modified dmpn-Mg2(dobpdc) fixed bed TSA dynamic profiles .............................. 113 
Figure 7.7: EAOC versus flue gas residence time for the basic dmpn-Mg2(dobpdc) TSA process 
(red) and modified dmpn-Mg2(dobpdc) TSA process (black) assuming 35% practical heat 
recovery (upper) and 85% heat recovery (lower). The horizontal line represents the EAOC for 
the state-of-the-art MEA system. ................................................................................................ 115 
Figure 7.8: EAOC versus flue gas residence time for varying costs of MOF particles ($/kg) of the 
modified process with practical heat recovery. ........................................................................... 116 
Figure 7.9: Temperature and loading axial profiles at the end of the adsorption step for the basic 
and modified TSA processes. ..................................................................................................... 118 
Figure 7.10: Moving bed TSA process ....................................................................................... 121 
Figure 7.11: Moving bed EAOC versus lean sorbent loading. ................................................... 122 
Figure 7.12: Moving Bed EAOC versus lean sorbent loading for 85% heat recovery between 
lean/rich sorbent stream. ............................................................................................................. 123 
Figure 7.13: Capital cost uncertainty effect on moving bed EAOC. The base case (solid blue 
line) corresponds to a lean solids temperature of 25 °C and 85% heat recovery........................ 124 
Figure 7.14: Moving bed EAOC versus lean sorbent loading for high pressure adsorber scenarios 
at 25°C lean sorbent temperature. ............................................................................................... 125 



x 
 

Figure 7.15: Effect of MOF particle cost uncertainty on moving bed process economics ......... 126 
Figure 7.16: Moving bed optimization results for varying MOF price and lifespan .................. 130 
Figure 7.17: Adsorber Moving Bed Profile Plots. Top) Gas phase CO2 mole fraction. Middle) 
Solids phase CO2 loading. Bottom) Temperature profiles for gas phase, solid phase, heat transfer 
fluid, and tube wall. X axis is normalized axial distance along the reactor with 0 being the 
bottom of the moving bed and 1 being the top. .......................................................................... 132 
Figure 7.18: Desorber Moving Bed Profile Plots. Top) Gas phase CO2 mole fraction. Middle) 
Solids phase CO2 loading. Bottom) Temperature profiles for gas phase, solid phase, heat transfer 
fluid, and tube wall. .................................................................................................................... 132 
Figure 7.19: Capital cost uncertainty analysis for optimal Version 2 moving bed cases. Dashed 
lines represent a +/- 50% change in capital costs ....................................................................... 134 
Figure 7.20: Configuration and steps of the TSA process for the Mg2(dobpdc)(3-4-3) ............. 140 
Figure 7.21: Simplified diagram of the Mg2(dobpdc)(3-4-3) TSA capture process. .................. 141 
Figure 7.22: Simplified diagram for Mg2(dobpdc)(3-4-3) optimization framework .................. 142 
Figure 7.23: Mg2(dobpdc)(3-4-3) Fixed Bed TSA Optimization Results: Costing Breakdown 144 
Figure 7.24: Impact of heat recovery for Mg2(dobpdc)(3-4-3) TSA Process. MEA value taken 
from Du et. al. [121] and NETL report value taken from James et. al. [119]. ........................... 145 
Figure 7.25: Sensitivity of Mg2(dobpdc)(3-4-3) TSA economics to MOF price. MEA value taken 
from Du et. al. [121] and NETL report value taken from James et. al. [119]. ........................... 146 
Figure 7.26: High Temperature Optimization Results for Mg2(dobpdc)(3-4-3) TSA Process: 
Costing Breakdown ..................................................................................................................... 148 
Figure 7.27: Heat recovery sensitivity for high temperature Mg2(dobpdc)(3-4-3) TSA process. 
MEA value taken from Du et. al. [121] and NETL report value taken from James et. al. [119].
..................................................................................................................................................... 149 
Figure 7.28: MOF price sensitivity for high temperature Mg2(dobpdc)(3-4-3) TSA process. MEA 
value taken from Du et. al. [121] and NETL report value taken from James et. al. [119]. ........ 149 
Figure A.1: Model performance using regressed parameters obtained from Hampel’s estimator 
vs. experimental data for (left) packed absorber columns (Qi et al., 2013) and (right) WWC 
(Puxty et al., 2010)...................................................................................................................... 157 
Figure A.2: Model performance using regressed parameters obtained from Logistic estimator vs. 
experimental data for (left) packed absorber columns (Qi et al., 2013) and (right) WWC (Puxty 
et al., 2010) ................................................................................................................................. 157 
Figure A.3: Simplified diagram of the RO membrane ............................................................... 158 
Figure A.4: Residual Plots for the dual-site Sips isotherm model (left) and weighted dual-site 
Langmuir isotherm model (right). ............................................................................................... 166 
Figure A.5: Experimental CO2 adsorption isotherms for dmpn–Mg2(dobpdc) at the indicated 
temperatures (colored symbols) and fits using a dual-site Sips isotherm model (colored lines). 
Pressure is shown on a linear scale. The right plot shows an expanded view of the experimental 
and fit data at 100, 110, and 120 °C. ........................................................................................... 166 



xi 
 

Figure A.6: Experimental CO2 adsorption isotherms for dmpn–Mg2(dobpdc) at the indicated 
temperatures (colored symbols) and fits using a weighted dual-site Langmuir isotherm model 
(colored lines). Pressure is shown on a linear scale. The right plot shows an expanded view of the 
experimental and fit data at 100, 110, and 120 °C. ..................................................................... 167 
Figure A.7: Steady-state moving bed adsorber profiles for base case operating conditions. ..... 169 
Figure A.8: Steady-state moving bed desorber profiles for base case operating conditions. ..... 169 
Figure A.9: Surrogate model for Blower Equipment Costs. ....................................................... 170 
Figure A.10: Surrogate model for inlet flue gas compression work. .......................................... 171 

 
  



xii 
 

List of Tables 
Table 2.1: Operating conditions for pilot plant and WWC data sources ...................................... 15 
Table 2.2: Simultaneous regression results, parameter sets .......................................................... 17 
Table 2.3: CAP design specifications and operating conditions ................................................... 21 
Table 2.4: Base case simulation results ........................................................................................ 22 
Table 2.5: Base case energy requirements [MJ/kg CO2] .............................................................. 23 
Table 2.6: Regression confidence intervals of parameters included in the UQ framework ......... 29 
Table 3.1: Fit parameters determined using the weighted dual-site Langmuir model for CO2 
adsorption in dmpn–Mg2(dobpdc). ............................................................................................... 46 
Table 3.2: Fit parameters determined using the dual-site Sips model for CO2 adsorption in 
dmpn–Mg2(dobpdc) ...................................................................................................................... 46 
Table 3.3: Root mean squared errors determined for the dual-site Sips and weighted dual-site 
Langmuir model fits. ..................................................................................................................... 46 
Table 3.4: Fit parameters determined using the extended weighted Langmuir model for CO2 
adsorption in Mg2(dobpdc)(3-4-3). ............................................................................................... 47 
Table 3.5: Fitted parameters for linear driving force kinetic model ............................................. 49 
Table 4.1: Estimated parameters for N=2 and M=1 ...................................................................... 65 
Table 4.2: Comparison of chain length estimations for varying MOFs and methods. ................. 70 
Table 5.1: dmpn-Mg2(dobpdc) fixed bed reactor model constants ............................................... 82 
Table 5.2: Mg2(dobpdc)(3-4-3) fixed bed reactor model constants .............................................. 82 
Table 5.3: Experimental breakthrough conditions used to collect data to validate the dmpn-
Mg2(dobpdc) fixed bed model. ..................................................................................................... 83 
Table 5.4: Estimated parameters for Mg2(dobpdc)(3-4-3) heat of adsorption surrogate model. .. 85 
Table 5.5: Experimental breakthrough conditions used to collect data to validate the 
Mg2(dobpdc)(3-4-3) fixed bed model. .......................................................................................... 85 
Table 5.6: Mg2(dobpdc)(3-4-3) fixed bed parameter estimation results ....................................... 86 
Table 5.7: Process conditions for thermal management case studies. .......................................... 88 
Table 6.1: Base case design and operating conditions for moving bed modeling studies ............ 98 
Table 7.1: Utility prices used in dmpn-Mg2(dobpdc) costing model .......................................... 105 
Table 7.2: Important variables for the fixed bed TSA process configuration. ........................... 109 
Table 7.3: Breakdown of step times and number of beds of the optimal scenarios for the basic 
and modified dmpn-Mg2(dobpdc) TSA processes. ..................................................................... 112 
Table 7.4: Breakdown of contributing costs to the equivalent annual operating cost 
($Million/year) of the optimal scenarios for the basic and modified dmpn-Mg2(dobpdc) TSA 
processes. .................................................................................................................................... 113 



xiii 
 

Table 7.5: Breakdown of contributing costs to the EAOC ($Million/year) for the heat recoveries 
considered in this work. Cases presented correspond to the optimal scenarios for the basic and 
modified TSA processes. ............................................................................................................ 115 
Table 7.6: Best case EAOC ($Million/year) breakdown for best moving bed cases with different 
heat recoveries. ........................................................................................................................... 123 
Table 7.7: EAOC ($Million/year) breakdown for optimal high-pressure cases with different heat 
recoveries. ................................................................................................................................... 125 
Table 7.8: Reactor breakdown for the best moving bed cases with different adsorber pressures
..................................................................................................................................................... 125 
Table 7.9: MOF price and particle lifespan for moving bed optimization cases ........................ 129 
Table 7.10: Moving bed optimization results for each particle cost uncertainty case. ............... 131 
Table 7.11: Cost breakdown [$million/year] for each moving bed optimization case. .............. 131 
Table 7.12: EAOC values for varying MOF capture processes, lifespans, and prices. .............. 135 
Table 7.13: Utility prices used in Mg2(dobpdc)(3-4-3) costing model ....................................... 139 
Table 7.14: Mg2(dobpdc)(3-4-3) Fixed Bed TSA Optimization Results: Decision Variables ... 143 
Table 7.15: Mg2(dobpdc)(3-4-3) Fixed Bed TSA Optimization Results: Costing Variables ..... 144 
Table 7.16: High Temperature Optimization Results for Mg2(dobpdc)(3-4-3) TSA Process: 
Decision Variables ...................................................................................................................... 147 
Table 7.17: High Temperature Optimization Results for Mg2(dobpdc)(3-4-3) TSA Process: 
Costing Variables ........................................................................................................................ 148 
Table A.1: Pilot plant regression and validation cases (Data from Qi et al., 2013) ................... 156 
Table A.2: Hydrated ionic radius ................................................................................................ 160 
Table A.3: Solute permeability constants ................................................................................... 161 
Table A.4: Fit of traditional isotherms to dmpn-Mg2(dobpdc) data ........................................... 162 
Table A.5: Reaction Set Selection Results ................................................................................. 167 

  



1 
 

1. Introduction 
 

The Intergovernmental Panel on Climate Change report states increasing greenhouse gas levels 

in the atmosphere have played a key role in the upward trend of the earth’s average temperature 

over the last century [1]. The report also states that emissions from anthropogenic sources have 

played the largest part of these increasing gas levels with CO2 emissions from fossil fuel burning 

power plants accounting for nearly 80% of the increase [1]. To reduce CO2 emissions, post-

combustion capture (PCC) of CO2 is one of the leading technologies since these systems can be 

retrofitted to existing plants without major changes to the process [2,4]. Typically, CO2 from a 

flue gas source is absorbed using aqueous chemical solvents at near ambient conditions and then 

regenerated to create a stream of high purity CO2 [5]. Monoethanolamine (MEA) is the most 

common solvent for PCC and while it has excellent steady-state [6] and dynamic performance 

[7], it can invoke a high energy penalty. In this research two potential PCC processes- one using 

an aqueous chilled ammonia solvent and another using a functionalized metal organic framework 

(MOF) solid sorbent being developed by UC, Berkeley will be investigated.  

 

1.1. Aqueous Ammonia 
 

Aqueous ammonia is an alternative solvent with advantages including lower energy requirements 

for regeneration, high CO2 loading, and absence of oxidative degradation which can cause 

corrosion for solvents like MEA [2,8]. However, one key disadvantage of aqueous ammonia is 

the high volatility which results in ammonia slip from the absorber. Two typical methods, 

pursued separately and concurrently, are operating the absorber at low temperatures to reduce 

vapor pressure and inclusion of a water wash section to recover solvent after the absorber. The 

low temperature process is known as the chilled ammonia process (CAP). The CAP technology 

has been studied through several lab scale tests, pilot plant trials, and model evaluation [2,9–16]. 

There are also several studies on the water wash method focusing on NH3 abatement and 

recycling [17–20]. 
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Both the CAP and water wash methods can lead to a total process energy requirement larger than 

that of CO2 regeneration in traditional MEA systems [18,19]. Chilling the system to very low 

operating temperatures does not only lead to a large energy penalty, but it leads to higher capital 

cost. In addition, there is also possibility of solids formation that can cause an increase in the 

viscosity causing higher pressure drop and in the worst case, solids precipitation leading to 

transport problems. A collaborated study between General Electric (earlier Alstom Power) and 

the U.S. Department of Energy focused on the use of a reverse osmosis membrane to aid in the 

separation of the ammonia from the wash water in a CAP configuration [21]. The study 

mentioned the possible advantages of a membrane present in the abatement section, but the 

results are not public.  

 

1.2. Amine-appended Metal-organic Frameworks 
 

Another alternative to chemical solvents that is being investigated for PCC is the use of solid 

sorbents. Specifically, porous coordination solids known as metal–organic frameworks (MOFs) 

have emerged as promising candidates for carbon capture [22–24]. Composed of metal ions or 

clusters connected via organic linkers, these materials possess large internal surface areas and 

highly tunable pore structures and surface chemistries. In particular, it has been shown by the 

researchers at UC, Berkeley that appending alkyldiamines at the open metal sites in the 

framework Mg2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) results in 

powerful new adsorbents for CO2 capture under a range of conditions relevant to coal [3,25–27] 

and natural gas flue gas [28,29]. These amine-appended MOFs exhibit much higher working 

capacities than traditional adsorbents and have the potential to exhibit lower regeneration 

energies than both leading amine-based solvents and traditional adsorbents as a result of their 

step-shaped CO2 adsorption. This unique behavior arises due to an unprecedented mechanism 

wherein CO2 inserts into the metal amine bond to form chains of ammonium carbamate [25] or 

carbamic acid [30] pairs that propagate down the framework channels. Accordingly, negligible 

CO2 uptake occurs until a certain threshold pressure or temperature (under isothermal or isobaric 

conditions, respectively), beyond which point the material exhibits a sharp increase in gas uptake 

until it is nearly saturated with CO2. In addition to this unprecedented adsorption behavior, these 
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diamine-appended MOFs exhibit excellent long-term stability and maintain affinity for CO2 

under humid conditions, both desirable attributes for CO2 capture [26]. Importantly, it is possible 

to tune the CO2 adsorption step pressure or temperature simply by changing the structure of the 

appended diamine [27]. Many of the diamine-appended frameworks studied to date exhibit a low 

step pressures around 1 mbar of CO2, however, and this strong adsorption can result in high 

regeneration temperatures [3]. Recently, the framework dmpn–Mg2(dobpdc) (dmpn = 2,2-

dimethyl-1,3-diaminopropane) was found to exhibit step-shaped adsorption at ~15 mbar CO2 and 

40 °C and nearly complete desorption at 100 °C as well as extended cycling stability under 

humid conditions. These properties render dmpn–Mg2(dobpdc) a promising candidate for CO2 

capture from pulverized coal fired power plants. Additionally, a novel tetraamine-appended 

MOF, Mg2(dobpdc)(3-4-3), has been presented and identified as a candidate for PCC from 

NGCC power plants in part due to characteristics such as CO2 adsorption capacity for 

concentrations as low as parts per million and remarkable stability under conditions relevant for 

NGCC flue gas capture [29]. Notably, this class of tetraamine-appended MOFs exhibit a two-

step adsorption isotherm which is theorized to be due to a cooperative adsorption mechanism 

which forms ammonium-carbamate chains. 

 

1.3. Research Objectives 
 

The objectives of this research are focused on modeling support for carbon capture systems. The 

main focuses of the research can be separated into two parts: application of new model 

development techniques to an ammonia absorption system and model development for a novel 

amine-appended metal organic framework. To accomplish the objectives of this work, Aspen 

Plus, Aspen Custom Modeler (ACM), Matlab, The Framework for Optimization, Quantification 

of Uncertainty, and Surrogates (FOQUS), and Python/Pyomo are the main 

modeling/optimization platforms used. The main objectives are as follows: 

• Development of a novel chilled ammonia absorption process using a simultaneous regression 

approach 

• Uncertainty quantification of the chilled ammonia process 
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• Development of isotherm and kinetic models for dmpn-Mg2(dobpdc) and        

Mg2(dobpdc)(3-4-3) 

• Development of a chemistry-based model for functionalized solid sorbents with application 

to dmpn-Mg2(dobpdc) 

• Development of fixed bed contactor models for dmpn-Mg2(dobpdc) and Mg2(dobpdc)(3-4-3) 

• Development of a moving bed contactor model for dmpn-Mg2(dobpdc) 

• Techno-economic analysis of coal-based capture processes for dmpn-Mg2(dobpdc) using 

fixed bed and moving bed contactors 

• Techno-economic analysis of a NGCC-based capture process for Mg2(dobpdc)(3-4-3) using 

fixed bed contactors  
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2. Development of a Chilled Ammonia Absorption 

Process 
 

In this chapter, a rigorous, rate-based model for a chilled ammonia CO2 absorption process is 

developed and presented. Mass transfer and kinetic reaction parameters are optimally estimated 

using a simultaneous regression approach which incorporates wetted wall column and pilot plant 

data. A model of a membrane-assisted chilled ammonia process was developed for reducing the 

energy penalty in the NH3 abatement section where a reverse osmosis membrane is used to aid in 

the separation of ammonia from the wash water. A fully Bayesian approach is used for 

quantifying the uncertainty of the selected parameters. Forward uncertainty quantification is then 

used to investigate how the uncertainty in the selected parameters affects key performance 

indicators. 

 

The contents of this Chapter are published in the following peer-reviewed journal article: 

Hughes, R.; Kotamreddy, G.; Bhattacharyya, D.; Omell, B.; Matuszewski, M. Modeling and 
Bayesian Uncertainty Quantification of a Membrane-Assisted Chilled Ammonia Process for CO2 
Capture. Ind. Eng. Chem. Res. 2022, 61 (11), 4001–4016. 
https://doi.org/10.1021/acs.iecr.1c04601. 
 

 

2.1. Introduction 
 

Experimental studies of CO2 in aqueous ammonia have been present since Pinsent et al. [31] 

studied the reaction kinetics of the system. They present kinetic model parameters which are still 

used by the majority of modeling studies found in literature today. Recently, experimental work 

of multiple scales has been focused on evaluating ammonia specifically as a PCC solvent. Puxty 

et al. [2] perform wetted wall column (WWC) experiments to study the CO2 absorption rate into 

aqueous ammonia, and Qi et al. [14], Yu et al. [16], and Li et al. [17] present pilot plant scale 

data for a PCC plant using aqueous ammonia. 

https://doi.org/10.1021/acs.iecr.1c04601
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Numerous modeling studies focusing on ammonia as a PCC solvent are also present in the 

literature. Que and Chen[32] develop an electrolyte-NRTL thermodynamic model by regressing 

parameters using vapor-liquid equilibrium (VLE) data, heat capacity data, speciation data, and 

solubility data for the NH3-CO2-H2O system over various temperature ranges. This electrolyte-

NRTL model is available as a built-in library model in Aspen Plus. Other sources focus on rate-

based process modeling of an ammonia absorption system which are generally more accurate 

when compared to equilibrium-based models for reactive absorption processes [10,13,14,33]. 

However, these rate-based studies use generalized correlations and parameters for many of the 

mass transfer submodels that have been obtained for different type of liquid-gas system or 

different type of packing. Some of the authors of these studies show that these models can 

reasonably replicate experimental data [10,14,33], but such parameters are likely to be 

suboptimal since they strongly depend on the specific reactive absorption technology and 

packing type [34–36]. To the best of the author’s knowledge there is no paper in the open 

literature that has estimated both the liquid and gas side mass transfer coefficients as well as the 

interfacial area for a tower using CAP. In addition, typically the parameters are estimated for one 

specific sub-model at a time or sequentially one after another. However, such a sequential 

approach can lead to a sub-optimal set of parameters since both liquid and gas side mass transfer 

take place simultaneously with the chemical reactions for reactive solvent systems.  The typical 

approach to get around this problem is to use data from targeted experiments that try to capture 

the effect of the desired mechanism. Such experiments are conducted in wetted wall columns or 

packed towers in operating conditions to achieve the desired outcomes. Another approach is to 

‘trust’ parameters for one or more models while estimating the parameters of other models. Yet, 

another approach is to use the data from a nonreactive system to estimate the parameters for the 

mass transfer models. However, several limitations exist for these methods of a traditional 

sequential approach. One limitation is that the errors in estimates of the model parameters that 

are either directly taken from the literature or obtained from one step in the sequential approach 

gets propagated to the next step thus leading to the loss in the optimality. Another limitation is 

that the sequential approach assumes that the parameters estimated using the data from one scale, 

say the WWC, or one system, say the non-reactive system, are also the best estimate for other 

scales, say a packed tower. However, there are considerable differences in the operating regimes 

and characteristics between these scales or systems that cause differences in the hydrodynamics 
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and physical and chemical properties affecting the wettability, reactivity, and flow non-idealities.  

Therefore, a model and its parameters that can adequately capture the mass transfer 

characteristics of a surrogate system or can capture the physics at a given scale may not be 

optimal for the system at a different scale or for the true system at the same scale. A recent 

literature source has proposed a simultaneous parameter estimation approach where parameters 

for the kinetic and mass transfer model parameters are simultaneously estimated using data from 

multiple scales such from WWC, and packed beds of different sizes and configuration [37]. The 

parameter estimates from the simultaneous regression approach are optimal for the data from all 

spatial scales. The sequential estimates of parameters are optimal for the data from the specific 

spatial scale used for estimating those and therefore not necessarily optimal for the data from all 

spatial scales. In that paper, the approach when applied to an MEA system was found to be more 

predictive than the conventional sequential approaches. In this work, the simultaneous approach 

is extended to the CAP system. 

Uncertainty in model parameters is unavoidable so quantifying these uncertainties is desired for 

developing predictive models. When these parametric uncertainties are propagated through the 

process models, quantified uncertainties of the key performance measures can be obtained. This 

information is valuable for commercialization efforts supported by limited operational 

experience such as those for novel CO2 capture technologies. Previous work by some of the 

authors of this paper has focused on uncertainty quantification (UQ) of properties models [38], 

vapor-liquid equilibrium model [39], mass transfer and hydraulic models [37]. These parametric 

uncertainties when propagated through the process model led to superior prediction of the key 

performance measures such as the CO2 capture in the absorber, CO2 loading in the regenerator, 

and temperature profile in the absorber and stripper for a large-scale pilot plant in comparison to 

the deterministic model [6]. However, those papers have focused on MEA-H2O-CO2 systems. To 

the best of our knowledge, there is no work to date on uncertainty quantification for CAP 

systems in the open literature. Here we extend our previous approach and apply it to the CAP 

system.   

For Bayesian uncertainty quantification, a large number of samples needs to be drawn from the 

distributions of all uncertain parameters and then propagated through the sub-model/model. 

When there are a large number of uncertain model parameters and the sub-model/model is 
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complex such as those for the membrane-assisted CAP system, uncertainty propagation can be 

highly computationally expensive. For reducing the computational expense, typically a reduced 

model is used [6,37], but computational expense can remain prohibitive for especially large 

problems. If the sensitivity to a given parameter is low in the space of the experimental data, then 

the Bayesian inference yields little information about the uncertainty of that parameter. Thus, 

such parameters can be excluded from UQ without losing any value practically. 

 

2.2. Modeling of a NH3-CO2-H2O Absorption System 

2.2.1. Chemistry Modeling. The model is developed using Aspen Plus. The following reactions 

are included in the chemistry model of the NH3-CO2-H2O system in Aspen Plus:  

2𝐻𝐻2𝑂𝑂
𝐾𝐾𝑒𝑒𝑒𝑒,1
�⎯� 𝐻𝐻3𝑂𝑂+ + 𝑂𝑂𝐻𝐻− (2.1) 

𝑁𝑁𝐻𝐻3 + 𝐻𝐻2𝑂𝑂
𝐾𝐾𝑒𝑒𝑒𝑒,2
�⎯� 𝑁𝑁𝐻𝐻4+ + 𝑂𝑂𝐻𝐻− (2.2) 

𝐶𝐶𝑂𝑂2 + 2𝐻𝐻2𝑂𝑂
𝐾𝐾𝑒𝑒𝑒𝑒,3
�⎯� 𝐻𝐻3𝑂𝑂+ + 𝐻𝐻𝐻𝐻𝑂𝑂3− (2.3) 

𝑁𝑁𝐻𝐻3 + 𝐻𝐻𝐻𝐻𝑂𝑂3−
𝐾𝐾𝑒𝑒𝑒𝑒,4
�⎯� 𝐻𝐻2𝑂𝑂 + 𝑁𝑁𝐻𝐻2𝐶𝐶𝐶𝐶𝑂𝑂− (2.4) 

𝐻𝐻𝐻𝐻𝑂𝑂3− + 𝐻𝐻2𝑂𝑂
𝐾𝐾𝑒𝑒𝑒𝑒,5
�⎯� 𝐻𝐻3𝑂𝑂+ + 𝐶𝐶𝑂𝑂32− (2.5) 

𝑁𝑁𝐻𝐻4𝐻𝐻𝐻𝐻𝑂𝑂3(𝑠𝑠)
𝐾𝐾𝑒𝑒𝑒𝑒,6
�⎯� 𝑁𝑁𝐻𝐻4+ + 𝐻𝐻𝐻𝐻𝑂𝑂3− (2.6) 

 
Reaction (2.6) is included to account for the possibility of the precipitation of NH4HCO3 at low 

temperatures and high CO2 loadings. Aspen solids handling includes the solid species in the 

tower mass balance but its effect on transport equations or hydrodynamics is ignored. Several 

authors have determined equilibrium constants for reactions (2.1)-(2.6) by using the 

experimental data [13,14]. Que and Chen [32] compared the equilibrium constants obtained 

using the experimental data with those obtained by using the Gibbs free energy in the 

corresponding reactions and found that both approaches agree very well with each other. In this 

work, the equilibrium constants are calculated from the Gibbs free energy change of those 

reactions.  

The following reactions are included under ‘Reactions’ in the RadFrac model of ASPEN Plus:   
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𝐻𝐻3 + 𝐻𝐻2𝑂𝑂 ↔𝑁𝑁𝐻𝐻4+ + 𝑂𝑂𝐻𝐻− (R1) 

2𝐻𝐻2𝑂𝑂 ↔𝐻𝐻3𝑂𝑂+ + 𝑂𝑂𝐻𝐻− (R2) 

𝐻𝐻𝐻𝐻𝑂𝑂3− + 𝐻𝐻2𝑂𝑂 ↔𝐻𝐻3𝑂𝑂+ + 𝐶𝐶𝑂𝑂32− (R3) 

𝐶𝐶𝑂𝑂2 + 𝑂𝑂𝐻𝐻− → 𝐻𝐻𝐻𝐻𝑂𝑂3− (R4) 

𝐻𝐻𝐻𝐻𝑂𝑂3− → 𝐶𝐶𝑂𝑂2 + 𝑂𝑂𝐻𝐻− (R5) 

𝑁𝑁𝐻𝐻3 + 𝐶𝐶𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 → 𝐻𝐻2𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂− + 𝐻𝐻3𝑂𝑂+ (R6) 

𝐻𝐻2𝑁𝑁𝑁𝑁𝑁𝑁𝑂𝑂− + 𝐻𝐻3𝑂𝑂+ →  𝑁𝑁𝐻𝐻3 + 𝐶𝐶𝑂𝑂2 + 𝐻𝐻2𝑂𝑂 (R7) 

𝑁𝑁𝐻𝐻4𝐻𝐻𝐻𝐻𝑂𝑂3(𝑠𝑠) ↔𝑁𝑁𝐻𝐻4+ + 𝐻𝐻𝐻𝐻𝑂𝑂3− (R8) 

 
Reactions (R1)-(R3) are equilibrium reactions that were previously included in the chemistry 

model, reactions (R4)-(R7) are kinetically controlled reactions, and reaction R8 is salt 

precipitation which was also previously included in the chemistry model. For the kinetically 

controlled reactions, a general power law expression is used: 

𝑟𝑟 = 𝑘𝑘exp �−
𝐸𝐸
𝑅𝑅𝑅𝑅�

�𝐶𝐶𝑖𝑖
𝜈𝜈𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (2.7) 

 
The concentration basis used is molarity, and parameter values k and E are based of the work of 

Pinsent et al. [31]. 

2.2.2. Thermodynamic Modeling. For the VLE model, the electrolyte non-random two-liquid 

(eNRTL) model is used for the liquid phase while the perturbed chain-statistical associating fluid 

theory (PC-SAFT) is used for the vapor phase. The model parameters are taken from the work of 

Que and Chen [32]. The eNRTL model is used to calculate enthalpy and entropy departure for 

the non-ideal NH3-CO2-H2O system [13]. CO2, NH3, and N2 are assumed to follow the Henry’s 

law while H2O is assumed to follow the Raoult’s law for VLE calculations. Que and Chen [32] 

regress VLE model parameters using the VLE data, heat capacity data, speciation data, and 

solubility data for the NH3-CO2-H2O system over various temperature ranges. The model fit was 

found to be adequate and therefore no update to the VLE model parameters was made. The 

Clarke model is used to calculate the liquid molar volume, with regression done against 
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experimental data for the quadratic mixing rule parameter for NH3 and H2O [40]. Again, the 

model fit was found to be accurate, and no updates were made. 

2.2.3. Transport Properties. For liquid viscosity, the Jones-Dole model is used to calculate the 

corrected liquid viscosity for the NH3-CO2-H2O system. The Onsager-Samaras model is used to 

calculate liquid surface tension. The Riedel electrolyte correction model is used to calculate 

thermal conductivity, and the Nernst-Hartley model is used to calculate binary diffusivity [32]. 

The model fit was found to be adequate, and no updates were made.  

2.2.4. Mass Transfer Models. A rate-based tower model is used to simulate the absorber and 

wetted wall column. The rate-based model in Aspen Plus utilizes the two-film model. For the 

absorber model, the Billet and Schultes [41] correlation was used for mass transfer coefficients. 

The gas- and liquid-side mass transfer coefficient correlations are shown in Eqs. (2.8) and (2.9), 

respectively. The Tsai [42] model (Eq. (2.10)) was used for interfacial area calculation, and the 

Chilton-Colburn J-factor analogy [43] was used to model heat transfer. The Billet and Schultes 

correlation [41] as well as Chilton-Colburn [43] correlation are available in ASPEN Plus. The 

Tsai model [42] is implemented through a Fortran user model. The Billet and Schultes 

correlations and the Tsai model are considered for regression in the integrated mass transfer 

model. The WWC model was set up similar to the absorber model, but a fixed value is used for 

the interfacial area. A Fortran user model is used for this specification.  

𝑘𝑘𝐺𝐺 = 𝐷𝐷𝐺𝐺𝐶𝐶𝐺𝐺 �
𝑎𝑎
𝑑𝑑𝐻𝐻
�
0.5
𝑆𝑆𝑆𝑆0.333 �

𝑢𝑢𝐺𝐺𝜌𝜌𝐺𝐺
𝑎𝑎𝜇𝜇𝐺𝐺

�
0.75

�
1

𝜀𝜀 − ℎ𝐿𝐿
 (2.8) 

𝑘𝑘𝐿𝐿 = 𝐶𝐶𝐿𝐿 �
𝑔𝑔𝜌𝜌𝐿𝐿
𝜇𝜇𝐿𝐿

�
0.167

�
𝐷𝐷𝐿𝐿
𝑑𝑑𝐻𝐻
�
0.5

�
𝑢𝑢𝐿𝐿
𝑎𝑎
�
0.333

 (2.9) 

𝑎𝑎ℎ = 𝐴𝐴1 �
𝜌𝜌𝐿𝐿
𝜎𝜎
𝑔𝑔1 3� �

𝑢𝑢𝐿𝐿𝐴𝐴
𝐿𝐿𝑃𝑃

�
4
3�

�
𝐴𝐴2

 (2.10) 

 

2.3. Integrated Mass Transfer Model 
 
As previously mentioned, an integrated mass transfer model is developed using a simultaneous 

regression approach. Traditional approaches attempt to solve this problem sequentially by 
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estimating one set of parameters at a single scale and then applying them to the subsequent scales 

where estimation of additional parameters is performed. For example, applying mass transfer 

models fitted to WWC data to larger equipment types to estimate parameters for interfacial area. 

As stated earlier in this work, the goal of the simultaneous regression approach is to obtain 

parameter estimates which are better representative of the physics and chemistry over a large 

scale of operating regimes and therefore have better predictive capability. An important aspect of 

this approach is that the solution to the simultaneous regression approach may not result in a 

better fit to the experimental data used in regression, but it should never give a poorer fit than the 

model developed by the traditional regression approach. This is due to the parameters found by 

the sequential approach being present in the search space for the simultaneous optimization 

problem. Additionally, total estimation errors for a sequential approach and a simultaneous 

approach can be the same if the same data is used for regression in both cases. Therefore, the 

models developed from both approaches should be evaluated using their predictive capability to 

data that has not been used for model development in either approach. Simultaneous regression 

involves parameter estimation using data from multiple experimental scales and can be 

represented for n scales using Eq. (2.11). 

 
min

𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑛𝑛
�𝑦𝑦1,model − 𝑦𝑦1,exp�

′Σ−1�𝑦𝑦1,model − 𝑦𝑦1,exp�  

+  �𝑦𝑦2,model − 𝑦𝑦2,exp�
′Σ−1�𝑦𝑦2,model − 𝑦𝑦2,exp�  +   … 

+  �𝑦𝑦𝑛𝑛,model − 𝑦𝑦𝑛𝑛,exp�
′Σ−1�𝑦𝑦𝑛𝑛,model − 𝑦𝑦𝑛𝑛,exp� 

 

s.t. 

 

𝑓𝑓1(𝜂𝜂1,𝑢𝑢, 𝜃𝜃1) = 0 

𝑓𝑓2(𝜂𝜂2,𝑢𝑢, 𝜃𝜃1,𝜃𝜃2) = 0 

⋮ 

𝑓𝑓𝑛𝑛(𝜂𝜂𝑛𝑛,𝑢𝑢, 𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑛𝑛) = 0 

 

𝑔𝑔1(𝜂𝜂1,𝑢𝑢,𝜃𝜃1) ≤ 0 

𝑔𝑔2(𝜂𝜂2,𝑢𝑢,𝜃𝜃1,𝜃𝜃2) ≤ 0 

 

 

 

 

 

(2.11) 
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⋮ 

𝑔𝑔𝑛𝑛(𝜂𝜂𝑛𝑛,𝑢𝑢,𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) ≤ 0 

 

𝑦𝑦1 = ℎ1(𝜂𝜂1,𝑢𝑢) 

𝑦𝑦2 = ℎ2(𝜂𝜂2,𝑢𝑢) 

⋮ 

𝑦𝑦𝑛𝑛 = ℎ𝑛𝑛(𝜂𝜂𝑛𝑛,𝑢𝑢) 

 

min(𝑢𝑢L1,𝑢𝑢L2, … ,𝑢𝑢L𝑛𝑛) ≤ 𝑢𝑢 ≤ max(𝑢𝑢U1,𝑢𝑢U2, … ,𝑢𝑢U𝑛𝑛) 

 

𝑦𝑦L1 ≤ 𝑦𝑦1 ≤ 𝑦𝑦U1 

𝑦𝑦L2 ≤ 𝑦𝑦2 ≤ 𝑦𝑦U2 

⋮ 

𝑦𝑦L𝑛𝑛 ≤ 𝑦𝑦𝑛𝑛 ≤ 𝑦𝑦U𝑛𝑛 

 

 

 

 

(2.11 cont.) 

 

In Eq. (2.11),  𝑓𝑓 and 𝑔𝑔 represent equality constraints (mass balances, energy balances, etc.) and 

inequality constraints, respectively. y represents a measured variable with lower and upper 

bounds 𝑦𝑦𝐿𝐿 and 𝑦𝑦𝑈𝑈, u represents input variables bounded between 𝑢𝑢𝐿𝐿 and 𝑢𝑢𝑈𝑈, 𝜂𝜂 represents process 

variables, and 𝜃𝜃 represents model parameters to be estimated. For this work, n=2 and uses WWC 

and pilot plant data from available literature sources. 

An issue facing this work is that existing commercial process simulation software, such as Aspen 

Plus, cannot perform the simultaneous parameter estimation due to how the software is 

organized. For large experimental data sets, parameter estimation can also become 

computationally expensive and more than most process simulators can handle. To perform this 

simultaneous optimization problem, MATLAB is used for optimization by interfacing it with 

Aspen Plus for reading from and writing to the Aspen Plus model. The regression is done with 

data that can in general contain gross errors in laboratory, bench-scale, and pilot plant data. 

Presence of gross errors in the experimental data can contaminate the parameter estimates if 

generalized least squares estimates are used [44–47]. Thus, it is desired that the parameter 

estimates be robust to the uncertainties in the experimental data. Therefore, in addition to the 
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weighted least squares (WLS) estimate, two robust estimation approaches using Hampel’s 

redescending M-estimator and Logistic estimator are used. The general and respective objective 

functions are shown in Eqs. (2.12)-(2.15). The traditional WLS function is shown in Eq. (2.13), 

Hampel’s estimator is shown in Eq. (2.14), and the Logistic estimator is shown in Eq. (2.15). 

Hampel’s estimator is a piecewise function which remains constant at large values of the error 

function and renders the optimization insensitive to changes or improvements in the error 

function in this range. A similar phenomenon occurs for the Logistic estimator at large values of 

the error function. This error structure can be beneficial when data points that contain gross 

errors are essentially omitted from the optimization problem, but significant information can be 

lost if this occurs to data without gross error. Therefore, the adequateness of these parameter 

estimates should be evaluated using validation data not seen in the parameter estimation. Özyurt 

and Pike [48] give an in-depth look at the derivation and intricacies of these estimators. Tuning 

constants for the estimators are as follows; 𝑎𝑎𝐻𝐻=1.35, 𝑏𝑏𝐻𝐻=2.7, 𝑐𝑐𝐻𝐻=5.4, and 𝑐𝑐Lo=0.602 [48]. Each 

estimator is only a function of the error function, 𝜖𝜖𝑖𝑖, shown in Eqs. (2.16)-(2.17) for the absorber 

(corresponding to the pilot plant data) and WWC data, respectively. Since the derivative 

information is not available from Aspen plus, a derivative free approach is used in MATLAB for 

optimal parameter estimation. The problem is solved using the ‘fminsearch’ function in 

MATLAB which utilizes the Nelder-Mead algorithm [49].  

min   
1

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎
��E∗�𝜖𝜖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎��
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

𝑖𝑖=1

+
1

𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊
� �E∗�𝜖𝜖𝑖𝑖,𝑊𝑊𝑊𝑊𝑊𝑊��

𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊

𝑖𝑖=1

,       E∗∈�WLS, Hampel's, Logistic� (2.12) 

WLS(𝜖𝜖𝑖𝑖) = 
1
2
𝜖𝜖𝑖𝑖2 (2.13) 
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Hampel's(𝜖𝜖𝑖𝑖) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
2
𝜖𝜖𝑖𝑖2, 0 ≤ |𝜖𝜖𝑖𝑖| ≤ 𝑎𝑎𝐻𝐻

𝑎𝑎𝐻𝐻|𝜖𝜖𝑖𝑖| −
1
2
𝑎𝑎𝐻𝐻2,     𝑎𝑎𝐻𝐻 < |𝜖𝜖𝑖𝑖| ≤ 𝑏𝑏𝐻𝐻

𝑎𝑎𝐻𝐻𝑏𝑏𝐻𝐻 −
𝑎𝑎𝐻𝐻2

2
+ (𝑐𝑐𝐻𝐻 − 𝑏𝑏𝐻𝐻)

𝑎𝑎𝐻𝐻2

2
�1 − �

𝑐𝑐𝐻𝐻 − |𝜖𝜖𝑖𝑖|
𝑐𝑐𝐻𝐻 − 𝑏𝑏𝐻𝐻

�
2

� , 𝑏𝑏𝐻𝐻 < |𝜖𝜖𝑖𝑖| ≤ 𝑐𝑐𝐻𝐻

𝑎𝑎𝐻𝐻𝑏𝑏𝐻𝐻 −
𝑎𝑎𝐻𝐻2

2
+ (𝑐𝑐𝐻𝐻 − 𝑏𝑏𝐻𝐻)

𝑎𝑎𝐻𝐻2

2
, 𝑐𝑐𝐻𝐻 < |𝜖𝜖𝑖𝑖| ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.14) 

Logistic(𝜖𝜖𝑖𝑖) = 2ln�1 + exp �
𝜖𝜖𝑖𝑖
𝑐𝑐Lo

�� − �
𝜖𝜖𝑖𝑖
𝑐𝑐Lo

� (2.15) 

𝜖𝜖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎 =
Capture𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − Capture𝐶𝐶𝐶𝐶2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖

𝜎𝜎�𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖
 (2.16) 

𝜖𝜖𝑖𝑖,𝑊𝑊𝑊𝑊𝑊𝑊 =
ExitFlow𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − ExitFlow𝐶𝐶𝐶𝐶2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖

𝜎𝜎�𝑊𝑊𝑊𝑊𝑊𝑊,𝑖𝑖
 (2.17) 

 
More details and explanations on the development of the simultaneous regression approach can 

be found in Chinen et al. [37]. 

As previously mentioned, WWC data and pilot plant data available in the literature were used to 

develop the integrated mass transfer model. Australia’s Commonwealth Scientific and Industrial 

Research Organization (CSIRO) commissioned a post-combustion capture plant using aqueous 

NH3 at the Munmorah power station, with the goal of addressing the knowledge gap in the 

performance and operation of an ammonia solvent capture system [14,16,17]. The absorption 

section consists of two absorbers operated in series with intercooled semi-rich solvent. More 

information on the absorber towers and configuration used for modeling can be found in Qi et al. 

[14]. Experimental WWC data is taken from Puxty et al. [2]. Table 2.1 lists the range of 

operating conditions used in the experimental trials for both data sources. 
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Table 2.1: Operating conditions for pilot plant and WWC data sources 
Pilot Plant (Qi et al. [14]) Value Range 

Lean Solvent NH3 content [wt %] [1.9-5.8] 

Lean Solvent CO2 Loading [mol CO2/mol NH3] [0.22-0.41] 

Lean Solvent Flow Rate [L/min] [67-134] 

Flue Gas Flow Rate [kg/h] [632-916] 

Flue Gas CO2 content [vol %] [7.6-10.9] 

Rich Solvent CO2 Loading [mol CO2/mol NH3] [0.30-0.46] 

CO2 Capture Percentage [48.6-91.3] 

 WWC (Puxty et al. [2]) Value Range 

Lean Solvent NH3 content [wt %] [0.01-0.11] 

Lean Solvent CO2 Loading [mol CO2/mol NH3] [0.0-0.8] 

Lean Solvent Flow Rate [L/min] 0.220 

Gas Flow Rate [L/min] [3-5] 

Gas CO2 content [vol %] [0-19.7] 

 
A total of 14 pilot plant trials were considered in this work, 11 were used for regression and 3 

were used for model validation. Table A.1 in the Appendix lists which were used for regression 

and which were used for validation along with the operating conditions for each case. 

Reaction parameters (E and k) correspond to the reaction rate equation (Eq. (2.7)) for the 

kinetically controlled reactions (R4)-(R7) presented in Section 2.2. CL and CG are parameters for 

the mass transfer coefficient model (Eqs. (2.8) and (2.9)), and A1 and A2 are for the interfacial 

mass transfer area model (Eq. 2.10). Table 2.2 also provides a comparison of initial and 

estimated values using the simultaneous optimization approach for the three estimators used. All 

initial values were reported in the literature for the respective models. For every parameter set, 

objective function (Eq. 2.12) values calculated for each estimator are also calculated using the 

regression data and presented in Table 2.2. As expected, the objective function value for a 

specific estimator is minimized when that same estimator is considered in the optimization 

problem. For example, the minimum WLS objective function value of 9.31 corresponds to the 

parameter set that was obtained using a WLS estimator in the optimization problem. Similar 

results are seen for Hampel’s estimator and Logistic estimator. Table 2.2 also presents the root 
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mean square error (RMSE) for the model prediction to the 3 validation data points which is data 

that was not seen in the parameter estimation. The parameter set found using the WLS estimator 

shows a reduction in the RMSE of 10.3% when compared to the literature values. Parameter sets 

found using Hampel’s estimator and Logistic estimator show an increase in RMSE of 9.9% and 

4.6%, respectively. When comparing changes of the estimated parameter values, the WLS 

estimator also results in parameters that are much closer to the literature values than the other 

estimators as would be expected since the literature estimates were obtained using WLS. For the 

WLS estimator, parameters related to the mass transfer coefficients (CL, CG, A1, and A2) were 

the most affected by the regression, while the parameter related to the reaction kinetics remained 

largely unchanged. Figure 2.1 shows parity plots for the prediction of the models using regressed 

parameters obtained from the WLS estimator to the experimental data for the pilot plant absorber 

and WWC. Similar plots for Hampel’s estimator and Logistic estimator can be found in the 

Appendix. For other studies completed in this work, parameters values obtained from regression 

using the WLS estimator are treated as the baseline value. Nevertheless, parameter estimates 

obtained from the robust estimators in this section give an initial guess for the uncertainty 

bounds of each parameter and therefore serve as an a priori estimate to avoid contamination of 

the UQ results in this work. 

   

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

Table 2.2: Simultaneous regression results, parameter sets 
   Estimator Used in the Optimization Problem 

Parameter/ 

Metric 

Literature 

Values 

Literature 

Source 
WLS Hampel's Logistic 

E4 [cal/mol] 13249 

(Pinsent et 

al., 1956)  

13358 17633 11915 

E5 [cal/mol] 29451 27627 37640 40613 

E6 [cal/mol] 11585 10856 11153 10993 

E7 [cal/mol] 17203 17753 16742 29780 

k4 [s-1] 4.32E+13 5.03E+13 2.90E+13 7.01E+13 

k5
 �mol2∙L-2∙s-1� 2.38E+17 2.36E+17 1.68E+17 3.61E+17 

k6
 [s-1] 1.35E+11 1.35E+11 2.08E+11 1.69E+11 

k7
 �mol2∙L-2∙s-1� 2.14E+21 2.35E+21 8.71E+20 3.65E+21 

CL [-] 1.44 (Billet and 

Schultes, 

1993)  

1.60 1.512 1.089 

CG [-] 0.336 0.374 0.534 0.586 

A1 [-] 1.34 (Tsai et al., 

2010)  

0.72 0.731 0.593 

A2 [-] 0.116 0.128 0.125 0.099 

WLS Objective 36.41  9.31 11.99 11.63 

Hampel’s Objective  5.84  4.08 3.45 3.46 

Logistic Objective  14.57  8.27 8.21 8.13 

Validation Data 

RMSE [CO2 Capture 

Percentage] 

5.14 

 

4.61 5.65 5.38 
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Figure 2.1: Model performance using regressed parameters obtained from the WLS estimator vs. 

experimental data for (top) packed absorber columns [14] and (bottom) WWC [2] 
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2.4. Chilled Ammonia Absorption Process 
 
2.4.1. Base Case.  

 
Figure 2.2: Simplified process flow diagram for the base case CAP 

 

Figure 2.2 shows a process flow diagram for the base case CAP. Flue gas is absorbed by low 

temperature aqueous ammonia in the CO2 absorber, and the CO2 rich aqueous ammonia is 

regenerated at higher temperatures and pressures in the CO2 stripper. Before re-entering the top 

of the CO2 absorber, the regenerated aqueous ammonia is cooled to the low temperatures typical 

for the CAP system in the lean solvent chiller. The flue gas that exits the top of the CO2 absorber 

enters the NH3 absorber where excess ammonia is absorbed so that ammonia levels in the vented 

flue gas are below emission standards. The NH3 rich water stream that exits the bottom of the 

NH3 absorber is regenerated at higher temperatures and pressures in the NH3 stripper. Vapor 

product from the ammonia stripper which contains the ammonia captured in the NH3 absorber, 

along with additional water and CO2, is recycled back to the aqueous ammonia solvent in the 

CO2 absorption section. Before the lean wash water is sent back to the NH3 absorber column, it 

is dosed with a small amount of CO2 to help increase the NH3 loading capacity. This is based on 

the work of Zhang and Guo [20] which found that this approach can significantly reduce the 
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water circulation rate. For both the CO2 absorption section and the NH3 abatement section, heat 

between the cool, rich solvent stream and the hot, lean solvent stream is recycled in cross 

exchangers. One important aspect of the base case modeling is choosing important process 

parameters that can be fixed for the simulation, such as flue gas flow and composition, lean NH3 

weight percentage, and lean CO2 loading. This study borrows from multiple studies performed in 

the literature which have evaluated process conditions that minimize important metrics such as 

energy consumption or emissions. Flue gas composition for a post-combustion capture system 

was taken from Modekurti et al. [50]. The flue gas is assumed to be available from a direct 

contact cooler where its temperature is reduced to 7 °C as a low inlet flue gas temperature is 

desired for the CAP system [10]. NH3 concentration in the lean solvent is an important variable 

to reduce NH3 loss. Based on the work of Jilvero et al. [11], a NH3 weight percentage of 10% 

and a CO2 loading of 0.25 were used to keep NH3 loss in an acceptable range. Lean solvent 

temperature is set at 10 °C to achieve the low absorber temperatures needed for the CAP similar 

to other studies on the CAP system [10,11]. CO2 purity for the stream that exits the top of the 

CO2 stripper was designed for 0.95 which is similar for other modeling studies found in literature 

[10]. In addition to the absorption process, the abatement system also has many important 

process parameters. These parameters also include lean solvent concentration, loading, 

temperature, pressure, as well as acceptable NH3 levels in the vented flue gas. The design 

specification for the NH3 concentration in the vented and cleaned flue gas can vary widely 

depending on the local emission standards. Zhang and Guo [20] performed a review of 

government standards for NH3 emissions for various countries and designed the abatement 

section to reduce the vented NH3 to a flow of 1.85 kg/h and concentration of 1.6 ppmv which is 

far below the emission standards of most countries, if not all. Li et al. [17] and Mathias et al. 

[18] designed for concentrations of <25 ppm and 10 ppm, respectively. In this work, the 

abatement system is designed to obtain a vented NH3 concentration of 10 ppm. Zhang and Guo 

[20] performed an optimization of the composition and temperature of the lean abatement system 

water. A list of design specifications for the absorber and abatement system is shown in Table 

2.3. 
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Table 2.3: CAP design specifications and operating conditions 
CO2 Absorption Section 

Flue Gas Flow Rate [kg/s] 55.45 

Flue Gas CO2 Content [mol fraction] 0.132 

Flue Gas H2O Content [mol fraction] 0.055 

Flue Gas N2 Content [mol fraction] 0.813 

Flue Gas Inlet Temperature [°C] 7 

CO2 Capture Level 90% 

Lean Solvent Temperature [°C] 10 

Lean NH3 fraction [mass fraction] 0.10 

Lean Loading [mol CO2/mol NH3] 0.25 

CO2 Product Stream Purity [mass fraction] 0.95 

CO2 Absorber Height [m] 35 

CO2 Stripper Height [m] 20 

CO2 Stripper Pressure [bar] 10 

NH3 Abatement Section 

Vent Gas NH3 Concentration [ppm] 10 

Lean Wash Temperature [°C] 25 

Lean Wash NH3 Concentration [mol/L] 0.02 

Lean Wash CO2 Loading [mol CO2/mol NH3] 1.2 

Regenerated H2O content [mass fraction] 0.05 

NH3 Absorber Height [m] 15 

NH3 Stripper Height [m] 15 

NH3 Stripper Pressure [bar] 2.5 

 
Table 2.4 shows results of important operating conditions for the simulation of the base case 

CAP system. These variables were calculated to achieve the design metrics listed in Table 2.3. 

The L/G ratio was adjusted to achieve the 90% CO2 capture, and the CO2 stripper conditions are 

needed to regenerate the CO2 captured in absorber while maintaining the purity in the CO2 

product stream. The ammonia slip fraction from the absorber listed in Table 2.4 is much higher 

than the required emissions set by many countries and highlights the need for the NH3 abatement 

section. Similar to the L/G ratio in the CO2 absorption section, the lean wash water flow was 

adjusted to reduce the NH3 content in the vented flue gas to 10 ppm according to the emission 

criterion for design. 
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Table 2.4: Base case simulation results 
CO2 Absorption/Stripping Section 

Liquid-to-Gas (L/G) Ratio [mass basis] 3.83 

Ammonia Slip from CO2 Absorber [kg/sec] 1.40 

Ammonia Slip Fraction from CO2 Absorber [ppm] 5.31×104 

Solvent Rich Loading [mol CO2/mol NH3] 0.49 

CO2 Stripper Reboiler Temperature [°C] 138 

CO2 Stripper Condenser Temperature [°C] 87 

CO2 Stripper Reflux Ratio [mol basis] 0.22 

NH3 Abatement Section 

Lean Wash Water Flow [kg/sec] 68.5 

NH3 Stripper Reboiler Temperature [°C] 127 

NH3 Stripper Condenser Temperature [°C] 68 

NH3 Stripper Reflux Ratio [mol basis] 2.36 

 
Table 2.5 shows the energy requirements for the base case CAP represented in terms of energy 

per mass of CO2 absorbed by the entire capture system. Performance of post-combustion capture 

processes are typically measured by the energy requirements of reboilers since steam extracted 

from the main power plant is used to supply the energy and this extraction can heavily affect the 

overall process economics. Regeneration energies for an aqueous ammonia capture process 

found in the literature can vary depending on the operating conditions (chilled process vs. higher 

temperature process) and simulation type (equilibrium-based vs. rate-based) considered for the 

study. For the CO2 adsorption section, the reboiler energy requirement of 2.92 MJ/kg CO2 is 

slightly lower than other values reported in literature for rate-based simulations (3.05 [20], 3.15-

3.42 [10]). Mathias et al. [18] and Niu et al. [19] report lower values of 2.29 and 1.29 MJ/kg 

CO2, respectively, which are generated using equilibrium-based simulations that do not account 

for kinetic limitations. For the NH3 abatement section, the reboiler energy requirement of 1.89 

MJ/kg CO2 is significantly lower than 5.43 MJ/kg CO2 reported by Zhang & Guo, but similar to 

the values of 2.38 and 1.70 MJ/kg CO2 reported by Mathias et al. and Niu et al., respectively 

[18–20]. The reboiler energy requirement for the CO2 stripper of the CAP is lower than 

regeneration energies for a traditional MEA process reported in the literature (3.2 – 5.5 MJ/kg 

CO2 [51,52]). However, when the reboiler energy requirement for the NH3 stripper is considered, 

the reboiler energy requirement for the entire capture process shows a 33% increase when 
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compared to a traditional MEA system. The CO2 stripper condenser, NH3 stripper condenser, and 

NH3 lean solvent cooler operate at temperatures (≥ 25˚C) for which cooling water can be used to 

remove the required heat and will be less significant in the overall process economics when 

compared to the CO2 lean solvent chiller. The energy required by the chiller is slightly larger 

than the energy requirement reported in the study performed by Hanak et al., 1.34 – 1.92 MJ/kg 

CO2 [10].  

Table 2.5: Base case energy requirements [MJ/kg CO2] 
Reboilers 

CO2 Stripper Reboiler 2.92 

NH3 Stripper Reboiler 1.89 

 4.81 

Condensers/Coolers/Chillers 
CO2 Stripper Condenser 0.33 

CO2 Lean Solvent Chiller 2.48 

NH3 Stripper Condenser 1.28 

NH3 Lean Solvent Cooler 0.34 

 4.43 
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2.4.2. Membrane-Assisted CAP 

 
Figure 2.3: Simplified process flow diagram for the CAP with membrane-assisted NH3 

abatement section 
 

Figure 2.3 shows the membrane-assisted CAP. This process expands upon the base case and 

implements a reverse osmosis membrane in the NH3 abatement section to reduce the load in the 

NH3 stripper. This work considers a reverse osmosis membrane which is assumed to follow the 

solution diffusion mechanism with properties and dimensions taken from those publicly 

available for cellulose acetate membranes. The model is capable of predicting the permeate 

flowrate and concentration profiles along the length of the membrane but is not developed as a 

part of this work and is instead included in the Appendix as a reference. The membrane is 

located in the ammonia rich water wash stream that exits the NH3 absorber and separates high 

purity water from the stream therefore resulting in a lower total flow to the NH3 stripper which 

reduces the energy required to regenerate the wash stream. For the membrane-assisted process, 

the design specifications listed in Table 2.3 are still satisfied. 
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Figure 2.4: Sensitivity of membrane H2O removal to required membrane area and energy 

requirement of the NH3 stripper reboiler 
 

 
Figure 2.5: Retentate mole fraction varying along the normalized length (0 = feed flow inlet) of 

the membrane 
 

To investigate the possible reduction in energy requirements that can be obtained with a 

membrane-assisted CAP, a sensitivity study was performed for the response of the energy 

requirements to varying amounts of water removed from the NH3-rich solvent stream. Figure 2.4 

shows the response of the required membrane area and the regeneration duty of the NH3 stripper 

to the change in water removal. As expected, the stripper duty monotonically decreases with the 

increase in the extent of water removal thus resulting in a decrease in the operating cost. 

However, the required membrane area shows a steeper increase as the water capture increases 

thus obviously affecting the capital cost. Figure 2.5 shows the profiles of the mole fraction of 

water in the retentate for membrane water removal values at the upper and lower bound of the 
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range considered in this work. For 20% water removal, the mole fraction remains largely 

unchanged from the membrane inlet value while a steady decrease along the membrane can be 

seen for 80% removal.  This decrease in driving force, coupled with the larger amount of water 

separated in the membrane, result in the exponential increase in required membrane area as seen 

in Figure 2.4. 

 

 
Figure 2.6: Impact of membrane H2O removal on the energy requirements of the NH3 abatement 

system 
 

Figure 2.6 shows how the reboiler, cooler, and condenser duties in the NH3 abatement section are 

reduced with increasing water removal by the membrane. When no water is removed (0%) the 

results correspond to the base case results shown in Table 2.4 and Table 2.5. Economic studies 

will be required to find the optimal membrane size by evaluating the tradeoff between increasing 

capital costs for the membrane and reduction in operating costs of the NH3 stripper. For 

comparison, if a water removal of 60% is considered, which can be typical for large systems 

[53,54], the NH3 stripper reboiler energy requirement is reduced to 1.03 MJ/kg CO2 which is a 

45% reduction from the base case. With this reduction in the NH3 reboiler, the total system 

reboiler energy requirement is reduced to 3.95 MJ/kg CO2, an 18% reduction from the base case. 
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Similarly, the combined duties of the condenser and cooler will decrease by 52% when 

compared to the base case. For the studies performed in this section, membrane water removal 

had no effect on the reboiler and condenser duties in the CO2 stripper. Flow changes in the 

stream that exits from the top of the NH3 stripper and is recycled back into the CO2 absorption 

section has the potential to affect the duty of the CO2 lean solvent chiller. However, since the 

amount of NH3 regenerated and the composition of water in this recycle stream are maintained 

for these studies, the change in chiller duty is minimal (<1%) for all the cases in Figure 2.6. 

 

2.5. Uncertainty Quantification 
 
This work follows an uncertainty quantification methodology that was described in several 

previous works [37–39]. 

Deterministic models can be summarized as the model output (ϕ) being a function of a set of 

model parameters (θ) and predictor variables (x) as shown below 

 
𝜑𝜑 = 𝐹𝐹(𝑥𝑥,𝜃𝜃) (2.18) 

 
The model parameters are found using a parameter estimation method, which results in a single 

point for each parameter that best fits to experimental data. Once the deterministic model is 

developed, a stochastic model can be created by considering a distribution of the model 

parameters rather than single point estimates. These stochastic models can generate distributions 

of important process performance measures which are key in quantifying model uncertainties. In 

the Bayesian inference process, experimental data is used to develop more informed parameter 

distributions, known as posterior distributions.  

The Bayesian inference process requires a large number of model evaluations and can be 

computationally expensive for chemical process models and large numbers of uncertain 

parameters subjected to the inference process. Also, the usefulness of the information generated 

during the Bayesian inference process is expected to be very little when the model sensitivity to 

the parameter of interest is low. Therefore, parameters were eliminated from the Bayesian 

process based on their 95% confidence intervals obtained from the regression performed in this 

work. Parameters in which zero was included in the confidence interval were removed 
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individually from the stochastic model in a stepwise manner until no parameters remained that fit 

this criterion. Then, a reduced order model is developed and denoted as 

 
𝜑𝜑 ~ 𝐹𝐹∗(𝑥𝑥,𝜃𝜃) (2.19) 

 
The reduced order model is created by sampling from the input space of the parameters and 

predictor variables, then using a curve fitting method to map the inputs to the model output. In 

this work, multivariate adaptive regression splines (MARS)[55] is used to develop the response 

surface model. Cross validation is used to evaluate if the MARS model is representative of the 

actual model and to avoid overfitting.  

Once the response surface model is developed, the posterior distribution, 𝜋𝜋�𝜃𝜃�|𝑍𝑍�, is computed 

by 

 
𝜋𝜋�𝜃𝜃�|𝑍𝑍� ∝ 𝑃𝑃�𝜃𝜃��𝐿𝐿�𝑍𝑍|𝜃𝜃�� (2.20) 

 
𝑃𝑃�𝜃𝜃�� represents the prior distribution of the parameters and is developed using prior knowledge 

of the parameters. For this work, a normal distribution with standard deviations obtained from 

the confidence intervals is used as the prior distributions for the parameters. For the joint prior 

parameter distributions, all parameters are assumed to be independent. The likelihood function, 

𝐿𝐿�𝑍𝑍|𝜃𝜃��, measures how well the response surface matches the experimental data. The likelihood 

function used in this work is given by 

 

𝐿𝐿�𝑍𝑍|𝜃𝜃�� = exp�−0.5�
�𝐹𝐹∗�𝑥𝑥�𝑗𝑗 ,𝜃𝜃�� − 𝑍𝑍𝑗𝑗�𝑥𝑥�𝑗𝑗��

2

𝑀𝑀𝜎𝜎𝑗𝑗2

𝑀𝑀

𝑗𝑗=0

� (2.21) 

 
Previous literature works have been performed to evaluate the accuracy and computational 

expensiveness of UQ propagation methods which have found Monte Carlo methods generally 

outperform other methods in both of these areas [56,57]. In this work, optimal selection of the 

UQ propagation method is not performed. The Markov Chain Monte Carlo (MCMC) method is 

used to calculate the posterior distribution, and the Gibbs sampling method is used to perform the 

parameter search. This Bayesian inference process results in an updated posterior distribution, 

𝜋𝜋�𝜃𝜃�|𝑍𝑍�, given as a set of sample points. This problem was solved using The Framework for 
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Optimization, Quantification of Uncertainty, and Surrogates (FOQUS) toolset [58]. The main 

steps of this UQ methodology are highlighted in Figure 2.7. Again, more information on this 

methodology can be found in previous works [37–39]. 

 

 

Figure 2.7: UQ methodology flow diagram 
 

 

2.5.1. Inverse UQ using Bayesian Inference 

 

Table 2.6: Regression confidence intervals of parameters included in the UQ framework 
 95% Confidence Interval 

Parameter Lower Upper 

E6 [cal/mol] 10559 11153 

E7 [cal/mol] 5726 29780 

A1 [-] 0.593 0.847 
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Figure 2.8: MARS response surface validation using 10-fold cross validation (R2=0.98). (Left) 

Error histogram and (Right) parity plot comparing CO2 capture predictions 
 

Table 2.6 shows the parameters included in the UQ framework after downselection and their 

respective confidence intervals which were obtained from the regression done in this work 

including the robust estimates as mentioned earlier. The sensitivity of the priors to the results of 

the Bayesian inference process were tested by changing the variance of the priors and minimal 

changes were seen. Figure 2.8 shows the quality of the response surface model used in the 

Bayesian inference process, which was developed using simulation data generated from 

sampling of the parameter input space as well as operating conditions spanned by the 

experimental pilot plant data. Figure 2.8 shows that the error of the response surface model is 

centered around zero, and the large majority of the points in the parity plot lie near the diagonal 

which, along with a high R2 value, indicates that the surrogate model is able to accurately 

represent the packed tower model in the space of parameters and operating conditions 

considered. 
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Figure 2.9: Single parameter marginal probability density functions for prior and posterior 

distributions 
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Figure 2.10: Two-parameter prior (left) and posterior (right) probability distributions 

 
Figure 2.9 and Figure 2.10 show the results of the Bayesian inference calculations. Figure 2.9 

shows the marginal single-parameter probability density functions for prior and posterior 

distributions and Figure 2.10 shows the marginal two-parameter prior and posterior distributions. 

All three parameters show a narrower posterior distribution which indicates a reduction in 

uncertainty obtained by the Bayesian inference process for these parameters. 
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2.5.2. Forward UQ using Propagation 

 

 
Figure 2.11: Comparison of stochastic model generated using posteriors to experimental data. 

Experimental data presented with error bars representing ±1 standard deviation included in 
reporting of the data [14]. 

 

 
Figure 2.12: Probability density function of CO2 capture percentage for operating conditions 

corresponding to experimental test ID 30 (Table A.1) 
 

The effects of parameter uncertainty can better be understood when represented in terms of 

important process metrics, such as CO2 capture or energy requirements. To do this, a sample was 



34 
 

taken from the joint distributions of the UQ parameters and propagated through the model of 

interest. Figure 2.11 shows the stochastic response of the posterior distributions for the 

experimental operating conditions from Qi et al. [14] as shown in Table A.1. For the majority of 

the experimental trials, the experimental data point falls within the range of the stochastic 

response. Figure 2.12 shows the probability density function for CO2 capture generated from the 

stochastic model response for the operating conditions of experimental test ID 30. The width of 

the 95% confidence interval, which has been previously used in literature to describe the 

uncertainty of stochastic predictions of process metrics [59], is 13.9 and 2.1 for the prior 

distribution and posterior distribution, respectively, presented in Figure 2.12. The narrower 

distribution of the stochastic model generated using the posteriors indicates that the Bayesian 

inference process results in a reduction in uncertainty when predicting CO2 capture. The same 

methodology is applied to the membrane-assisted CAP process model. Figure 2.13 shows the 

stochastic response of the posteriors and the corresponding 95% confidence intervals for the 

energy requirements of the CO2 Stripper Reboiler, NH3 Stripper Reboiler, and CO2 Lean Solvent 

Chiller. Operating conditions corresponding to these results are listed in Table 2.3. It is observed 

that the Bayesian approach results in a narrow distribution for all three key performance 

measures- duties of CO2 stripper reboiler. NH3 stripper reboiler, and CO2 lean solvent chiller.   

 

 
Figure 2.13: Stochastic model results for energy requirements [MJ/kg CO2] of important 

equipment in the membrane-assisted CAP process generated using the posteriors. Results also 
generated considering 60% membrane water removal. 95% Confidence Intervals: [2.88 ≤ CO2 

Stripper Reboiler ≤ 2.99], [1.00 ≤ NH3 Stripper Reboiler ≤ 1.07], [2.44 ≤ CO2 Lean Solvent 
Chiller ≤ 2.55] 
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2.6. Conclusions 
 

A detailed model of a CAP system was developed with rigorous thermodynamic, transport, 

kinetic and mass transfer sub-models. Model of a novel CAP system is developed. A 

simultaneous regression methodology was used for estimating mass transfer and kinetic model 

parameters utilizing the WWC and pilot-plant data simultaneously. Parameters are estimated 

using WLS as well as two robust estimation approaches-Hampel’s redescending M-estimator and 

Logistic estimator. Parameters obtained using the WLS estimator resulted in a reduction in 

RMSE of 10.3% for prediction of the validation data when compared to the literature parameter 

values. For Hampel’s estimator and Logistic estimator, RMSE increased by 9.9% and 4.6% 

when compared to the literature parameter values, respectively. After downselecting the 

parameter space and generating priors based on the confidence interval obtained from the WLS 

and robust estimators, parameter uncertainty was quantified using Bayesian inferences which led 

to a narrower posterior distribution for all three parameters. For the membrane-assisted CAP 

system, reboiler, cooler, and condenser duties in the NH3 abatement section reduces 

monotonically with increasing water removal by the membrane. However, as the water removal 

increases, the required membrane area increases with a steeper rise beyond about 60% water 

removal. Determining the optimal water removal in the membrane would require consideration 

of the tradeoff between the increasing capital cost due to the increase in the membrane area 

versus the reduction in the operating cost reboiler, cooler, and condenser duties in the NH3 

abatement section. Nevertheless when 60% water removal is considered, which is considered 

feasible as it is similar to commercial reverse osmosis applications, the NH3 stripper reboiler 

energy requirement reduces by 45% compared to the base case. Moreover, the combined duties 

of the condenser and cooler decreases by 52% when compared to the base case. The membrane 

shows promise for reducing energy costs, but future work should focus on identifying any 

potential drawbacks such as operability or the possibility of solids precipitation deteriorating 

performance. Posterior distribution of parameters obtained from the Bayesian inference were 

propagated through the process model corresponding to the pilot plant operating conditions 

available in the public domain and it was observed that most of the experimental data are within 

the estimated uncertainty of model predictions. Additional methods such as simultaneous data 

reconciliation can be used to investigate data outliers and is a possible area of future work. The 
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UQ performed in this work pertains to only parametric uncertainty, expanding upon this to 

include more rigorous handling of the measurement and experimental uncertainty in order to 

obtain a better stochastic response to the data is a possible future area of work. It is also observed 

that the Bayesian inference results in a nearly 7x reduction in the prediction uncertainty of key 

variables such as the CO2 capture compared to the base case. When the posteriors are propagated 

through the membrane-assisted CAP system, it is observed that there is low uncertainty in the 

duties of the CO2 Stripper Reboiler, NH3 Stripper Reboiler, and CO2 Lean Solvent Chiller. In 

future, this model can be utilized for rigorous process optimization or control studies of 

ammonia-based capture systems. Currently the costs of the commercial membrane for the target 

application are not available to the best of the author’s knowledge. If these costs are available, 

one desired future work would be to determine the optimal water removal in the membrane. 

Even though solids precipitation wasn’t predicted by the model for the operating conditions in 

this work, this has been identified as a potential issue and investigating this using other research 

methods is an area of interest. Nevertheless, the study shows that the membrane-assisted CAP 

has a high potential for reducing the energy penalty of ammonia-based post-combustion CO2 

capture systems.   
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3. Isotherm and Kinetic Models for dmpn–Mg2(dobpdc) and 

Mg2(dobpdc)(3-4-3) 
 

Accurate modeling of the adsorption equilibrium is vital to the development of contactor models 

and subsequent process models which can be utilized for process evaluation. Due to the unique 

step shaped isotherms exhibited by this class of amine-appended MOFs, traditional isotherms are 

not applicable. In this chapter, the development of isotherm models for dmpn–Mg2(dobpdc) and 

Mg2(dobpdc)(3-4-3) are presented which can predict the CO2 adsorption equilibrium with 

varying temperature and pressure. Two models are developed for dmpn–Mg2(dobpdc), a 

weighted dual-site Langmuir model and a dual-site Sips model. For Mg2(dobpdc)(3-4-3), an 

extended weighted Langmuir model is developed. A kinetic model is also developed in this 

chapter using experimental data for dmpn-Mg2(dobpdc) to address the current lack in literature 

studies which either do no account for kinetic limitations or use models developed for other 

sorbents. 

 

Portions of this Chapter are published in the following peer-reviewed journal article: 

Hughes, R.; Kotamreddy, G.; Ostace, A.; Bhattacharyya, D.; Siegelman, R. L.; Parker, S. T.; 
Didas, S. A.; Long, J. R.; Omell, B.; Matuszewski, M. Isotherm, Kinetic, Process Modeling, and 
Techno-Economic Analysis of a Diamine-Appended Metal–Organic Framework for CO2 
Capture Using Fixed Bed Contactors. Energy Fuels 2021, 35 (7), 6040–6055. 
https://doi.org/10.1021/acs.energyfuels.0c04359. 
 

 

3.1. Introduction 
 
Traditional isotherm models are unable to predict the step shaped isotherms exhibited by this 

class of MOFs. The fit of many traditional isotherm models to dmpn-Mg2(dobpdc) can be seen in 

the Appendix of this work. However, in some cases these models have been adapted or new 

models developed to account for the stepped adsorption. In the first study of a previous MOF 

variant, mmen–M2(dobpdc) (mmen = N,N′-dimethylethylenediamine), CO2 uptake was modeled 

using three separate equations before, at, and after the adsorption step [25], but the discontinuity 

https://doi.org/10.1021/acs.energyfuels.0c04359
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of this approach renders it unacceptable for use in process modeling and optimization. Notably, 

the weighted dual-site Langmuir model used by Hefti et al. [60] was able to accurately predict 

the complete adsorption profile for mmen–M2(dobpdc). Kundu et al. [61] presented a model for 

CO2 uptake in mmen–M2(dobpdc) derived from quantum and statistical mechanics that was able 

to predict the position of the isotherm step but poorly reproduced adsorption behavior after the 

step. Pai et al. [62] separately modeled chemisorption and physisorption of CO2 in mmen–

M2(dobpdc) and used both single-site and dual-site Langmuir models to fully describe the 

adsorption data. The two-step isotherm data exhibited by Mg2(dobpdc) will only increase the 

difficulty of developing models which can predict step shaped behavior. To the best of the 

author’s knowledge, Ga et. al. [63] presents the only model available in literature for multistep 

adsorption isotherms applied to amine-appended MOFs. The model uses rectified constant units 

to apply traditional isotherm models to subregions in the pressure range of the experimental data 

and is applied to 2-ampd-Mg2(dobpdc). The current literature focuses on the modeling and 

evaluation of mmen-M2(dobpdc) and 2-ampd-Mg2(dobpdc), but models developed for a certain 

diamine variant may not be suitable for other variants. Specifically, the presence of different 

diamines altering the shape of the isotherm curves make it difficult to apply existing models to 

new variants. To apply these models to our MOFs of interest, dmpn–Mg2(dobpdc) and 

Mg2(dobpdc)(3-4-3), model parameters would need to be re-estimated and even with these re-

estimated parameters, the models may be inadequate. 

The current literature also lacks kinetic models that are developed using experimental data for 

diamine-appended MOFs. They instead rely on mass transfer coefficients that are developed 

using generalized correlations or estimated from experimental data for other solid sorbents 

[60,62,64–66]. These models also have also exclusively focused on mmen–M2(dobpdc). Hefti et 

al. [60] ignore kinetics and assume equilibrium in their shortcut based modeling of a TSA 

system. In later work by the same researchers [64], a kinetic model is used which considers a 

constant mass transfer coefficient for CO2 that was estimated using experiments with activated 

carbons [65,66]. Pai et al.[62] assume macropore molecular diffusion to be the controlling mass 

transfer mechanism and the properties of a commercial zeolite were used to calculate the mass 

transfer coefficient. 
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Herein, a modified weighted dual-site Langmuir isotherm model and a dual-site Sips isotherm 

model is used to fit CO2 adsorption data for dmpn–Mg2(dobpdc) for the first time. Additionally, 

an extension of the weighted Langmuir model is use to fit CO2 adsorption data for 

Mg2(dobpdc)(3-4-3) for the first time. A kinetic model for CO2 adsorption in dmpn–

Mg2(dobpdc) is also developed from thermogravimetric analysis data and used with the Sips 

adsorption model which is validated using experimental breakthrough data. 

 

3.2. Isotherm Model Development 
 
3.2.1. Weighted Dual-Site Langmuir Model. The first isotherm model investigated is a weighted 

dual-site Langmuir model similar to that developed by Hefti et al. [60] for predicting the CO2 

adsorption equilibrium of mmen–M2(dobpdc).  

 

𝑞𝑞𝐶𝐶𝐶𝐶2
∗ = 𝑛𝑛𝐿𝐿(𝑝𝑝,𝑇𝑇)�1 − 𝜔𝜔(𝑝𝑝,𝑇𝑇)� + 𝑛𝑛𝑈𝑈(𝑝𝑝,𝑇𝑇)𝜔𝜔(𝑝𝑝,𝑇𝑇) (3.1) 

 
Here, 𝑞𝑞𝐶𝐶𝐶𝐶2

∗  represents the equilibrium loading of CO2 predicted by the model, p is the CO2 

pressure, and 𝑛𝑛𝐿𝐿 and 𝑛𝑛𝑈𝑈 describe the lower and upper portions of the isotherm before and after 

the adsorption step. The term 𝜔𝜔(𝑃𝑃,𝑇𝑇) (Eq. (3.5)) is a weighting function that shifts the predicted 

equilibrium loading from the lower to the upper region of the isotherm model as the pressure 

increases, which enables the modeling of stepped behavior [60]. While it is difficult to find a 

rigorous physical interpretation of the weighting function, it helps to retain the characteristics of 

the underlying isotherm, offer flexibility, and have been used in the literature for modeling 

complex isotherm characteristics of some MOFs [60,67]. The terms 𝑛𝑛𝐿𝐿 and 𝑛𝑛𝑈𝑈 are given by Eqs. 

(3.2) and (3.3): 

 

𝑛𝑛𝐿𝐿 =
𝑛𝑛𝐿𝐿∞𝑑𝑑𝐿𝐿𝑝𝑝

1 + 𝑑𝑑𝐿𝐿𝑝𝑝
+ 𝑑𝑑𝐵𝐵𝑝𝑝 (3.2) 

𝑛𝑛𝑈𝑈 =
𝑛𝑛𝑈𝑈∞𝑑𝑑𝑈𝑈𝑝𝑝

1 + 𝑑𝑑𝑈𝑈𝑝𝑝
+ 𝑑𝑑𝐻𝐻𝑝𝑝 (3.3) 

𝑑𝑑∝ = 𝑑𝑑∝∞exp �
𝐸𝐸∝
𝑅𝑅𝑅𝑅�

;      ∝ ∈ [𝐿𝐿,𝐵𝐵,𝑈𝑈,𝐻𝐻] (3.4) 
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𝜔𝜔(𝑃𝑃,𝑇𝑇) = �
exp �

ln(𝑝𝑝) − ln(𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇))
𝜎𝜎(𝑇𝑇) �

1 + exp �
ln(𝑝𝑝) − ln(𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇))

𝜎𝜎(𝑇𝑇) �
�

𝛾𝛾

 (3.5) 

𝜎𝜎(𝑇𝑇) = 𝑋𝑋1exp�𝑋𝑋2 �
1
𝑇𝑇0
−

1
𝑇𝑇��

 (3.6) 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇) = 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,0exp�
−𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅 �

1
𝑇𝑇0
−

1
𝑇𝑇��

 (3.7) 

 
We note that in Hefti et al. [60], the 𝑛𝑛𝐿𝐿 parameter contains only the first term shown in Eq. (3.2); 

however, our initial results with this form showed poor model performance at pressures before 

the adsorption step. Accordingly, in this work 𝑛𝑛𝐿𝐿 was altered to include the heuristic linear 𝑑𝑑𝐵𝐵𝑝𝑝 

term to improve the model, analogous to the form of upper isotherm parameter 𝑛𝑛𝑈𝑈. In Eq. (3.5), 

the parameters 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛾𝛾 determine the position of the step and 𝜎𝜎 determines the step width 

(here, pressure range). The parameters 𝑛𝑛𝐿𝐿∞, 𝑛𝑛𝑈𝑈∞, 𝑑𝑑∝∞, 𝐸𝐸∝, 𝛾𝛾, 𝑋𝑋1, 𝑋𝑋2, 𝑝𝑝, 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,0, and 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (a total of 

15 parameters) are determined from fits to the experimental data.  

3.2.2. Dual-site Sips Model. Previous characterization of various diamine-appended M2(dobpdc) 

frameworks via 13C solid-state NMR spectroscopy [30] revealed that a small amount of CO2 is 

physisorbed in the materials in addition to the major chemisorption product. Accordingly, a dual-

site Sips isotherm model was also used to model the equilibrium of chemisorbed and physisorbed 

CO2 in dmpn–Mg2(dobpdc). This model is used to predict adsorption in heterogeneous systems 

and has been used previously to describe CO2 and methane uptake in Mg2(dobdc) (dobdc4− = 

2,5-dioxido-1,4-benzenedicarboxylate) [68], while a single-site Sips equation with added 

temperature dependent terms has been used to model adsorption of N2, methane, ethane, and 

propane on commercial activated carbons and polyvinyl chloride [69]. The dual-site Sips model 

used in this work is given in Eqs. (3.8) and (3.9) and is a modified version of the model 

developed by Bao et al. [68], with the introduction of temperature dependence in the terms 

𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∞ , 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∞ , and 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒. 
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𝑞𝑞𝐶𝐶𝐶𝐶2
∗ = 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗ + 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗  (3.8) 

 

𝑞𝑞𝐶𝐶𝐶𝐶2
∗ = 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∞ �

(𝑏𝑏𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑝𝑝)1 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒⁄

1 + (𝑏𝑏𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑝𝑝)1 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒⁄ � + 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∞ �
�𝑏𝑏𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑝𝑝�

1 𝑛𝑛𝑝𝑝ℎ𝑦𝑦𝑦𝑦⁄

1 + �𝑏𝑏𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑝𝑝�
1 𝑛𝑛𝑝𝑝ℎ𝑦𝑦𝑦𝑦⁄ � 

(3.9) 

 
Here, 𝑞𝑞𝐶𝐶𝐶𝐶2

∗  is the total CO2 equilibrium loading predicted by the model, 𝑝𝑝 is the equilibrium 

pressure, and 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒 and 𝑛𝑛𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are fit parameters that account for surface inhomogeneity [68]. 

The term 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒 varies as a function of temperature according to Eq. (3.10): 

 

𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒,0𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐸𝐸𝑛𝑛
𝑅𝑅𝑇𝑇0

�
𝑇𝑇0
𝑇𝑇
− 1�� (3.10) 

 
Here, R is the ideal gas constant, T0 is a reference temperature (318 K), and 𝑛𝑛𝑐𝑐ℎ𝑒𝑒𝑒𝑒,0 and 𝐸𝐸𝑛𝑛 are 

parameters determined from the fit. The terms 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∞  and 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∞  in Eq. (3.9) describe the 

maximum loading at chemisorption and physisorption sites, respectively, and are given by: 

𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∞ = 𝑁𝑁𝑐𝑐ℎ𝑒𝑒𝑒𝑒 �
𝑒𝑒𝑒𝑒𝑒𝑒 �𝐾𝐾𝑎𝑎 + 𝐾𝐾𝑏𝑏

𝑇𝑇� �

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐾𝐾𝑎𝑎 + 𝐾𝐾𝑏𝑏
𝑇𝑇� �
� (3.11) 

𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∞ = 𝑁𝑁𝑝𝑝ℎ𝑦𝑦𝑦𝑦 �
𝑒𝑒𝑒𝑒𝑒𝑒 �𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑑𝑑

𝑇𝑇� �

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �𝐾𝐾𝑐𝑐 + 𝐾𝐾𝑑𝑑
𝑇𝑇� �
� (3.12) 

 
Here, 𝑁𝑁𝑐𝑐ℎ𝑒𝑒𝑒𝑒 is the diamine loading in the MOF (determined experimentally to be 3.82 mmol/g 

[3]) and 𝐾𝐾𝑎𝑎, 𝐾𝐾𝑏𝑏, 𝐾𝐾𝑐𝑐, 𝐾𝐾𝑑𝑑, and 𝑁𝑁𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are fit parameters. Eq. (3.11) was first derived for the 

chemisorption sites under the assumption that there is a 1:1 ratio of diamine to chemisorbed CO2, 

and Eq. (3.12) was adopted for the physisorption sites and is analogous to the form of Eq. (3.11). 

Parameters 𝑏𝑏𝑐𝑐ℎ𝑒𝑒𝑒𝑒 and 𝑏𝑏𝑝𝑝ℎ𝑦𝑦𝑦𝑦 in Eq. (9) are adsorption equilibrium constants for the two 

adsorption sites, defined by Eq. (3.13). 

𝑏𝑏∝ = 𝑏𝑏∝,0exp �
𝑄𝑄𝑠𝑠𝑠𝑠,∝

𝑅𝑅𝑇𝑇0
�
𝑇𝑇0
𝑇𝑇
− 1��  ,∝∈ [𝑐𝑐ℎ𝑒𝑒𝑒𝑒,𝑝𝑝ℎ𝑦𝑦𝑦𝑦] (3.13) 
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Here, 𝑄𝑄𝑠𝑠𝑠𝑠,𝑗𝑗 are the isosteric heats of adsorption at zero loading [68] at each adsorption site that 

are also determined from the fit, and R is the ideal gas constant. Overall, the dual-site Sips model 

has 12 parameters that are estimated using the experimental data.  

3.2.3. Extended weighted Langmuir Model. To model the two step transitions for 

Mg2(dobpdc)(3-4-3), the weighted dual-site Langmuir model presented by Hefti et al. [60] is 

extended by adding a second weighting function, as shown in Eq. (3.14). 

𝑞𝑞𝐶𝐶𝐶𝐶2
∗ = (1 − 𝜔𝜔1)𝑞𝑞1∗ + (𝜔𝜔1 − 𝜔𝜔2)𝑞𝑞2∗ + 𝜔𝜔2𝑞𝑞3∗ (3.14) 

Here, 𝑞𝑞1∗, 𝑞𝑞2∗, 𝑞𝑞3∗ are the Langmuir type isotherm models which represent the three main sections 

of the isotherm. 𝑞𝑞1∗ represents the section before the first step transition, 𝑞𝑞2∗ represents the section 

between the first and second transition, and 𝑞𝑞3∗ represents the section after the second transition. 

𝜔𝜔1 and 𝜔𝜔2 are the weighting functions which follow the same functional form as the dual-Site 

Langmuir model presented above. A complete list of the isotherm equations for the extended 

weighted Langmuir model is shown below. 

𝑞𝑞1∗ = 𝑞𝑞1∞
𝑑𝑑1𝑃𝑃

1 + 𝑑𝑑1𝑃𝑃
 (3.15) 

𝑞𝑞2∗ = 𝑞𝑞2∞
𝑑𝑑2𝑃𝑃

1 + 𝑑𝑑2𝑃𝑃
 (3.16) 

𝑞𝑞3∗ = 𝑞𝑞3∞
𝑑𝑑3𝑃𝑃

1 + 𝑑𝑑3𝑃𝑃
+ 𝑑𝑑4𝑃𝑃 (3.17) 

𝑑𝑑𝛼𝛼 = 𝑑𝑑𝛼𝛼∞𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝛼𝛼
𝑅𝑅𝑇𝑇0

�
𝑇𝑇0
𝑇𝑇
− 1�� ;      𝛼𝛼 ∈ [1,2,3,4] (3.18) 

𝜔𝜔1 =

⎣
⎢
⎢
⎢
⎡ 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑙𝑙𝑙𝑙(𝑃𝑃) − 𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,1�
𝜎𝜎1

�

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑙𝑙𝑙𝑙(𝑃𝑃) − 𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,1�

𝜎𝜎1
�
⎦
⎥
⎥
⎥
⎤
𝛾𝛾1

 (3.19) 

𝜔𝜔2 =

⎣
⎢
⎢
⎢
⎡ 𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑙𝑙𝑙𝑙(𝑃𝑃) − 𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,2�
𝜎𝜎2

�

1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑙𝑙𝑙𝑙(𝑃𝑃) − 𝑙𝑙𝑙𝑙�𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,2�

𝜎𝜎2
�
⎦
⎥
⎥
⎥
⎤
𝛾𝛾2

 (3.20) 
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𝜎𝜎𝛼𝛼 = 𝑋𝑋1,𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 �𝑋𝑋2,𝛼𝛼 �
1
𝑇𝑇0
−

1
𝑇𝑇�
� ;      𝛼𝛼 ∈ [1,2] (3.21) 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛼𝛼 = 𝑃𝑃0,𝛼𝛼𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝛼𝛼

𝑅𝑅 �
1
𝑇𝑇0
−

1
𝑇𝑇�
� ;      𝛼𝛼 ∈ [1,2] (3.22) 

As before, the weighting functions vary with temperature and pressure and are naturally bounded 

between 0 and 1. At low pressures, both weighting functions are near zero which results in the 

total CO2 loading consisting of the first Langmuir model. As the pressure increases above the 

first step pressure, the first weighting function reaches a value of 1 and the second Langmuir 

term is the dominant contributor to the total loading. Finally, as the pressure increases above 

both step pressures, both weighting functions go to values of 1 and the third Langmuir term is the 

main contributor.  

3.2.4. Parameter Estimation. Model parameters were estimated using the ‘fmincon’ routine in 

MATLAB, which uses a sequential quadratic programming algorithm to solve the following 

optimization problem: 

 
min
𝜃𝜃

 �
𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
∗ − 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗

𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
∗ �

′

Σ−1 �
𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
∗ − 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗

𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
∗ � 

 
s.t. 
 
𝑓𝑓(𝜃𝜃) = 0 
𝑔𝑔(𝜃𝜃) ≤ 0 

(3.23) 

 
where 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒

∗  represents the experimental equilibrium loading data, 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗  represents the 

model prediction, 𝜃𝜃 represents the vector of estimated parameters, and 𝑓𝑓(𝜃𝜃) and 𝑔𝑔(𝜃𝜃) represent 

the equality and inequality constraints, respectively. For this problem, the equality constraints 

consist of the isotherm equations for the model of interest listed above, and the inequality 

constraints consist of upper and lower bounds for the model parameters. The objective function 

uses a normalized least squares method with a weighting matrix Σ−1. Because a larger number of 

experimental data points were available at lower pressures than at higher pressure, a weighted 

objective function was used where the weight for each data point was set to be inversely 

proportional to the number of data points that are in the same neighborhood of partial pressure as 
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the data point that is being evaluated. Accordingly, the data were divided up into intervals, or 

bins, of equal length with respect to partial pressure. The bin size was chosen so that every bin 

contained at least one data point. The weight of a specific data point is then equal to the inverse 

of the number of data points in the bin where the data point of interest resides. 

3.2.5. dmpn-Mg2(dobpdc) Isotherm Model Results. As noted earlier, 15 and 12 parameters are 

estimated for the dual-site Langmuir model and dual-site Sips model, respectively. For 

estimating these parameters, more than 500 isotherm data showing variation in loading with 

respect to temperature and pressure have been used. About 100 isotherm data are used for model 

validation. Various initial guesses were investigated, and the optimizer converged to the same 

optimal estimates. 

Experimental adsorption data for dmpn–Mg2(dobpdc) [3] and corresponding fits derived using 

the dual-site Sips and weighted dual-site Langmuir isotherm models are shown in Figure 3.1. 

Table 3.1 and Table 3.2 shows the estimated model parameters (see Figure A.4 in the Appendix 

for residual plots for the isotherm model development). To better visualize the fits to the data, the 

results shown in Figure 3.1 are also presented on a linear scale with respect to partial pressure in 

the Appendix in Figure A.5 and Figure A.6. Both models are able to accurately predict the step 

locations at all temperatures. The Sips model also provides a good fit to the data before the step 

transition, but the goodness of the fit diminishes at low temperatures and high pressures. In 

contrast, the weighted Langmuir model provides a better fit to the data beyond the adsorption 

step but does not adequately fit the upper region of the adsorption step, particularly at 60 and 75 

°C. However, both models show good agreement with the experimental data under conditions 

relevant to a typical post-combustion TSA process, namely adsorption between 25 and 50 °C at 

partial pressures between 0.01 and 0.15 bar and desorption between 75 and 120 °C at partial 

pressures that encompass the range of experimental partial pressures.  

During a TSA cycle, the temperatures and partial pressures within the bed can reach values that 

are between the boundary conditions for adsorption and desorption. Models developed using 

only experimental data pertaining to those conditions may therefore perform poorly under 

intermediate conditions. Considering this, additional adsorption data were collected at 80 and 90 

°C and used for model validation for both isotherm models (Figure 3.2). At 80 °C, the dual-site 

Sips model predicts a less abrupt step than is present in the experimental data, whereas there is 
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no clear step in the weighted dual-site Langmuir model at the same temperature. At 90 °C, both 

models predict slightly higher loadings than are observed experimentally, although it is clear that 

the Sips model performs better overall. Based on the above results and the root mean squared 

error for each model (Table 3.3), the dual-site Sips model was selected to predict subsequent 

adsorption equilibria. 

 
Figure 3.1: Experimental CO2 adsorption 
isotherms for dmpn–Mg2(dobpdc) at the 

indicated temperatures (colored symbols) and 
fits (colored lines) using a dual-site Sips 

isotherm model (upper) and a weighted dual-
site Langmuir isotherm model (lower). 

 
Figure 3.2: Model validation results for the 
dual-site Sips model (upper) and weighted 

dual-site Langmuir model (lower). 
Experimental CO2 adsorption data for dmpn–
Mg2(dobpdc) at 80 and 90 °C are shown as 

colored symbols and fits to the data are shown 
as colored lines. 
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Table 3.1: Fit parameters determined using the 
weighted dual-site Langmuir model for CO2 

adsorption in dmpn–Mg2(dobpdc). 
Parameter Value Units 
𝒑𝒑𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝟎𝟎 0.027 [bar] 
𝑯𝑯𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 −81.70 [kJ/mol] 
𝒏𝒏𝑳𝑳∞ 0.0895 [mmol/g] 
𝒃𝒃𝑳𝑳∞ 2.05×10−6 [bar−1] 
𝑬𝑬𝑳𝑳 51.1 [kJ/mol] 
𝒃𝒃𝒃𝒃∞ 4.19×10−4 [mmol/g/bar] 
𝑬𝑬𝒃𝒃 13.6 [kJ/mol] 
𝒏𝒏𝑼𝑼∞ 3.12 [mmol/g] 
𝒃𝒃𝑼𝑼∞ 6.17×10−10 [bar−1] 
𝑬𝑬𝑼𝑼 65.2 [kJ/mol] 
𝒃𝒃𝑯𝑯∞ 0.00862 [mmol/g/bar] 
𝑬𝑬𝑯𝑯 11.2 [kJ/mol] 
𝑿𝑿𝟏𝟏 0.0100 [dimensionless] 
𝑿𝑿𝟐𝟐 1767.5 [K−1] 
𝜸𝜸 0.0223 [dimensionless] 

 

Table 3.2: Fit parameters determined using the 
dual-site Sips model for CO2 adsorption in 

dmpn–Mg2(dobpdc) 
Parameter Value Units 
𝒃𝒃𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝟎𝟎 28.56 [bar−1] 
𝑸𝑸𝒔𝒔𝒔𝒔,𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 72.56 [kJ/mol] 
𝒏𝒏𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄,𝟎𝟎 0.21 [dimensionless] 
𝒃𝒃𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑,𝟎𝟎 0.62 [bar−1] 
𝑸𝑸𝒔𝒔𝒔𝒔,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 43.83 [kJ/mol] 
𝒏𝒏𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 1.46 [dimensionless] 
𝑵𝑵𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 3.52 [mmol/g] 
𝑲𝑲𝒂𝒂 −0.92 [dimensionless] 
𝑲𝑲𝒃𝒃 324.86 [K] 
𝑬𝑬𝒏𝒏 11.29 [kJ/mol] 
𝑲𝑲𝒄𝒄 −71.14 [dimensionless] 
𝑲𝑲𝒅𝒅 2.84×104 [K] 

 

 

Table 3.3: Root mean squared errors determined for the dual-site Sips and weighted dual-site 
Langmuir model fits. 

 dual-site Sips weighted dual-site Langmuir 
Estimation data 0.050 0.137 
Validation data 0.163 0.190 

 

3.2.6. Mg2(dobpdc)(3-4-3) Isotherm Model Results. In total, 21 parameters are estimated for 

extended weighted Langmuir model. Isotherm data is taken from Kim et al. [29] and includes 

232 data points for pressures ranging from 0.5 mbar to 1000 mbar and 4 temperature sets (90 °C, 

100 °C, 110 °C, and 120 °C). Figure 3.3 shows the results of the parameter estimation and the fit 

of the extended weighted Langmuir model to the isotherm data. It can be seen that the model 

shows excellent prediction of the data at all temperatures and pressures and notably is able to 

accurately predict both step positions for all temperatures (RMSE=0.18 [dimensionless]).  
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Figure 3.3: Experimental CO2 adsorption isotherms for Mg2(dobpdc)(3-4-3) at the indicated 

temperatures (colored symbols) and fits (colored lines) using the extended weighted Langmuir 
model. 

 
Table 3.4: Fit parameters determined using the extended weighted Langmuir model for CO2 

adsorption in Mg2(dobpdc)(3-4-3). 
Parameter Estimated Value Units 
𝑞𝑞1∞ 2.87E-02 [mol/kg] 
𝑞𝑞2∞ 1.95 [mol/kg] 
𝑞𝑞3∞ 3.45 [mol/kg] 
𝑑𝑑1∞ 1670.31 [bar-1] 
𝑑𝑑2∞ 789.01 [bar-1] 
𝑑𝑑3∞ 10990.67 [bar-1] 
𝑑𝑑4∞ 0.28 [bar-1] 
𝐸𝐸1 -76.15 [kJ/mol] 
𝐸𝐸2 -77.44 [kJ/mol] 
𝐸𝐸3 -194.48 [kJ/mol] 
𝐸𝐸4 -6.76 [kJ/mol] 
𝑋𝑋1,1 4.20E-02 [dimensionless] 
𝑋𝑋2,1 2.97 [K-1] 
𝑋𝑋1,2 7.74E-02 [dimensionless] 
𝑋𝑋2,2 1.66 [K-1] 
𝑃𝑃0,1 1.85E-03 [bar] 
𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,1 -99.64 [kJ/mol] 
𝑃𝑃0,2 1.78E-02 [bar] 
𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,2 -78.19 [kJ/mol] 
𝛾𝛾1 894.67 [dimensionless] 
𝛾𝛾2 95.22 [dimensionless] 
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3.3. Kinetic Model Development 
 
The kinetics of CO2 adsorption in powdered dmpn–Mg2(dobpdc) were characterized using 

thermogravimetric analysis. Time-dependent uptake data were collected at temperatures of 35, 

40, 45, and 50 °C using a pure CO2 gas stream at atmospheric pressure, following the 

experimental protocol in Martell et al. [70]. The total CO2 adsorption rate was modeled as the 

sum of the chemisorption and physisorption rates, and a linear driving force was used to model 

the kinetics as shown in Eqs. (3.24)-(3.26). Due to a lack of experimental data, a kinetic model 

for Mg2(dobpdc)(3-4-3) was not developed. 

 
𝑑𝑑𝑞𝑞𝐶𝐶𝐶𝐶2
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒(𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗ − 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒) + 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦�𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗ − 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦� (3.24) 

𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒,0𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑅𝑅𝑇𝑇0

�
𝑇𝑇0
𝑇𝑇
− 1�� (3.25) 

𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦 = 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦,0𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝐸𝐸𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑅𝑅𝑇𝑇0

�
𝑇𝑇0
𝑇𝑇
− 1�� (3.26) 

 
Here, 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒 and 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are the loadings of the chemisorption and physisorption products, 

respectively, and 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗  and 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗  are the predicted equilibrium loadings as defined above for the 

dual-site Sips isotherm model. The parameters 𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒 and 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are mass transfer coefficients 

modeled using a standard Arrhenius equation, and 𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒,0, 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦,0, 𝐸𝐸𝑐𝑐ℎ𝑒𝑒𝑒𝑒, and 𝐸𝐸𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are 

parameters determined from fitting the model to the experimental data. Model parameters were 

estimated using the fmincon routine in MATLAB and a sequential quadratic programming 

algorithm to solve the following optimization problem: 

min
𝜃𝜃
�
𝑞𝑞𝐶𝐶𝑂𝑂2,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
�
′

Σ−1 �
𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
� 

s.t. 
 
𝑓𝑓(𝜃𝜃) = 0 
𝑔𝑔(𝜃𝜃) ≤ 0 

(3.27) 

 
where 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒 represents the experimental loading data, 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 represents the model 

prediction, 𝜃𝜃 represents the vector of estimated parameters, and 𝑓𝑓(𝜃𝜃) and 𝑔𝑔(𝜃𝜃) represent the 
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equality and inequality constraints, respectively. For this problem, the equality constraints 

consist of the kinetic equations listed above, and the inequality constraints consist of upper and 

lower bounds for the model parameters. 

As seen in Figure 3.4, the linear driving force kinetic model is able to accurately describe the 

kinetics of CO2 uptake in dmpn–Mg2(dobpdc). Estimated parameters are shown in Table 3.5 

 

 
Figure 3.4: Experimental data for time-dependent CO2 adsorption in dmpn−Mg2(dobdc) 

(colored symbols) and fits obtained using the linear driving force kinetic model (RMSE = 0.025). 
 

Table 3.5: Fitted parameters for linear driving force kinetic model 
Parameter Value Units 
kchem,0  0.0136 [s−1] 
Echem 23.21 [kJ/mol] 
kphys,0  0.0823 [s−1] 
Ephys 7.18 [kJ/mol] 
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3.4. Conclusions 
 
In this chapter, isotherm models for two amine-appended metal-organic frameworks, dmpn-

Mg2(dobpdc) and Mg2(dobpdc)(3-4-3), are developed. A Sips isotherm model and weighted 

dual-site Langmuir isotherm model were developed that are able to accurately describe the 

adsorption of pure CO2 in dmpn–Mg2(dobpdc). The resulting models and parameters were also 

able to model validation data collected at additional temperatures that were not included in the 

initial parameter estimation. The sips isotherm model showed less error for the estimation data   

(-64%) and the validation data (-14%) when compared to the weighted dual-site Langmuir 

model. An extended weighted Langmuir model was developed to predict the two step adsorption 

isotherms for pure CO2 in Mg2(dobpdc)(3-4-3). The model is able to accurately predict the 

isotherm data yielding a RMSE of 0.18 [dimensionless]. The kinetic model developed in this 

chapter was also able to accurately describe experimental data for dmpn-Mg2(dobpdc) obtained 

from thermogravimetric analysis. These models were developed considering adsorption of pure 

CO2, which is suitable for a base case analysis given that the CO2 adsorption capacity of dmpn–

Mg2(dobpdc) and kinetics of CO2 adsorption in the material are not significantly affected in the 

presence of water. However, the development of more rigorous models will necessitate including 

an analysis of the effects of water co-adsorption on overall process performance.  
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4. Chemistry-based Modeling for Functionalized Solid 

Sorbents 
 

In this chapter, a chemistry-based model for a diamine-appended MOF [dmpn-Mg2(dobpdc)] is 

developed for the first time. Since the chemistry and reaction pathways of dmpn-Mg2(dobpdc) is 

still relatively unknown, optimal reaction set selection from a proposed candidate set is 

performed. Estimation of the chemistry model parameters is performed using isotherm data, and 

the chemistry model is found to reduce prediction error by nearly a factor of 6 and the AIC by 

42% when compared to heuristic models. The model also implements a constraint on the heat of 

adsorption prediction into model development via an inequality constraint in the parameter 

estimation problem which is not typically done for chemistry-based models. Profiles for the total 

CO2 loading as well as the chemisorption species are presented and discussed in this chapter.  

 

4.1. Introduction 
 
The prediction of adsorption equilibrium for solid sorbents is typically done using traditional 

“off the shelf” isotherm models. As many of these traditional isotherm models have been 

historically developed for non-functionalized sorbents, they may not adequately represent the 

complicated isotherm behavior of the functionalized sorbents. Traditional isotherm models can 

be altered and expanded upon to allow for more accurate prediction of the isotherm data of the 

functionalized sorbents, similar to the methodology used in previous chapters of this work and in 

literature [25,60,62]. The result of this workflow is isotherm models which are heuristic and may 

give good fits to experimental data, but do not give any insight into the underlying adsorption 

mechanisms. Additionally, many of the isotherm models are developed for physisorption 

mechanisms and are incapable of capturing underlying chemisorption mechanisms which can 

give important insight into process performance and behavior. Development of chemistry-based 

models for functionalized solid sorbents can be extremely beneficial for understanding the 

reaction mechanisms which may not be well known or well understood for novel sorbents, 

especially because of impracticality of identifying species formed and measuring their evolving 

concentration with operating conditions at the interior of solids. A chemistry-based model also 
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can improve modeling fidelity and accuracy by predicting CO2 adsorption capacity, quantifying 

interactions of other species present in flue gas, specifically water, and calculating a more 

accurate estimate of heat of adsorption. Additionally, a chemistry model also has the possibility 

of aiding in the development of new sorbent technologies. The products that are formed during 

adsorption are nearly impossible to measure, and a chemistry model which can predict 

adsorption equilibrium, adsorption products, and heats of adsorption can reduce the need for 

complex experimental work and reduce the time it takes to identify new possible sorbent variants 

and aid in the development of new technologies. 

Currently, there are few chemistry-based models for solid sorbents present in the literature which 

include adsorbate-adsorbent reactions. Lee et al. [71] present a model for the chemisorption of 

CO2 on potassium-carbonate-promoted hydrotalcite. The model considers two reactions, initial 

chemisorption of CO2 onto an empty surface site and a coupling reaction in which gaseous CO2 

reacts with the initial chemisorption product to form a large surface complex. Using an 

additional site balance equations and a simple kinetic formulation, an analytical solution of the 

reaction system at equilibrium was obtained, and parameter estimation shows that the 

chemisorption model is able to accurately predict the unique isotherm shape of the potassium-

carbonate-promoted hydrotalcite. The same researchers also exhibit that this chemisorption 

model, with re-estimated parameters, is able to accurately predict CO2 adsorption equilibrium on 

sodium oxide promoted alumina [72,73]. Additionally, the model is used to predict the isosteric 

heat of adsorption and shows good prediction when compared to available literature data but 

isn’t used in any model development purposes. For this model, parameter estimation is done for 

each respective temperature that data is available which results in a different set of parameters 

for each temperature. This method isn’t suitable for use of the model in rigorous process 

simulators which consider adiabatic systems with varying temperatures along the length of an 

adsorption bed. Abdollahi-Govar et al. [74] developed semi-empirical kinetic models for the 

reversible adsorption and desorption of CO2 in a solid amine sorbent composed of 

polyethylenimine (PEI) immobilized on a silica support. The authors investigate multiple 

candidate sets of CO2 reactions with different amine sites within PEI and perform optimal 

reaction set selection based on the fit of each set to time dependent TGA data. Model parameters 

for each candidate set are simultaneously estimated using data for multiple temperatures and CO2 

concentrations, and the authors find that their semi-empirical mechanistic model is able to 
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accurately predict the kinetic experiments. The authors also predict heat of adsorption using their 

model but do not consider it in any stage of model development. Other sources [75,76] present 

chemisorption models that follow a very similar structure: formulation of reactions specific to 

the system of interest, kinetic equation formulation for the reactions of interest, and solutions of 

the model for either kinetic or equilibrium conditions.  

These chemistry-based models do an adequate job at predicting either the kinetic or equilibrium 

data for their respective sorbents, but the adsorption equilibrium behavior of amine-appended 

MOFs is significantly different than the sorbents for which these chemistry models were 

developed, specifically their sensitivity to temperature and pressure. Potassium-carbonate-

promoted hydrotalcite and sodium oxide promoted alumina, which the Lee et al. [71–73] model 

was applied to, exhibits Langmuir behavior in the low pressure region with deviation at higher 

pressure, but does not show a sensitivity to pressure as steep as the step shaped isotherms of the 

amine-appended MOFs. Additionally, only a small number of temperatures are used to develop 

the models with the shape of the isotherm staying relatively similar for each which is unlike 

many of the amine-appended MOFs. For example, the dmpn-Mg2(dobpdc) stepped isotherm 

shape completely disappears at high temperatures which is a behavior that must be accounted for 

by any prospective adsorption equilibrium model. Abdollahi-Govar et al. [74] developed their 

chemistry-based model for polyethylenimine (PEI) immobilized on a silica support which 

exhibits Langmuir type equilibrium curves which are not as sensitive to pressure and temperature 

as the isotherm curves for many of the amine-appended MOFs. For the chemistry-based models 

discussed here, significant additions would be required for them to accurately predict the 

adsorption equilibrium behavior of amine-appended MOFs being considered for carbon capture. 

Reaction mechanisms of the amine-appended MOFs are complex, and their isotherm 

characteristics are unique due to the chain formation-which has not been modeled in the 

literature. Furthermore, none of the works noted above have considered heat of adsorption as a 

constraint while developing the chemistry models and estimating the kinetic parameters. 

However, as the equilibrium (i.e., isotherm) and heat of adsorption are thermodynamically 

related, heat of adsorption should be considered as a constraint while estimating the parameters 

of the chemistry model for thermodynamic consistency.  
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In this work, a chemistry model for dmpn-Mg2(dobpdc) is developed for the first time. The 

reaction mechanisms of amine-appended MOFs are still not fully understood, so optimal 

selection of a reaction set from a group of candidates is performed. The parameters for each 

reaction set are optimally estimated using least-squares fitting to available isotherm data. 

Additionally, the isosteric heat of adsorption is implemented as an inequality constraint in the 

parameter estimation problem which is not typically done for chemistry-based model 

development. The framework for the chemistry model developed in this work is also generic and 

the approach can be applied to other chemisorbents by incorporating suitable reaction pathways. 

 

4.2. Chemistry Model Equations  
 
In this section, the equations for a chemistry-based model to describe the equilibrium behavior 

for dmpn-Mg2(dobpdc) are presented. The reactions first proceed through an adsorbed phase 

“free” CO2 which is in equilibrium with the vapor phase CO2. This adsorbed phase CO2 then 

reacts to form the adsorption products whose relative concentrations are determined by the set of 

equilibrium relationships for each reaction that is being considered. Additionally, balance 

equations such as the mole fraction summation and amine site balance are used to calculate the 

loadings of each participating species and importantly the total loading of CO2. A simple 

Langmuir model is also considered to predict the adsorption of the physisorbed CO2 product. 

The isosteric heat of adsorption is calculated as a part of the model and is implemented as an 

inequality constraint during the parameter estimation. While some chemistry models use the heat 

of adsorption for qualitative evaluation and validation, none use it during estimation of the model 

parameters or in the development stage of the model. Optimal selection of the reaction set is 

done using an information criterion to avoid overparameterization of the model. The framework 

for the chemistry model developed in this work is also generic and can be applied to any 

chemisorbent. Modeling and parameter estimation is done in an equation-oriented framework 

and solved as a nonlinear programming problem which allows for the adsorption reactions to be 

changed without the need for a complex and a time-consuming analytical solution if one even 

exists. The solid-vapor equilibrium equation is independent of the sorbent chemistry and the 

additional equations, such as mole fraction summation and site balance, are only dependent on 

the stoichiometry of the adsorption reactions. Additionally, since models to predict the heat of 
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adsorption for chemisorbents is still not well understood or defined in the literature, the isosteric 

heat of adsorption equation used in this work is considered an approximation of the true heat of 

adsorption. However, this framework is generic, and this equation can be easily updated. 

4.2.1. Solid-Vapor Equilibrium and Activity Coefficient Modeling. The relationship between the 

gas phase CO2 and free CO2 is determined by equating the fugacity of the solid-phase and the 

vapor-phase, shown in Eqs. (4.1) and (4.2). 

𝑓𝑓𝐶𝐶𝐶𝐶2
𝑣𝑣 = 𝑓𝑓𝐶𝐶𝐶𝐶2

𝑠𝑠  (4.1) 

𝑦𝑦𝐶𝐶𝐶𝐶2𝜙𝜙�𝐶𝐶𝐶𝐶2𝑃𝑃 = 𝛾𝛾𝐶𝐶𝐶𝐶2𝑧𝑧𝐶𝐶𝐶𝐶2∗𝑓𝑓𝐶𝐶𝐶𝐶2
0  (4.2) 

 
Vapor-phase fugacity is calculated using the partial-pressure of CO2 and the vapor-phase 

fugacity coefficient (𝜙𝜙�𝐶𝐶𝐶𝐶2). In this work, it is assumed that the vapor phase behaves ideally 

(𝜙𝜙�𝐶𝐶𝐶𝐶2 = 1). The solid-phase fugacity is calculated using the CO2 activity coefficient (𝛾𝛾𝐶𝐶𝐶𝐶2), the 

mole fraction of free CO2 �𝑧𝑧𝐶𝐶𝐶𝐶2∗�, and a reference state CO2 fugacity (𝑓𝑓𝐶𝐶𝐶𝐶2
0 ). The activity 

coefficient is modeled using a multicomponent Margules equation [77] shown in Eq. (4.3). 

which is derived from the excess Gibbs energy for a multicomponent nonideal mixture. Only 

binary interaction parameters for free CO2 and amine which hasn’t reacted yet, simply denoted 

as Am, are considered. 

ln�𝛾𝛾𝐶𝐶𝐶𝐶2� = 𝑧𝑧𝐴𝐴𝐴𝐴�𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐵𝐵�𝑧𝑧𝐴𝐴𝐴𝐴 − 2𝑧𝑧𝐶𝐶𝐶𝐶2∗�� − 𝑧𝑧𝐶𝐶𝐶𝐶2∗𝑧𝑧𝐴𝐴𝐴𝐴�𝜏𝜏𝐴𝐴 + 2𝜏𝜏𝐵𝐵�𝑧𝑧𝐶𝐶𝐶𝐶2∗ − 𝑧𝑧𝐴𝐴𝐴𝐴�� (4.3) 

 
𝜏𝜏𝐴𝐴 and 𝜏𝜏𝐵𝐵 are interaction parameters for free CO2 and DMPN and vary with temperature with the 

following correlations. 

𝜏𝜏𝐴𝐴 = 𝜏𝜏𝐴𝐴,0 +
𝜏𝜏𝐴𝐴,1

𝑇𝑇
 (4.4) 

𝜏𝜏𝐵𝐵 = 𝜏𝜏𝐵𝐵,0 +
𝜏𝜏𝐵𝐵,1

𝑇𝑇
 (4.5) 

 
The reference state fugacity is modeled using Henry’s Law as shown in Eqs. (4.6) and (4.7) [39]. 

𝑓𝑓𝐶𝐶𝐶𝐶2
0 = 𝑘𝑘𝐻𝐻,𝐶𝐶𝐶𝐶2 (4.6) 
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ln�𝑘𝑘𝐻𝐻,𝐶𝐶𝐶𝐶2� = 𝑎𝑎𝐻𝐻 +
𝑏𝑏𝐻𝐻
𝑇𝑇

 (4.7) 

 
4.2.2. dmpn-Mg2(dobpdc) Chemistry and Reaction Modeling. The reaction mechanisms for this 

class of amine-appended MOFs are still not fully understood. The main mechanism is theorized 

to be what is referred to as a cooperative adsorption mechanism in which CO2 gets inserted into 

the amine-metal bond to form well-ordered product chains along the axis of the MOF channels 

[26]. Additionally, Kundu et al. [61] use a combination of quantum chemistry and statistical 

mechanics which supports the presence of this chain formation mechanism. Forse et al. [30] 

perform NMR spectroscopy that attempts to characterize which species form during CO2 

adsorption for multiple amine-appended MOFs. One of the main products of CO2 adsorption on 

dmpn-Mg2(dobpdc) is carbamate chains which form via this cooperative adsorption mechanism. 

One of the products that is unique to dmpn-Mg2(dobpdc) is a carbamate-carbamic acid pair, 

referred to as a mixed product, that forms across the channel of the MOF. Carbamate chains and 

the mixed structure are shown in Figure 4.1.  

 
Figure 4.1: Structure of ammonium carbamate chains (a) and mixed product of carbamate and 

carbamic acid (b). Carbamate chain formation shown using generic diamine and dmpn-
Mg2(dobpdc) shown in mixed structure figure [30]. 

 

Forse et al. [30] also state that the mixed structure product is the dominant product at all partial 

pressures of CO2 while carbamate chains are primarily only present in small amounts at low 

partial pressures in dmpn-Mg2(dobpdc). Additionally, the presence of a physisorbed CO2 species 

is confirmed in these NMR studies.  

Here, it is proposed that the cooperative adsorption mechanism proceeds in multiple steps. The 

first step is an initiation reaction in which CO2 reacts with unreacted amine sites to form the 
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initial product chain. Then, a series of propagation reactions can occur in which additional CO2 

is adsorbed to increase the chain length. The stochiometric amounts of CO2 in these reactions as 

well as the number of reactions needed to accurately predict the adsorption behavior are 

unknown and determining this is one of the main goals of this work.  

A generalized series of reactions used to describe the cooperative adsorption mechanism are 

shown below.  

𝑛𝑛1𝐶𝐶𝐶𝐶2∗ + 𝑛𝑛1𝐴𝐴𝐴𝐴 ⇌ 𝐵𝐵1 (R1) 

𝑛𝑛2𝐶𝐶𝐶𝐶2∗ + 𝑛𝑛2𝐴𝐴𝐴𝐴 + 𝐵𝐵1 ⇌ 𝐵𝐵2 (R2) 

⋮  

𝑛𝑛𝑁𝑁𝐶𝐶𝐶𝐶2∗ + 𝑛𝑛𝑁𝑁𝐴𝐴𝐴𝐴 + 𝐵𝐵𝑁𝑁−1 ⇌ 𝐵𝐵𝑁𝑁 (R3) 

   

𝑚𝑚1𝐶𝐶𝐶𝐶2∗ + 𝑚𝑚1𝐴𝐴𝐴𝐴 ⇌ 𝐶𝐶1 (R4) 

𝑚𝑚2𝐶𝐶𝐶𝐶2∗ + 𝑚𝑚2𝐴𝐴𝐴𝐴 + 𝐶𝐶1 ⇌ 𝐶𝐶2 (R5) 

⋮  

𝑚𝑚𝑀𝑀𝐶𝐶𝐶𝐶2∗ + 𝑚𝑚𝑀𝑀𝐴𝐴𝐴𝐴 + 𝐶𝐶𝑀𝑀−1 ⇌ 𝐶𝐶𝑀𝑀 (R6) 

 
Eq. (R1) is the initial formation reaction which forms the chemisorption product chain (𝐵𝐵1) of 

length 𝑛𝑛1. Here, chain length is defined as the number of moles of CO2 contained in the 

chemisorption product. Reactions (R2) and (R3) are propagation reactions in which the product 

chain formed in the previous step grows by stochiometric coefficient n. Here, 𝑁𝑁 corresponds to 

the maximum number of chains considered for the formation of a cooperatively adsorbed species 

and therefore the number of reactions considered as well. These reactions are also developed 

assuming a 1:1 stochiometric ratio between moles of CO2 and moles of diamine which has been 

used in previous studies [3,26]. This work considers the presence of two cooperatively adsorbed 

species with the second species being denoted by C with stochiometric coefficients m and 

maximum number of formation reactions M.  

The equilibrium relationship for the reactions considered in this work along with the temperature 

dependency of the equilibrium coefficient is shown in Eqs. (4.8) and (4.9).  
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𝐾𝐾𝑒𝑒𝑒𝑒,𝑗𝑗 = �𝑧𝑧𝑖𝑖𝑣𝑣𝑖𝑖
𝐽𝐽

𝑖𝑖=1

 (4.8) 

𝑙𝑙𝑙𝑙�𝐾𝐾𝑒𝑒𝑒𝑒,𝑗𝑗� = 𝑘𝑘0,𝑗𝑗 +
𝑘𝑘1,𝑗𝑗

𝑇𝑇
 (4.9) 

 

Here, 𝐾𝐾𝑒𝑒𝑒𝑒 is a dimensionless, mole fraction-based equilibrium coefficient developed assuming an 

elementary relationship in which the exponent for each species is equal to the stochiometric 

coefficient. The equilibrium coefficient varies with temperature according to the correlation in 

Eq. (4.9). 

4.2.3. Component and Site Balances. The mole fraction of each species is related by the mole 

fraction summation as shown in Eq. (4.10).  

𝑧𝑧𝐴𝐴𝐴𝐴 + 𝑧𝑧𝐶𝐶𝐶𝐶2∗ + �𝑧𝑧𝐵𝐵𝑗𝑗

𝑁𝑁

𝑗𝑗=1

+ �𝑧𝑧𝐶𝐶𝑗𝑗

𝑀𝑀

𝑗𝑗=1

= 1 (4.10) 

 
The loading (𝑞𝑞𝑖𝑖∗) for each product and species predicted by the chemistry model can be 

calculated using Eq. (4.11). 

𝑞𝑞𝑖𝑖∗ = 𝑄𝑄𝑧𝑧𝑖𝑖 (4.11) 

 
Here, 𝑄𝑄 is the total loading of the system which can be determined by solving an amine site 

balance shown in Eq. (4.12). The amine site balance relates the number of amine sites contained 

in the chemisorption reactants and products (LHS of equation) to the total number of amine sites 

present on the MOF (RHS of equation) which is a value that has been determined experimentally 

to be 3.82 mol/kg [3].  

𝑞𝑞𝐴𝐴𝐴𝐴∗ + �𝛿𝛿𝐵𝐵𝑗𝑗 ∗ 𝑞𝑞𝐵𝐵𝑗𝑗
∗

𝑁𝑁

𝑗𝑗=1

+ �𝛿𝛿𝐶𝐶𝑗𝑗 ∗ 𝑞𝑞𝐶𝐶𝑗𝑗
∗

𝑁𝑁

𝑗𝑗=1

= 𝑄𝑄𝐴𝐴𝐴𝐴 (4.12) 

 
Here, 𝛿𝛿 is defined as the number of amine sites in the chemisorption product of interest. This 

value can be determined by taking the sum of the stochiometric coefficients for the formation 
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reaction of the product of interest as well as all preceding reactions, as shown in Eqs. (4.13) and 

(4.14).  

𝛿𝛿𝐵𝐵𝑗𝑗 = �𝑛𝑛𝑖𝑖

𝑗𝑗

𝑖𝑖=1

 (4.13) 

𝛿𝛿𝐶𝐶𝑗𝑗 = �𝑚𝑚𝑖𝑖

𝑗𝑗

𝑖𝑖=1

 (4.14) 

 
The loading of chemisorbed CO2 can be determined in a similar manner using a CO2 balance, 

shown in Eq. (4.15). Since the stochiometric ratio between CO2 and amine is 1:1, the number of 

CO2 molecules contained in a chemisorption product is equal to the number of amine sites and 

can therefore also be represented by 𝛿𝛿. 

𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗ = �𝛿𝛿𝐵𝐵𝑗𝑗 ∗ 𝑞𝑞𝐵𝐵𝑗𝑗
∗

𝑁𝑁

𝑗𝑗=1

+ �𝛿𝛿𝐶𝐶𝑗𝑗 ∗ 𝑞𝑞𝐶𝐶𝑗𝑗
∗

𝑁𝑁

𝑗𝑗=1

 (4.15) 

 
As previously mentioned, the model also considers physisorption represented by the Langmuir 

isotherm equation, shown in Eqs. (4.16) and (4.17) [78]. 

𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗ = 𝑁𝑁𝑝𝑝ℎ𝑦𝑦𝑦𝑦 �
𝐾𝐾𝐿𝐿 ∗ 𝑦𝑦𝐶𝐶𝐶𝐶2𝑃𝑃

1 + 𝐾𝐾𝐿𝐿 ∗ 𝑦𝑦𝐶𝐶𝐶𝐶2𝑃𝑃
� (4.16) 

𝐾𝐾𝐿𝐿 = 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦,0 ∗ exp �
−𝐸𝐸𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑅𝑅𝑇𝑇0

�
𝑇𝑇0
𝑇𝑇
− 1�� (4.17) 

 
Finally, the total amount of CO2 adsorbed can be calculated by summing the loading of free CO2, 

chemisorbed CO2, and physisorbed CO2. 

𝑞𝑞𝐶𝐶𝐶𝐶2
∗ = 𝑞𝑞𝐶𝐶𝐶𝐶2∗

∗ + 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗ + 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗  (4.18) 

 

4.2.4. Heat of Adsorption. Additionally, the heat of adsorption can be estimated using the 

isosteric heat of adsorption equation [71] for each loading of interest.  
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𝜕𝜕[ln(𝑃𝑃)]
𝜕𝜕𝜕𝜕

�
𝑞𝑞𝐶𝐶𝐶𝐶2
∗

=
Δ𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎
𝑅𝑅𝑇𝑇2

 (4.19) 

 

4.3. Reaction Set Selection and Parameter Estimation 
 
Parameters 𝑁𝑁 and 𝑀𝑀, which correspond to the number of chain formation reactions, are integer 

variables which in turn make this reaction set selection and parameter estimation problem a 

mixed integer programming (MINLP) problem. However, the number of equations, variables, 

constraints, and the overall structure of the model will change as the 𝑁𝑁 and 𝑀𝑀 variables change. 

Therefore, relaxation of these integer variables to continuous variables for obtaining bound as is 

done in many MINLP algorithms are not acceptable. While the MINLP problem can be solved 

by many algorithms including variants of Branch and Bound algorithms as well as meta-heuristic 

algorithms, as values of N and M are expected to be low for this problem, exhaustive 

enumeration is used to obtain globally optimal solution for N and M. The corresponding 

nonlinear programming (NLP) subproblem is solved for each combination. The NLP subproblem 

is shown below: 

 
min
𝜃𝜃

   �𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
∗ − 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗ �′Σ−1�𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒
∗ − 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗ � 

s.t. 
 
𝑓𝑓(𝜇𝜇, 𝜂𝜂,𝜃𝜃) = 0 

𝑔𝑔(𝜇𝜇, 𝜂𝜂,𝜃𝜃) ≤ 0 

(4.20) 

 
Here, 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑒𝑒𝑒𝑒𝑒𝑒

∗  represents the experimental equilibrium loading of CO2, 𝑞𝑞𝐶𝐶𝐶𝐶2,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗  represents the 

equilibrium loading of CO2 predicted by the chemistry model, 𝜃𝜃 represents the vector of 

estimated parameters, and 𝑓𝑓(𝜇𝜇, 𝜂𝜂, 𝜃𝜃) and 𝑔𝑔(𝜇𝜇, 𝜂𝜂,𝜃𝜃) represent the equality constraints and 

inequality constraints of the model, respectively. Additionally, 𝜇𝜇 represents model inputs such as 

temperature and pressure and 𝜂𝜂 represents model variables such as mole fractions. In this 

problem, the equality constraints consist of the chemistry model equations, and the inequality 
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constraints consist of variable bounds along with any additional constraints. This parameter 

estimation problem uses a least-squares type estimator with weighting function Σ−1 which takes 

into account the uneven number of data points at low partial pressures of CO2 and temperatures, 

similar to that described in Section 3.2. The model is implemented in Pyomo [79], a python-

based software developed for optimization, and is solved using a the interior point optimization 

algorithm IPOPT [80]. 

To evaluate the optimal combination of 𝑁𝑁 and 𝑀𝑀, an information criterion is used to evaluate the 

tradeoff between the increasing model size and decreasing error. Here, the Akaike Information 

Criterion (AIC) [81] is used, shown in Eq. (4.21). 

AIC = 2𝑝𝑝 + 𝑁𝑁𝐷𝐷 ∗ ln �
𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝐷𝐷

� (4.21) 

 
Here, 𝑝𝑝 is the total number of parameters and 𝑁𝑁𝐷𝐷 is the total number of data points used for 

estimation. 

4.3.1. Model Reformulation. The chemistry model, as written above, contains several structural 

issues that present problems in the optimization solver and can result in poor convergence. First, 

the highly nonlinear solid-vapor equilibrium and reaction equilibrium equations can be difficult 

to converge. Second, the mole fraction variables for the chemisorption products are bounded 

between 0 and 1 and the value of these variables are expected to be at the lower bound when low 

loadings of CO2 are exhibited which can cause issues with convergence of NLP solvers, 

especially interior points solvers. In an attempt to address this, a log transformation of the model 

is performed.  

First, the natural log was applied to the solid-vapor equilibrium equation. 

𝑙𝑙𝑙𝑙 �𝑦𝑦𝐶𝐶𝐶𝐶2
𝜙𝜙�𝐶𝐶𝐶𝐶2

𝑃𝑃� = 𝑙𝑙𝑙𝑙 �𝛾𝛾𝐶𝐶𝐶𝐶2
� + 𝑙𝑙𝑙𝑙 �𝑧𝑧𝐶𝐶𝐶𝐶2

∗� + 𝑙𝑙𝑙𝑙 �𝑓𝑓𝐶𝐶𝐶𝐶2

0 � (4.22) 

 
Substituting 𝜙𝜙�𝐶𝐶𝐶𝐶2 = 1 and 𝑓𝑓𝐶𝐶𝐶𝐶2

0 = 𝑘𝑘𝐻𝐻,𝐶𝐶𝐶𝐶2, Eq. (4.22) becomes: 

𝑙𝑙𝑙𝑙 �𝑦𝑦𝐶𝐶𝐶𝐶2
𝑃𝑃� = 𝑙𝑙𝑙𝑙 �𝛾𝛾𝐶𝐶𝐶𝐶2

� + 𝑙𝑙𝑙𝑙 �𝑧𝑧𝐶𝐶𝐶𝐶2
∗� + 𝑙𝑙𝑙𝑙�𝑘𝑘𝐻𝐻,𝐶𝐶𝐶𝐶2� (4.23) 

 
Next, the natural log is applied to the reaction equilibrium equation. 
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𝑙𝑙𝑙𝑙�𝐾𝐾𝑒𝑒𝑒𝑒� = �𝑣𝑣𝑖𝑖𝑙𝑙𝑙𝑙(𝑧𝑧𝑖𝑖)
𝐽𝐽

𝑖𝑖=1

 (4.24) 

 
This transformation results in new linear equations, but additional steps must be taken to avoid 

calculating the natural log in an equation-oriented framework. The LHS of the transformed SVE 

equation can be handled by a preprocessing of the experimental data and is simply a fixed input 

into the parameter estimation problem. The correlations for the activity coefficient of CO2, 

Henry’s constant, and the reaction equilibrium constant are already written for the natural log of 

each term and can simply be substituted into the equations. To address the natural log of mole 

fractions, a new transformed mole fraction variable, ℤ, is introduced in Eq. (4.25). Bound 

transformation for this new variable is also performed and shown in Eq. (4.26).  

𝑧𝑧𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝑖𝑖) (4.25) 

ℤ𝑖𝑖 ∈ [−∞, 0] (4.26) 

 
Substituting this new variable into Eqs. (4.23) and (4.24) yields the linear equations shown 

below. 

𝑙𝑙𝑙𝑙 �𝑦𝑦𝐶𝐶𝐶𝐶2
𝑃𝑃� = 𝑙𝑙𝑙𝑙 �𝛾𝛾𝐶𝐶𝐶𝐶2

� + ℤ𝐶𝐶𝐶𝐶2
∗ + 𝑙𝑙𝑙𝑙�𝑘𝑘𝐻𝐻,𝐶𝐶𝐶𝐶2� (4.27) 

𝑙𝑙𝑙𝑙�𝐾𝐾𝑒𝑒𝑒𝑒� = �𝑣𝑣𝑖𝑖ℤ𝑖𝑖

𝐽𝐽

𝑖𝑖=1

 (4.28) 

 
Substitution can also be performed for the remaining chemistry model equations in which mole 

fractions appear and are shown below for clarity. 

ln�𝛾𝛾𝐶𝐶𝐶𝐶2� = 𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝐴𝐴𝐴𝐴) �𝜏𝜏𝐴𝐴 − 𝜏𝜏𝐵𝐵 �𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝐴𝐴𝐴𝐴) − 2𝑒𝑒𝑒𝑒𝑒𝑒�ℤ𝐶𝐶𝐶𝐶2∗���

− 𝑒𝑒𝑒𝑒𝑒𝑒�ℤ𝐶𝐶𝐶𝐶2∗�𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝐴𝐴𝐴𝐴) �𝜏𝜏𝐴𝐴 + 2𝜏𝜏𝐵𝐵 �𝑒𝑒𝑒𝑒𝑒𝑒�ℤ𝐶𝐶𝐶𝐶2∗� − 𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝐴𝐴𝐴𝐴)�� (4.29) 

𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝐴𝐴𝐴𝐴) + 𝑒𝑒𝑒𝑒𝑒𝑒�ℤ𝐶𝐶𝐶𝐶2∗� + �𝑒𝑒𝑒𝑒𝑒𝑒 �ℤ𝐵𝐵𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

+ �𝑒𝑒𝑒𝑒𝑒𝑒 �ℤ𝐶𝐶𝑗𝑗�
𝑀𝑀

𝑗𝑗=1

= 1 (4.30) 

𝑞𝑞𝑖𝑖∗ = 𝑄𝑄 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(ℤ𝑖𝑖) (4.31) 
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To summarize, the improvements to the model structure when a log transformation is performed 

are two-fold. First, the highly nonlinear SVE and reaction equilibrium equations are replaced by 

linear equations. Second, mole fraction variables in the transformed model are replaced by the 

new variable ℤ𝑖𝑖 which does not need to satisfy the lower bound. This bound removal reduces the 

number inequality constraints in the NLP problem bust most importantly removes the issue of 

the mole fraction variables converging near the lower bound of 0.  

 

4.4. Results 
 
4.4.1. Reaction Set Selection. The results for the reaction set selection and parameter estimation 

problems are presented in this section. The optimal set of formation reactions is determined by 

solving the parameter estimation subproblem for multiple reaction sets and evaluating which 

combination minimizes the AIC, which is shown in Figure 4.2.  

 
Figure 4.2: Integer sensitivity results for model selection. AIC for varying combinations of 

chain formation reactions. Minimal AIC (-3418) is at N=2, M=1 (red bar). 
 
Figure 4.2 shows that the reaction combination of N=2 and M=1 gives the minimal AIC value of 

-3418. The reaction sets are generated by taking possible combinations of N and M and start with 

the smallest possible model with the least number of parameters, a single cooperatively adsorbed 

species with only a single formation reaction. As previously mentioned, NMR work supports the 



64 
 

presence of two cooperatively adsorbed species but models which only consider a single species 

are still investigated here for thoroughness. It should also be noted that since formation reactions 

are equivalent for each cooperatively adsorbed species, models with reversed values for N and M 

are equivalent. That is, a model with N=1 and M=0 is equivalent to a model with N=0 and M=1. 

The left side of Figure 4.2 shows smaller models with a reduced number of parameters, but the 

fit to the experimental data is poor and gives a higher AIC value than the optimal combination. 

The right side of Figure 4.2 shows larger models with an increased number of parameters which 

give good fits to the experimental data, but the increase in the number of parameters give AIC 

values higher than the optimal. Importantly, the optimal reaction set shows a near 42% reduction 

in AIC when compared to the Sips isotherm model. It is also interesting to note that for all 

combinations of N and M shown in Figure 4.2, AIC values are superior to the dual-site Sips 

isotherm model. A complete list of the number of parameters, objective function value, and AIC 

for each model presented in Figure 4.2 is shown in the Appendix. 
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4.4.2. Parameter Estimation and Validation 

 
Figure 4.3: Parameter estimation results for N=2 and M=1 for linear pressure scale (left) and 
logarithmic pressure scale (right). Symbols represent experimental data and lines represent 

model prediction. 
 

Table 4.1: Estimated parameters for N=2 and M=1 
Parameter Estimated Value Units Lower Bound Upper Bound 
𝑘𝑘0,𝑁𝑁1 67.62 - -1000 10000 
𝑘𝑘0,𝑁𝑁2 214.95 - -1000 10000 
𝑘𝑘0,𝑀𝑀1 23.56 - -1000 10000 
𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦,0 3.31E-06 Pa-1 -50 100 
𝑘𝑘1,𝑁𝑁1 160.07 K -10000 10000 
𝑘𝑘1,𝑁𝑁2 69.65 K -10000 10000 
𝑘𝑘1,𝑀𝑀1 92.14 K -10000 10000 
𝐸𝐸𝑝𝑝ℎ𝑦𝑦𝑦𝑦 16.85 kJ/mol 5 500 
𝑛𝑛1 2.85 - 1 15 
𝑛𝑛2 8.19 - 1 15 
𝑚𝑚1 1 - 1 15 
𝑁𝑁𝑝𝑝ℎ𝑦𝑦𝑦𝑦 2.59 mol/kg 0 1000 
𝑎𝑎𝐻𝐻 206.16 Pa - - 
𝑏𝑏𝐻𝐻 -114.18 K - - 
𝜏𝜏𝐴𝐴,0 -385.03 - - - 
𝜏𝜏𝐵𝐵,0 -204.70 - - - 
𝜏𝜏𝐴𝐴,1 254.09 K - - 
𝜏𝜏𝐵𝐵,0 132.67 K - - 
Objective Function 1.692 (mol kg⁄ )2   

 

Figure 4.3 shows the fit of the optimal reaction model to the experimental data for dmpn-

Mg2(dobpdc). The figure shows that the chemistry model is able to accurately represent the 

experimental data at all temperatures and across the experimental pressure range. When 
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compared to the Sips isotherm model developed in Section 3.2, the optimal chemistry model 

predicts the isotherm data much better at high partial pressures and exhibits an objective function 

value, as calculated by Eq. (4.20), which is nearly 6x lower (Sips = 9.48 (mol kg⁄ )2). A complete 

list of the estimated parameters for the optimal chemistry model can be found in Table 4.1. 

 
Figure 4.4: Optimal chemistry model (N=2, M=1) prediction of validation data. Symbols 

represent experimental data and lines represent model prediction. 
 

The chemistry model is also evaluated by investigating the prediction to validation data that was 

not a part of the parameter estimation data set. Figure 4.4 shows that the chemistry model is able 

to predict the validation data reasonably well. At 80 °C, the model predicts a less abrupt step 

than the experimental data, and at 90 °C the model overpredicts the data slightly at low pressures 

and more significantly at higher pressures. The RMSE of the validation data prediction is 0.166 

which is only a slight 0.81% larger than the RMSE of the Sips Isotherm model.  

4.4.3. Heat of Adsorption Constraint 

The heat of adsorption, calculated by Eq. (4.19), is included as an inequality constraint in the 

model. Experimental data for the heat of adsorption is currently unavailable in the literature, so 

the heat of adsorption calculated using the Clausius-Clapeyron equation in Milner et al. [3] is 

treated as a baseline. Using this, a constraint which ensures that the heat of adsorption predicted 

by the model is withing +/- 50% of the baseline data from Milner et al. [3] is included. To avoid 

adding a large number of equations to the NLP parameter estimation problem, the heat of 

adsorption is calculated only at a few representative CO2 loadings for each temperature rather 

than every experimental isotherm data point. Figure 4.5 shows the heat of adsorption predicted 
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by the chemistry model and its comparison to the Milner et al. data. For most temperatures, the 

predicted heat of adsorption lies near the baseline value. The 25 °C prediction shows a large 

discrepancy from the baseline with it overpredicting at low loadings and underpredicting at high 

loadings. The predictions at 75 °C and 100 °C are also lower than the baseline. The dashed lines 

in Figure 4.5 correspond to the upper and lower bound implemented as an inequality constraint 

with all points evaluated falling well within the bounds except for 25 °C and 3.1 mol/kg which 

lies on the lower bound. It should also be noted that the baseline from Milner et al. [3] is 

calculated by averaging the heat of adsorption over each experimental temperature so variations 

when examining a single temperature can be expected. Still, ensuring that the heat of adsorption 

is within a practical and expected range for the MOF system can help avoid overfitting to 

experimental data.  

 
Figure 4.5: Chemistry model heat of adsorption as a function of loading and temperature. 

 
4.4.4. Chemisorption reactant and product loadings. Results presented so far in this section have 

focused prediction of the total CO2 loading of the system. However, analyzing the contribution 

of individual species is valuable and can be important in identifying species or reaction 

pathways, but this is impossible for many of the heuristic-based isotherm models as they do not 

model these species or go into this type of resolution. In this section, the profiles for the optimal 

chemistry-based model are presented and analyzed. 
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Figure 4.6: Loadings [mol/kg] of the species present in the optimal chemistry model (N=2, 

M=1). Left) Unreacted diamine (Am). Right) Adsorbed phase free CO2 (𝑪𝑪𝑪𝑪𝟐𝟐
∗ ). 

 
Figure 4.6 shows the loadings for the two main reactants in the chemisorption reactions, the 

unreacted diamine and free CO2. At very low partial pressures of CO2 nearing zero, the loading 

of amine converges to the total amine loading in the MOF (𝑄𝑄𝐴𝐴𝐴𝐴) which is 3.82 mol/kg and is 

expected since no CO2 will be adsorbed as the partial pressure nears zero. The step-shaped 

profile with respect to partial pressure is present for the unreacted amine loading as well. Figure 

4.6 shows that the free CO2 loading is only present in very small amounts and only acts as an 

intermediate step in the adsorption process, not significantly contributing to the total loading of 

CO2.  
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Figure 4.7: Prediction of chemisorbed CO2 loading and chemisorbed product distribution. 

Top) Total chemisorbed CO2 loading. Dashed line represents the maximum achievable loading 
(𝑸𝑸𝑨𝑨𝑨𝑨). Bottom) Fraction of chemisorbed CO2 contained in cooperatively adsorbed species B. 

 
Figure 4.7 shows the total amount of chemisorbed CO2 predicted by the optimal chemistry model 

for the experimental range of temperatures and partial pressures. The figure shows that the step-

shaped profile is present for the chemisorption product which indicates that the chemisorption 

product is the main contributor to the step-shape adsorption profile for the total CO2 loading. 

Similar to the experimental isotherm data, the step disappears after 75 °C and negligible uptake 

is seen for the higher temperatures. Figure 4.7 also shows the percentage of chemisorbed CO2 

which is contained in a single cooperatively adsorbed species. The figure shows that the majority 

(~90%) of the chemisorbed CO2 is contained in a single species (chain) at most temperatures and 

partial pressures. The second cooperatively adsorbed species is only the dominant species at very 

low partial pressures, usually before the step occurs for a specific temperature. However, the 
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second species does contain nearly all the chemisorbed CO2 for the higher temperatures which 

do not experience a step transition.  

4.4.5. Chain Lengths. The length of each cooperatively adsorbed product chain is estimated as 

part of the parameter estimation problem presented in Section 4.3. McDonald et al. [26] have 

previously used the Hill equation [82], which was first developed to estimate the number of 

ligand molecules needed to bind to a receptor to achieve a functional effect as a method to 

estimate the cooperativity of amine-appended MOFs. Table 4.2 gives a comparison of the chain 

length estimated by this work for dmpn-Mg2(dobpdc) and the Hill coefficients calculated for 

mmen-M2(dobpdc). The value presented for this work is calculated by taking the sum of 𝑛𝑛1 and 

𝑛𝑛2, and the Hill coefficients are calculated using only 25 °C isotherm data. Table 4.2 shows that 

the chain lengths estimated by this work are similar to those estimated previously for similar 

solid sorbents.  

Table 4.2: Comparison of chain length estimations for varying MOFs and methods. 
MOF Value Method Source 
dmpn-Mg2(dobpdc) 11.0 Chemistry Model This work 
mmen-Mg2(dobpdc) 10.6 Hill Coefficient McDonald et al. [26] 
mmen-Mn2(dobpdc) 5.6 Hill Coefficient McDonald et al. [26] 
mmen-Fe2(dobpdc) 7.5 Hill Coefficient McDonald et al. [26] 
mmen-Co2(dobpdc) 11.5 Hill Coefficient McDonald et al. [26] 
mmen-Zn2(dobpdc) 6.0 Hill Coefficient McDonald et al. [26] 

 

4.4.6. Physisorbed Loading. Figure 4.8 shows the predicted physisorbed CO2 loading for the 

temperature and pressure range of the experimental isotherm data. The physical adsorption is 

modeled using a standard Langmuir isotherm equation therefore does not exhibit any step 

transitions which are seen with the chemisorption species. Figure 4.8 also shows the percentage 

of CO2 which is physisorbed compared to the total amount of adsorbed CO2. For the lower 

temperatures (25 °C - 75 °C) which exhibit a step transition of total CO2 loading, the fraction of 

physisorbed CO2 remains relatively low while the majority of adsorbed CO2 for the higher 

temperatures is physisorbed.  
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Figure 4.8: Left) Prediction of physisorbed CO2 loading and right) fraction of total loading 

which is physisorbed. 
 

4.5. Conclusions 
 
In this Chapter, a chemistry-based model is developed to describe the adsorption equilibrium of 

an amine-appended MOF, specifically dmpn-Mg2(dobpdc), for the first time. The model 

considers an equilibrium between gas phase CO2 and an adsorbed phase CO2, referred to as free 

CO2, which then reacts with empty diamine sites in a series of reactions formulated as part of this 

work for a cooperatively adsorbed species. Results from NMR studies support the presence of 

two cooperatively adsorbed species, but little information is known about the number of 

reactions needed to accurately describe each species. Reaction set selection is performed based 

on exhaustive enumeration of combination of integer variables for minimizing the AIC. The 

optimal reaction set is found to be: N=2 and M=1 which gives an AIC value of -3418 and is a 

reduction of nearly 42% when compared to the Sips isotherm model developed earlier in this 

work. The optimal reaction combination also gives an excellent fit to the experimental isotherm 

data, showing a nearly 6x reduction of the weighted least squares objective function used in this 

work when compared to the Sips isotherm model. The performance of the chemistry model is 

also investigated by evaluating the prediction of a validation data set which consists of 

experimental isotherm data for 80 °C and 90 °C that was not included in the parameter 

estimation. The chemistry model predicts this validation set reasonably well but exhibits a higher 

RMSE (+0.81%) than the Sips isotherm model. However, this increase is almost negligible, and 

the chemistry model is still considered to be a good predictor of the validation data. The heat of 

adsorption predicted by the model is also used as an inequality constraint in the parameter 
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estimation NLP problem. The constraint ensures that prediction for varying temperatures and 

loadings is within +/-50% of the baseline value published in the literature. The product chain 

length in this work also compares well to chain lengths estimated for other amine-appended 

MOFs. Overall, this model gives better prediction of the experimental data while giving an 

insightful look into the compositions of cooperatively adsorbed species and how they change 

with varying temperatures and pressures which has not been done for previous amine-appended 

isotherm models. In future, this model can be enhanced to provide a much better framework for 

incorporating interactions with other species, mainly water. The model can also be expanded to 

include enthalpy models which will give a better prediction of the heat of adsorption if 

experimental data becomes available. Evaluation of new materials by identifying limiting 

pathways can also be a focus of future work.  
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5. Fixed Bed Contactor Modeling  
 

In this chapter, a fixed bed model is presented to be used in simulation studies of dmpn–

Mg2(dobpdc) and Mg2(dobpdc)(3-4-3). The first-principles model is dynamic, non-isothermal 

and considers 1-D axial variation of important transport properties such as concentration, 

temperature, and loading. For dmpn-Mg2(dobpdc), the dual-site Sips isotherm model and 

kinetic model developed in Chapter 3 are used to predict the mass transfer rate. For 

Mg2(dobpdc)(3-4-3), the extended weighted Langmuir model developed in Chapter 3 is used 

in the prediction of the mass transfer rate. Both models are validated using experimental fixed 

bed breakthrough data. The model is then scaled up and used for thermal management studies to 

investigate the impact of heat removal on adsorption performance. 

 

Portions of this Chapter are published in the following peer-reviewed journal article: 

Hughes, R.; Kotamreddy, G.; Ostace, A.; Bhattacharyya, D.; Siegelman, R. L.; Parker, S. T.; 
Didas, S. A.; Long, J. R.; Omell, B.; Matuszewski, M. Isotherm, Kinetic, Process Modeling, and 
Techno-Economic Analysis of a Diamine-Appended Metal–Organic Framework for CO2 
Capture Using Fixed Bed Contactors. Energy Fuels 2021, 35 (7), 6040–6055. 
https://doi.org/10.1021/acs.energyfuels.0c04359. 
 

 

5.1. Introduction 
 
Fixed beds are well studied in literature [83] and the amine-appended MOF models that currently 

exist in literature all consider fixed bed contactors. Hefti et al. [60] simulate a fixed bed TSA 

cycle using mmen-Mg2(dobpdc) which does not consider axial variation in the bed and assumes 

an isothermal adsorption step. In a later work by the same researchers [64], a partial differential 

equation model was used to optimize their TSA process with respect to various performance 

indicators using a constant mass transfer coefficient for CO2 that was estimated using 

experiments with activated carbons [65,66]. Pai et al. [62] use a fixed bed model to simulate a 

pressure swing adsorption cycle using mmen-Mg2(dobpdc), and assume mass transfer properties 

https://doi.org/10.1021/acs.energyfuels.0c04359
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of a commercial zeolite. Recently, Ga et. al. [63] use a first principles, 1-D partial differential 

equation to simulate isothermal breakthrough curves for 2-ampd-Mg2(dobpdc) but no process 

simulation is performed. These previous studies laid valuable groundwork for exploring the 

practical performance of amine-appended Mg2(dobpdc) materials but given that the structure of 

the appended amine can significantly alter the shape of the CO2 adsorption curves, it is 

challenging to directly apply existing models to new framework variants such as dmpn–

Mg2(dobpdc) or Mg2(dobpdc)(3-4-3). This work adds to these literature studies by developing 

models for dmpn–Mg2(dobpdc) and Mg2(dobpdc)(3-4-3) for the first time. 

 

5.2. Fixed Bed Modeling Equations 
 
In this work, an axial-flow fixed bed is modeled using Aspen Adsorption V9, which contains a 

framework that simultaneously solves sets of equations comprising mass, momentum, and 

energy conservation. For cooling during CO2 capture and heating during desorption, the fixed 

bed reactors were modeled with an embedded heat exchanger with a configuration similar to a 

shell-and-tube heat exchanger. In this configuration, multiple tubes are located inside the reactor, 

with the heat transfer fluid located in the tube side and the shaped adsorbent particles located in 

the shell side surrounding the tubes (see Figure 5.1). For this work, a reactor is defined as the 

equipment that contains the bed of adsorbent particles and the embedded heat exchanger. The 

key assumptions of our model include:  

(1) one-dimensional axial variation of the transport variables (i.e., concentration, temperature, 

velocity, and pressure) and  

(2) negligible spatial variation of the temperature within individual particles. 

Axial dispersion is neglected since in the velocity range considered in this study and due to the 

reasonably fast kinetic and mass transfer rates, convective flux is found to be the dominating 

mechanism. It can be noted that consideration of the axial dispersion term can considerably add 

to the computational expense. Several studies were conducted, and it was observed that if axial 

dispersion is considered, the cycle time differs by less than 0.1% while the CPU time for the 

simulation increases by more than 20% when compared to the model with no axial dispersion. 
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Therefore, the axial dispersion term is not considered. The model also accounts for external and 

internal mass transfer limitations and heat transfer between the gas and solid phase as well as the 

gas phase and embedded exchanger. For both MOFs investigated using the fixed bed model, the 

current version considers that CO2 is the only adsorbed species, and that the presence of O2, N2, 

and H2O does not affect the adsorption equilibrium or mass transfer of CO2. For dmpn-

Mg2(dobpdc), this simplifying assumption is made given that O2 and N2 isotherms for dmpn-

Mg2(dobpdc) show adsorption of these species is negligible while maintaining a high selectivity 

of CO2 [3], and dry and humid breakthrough data for dmpn–Mg2(dobpdc) using 15% CO2 in N2 

are nearly identical [3]. O2 and N2 are also likely to have a negligible effect on the purity of the 

regenerated CO2 stream. Milner et al. [3] show that at compositions typical for coal flue gas, 

CO2 will make up greater than 99% of the total adsorbed content of CO2, O2, and N2 based on 

non-competitive adsorption equilibrium data. The energy released by these species is also 

expected to be negligible due to the small amounts adsorbed when compared to CO2. 

Additionally, although the underlying mechanism of adsorption has been shown to change in the 

presence of water, the CO2 capacity remains the same as that under dry conditions [30]. 

Additionally, extensive experimental work was completed for Mg2(dobpdc)(3-4-3), which 

includes breakthrough and cycling data, to demonstrate the maintained performance under humid 

conditions [29]. 
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Figure 5.1: Diagram of a fixed bed reactor 

 

5.2.1 Bulk Gas Phase Species Balance.  

 

𝜀𝜀𝑏𝑏
𝜕𝜕𝐶𝐶𝑔𝑔,𝑖𝑖

𝜕𝜕𝜕𝜕
= −

𝜕𝜕�𝑣𝑣𝑔𝑔𝐶𝐶𝑔𝑔,𝑖𝑖�
𝜕𝜕𝜕𝜕

− (1 − 𝜀𝜀𝑏𝑏)
6𝑘𝑘𝑓𝑓,𝑖𝑖

𝑑𝑑𝑝𝑝
�𝐶𝐶𝑔𝑔,𝑖𝑖 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� (5.1) 

The gas phase species balance given in Eq. (5.1) relates the accumulation of gaseous species i to 

the axial convection and also the mass transfer of the gas to the solid phase. In this equation, 𝜀𝜀𝑏𝑏 

represents the voidage in the bed, 𝐶𝐶𝑔𝑔,𝑖𝑖 represents the bulk gas phase concentration of species i, 𝑣𝑣𝑔𝑔 

is the superficial gas phase velocity, 𝑘𝑘𝑓𝑓,𝑖𝑖 is the gas-phase film mass transfer coefficient, 𝑑𝑑𝑝𝑝 is the 

diameter of the particle, and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 is the concentration of species i at the surface of the particle. 

The difference between the bulk gas phase concentration and the gas phase concentration at the 

particle surface determines the driving force for gas phase mass transfer. 

5.2.2 Mass Transfer. Due to differences in available data to develop reaction kinetics models and 

differences in the forms of the isotherm models, different mass transfer models are used for 

dmpn-Mg2(dobpdc) and Mg2(dobpdc)(3-4-3). Each model is described below. 
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dmpn-Mg2(dobpdc) Mass Transfer Model: 

For shaped particles that are used in a fixed bed contactor, the mass transfer mechanisms 

captured in the kinetic model developed in Section 3.3 will still be present, with the addition of 

particle diffusion. To account for this additional mechanism, the mass transfer coefficients used 

in the fixed bed reactor model include particle diffusion and reaction kinetics. The overall mass 

transfer resistance from the shaped particles was modeled as the sum of the mass transfer 

resistances due to macropore particle diffusion [83] and the reaction kinetics for both the 

chemisorption and physisorption products, as given in Eqs. (5.2) and (5.3).   

1
𝑘𝑘𝑂𝑂𝑂𝑂

=
𝑟𝑟𝑝𝑝2

15𝜀𝜀𝑝𝑝𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
+

1
𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒

 (5.2) 

1
𝑘𝑘𝑂𝑂𝑂𝑂

=
𝑟𝑟𝑝𝑝2

15𝜀𝜀𝑝𝑝𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒
+

1
𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦

 (5.3) 

𝑘𝑘𝑂𝑂𝑂𝑂 and 𝑘𝑘𝑂𝑂𝑂𝑂 are the overall mass transfer coefficients for the physisorbed and chemisorbed 

products, respectively, and 𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒 and 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are defined in Eqs. (3.25) and (3.26). 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 is the 

effective particle diffusion given by: 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶1(𝑇𝑇𝑠𝑠)0.5 (5.4) 

The parameter 𝐶𝐶1 encapsulates all particle diffusion mechanisms and is estimated using fixed bed 

experimental breakthrough data for each amine-appended MOF of interest. Additionally, 

experimental data for parameter estimation of the effective diffusion model is only available for 

a single temperature, so the model assumes that the effective diffusion will vary with a square 

root relationship to temperature, which is common for Knudsen type diffusion [78]. These 

coefficients are then used in a similar linear driving force model which, for clarity, is given in 

Eq. (5.5). 

𝑑𝑑𝑞𝑞𝐶𝐶𝐶𝐶2
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑂𝑂𝑂𝑂(𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗ − 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒) + 𝑘𝑘𝑂𝑂𝑂𝑂�𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗ − 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦� (5.5) 

The rate of adsorption/desorption in an adsorbent particle is calculated assuming a linear driving 

force: 
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𝑅𝑅𝑖𝑖 =
6𝑘𝑘𝑓𝑓,𝑖𝑖

𝑑𝑑𝑝𝑝
�𝐶𝐶𝑔𝑔,𝑖𝑖 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� = 𝜌𝜌𝑠𝑠

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜕𝜕

 (5.6) 

where 𝑘𝑘𝑓𝑓,𝑖𝑖 is the external (gas film) mass transfer coefficient and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 is the concentration of 

the gas at the particle surface. Eq. (5.6) determines 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 and accounts for any external mass 

transfer resistance across the gas film that surrounds the particle. 

Mg2(dobpdc)(3-4-3) Mass Transfer Model: 

As previously mentioned, a kinetic model for Mg2(dobpdc)(3-4-3) was not developed due to the 

lack of experimental data. Therefore, 𝑘𝑘𝑐𝑐ℎ𝑒𝑒𝑒𝑒 and 𝑘𝑘𝑝𝑝ℎ𝑦𝑦𝑦𝑦 are removed from the mass transfer 

coefficient model and the dominant mass transfer mechanism is considered to be due to particle 

diffusion. Additionally, the extended weighted Langmuir isotherm model doesn’t distinguish 

between chemisorbed CO2 and physisorbed CO2. Therefore, the mass transfer rate is calculated 

using a LDF equation for the total adsorbed CO2. The equations for the Mg2(dobpdc)(3-4-3) 

mass transfer model are shown below. 

𝑑𝑑𝑞𝑞𝐶𝐶𝐶𝐶2
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑂𝑂�𝑞𝑞𝐶𝐶𝐶𝐶2
∗ − 𝑞𝑞𝐶𝐶𝐶𝐶2� (5.7) 

𝑘𝑘𝑂𝑂 =
15𝜀𝜀𝑝𝑝𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒

𝑟𝑟𝑝𝑝2
 (5.8) 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐶𝐶1(𝑇𝑇𝑠𝑠)0.5 (5.9) 

𝑅𝑅𝑖𝑖 =
6𝑘𝑘𝑓𝑓,𝑖𝑖

𝑑𝑑𝑝𝑝
�𝐶𝐶𝑔𝑔,𝑖𝑖 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� = 𝜌𝜌𝑠𝑠

𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜕𝜕

 (5.10) 

 
5.2.3 Gas and Solid Phase Energy Balances. The bulk gas phase energy balance is given in Eq. 

(5.11) and relates the change in temperature of the gas to axial heat convection, gas expansion or 

compression, heat transfer between the gas and solid phase, and heat transfer to the embedded 

heat exchanger. 

𝜀𝜀𝑏𝑏𝜌𝜌𝑔𝑔𝐶𝐶𝑣𝑣,𝑔𝑔
𝜕𝜕𝑇𝑇𝑔𝑔
𝜕𝜕𝜕𝜕

= −𝜌𝜌𝑔𝑔𝐶𝐶𝑣𝑣,𝑔𝑔𝑣𝑣𝑔𝑔
𝜕𝜕𝑇𝑇𝑔𝑔
𝜕𝜕𝜕𝜕

− 𝑃𝑃
𝜕𝜕𝑣𝑣𝑔𝑔
𝜕𝜕𝜕𝜕

− (1 − 𝜀𝜀𝑏𝑏)𝑎𝑎𝑝𝑝ℎ𝑓𝑓�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑠𝑠�

− 𝑎𝑎𝐻𝐻𝐻𝐻ℎ𝐻𝐻𝐻𝐻�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑡𝑡� 
(5.11) 
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Here, 𝜌𝜌𝑔𝑔 is the density of the gas, 𝐶𝐶𝑣𝑣,𝑔𝑔 is the constant volume heat capacity of the gas, 𝑎𝑎𝑝𝑝 is the 

specific surface area of the particle, ℎ𝑓𝑓 is the heat transfer coefficient for gas and solid phase heat 

transfer, 𝑎𝑎𝐻𝐻𝐻𝐻 is the specific surface area for heat transfer with the embedded heat exchanger, ℎ𝐻𝐻𝐻𝐻 

is the heat transfer coefficient for the embedded heat exchanger, and 𝑇𝑇𝑡𝑡 is the temperature of the 

heat exchange medium in the tube. 

The solid phase energy balance is given by: 

𝜌𝜌𝑠𝑠𝐶𝐶𝑝𝑝,𝑠𝑠
𝜕𝜕𝑇𝑇𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝜌𝜌𝑠𝑠(−∆𝐻𝐻𝐶𝐶𝐶𝐶2)
𝑑𝑑𝑞𝑞𝐶𝐶𝐶𝐶2
𝑑𝑑𝑑𝑑

+ 𝑎𝑎𝑝𝑝ℎ𝑓𝑓�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑠𝑠� (5.12) 

The solid phase energy balance relates the change in the temperature of the adsorbent to the heat 

of adsorption and the heat transfer with the gas phase. Here, 𝜌𝜌𝑠𝑠 is the solid density, 𝐶𝐶𝑝𝑝,𝑠𝑠 is the 

heat capacity of the solid, and −∆𝐻𝐻𝐶𝐶𝐶𝐶2 is the heat of adsorption. Here, −∆𝐻𝐻𝐶𝐶𝐶𝐶2 is the isosteric 

heat of adsorption. For many sorbent-based capture studies in literature, the heat of adsorption is 

assumed to be a constant value [60,62,64]. For the dmpn-Mg2(dobpdc) model in this work, a 

constant value is used (see Table 5.1) which is shown to be a reasonable simplifying assumption 

when examining the heat of adsorption data shown in Milner et. al. [3]. For Mg2(dobpdc)(3-4-3), 

heat of adsorption data generated using the Clausius-Clapeyron equation shows 3 distinct loading 

regions with different values for heat of adsorption [29]. To capture this heat of adsorption 

behavior, a surrogate model is used and shown in Eq. (5.13). A more rigorous method to estimate 

the heat of adsorption would be to solve the isosteric heat of adsorption differential equation 

within the fixed bed model, but this can lead to a significant increase in the computation 

complexity of the model. 

−∆𝐻𝐻𝐶𝐶𝐶𝐶2 = ∆𝐻𝐻1 − (∆𝐻𝐻1 − ∆𝐻𝐻2)
𝑒𝑒𝑒𝑒𝑒𝑒�𝑎𝑎1�𝑞𝑞𝐶𝐶𝐶𝐶2

∗ − 𝑏𝑏1��
1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝑎𝑎1�𝑞𝑞𝐶𝐶𝐶𝐶2

∗ − 𝑏𝑏1��
− (∆𝐻𝐻2 − ∆𝐻𝐻3)

𝑒𝑒𝑒𝑒𝑒𝑒�𝑎𝑎2�𝑞𝑞𝐶𝐶𝐶𝐶2
∗ − 𝑏𝑏2��

1 + 𝑒𝑒𝑒𝑒𝑒𝑒�𝑎𝑎2�𝑞𝑞𝐶𝐶𝐶𝐶2
∗ − 𝑏𝑏2��

 (5.13) 

 
Here, ∆𝐻𝐻𝑖𝑖 represent the heats of adsorption for the three specific regions, and 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are shape 

and position parameters used to shift the prediction between the three regions. These parameters 

are optimally estimated using the heat of adsorption data from Kim et. al. [29]. 

5.2.4 Embedded Heat Exchanger. The embedded exchanger was designed considering a 

triangular pitch tube arrangement and the configuration of the exchanger was determined using 

Eqs. (5.14) and (5.15) [84]. 
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𝑁𝑁𝑡𝑡 = (𝐶𝐶𝐶𝐶𝐶𝐶)
𝜋𝜋𝐷𝐷𝑥𝑥2

4𝐴𝐴1
 (5.14) 

𝐴𝐴1 = (𝐶𝐶𝐶𝐶)𝑃𝑃𝑡𝑡2 (5.15) 

Here, 𝐷𝐷𝑥𝑥 is the reactor diameter, 𝑁𝑁𝑡𝑡 is the total number of tubes present in the reactor, 𝐴𝐴1 is the 

cross-sectional area of a repeating unit in the reactor that contains a single tube, and 𝑃𝑃𝑡𝑡 is the 

tube pitch. CTP and CL are the tube count calculation constant and the tube layout constant, 

respectively; for one tube pass, CTP = 0.93 and CL = 0.87 for 30 and 60 equilateral tri pitch. 

Similar configurations can be found in the modeling studies performed by Kim et al. [85] and 

Kotamreddy et al. [86]. 

The heat transfer coefficient between the gas phase and the embedded heat exchanger (ℎ𝐻𝐻𝐻𝐻) was 

calculated using correlations from Penny et al. [87]. 

𝑁𝑁𝑁𝑁𝐻𝐻𝐻𝐻 =
ℎ𝐻𝐻𝐻𝐻𝑑𝑑𝑡𝑡
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

= �0.333 + 0.26𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡
0.533�𝑃𝑃𝑃𝑃0.33 �

𝑑𝑑𝑡𝑡
𝑑𝑑𝑝𝑝
�
0.1

 (5.16) 

Here, 𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 is the Reynolds number as a function of the heat exchanger tube diameter, 𝑑𝑑𝑡𝑡: 

𝑅𝑅𝑅𝑅𝑑𝑑𝑡𝑡 =
𝑑𝑑𝑡𝑡𝜌𝜌𝑔𝑔𝑣𝑣𝑔𝑔
𝜇𝜇𝑔𝑔

 (5.17) 

The parameter Pr is the Prandtl number given by: 

𝑃𝑃𝑃𝑃 =
𝐶𝐶𝑝𝑝,𝑔𝑔𝜇𝜇𝑔𝑔
𝑘𝑘𝑔𝑔

 (5.18) 

and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 is the effective thermal conductivity and is a function of the gas thermal conductivity, 

solid thermal conductivity, and void fraction of the bed. 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑘𝑘𝑔𝑔 �1 −�(1 − 𝜀𝜀𝑏𝑏) +
2�(1 − 𝜀𝜀𝑏𝑏)

1 − 𝜆𝜆𝜆𝜆
∗ �

(1 − 𝜆𝜆)𝛽𝛽
(1 − 𝜆𝜆𝜆𝜆)2 ln �

1
𝜆𝜆𝜆𝜆�

−
𝛽𝛽 + 1

2
−
𝛽𝛽 − 1

1 − 𝜆𝜆𝜆𝜆�
� (5.19) 

𝜆𝜆 =
𝑘𝑘𝑔𝑔
𝑘𝑘𝑠𝑠

 (5.20) 

𝛽𝛽 = 1.25 �
1 − 𝜀𝜀𝑏𝑏
𝜀𝜀𝑏𝑏

�
10
9

 
(5.21) 
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5.2.5 Pressure Drop. The pressure drop across the bed was modeled using the Ergun equation 

[83] (Eq. (5.22)), which relates the change in pressure to the gas superficial velocity, gas 

viscosity, as well as other bed properties such as bed voidage and particle diameter.  

−
𝜕𝜕𝑃𝑃𝑔𝑔
𝜕𝜕𝜕𝜕

=
150 𝜇𝜇𝑔𝑔(1 − 𝜀𝜀𝑏𝑏)2𝑣𝑣𝑔𝑔

𝜀𝜀𝑏𝑏3 𝑑𝑑𝑝𝑝
2 +

1.75(1 − 𝜀𝜀𝑏𝑏)𝜌𝜌𝑔𝑔�𝑣𝑣𝑔𝑔�𝑣𝑣𝑔𝑔
𝜀𝜀𝑏𝑏3 𝑑𝑑𝑝𝑝

 (5.22) 

 
5.2.6 External Heat and Mass Transfer Coefficients. The gas-to-solid heat transfer coefficient 

was modeled using correlations from Cavenati et al. [88] as follows: 

𝑁𝑁𝑁𝑁𝑓𝑓 = 2 + 1.1𝑅𝑅𝑅𝑅0.6𝑃𝑃𝑃𝑃1/3 =
ℎ𝑓𝑓𝑑𝑑𝑝𝑝
𝑘𝑘𝑔𝑔

 (5.23) 

Similarly, the gas-to-solid mass transfer coefficient is given by: 

𝑆𝑆ℎ = 2 + 1.1𝑅𝑅𝑅𝑅0.6𝑆𝑆𝑆𝑆1/3 =
𝑘𝑘𝑓𝑓𝑑𝑑𝑝𝑝
𝐷𝐷𝑔𝑔

 (5.24) 

where Sc is the Schmidt number given by: 

𝑆𝑆𝑆𝑆 =
𝜇𝜇𝑔𝑔
𝜌𝜌𝑔𝑔𝐷𝐷𝑔𝑔

 (5.25) 

 
5.2.7 Breakthrough Time. The breakthrough time for a fixed bed adsorption system is commonly 

used to describe when the solid particles are saturated with CO2 and adsorption is effectively 

finished. In this work, the breakthrough time is defined as the maximum allowable time in which 

the integral CO2 slip, or CO2 that exits the bed, is equal to 10% of the total CO2 that has been fed 

to the bed during the current adsorption step (i.e., 90% integral CO2 capture) [86]. This scenario 

is described by Eq. (5.26). 

 
0.1 ∗ ∫ 𝐹𝐹𝑖𝑖𝑖𝑖 𝑦𝑦𝐶𝐶𝑂𝑂2,𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑

𝑡𝑡0+𝑡𝑡𝑏𝑏
𝑡𝑡0

= ∫ 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦𝐶𝐶𝑂𝑂2,𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑𝑑𝑑
𝑡𝑡0+𝑡𝑡𝑏𝑏
𝑡𝑡0

  (5.26) 

 
Table 5.1 lists model parameters that were set as constants for the dmpn-Mg2(dobpdc). As 

previously discussed, the heat of CO2 adsorption was kept constant and averaged over the range 
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of experimental loading data found in Milner et al. [3]. Similarly, the adsorbent heat capacity is 

based on experimental measurements performed by Milner et al. [3]. Model parameters which 

correspond to the configuration of a shaped particle and its arrangement in a contactor (𝜀𝜀𝑏𝑏, 𝜌𝜌𝑠𝑠, 

and 𝑑𝑑𝑝𝑝) are based on the lab-scale fixed-bed experimental setup of Milner et al. [3] for 

compressed, semi-spherical pellets of dmpn–Mg2(dobpdc). Heat exchanger design variables (𝑑𝑑𝑡𝑡 

and 𝑃𝑃𝑡𝑡) are similar to the literature and result in a specific heat exchange area of 53 m2/m3 which 

is similar to other studies found in literature [86]. 

Table 5.1: dmpn-Mg2(dobpdc) fixed bed reactor model constants 
Parameter Value Units 
Heat of CO2 Adsorption (∆𝐻𝐻𝐶𝐶𝐶𝐶2)  −65 [kJ/mol] 
Adsorbent Heat Capacity (𝐶𝐶𝑝𝑝,𝑠𝑠) 1.457 [kJ·kg-1·K-1] 
Bed Voidage (𝜀𝜀𝑏𝑏) 0.68 [m3 void/m3 bed] 
Density of adsorbent particle (𝜌𝜌𝑠𝑠) 1000 [kg/m3] 
Particle diameter (𝑑𝑑𝑝𝑝) 525 [µm] 
Diameter of heat exchanger tubes (𝑑𝑑𝑡𝑡) 1 [inches] 
Heat exchanger tube pitch (𝑃𝑃𝑡𝑡) 0.04 [m] 

 

Table 5.2 shows the fixed bed model constants for Mg2(dobpdc)(3-4-3). The adsorbent heat 

capacity is taken to be the same as dmpn-Mg2(dobpdc) due to a lack of data. The bed voidage, 

particle density, and particle diameter are taken from the experimental breakthrough data from 

Kim et. al. [29]. For the Mg2(dobpdc)(3-4-3) model, the heat of adsorption is predicted using a 

surrogate model (see Eq. (5.13)) and the configuration of the heat exchanger is optimized and 

therefore are not considered model constants. 

Table 5.2: Mg2(dobpdc)(3-4-3) fixed bed reactor model constants 
Parameter Value Units 
Adsorbent Heat Capacity (𝐶𝐶𝑝𝑝,𝑠𝑠) 1.457 [kJ·kg-1·K-1] 
Bed Voidage (𝜀𝜀𝑏𝑏) 0.73 [m3 void/m3 bed] 
Density of adsorbent particle (𝜌𝜌𝑠𝑠) 986 [kg/m3] 
Particle diameter (𝑑𝑑𝑝𝑝) 525 [µm] 

 

5.3. Fixed Bed Model Validation and Parameter Estimation 
 
The fixed bed models presented in this Chapter are validated using experimental breakthrough 

data. Additionally, the lumped mass transfer parameter, 𝐶𝐶1, is estimated for compressed, semi-
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spherical pellets of each amine-appended MOF. Breakthrough experiment details can be found in 

the corresponding publication for each MOF (Milner et. al. [3] for dmpn-Mg2(dobpdc) and Kim 

et. al. [29] for Mg2(dobpdc)(3-4-3)). Both breakthrough experiments are assumed to operate 

isothermally so thermal fronts are expected to be negligible. The isothermal assumption is also 

corroborated with temperature measurements of the outlet gas which show almost no change (<1 

°C) from the design/bed temperature throughout the entire length of the experiment. The results 

for the parameter estimation of the Mg2(dobpdc)(3-4-3) heat of adsorption surrogate model is 

also presented in this section. 

 
5.3.1. dmpn-Mg2(dobpdc) Results. Experimental breakthrough conditions for dmpn-Mg2(dobpdc) 

are shown inTable 5.3. The effective diffusion, Deff, for the framework particles was calculated 

using Eq. (5.4) and a value of C1 = 4.11×10−12 m2·K-0.5·s-1, which was determined using a least 

squares estimator and a quasi-Newton based algorithm available in Aspen Adsorption. As shown 

in Figure 5.2, the fixed bed model reproduces both the breakthrough time and the shape of the 

breakthrough curve, confirming that the bed adsorption capacity and the kinetics of the system 

under these conditions are well predicted by the model. 

Table 5.3: Experimental breakthrough conditions used to collect data to validate the dmpn-
Mg2(dobpdc) fixed bed model. 

Variable Value Units 
Bed Length 13.34 [cm] 
Bed Diameter  0.46 [cm] 
Temperature  40 [°C] 
Pressure  1 [bar] 
Volumetric Flow Rate  10 [sccm] 
yCO2 0.15 [mol fraction] 
yN2 0.85 [mol fraction] 
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Figure 5.2: Comparison of breakthrough model prediction (black trace) and experimental 
breakthrough data (blue trace). The normalized outlet concentration, C/C0, represents the 

concentration of gas phase CO2 exiting the bed relative to gas phase CO2 entering the bed (root 
mean squared error = 0.051). 

 

5.3.2. Mg2(dobpdc)(3-4-3) Results. Figure 5.3 shows the prediction of the heat of adsorption 

surrogate model for Mg2(dobpdc)(3-4-3) to data from Kim et. al. [29].  Parameter estimation was 

performed using the parmest package [89] available in Pyomo [79], and the estimated parameters 

are shown in Table 5.4. 

 

 
Figure 5.3: Fit of the Mg2(dobpdc)(3-4-3) heat of adsorption surrogate model. Open circles 

represent fitting data and solid line represents model prediction. 
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Table 5.4: Estimated parameters for Mg2(dobpdc)(3-4-3) heat of adsorption surrogate model. 
Parameter Estimated Value Units 

𝑎𝑎1 21.68  [g/mmol] 

𝑎𝑎2 29.10 [g/mmol] 

𝑏𝑏1 1.59 [mmol/g] 

𝑏𝑏2 3.39  [mmol/g] 

∆𝐻𝐻1 98.76 [kJ/mol] 

∆𝐻𝐻2 77.11 [kJ/mol] 

∆𝐻𝐻3 21.25 [kJ/mol] 

 
Experimental breakthrough conditions for Mg2(dobpdc)(3-4-3) are shown in Table 5.5, and 

Figure 5.4 shows that the fixed bed model is able to accurately predict the experimental data. The 

results for the parameter estimation problem are shown in Table 5.6. In addition to 𝐶𝐶1, the inlet 

CO2 mole fraction of the simulated flue gas was estimated to better match the prediction of the 

breakthrough position to the experimental data as that is dominated by the capacity of the 

adsorbent rather than the kinetics. Observed and initial values are also shown in Table 5.6. The 

estimated inlet CO2 mole fraction shows only a small change from the observed value, 4% to 

3.3%. For Mg2(dobpdc)(3-4-3), the initial 𝐶𝐶1 value used in the optimization problem is the 

estimated value for dmpn-Mg2(dobpdc) and the estimated values for both of these sorbents are 

within the same order of magnitude which improve our confidence in the estimates. Again, the 

parameter estimation problem was solved using a least squares estimator and a quasi-Newton 

based algorithm available in Aspen Adsorption. 

Table 5.5: Experimental breakthrough conditions used to collect data to validate the 
Mg2(dobpdc)(3-4-3) fixed bed model. 

Variable Value Units 

Bed Length 15.24 cm 
Bed Diameter 0.46 cm 
Temperature  100 °C 
Pressure  1.02 bar 
Volumetric Flow Rate  30 sccm 
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Figure 5.4: Comparison of Mg2(dobpdc)(3-4-3) breakthrough model prediction (black trace) and 

experimental breakthrough data (blue trace). The normalized outlet concentration, F/F0, 
represents the concentration of gas phase CO2 exiting the bed relative to gas phase CO2 entering 

the bed. 
 

Table 5.6: Mg2(dobpdc)(3-4-3) fixed bed parameter estimation results 
Variable Observed/Initial Estimated Value 

𝑦𝑦𝐶𝐶𝐶𝐶2,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 0.04 0.033 

𝐶𝐶1 [𝑚𝑚2𝐾𝐾−0.5𝑠𝑠−1] 4.11*10-12 3.42*10-12 
 

5.4. Thermal Management Studies 

 
In this section, thermal management studies using the dmpn-Mg2(dobpdc) fixed bed model are 

performed. Adsorption of CO2 in dmpn–Mg2(dobpdc) is highly exothermic, and the heat released 

upon CO2 uptake, coupled with the low material heat capacity, is expected to result in large 

temperature spikes during the adsorption step. Additionally, CO2 adsorption isobars for dmpn–

Mg2(dobpdc) [3] indicate that the breakthrough curves will be highly sensitive to temperature. In 

order to investigate the effects of temperature in greater detail, we simulated isothermal and 

adiabatic cases using the process conditions outlined in Table 5.7. The isothermal case study 

assumes perfect removal of the heat generated during adsorption, whereas no heat removal is 

considered for the adiabatic case study. As shown in Figure 5.5, the breakthrough time in the 

isothermal scenario is much higher than in the more realistic adiabatic case (80.4 versus 22.7 

min, respectively); in other words, achieving perfect heat removal would increase the amount of 
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captured CO2 by nearly a factor of four. The reduced performance in the adiabatic case can be 

understood by examining the bed temperature and loading as a function of time (Figure 5.6). 

Here, large temperature spikes of ~40 °C lead to poor CO2 loading throughout the majority of the 

bed. For example, at the bed entrance, initial rapid loading of CO2 causes a temperature spike 

that results in a much slower continued rate of CO2 uptake. Incoming flue gas serves to gradually 

cool the entrance after this spike, but the uptake rate never achieves the initial value. Similarly, 

temperature spikes at the middle and end of the bed result in a complete plateau in CO2 uptake at 

a low loading. These results indicate that efficient heat removal during adsorption would be 

critical for realizing the potential of dmpn–Mg2(dobpdc) in a real-world process. 

 

 
Figure 5.5: Modeled breakthrough curves for isothermal and adiabatic case studies discussed in 
the text. The normalized outlet concentration C/C0 represents the concentration of gas phase CO2 

exiting the bed relative to gas phase CO2 entering the bed. Vertical lines correspond to the 
breakthrough times for each scenario. 
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Figure 5.6: Dynamic loading (upper) and temperature (lower) profiles at the entrance, middle, 

and exit of the bed for the adiabatic case study. 
 

Table 5.7: Process conditions for thermal management case studies. 
Variable Value Units 
Flue Gas Pressure 1.1 [bar] 
Flue Gas Temperature 25 [°C] 
Flue Gas Flow rate  120 [mol/s] 
Flue Gas Composition    

yCO2 0.132 [mol fraction] 
yH2O 0.055 [mol fraction] 
yN2 0.813 [mol fraction] 

Bed Length  10 [m] 
Bed Diameter  3 [m] 
Initial Bed Temperature  25 [°C] 
Initial Bed Loading  0 [mol/kg] 

 

5.5. Conclusions 
 
A detailed, dynamic axial-flow fixed bed model for two amine-appended MOFs, dmpn–

Mg2(dobpdc) and Mg2(dobpdc)(3-4-3), was developed and validated against experimental 

breakthrough data. Using this model, isothermal and adiabatic systems were analyzed to 
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investigate how temperature effects and effective heat removal will impact the adsorption 

performance. The results indicate that effective removal of the heat generated during adsorption 

can reduce the number of adsorbent beds and subsequently the capital costs of the system by a 

factor of four. The fixed bed model developed in this Chapter can be used to simulate and 

analyze industrial scale capture processes. 
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6. Moving Bed Contactor Modeling 
 

In this chapter, a moving bed contactor model is presented to be used in simulation studies of 

dmpn-Mg2(dobpdc). The first-principles model is dynamic, non-isothermal and considers 1-D 

axial variation of important transport properties such as concentration, temperature, and loading. 

Two versions of the model are developed. Version 1 uses the dual-site Sips isotherm model 

developed in Chapter 3 to calculate the adsorption equilibrium, and Version 2 uses the 

chemistry-based isotherm model developed in Chapter 4. Both versions use the mass transfer 

model for spherical pellets which has been developed and validated using fixed bed experimental 

data, as shown in Chapter 5. Steady-state and dynamic sensitivity studies are then performed to 

better understand the behavior of the moving bed system. 

 

6.1. Introduction 
 

Contactor technology plays a key role in obtaining the maximal performance of solid sorbents 

[4]. While the contactor technology for solvent-based capture is often absorber/stripper, selection 

of the appropriate contactor technology for solid-based capture is not straightforward. Optimal 

selection of the contactor technology among the potential technologies- such as fixed beds of 

various types, moving beds and fluidized beds- not only requires consideration of material 

characteristics such as attrition resistance but also satisfactory evaluation of performance 

characteristics of the contactor [4]. Therefore, detailed modeling of the contactor technology is 

extremely important when designing and evaluating novel capture processes. Few models exist 

in literature for the contactors for the amine-appended MOF capture processes [60,62–64]. All of 

these studies consider fixed bed processes which can suffer from drawbacks which include 

complicated cyclic control and operation, and lower driving forces for mass and heat transfer. As 

highlighted in the thermal management studies presented in Section 5.4, efficient thermal 

management is critical. Efficient heat removal/addition is challenging in fixed beds due to 

limiting heat transfer coefficient between the gas phase and stagnant solid phase in a fixed bed. 

The thermal management studies also show that a considerable amount of the bed may be 

underutilized when the breakthrough happens in a fixed bed design. Obviously, underutilization 
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of the bed material will lead to higher capital cost. Furthermore, recovery of the residual heat 

from the solids at the end of desorption and utilization of that heat for pre-heating the solids at 

the end of adsorption step before solids undergo desorption are crucial for reducing the energy 

penalty. Moving beds can address, to a great extent, many of the drawbacks of the fixed beds 

processes mentioned above. First and foremost, as moving beds (MBs) operate under much 

milder flow regime compared to the fluidized beds, MBs have great potential for MOFs, that 

generally, cannot withstand strong attrition. MBs continuously operate with solid particles 

entering at the top of the bed while gas enters at the bottom and flows upward through the 

moving solid particles (see Figure 6.1). This counter-current flow pattern results in large driving 

forces for mass and heat transfer. The MB technology was initially used in drying processes, but 

has garnered attention in many industries, most notably in the petrochemical industry [90]. 

Experimental studies exist in literature which demonstrate the application of the MB  technology 

to carbon capture [91,92]. Ku et al. [91] studied the MB process for methane combustion by 

performing experiments in a lab-scale reactor. Okumura et al. [92] performed pilot scale tests to 

capture CO2 from the exhaust gas of a 7800 kW gas engine and demonstrated the feasibility of 

the MB  technology. Some of the earliest mathematical models of the MBs were developed for 

coal gasifiers [93–96]. There exist others works in the literature, experimental and 

computational, that have demonstrated the potential of the MB process for  carbon capture 

directly such as by using a sorbent or indirectly such as through chemical looping combustion 

[85,97–102]. To the best of our knowledge, there is no paper in the open literature on the 

modeling of the MB-based CO2 capture process using amine-appended MOFs. Furthermore, the 

existing literature for the MB-based CO2 capture processes has mainly evaluated energetics, 

recovery, and efficiency, but not the complete economic analysis considering capital and 

operating costs. Techno-economic process analysis is necessary for evaluating the critical 

tradeoff between capital and operating expenditures. 
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Figure 6.1: Diagram of a moving bed reactor (Kim et al., 2016) [85] 

 
In this work, two versions of the moving bed model are developed. Both versions contain the 

same mass balances, energy balances, momentum balances, and auxiliary equations but differ in 

the submodel used to predict the adsorption equilibrium of dmpn-Mg2(dobpdc). In the first 

version of the model, referred to simply as “Version 1”, the dual-site Sips model presented in 

Chapter 3 is used, and in the second version of the model, referred to simply as “Version 2”, the 

chemistry-based isotherm model presented in Chapter 4 is used. 

 

6.2. Moving Bed Modeling Equations 
 
The moving bed model developed in this work closely follows the model developed by Kim et 

al. [85] and is implemented in Aspen Custom Modeler which contains a framework that 

simultaneously solves the set of equations comprising mass, momentum, and energy 

conservation. Similar to the fixed bed contactor, the moving bed contactor considers a shell-and-

tube type embedded heat exchanger to supply/remove heat from the system. The key 

assumptions considered in the modeling of moving bed reactor are as follows: 

• Only axial distribution of the process variables is considered. 

• Particles flow uniformly throughout the bed with constant voidage and velocity. 
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• Radial variation due to particle distribution is ignored. 

• Temperature variation within the particle is neglected.  

• Particle attrition is negligible. 

Similar to the fixed bed model developed in this work, it is assumed that the presence of other 

species typically found in flue gas will not affect the mass transfer or equilibrium of CO2 on 

dmpn-Mg2(dobpdc). 

 
6.2.1 Bulk Gas Phase Species Balance 

 

𝜀𝜀𝑏𝑏
𝜕𝜕𝐶𝐶𝑔𝑔,𝑖𝑖

𝜕𝜕𝜕𝜕
= 𝜀𝜀𝑏𝑏𝐷𝐷𝑧𝑧

𝜕𝜕2𝐶𝐶𝑔𝑔,𝑖𝑖

𝜕𝜕𝜕𝜕2
−
𝜕𝜕�𝑣𝑣𝑔𝑔𝐶𝐶𝑔𝑔,𝑖𝑖�

𝜕𝜕𝜕𝜕
− (1 − 𝜀𝜀𝑏𝑏)𝜌𝜌𝑝𝑝

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝜕𝜕

 (6.1) 

 
In the gas phase species balance presented in Eq. (6.1), 𝜀𝜀𝑏𝑏 represents the voidage in the bed, 𝐶𝐶𝑔𝑔,𝑖𝑖 

represents the concentration of species i, 𝐷𝐷𝑧𝑧 is the effective axial dispersion coefficient, 𝑣𝑣𝑔𝑔 is the 

superficial gas velocity, 𝜌𝜌𝑝𝑝 is the particle density, and 𝜕𝜕𝑄𝑄𝑖𝑖 𝜕𝜕𝜕𝜕⁄  is the rate of mass transfer 

between the gas phase and solid particles. 

In this work, the Peclet number (𝑃𝑃𝑃𝑃′) is used for calculating the effective axial dispersion 

coefficient (Eq. (6.2)). 

1
𝑃𝑃𝑃𝑃′

=
𝐷𝐷𝑧𝑧
𝑣𝑣𝑑𝑑𝑝𝑝

=
20

𝑅𝑅𝑅𝑅𝑝𝑝𝑆𝑆𝑆𝑆𝑝𝑝
+

1
2

 (6.2) 

 
Here, 𝑣𝑣 is the particle velocity and 𝑅𝑅𝑅𝑅𝑝𝑝 and 𝑆𝑆𝑆𝑆𝑝𝑝 are the particle Reynolds and Schmidt numbers, 

respectively. 

 
6.2.2 Solid Phase Species Balance.  

(1 − 𝜀𝜀𝑏𝑏)𝜌𝜌𝑝𝑝
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜕𝜕

= 𝐽𝐽𝑠𝑠
𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝜕𝜕

+ (1 − 𝜀𝜀𝑏𝑏)𝜌𝜌𝑝𝑝
𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝜕𝜕

 (6.3) 

 
The solid phase species balance is given by Eq. (6.3) where 𝑞𝑞𝑖𝑖 is the particle loading of species i 

and 𝐽𝐽𝑠𝑠 is the solid flux which is assumed constant in this work.  
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6.2.3 Mass Transfer. The rate of the molar amount of CO2 (𝑄𝑄𝐶𝐶𝐶𝐶2) transferred between the gas 

and solid phases is assumed to be the sum of the molar amount of chemisorbed species (𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒) 

and phyisorbed species (𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦) and is given below: 

 
𝑑𝑑𝑄𝑄𝐶𝐶𝐶𝐶2
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑

  (6.4) 

𝑑𝑑𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑂𝑂𝑂𝑂[𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗ − 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒] (6.5) 

𝑑𝑑𝑑𝑑𝑝𝑝ℎ𝑦𝑦𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑂𝑂𝑂𝑂�𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗ − 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦� (6.6) 

 
Here, 𝑘𝑘𝑂𝑂𝑂𝑂 and 𝑘𝑘𝑂𝑂𝑂𝑂 are the overall mass transfer coefficients that are previously used for the fixed 

bed contactor model in Chapter 5 and described in Eqs. (5.2) and (5.3).  

 Version 1: 

In Version 1 of the moving bed model, 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗  and 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗  are the equilibrium loadings predicted 

by the dual-site Sips model developed in Chapter 3.2 and shown in Eqs. (3.8) and (3.9). 

 Version 2: 

In Version 2 of the moving bed model, 𝑞𝑞𝑐𝑐ℎ𝑒𝑒𝑒𝑒∗  and 𝑞𝑞𝑝𝑝ℎ𝑦𝑦𝑦𝑦∗  are the equilibrium loadings predicted 

by the chemistry-based model developed in Chapter 4.2 and shown in Equations (4.15) and 

(4.16), respectively. 

Similar to the fixed bed model, the rate of adsorption/desorption in an adsorbent particle is 

calculated assuming a linear driving force: 

𝑅𝑅𝑖𝑖 =
6𝑘𝑘𝑓𝑓,𝑖𝑖

𝑑𝑑𝑝𝑝
�𝐶𝐶𝑔𝑔,𝑖𝑖 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖� = 𝜌𝜌𝑝𝑝

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝜕𝜕

 (6.7) 

where 𝑘𝑘𝑓𝑓,𝑖𝑖 is the external (gas film) mass transfer coefficient and 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 is the concentration of 

the gas at the particle surface. Eq. (6.7) determines 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑖𝑖 and accounts for any external mass 

transfer resistance across the gas film that surrounds the particle. 
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6.2.4 Energy Balances 

 

𝜀𝜀𝑏𝑏𝜌𝜌𝑔𝑔𝐶𝐶𝑝𝑝,𝑔𝑔
𝜕𝜕𝑇𝑇𝑔𝑔
𝜕𝜕𝜕𝜕

= −𝜌𝜌𝑔𝑔𝐶𝐶𝑝𝑝,𝑔𝑔𝑣𝑣𝑔𝑔
𝜕𝜕𝑇𝑇𝑔𝑔
𝜕𝜕𝜕𝜕

− 𝑃𝑃
𝜕𝜕𝑣𝑣𝑔𝑔
𝜕𝜕𝜕𝜕

− (1 − 𝜀𝜀𝑏𝑏)𝑎𝑎𝑝𝑝ℎ𝑔𝑔𝑔𝑔�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑠𝑠� (6.8) 

 
The gas phase energy balance is given in Eq. (6.8). Here, 𝑇𝑇𝑔𝑔 represents the temperature of the gas 

phase, 𝐶𝐶𝑝𝑝,𝑔𝑔 is the heat capacity of the gas phase, 𝑎𝑎𝑝𝑝 is the specific particle surface area, and ℎ𝑔𝑔𝑔𝑔 

is the heat transfer coefficient between the gas phase and the solid phase.  

 

(1 − 𝜀𝜀𝑏𝑏)𝜌𝜌𝑠𝑠𝐶𝐶𝑝𝑝,𝑠𝑠
𝜕𝜕𝑇𝑇𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝐶𝐶𝑝𝑝,𝑠𝑠𝐽𝐽𝑠𝑠
𝜕𝜕𝑇𝑇𝑠𝑠
𝜕𝜕𝜕𝜕

+ (1 − 𝜀𝜀𝑏𝑏)𝑎𝑎𝑝𝑝ℎ𝑔𝑔𝑔𝑔�𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑠𝑠� 

+
𝜋𝜋𝐷𝐷𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏

ℎ𝑡𝑡(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑠𝑠) + ΔH𝐶𝐶𝐶𝐶2𝜌𝜌𝑠𝑠
𝜕𝜕𝑄𝑄𝐶𝐶𝐶𝐶2
𝜕𝜕𝜕𝜕

 

(6.9) 

 
The solid phase energy balance is given in Eq. (6.9). Here, 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the number of heat 

exchanger tubes in the moving bed reactor, ℎ𝑡𝑡 is the heat transfer coefficient between the solid 

phase and heat exchanger tube wall, and 𝑇𝑇𝑤𝑤 is the temperature of the tube wall. The last term in 

the solid phase energy balance accounts for the adsorption heat where ΔH𝐶𝐶𝐶𝐶2 is the heat of 

adsorption. 

The energy balance across the tube wall gives the following equation: 

𝜋𝜋(𝑑𝑑𝑡𝑡−2𝑤𝑤𝑡𝑡ℎ𝑥𝑥)𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑤𝑤𝑤𝑤𝑤𝑤(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 𝜋𝜋𝑑𝑑𝑡𝑡𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑡𝑡(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑠𝑠) = 0 (6.10) 

 
The energy balance for the tube side fluid is written in terms of enthalpy and is shown in Eq. 

(6.11). 

𝐹𝐹𝑡𝑡
𝜕𝜕𝐻𝐻𝑡𝑡
𝜕𝜕𝜕𝜕

− 𝜋𝜋(𝑑𝑑𝑡𝑡−2𝑤𝑤𝑡𝑡ℎ𝑥𝑥)𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑤𝑤𝑤𝑤𝑤𝑤(𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) = 0 (6.11) 

 
Here, 𝐹𝐹𝑡𝑡 is the flow of the tube side fluid, 𝐻𝐻𝑡𝑡 is the enthalpy of the tube side fluid, and ℎ𝑤𝑤𝑤𝑤𝑤𝑤 is 

the heat transfer coefficient between the tube fluid and the inner side of the tube.  

6.2.5 Heat Transfer Coefficients. Heat transfer coefficients used are taken from Kim et al. [85] 

and are based on fluidized bed correlations found in literature [78,103,104]. The gas-to-solid ℎ𝑔𝑔𝑔𝑔, 
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wall-to-gas ℎ𝑤𝑤𝑤𝑤, wall-to-solid ℎ𝑤𝑤𝑤𝑤, and steam-wall ℎ𝑡𝑡 heat transfer coefficients are described in 

the equations below: 

 

𝑁𝑁𝑁𝑁 =
ℎ𝑤𝑤𝑤𝑤𝑑𝑑𝑝𝑝
𝑘𝑘𝑔𝑔

= 0.009𝐴𝐴𝐴𝐴1 2� 𝑃𝑃𝑃𝑃1 3�  (6.12) 

𝑁𝑁𝑁𝑁𝑝𝑝 =
ℎ𝑔𝑔𝑔𝑔𝑑𝑑𝑝𝑝
𝑘𝑘𝑔𝑔

= 2.0 + 1.1𝑃𝑃𝑃𝑃1 3� 𝑅𝑅𝑅𝑅𝑝𝑝
3
5�  (6.13) 

𝑘𝑘𝑝𝑝𝑝𝑝  =  (3.58 − 2.5𝑒𝑒)𝑘𝑘𝑔𝑔 �
𝑘𝑘𝑠𝑠

𝑘𝑘𝑔𝑔� �
0.46(1−𝑒𝑒)

 (6.14) 

 ℎ𝑤𝑤𝑤𝑤  =  2 �𝑘𝑘𝑝𝑝𝑝𝑝𝜌𝜌𝑠𝑠𝐶𝐶𝑝𝑝,𝑠𝑠
1 − 𝑒𝑒
𝜋𝜋𝜋𝜋 �

1
2�

 (6.15) 

  ℎ𝑡𝑡  =  𝑓𝑓𝑏𝑏 ℎ𝑤𝑤𝑤𝑤 + (1 −  𝑓𝑓𝑏𝑏 ) ℎ𝑤𝑤𝑤𝑤  (6.16) 

 
where 𝑘𝑘𝑔𝑔 and 𝑘𝑘𝑠𝑠 denote the gas and sorbent thermal conductivities, respectively, 𝐴𝐴𝐴𝐴 is the 

Archimedes number, 𝑃𝑃𝑃𝑃 is the Prandtl number, 𝑘𝑘𝑝𝑝𝑝𝑝 is the bed’s thermal conductivity at 

minimum fluidization velocity, 𝑓𝑓𝑏𝑏 is the fraction of time that the heat exchanger surface contacts 

the solids, and τ is the average residence time of the solids contacting the heat exchanger surface. 

The parameters 𝑓𝑓𝑏𝑏 and τ are given by the following relations: 

 

 𝑓𝑓𝑏𝑏 = 0.33 �𝑣𝑣𝑚𝑚𝑚𝑚
2 �

(𝑓𝑓𝑛𝑛 − 𝑎𝑎ℎ)2

9.8𝑑𝑑𝑝𝑝
�
0.14

� (6.17) 

 𝑓𝑓𝑛𝑛 =
𝑣𝑣𝑔𝑔
𝑣𝑣𝑚𝑚𝑚𝑚

 (6.18) 

𝜏𝜏 = 0.44 ��
9.8𝑑𝑑𝑝𝑝

𝑣𝑣𝑚𝑚𝑚𝑚
2 (𝑓𝑓𝑛𝑛 − 𝑎𝑎ℎ)2�

0.14

�
𝑑𝑑𝑝𝑝
𝑑𝑑𝑜𝑜
�
0.225

� (6.19) 

 
6.2.6 Auxiliary Equations. The behavior of a falling particle in the moving bed can be estimated 

by analogy to a fluidized bed. For maintaining the bed in the moving bed region, the internal gas 
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velocity through the bed should be less than the minimum fluidization velocity, 𝑣𝑣𝑚𝑚𝑚𝑚, given by 

the equation below from Kunii and Levenspiel [105]. 

1.75
𝜓𝜓𝜀𝜀𝑚𝑚𝑚𝑚

3 �
𝑑𝑑𝑝𝑝𝑢𝑢𝑚𝑚𝑚𝑚𝜌𝜌𝑔𝑔

𝜇𝜇𝑔𝑔
�
2

+
150�1 − 𝜀𝜀𝑚𝑚𝑚𝑚�

𝜓𝜓2𝜀𝜀𝑚𝑚𝑚𝑚
3 �

𝑑𝑑𝑝𝑝𝑢𝑢𝑚𝑚𝑚𝑚𝜌𝜌𝑔𝑔
𝜇𝜇𝑔𝑔

� =
𝑑𝑑𝑝𝑝3𝜌𝜌𝑔𝑔�𝜌𝜌𝑠𝑠 − 𝜌𝜌𝑔𝑔�𝑔𝑔

𝜇𝜇𝑔𝑔2
  (6.20)  

 
Therefore, the following constraint is satisfied at all positions in the bed. 

𝑣𝑣𝑔𝑔 < 𝑣𝑣𝑚𝑚𝑚𝑚 (6.21)  

 
The embedded exchanger configuration and equations used in the moving bed model are the 

same that are used in the fixed bed model in Chapter 5 and are given in Eqs. (5.14) and (5.15).  

 

6.3. Modeling Results 
 
All results in this Section are generated using Version 1 of the moving bed model which uses the 

dual-site Sips model to calculate the adsorption equilibrium.  

 
6.3.1 Steady-State Behavior. To analyze the behavior of many important process variables, 

sensitivity studies for important operating conditions are performed in this section. Base case 

operating and design conditions are listed in Table 6.1. 
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Table 6.1: Base case design and operating conditions for moving bed modeling studies 
Process Condition Value Units 

Adsorber 
Lean Solids Temperature 25 °C 
Lean Solids Flow 91,266 [kg/hr] 
Flue Gas Composition (mol fraction)   

CO2 0.147 [-] 
H2O 0.026 [-] 
N2 0.827 [-] 

Flue Gas Flow 1669 [kmol/hr] 
Cooling Water Temperature 20 °C 
Cooling Water Flow 20,000 [kmol/hr] 

Desorber 
Rich Solids Temperature 110 °C 
Rich Solids Flow 588,914 [kg/hr] 
Direct Steam Temperature 110 °C 
Direct Steam Flow 182 [kmol/hr] 
Indirect Steam Temperature 139 °C 

Design Conditions 
CO2 Capture 90% [-] 
Lean Solids Loading 0.3 [mol/kg] 
Cooling water temperature change 10 °C 
Maximum gas velocity relative to minimum fluidization 
velocity 90% [-] 

 

Figure 6.2 shows how the loading and gas CO2 composition profiles in a moving bed adsorber 

change with a decrease in solids flow. It should be noted that operating conditions are kept at the 

base case value unless otherwise specified which results in the design conditions not being 

constantly maintained for the single variable sensitivity studies performed in this section. For the 

base case, solids flow was set so CO2 capture was 90% so a decrease in solids flow would result 

in a decrease in CO2 capture, which is shown in the figure. For a 50% decrease in solids flow, 

CO2 capture decreases to 38%. Also as expected, a smaller amount of solids flowing through the 

adsorber would result in a sharper rise in solids loading, which is shown in Figure 6.2. Similar to 

the base case, adsorption for the new case mainly occurs in the top section of the bed and again 

results in solids exiting the bed that are in equilibrium with the bed temperature and flue gas 

composition at the bottom of the bed. Additional base case profiles can be found in the 

Appendix. 
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Figure 6.2: Adsorber steady-state response to a 50% decrease in solids flow. z/L represents the 

normalized length of the bed with 0 corresponding to the bottom of the bed. 
 
 
Figure 6.3 shows a similar analysis for a moving bed desorber. For a larger flow of solids, 

residence time decreases which results in a smaller loading change when compared to the base 

case. However, a larger flow of solids results in more CO2 being released which in turn results in 

a higher composition of CO2 in the gas phase. The opposite is true for a decrease in solids flow. 

A longer residence time results in a larger change in solids loading but a smaller amount of CO2 

being regenerated into the gas phase. The lean loading for the base case is 0.3 mol/kg while the 

lean loading for the 50% increase and the 50% decrease is 0.61 mol/kg and 0.04 mol/kg, 

respectively. Additional base case profiles can be found in the Appendix. 

 

 
Figure 6.3: Desorber steady-state response to a +/-50% change in solids flow. z/L represents the 

normalized length of the bed with 0 corresponding to the bottom of the bed. 
 
6.3.2 Dynamic Behavior. Dynamic responses of the adsorber and desorber to an input 

disturbance are shown in the section below. To simulate the response, the model was solved for 
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the steady-state conditions listed in Table 6.1 and then the input disturbance of interest was 

introduced as a 30 second ramp change.   

 
Figure 6.4: Adsorber lean loading input disturbance. 

 
 

 
Figure 6.5: Dynamic adsorber response of instantaneous CO2 capture (left) and rich CO2 loading 

(right). 
 

 
Figure 6.4 shows the lean loading input disturbance used for the adsorber dynamic analysis. The 

lean loading increases to a value of 0.45 mol/kg, a 50% increase from the base case, then, once 

the process reaches the new steady-state, is returned to the base case value. Figure 6.5 shows the 

dynamic response of the CO2 capture and rich loading. Due to long solids residence times, the 

adsorber takes ~125 mins to reach a new steady-state. The increase in lean loading causes a 

decrease in capture due to the reduction of CO2 capacity in the solids. For the 50% increase in 

lean loading, the capture percentage approaches a new steady-state value around 84%. When the 
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loading returns to the base case value, the capture percentage returns to its base case value of 

90%. The rich loading of the solids shows very little change during this dynamic case. This can 

be attributed to the effective cooling from the embedded exchanger and residence times that are 

long enough so that the solids reach equilibrium before they exit the bed. 

 

 
Figure 6.6: Desorber rich solids temperature input disturbance. 

 
 

 
Figure 6.7: Dynamic desorber response of lean CO2 loading (left) and gas phase CO2 mole 

fraction of the exit gas (right). 
 

Figure 6.6 shows the input disturbance of the rich solids temperature. The temperature decreases 

from its base case value of 110°C by to 90°C, then, once the process reaches the new steady-

state, is returned to the base case value. As shown in Figure 6.7, the change in temperature elicits 

very little response from the lean loading and exiting gas phase composition. This lack of 

response can be attributed to two factors, the small difference of the CO2 capacity of the 
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adsorbent from 90°C to 110°C and the dominating heat transfer from the embedded exchanger. 

The low CO2 capacity of the adsorbent over 90°C results in small changes in the driving force for 

mass transfer, and the large amount of heat transferred from condensing steam in the embedded 

exchanger means that the solids still reach high temperatures before exiting the bed.  

 

6.4. Conclusions 
 
A detailed, dynamic, pressure driven moving bed contactor model with axial variation for dmpn-

Mg2(dobpdc) was developed in this Chapter. Two version of the model exist, Version 1 uses the 

Sips isotherm model developed in Chapter 3.2 and Version 2 uses the chemistry-based model 

developed in Chapter 4 to calculate the CO2 adsorption capacity as a function of temperature and 

pressure. Steady-state and dynamic sensitivity studies are performed to better understand the 

behavior of the moving bed process. The model developed here can be used to simulate and 

analyze industrial scale capture processes. 
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7. Techno-economic Analysis and Optimization of Amine-

Appended MOF Capture Processes 
 

In this Chapter, techno-economic analysis and optimization of industrial scale capture processes 

using amine-appended MOFs is performed. Two cost models are developed. The first uses an 

equivalent annual operating cost (EAOC) to evaluate the tradeoff between capital and operating 

costs. The second cost model is used for Mg2(dobpdc)(3-4-3) studies and is developed to be 

more in line with NETL standards. Analysis of dmpn-Mg2(dobpdc) capture processes for coal-

based flue gas is then performed using the fixed bed and moving bed models developed in this 

work. The fixed bed model is also used for analysis of a TSA capture process using 

Mg2(dobpdc)(3-4-3) for NGCC flue gas. Sensitivity studies are also performed to evaluate the 

effect of important design variables as well as uncertain costing parameters on process 

economics.  

 

Portions of this Chapter are published in the following peer-reviewed journal article: 

Hughes, R.; Kotamreddy, G.; Ostace, A.; Bhattacharyya, D.; Siegelman, R. L.; Parker, S. T.; 
Didas, S. A.; Long, J. R.; Omell, B.; Matuszewski, M. Isotherm, Kinetic, Process Modeling, and 
Techno-Economic Analysis of a Diamine-Appended Metal–Organic Framework for CO2 
Capture Using Fixed Bed Contactors. Energy Fuels 2021, 35 (7), 6040–6055. 
https://doi.org/10.1021/acs.energyfuels.0c04359. 
 
 
 
7.1. Analysis of dmpn-Mg2(dobpdc) for Coal-based Capture 
 

Techno-economic optimization and analysis of coal-based capture processes utilizing dmpn-

Mg2(dobpdc) are presented in this section. In total, three separate TSA models are used here. The 

contactor type and isotherm model used are summarized below: 

1. Fixed bed contactor with dual-site Sips isotherm model 
2. Moving bed contactor with dual-site Sips isotherm model, referred to as Version 1 
3. Moving bed contactor with chemistry-based isotherm model, referred to as Version 2 

https://doi.org/10.1021/acs.energyfuels.0c04359
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7.1.1. Cost Model 
 

The costs for equipment items used in the process models were determined using the Aspen 

Process Economic Analyzer (APEA). The reactors and compressors were considered to be the 

dominant capital costs. The reactors modeled here are very similar in configuration to shell and 

tube heat exchangers and were priced using APEA. However, the heat transfer area for the 

reactors considered in the basic and modified processes exceeds the maximum heat transfer area 

that can be priced in APEA, so the estimated cost for a reactor size of interest was calculated 

using the following equation [106]: 

Esimated cost = Base cost �
required area

base area �
0.6

  (7.1) 

 
Here, the base area is the maximum heat exchange area that can be priced in APEA, the base cost 

is the cost associated with the base area, and the required area is the area for the reactor of 

interest. The capital costs considered in this work are bare module costs which are obtained using 

correlations from Turton et al. [106]. The bare module method of costing uses the purchased cost 

of equipment, which is obtained from APEA and Eq. (7.1) in this work, and multiplies it by a 

factor to account for additional expenses due to labor, installation, overhead, and transportation 

[106]. The capital costs were then amortized over the projected plant life. The discount rate (or 

interest rate) was assumed to be 10% and the lifespan of the reactors and compressors was set at 

10 years. The other major costs considered in this work are the operating costs due to steam, 

cooling water, and electricity. These costs are calculated based on the amount used, which is 

obtained from simulations, and utility prices (see Table 7.1) obtained from Turton et al. [106]. 

The equivalent annual operating cost (EAOC) was then calculated using Eq. (7.2). 

EAOC =  Capital cost
 Discount rate

(1 − (1 + Discount rate)−Number of years)

+ Yearly Operating Costs  

(7.2) 

 
We also determined the EAOC of a conventional post-combustion capture system using 

monoethanolamine (MEA) for comparison. Capital and operating costs for the MEA system 

were obtained from a study published by the National Energy Technology Laboratory [107].  
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Table 7.1: Utility prices used in dmpn-Mg2(dobpdc) costing model 
Utility Price 
Steam 29.29 $/(1000 kg) 
Electricity 0.06 $/kWh 
Cooling Water 0.354 $/GJ 

 

7.1.2. Fixed Bed TSA Process 
 
A commercial-scale post-combustion temperature swing adsorption (TSA) process model was 

developed. The cycle begins by flowing the flue gas through a regenerated bed until the bed 

reaches its breakthrough time (see Eq. (5.26)) which ensures 90% integral CO2 capture. Once the 

bed reaches its breakthrough time, it is effectively saturated and therefore the flow of flue gas to 

the bed is stopped and desorption (regeneration) begins.  

Two different configurations for the TSA cycle were considered as shown in Figure 7.1. The 

basic configuration (top of Figure 7.1) uses condensing steam as the heating medium in the 

embedded heat exchanger during desorption: steam is introduced into both the embedded 

exchanger (indirect steam) as well as directly injected into the bed (direct steam). The direct 

steam provides much less heat than the indirect steam because it is not condensed in the bed, and 

its primary purpose is to lower the partial pressure of CO2 in the bed and thereby aid in 

desorption. The modified configuration (bottom of Figure 7.1) utilizes cooling water in the 

embedded exchanger during the adsorption step to aid in the removal of heat generated upon 

adsorption and therefore improve bed performance. Note that the use of steam for desorption in 

this configuration would require that the cooling water first be completely removed from the heat 

exchanger (for example, using pressured air) to prevent hydraulic shock and potential 

mechanical damage. In order to avoid the time and cost penalties associated with this added step, 

hot water (generated in an external heat exchanger by condensing steam) is used as the indirect 

heating medium during desorption. The use of hot water instead of steam leads to a lower 

internal heat transfer coefficient for the embedded heat exchanger. However, assuming heuristic 

heat transfer coefficient values [106] of 850 W·m-2·K-1 for condensing steam, 560 W·m-2·K-1 for 

liquid-to-solid, and 60 W·m-2·K-1 for gas-to-solid, a quick estimation of the overall heat transfer 

coefficient (1 𝑈𝑈⁄ = 1 ℎ1⁄ + 1 ℎ2⁄ ) results in 56 and 54 W·m-2·K-1, a less than 5% difference and 

shows that the external heat transfer coefficient between the tube wall and flowing gas is limiting 
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for this system. The driving force for desorption is lower when using hot water, given that the 

temperature of the water will decrease along its flow direction. However, this effect can be 

compensated by increasing the inlet water temperature. Finally, similar to the basic TSA process, 

direct steam is also introduced into the bed during desorption. For both configurations, the 

desorption step continues until the average particle loading throughout the bed reaches a desired 

value. Then, the bed is cooled to the desired initial temperature for the next adsorption step. This 

adsorption–desorption cycle is repeated several times until the differences between loading and 

temperature profiles for successive cycles are below a minimum convergence value, achieving a 

cyclic steady state [108]. The results presented below are cyclic steady state results.  

In both models, a sufficient number of adsorbent beds were configured in parallel in order to 

continuously process large amounts of flue gas, with the assumption that adsorption and 

desorption are occurring simultaneously in different beds. The total number of beds needed for 

the TSA process was calculated by solving a scheduling problem that guarantees enough parallel 

beds are available to continuously process the flue gas. A simplified diagram of the parallel 

configuration developed for the basic TSA cycle is shown in Figure 7.2. 
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Figure 7.1: Configuration steps for the basic TSA process (upper) and the modified TSA process 

(lower). 
 

 
Figure 7.2: Simplified diagram of the parallel bed configuration used in modeling the basic TSA 

cycle. A process that uses n beds is shown, with dashed lines representing the possibility of 
introducing more beds. 
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7.1.2.1 Impact of Operating Conditions on Process Economics. In this section, an analysis of 

process economics sensitivity to the residence time of flue gas in the bed and the bed temperature 

at the onset of adsorption is presented. Flue gas residence time—which is determined from the 

volumetric flow of the gas to a single bed, bed length, and bed diameter—directly impacts the 

number of beds required in the process and therefore the capital costs. For example, increasing 

the volumetric flow of the flue gas can decrease the residence time and therefore the number of 

adsorption beds required to simultaneously process a given amount of flue gas. Conversely, an 

increase in residence time will generally lead to an increase in the breakthrough time and reduce 

the cycling rate of the beds but will result in a monotonic increase in the number of required 

adsorption beds. The importance of temperature and its relation to adsorption capacity and 

performance has been highlighted in previous chapters of this work. It is relevant to note that the 

pre-adsorption cooling step can add to the total cycle time and increase the number of beds 

required and therefore the capital costs. However, this time can be considerably reduced by using 

a large flowrate of a gas for cooling like air from the forced draft fan in a pulverized coal plant. 

In addition, for the modified process, the embedded cooler rapidly cools the sorbent therefore 

adding an embedded cooler in the pre-adsorption step can further reduce the time for cooling. 

Therefore, it is assumed that the cooling time is insignificant when compared to the time required 

for adsorption/desorption and it is therefore not considered in the cycle time evaluation. 

Given the importance of these parameters, we analyzed the sensitivity of the TSA process 

economics to residence times ranging from 13.9 to 46.5 s at bed temperatures of 25, 35, and 40 

°C. For this analysis, it is assumed that the flue gas is available at the same temperature as the 

initial adsorption temperature. The flue gas conditions used for this analysis correspond to case 

11B in the National Energy Technology Laboratory baseline study [107]. The gas was assumed 

to be generated from a 644 MWe gross power subcritical pulverized coal power plant and to 

enter the adsorption bed at water saturation for each examined temperature, due to the typical 

presence of a scrubber before the capture system [107]. Important process variables are shown in  

 

Table 7.2, and the results of the cost analyses are given in Figure 7.3 for the basic and modified 

TSA process scenarios. For the basic process, the EAOC decreases with decreasing residence 

time down to ~20 s, reflecting the fact that fewer adsorption beds are required to treat a given 

quantity of flue gas. However, as the residence time decreases, the superficial velocity of the flue 



109 
 

gas in the bed correspondingly increases, resulting in a larger pressure drop across the bed. In 

order to maintain a required outlet pressure of 1 bar, compressors become necessary below a 

certain residence time to achieve an inlet pressure that is no longer accessible with a traditional 

blower. As residence times continue to decrease, the operating and capital costs associated with 

the compressors begin to outweigh the cost savings achieved from reducing the number of 

adsorption beds, leading to an increase in the EAOC. This balance between adsorbent bed and 

compressor cost leads to a minimum EAOC for residence times of 16.1, 18.7, and 18.4 s for bed 

temperatures of 25, 35, and 40 °C, respectively. 

 

Table 7.2: Important variables for the fixed bed TSA process configuration. 
Variable Value Units 
Bed length 10 [m] 
Bed diameter 10 [m] 
Outlet gas pressure 1.05 [bar] 
Specific area for heating/cooling 53.3 [m2/m3] 
Average bed loading at the end of the cycle 0.25 [mol/kg] 

Basic TSA Process 
Inlet steam temperature 130 [°C] 
Direct steam residence time 100 [s] 

Modified TSA Process 
Cooling water approach ΔT 5 [°C] 
Cooling water flow 175 [kg/s] 
Hot water inlet temperature 130 [°C] 
Hot water flow 275 [kg/s] 
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Figure 7.3: Equivalent annual operating cost (EAOC) versus flue gas residence time for the 
basic dmpn-Mg2(dobpdc) TSA process (upper) and the modified dmpn-Mg2(dobpdc) TSA 

process (lower). Different colored data points indicate cost variations resulting from changing 
the bed temperature and flue gas temperature at the beginning of the adsorption step. The 
horizontal line in both plots represents the EAOC for the state-of-the-art MEA system as 

discussed in the text. 
 
For the modified TSA process, a similar phenomenon is observed, and a minimum in cost occurs 

at residence times of 32.5 and 31.6 s for bed temperatures of 25 and 35 °C, respectively. In this 

scenario, the increase in EAOC to the left of the minimum (low residence times) is also 

associated with the heat generated upon adsorption, which cannot be efficiently removed by the 

embedded cooler and therefore diminishes the improved adsorption performance that is expected 

for the modified process. The adsorption performance improves with higher residence times, 

however, as seen with the basic process, the number of parallel adsorption beds required to 

process the entire amount of the flue gas increases, driving up the EAOC. Figure 7.4 shows how 

the breakthrough time (or adsorption time) changes with respect to flue gas residence time for 

the modified TSA process and the basic TSA process. Results shown here were generated 

considering an initial adsorption temperature of 25 °C for both processes. The profiles show that 

an increase in breakthrough time (representative of improved adsorption performance) of the 
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modified process is much larger than that for the basic process at higher residence times (207% 

greater at a residence time of 47 seconds). At low residence times, the heat generated during 

adsorption cannot be efficiently removed, and the modified process begins to show breakthrough 

times similar to the basic process (31% greater at a residence time of 12 seconds). Due to the 

different nature of the systems and improved adsorption performance at higher residence times 

for the modified process, the optimum EAOC for the modified process is at a higher residence 

time than that for the basic process. 

 
Figure 7.4: Profiles for breakthrough time vs. residence time for the modified TSA process and 

basic TSA process for dmpn-Mg2(dobpdc). 
 
As the initial bed temperature (and correspondingly, the flue gas inlet temperature) is decreased, 

the EAOC also decreases, given that the framework exhibits a higher loading capacity at lower 

temperatures. The lowest initial bed temperature considered was 25 °C, with the assumption that 

cooling water is available at 20 °C. While it is possible to lower the initial bed temperature 

below 25 °C using chilled water or refrigerant, this process would drastically increase the 

operating costs of the system. For the basic and modified TSA processes, the conditions that 

result in the lowest EAOC are initial bed temperatures of 25 °C and flue gas residence times of 

16.1 and 32.5 s, respectively. Table 7.3 shows times for the adsorption and desorption cycles for 

a single bed as well as the total number of beds for the minimum EAOC scenarios of the basic 

and modified process.  
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Table 7.3: Breakdown of step times and number of beds of the optimal scenarios for the basic 
and modified dmpn-Mg2(dobpdc) TSA processes. 

 Basic TSA Process Modified TSA Process 
Flue gas residence time (s) 16.1 32.5 
Adsorption cycle time (s) 546 3607 
Desorption cycle time (s) 1372 3551 
Number of beds undergoing adsorption 12 32 
Total number of beds 43 64 

 

Additionally, dynamic profiles of the loading and temperature of the bed for these scenarios are 

shown in Figure 7.5 and Figure 7.6. 

 

 
Figure 7.5: Basic dmpn-Mg2(dobpdc) fixed bed TSA dynamic profiles 
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Figure 7.6: Modified dmpn-Mg2(dobpdc) fixed bed TSA dynamic profiles 

 
The breakdown of costs contributing to the minimum EAOC in each scenario is given in Table 

7.4. For the basic process, an inlet pressure of 1.8 bar is required, and the amortized capital costs 

of the compressors along with the electricity and cooling water required to operate them is 

reflected in Table 7.4. For the modified process, the high residence time does not require 

compression of the flue gas and therefore these respective costs are not included. The EAOC for 

the optimal modified process configuration is about $37 million/year less expensive than the 

basic fixed bed configuration, while the EAOCs for the basic and modified processes are 

approximately $55 million/year (+21.8%) and $18 million/year (+7.3%) higher than for the 

MEA system (EAOC of $252 million/year), respectively. 

Table 7.4: Breakdown of contributing costs to the equivalent annual operating cost 
($Million/year) of the optimal scenarios for the basic and modified dmpn-Mg2(dobpdc) TSA 

processes.  
Basic TSA Process Modified TSA Process 

Amortized Capital 84.6 99.9 
Reactor 69.8 99.9 
Compressor 14.8 – 

Yearly Operating Costs 223.2 170.5 
Steam 206.4 167.9 
Electricity 16.4 – 
Cooling Water 0.4 2.6 

EAOC 307.8 270.4 
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7.1.2.2 Impact of Heat Recovery on Process Economics. During a typical TSA process, the 

regenerated bed contains a large amount of sensible heat that can in principle be recycled and 

used as a heat source elsewhere in the process (e.g., to reduce the amount of steam used for 

regeneration). In this section, rigorous modeling of a complicated heat recovery section is not 

performed, but rather the possible improvement of the process economics due to heat recovery is 

investigated considering two discrete values for recovery efficiencies. For a conventional MEA 

capture system, a lean/rich amine heat exchanger is used to extract heat from the regenerated 

solvent stream, with recovery efficiencies as high as 80 to 90% [109]. However, these 

efficiencies are not likely to feasible with a fixed bed gas–solid system as evaluated here. A 

practical estimate for the percent heat that could be recovered in the basic and modified TSA 

processes was determined based on the temperature profile in the respective beds at the end of 

desorption and the initial adsorption temperature. The calculated percent heat recovered varied 

based on the given process conditions but was found to be ~35% for the basic and modified TSA 

process scenarios studied here (See the Appendix for additional information on how the 

estimated heat recovery is calculated). Notably, with this moderate amount of heat recovery, the 

estimated annual operating cost for the modified TSA process approaches that of the state-of-the-

art MEA system and is approximately $26 million/year lower than the cost of the basic process 

(Figure 7.7). In a scenario with 85% heat recovery, the modified process is only about $4 

million/year less expensive than the basic process, while both processes achieve a cost savings of 

more than $20 million/year when compared to the MEA system (see Table 7.5 for EAOC 

breakdowns for each heat recovery case). Thus, exploring strategies to enhance and optimize 

heat recovery in adsorbent-based systems stands as a crucial goal toward making their process 

economics competitive with solvent capture systems. 



115 
 

 
Figure 7.7: EAOC versus flue gas residence time for the basic dmpn-Mg2(dobpdc) TSA process 

(red) and modified dmpn-Mg2(dobpdc) TSA process (black) assuming 35% practical heat 
recovery (upper) and 85% heat recovery (lower). The horizontal line represents the EAOC for 

the state-of-the-art MEA system. 
 

 

Table 7.5: Breakdown of contributing costs to the EAOC ($Million/year) for the heat recoveries 
considered in this work. Cases presented correspond to the optimal scenarios for the basic and 

modified TSA processes. 
 Basic TSA Process Modified TSA Process 

 35% Heat 
Recovery 

85% Heat 
Recovery 

35% Heat 
Recovery 

85% Heat 
Recovery 

Amortized Capital 84.6 84.6 99.9 99.9 
Reactor 69.8 69.8 99.9 99.9 
Compressor 14.8 14.8 – – 

Yearly Operating Costs 193.0 146.7 151.1 127.4 
Steam 176.2 129.9 148.5 124.8 
Electricity 16.4 16.4 – – 
Cooling Water 0.4 0.4 2.6 2.6 

EAOC 277.6 231.3 251.0 227.3 
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7.1.2.3 Particle Cost Uncertainty Analysis. For the analyses completed in preceding sections of 

this Chapter, the cost of the MOF particles was ignored due to a lack of accurate costing 

information. However, the cost of these particles will more than likely be a significant cost of the 

TSA process and should be accounted for. To perform this analysis, the cost of the MOF particle 

on a per kg basis was varied within a feasible range to investigate how the overall process 

economics will change. The feasible range of MOF particle costs were determined using a 

review performed by Liu et al. [110] which states that these costs can vary between 1 – 35 $/kg. 

The cost of zeolite 13x was estimated at $6/kg [111] and is used in this uncertainty analysis as a 

comparison to costs for a traditional solid sorbent. Based on the total mass of the MOF particles 

in the cycle and the particle cost of interest, the amortized capital cost of the particles is 

calculated using the same method as the other equipment as described in Eq. (7.2) with the life 

span of the MOF particles assumed to be 2 years. Figure 7.8 shows the results for EAOC versus 

flue gas residence time with varying MOF particle costs for the modified process with practical 

heat recovery. The baseline curve ($0/kg) corresponds to the results shown in Figure 7.7 (upper). 

When a particle cost is considered that is similar to that of a traditional solid sorbent ($6/kg), 

process economics increase by $36 million/year (+14%) when compared to the economics when 

no particle cost is considered. At the upper value of the uncertainty considered in this work 

($30/kg), process economics increase by $175 million/year (+70%). 

 

 
Figure 7.8: EAOC versus flue gas residence time for varying costs of MOF particles ($/kg) of 

the modified process with practical heat recovery. 
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7.1.2.4 Evaluation of Energy Requirements. To further understand the techno-economic analysis 

results, we examined the bed temperature and loading profiles (Figure 7.9) and energy 

requirements for the optimal basic and modified TSA process scenarios. As discussed in Section 

5.4, the adsorption performance of dmpn–Mg2(dobpdc) is highly sensitive to temperature. As 

seen in Figure 7.9, the average bed loading for the modified process is about 130% higher than 

that for the basic process, due to bed cooling. The thermal energy requirements for the basic and 

modified processes were found to be 3.97 and 3.23 MJ/kg CO2, respectively, calculated based on 

the integral steam usage and integral CO2 captured during a single cycle, assuming the minimum 

EAOC scenario conditions discussed in previous sections. Note that these values are higher than 

the regeneration energy of 2.1 MJ/kg CO2 reported by Milner et al. [3], which was calculated 

assuming a theoretical working capacity that is difficult to achieve in practice due to bed 

temperature effects discussed in this work. Regeneration energies reported for MEA systems 

vary in the literature. Theoretical values based on thermodynamic analysis have been reported as 

low as 3.4 MJ/kg CO2 [112], while process simulations of a traditional configuration have 

reported values as low as 3.6 MJ/kg CO2[51]. Thus, the regeneration energy required for the 

modified TSA process is 19% and 10% less than that for the basic TSA and MEA processes, 

respectively. The lower regeneration energy required for the modified process relative to the 

basic process is a direct consequence of the higher loadings achieved with the former 

configuration (Figure 7.9, lower). In particular, for modified process, a single bed remains in line 

longer for adsorption, decreasing the number of cycles and therefore parasitic loss associated 

with each cycle. 
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Figure 7.9: Temperature and loading axial profiles at the end of the adsorption step for the basic 

and modified TSA processes. 
 

7.1.2.5 Conclusions. The fixed bed model developed in previous sections of this work was 

scaled-up to simulate two different TSA systems processing flue gas from an industrial scale 

power plant, one that uses condensing steam as the heating medium for regeneration (basic TSA 

process) and one that uses cooling water for heat removal during adsorption and hot water as 

well as steam for regeneration (modified TSA process). A techno-economic analysis revealed 

that the modified process is about $37 million/year less costly and requires 19% less energy than 

the basic process. These results reiterate the conclusions drawn from the isothermal and adiabatic 

case studies, that thermal management of this adsorbent system is a key design consideration. 

When factoring in a practical heat recovery of ~35%, the EAOC of the modified TSA process is 

further reduced by $18 million/year and approaches that of a state-of-the-art MEA capture 

system. Further improving heat recovery to 85% could lower the modified process EAOC by an 

additional $25 million/year, bringing it below that of the MEA system. An uncertainty analysis 

was performed to investigate the sensitivity of the total process economics to varying values of 

costs of the MOF particles. This study showed that the modified process EAOC would increase 

by a modest 14% if the cost of the MOF particles are similar to that of other solid sorbents, but 

economics have the possibility of increasing by nearly 70% for larger particle costs.  
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In this study, two discrete values of heat recovery are evaluated. In reality, heat recovery can 

increase the cycle time due to the increase in the desorption step as a result of pre-heating the bed 

with a lower temperature fluid than steam as well as increase in the adsorption step as a result of 

pre-cooling the bed with a higher temperature fluid than the cooling water. Obviously, an 

increase in the cycle time might lead to higher number of beds. Furthermore, for high driving 

force, pre-heating a bed might need heat exchange with several beds undergoing cooling 

arranged in order of their temperature profile thus leading to complex operating schedule. Thus, 

both economic and practical considerations would be desired for setting the extent of heat 

recovery. Nevertheless, the results of this study highlight that the successful commercial 

implementation of this MOF technology will require efficient addition and rejection of heat 

during adsorption and desorption, as well as heat recovery. Given the limitations of the fixed 

beds for heat recovery, future work will benefit from examining other types of contactor 

technologies, such as moving beds and rotary packed beds. The inherently better heat transfer 

properties of these beds will also provide better opportunities for efficient thermal management 

during adsorption and desorption. Due to circulating solids, those beds can reduce the amount of 

solids inventory, which is a critical component of the capital cost. Rigorous optimization of 

operating variables and contactor configuration will also serve to lower the capital and operating 

costs. Furthermore, this class of materials is highly tunable. Therefore, for improving the 

economics further, isotherm step locations and their characteristics as well as adsorption 

energetics can be considerably altered by varying the diamine. 

 

7.1.3. Moving Bed TSA Process 
 
A full moving bed CO2 adsorption/desorption process (see Figure 7.10) model was developed in 

Aspen Custom Modeler v9. In the post combustion process, the MOF adsorbs CO2 at near 

ambient conditions in the adsorber. As highlighted in the thermal management studies in Chapter 

5.4, the heat of adsorption can significantly deteriorate the performance of the MOF if not 

properly removed. Therefore, cooling water is used in the embedded heat exchanger of the 

moving bed adsorber to reduce the temperature rise. The cleaned flue gas is then vented to the 

atmosphere and the CO2 rich MOF particles are sent to the desorber. Before the particles enter 

the desorber, they are heated in the pre-heat exchanger which uses sensible heat from the lean 
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sorbent to heat the particles to regeneration conditions. This sensible heat recovery is an 

additional advantage of the moving bed process. Steam is inputted at the bottom of the desorber 

to aid in the removal of CO2 from the reactor as well as reduce the partial pressure of CO2 in the 

bed to aid in the driving force for mass transfer. Once the particles are regenerated in the 

desorber, they pass through the opposite side of the pre-heat exchanger to recover the heat and 

then are sent back to adsorber.  

A key assumption in the process is that a single desorber did not necessarily have to process the 

same amount of solids that pass through a single adsorber. For reactors of the same size and 

configuration, the desorber is frequently able to process more solids than the adsorber mainly 

because of higher operating temperature that enhances reaction rate constants and mass and heat 

transfer coefficients thus resulting in a lower number of desorber beds needed for the system. 

Here, the solids flow to each contactor is set to achieve design conditions for CO2 capture 

(adsorber solids flow) and lean loading (desorber solids flow). Due to limitation in the maximum 

gas velocity in MBs to avoid transitioning into fluidized bed regimes and due to max size 

limitation of a single MB reactor, often more than one MB is needed to process the flue gas from 

commercial scale power plants. To size the process for industrial capture, the moving bed 

adsorbers are assumed to operate in parallel with the number of required beds calculated based 

on the total flue gas flow rate from the power generation source and the design flow rate to a 

single bed. Similarly, the desorbers operate in parallel, as needed, to regenerate the total amount 

of solids used in the adsorbers.  
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Figure 7.10: Moving bed TSA process 

 

7.1.3.1. Moving Bed Analysis Results: Version 1 
 

The results presented in this subsection are for Version 1 of the dmpn-Mg2(dobpdc) moving bed 

TSA process which uses the dual-site Sips isotherm model to predict the adsorption equilibrium. 

 
Impact of Operating Conditions on Process Economics: Figure 7.11 shows the results for the 

sensitivity of the moving bed process economics to changes in the lean sorbent loading and lean 

sorbent temperature. The lean sorbent loading, i.e. the loading of the sorbent particles that enter 

the top of the adsorber, was varied for different bed temperatures and the EAOC was evaluated 

for each case. The lean loadings investigated in these studies span the range of the tradeoff 

between solid circulation rate and solids residence time in the desorber. At low lean loadings, 

increased capacity in the adsorber results in low solid circulation rates but longer residence time 

(and/or higher direct steam injection) in the desorber which are needed to achieve these lean 

loadings and can result in high capital/operating costs. At high lean loadings, the energy 

associated with a higher solids circulation rate can become a dominating cost. Again, 25°C was 

the lowest temperature studied due to the fact that any cooling below this temperature would 

require a refrigerated coolant which would drastically increase costs. This tradeoff between 

increased desorption residence time and solids circulations rate leads to a minimum EAOC of 
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$273 million/year at a lean loading of 0.45 mol/kg and 25 °C. The optimal EAOC values for the 

moving bed are similar to the optimal alternative fixed bed process with both cooling and heating 

options. One area where this improvement can be attributed to is the increase of sorbent loading 

at the end of adsorption which increases the working capacity of the system. The use of cooling 

water in the embedded heat exchanger in the adsorber aids in removing some of the heat 

generated during adsorption and therefore increases the working capacity. For the moving bed, 

working capacity is over twice as large when compared to the working capacity obtained in the 

fixed bed system without cooling and 25% higher than the fixed bed system with cooling. The 

inherent counter-current flows that occur in the moving bed contactors greatly increase mass 

transfer and can also be attributed to the improvement over the fixed bed system. However, one 

of the issues with the moving bed system is the required low superficial velocity to avoid 

transition of the bed in the fluidized bed regime. This leads to large number of parallel contactors 

increasing the capital cost.   

 
Figure 7.11: Moving bed EAOC versus lean sorbent loading. 

 

Impact of Heat Recovery on Process Economics: Figure 7.11 shows that the best-case results for 

the moving bed system are not an improvement over the traditional MEA system. One area 

where the MEA systems save on energy costs is the heat integration between the cold, rich 

solvent that exits the absorber and the hot, lean solvent that exits the bottom of the desorber. For 

the moving bed system, the same type of heat integration between the hot, lean sorbent stream 

and cold, rich sorbent stream can be helpful. The results using a heat recovery of 85%, which is 

similar to the extent of heat recovery in MEA systems [109], are shown below in Figure 7.12. It 

should be noted that a value of 85% may not be possible for this system and was chosen to 

showcase a best-case scenario. More extensive complete process studies need to be completed to 
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evaluate the heat recovery potential. When considering 85% heat recovery, the minimum EAOC 

is 217.3 $million/year and still occurs at a lean loading of 0.45 mol/kg and 25 °C.  

 

 
Figure 7.12: Moving Bed EAOC versus lean sorbent loading for 85% heat recovery between 

lean/rich sorbent stream. 
 

Table 7.6 gives a breakdown of the EAOC for the minimal cases found in the sensitivity studies 

when considering no heat recovery and when considering 85% heat recovery. Heat recovery 

decreases the EAOC by $55.7 million/year (-20.4%). When compared to a traditional MEA 

capture system, the case with no heat recovery is $21 million/year (+8.3%) more expensive and 

the heat recovery case is $34.7 million/year cheaper (-13.8%). 

 
Table 7.6: Best case EAOC ($Million/year) breakdown for best moving bed cases with different 

heat recoveries.  
No Heat Recovery 85% Heat Recovery 

Amortized Capital 85.7 85.7 
Reactor 85.7 85.7 
Compressor - - 

Yearly Operating Costs 187.3 131.6 
Steam 185.1 129.4 
Electricity - - 
Cooling Water 2.2 2.2 

EAOC 273.0 217.3 
 

Capital Cost Uncertainty of the Moving Bed TSA Process: The costing model considers only the 

reactors and compressors when evaluating equipment costs, but the real-life system would 

require other balance of the plant. Furthermore, there is high uncertainty in the cost model for the 

moving bed reactors.  In addition, it is not clear at this moment what would be the rate of 
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makeup MOF to the system and how much it would cost. Therefore, in Figure 7.13, the 

amortized capital costs were varied by +/-50% to evaluate its impact on the EAOC. The +50% 

uncertainty in the capital cost brings the EAOC for the moving bed above the EAOC of the MEA 

system. However, a -50% uncertainty in the capital cost can results in 30% lower EAOC in 

comparison to the MEA system.  

 
Figure 7.13: Capital cost uncertainty effect on moving bed EAOC. The base case (solid blue 

line) corresponds to a lean solids temperature of 25 °C and 85% heat recovery. 
 

Impact of the Operating Pressure on Moving Bed TSA Economics: The EAOC values shown 

above show promise for the moving bed system, but these systems still require large numbers of 

adsorbers to process the flue gas due to the constraint that the flue gas velocity in the adsorber 

must remain below the minimum fluidization velocity. One way of increasing the flowrate 

through a single bed without violating the constraint is to increase the pressure, which can then 

result in lower number of beds. A study was conducted by fixing the pressure at the top of the 

bed, i.e., at the flue gas outlet, at 2 bar. For the previous moving bed cases, pressure at the top of 

the bed was fixed at 1 bar. Figure 7.14 shows the change in the EAOC with the lean sorbent 

loading for no heat recovery and 85% heat recovery as the bed outlet pressure is changed to 2 

bar. Table 7.7 provides a comparison between the no heat recovery and 85% heat recovery cases, 

both at a pressure of 2 bar. 

Table 7.8 compares the number of reactors. As expected, the number of adsorbers required to 

process the flue gas decreases for the higher-pressure cases. When compared to the previous 

optimal moving bed case, the total amortized capital costs also decrease for the high-pressure 
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cases even when considering the capital cost of the compressors needed to pressurize the flue 

gas. However, the electricity required by the compressors marginally increases the total EAOC 

when compared to the previous best case. It should be noted that 2 bar was chosen to investigate 

the potential of increased adsorber pressures and that further investigation of intermediate 

pressures may result in decreased EAOC values. 

 
Figure 7.14: Moving bed EAOC versus lean sorbent loading for high pressure adsorber 

scenarios at 25°C lean sorbent temperature. 
 

Table 7.7: EAOC ($Million/year) breakdown for optimal high-pressure cases with different heat 
recoveries.  

No Heat Recovery 85% Heat Recovery 
Amortized Capital 73.6 73.6 

Reactor 55.0 55.0 
Compressor 18.6 18.6 

Yearly Operating Costs 204.8 157.0 
Steam 173.0 125.2 
Electricity 28.8 28.8 
Cooling Water 3.0 3.0 

EAOC 278.4 230.6 
 

Table 7.8: Reactor breakdown for the best moving bed cases with different adsorber pressures  
1 bar 2 bar 

Number of Adsorbers 47 26 
Number of Desorbers 7 7 
Total Number of Reactors 54 33 
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Particle Cost Uncertainty: In the economic studies completed for the moving bed process in this 

section, the cost of the MOF particles is ignored due to lack of accurate costing information. 

Similar to the study performed for the fixed bed process in Section 7.1.2, discrete values of 6, 15, 

and 30 dollars per kilogram are used in the sensitivity study based on the results of the literature 

review described in that section. Figure 7.15 shows the results of the particle cost sensitivity 

study for the moving bed process. The base case ($0/kg) corresponds to the moving bed process 

with an inlet sorbent temperature of 25 °C and 85% heat recovery. When a particle cost is 

considered similar to that of a traditional solid sorbent ($6/kg), economics increase by a modest 

$18 million/year and still are an improvement over a traditional MEA system. At the upper end 

of the feasible range considered for this study ($30/kg), the economics increase by $92 

million/year. 

 
Figure 7.15: Effect of MOF particle cost uncertainty on moving bed process economics 

 

7.1.3.2. Moving Bed Analysis Results: Version 2 
 

In this section, Version 2 of the moving bed model, which uses the chemistry-based isotherm 

model to predict the adsorption equilibrium, is used to expand upon the sensitivity analyses 

performed in the preceding section. Here, techno-economic optimization of the moving bed 

process is performed using derivative free optimization (DFO) algorithms available as part of the 

FOQUS toolset [58]. In addition to the costing components described in the preceding cost 

model, three components are included in this section which include the capital cost of the 

distributors, capital cost of the cross heat exchanger, and the power required to circulate the 
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solids using bucket elevators. The equations for these components along with the costing 

constants are taken from Kotamreddy [113] and are given in Eqs. (7.3)-(7.5). 

𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑄𝑄𝐶𝐶𝐶𝐶𝐶𝐶

𝑈𝑈𝐶𝐶𝐶𝐶𝐶𝐶∆𝑇𝑇𝐿𝐿𝐿𝐿
 (7.3) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 125(𝜋𝜋 4⁄ )(3.281 ∗ 𝐷𝐷𝑏𝑏)2 (7.4) 

𝑃𝑃𝐵𝐵𝐵𝐵 = 6.88𝑒𝑒−4 ∗ 𝑉̇𝑉𝐵𝐵𝐵𝐵 ∗ (3.28 ∗ 𝐷𝐷𝐻𝐻 + 10) ∗ 𝐷𝐷𝐷𝐷𝐷𝐷 (7.5) 

 
Here, the capital cost of the cross exchanger is determined by its required heat transfer area 

(𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶). The cross exchanger is not rigorously simulated, and the heat transfer area is estimated 

using Eq. (7.3) which is then used to cost the exchanger using the same method as the moving 

bed reactors. The cost of a distributor for a single reactor is shown in Eq. (7.4) and calculated 

based on the diameter of the reactor. The power required by the bucket elevators (𝑃𝑃𝐵𝐵𝐵𝐵) is 

calculated using Eq. (7.5). The power is given in kW and is a function of the solids volumetric 

flowrate in m3/hr, the discharge height in meters, and the drive safety factor (𝐷𝐷𝐷𝐷𝐷𝐷) which varies 

depending on the class of the drive and is taken at the upper bound of 2 in this work. 

Additionally, the costing values for compression of the inlet flue gas are made suitable for 

optimization by use of a surrogate model to allow for continuous prediction of the compression 

work and blower equipment costs as a function of the required inlet pressure of the moving bed. 

These surrogate models along with their fit to the data obtained from Aspen Plus and APEA can 

be found in the Appendix (see Figure A.9 and Figure A.10). 

 

Techno-economic Optimization: 

 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥    𝑓𝑓(𝑥𝑥) = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  

𝑠𝑠. 𝑡𝑡.  

ℎ(𝑥𝑥) = 0 (7.6) 

𝑔𝑔(𝑥𝑥) ≤ 0  

𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑈𝑈  

 
The moving bed techno-economic optimization problem is shown in Eq. (7.6). The goal of the 

optimization problem is to minimize our economic objective function, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, by optimizing the 
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set of decision variables, denoted as 𝑥𝑥, which include design variables and operating conditions 

of the moving bed capture process. The optimization problem is subject to equality and 

inequality constraints, denoted as ℎ(𝑥𝑥) and g(𝑥𝑥), respectively. Here, the equality constraints 

consist of the rigorous, first-principles model equations of the moving bed process. The 

optimization problem is solved with the use of the FOQUS toolset [58] which has the capability 

to connect modeling platforms to numerous mathematical tools, including derivative free 

optimization algorithms. At each iteration of the DFO algorithm, the FOQUS toolset will input 

the decision variables to the moving bed process model in ACM, run the model, and collect the 

results needed to calculate the economic objective function. This is a feasible path approach 

where the equality constraints of the optimization problem are satisfied at every iteration. In this 

work, the BOBYQA algorithm [114] is used to solve the optimization problem. Since derivative 

free algorithms are not able to guarantee global optimality, multi-start methods were used to help 

in avoiding local minima and improve confidence that the optimal is found. 

Eqs. (7.7)-(7.11) show design constraints and inequality constraints implemented in the moving 

bed optimization problem. The lean solids flow rate to the adsorber is calculated to achieve 90% 

capture of the CO2 in flue gas feed, as shown in Eq. (7.7). The desorber solids inlet temperature 

is calculated based on the temperature approach design constraint shown in Eq. (7.8). 

Additionally, no trim heaters or coolers are considered, and the adsorber solids inlet temperature 

is calculated by solving the energy balance around the cross exchanger. For both the adsorber 

and desorber, the maximum gas velocity is constrained to be less than or equal to 85% of the 

minimum fluidization velocity as shown in Eqs. (7.9)-(7.10). As the velocity is calculated at 

every axial position, this constraint is ensured along the entire length of the reactor. Lastly, the 

purity of the regenerated CO2 stream leaving the top of the desorber was constrained to be 

greater than 95%.  

𝐶𝐶𝐶𝐶2 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 90% (7.7) 

Cross Exchanger Temperature Approach = 10 °C (7.8) 

𝑣𝑣𝑔𝑔,𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 0.85 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚,𝑎𝑎𝑎𝑎𝑎𝑎 (7.9) 

𝑣𝑣𝑔𝑔,𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 0.85 ∗ 𝑢𝑢𝑚𝑚𝑚𝑚,𝑑𝑑𝑑𝑑𝑑𝑑 (7.10) 

CO2 Product Purity (mole basis) ≥ 95% (7.11) 
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As mentioned in previous sections of this work, the cost to produce MOF particles on an 

industrial scale is still not well known and therefore multiple optimization runs are carried out 

for different values of MOF price and particle lifespan. MOF prices of 0.5, 15, and 30 $/kg are 

used based on the literature review performed in earlier sections of this Chapter. For particle 

lifespan, values of 0.5 and 2 years are used. There is little data available to support this 

assumption for lifespan range, but this is similar to values used in a solid sorbent direct air 

capture report published by NETL [115]. Typical particle deactivation in fixed bed systems is 

due to negative reaction with contaminants in the flue gas but moving bed systems are subject to 

additional attrition due to the circulation of the solids which can reduce the lifespan of the 

particles even further. In all, 6 optimization cases are carried out with differing combinations of 

MOF price and lifespan which are shown in Table 7.9. 

Table 7.9: MOF price and particle lifespan for moving bed optimization cases 
 MOF Price [$/kg] Particle Lifespan [years] 
Case 1 0.5 0.5 
Case 2 15 0.5 
Case 3 30 0.5 
Case 4 0.5 2 
Case 5 15 2 
Case 6 30 2 
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Techno-economic Optimization of the Moving Bed TSA Process: 

 
Figure 7.16: Moving bed optimization results for varying MOF price and lifespan 

 
Figure 7.16 shows the results for the optimal EAOC of the moving bed process for varying 

combinations MOF price and particle lifespan. Case 4 is shown to have the lowest EAOC (128 

$million/year) of the cases studied here and shows a 49% improvement over the MEA process. 

Two cases show economics higher than the MEA process, Case 2 and Case 3. Case 2 is only 

slightly higher while Case 3 shows an EAOC of 362 $million/year which is 44% higher than the 

MEA baseline. It is strongly believed that Case 3, where the MOF price is $30/kg and life span is 

just 6 months, is very unlikely and is considered to be an extreme case. Table 7.10 shows the 

results of the moving bed optimization problem for all 6 cases. It gives the design and operating 

variables that were considered as decision variables, their optimized value, and their lower and 

upper bounds. Table 7.11 shows the costing breakdown for all cases. 
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Table 7.10: Moving bed optimization results for each particle cost uncertainty case. 
Decision 
Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Lower 

Bound 
Upper 
Bound Units 

Adsorber 
Height 3.63 2.51 2.05 4.01 2.38 2.14 1 20 [m] 

Adsorber 
Diameter 10.0 10.0 10.0 10.0 10.0 10.0 1 10 [m] 

Adsorber Tube 
Pitch 0.082 0.065 0.052 0.086 0.059 0.054 0.035 0.5 [m] 

Desorber 
Height 13.2 12.3 11.7 14.2 11.3 11.6 1 20 [m] 

Desorber 
Diameter 10.0 10.0 10.0 10.0 10.0 10.0 1 10 [m] 

Desorber Tube 
Pitch 0.114 0.084 0.061 0.122 0.073 0.065 0.035 0.5 [m] 

Lean sorbent 
loading 0.388 0.513 0.553 0.369 0.540 0.518 0.025 1 [mol/kg] 

Adsorber Outlet 
Pressure 1.010 1.010 1.012 1.010 1.010 1.012 1.01 2 [bar] 

Flue Gas 
Flowrate 2122.6 1983.5 1826.5 2149.4 1934.5 1867.8 0 - [kmol/hr] 

Direct Steam 
Flowrate 97.6 110.1 107.4 97.5 133.0 106.2 0 - [kmol/hr] 

 

Table 7.11: Cost breakdown [$million/year] for each moving bed optimization case. 
 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
Amortized Capital 30.4 34.6 42.6 29.8 37.6 40.5 

Reactors 20.8 23.5 29.9 20.5 26.2 28.4 
Blowers 0.931 0.931 0.931 0.931 0.931 0.931 
Cross Exchanger 8.7 10.2 11.7 8.4 10.5 11.1 

Yearly Operating Costs 102.8 226.9 319.4 98.6 130.5 159.8 
Steam 93.8 96.1 97.8 93.5 96.1 96.7 
Electricity 2.97 2.53 2.38 3.12 2.44 2.41 
Cooling Water 0.275 0.278 0.283 0.276 0.276 0.281 
Sorbent 5.79 128.0 219.0 1.70 31.7 60.4 

EAOC 133.3 261.5 362.0 128.4 168.1 200.3 
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Moving Bed Profiles: 

 

 

 

 
Figure 7.17: Adsorber Moving Bed Profile 
Plots. Top) Gas phase CO2 mole fraction. 

Middle) Solids phase CO2 loading. Bottom) 
Temperature profiles for gas phase, solid 

phase, heat transfer fluid, and tube wall. X axis 
is normalized axial distance along the reactor 

with 0 being the bottom of the moving bed and 
1 being the top. 

 

 

 
Figure 7.18: Desorber Moving Bed Profile 
Plots. Top) Gas phase CO2 mole fraction. 

Middle) Solids phase CO2 loading. Bottom) 
Temperature profiles for gas phase, solid 
phase, heat transfer fluid, and tube wall. 
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Figure 7.17 shows the axial profiles for important process variables which includes gas phase 

composition, solids loading, and temperature. Flue gas enters the bed at a CO2 composition of 

14.6% and the mole fraction of CO2 steadily decreases as the gas travels upwards through the 

bed and CO2 is captured. Similarly, the solids loading of CO2 monotonically increases as it 

travels downward through the bed and captures CO2. Figure 7.17 also shows the axial profile of 

the cooling water as it flows co-currently with the solids, downward through the embedded heat 

exchanger, and increases in temperature as it removes heat from the bed. Solids temperature 

increases near the top of the bed as fresh, lean sorbent begins to quickly adsorb CO2 and generate 

heat but remains somewhat constant in the remainder of the bed as the embedded exchanger and 

the cooling water are able to effectively remove the heat generated from adsorption. 

Additionally, since the dominating heat transfer occurs between the solid phase and the tube 

wall, gas phase temperature quickly approaches the solid phase temperature and the two are 

nearly the same throughout the length of the bed. 

Similarly, Figure 7.18 shows the same axial profiles for the moving bed desorber. For the 

desorber, pure steam is fed to the bottom of the bed to aid in mass transfer by reducing the partial 

pressure of CO2. However, the gas phase composition profile in Figure 7.18 shows that the 

desorbed CO2 quickly becomes the primary species in the gas phase and the composition at the 

top of the desorber is 95% CO2, which was included as a constraint in the techno-economic 

optimization problem. Figure 7.18 shows the solids CO2 loading profile and how the loading 

decreases as the solids flow downwards through the bed and CO2 is desorbed. Almost inversely 

to the behavior seen in the adsorber, the solids temperature decreases at the top of the desorber 

due to the heat consumed to regenerate the solids and then slowly increases in the rest of the bed 

as the steam and embedded heat exchanger is able to effectively supply heat to the bed. 

 
Capital Cost Uncertainty Analysis: Similar to studies completed in previous sections, a 

sensitivity study for the effect of capital cost uncertainty on overall process economics is 

performed. Here, a factor of -50% up to +50% is used to evaluate the effect on process 

economics with results shown in Figure 7.19. Overall, the change is relatively small for each 

case with the largest change occurring for Case 4 which shows a change of 7% when this capital 

cost uncertainty is considered. 
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Figure 7.19: Capital cost uncertainty analysis for optimal Version 2 moving bed cases. Dashed 

lines represent a +/- 50% change in capital costs 
 

Comparison to Fixed Bed Process: In this section, the moving bed economics are compared to 

the fixed bed process presented earlier in this work. Table 7.12 shows a comparison of the results 

for that study to the optimized moving bed TSA process in this work. When the same lifespan 

and price is considered, the moving bed process significantly outperforms the fixed bed process. 

Even when a lifespan of 6 months is considered, the moving bed process shows lower economics 

when compared to the fixed bed process with equivalent MOF prices. It should be noted that one 

of the areas investigated in the fixed bed study is the extent of heat recovery and how it will 

affect process economics. Table 7.12 only shows results for what was deemed a practical heat 

recovery, but a detailed design of the heat recovery process may yield an improvement to the 

economics. Additionally, the economics for the fixed bed process are investigated using single 

variable sensitivity studies and if rigorous optimization of the process is performed the 

economics can improve. 
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Table 7.12: EAOC values for varying MOF capture processes, lifespans, and prices. 

dmpn-Mg2(dobpdc) Capture Process MOF 
Lifespan 

MOF Price 
($/kg) 

EAOC 
($million/year) 

Fixed Bed TSA, Practical Heat 
Recovery 2 years 

0 251 
15 341.6 
30 427 

Moving Bed TSA 2 years 
0.5 128.4 
15 168.1 
30 200.3 

Moving Bed TSA 6 months 
0.5 133.3 
15 261.5 
30 362 

 

7.1.3.3. Conclusions 
 
The moving bed contactor model developed earlier in this work is scaled up to simulate CO2 

capture from an industrial scale coal fired power plant. The capture process uses a moving bed 

contactor for both the adsorber and regenerator with cooling water used in the adsorber to 

remove the heat generated during adsorption and condensing steam in the regenerator to supply 

the heat needed for desorption. In Version 1 of the model, which uses the Sips isotherm model to 

predict adsorption equilibrium, sensitivity studies are performed to investigate the effect of lean 

loading and adsorption temperature on the overall process economics. For the base case, the 

EAOC is similar to that of the modified fixed bed process and nearly 8% higher than the MEA 

baseline. When heat recovery is considered, the economics are about 14% lower than the MEA 

baseline. When a +/-50% uncertainty in the capital costs is considered, the EAOC ranges from a 

value higher than the MEA baseline to nearly 30% lower. An uncertainty analysis for the price of 

the MOF particle is also performed with a range of values taken from a literature review. At the 

upper end of the MOF price, the EAOC increases by 43% and is higher than the MEA baseline. 

Rigorous optimization of the moving bed process is performed using a second version of the 

model which uses the chemistry-based model developed in this work to predict the adsorption 

equilibrium. The goal of the optimization problem is to minimize the EAOC while satisfying the 

moving bed process model equations and satisfying additional design constraints. In total, 6 

cases are optimized for different values of MOF price and particle lifespan. The optimization 

results in a moving bed process with economics that are nearly 49% lower than the MEA 
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baseline process when a MOF price of 0.5 $/kg and lifespan of 2 years is considered. At the 

higher end of the uncertainty range, the economics increase to 362 $million/year which is 44% 

higher than the MEA baseline process. It is believed that the extreme values considered in the 

uncertainty analysis especially where cost of MOF is $30/kg with a life span of 6 months is 

unlikely. With considerable advances being made in the manufacturing of the functionalized 

MOF sorbents and with large scale utilization of these materials, MOF particle lifespan is 

expected to go up and cost is expected to go down. If we consider the cost of MOF to be $15/kg 

and life span of 2 years (i.e., Case 5), which is the most likely scenario in the near future, EAOC 

offered by the diamine-appended MOF is about 33% lower than MEA. A +/-50% uncertainty in 

the capital costs is also considered for the optimized cases which shows only a small change 

from the nominal values for each process, a maximum of 7%.  

The studies completed in this work provide insight into the possible improvement in process 

economics that a moving bed process can provide when compared to a traditional solvent process 

and even other type of sorbent contactors for sorbent-based processes. Future work should focus 

on better understanding some of the areas of uncertainty that were investigated in this work, 

specifically the price of the MOF sorbent and lifespan of the particle as they have been shown to 

have a significant effect on the process economics. Additionally, the increased attrition of the 

moving bed process due to the circulation of the particles can decrease particle lifespan below 

the range which is even considered here. The gas velocity constraint required to keep the process 

in the moving bed regime results in a large number of adsorbers needed to process the flue gas 

due to the low volumetric flow rate to a single bed. An area of future would be investigating 

hybrid systems which use a moving bed contactor for regeneration and another type of solid 

contactor for adsorption, such as a fluidized bed.  
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7.2. Analysis of Mg2(dobpdc)(3-4-3) for NGCC-based Capture 
 

Techno-economic optimization and analysis of a fixed bed TSA process for NGCC-based 

capture utilizing Mg2(dobpdc)(3-4-3) are presented in this section. The fixed bed contactor 

model uses the extended weighted Langmuir isotherm model to predict the adsorption 

equilibrium. 

 
7.2.1. Cost Model 

 

The cost modeling approach is similar to that for dmpn-Mg2(dobpdc). The main equipment 

considered in the costing model are the reactors, blowers, and condensers as they are assumed to 

be the dominating costs in the process. Equipment costing methodology for these three 

equipment types have been described in the previous sections of this work (for reactors see Eq. 

(7.1), for blowers see Figure A.9, for condensers see Eq. (7.3)). However, the model used in this 

section differs from the previous model as it is developed to closely follow the quality guidelines 

for costing energy systems developed by NETL [116]. The annualized capital cost is calculated 

using the equations below. 

 

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐹𝐹𝐵𝐵𝐵𝐵 ∗
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2019
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2013

∗ 𝐶𝐶𝐸𝐸  (7.12) 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1.5 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (7.13) 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟′𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.22 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 (7.14) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 1.093 (7.15) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 0.0707 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (7.16) 

 
Here, 𝐵𝐵𝐵𝐵𝐵𝐵 is the bare module cost of the equipment in which the equipment cost is multiplied 

by a factor to account for additional expenses such as labor, installation, overhead, and 

transportation. 𝐹𝐹𝐵𝐵𝐵𝐵 is the bare module factor (=3.29) taken from Turton et al. [106]. APEA cost 

estimates are generated using 2013 $ so a factor is also included bring these costs into a more 

recent time index. 𝑇𝑇𝑇𝑇𝑇𝑇 corresponds to the total plant cost and is calculated considering the total 
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bare module cost (TBMC), engineering fees, project contingencies, and process contingencies. In 

this work, the engineering fees and contingencies are assumed to be 50% of the TBMC. This 

value is at the higher range of values recommended by the NETL costing methodology but is in 

line for processes utilizing new concepts with limited data. TOC is the total overnight cost which 

is the sum of the TPC and owner’s cost. The owner’s cost percentage is technology specific and 

is assumed to be 22% in this work. Finally, the total as spent cost (TASC) and annualized cost 

are calculated by multiplying by factors which are based on economic assumptions 

recommended by NETL.  

The fixed O&M costs, which included things such as labor costs from multiple sources, property 

taxes, and insurance. The calculations for these costs are shown in Eqs. (7.17)-(7.20).  

 
𝐴𝐴𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 8 ∗ 38.50 ∗ 8760 ∗ (1 + 0.3) (7.17) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.4 ∗ 0.019 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 (7.18) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 & 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 0.25 ∗ (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑂𝑂𝑂𝑂.  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) (7.19) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 & 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 0.02 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇 (7.20) 

 
The variable O&M costs will have a large impact on the overall cost since they include the price 

of the operating utilities such as steam and auxiliary power. The main utilities considered in this 

process are auxiliary power for the blowers, cooling water from embedded heat exchangers and 

condenser, and steam for the embedded heat exchanger and the direct contact steam during 

desorption. The utility costs are calculated by obtaining the duties from the process simulations 

and multiplying by the prices in Table 7.13. It should be noted that these utility prices are the 

same as used in the previous costing model except for the steam price which is taken from an 

updated textbook source. The sorbent price and lifespan have been discussed in previous sections 

and a baseline of 0.5 $/kg and 0.5 years are taken as the baseline values for MOF price and MOF 

lifespan. The maintenance material cost is also considered and is calculated using Eq. (X).  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 0.6 ∗ 0.019/0.85 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (7.21) 
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Table 7.13: Utility prices used in Mg2(dobpdc)(3-4-3) costing model 
Utility Price Source 
Auxiliary Power 0.06 [$/kWh] Turton et. al. [106] 
Cooling Water 0.354 [$/GJ] Turton et. al. [106] 
Steam 7.33 [$/1000kg] Seider et. al. [117] 
Sorbent Price 0.5 [$/kg] Susarla et. al. [118] 
Sorbent Lifespan 0.5 [years] NETL Report [115] 

 

Finally, the total annualized cost is calculated by summing the annualized capital cost, fixed 

O&M costs, and variable O&M costs. 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑂𝑂&𝑀𝑀 + 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑂𝑂&𝑀𝑀 (7.22) 

 
7.2.2. Fixed Bed TSA Process 

 

The fixed bed model developed in this work is then scaled up to simulate a commercial scale 

TSA cycle from a NGCC flue gas source. Flue gas conditions are taken from Case B31B of the 

NETL baseline study for fossil fuel energy plants [119]. The cycle consists of three main steps 

and is shown in Figure 7.20. The first step in the cycle is ramping the flue gas flow from no flow 

to its full design flow rate and passing cooling water to the embedded exchanger. This step 

allows the bed to cool from the desorption temperature to adsorption conditions before taking on 

the full flue gas load. Other TSA cycles achieve this cooling in a separate step, but this can add 

significant time to the overall cycle time which will increase the total number of beds in the 

process and therefore increase the capital costs. The second step is adsorption under the full flue 

gas design flow rate. The length of this step can be defined in many ways, such as a fixed time 

value or event-driven where the step will continue until a certain criterion is met. In this work, 

the adsorption step proceeds until a design value for the averaged CO2 loading is met. Once this 

loading criterion is met, the heating/desorption step begins. In this step, heating water is 

introduced to the embedded heat exchanger to supply the heat needed to regenerate the MOF. It 

should be noted that the use of steam in this step would require an additional step to fully remove 

the cooling water from the exchanger to avoid any mechanical issues which would add to the 

total cycle time and therefore the capital costs of the system. The design of cooling water/heating 

water versus steam and no cooling during adsorption was investigated in earlier sections of this 
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work and was shown to drastically increase performance and economics of the process. 

Therefore, a similar configuration is used here. Steam is also introduced directly to the bed 

during desorption, referred to as direct steam. The purpose of this steam is not to supply the heat 

needed for desorption but to lower the partial pressure of CO2 in the bed to improve the mass 

transfer driving force. Similar to the adsorption step, the desorption step continues until the CO2 

loading in the bed reaches a design value. This cycle is repeated several times until the difference 

between the loading and temperature profiles for successive cycles are below a convergence 

value, achieving a cyclic stead state (CSS). The results presented in this work are CSS results.  

 

 
Figure 7.20: Configuration and steps of the TSA process for the Mg2(dobpdc)(3-4-3) 

 

In this process, a sufficient number of beds are present and organized in a parallel configuration 

in order to continuously process the flue gas. Adsorption and desorption are occurring 

simultaneously, and the total number of beds required is calculated by solving a scheduling 

problem.  

A simplified TSA process diagram is shown in Figure 7.21. The flue gas is available at ambient 

pressure and blowers are used to increase the flue gas to a sufficient pressure to overcome the 

pressure drop in the bed. Additionally, the pressurization of the inlet flue gas is not rigorously 

simulated, and a surrogate model is used to calculate the required compression work based on the 

inlet flue gas pressure (see Figure A.10). To increase the purity of the regeneration product, a 

condenser is used. The condenser duty and composition of exit streams are evaluated by solving 

a flash problem using property calls available in Aspen Adsorption.  
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Figure 7.21: Simplified diagram of the Mg2(dobpdc)(3-4-3) TSA capture process. 

 

 
7.2.2.1. Optimization Framework. Fixed bed cycle simulations present an interesting 

optimization challenge due to the inherently dynamic nature of these processes.  There are 

several ways that this problem has been addressed, each with their own advantages and 

disadvantages. One way is to discretize the model in the time domain and solve in an equation-

oriented framework. This results in an extremely large model which can take significant time and 

effort to develop and obtain convergence. Similarly, the discretization in the spatial domain can 

be eliminated to obtain 0-D models which are discretized in the time domain and can then be 

solved in an equation-oriented framework [120]. These models will be drastically reduced in 

size, but at the sacrifice of accuracy. In this work, the fixed bed cycle model is connected to 

derivative free optimizers in FOQUS [58]. Microsoft excel is also used to perform the cost 

calculations and aid in the transfer of information between FOQUS and Aspen Adsorption. A 

simple diagram of the optimization framework is shown in Figure 7.22 and the fixed bed 

optimization problem formulation is shown in Eq. (7.23). 
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Figure 7.22: Simplified diagram for Mg2(dobpdc)(3-4-3) optimization framework 

 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥    𝑓𝑓(𝑥𝑥) = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ($𝑀𝑀𝑀𝑀/𝑦𝑦)  

𝑠𝑠. 𝑡𝑡.  

ℎ(𝑥𝑥) = 0 (7.23) 

𝑔𝑔(𝑥𝑥) ≤ 0  

𝑥𝑥𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑈𝑈  

 
Here, the goal of the optimization problem is to minimize our objective function which is the 

total annualized cost of the process using the decision variables, denoted by 𝑥𝑥, while being 

subjected to the listed constraints. ℎ(𝑥𝑥) are the equality constraints which consist of the fixed 

bed modeling equations (mass transfer, heat transfer, etc.). 𝑔𝑔(𝑥𝑥) are the inequality constraints 

and the decision variables are contained between an upper and lower bound. In this work, the 

CO2 capture is constrained to be >=90%. 

7.2.2.2. Results. The results of the fixed bed optimization problem are presented in Table 7.14, 

Table 7.15, and Figure 7.23. Table 7.14 presents the optimized value for the decision variables 

considered in the optimization problem. Decision variables for the fixed bed optimization 

problem include the lean loading target and working capacity which set the CO2 loading at the 

end of the desorption and adsorption step, and significantly affect the time for each of these 

steps. The time for the flue gas ramping step is also included. The flue gas flow during 

adsorption and steam flow during desorption are also included as decision variables. The flue gas 

flow directly determines the number of adsorption beds that are required to continuously process 

the total amount of flue gas from the NGCC plant. Increasing this flow can reduce the total 

number of beds but will increase the velocity in the bed and therefore increase the pressure drop 

and the work required by the inlet blowers. Inversely, a small flow can reduce the pressure drop 

across the bed but will require more adsorption beds and increase the capital costs of the system. 

The steam flow corresponds to the direct steam injected into the bed during desorption which is 
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designed to keep the partial pressure of CO2 low to improve driving forces during desorption. A 

large steam flow will increase the operating costs but improve mass transfer and decrease the 

time it takes to regenerate the solvent, decreasing the number of beds and capital costs. The 

reactor dimensions (tube pitch, height, and diameter) are also included as decision variables. 

Since adsorption equilibrium data only exists for temperatures from 90 °C to 120 °C, the 

adsorption and regeneration step temperatures are fixed at these two values to avoid simulation 

outside of the temperature ranges for which data is available. That is, the temperature of the flue 

gas and cooling water are 90 °C, and the heating water and direct steam temperatures are 120 °C. 

The optimized values along with the bounds included in the optimization problem are shown in 

Table 7.14.  It can be observed that the fixed bed diameter is at its upper bound due to larger 

diameters allowing for a larger amount of flue gas to be processed. An upper diameter of 10 

meters is considered as fabrication and on-road transportation of cylindrical vessels larger than 

this can be difficult, if not impractical.  

 
Table 7.14: Mg2(dobpdc)(3-4-3) fixed bed TSA optimization results: Decision Variables 

Decision Variable Units Initial Value Optimized 
Value 

Lower 
Bound 

Upper 
Bound 

Lean loading target [mol/kg] 0.226 0.249 0.05 1 
Working capacity [mol/kg] 2.5 2.43 1 3.1 
Flue gas ramp time [min] 146.7 19.88 15 600 
Tube pitch [m] 0.0426 0.0478 0.035 0.15 
Flue gas flow [kmol/s] 0.774 0.925 0.1 1.2 
Steam Flow [kmol/s] 0.306 0.567 0.05 1 
Height [m] 10 11.89 3 20 
Diameter [m] 10 9.95 3 10 
 

Table 7.15 and Figure 7.23 shows the breakdown of the costing variables for the initial and 

optimized decision variables. It can be seen that the optimized case reduces the Total Annualized 

Cost from 421.5 to 363.3 $MM/y, a reduction of 14%. The largest reduction in costs occurs in 

the annualized capital costs, specifically the fixed bed columns. This also reduces the fixed 

O&M cost as it is related to the annualized capital cost. Two amine-based solvent systems are 

used for comparison in this work. The NETL baseline study [119] reports a value of 79.6 

$/tonne, and Du et. al. [121] report a capture cost of 73.9 $/tonne for a state-of-the-art MEA 

system. When compared to these two systems, the tetraamine MOF cost of capture is 157% and 

177% higher, respectively. 
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Table 7.15: Mg2(dobpdc)(3-4-3) fixed bed TSA optimization results: Costing Variables 
Costing Components Initial Value Optimized Value 
Inlet flue gas blowers [$MM/y] 0.81 0.83 
Columns [$MM/y] 150.0 96.1 
Condenser [$MM/y] 1.8 2.0 
Maintenance material [$MM/y] 18.4 12.0 
Auxiliary power [$MM/y] 7.4 9.6 
Cooling water [$MM/y] 15.6 17.4 
Indirect steam [$MM/y] 22.5 19.8 
Direct steam [$MM/y] 132.3 153.5 
Sorbent makeup [$MM/y] 20.7 16.9 

Total Capital, Fixed and Variable O&M costs 
Annualized capital cost [$MM/y] 152.5 98.9 
Fixed O&M cost [$MM/y] 52.1 35.3 
Variable O&M cost [$MM/y] 216.9 229.0 

Key Metrics 
Capture [-] 0.9 0.9 
Total annualized cost [$MM/y] 421.5 363.3 
Cost of CO2 capture [$/tonne CO2] 234.6 205.5 

 

 
Figure 7.23: Mg2(dobpdc)(3-4-3) fixed bed TSA optimization results: Costing Breakdown 
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7.2.2.3. Impact of Heat Recovery. TSA processes present many possible opportunities for heat 

integration and heat recovery due to the large amount of sensible heat that remains in the bed at 

the end of desorption. The TSA process in this work also contains additional opportunities for 

heat recovery due to the regeneration stream of steam and CO2. Results for a sensitivity study 

which investigates the possible improvement in process economics due to heat recovery is 

presented in Figure 7.24. The cost for each case is calculated by reducing the steam OPEX by the 

heat recovery fraction. The extent of heat recovery that is feasible depends on the type of system. 

Aqueous solvent systems can typically reach recoveries of 85% and it has been shown earlier in 

this work that a feasible value for fixed bed systems is around 35%. At a 35% heat recovery, the 

tetraamine MOF cost of capture is 175.9 $/tonne which is around 130% higher than the amine-

based solvent processes. 

 
Figure 7.24: Impact of heat recovery for Mg2(dobpdc)(3-4-3) TSA Process. MEA value taken 

from Du et. al. [121] and NETL report value taken from James et. al. [119]. 
 

7.2.2.4. Sensitivity to MOF Price. Figure 7.25 presents a sensitivity analysis of the MOF cost to 

evaluate its impact on the total annualized cost and cost of capture. The lack of knowledge for 

the price of amine-appended MOFs has been discussed extensively in previous sections of this 

work and this sensitivity study uses values for MOF prices which have also been used in 

previous sections. The MOF price varies from the baseline value of 0.5 $/kg up to 30 $/kg and 

the results show that the total process economics are extremely sensitive to the price of the MOF. 

It should be noted that the results presented in Figure 7.25 correspond to the operating conditions 

and contactor size for the optimized case which considers the baseline MOF price. Re-optimizing 
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for each MOF price will only serve to lower the cost. For a MOF price of $30/kg, the cost of CO2 

capture reaches nearly $800/tonne which is roughly 10x larger than the amine-based solvent 

systems.  

 
Figure 7.25: Sensitivity of Mg2(dobpdc)(3-4-3) TSA economics to MOF price. MEA value 

taken from Du et. al. [121] and NETL report value taken from James et. al. [119]. 
 

7.2.2.5. High Temperature Regeneration Extrapolation. As previously stated, the regeneration 

temperature for the fixed bed TSA process is fixed at 120 °C since that is the highest temperature 

that data is available. However, the steam extracted from the NGCC system to supply heat to the 

TSA system is available at higher temperatures, and therefore the regeneration could be operated 

at this increased temperature with no increase in the price of the steam. Operation at higher 

temperatures will increase the driving force for mass transfer and reduce direct steam needed for 

regeneration which contributed to nearly half of the total annualized cost for the 120 °C 

regeneration process. The results in this section aim to investigate this possible reduction in costs 

when operating the regeneration step at 160 °C. 

Table 7.16 shows the optimization results for the two fixed bed processes studied in this work. 

The most significant difference between the decision variables for both processes is the steam 

flow which decreases by nearly a factor of 2 for the higher temperature desorption process. The 

reduced adsorption capacity at 160 °C also results in a lower lean loading target determined 

during the optimization. The reactor configuration determined for the 160 °C regeneration also 

results in slightly smaller reactors which reduce the cost per column.  
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Table 7.16: High temperature optimization results for Mg2(dobpdc)(3-4-3) TSA process: 
Decision Variables 

Decision Variable Units 120 °C Regeneration 160 °C Regeneration 
Lean loading target [mol/kg] 0.249 0.109 
Working capacity [mol/kg] 2.43 2.23 
Flue gas ramp time [min] 19.88 32.02 
Tube pitch [m] 0.0478 0.0497 
Flue gas flow [kmol/s] 0.925 1.056 
Steam Flow [kmol/s] 0.567 0.332 
Height [m] 11.89 10.52 
Diameter [m] 9.95 9.80 

 

Table 7.17 gives a comparison of the costing variables for both fixed bed processes. As expected, 

the cost of CO2 capture is almost cut in half and decreases to $109.4/tonne (-47%). Figure 7.26 

gives the costing breakdown for the high temperature process. When examining the contributing 

costs, the largest decrease when comparing these two processes is the direct steam cost which is 

nearly 69% lower for the 160 °C regeneration process. The second largest decrease in costs is for 

the reactors which is nearly 35% lower for the 160 °C regeneration process. However, this higher 

temperature process is still 48% more expensive than the MEA process from Du et. al. [121] and 

37% higher than the NETL Report [119]. 
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Table 7.17: High temperature optimization results for Mg2(dobpdc)(3-4-3) TSA process: 
Costing Variables 

Costing Components 120 °C Regeneration 160 °C Regeneration 
Inlet flue gas blowers [$MM/y] 0.83 0.83 
Columns [$MM/y] 96.1 61.7 
Condenser [$MM/y] 2.0 1.01 
Maintenance material [$MM/y] 12.0 7.68 
Auxiliary power [$MM/y] 9.6 10.2 
Cooling water [$MM/y] 17.4 7.49 
Indirect steam [$MM/y] 19.8 21.7 
Direct steam [$MM/y] 153.5 47.6 
Sorbent makeup [$MM/y] 16.9 10.5 

Total Capital, Fixed and Variable O&M costs 
Annualized capital cost [$MM/y] 98.9 63.5 
Fixed O&M cost [$MM/y] 35.3 24.3 
Variable O&M cost [$MM/y] 229.0 105.3 

Key Metrics 
Capture [-] 0.9 0.9 
Total annualized cost [$MM/y] 363.3 193.1 
Cost of CO2 capture [$/tonne CO2] 205.5 109.4 
 

 

Figure 7.26: High temperature optimization results for Mg2(dobpdc)(3-4-3) TSA process: 
Costing Breakdown 
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The sensitivity studies for heat recovery and MOF price were also performed for the high 

temperature regeneration process, and these results are shown in Figure 7.27 and Figure 7.28. 

Similar to the 120 °C process, a MOF price of $30/kg, which is at the upper end of the range 

investigated in this work, increases the cost of CO2 capture by over a factor of 4. When a 

practical heat recovery value of ~35% is considered, the cost of CO2 capture is $95.4/tonne 

which is 29% larger than the MEA system [121] and 20% larger than the NETL report [119]. 

 
Figure 7.27: Heat recovery sensitivity for high temperature Mg2(dobpdc)(3-4-3) TSA process. 
MEA value taken from Du et. al. [121] and NETL report value taken from James et. al. [119]. 

 

 
Figure 7.28: MOF price sensitivity for high temperature Mg2(dobpdc)(3-4-3) TSA process. 

MEA value taken from Du et. al. [121] and NETL report value taken from James et. al. [119]. 
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7.2.3. Conclusions 
 

A fixed bed TSA process model is developed utilizing Mg2(dobpdc)(3-4-3) to capture CO2 from 

a NGCC flue gas source. Techno-economic optimization of the TSA process is then performed, 

and it is found that the cost of CO2 capture for the optimized case is $205/tonne which is ~177% 

larger than a state-of-the-art MEA capture process [121] and 157% higher than the amine-based 

solvent system reported in the NETL baseline study [119]. The possible reduction in costs due to 

heat recovery of the fixed bed process were also investigated, and when a practical heat recovery 

percentage of 35% is considered the tetraamine MOF process is nearly 130% higher than both of 

the amine-based solvent processes. Accurate costing of the MOF sorbent is still lacking in the 

open literature, so a sensitivity study was performed to investigate the change in process 

economics for a range of possible MOF prices. When a price at the upper range is considered, 

the economics for the fixed bed system increase to nearly 10x when compared to the amine-

based processes. A second fixed bed process was also simulated in which the desorption step 

operates at 160 °C. This temperature is outside of the range of adsorption equilibrium data used 

to develop the models in this work, so these results should be viewed cautiously. For this higher 

temperature regeneration case, the cost of capture is still 48% and 37% more expensive than the 

MEA system and NETL report, respectively. When a practical heat recovery of ~35% is 

considered, the cost of capture for the higher regeneration temperature reduces to $95.4/tonne, 

29% and 20% higher than the MEA system and NETL report, respectively. Uncertainty analysis 

for the price of the MOF is again performed and it is found that the economics increase to around 

6x when compared to the amine-based solvent systems. 

The studies completed in this section show valuable insight into the behavior of Mg2(dobpdc)(3-

4-3) for NGCC based capture, but also show that a fixed bed TSA process may not be 

economically favorable. The direct injected steam usage in the TSA process is one of the 

dominating costs and future studies should focus on processes which can reduce this cost. 

Specifically, a vacuum assisted TSA process will lower the partial pressure of CO2 along the 

length of the reactor and reduce the amount of steam needed to maintain high driving forces for 

mass transfer. The CAPEX and OPEX of the vacuum pump will need to be calculated to 

evaluate the tradeoff between these costs and the lower steam usage. Additional heat recovery 

designs such as recycling of the latent heat of the steam and CO2 regeneration product have the 
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potential to lower the cost of the system also. As mentioned for dmpn-Mg2(dobpdc) studies, the 

contactor which will minimize the economics of the process is still not well agreed upon and 

should be an area of future work for Mg2(dobpdc)(3-4-3) processes. 
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8. Final Remarks and Future Work 
 

This work features investigation into two types of alternative post combustion CO2 capture 

processes. The first is a traditional solvent capture process which uses chilled ammonia (CAP) as 

the working solvent which has been identified as a possible alternative to the current industry 

standard MEA. A detailed model of a novel CAP system was developed using a simultaneous 

regression methodology and was found to be more accurate in predicting pilot plant data than 

parameters found in literature. A limited number of pilot plant data was used in development and 

validation of the mass transfer model as very few publicly available sources of ammonia pilot 

plant exist. Additional data from multiple sources would serve to avoid any experimental error or 

bias from a single data source and improve the estimate of the mass transfer parameters. Still, the 

integrated mass transfer regression approach used here is an excellent tool for developing 

accurate process models while relying on data from multiple scales. Using the integrated mass 

transfer model, a novel CAP process model was developed which considered an NH3 abatement 

section to reduce ammonia emissions to acceptable levels. The energetics of the process were 

found to be higher than that reported for MEA processes in the literature, but this analysis was 

done using design variables and operating conditions taken from multiple literature sources 

found using a variety of methods. Rigorous optimization of the novel CAP process would serve 

to lower the energetics and provide a better comparison to MEA. Additionally, a techno-

economic analysis would need to be performed to evaluate the optimal water removal percentage 

of the water wash membrane to balance the capital and operating costs. Solids precipitation of 

the CAP process has also been reported and discussed thoroughly in the literature and should be 

investigated in any future work in this area. 

The second alternative process that is a focus of this work is amine-appended metal organics 

frameworks, or simply referred to as MOFs. These amine-appended MOFs are a novel class of 

solid sorbents which have also been identified as a possible alternative to solvent-based capture 

processes. Specifically, the diamine-appended MOF dmpn-Mg2(dobpdc) has been identified as a 

good candidate for post-combustion capture from coal-based flue gas sources and the tetramine-

appended MOF Mg2(dobpdc)(3-4-3) has been identified as a promising candidate for NGCC flue 

gas capture. Due to the novelty of these sorbents, mathematical modeling studies and simulations 
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using these sorbents are very slim in the literature, and none exist that focus on dmpn-

Mg2(dobpdc) or Mg2(dobpdc)(3-4-3). In this work, mathematical models for post-combustion 

capture using these amine-appended MOFs are developed. Three isotherm models are developed, 

all of which are heuristic in nature and do a good job at predicting the available isotherm data 

over the range of temperatures and partial pressures of CO2 which are expected for post-

combustion CO2 capture process. A mass transfer model is also developed assuming a linear 

driving force with a mass transfer coefficient that incorporates adsorption reaction kinetics and 

particle diffusion kinetics. Parameter estimation for each respective MOF is performed, and this 

linear driving force kinetic model gives good prediction to experimental TGA data (only dmpn-

Mg2(dobpdc)) and lab-scale fixed bed breakthrough data. The kinetic models developed in this 

work use real life data and diffusion limitation within the MOF channels are assumed to be 

captured by this, but a multiscale model will do a better job at accounting for these limitations by 

modeling the concentrations within the channels and is a possible area of future work. These 

isotherm and kinetic models are extremely useful as they give accurate prediction of the mass 

transfer phenomena for these MOFs and can be used in process simulations, but significant 

improvement in prediction as well as the physical understanding of the system can be obtained 

with more physically meaningful models. This is the motivation for the chemistry-based model 

for functionalized solid sorbents developed in this work. The chemistry model attempts to 

account for the adsorption products of dmpn-Mg2(dobpdc) and how they change with 

temperature and pressure. Specifically, the adsorption products formed through the cooperative 

adsorption mechanism which is theorized to be the main mechanism for the majority of this class 

of MOFs. The reaction pathways for this mechanism are still not well understood so optimal 

reaction set selection from a group of proposed candidates is performed. For each candidate set 

investigated, parameter estimation is performed by solving a nonlinear programming problem, 

and the optimal candidate set is selected using the AIC criterion. The heat of adsorption 

predicted by the chemistry model is incorporated into the parameter estimation, which typically 

is not done for chemistry-based models in the literature, by constraining the prediction to be 

within a certain range of predetermined values. In this work, experimental heat of adsorption 

data for dmpn-Mg2(dobpdc) is not available and values calculated using the Clausius-Clapeyron 

equation are used, but when experimental data becomes available, the model can be easily 

updated using these new values. The model has also been developed to be generic and applicable 
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to any solid sorbent. This model is the first chemistry-based model for amine-appended MOFs 

and will be useful for process simulations and aid in development of new materials by 

identifying limiting pathways. Future work for the chemistry-based model will focus on 

application to other solid sorbents with significant attention being paid to other amine-appended 

MOFs. Improvements to the model can focus on thermodynamic consistency across the reaction 

equilibrium constants and the activity coefficient models. This will lay the foundation for more 

rigorous modeling of important thermodynamic properties such as enthalpy and subsequently the 

heat of adsorption. Future work will also heavily focus on incorporating the interaction between 

other species found in flue gas, mainly water. The chemistry model is better suited to perform 

this modeling as the effects of water can be accounted for in the reaction set while heuristic-

based models must include correlation type adjustment factors which are not theoretically sound 

and can require significant data for development. 

The second part of the MOF work pertains to contactor modeling, process simulation, and 

techno-economic analysis of post-combustion capture processes. Two contactor models have 

been developed in this work, a fixed bed contactor and moving bed contactor. Currently, no 

contactor models exist in literature for dmpn-Mg2(dobpdc) or Mg2(dobpdc)(3-4-3) while few 

exist for fixed bed contactors using other amine-appended MOFs. One of the major assumptions 

in these models is that CO2 is the only adsorbing species, and the other species present in flue 

gas do not alter the adsorption behavior of CO2. Experimental work has shown that the effect of 

water on mass transfer is minimal, but future work should focus on incorporating these 

interactions in the model. This will rely heavily on the updated chemistry model which predicts 

how these interactions will affect the adsorption equilibrium and kinetics of the MOF system. 

TSA processes are developed for each contactor model and techno-economic analysis is 

performed for each system. Analysis of the dmpn-Mg2(dobpdc) fixed bed TSA system shows 

that heat management and recovery is important in reducing the economics of the process and 

making it competitive with a traditional MEA baseline process. Minimal economics of this 

process are found using sensitivity studies for a small number of operating variables and rigorous 

optimization will only serve to lower the economics of the process. For the moving bed TSA 

process, two versions are developed with the first version using the heuristic isotherm models 

developed as a part of this work. Techno-economic analysis of this version is performed by 

evaluating the sensitivity of the process economics to important operating variables. The second 
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version of the model uses the chemistry-based adsorption equilibrium for dmpn-Mg2(dobpdc). 

Using this version of the moving bed TSA model, rigorous optimization is performed to 

minimize the economics of the process using operating and design conditions as decision 

variables. The optimized moving bed process shows considerably lower economics than the 

MEA baseline system, but uncertainty analyses show that the economics of the process are 

extremely sensitive to the lifespan and price of the MOF particle and feasible values of these two 

uncertain parameters can result in economics above that above that of the MEA system. In 

addition to this uncertainty, capital cost uncertainty for moving bed reactors is also considered, 

and the costing framework for these systems should be updated whenever updated information 

for these sources of uncertainty becomes available. For Mg2(dobpdc)(3-4-3), optimization of the 

fixed bed operating and design variables are performed and it is found that only when 

extrapolating to high temperatures and assuming large values for heat recovery can the process 

be competitive with an MEA based NGCC capture process. Validating the models at these 

higher temperatures and investigating other fixed bed type cycles such as a vacuum assisted TSA 

should be an area of future work. Additionally, the effect of SOx and NOx has only recently 

been experimentally evaluated and incorporating such effects in the model should be an area of 

future work. As the optimal contactor technology for amine-appended MOFs is still uncertain, 

future work should focus on the development of other contactor technologies that may alleviate 

some of the limitations of the contactors studied in this work. This could include but is not 

limited to rotary packed beds, radial flow beds, and fluidized beds.  
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Appendix 
 
Appendix A: CAP Process Modeling 
 

Table A.1: Pilot plant regression and validation cases (Data from Qi et al., 2013) 
Regression Cases 

Test ID 30 31R 31B 32A 32B 34 34R2 36 35B 39 38 
Flue Gas Flow Rate 
[kg/h] 646 632 750 760 821 906 916 799 799 898 912 

Flue Gas Composition 
[vol %]            

CO2 8.62 9.76 7.58 10.78 8.05 10.09 9.45 9.81 9.37 10.13 11.66 
NH3 0.52 0.47 0.21 0.09 0.07 0.25 0.28 0.03 0.13 0.24 0.08 
H2O 2.21 3.04 1.39 1.35 1.44 1.58 1.56 1.21 1.82 1.48 1.65 

Liquid-to-Gas Ratio 
[mass basis] 12.3 12.6 10.7 10.5 9.7 4.4 4.4 10.0 9.9 8.9 8.8 

Lean Solvent NH3 
content [wt %] 4.91 4.21 3.8 4.19 3.98 4.37 4.00 4.97 5.82 4.49 1.92 

Lean Solvent CO2 
Loading [mol CO2/mol 
NH3] 

0.24 0.23 0.25 0.26 0.22 0.22 0.22 0.41 0.36 0.28 0.22 

Experimental CO2 
Capture Percentage 82.5 87.5 81.2 73.4 82.3 58.8 55.4 52.4 64.6 64.6 48.6 

Validation Cases 
Test ID 31 32 34R1  
Flue Gas Flow Rate 
[kg/h] 646 780 915  

Flue Gas Composition 
[vol %]     

CO2 9.40 8.85 9.45  
NH3 0.43 0.42 0.28  
H2O 3.22 2.55 1.56  

Liquid-to-Gas Ratio 
[mass basis] 12.3 10.2 4.4  

Lean Solvent NH3 
content [wt %] 4.08 3.56 4.37  

Lean Solvent CO2 
Loading [mol CO2/mol 
NH3] 

0.24 0.25 0.23 
 

Experimental CO2 
Capture Percentage 91.3 72.4 59.0  
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Figure A.1: Model performance using regressed parameters obtained from Hampel’s estimator 
vs. experimental data for (left) packed absorber columns (Qi et al., 2013) and (right) WWC 
(Puxty et al., 2010) 
 

 
Figure A.2: Model performance using regressed parameters obtained from Logistic estimator vs. 
experimental data for (left) packed absorber columns (Qi et al., 2013) and (right) WWC (Puxty 
et al., 2010) 
 

Chilled Ammonia Process Membrane Modeling 

The model of a reverse osmosis membrane was developed using Aspen Custom Modeler. The 

model was developed for a membrane that follows the solution diffusion mechanism. Figure A.3 

shows a simplified diagram for the flow directions of the feed, permeate, and mass transport. 
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Figure A.3: Simplified diagram of the RO membrane 

 

The following equations are used to model the membrane to predict the permeate flow rate and 

concentration profiles along the membrane: 

𝐽𝐽𝑤𝑤 = 𝐴𝐴𝑤𝑤(𝛥𝛥𝛥𝛥 − 𝛥𝛥𝛥𝛥) (A.1) 

𝐽𝐽𝑠𝑠 = 𝐵𝐵𝑠𝑠�𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝� (A.2) 

𝛥𝛥𝛥𝛥 = 𝜓𝜓(𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝) (A.3) 
𝑑𝑑𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑑𝑑

= −𝐽𝐽𝑤𝑤 − 𝐽𝐽𝑡𝑡𝑡𝑡 (A.4) 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑑𝑑𝑑𝑑
= −𝐽𝐽𝑤𝑤 + 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�𝐽𝐽𝑤𝑤 + 𝐽𝐽𝑡𝑡𝑡𝑡� (A.5) 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟
𝑑𝑑𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑
= −𝐽𝐽𝑠𝑠 + 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐽𝐽𝑤𝑤 + 𝐽𝐽𝑡𝑡𝑡𝑡� (A.6) 

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝑑𝑑𝑑𝑑
= −𝐽𝐽𝑤𝑤 + 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤�𝐽𝐽𝑤𝑤 + 𝐽𝐽𝑡𝑡𝑡𝑡� (A.7) 

𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝
𝑑𝑑𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑
= −𝐽𝐽𝑠𝑠 + 𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐽𝐽𝑤𝑤 + 𝐽𝐽𝑡𝑡𝑡𝑡� (A.8) 

𝐽𝐽𝑡𝑡𝑡𝑡 = �𝐽𝐽𝑠𝑠,𝑖𝑖

𝑁𝑁𝑠𝑠

𝑖𝑖=1

 (A.9) 

 

The area for the RO membrane is calculated by: 

𝐴𝐴𝑀𝑀 = 𝜋𝜋𝑁𝑁𝑒𝑒𝐷𝐷𝑓𝑓𝐿𝐿 (A.10) 

 

Where 𝑁𝑁𝑒𝑒 is the number of elements in the RO membrane, 𝐷𝐷𝑓𝑓 is the diameter of the fiber, and 𝐿𝐿 

is the length of the membrane. The diameter of a cellulose acetate RO membrane for high flux 
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brackish water is 2.86 cm [122]. While the fiber diameter can vary based on a particular 

manufacturer and can be possibly optimized for the CAP system, in this work it is set at 2.86 cm 

due to lack of availability of more information in the open literature. 

The feed to the RO membrane contains the ions and molecular components present for the NH3-

CO2-H2O system which includes H2O, CO2, NH3, NH4
+, HCO3

−, CO3
2−, NH2COO−, OH−, H3O+, 

N2. The ion solute permeability through the membrane, which is specified via parameter 𝐵𝐵𝑠𝑠, is 

not available in the literature for most of these components. This permeability depends on many 

factors and generally decreases with increases in degree of dissociation, ionic charge, molecular 

weight, non-polarity, degree of hydration, and degree of molecular branching [123]. The 

permeability can also be related to the ion selectivity and physical properties of ions such as 

ionic radius and hydrated ionic radius [124–126]. The order of salt permeability across the 

membrane is better explained using hydrated ionic radii instead of ionic radii [125]. The 

solvation or hydration occurs when an ion is introduced in a polar solvent. The cation transport 

across the membrane is slow when the hydrated radii is large. For smaller ionic radii and larger 

charge, the hydration radii are larger. Ghiu [125] showed that irrespective of membrane type, 

membrane configuration, the salt permeabilities are inversely proportional to the hydrated ionic 

radii of the cations studied for a common anion. The hydrated ionic radii for the species of 

interest in this study are given in Table A.2. It is also reported that the rejection of low molecular 

weight organics and small uncharged species is moderate for reverse osmosis membranes [127]. 
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Table A.2: Hydrated ionic radius 
Species Hydrated ionic radius [pm] Reference 

NH4
+ [250, 331] 

(Dean, 1998; Kielland, 

1937)[128,129] 

OH− [300, 350] 
(Dean, 1998; Kielland, 

1937)[128,129] 

H3O+ 280 
(Volkov et al., 

1997)[130] 

CO3
2− 450 (Dean, 1998)[128] 

HCO3
− 400 (Dean, 1998)[128] 

NH2COO− -  

 
In this work, the 𝐵𝐵𝑠𝑠 values which are not available in the literature are estimated based on their 

relative relationships of molecular weight and hydrated ionic radius to the ionic species for 

which values are available in the literature. Using the trends described below along with the 

molecular weight of each species, the order of magnitude of the 𝐵𝐵𝑠𝑠 values are assumed and given 

in Table A.3.  

The order of hydrated ionic radius for the species is: 

CO3
2−>HCO3

−>OH−>H3O+> NH4
+ 

Therefore, the proposed order of salt permeability based on hydrated ionic radius is: 

CO3
2−<HCO3

−-<OH−<H3O+< NH4
+ 

Overall, the order of permeability can be: 

CO3
2−<HCO3

−- <NH2COO−<OH−< H3O+<NH4
+<N2<CO2< NH3 
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Table A.3: Solute permeability constants 
Molecular Weight Grouping   

[< 20] [20 < 40 < 60] [> 60] 𝑩𝑩𝒔𝒔 [m/h] Reference 

NH3 - - (2.8-12.2)×10-3 

(Salon et al., 1996; 

Zeuthen et al., 

2006)[131,132] 

NH4
+ - - 0.421×10-3 

(Bódalo et al., 

2005)[133] 

OH− - - ~ 10-4 Assumed 

H3O+ - - ~ 10-4 Assumed 

- N2 - ~ 10-4 Assumed 

- CO2 - ~ 10-4 Assumed 

- - CO3
2− ~ 10-5 Assumed 

- - HCO3
− ~ 10-5 Assumed 

- - NH2COO− ~ 10-5 Assumed 

 
The osmotic pressure coefficient ψ can be calculated by using the equation ψ = φRT where φ is 

Van't Hoff factor or osmotic coefficient, R is universal gas constant and T is temperature [K] 

[134]. φ is not available for the species in the RO feed. An approximation of φ is required for all 

the other species to calculate ψ. Generally φ will be less than one for electrolyte components 

[134]. The osmotic coefficient depends on the concentration and type of electrolytes in the 

system [135]. As the data for the components in Table A.3 is not available, in this study φ is 

normalized to the total concentrations of the solute components. 

One of the important performance measures for the membrane is the recovery rate, which is 

defined as the ratio of permeate flow to feed water flow thus indicating the overall water removal 

from the system. Large systems typically have recovery rates between 40% and 60% [53,54]. If 

experimental data, such as recovery rate, is available then parameter estimation for model 

parameters such as 𝐵𝐵𝑠𝑠 and φ could be performed and model accuracy could be investigated. 
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Appendix B: Isotherm and Kinetic Modeling of dmpn-Mg2(dobpdc) 
 

Table A.4: Fit of traditional isotherms to dmpn-Mg2(dobpdc) data 

 
Langmuir Isotherm 1 fit to experimental data. 

Langmuir isotherm 1 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

1 + 𝐾𝐾𝐾𝐾
 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 3.663 

𝐾𝐾 = 2.167 × 10−8exp �
6380
𝑇𝑇 � 

 
Dual-site Langmuir Isotherm fit to experimental data. 

Dual-site Langmuir 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚1
𝐾𝐾1𝑃𝑃

1 + 𝐾𝐾1𝑃𝑃
+ 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚2

𝐾𝐾2𝑃𝑃
1 + 𝐾𝐾2𝑃𝑃

 

𝐾𝐾𝑖𝑖 = exp �
∆𝑆𝑆𝑖𝑖
𝑅𝑅
� exp �

−∆𝐻𝐻𝑖𝑖
𝑅𝑅𝑅𝑅

� 

i ∆𝐻𝐻𝑖𝑖 
(J/mol) ∆𝑆𝑆𝑖𝑖(J/mol∙K) 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 

(mol/kg) 
1 1585 −163.6 31.27 
2 −74810 −210.9 3.731 
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Langmuir Isotherm 2 fit to experimental data. 

Langmuir isotherm 2 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

1 + 𝐾𝐾𝐾𝐾
 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 7.403 −
1143
𝑇𝑇

 

𝐾𝐾 = 1.244 × 10−8 exp �
6497
𝑇𝑇 � 

 
Freundlich Isotherm fit to experimental data. 

Freundlich isotherm 

𝑞𝑞 = 𝐾𝐾𝑃𝑃1/𝑛𝑛 

𝑛𝑛 = −24.86 −
9382
𝑇𝑇

 

𝐾𝐾 = 0.09995 exp �
1125
𝑇𝑇 � 
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Toth Isotherm 1 fit to experimental data. 

Toth isotherm 1 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

(1 + (𝐾𝐾𝐾𝐾)𝑏𝑏)1/𝑏𝑏 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 3.627 

𝐾𝐾 = 5.604 × 10−8exp �
48630
𝑅𝑅𝑅𝑅 � 

𝑏𝑏 = 3.627 

 
Toth Isotherm 2 fit to experimental data. 

Toth isotherm 2 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

(1 + (𝐾𝐾𝐾𝐾)𝑏𝑏)1/𝑏𝑏 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 3.579 

𝐾𝐾 = 7.26 × 10−7exp �
5203
𝑇𝑇 � 

𝑏𝑏 = −7.264 +
2849
𝑇𝑇
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Toth Isotherm 3 fit to experimental data. 

Toth isotherm 3 
 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐾𝐾

(1 + (𝐾𝐾𝐾𝐾)𝑏𝑏)1/𝑎𝑎 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 2.82 

𝐾𝐾 = 5.282 × 10−8exp �
49280
𝑅𝑅𝑅𝑅 � 

𝑏𝑏 = 5.623,𝑎𝑎 = 6.319 

Langmuir-Freundlich Isotherm fit to experimental data 

Langmuir-Freundlich isotherm 

𝑞𝑞 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
(𝐾𝐾𝐾𝐾)𝑛𝑛

1 + (𝐾𝐾𝐾𝐾)𝑛𝑛 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 = 6.446 

𝐾𝐾 = 2.814 × 10−8exp �
48030
𝑅𝑅𝑅𝑅 � 

𝑛𝑛 = 3.226 −
897.8
𝑇𝑇
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Figure A.4: Residual Plots for the dual-site Sips isotherm model (left) and weighted dual-site 

Langmuir isotherm model (right). 
 

 
Figure A.5: Experimental CO2 adsorption isotherms for dmpn–Mg2(dobpdc) at the indicated 
temperatures (colored symbols) and fits using a dual-site Sips isotherm model (colored lines). 

Pressure is shown on a linear scale. The right plot shows an expanded view of the experimental 
and fit data at 100, 110, and 120 °C. 
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Figure A.6: Experimental CO2 adsorption isotherms for dmpn–Mg2(dobpdc) at the indicated 
temperatures (colored symbols) and fits using a weighted dual-site Langmuir isotherm model 

(colored lines). Pressure is shown on a linear scale. The right plot shows an expanded view of the 
experimental and fit data at 100, 110, and 120 °C. 

 

Appendix C: Chemistry-based Modeling for Functionalized Solid Sorbents 
 

Table A.5: Reaction Set Selection Results 
Model [N,M] # of Parameters Objective Function AIC 

[1,0] 12 3.170 -3059.65 

[1,1] 15 2.773 -3132.53 

[2,0] 15 3.170 -3053.65 

[2,1] 18 1.692 -3417.98 

[3,0] 18 2.547 -3176.63 

[2,2] 21 1.692 -3411.98 

[3,1] 21 1.692 -3411.98 

[4,0] 21 2.547 -3170.63 

[3,2] 24 1.692 -3405.98 

[4,1] 24 1.692 -3405.98 

[5,0] 24 2.547 -3164.63 
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Appendix D: Contactor and Process Modeling 
 

 Estimation of Heat Recovery for Fixed Bed TSA Process 

The total heat that is able to be recovered from the fixed bed at the end of desorption is 

calculated using Equation (A.11).  

 

𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  � 𝐶𝐶𝑝𝑝,𝑠𝑠𝑚𝑚𝑠𝑠[𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) − 𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)]
𝑧𝑧=𝐿𝐿

𝑧𝑧=0
 (A.11) 

 
This equation calculates the sensible heat using the temperature difference between the solids at 

the end of desorption and the beginning of adsorption and then integrates over the length of the 

bed. The heat that can be practically recovered from the fixed bed reactor at the end of 

desorption was estimated using Equation (8.12). This equation was derived assuming a 10 °C 

temperature approach for the heat recovery medium and estimated that only half of that heat 

could be recovered.  

 
𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �

1
2

𝑧𝑧=𝐿𝐿

𝑧𝑧=0
𝐶𝐶𝑝𝑝,𝑠𝑠𝑚𝑚𝑠𝑠[𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑜𝑜𝑜𝑜 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) − 𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) − 10] (A.12) 

 
The percentage heat recovery is then calculated by taking the ratio of the practical heat recovered 

to the total heat available, Equation (8.13). 

  

% 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝐻𝐻𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∗ 100% (A.13) 
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 Version 1 Moving Bed Modeling Studies 

 

 
Figure A.7: Steady-state moving bed 

adsorber profiles for base case operating 
conditions. 

 
Figure A.8: Steady-state moving bed desorber 

profiles for base case operating conditions. 
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Surrogate Models for Inlet Flue Gas Pressurization 

A unit model for pressurization of the flue gas feed was not included in the process models as a 

part of this work. Instead, a surrogate model was developed using simulations from Aspen Plus 

and APEA for the blower cost and compression work. To generate data to build the surrogate 

model, simulations were performed for compression from 1 bar (flue gas feed pressure) to a 

range of pressures which were thought to be possible for these processes. In APEA, there is a 

maximum flow rate for blower costing. Aspen Plus simulations were performed using this 

maximum flow rate, and equipment cost scaling was performed using the following equation: 

 

𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �

0.6

  (x) 

 
Where the base cost and base flow are for the maximum flow rate in APEA and the required 

flow is the total flue gas flow rate. The sizing exponent is obtained from Turton et al. [106]. The 

blower equipment cost surrogate is presented in Figure A.9 and it can be seen that cost is 

relatively constant for the pressure range considered here. Nevertheless, the surrogate model is 

able to predict the data very well. 

 

Figure A.9: Surrogate model for Blower Equipment Costs. 
 

A surrogate model for the work required to increase the flue gas pressure was also developed in 

this work. Simulations from Aspen Plus were used to generate values for the work required for 

varying pressure differences. The results of this surrogate model are shown in Figure A.10 in 
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which the black dots represent data from Aspen Plus simulations and the dotted line represents 

the trendline. The surrogate model equation and R2 value is also given in Figure A.10. 

 

 
Figure A.10: Surrogate model for inlet flue gas compression work. 
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