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ABSTRACT 
 

Student Understanding of the Definite Integral When Solving Calculus Volume Problems 
 

Krista Kay Bresock 
 

The concept of integration appears in many different scientific fields, and students’ 
understanding of and ability to use the definite integral in applications is important to success in 
their STEM (science, technology, engineering, and mathematics) classes. One of the first types 
of application problems that students encounter is finding the volume of a solid using the definite 
integral. How students approach these problems and how they use the definite integral to find 
volumes can have an impact on their future use and understanding of the definite integral. 

This study involves a deep and thorough investigation of how ten students understand the 
definite integral when solving two types of volume problems: revolution volume problems and 
non-revolution volume problems. First, using the Riemann Integral Framework (Sealey, 2014), I 
analyzed how students understood the underlying structure of the definite integral when solving 
revolution volume problems. Using Piaget’s (1971) learning theory of structuralism, I then 
examined how students’ understanding of the familiar revolution volume problems affected and 
influenced their solving of novel non-revolution volume problems. The data was collected via 
one-on-one interviews where students worked through three different volume problems and 
discussed their thoughts and work.  

The findings of this study can be summarized in three parts. First, students can build 
symbolically correct revolution volume problem integrals without understanding conceptually 
why their integral is correct. These students relied on memorized formulas without 
understanding why the formulas worked. Second, students’ memorized formulas for revolution 
volume problems break down when attempting to apply them to non-revolution volume 
problems. Third, display of or development of conceptual understanding emerged either when 
being asked deliberate and probing questions about their revolution volume integrals or 
separately while solving the non-revolution volume problems. The students who were able to 
discuss their revolution volume problem integrals conceptually accurately had continued success 
throughout the interview. 

Revolution volume problems are a standard application of the definite integral and many 
textbooks spend a lot of time and pages on them, but as this study has shown, using revolution 
volume problems alone or without asking conceptual questions is not enough to ensure 
understanding of how definite integrals work to solve volume problems. Non-revolution volume 
problems provide an environment that is resistant to students’ inclinations to memorize formulas 
and provides a greater opportunity for students to attend to the underlying structure of the 
definite integral. 
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Chapter 1: INTRODUCTION 

 Calculus is the foundation upon which the sciences are built, so student understanding of 

this topic has widespread implications. In their calculus courses, students learn about derivatives, 

which measure change of quantities, and integrals, which measure accumulation of quantities. 

They also discover real-world uses of these mathematical concepts, learning applications of 

calculus to areas such as physics, economics, and biology. Measuring the physical quantity of 

volume is one of the first applications of integration students encounter when studying integral 

calculus, which is a main focus of traditional second-semester calculus courses. Calculus can be 

used to find the volume of any solid, but it is particularly useful for solids that do not have 

standard geometric shapes. In addition to calculus, volume problems use other mathematical 

topics and skills such as geometry and visualization. Because of this combination of different 

mathematical skills, I view the teaching and learning of volume problems as an interesting area 

to study. This dissertation discusses my investigation into students’ approaches to and 

understandings of calculus volume problems. 

Calculus in general, and integration in particular, has been studied extensively in 

mathematics education research. It has been shown that students can do calculations involving 

the definite integral but have a hard time conceptualizing the mathematics behind it (Orton, 

1983; Thompson, 1994; Sealey, 2008; Jones, 2013; Meredith & Marrongelle, 2008). The major 

take-away is that students fare better in calculus and calculus-based science courses when they 

view the integral as the limit of a sum of products of quantities, versus other incomplete 

conceptions such as area under a curve or antiderivative. 

There have also been studies about student understanding of the definite integral in 

relation to application problems in calculus and physics (Sealey, 2014; Yeatts and Hundhausen, 
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1992; Cui et al., 2006). These studies examined how students used the information given in the 

problem to cue their use of a definite integral when problem-solving. Bernard and Jones (2016) 

studied student set-up of revolution volume integrals by relating their set-up to epistemic games 

in which one “makes moves” to arrive at a desired form of an answer. Although Bernard and 

Jones studied students’ integral set-up for volume problems, they did not ask students deeper 

questions about how they understood their integral set-up. Also, Bernard and Jones interviewed 

students about revolution volume problems only, with no questions in the interview dealing with 

novel or non-revolution volume problems. 

My research adds to the body of mathematics education knowledge by providing a deep 

dive into students’ understanding of integral volume problems and fine-grained analysis of how 

they use their integral knowledge from revolution volume problems to solve novel non-

revolution volume problems.  

In this dissertation, I will answer the following research questions: 

1. How do students conceptualize revolution volume integrals? 

2. How do students use their revolution volume problem conceptions to solve novel 

volume problems? 

3. How can non-revolution volume problems aid in building conceptual 

understanding of integration? 
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Chapter 2: LITERATURE REVIEW 

 Calculus, the study of change, equips students with two invaluable tools for investigating 

our dynamic world: differentiation for studying rates of change and integration for studying 

accumulation. Students may be introduced to the definite integral concept via “the area problem” 

(Stewart, 2007), which involves determining the area of a region contained between a 

continuous, non-negative curve 𝑦 = 𝑓(𝑥)	 and the x-axis on a closed interval [𝑎, 𝑏]. Other 

physical situations can be used in place of (as in Sealey, 2008) or in addition to the area problem, 

each of which serves to illustrate different situations in which the definite integral is a useful 

tool. As researchers and instructors, we want students to recognize a common theme among 

these examples: the physical quantity that is being determined by the definite integral can be 

approximated by a sum of products, also known as a Riemann sum, and can be found exactly by 

taking a limit of this sum. 

In the sections that follow, I will discuss relevant literature relating to student 

understanding in three areas: the general definite integral, integral use in application problems, 

and geometric aspects related to volumes of solids.  

2.1.  Definite integrals 

 In one of the first studies on student understanding of integration, Orton (1983) 

interviewed 110 students (age 16-22) and asked them to discuss their solutions to problems 

concerning sequences, limits, convergence, Riemann sums, areas, and volumes of solids. 

Concerning integration topics, students were skilled at evaluating definite integrals using the 

Fundamental Theorem of Calculus and antiderivatives. They did, however, encounter difficulties 

on four questions which required their understanding of integration as a limit of a sum.  
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The results suggested that most students had little idea of the procedure of dissecting an 
area or volume into narrow sections, summing the areas or volumes of the sections, and 
obtaining an exact answer for the area or volume by narrowing the sections and 
increasing their number, making use of a limit process. (Orton, 1983, p. 7)  
 
A later study (Pettersson & Scheja, 2008) examined two students’ written and verbal 

explanations of the meaning of the mathematical concepts of limit and integral. In general, the 

participants tended to describe integration in terms of algorithmic processes and procedures 

(computing antiderivatives) rather than focusing on underlying conceptual ideas. After a more 

in-depth analysis of participants’ responses, Pettersson and Scheja determined that hints of the 

necessary conceptual notions were present in students’ minds and that the students were aware of 

their incomplete understanding of these topics. The researchers concluded that this awareness 

could provide a foundation for the further development of students’ conceptual understanding of 

integration. 

 As mentioned above, a common way to introduce students to the integral concept is by 

framing it in terms of the area under a curve. Although this is a valid and convenient way to 

represent integration, Sealey (2008) warns against focusing students’ attention solely on the area 

conception. Sealey explains that an understanding of the definite integral in terms of area is a 

powerful tool provided that students have a solid understanding of the underlying limit-of-a-sum-

of-products structure. Thompson and Silverman (2008) also warn against over-emphasis on the 

area conception of integration, stating, “for students to see ‘area under a curve’ as representing a 

quantity other than area, it is imperative that they conceive of the quantities being accumulated 

as being created by accruing incremental bits that are formed multiplicatively” (p. 45). 

 One area-based integration misconception found in students is that of viewing the definite 

integral as the total area contained between a curve and the x-axis (Gonzalez-Martin & 

Camacho, 2004) rather than viewing it as a net area. This same type of error has been found in 
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several different studies on integration (Kiat, 2005; Rösken & Rolka, 2007; Mahir, 2009; Huang, 

2010). Many of these studies (as well as Bezuidenhout & Olivier, 2000) also examined students’ 

understanding of integration as an accumulation function. In an early study on students’ images 

of rate and their understanding of the Fundamental Theorem of Calculus, Thompson (1994) 

found that students’ “images of a Riemann sum [seemed] not to have entailed a sense of motion” 

which resulted in an insufficient foundation on which to build proper reasoning about a sum’s 

rate of change. Another finding from this study was that students tended to view each component 

of a Riemann sum (Thompson calls these components “accruals”) as solitary objects with no 

constituent quantities. Holding this type of erroneous view of Riemann sums could lead to major 

and varied difficulties when attempting to solve volume problems using integration. For 

example, a student that views an approximating slice of a solid as a solitary object and doesn’t 

pay attention to variations in each slice, may erroneously attribute a constant radius to each slice, 

disregarding the change in the variable. 

In addition to classic research on integration done by Orton (1983) and Thompson 

(1994), more recent research done by Sealey (2008, 2014) and Jones (2013, 2015a, 2015b) has 

broadened our understanding of students’ conceptions of the definite integral. As mentioned 

above, Sealey examined many aspects of the definite integral and produced a framework (Sealey, 

2014) for characterizing student understanding of Riemann sums and definite integrals. I discuss 

this framework in detail in Chapter 3. Jones (2013) characterized several different symbolic 

forms that students have for the definite integral: adding up pieces (later to be known in Jones’ 

(2015b) work as “multiplicatively-based summation” or “MBS”), perimeter and area, function 

matching (antiderivative), and other, such as “area inbetween.” His conclusion was that “student 

difficulties might not necessarily arise from lack of knowledge, but from the activation of less-
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productive cognitive resources over others” (p. 138). Jones’ next studies (2015a, 2015b) 

expanded on this idea of symbolic forms for the definite integral and concluded that the area and 

antiderivative notions are most commonly activated when students are working on definite 

integral application problems. Even though MBS is the most productive symbolic form for 

students to have concerning the definite integral, they do not commonly activate it. 

Ely (2017) extended the ideas of Jones, theorizing that adding up pieces (AUP) and MBS 

were actually two conceptions in different integral registers. AUP involves seeing the product 

𝑓(𝑥)𝑑𝑥 as an infinitesimal bit of what is being accumulated; so in the case of volumes, 𝑓(𝑥)𝑑𝑥 

is a little bit of volume: 𝑑𝑉. MBS involves the same product, 𝑓(𝑥)𝑑𝑥, but the function f now 

represents the rate of change of the quantity being accumulated, which is then multiplied by a 

little bit of x, represented by dx, resulting in the desired quantity. Ely states that this distinction 

between different views of the definite integral can help “to distinguish between the acts of 

modeling and evaluating definite integrals, and to provide tools for students that support these 

two ways of reasoning” (p. 164). 

Jones and Dorko (2015) built on Jones’ single-integral work by examining multivariable 

calculus students’ conceptions of multiple integrals. They found that students’ understanding of 

multivariable integrals parallels that of their single-variable integral understanding, with 3-

dimensional elements related to function-matching, perimeter and area, and MBS appearing. A 

take-away finding was that students continue to be linked to integral as area, even in situations 

involving multiple integrals where quantities other than area are being computed.  

2.2.  Applications of the definite integral 

 In addition to studies examining student understanding of the definite integral in general, 

there are also studies of student understanding of “real-world” integral problems (in particular, 
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those concerned with finding physical quantities other than area) in mathematics education and 

physics education. In the study by Orton (1983) mentioned previously, students were asked to 

describe the solid obtained by rotating the 2-dimensional region bounded by the curve 𝑦 = 𝑥! 

and the x-axis on the interval 1 ≤ 𝑥 ≤ 3 about the x-axis (the graph and the shaded region were 

provided). This problem can be solved using a definite integral, as the situation can be seen as 

the accumulation of volume pieces. Students performed most poorly on this question, receiving a 

mean score of less than one on a five-point scale (0–4). 

The vast majority of students could not complete an explanation for this item. A few 
students managed a partial explanation, the general features of these being  that the 𝜋𝑦! 
was usually explained, but the reason for integrating was not completely understood. 
Errors made on Item 19 were structural, and the number of students who really 
understood integration as the limit of a sum was very small. (Orton, 1983, p. 7) 
 

   Gonzalez-Martin and Camacho’s (2004) study on student understanding of various 

aspects of improper integrals included questions concerning volumes of “infinite solids.” (An 

improper integral is an integral in which the bounds are infinite and/or the function has an 

infinite discontinuity.) Participants were asked to calculate the values of the integrals ∫ "
#$"

𝑑𝑥%
!  

and 𝜋 ∫ "
(#$")!

𝑑𝑥%
! , to interpret their results geometrically, and to discuss any relationship they 

saw between the two integrals. Although many participants calculated the correct value for both 

integrals, only 10 (out of 31) expressed that the first integral could represent the area under the 

function 𝑓(𝑥) = "
#$"

 and the second integral could represent the volume when the function 

𝑓(𝑥) = "
#$"

	was rotated about the x-axis. These results are in agreement with many other studies 

that have found that students are adept at evaluating integrals but have very little understanding 

of the underlying integral concepts (Kiat, 2005; Grundmeier et al., 2006; Mahir, 2009). 
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Exploring literature outside of mathematics education produced some very interesting 

and relevant studies on the translation of students’ mathematical knowledge to problems in 

scientific fields such as physics. In a study conducted by Cui et al. (2006), physics students 

(many of whom were engineering majors) were evaluated on their ability to retain and transfer 

calculus knowledge when solving introductory physics problems. The researchers also wanted to 

uncover any specific difficulties students exhibited in the transfer of their calculus knowledge. In 

Phase 1 of the study, the authors determined that students’ difficulties in solving certain physics 

problems stemmed from their inability to set up the problems and not from deficiencies in the 

calculus itself. In Phase 2, students were asked to discuss certain variations on the problems from 

Phase 1, and the researchers used these responses to explore students’ understanding of the 

criteria that determined whether integration was an applicable tool for physics problems. Only 

three out of the seven students who used integration correctly (there were a total of eight 

participants) could explain (very roughly) that integration was necessary because of the need to 

sum up infinitesimally small elements. When examining student difficulties in applying 

integration to physics problems, Cui et al. (2006) found that students have trouble determining 

the variable of integration and deciding on the limits of integration. 

 Another, earlier paper (Yeatts et al., 1992) described an Integrated Calculus and Physics 

Program (ICP) at a state engineering university and the different types of pedagogical difficulties 

encountered in attempting to integrate the two subjects. Three general trouble areas were 

observed and discussed. Within the first area—notation and symbolism—examples were cited 

ranging from an over-dependence on the symbols x and y as independent and dependent 

variables (termed “xy-syndrome”), to confusion concerning the variable of integration for 

integrals in physics contexts (like the integral for the moment of inertia, ∫ 𝑟!𝑑𝑚). The second 
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area dealt with an effect the authors called “the distraction factor”—making an inadvertent error 

on one aspect of a problem while focusing on a different aspect. (This can be seen quite 

frequently in calculus students’ algebra and arithmetic mistakes.) Yeatts et al. claimed that this 

particular difficulty may be “offered as evidence of students’ proclivity to grasp at a familiar 

formula rather than think carefully about the implications of the problem statement and the 

concepts involved” (p. 719). The third area concerned students’ tendency to compartmentalize 

their knowledge, which can result in students not knowing when or how to apply calculus 

concepts. 

 Yeatts et al. (1992) concluded with a small discussion on the topic of mathematical 

modeling. They claimed that it is necessary for instructors to treat mathematical modeling 

(developing a mathematical representation of a physical situation) as a separate discipline and to 

provide students opportunities for honing their modeling skills, apart from the learning of new 

physics or calculus concepts. With respect to the topic of integration, Yeatts et al. gave the 

following suggestion. 

…we have found that providing students with a number of exercises in setting up 
Riemann sums for physical quantities such as mass, center of mass, work, and moment of 
inertia (complete with sketching and labeling of volume elements, and correctly using the 
∑-notation) has been quite effective in helping them master both the concepts and 
symbolism. We would recommend these types of exercises, perhaps coupled with 
judicious use of technology for evaluating sums and/or integrals, as a very  constructive 
support of the calculus-physics interface. (p.721) 
 
Many studies in physics education research have examined student conceptions of the 

definite integral in solving physics application problems. Meredith and Marrongelle (2008) 

investigated how students use their mathematical resources when solving electrostatics problems 

and what aspects of these problems cued students to use integration. They found that the 

presence of a “dependence” (e.g., dependence on a changing variable, like x) cued most students 
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to integrate, even though that cue resulted in some misconceptions when building the integral. 

The “parts-of-a-whole” cue was shown to be the most productive cue, and the authors suggested 

that instructors encourage students to pay more attention to units, since attention to units can lead 

students to the parts-of-a-whole line of thinking, as well as provide a self-check opportunity. 

There are many studies in mathematics and physics education research (e.g., Jones, 2015b; 

Nguyen & Rebello, 2011a, 2011b; Orton, 1983; Sealey, 2008, 2014; Thompson, 1994; Von 

Korff & Rebello, 2012; Wagner, 2018) that have shown that students have many difficulties in 

using the definite integral in practice and that this is a rich area for research. 

An area of this “integration in physics” research that has branched off and produced some 

interested findings is the study of how students and experts view the “dx” in integration (Hu & 

Rebello, 2013; Lucio-Villegas et al., 2015; Sealey & Thompson, 2016; McCarty, 2019). In Hu 

and Rebello’s (2013) study, students were observed having four different resources for 

differentials: small amount, point, differentiation, and variable of integration, and four different 

conceptual metaphors: object, location, machine, and motion along a path.  

While activating the small-amount resource and object metaphor, students’ solution 
involved chopping an object into pieces and adding the quantity or effect due to each 
piece (i.e., chopping-adding pieces approach), which seems to involve more 
mathematical sense making. Students appeared to be able to translate back and forth 
between the math and physics concepts. (Hu and Rebello, 2013, p. 12) 
 
These findings in physics education research are in line with math education research 

findings that students with a deeper understanding of the underlying structure of the definite 

integral fare better when using the integral to solve application problems. 

2.3.  Geometric concepts in volume problems 

Volume problems require a combination of knowledge from various areas in 

mathematics: visualization, calculus, and geometry. The obvious geometric concept present in 
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these problems is volume—the amount of 3-dimensional space a solid occupies. Other geometric 

aspects that can arise, given the type of volume problem encountered, are area, plane sections of 

a solid, radius of a circle, and relationships between quantities such as angles and side lengths. 

  In integral volume problems, the two geometric constructs that make up the volume of 

each successive slice of a solid are (1) the surface area of the cross-sectional slice, and (2) the 

height of the corresponding cylindrical approximation to the slice (usually denoted as 𝛥𝑥, or dx 

within the integral). The concept and visualization of cross-sections, or plane sections of a solid, 

was researched by Davis (1973) in middle school and high school students. The students were 

asked to select the correct drawing for each cross-section that would have resulted if a knife held 

in the hand of the experimenter had actually cut through the presented solid in the indicated 

direction (see Figure 1).  

 

 

 

 

 

 

 
Figure 1. Davis’s (1973) cross-sectional test tasks. 

 

At the beginning of testing, students were asked to answer a sample question concerning cuts to 

a foam wedge and the correct answers were illustrated by showing the actual cut performed on 

the sample solid. Although this study examined performance differences between sex, age, and 
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mathematical ability, a relevant recommendation was made by Davis concerning general student 

understanding of plane sections with regards to volumes of solids. 

It is recommended that mathematics teachers take the time to provide actual cross-
sectioning experiences preceding the study of volume and quadratic functions if they 
expect the cross sections to add meaning to the learning situations. … This researcher 
feels that if teachers want to use cross-sectioning experiences to add meaning to the study 
of a topic such as volume, then students at all grade levels studied do have the ability to 
function effectively with cuts on the major and minor axes of the rectangular prism, 
cylinder, cube, and cone. (p. 139) 

 
Another way that students could have issues with geometric aspects of volume problems 

is if their teacher has difficulties representing or visualizing 2- and 3-dimensional aspects of 

geometric figures. Moore-Russo and Schroeder (2007) found that many secondary school 

teachers have difficulty visualizing geometric objects and manipulating 2-dimensional objects in 

3-dimensional space, and thus would have problems teaching these geometric skills at the 

secondary level.  

 The “height” aspect of a representative volume slice (𝛥𝑥 or dx within the integral) has 

been discussed in studies on student understanding of integration topics in mathematics 

education and physics education (Section 2.2). Hobbs and Relf (1998), in their discussion of a 

fundamental approach to the teaching of the concept of integration, stated that when students are 

asked to explain integration, they tend to view the dx within the integral as simply a notational 

indicator of the variable of integration. Although this is true on a superficial level, this view 

could cause students to rely on finding a formula for cross-sectional area without relating it to the 

volume of the approximating cylinder, thus causing the student to disregard the idea of summing 

approximating volumes on small intervals. This lack of understanding of the underlying 

approximation concepts within integration was also discussed in Orton (1983), in general and in 

specific relation to volume problems. 
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 The studies mentioned above concerning geometry are relevant to my study for many 

reasons. In non-revolution volume problems, either the shape of solid is described to the student 

(Problem 3 of my study) or the cross-sectional and base shapes of the solid are described 

(Problem 2 of my study) in the statement of the problem. The student must develop the area 

formula for the cross-section of the solid, which can vary depending on the shape of the cross-

section. Since the cross-sectional shape of a geometric solid can take any form, students need to 

be aware of and comfortable with the formulas for areas of circles, squares, rectangles, triangles, 

and various other 2-dimensional objects.  

In revolution volume problems (Problem 1 in my study), this shape-area aspect is 

somewhat eliminated, since the revolution of a 2-dimensional region about a line produces cross-

sections that are circular in shape–either a solid circle (disk) or a circle with a hole in the middle 

(washer). Revolution problems lighten the cognitive load on students with respect to finding the 

area of the cross-sectional surface, but the presence of a non-coordinate-axis line of rotation 

(e.g., 𝑥 = 1 or 𝑦 = −2) can add an additional level of difficulty that geometric volume problems 

generally lack. Rotation of a 2-dimensional region (situated on the Cartesian plane) about a 

coordinate axis results in a solid with cross-sectional disks or washers whose radii are 

determined by the region’s bounding functions. Rotating the region about a non-coordinate-axis 

line also forms a solid whose cross-sections are disks or washers, but their radii are no longer 

solely determined by the region’s bounding functions—the formula for the radii must account for 

the shift away from the axis. It is easy to see how students that have difficulties visualizing and 

representing graphical transformations of functions could have difficulties with this aspect of 

revolution problems. In relation to this concept, Lean and Clements (1981) found that students 
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with low spatial abilities might also have problems with geometrical transformations such as 

translations, reflections, rotations, dilations, and expansions. 

 A final geometric consideration that students must attend to in solving volume problems 

is that of geometric relationships between quantities. This comes up specifically in geometric 

volume problems where the bounding functions of the solid are not stated explicitly in the 

problem (Problem 3 of my study). In order to build a valid volume integral for the solid in these 

types of problems, students must develop a bounding function on their own, which would require 

them to observe and describe relationships between the physical quantities of the solid (e.g., 

length, height, etc). These same types of relationships are used in relating changing quantities in 

related rates problems. In a study on identifying students’ conceptual barriers when solving 

related rates problems, Engelke (2004) observed the following result. 

Students had particular problems recognizing when to use the similar triangle 
relationship; they did not understand the power of substitution and function composition; 
and they were not effective in determining what algebraic procedures to implement to 
arrive at the most appropriate defining relationship. Computational errors led to incorrect 
solutions; geometric misconceptions led to incorrect models. (p. 3) 

 
In another study on related rates, Engelke (2007) examined mathematicians’ solution processes 

for related rates problems and developed a framework to help assess student understanding of 

these types of problems. She found that the most important aspects of mathematicians’ 

knowledge that allowed them to solve related rates problems successfully were their richly 

connected understanding of the concepts of geometry, variable, function, and derivative, and 

their abundant content knowledge. 
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Chapter 3: THEORETICAL PERSPECTIVE 

This chapter will cover the two parts that comprise my theoretical perspective: the 

learning theory structuralism and the more calculus-specific Riemann Integral Framework.  

3.1.  Learning theory: Structuralism 

The lens through which I analyze interview data comes from Jean Piaget’s (1971) 

philosophy of structuralism. According to Piaget, “The notion of structure is comprised of three 

key ideas: the idea of wholeness, the idea of transformation, and the idea of self-regulation” 

(1971, p. 5). Wholeness refers to students’ knowledge as a network of interconnected, 

communicating pieces, as opposed to an aggregate of elements that are independent of the 

system into which they enter. These interconnected pieces are constantly being adjusted and 

transformed through actions the student performs on mathematical objects. Mental and physical 

actions involved in working through mathematics problems and discussing mathematical ideas 

allow students to undergo reflective abstraction: “a mode of thought that does not derive 

properties from the things but from our ways of acting on things, the operations we perform on 

them” (Piaget, 1971; p. 19). This concept of reflective abstraction lends much credence to the 

ideas of group work and other types of active learning. 

Schema (also called cognitive structures) are collections of mental and physical actions 

that help us organize our understandings of and reactions to the world.  The system of self-

regulation and adaptation of schema has equilibrium as its goal and consists of two processes 

that are running continuously throughout the lives of all living organisms: assimilation and 

accommodation (Piaget, 1977).  

According to Piaget, assimilation is defined as “the incorporation of an external element, 

for example, an object or an event, into a sensorimotor or conceptual scheme of the subject” (p. 
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5). Piaget also went on to note that “every assimilatory scheme tends to incorporate external 

elements that are compatible with it” (p. 6). Thus, assimilation does not cause a change in the 

scheme, but adds elements to it. Unfortunately, Piaget did not explicitly define accommodation, 

but he stated that accommodation occurs when assimilation “must take account of the 

particularities of the elements being assimilated” (Piaget, 1977, p. 6). He went on to say that 

“because it is assimilatory schemes that are accommodated, accommodation is always secondary 

to assimilation” and that it is required for there to be “an equilibrium between assimilation and 

accommodation” (p. 6). Piaget’s definitions and descriptions tend to be a bit dense and abstract, 

so I will add descriptions of these concepts given by Wadsworth (1979). 

 
Assimilation is the cognitive process by which the person integrates new perceptual 
matter or stimulus into existing schemata or patterns of behavior. … This process of 
assimilation allows for growth of schemata. … Accommodation is the creation of new 
schemata or the modification of old schemata. … Accommodation accounts for 
development (a qualitative change), and assimilation accounts for growth (a quantitative 
change); together they account for intellectual adaptation and the development of 
intellectual structures. (p. 14-16) 

  

When students encounter volume problems in second-semester calculus, they have 

already started to build their schema for integration and have seen some basic application 

problems dealing with physical concepts like area and distance. When the concept of the definite 

integral as a measurement of volume arises, students can process this new information in many 

different ways. If the student has built a conceptually accurate understanding of integration, it is 

possible for them to assimilate the new information into their accurate integration schema with 

little need for accommodation. If their understanding of integration is inaccurate or weak (for 

example, only knowing that the integral measures area) this new information about volumes can 
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be brought into their schema by accommodation and there can be an adjustment of the old, 

incorrect knowledge. 

Unfortunately, students can also assimilate new data into a given scheme even if they 

have an inaccurate or weak understanding of integration. For example, if a student sees integral 

applications as exercises in memorizing formulas, they could assimilate the volume integral 

problems as further instances of integral formulas they need to memorize. It is our goal as 

teachers to provide students with educational situations that foster rich reflective abstraction so 

that they do not have the opportunity to mindlessly assimilate new information. 

3.2.  Calculus: Riemann Integral Framework 

Additionally, I use Sealey’s (2014) Riemann Integral Framework (RIF) to describe and 

characterize students’ levels of understanding of the underlying structure of the definite integral. 

The RIF was developed with the goal of understanding and evaluating students’ cognitive 

progress as they build the structure of the Riemann integral concept. This framework was based 

on Zandieh’s (2000) derivative framework, which described student understanding of the limit 

definition of the derivative of a function, 𝑓′(𝑥) = lim
(→*

>+(#,()$+(#)
(

?. Zandieh viewed student 

understanding of the derivative as existing in layers corresponding to the mathematical layers 

present in the structure of the derivative: Difference, Ratio, Limit, and Function. Similarly, 

Sealey described student understanding of the Riemann integral in terms of the corresponding 

mathematical layers: Product, Summation, Limit, and Function. Sealey’s RIF also includes a 

preliminary layer called “Orienting” during which students make sense of the wording and topics 

encountered within the statement of the problem. 
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Pre-layer: Orienting 

As mentioned above, the Orienting phase consists of instances in which students engage 

in making sense of the wording and topics encountered within a problem. This is also the step in 

which graphs or diagrams can be constructed or adjusted. Since basic geometric figures and 

rotations have rich visual representations and these visualizations directly guide the integral set-

up, the Orienting layer is very important in the volume problem-solving schema. Once an 

acceptable representation of a solid is sketched or visualized, the student may then identify given 

values and define unknowns and variables. 

Sealey stated that, symbolically, this layer is represented by two pieces within the 

Product – one containing a function 𝑓(𝑥-)	and one containing the small increment 𝛥𝑥. This 

means that students spend time familiarizing themselves with the physical quantities represented 

by these pieces separately. In volume problems, the portion that contains the function 𝑓(𝑥-) is 

the area of the base of an approximating cylinder (or the surface area of a cylindrical shell). Once 

students recognize the base’s geometric shape, they then determine the formula for the area of 

this cross-section in general terms (e.g., area of a circle = 𝜋𝑟!, area of triangle = "
!
𝑏ℎ, etc.). The 

quantity 𝛥𝑥 represents the height of each approximating cylinder (or thickness of each 

approximating shell). From my experience teaching calculus students, I have observed that 

students tend to neglect thinking about the meaning of this quantity, and instead view it as a 

necessary component of any integral or as merely an indicator of the variable of integration. I 

believe that the failure to assign meaning to the symbol 𝛥𝑥 (or dx within the integral) in this step 

could be a source of students’ overall misconceptions about integration. 

The symbolic representation of the volume of an approximating cylinder as a simple 

product 𝑓(𝑥-)𝛥𝑥 is somewhat deceiving, considering that the underlying area formulas for 𝑓(𝑥-) 
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can get quite complex, depending on the shape of the cross-sections and the axis of rotation. In 

non-revolution volume problems—where the 3-dimensional shape of the solid, or the shapes of 

the cross-sections and the base of the solid, are given—𝑓(𝑥-) can represent the area of any 2-

dimensional geometric shape. In revolution volume problems—where the bounding functions of 

a 2-dimensional region on the coordinate plane are given—the shapes of the cross-sections are 

circular (i.e., either disks or washers). In revolution problems requiring concentric slicing of the 

solid, the “cross-sections” are shells with rectangular surface areas. When trying to determine the 

formula for 𝑓(𝑥-) in this step, students can encounter various obstacles depending on the type of 

volume problem they are solving. 

The fact that the Orienting layer is called a “preliminary” layer does not imply that it only 

occurs at the beginning of the problem-solving process. Sealey stated that it was often “necessary 

for students to reassess their understanding of the meaning of the terms in the problem as well as 

the goal of the activity” (2008, pp. 165-166). The Orienting pre-layer is necessary for successful 

problem-solving of any nature, so obviously this is an applicable and essential step for students 

in their understanding and solving of volume problems. 

Layer 1: Product 

Symbolically, this layer involves the product 𝑓(𝑥-)𝛥𝑥 found within the definition of the 

Riemann integral, ∫ 𝑓(𝑥)𝑑𝑥.
/ = lim

0→%
∑ 𝑓(𝑥-)𝛥𝑥0
-1" . When using the Riemann integral to find the 

volume of a solid that is situated on the interval [𝑎, 𝑏], the product 𝑓(𝑥-)𝛥𝑥 represents the 

volume of a (general) cylinder with surface area 𝑓(𝑥-) and height 𝛥𝑥. The volume of this 

cylinder is approximately equal to the volume of a 𝛥𝑥-width sliver of the solid at the x-value 𝑥-. 

As was observed in Sealey’s study, this is the layer with which students have the most trouble 
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when reasoning through a definite integral problem because it requires students to form a new 

quantity from two other quantities. 

Layer 2: Summation 

         Symbolically, this layer involves the Riemann sum ∑ 𝑓(𝑥-)𝛥𝑥0
-1" , which, in the context 

of volume problems, represents an approximation of the exact volume of the given solid. In this 

layer, students should be attending to the solid as a whole and to the idea of the sum of the 

approximating volumes for each subinterval as an approximation of the volume of the solid. In 

Sealey’s (2014) study, students tended to enter the framework through the Summation layer. The 

students were presented with a situation where the relevant physical quantity could only be 

approximated accurately by measuring it on small intervals and adding up the approximations. 

This is the foundation of the concept underlying the definite integral and as students begin 

learning topics like techniques of integration, this idea could get diminished or forgotten. The 

participants in my study had already seen integrals in many different contexts, so Summation 

layer thinking may not be present, or it may require some prompting from the interviewer.             

Layer 3: Limit 

         Symbolically, this layer involves the limit of a sum, lim
0→%

∑ 𝑓(𝑥-)𝛥𝑥0
-1" . Students may 

show evidence of a basic understanding of this layer as early as the first Orienting phase, where 

they may sketch an approximating slice or cylinder within (or near) the sketch of the solid. In 

doing so, they are exhibiting an understanding of the need for approximations in the 

development of a Riemann integral. By the time calculus students encounter volume problems, 

they should be fairly familiar with the basic concepts of integration. Thus, associating integration 

with approximations on small subintervals and in turn entering the integral framework through 

the Limit layer is completely plausible. 
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Layer 4: Function 

         Symbolically, this layer involves the definite integral as a function where the input is the 

upper limit (i.e. right endpoint) of the interval on which the solid is situated, and the output is the 

value of the definite integral: 𝑔(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡#
/ . As in Sealey’s study, the integrals involved in 

solving volume problems are associated with specified intervals (in particular, the intervals on 

which the solids are situated), but viewing the integral as a dynamic accumulation of 

approximating volumes may be advantageous for further application of integration in finding 

volumes of “infinite solids” (as in Gonzalez-Martin & Camacho, 2004). Given the nature of 

volume problems, specifically that volume is always positive and the solids are situated on a 

specific interval, I do not expect much discussion from students involving the Function layer. I 

include this information here to fully describe Sealey’s framework.  

3.3.  How I use these frameworks in my study 

I chose to use two different frameworks for my study because as I analyzed data, there 

were two different levels of integral understanding that were interesting and that I wanted to 

focus on: a more detailed level involving how students understood the definite integral while 

solving volume problems and a more general level involving how they approached novel volume 

problems. I used the RIF to discuss and categorize how students understood the definite integral 

as it applied to calculus volume problems (Problems 1-3). What I did not take into account when 

planning my study, though, was that most of the students (nine of ten) had not encountered 

volume problems like Problems 2 and 3 (all of the participants were familiar with Problem 1). It 

is because of this that I decided to add a second framework so I could also analyze how they use 

their prior integration understanding (from Problem 1) for the novel integration volume problems 

(Problems 2 and 3).  
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Chapter 4: PILOT STUDIES 

In the year leading up to my dissertation prospectus, I conducted two different pilot 

studies (Bresock & Sealey, 2018a, Bresock & Sealey, 2018b) with the aim of solidifying my 

research questions, interview protocol, and data analysis techniques.  

4.1.  Pilot Study 1 

In this study, my main goal was to decide on the problems I wanted to ask during the 

interviews. I was examining if the problems produced robust data and if they covered the 

calculus concepts I was interested in studying. I was also working out how to analyze the data in 

a way that allowed me to answer my research questions. 

The participants in this study were seven calculus students attending West Virginia 

University. Four of the participants were recruited from a Calculus 2 class and three were 

recruited from an Elementary Differential Equations class taught by the researcher. For all seven 

participants, one-on-one, video-recorded interviews were conducted outside of the classroom 

setting. The participants were asked to solve three different solid of revolution volume problems 

and to think out loud and discuss their problem-solving strategies. The problems are listed below. 

 

1. Find the volume of the solid obtained by rotating the region bounded by the curves     

𝑦 = 𝑥! and 𝑦 = 3𝑥 about the line 𝑥 = −1. 

2. Find the volume of the solid obtained by rotating the region bounded by the curves 𝑦 =

𝑥! + 1, 𝑥 = 2, 𝑥 = 3, and 𝑦 = 0 about the y-axis. 

3. Find the volume of the solid obtained by rotating the region bounded by the curves 𝑦 =

4𝑥, 𝑦 = "
2
𝑥, and 𝑦 = "

#
, (x > 0), about the y-axis. 
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The initial analysis of the Differential Equations students’ data showed that students used 

double and triple integrals in their discussions and written work. Since the purpose of this study 

was to understand how students conceptualize single-integral volume problems, I chose to 

exclude these students from the remainder of the data analysis. Furthermore, this influenced my 

decision to recruit my dissertation study participants solely from Calculus 2 students that have 

already learned about volume problems in their Calculus 2 class and Calculus 3 students that 

have not encountered multiple integrals yet.  

 

Data Analysis 

Two aspects of students’ work and discussions were analyzed: their ability to correctly 

set up the volume integrals and their explanation of their volume integral. In the Integral Setup 

columns of Table 1, a designation of “correct” (green check mark) was made if the student set up 

the volume integral completely correctly. A designation of “almost-correct” (blue squiggle) was 

made if the student set up the integral correctly except for one small mistake, (e.g., bounds in 

wrong variable or shell height as bottom minus top instead of top minus bottom) or if the student 

corrected their incorrect integral with prompting from the interviewer. A designation of 

“incorrect” (red X) was made if the student made more than one mistake or made some sort of 

major error like incorrect variable of integration or incorrect formula. The entries in the Problem 

1 Integral Setup column have two parts because, after their first integral setup, students were 

then asked to set up the volume integral for the same solid using a different method. Student T 

has a blank for the second entry of Problem 1 because I forgot to ask T to set up a second 

integral. 
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Table 1. Pilot study 1 correct and incorrect responses chart 

 

In Table 1, the Explanation column information came from the students discussing why 

their integral set up gave a volume after being asked by the interviewer. A designation of 

“correct” (green check mark) in this column was made if the student could accurately describe 

their integral as a sum of small volume approximations with given measurements and 

corresponding formulas. To receive a green check mark here, students would have to discuss 

their volume integral in the context of the layers of Sealey’s (2014) Riemann Integral 

Framework. In particular, they needed to mention at least one concept situated in the product 

layer and one concept situated in the summation layer. A designation of “incorrect” (red X) was 

made if a student’s discussion did not include concepts related to products and summations. 

 

Conclusions 

In this study, I had a general research protocol, and I was able to extract some significant 

data from students. Unfortunately, I did not do the best job sticking to the interview protocol, so 

there were many instances of missed opportunities where I could have probed students deeper for 

their understanding of the concepts. For example, I neglected to ask Student T to set up an 

additional integral in Problem 1 using a different method, so I did not get information about their 
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understanding of the differences in and similarities between the two methods when used in 

solving the same problem. Due to these instances of neglect of the protocol, I decided to make 

the protocol for my dissertation much more methodical and in the form of a checklist. This 

shortened and more technical format allowed me to not have to read as much mid-interview and 

to visualize what questions were done and what questions still needed to be attended to. 

Also, in addition to asking about the volume integral formulas, I learned that I would 

have liked to ask about integrals in general, in order to extract further evidence of student 

understanding of the underlying limit of a sum of products structure of the definite integral. 

Finally, I decided that I would like to have more variety in the questions asked to students during 

the interview. Problem 3 was not analyzed because it became clear that three revolution 

problems was too many and it was not the right choice of problems for what I was trying to 

study. This was when I decided to include non-revolution volume problems so as to have the 

opportunity to ask more general questions about the connection between volume and the definite 

integral. 

4.2.  Pilot Study 2 

The aim of the second pilot study was to refine the interview problems, interview 

protocol, and data analysis used in my dissertation study. In Pilot Study 1, students were only 

asked about revolution volume problems of varying difficulties. The participants tended to have 

very formulaic approaches to solving these types of problems, so in response to this, I added a 

geometric volume problem – one in which the geometric figure is given as a 3-dimensional solid 

and not formed by a revolution of a bounded 2-dimensional region in the xy-plane.  

Another adjustment that was made was the method of recording students’ written 

responses. In Pilot Study 1, it was difficult to see when the participant was transitioning their 
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attention between their symbolic work and their drawings. In response to this, I tested out two 

different methods in this study: 1) symbolic and integral work on a sheet of paper and drawings 

on a separate sheet of paper, and 2) symbolic and integral work on a sheet of paper and drawings 

on a white board. 

 The participants in this study were two second-semester calculus students attending West 

Virginia University (pseudonyms: Carrie and Kevin). Volunteers were recruited from two 

different Calculus 2 classes, and one-on-one, video-recorded interviews were conducted outside 

of the classroom setting. The participants were asked to solve three different integral volume 

problems – two traditional revolution problems and one geometric volume problem – and to 

think out loud and discuss their problem-solving strategies. The problems are listed below. 

 

1. Find the volume of the solid obtained by rotating the region bounded by the curves 

					𝑦 = 𝑥! + 1, 𝑥 = 2, 𝑥 = 3, and 𝑦 = 0, about the y-axis. 

2. Find the volume of the solid obtained by rotating the region bounded by the curves 𝑦 =

√𝑥 and 𝑦 = "
3
𝑥 about the line 𝑦 = −1. 

3. Find the volume of a pyramid whose base is a square with side length L and whose height 

is h. 

 

Each of the two participants was asked to do their symbolic mathematical work on a sheet of 

paper and their drawings (graphs, pictures, etc.) on a separate writing surface. The first student 

(Carrie) drew on a separate piece of paper and the second student (Kevin) drew on a white board. 

 

 



 27 

Data Analysis 

In the first pass at analyzing Pilot Study 2 data, I looked at the participants’ accuracy in 

producing the correct volume integral and their subsequent explanations of those volume 

integrals. Their performance on these measures is summarized in Table 2.  

 

 

 
Table 2. Pilot study 2 correct and incorrect responses chart 

 

The distinction between correct and incorrect in the Explanation column was more 

nuanced and was judged differently for the revolution problems versus the geometric solid 

problems. A red X (“incorrect”) in the Explanation column was given as a result of the student 

not being able to describe or inaccurately describing the volume integral as a summation of small 

volume pieces with certain measurements. A green checkmark (“correct”) in the Explanation 

column only appeared in Problem 3. To get a green checkmark for the revolution volume 

problem Explanation column, the student must correctly identify all pieces of the three 

dimensions that comprised the volume measurement, along with the correct formulas for each. 

For the geometric solid problems, the participants never accurately developed formulas to work 
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with, so they could discuss the measurements in more general terms (without formulas), and still 

achieve a designation of “correct”. 

 
Conclusions      

As a result of Pilot Study 2, I realized several things that led to my decision to change my 

interview problems for my dissertation. First, I was able to get plenty of information about 

student understanding of revolution problems from one revolution problem; I did not need two. I 

decided to keep Problem 2 and discard Problem 1. Second, the pyramid problem seemed very 

challenging compared to the revolution volume problem so I added another non-revolution 

volume problem that included a given bounding function. My intention here was to provide a 

non-revolution volume problem, but with more information given than what is given explicitly in 

the pyramid problem.  
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Chapter 5: METHODS 
 

To obtain a sufficiently deep and thorough investigation of students’ understanding of 

definite integrals in the context of volume problems, semi-structured, one-on-one interviews 

were selected to be the mode of data collection for this qualitative study. I will first discuss the 

participants and how they were recruited. Then, I will describe the interview questions and 

protocol, along with the interview environment. Two different instances and layers of analysis 

were done, so I will also describe the process of data analysis and provide examples. 

Participants 

Participants were recruited from summer Calculus 2 and Calculus 3 (Multivariable 

Calculus) classes that were held at a large, public university in the Northeast. The Calculus 2 

students were recruited after learning about volume applications of integration, and the Calculus 

3 students were recruited before learning about multiple integrals. The goal in recruiting at these 

specific benchmarks was to have participants who had experience solving single-integral volume 

problems, but not multiple-integral volume problems. In an earlier pilot study (see Chapter 4), 

differential equations students solved the problems contained in this study, and their prior 

experience with finding volumes via multiple integrals served as a confounding factor that 

produced data outside the scope of the research questions. For the current study, ten students 

were recruited – five from Calculus 2 (Ali, Blair, Casey, Dana, and Erron) and five from 

Calculus 3 (Francis, Glenn, Hao, Iris, and Jay). Three of the Calculus 3 students had previously 

taken Calculus 2 with the researcher, but none of the participants were in a class with the 

researcher at the time of the interviews. 
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Interviews 

Student interviews were conducted over the course of four weeks during the summer 

2018 semester. These interviews were one-on-one with the interviewer, and the sessions were 

video recorded. The participants were not compensated monetarily or academically for their 

time, but they were provided with light refreshments during the interview. 

During each interview, the participants worked through the three single-variable calculus 

volume problems listed below. The pictures in Figure 2 are provided for the reader’s 

convenience in visualizing the regions and solids but were not provided to the students during 

the interviews. 

 

   

Problem 1 Problem 2 Problem 3 

Figure 2. Regions associated with the volume problems. 
 

Problem 1: Find the volume of the solid obtained by rotating the region bounded by the 
curves 𝑦 = √𝑥 and 𝑦 = "

3
𝑥 about the line 𝑦 = −1. 

Problem 2: Find the volume of the solid S whose base is the region enclosed by the parabola 
𝑦 = 1 − 𝑥!	and the x-axis. 

 (2a) Cross-sections parallel to the y-axis are squares. 
 (2b) Cross-sections perpendicular to the y-axis are squares. 

Problem 3: Find the volume of a pyramid whose base is a square with side length L and 
whose height is h. 
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Problem 1 was chosen because it was predicted to be familiar and relatively low stress to 

students as a problem to start the interview. It also acted as a tool to extract students’ baseline 

understanding of the relationship between the definite integral and volume. Problems 2 and 3 

were chosen as problems that required a more detailed focus on the underlying structure of the 

definite integral as a sum of small volume approximations. Problem 2 was chosen specifically 

because it was a non-revolution volume problem that gave an explicit function that bounded the 

base of the solid. Problem 3 was chosen because it was a familiar shape, but an explicit bounding 

function was not provided.  

As students worked through the problems, they were asked to explain their work and 

reasoning aloud as they wrote and thought about the problems. In addition to what students 

naturally spoke about, there was an interview protocol that was followed by the interviewer and 

consisted of a checklist of questions that were to be asked by the interviewer in order to collect 

consistent data across interviews. The checklist varied somewhat between problems, but in 

general it served as a guide for the interviewer to ask all participants the same type of questions. 

Below are some examples of questions from the checklist (see Appendix A for full protcol). 

● Why does an integral give a volume? 
● Why does that integral give the volume of that solid? 
● What does the dx or dy in the integral mean? 
● What is the shape of one slice? 
● Why did your previous (revolution) volume integral contain 𝜋 and this one does not? 

 
To capture students’ written work, drawings, and graphs, students were asked to do their 

symbolic work on paper and any drawings or graphs on a separate large, portable white board. 

The written surfaces (paper and white board) were separate so that I could more effectively note 

when students were attending to their symbolic work and when they were attending to their 

sketches. 
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Data analysis 

The data was analyzed in two phases, all according to the thematic analysis (Braun and 

Clarke, 2006) method. This is a qualitative analysis method in which themes are identified from 

the data either from an inductive or deductive (theoretical) approach. This is different from a 

grounded theory (Strauss and Corbin, 1998) approach in that I did not code the data with the 

intention of building a new theory. Instead, my intent was to extract and examine various themes 

from student interviews and discuss them in relation to the definite integral. 

After interviews were transcribed, the first phase of data analysis involved coding for 

students’ correct and incorrect volume integrals. Because there was a specific element of the data 

that I was attending to, this was considered to be theoretical (deductive) thematic analysis. As 

coding began, I discovered that there were different levels of correctness that I wanted to attend 

to, so I named these levels “symbolic structure,” “symbolic details,” and “conceptual 

understanding.” Symbolic structure pertains to the placement of elements within and the 

configuration of students’ integral representations. This category is equivalent to Sherin’s (2001) 

“symbolic template,” a schema in which a student knows that symbolic expressions go in certain 

areas or boxes. For example, a student would get a designation of “symbolic structure correct” 

using the washer method for Problem 1 if their written response had the form ∫ 𝜋(∎! −∎
∎

∎!)𝑑∎, regardless of the accuracy of the mathematical expressions that appeared in the boxes. 

Symbolic details are the actual symbolic expressions that reside in the boxes of the symbolic 

structure. Thus, it was impossible for a student to get a designation of “symbolic structure 

incorrect” and “symbolic details correct” for any problem. 

Conceptual understanding was determined from students’ verbal explanations about their 

understanding of the volume integral in general. Because this level of understanding is not 
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necessarily linked to the symbols in the integral directly, it was possible for a student to receive a 

designation of “conceptual understanding correct,” even if they got neither the symbolic 

structure nor symbolic details correct. For example, if a student indicated that they knew a 

pyramid’s volume could be approximated by the sum of the volumes of very thin stacked boxes, 

but they could not build a corresponding integral, this student would have correct conceptual 

understanding but incorrect symbolic structure and details. It was necessary, but not sufficient, 

for a student to discuss their understanding of the definite integral using at least one of Sealey’s 

(2014) Riemann Integral Framework (RIF) layers of Product, Summation, and/or Limit. See 

below for a more detailed discussion of the RIF Framework layers.  

The second phase of data analysis involved coding interview transcriptions using 

Sealey’s RIF. Again, as I went into the data analysis looking for specific types of student 

understanding, this phase was also considered thematic (deductive) analysis. In phase two, I 

looked for any phrases that would indicate the student was thinking of the problem from within a 

certain Riemann integral layer. When in the Orienting pre-layer, students attended to the 

integrand and/or the dx separately and not as elements of a product. The Product layer required 

students to see the integrand and dx interacting to form a product. A designation of Summation 

layer occurred when a student discussed the integral as signifying a summation of pieces or 

quantities. Lastly, students were within the Limit layer when they explicitly mentioned limits or 

infinity in the context of their integral. Also considered Limit layer thinking was if a student 

mentioned tiny pieces (size of x approaching zero, or ∆𝑥	 → 0) or many pieces (number of pieces 

growing without bound, or 𝑛 → ∞). No students in this study reflected on their volume integral 

as representing a function, so the Function layer will not be discussed in this paper. Some 

example coded transcript excerpts follow. 
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Orienting layer (Ali, Problem 3): Because I know that I want to solve for, I want to solve for 
the areas of the squares (cross-sections of the pyramid). And I know that whatever I get is 
squared because, obviously it’s a square. And I know that I’m going to be doing it in dy. 
 

The above excerpt was coded as Orienting because Ali was attending only to the cross-

sectional squares’ areas in their discussion, which is the volume integral’s integrand. Although 

they are talking about the pieces of a product, they do not discuss the pieces as a product, but as 

separate entities. They also mention that the differential dy acts as a signal for the variable of 

integration rather than an element with a physical component. 

Product layer (Francis, Problem 1): Well, volume is just length times width times height. 
[pause] dx? That (dx) is going to be the width. This (√𝑥 − "

3
𝑥) is like the height. [In 

V=lwh, labels h as √𝑥 − "
3
𝑥 and w as dx.]  

 

The excerpt above, which is mathematically incorrect, was coded as Product due to 

Francis discussing volume as being composed of products and then labeling the pieces of the 

product with their integrand and dx. Francis’s written work at this point in their problem solving 

did not actually involve an integral sign yet, but they were in the process of building it from the 

inside out. 

Summation layer (Francis, Problem 3): Because you use integrals to sum information 
together. That’s the simplest way to put it. No matter what you’re solving, the integral 
will give you the sum, because it comes from the Riemann sum. 

 

The Summation layer discussions were relatively easy to identify because of students’ 

use of words like “sum” and “add.” Participants in this study approached their discussion of the 

underlying sum from two views: sum as a static noun and sum as a dynamic verb. In the quote 

above, Francis used both of these views in their discussion. 
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Limit layer (Dana, Problem 1): OK, I had to think through it, but it turns into the volume of a 
rectangular prism, where you have thickness dy which would just become infinitely thin. 

 

Here, Dana was working through Problem 1 using the shell method and discussing how it 

is really just finding the volume of a rectangular prism that is rolled around to form a shell. Dana 

also mentioned that dy has a physical component (thickness) that gets infinitely thin, which 

indicated that they were thinking within the Limit layer. When discussing the integral from 

within the Limit layer, there were two views: infinitely many and infinitely small. This makes 

sense given that those two ideas work in tandem. These two views also show up in different 

definitions of the definite integral – one in which the number of approximating intervals 

approaches infinity (𝑛 → ∞) and one in which the size of the intervals approaches zero (∆𝑥	 →

0).  

After phase one and phase two of data coding were complete, the data was organized into 

several different charts. The symbolic structure, symbolic detail, and conceptual understanding 

codes (phase one of coding) were collected in a visual chart according to student and problem 

number (see Tables 5, 6, and 7 in Chapter 6). In this chart, I looked for patterns across students 

and across problems. The RIF codes (phase two of coding) were also collected in a visual chart, 

organized according to student and problem number. Finally, these two charts were combined 

with the goal of finding connections and patterns between students’ performance on symbolic 

and conceptual aspects compared to their abilities to discuss their work from within the layers of 

the RIF. 
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Chapter 6: DATA AND RESULTS 

This research study was conducted with the intent of examining student understanding of 

the definite integral when solving calculus volume problems. Problem 1 provided data on how 

students understand and use the definite integral in volume problems that are familiar to them 

(Section 5.1), while Problems 2 and 3 provided data on how students use (or do not use) the 

definite integral for volume problems they are not familiar with (Sections 5.2 and 5.3). I was also 

able to examine how their definite integral conceptions from Problem 1 carried over into 

Problems 2 and 3, by using Piaget’s (1977) assimilation and accommodation to describe these 

occurrences. All participants will be referred to using the singular “they,” as preferred pronoun 

usage was not asked during the interview and is not a factor in this study. 

6.1.  Revolution volume problem (Problem 1) 

  As discussed in Chapter 5, there were three designated levels of correctness that were 

analyzed for each problem. Symbolic structure was the form of the volume integral (for example, 

a disk method revolution volume integral would have symbolic structure ∫ 𝜋(∎)!𝑑∎∎
∎ ). 

Symbolic details involved the numerical bounds, the function(s) in the integrand, and the variable 

of integration. Finally, conceptual understanding was knowledge and use of the underlying 

structure of the volume integral.  

In the sections that follow, I discuss results related to two combinations of symbolic and 

conceptual understanding. In Section 6.1.2.1, I present data for students who exhibited correct 

symbolic structure and detail knowledge along with having accurate conceptual understanding. 

This combination is of interest for two reasons: it allows us to see how students verbalize their 

correct conceptions, and it allows us to have a baseline to compare their performance on and 

approach to the unfamiliar non-revolution volume problems (Sections 6.2 and 6.3). In Section 
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6.1.2.2, I present data for students who had correct symbolic structure and detail knowledge, but 

had inaccurate conceptual understanding. This combination is what we hope to avoid when it 

comes to student learning. The data in 6.1.2.2 serves as evidence that students can produce 

symbolically correct revolution volume integrals, but have inaccurate or incomplete 

understanding of why their answer is correct. This data can also allow us to see what types of 

incorrect conceptions students hold, so that we can work to interrupt or challenge those 

misconceptions before they become part of students’ definite integral schemes. 

 
Problem 1: Find the volume of the solid obtained by rotating the region bounded by the curves 
𝑦 = √𝑥  and  𝑦 = "

3
𝑥  about the line 𝑦 = −1. 

 

6.1.1.  Problem 1 – Symbolic structure and symbolic details 

The revolution problem (Problem 1) was recognized by all participants as a type of 

problem they had seen in a current or past calculus class. All students had either used or heard of 

the two methods (washers and shells) for solving revolution volume problems. Eight of ten 

students interviewed were able to get at least some symbolic part (either structure or details) of 

Problem 1 correct. Six of ten students were able to set up a completely correct volume integral 

for Problem 1 using the washer method, while only three of ten were able to set up a correct shell 

method volume integral. Students’ detailed volume integral written responses are given in Table 

3, and a summary including symbolic structure and symbolic details performance is given in 

Table 4. 
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 Washer Method Cylindrical Shell Method 

!"##$%&' $ 𝜋 &'√𝑥 + 1,
!
− .

1
3
	𝑥 + 11

!
2 𝑑𝑥

"

#
	

inner radius        outer radius 

$ 2𝜋(𝑦 + 1)(3𝑦 − 𝑦!)𝑑𝑦
$

#
	

  radius        height 
Ali correct correct 

Blair correct $ 2𝜋(1 + 3𝑦)(𝑦!)𝑑𝑦
$

#
	

incorrect shell height & radius 

Casey correct 2𝜋$ (𝑦 + 1)(𝑦! − 3𝑦)𝑑𝑦
$

#
	

incorrect shell height 
Dana correct correct 
Erron correct correct 

Francis $ 𝜋𝑟! .√𝑥 −
1
3
𝑥1 𝑑𝑥

"

#
	

Was not sure of method, incorrect for both 

Glenn $ '√𝑥 − 1,
!
− .

1
3
	𝑥 − 11

!
	𝑑𝑥

"

#
	

incorrect washer radii, no 𝜋 
“can’t be done with shells” 

Hao correct 2𝜋$ (3𝑦 + 1)(3𝑦 − 𝑦!)𝑑𝑦
$

#
	

incorrect shell radius 

Iris 
$ 9'√𝑥,

!
− .

1
3
𝑥1

!
: (𝑦 + 1)(2𝜋)𝑑𝑦

"

#
	

incorrect washer radii, extra term,  
2𝜋 instead of 𝜋, incorrect variable 

“I don’t believe it can be done with 
shells” 

Jay 
𝜋$ ;𝑥 .

1
3
𝑥 − 11 + 1<

!
− [𝑥 + 1]!

#

%!
	

incorrect bounds, incorrect washer 
radii, no dx 

2𝜋$ 𝑦(𝑦! − 3𝑦)𝑑𝑦
!

#
	

incorrect bounds, incorrect shell 
radius, incorrect shell height 

Table 3. Detailed student symbolic structure and symbolic detail work on Problem 1 (revolution problem) 
 

As a reminder, Ali, Blair, Casey, Dana, and Erron were Calculus 2 students, and Francis, 

Glenn, Hao, Iris, and Jay were Calculus 3 students at the time of the interviews. The interviews 

were conducted right after the Calculus 2 students covered volumes and right before the Calculus 

3 students covered multiple integrals. It can be seen in Tables 3 and 4 that the Calculus 2 

students performed significantly better than the Calculus 3 students on Problem 1. 
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 Students: Ali Blair Casey Dana Erron Francis Glenn Hao Iris Jay 

Structure Problem 1 
(washers) 

          
Details           
Structure Problem 1 

(shells) 
     unsure not  not  

Details      method valid  valid  
Correct            

Incorrect            
Table 4. Summarized student symbolic structure and symbolic detail work on Problem 1 (revolution 

problem). 
 

As can be seen in Table 4, Ali, Dana, and Erron got both washer and shell method 

volume integral setups completely symbolically correct. Blair, Casey, and Hao got their washer 

method volume integral symbolically correct, but their shell method integral incorrect. Blair’s 

shell-method integral had two mistakes: the shell radius and shell height. Blair had a radius of 

1 + 3𝑦 instead of the correct 1 + 𝑦, and a height of 𝑦! instead of the correct 3𝑦 − 𝑦!. Blair 

seemed to have neglected the fact that the height of the shell was bounded by two functions, 

rather than just one. Casey had a small error in their shell height, putting 𝑦! − 3𝑦 instead of the 

correct 3𝑦 − 𝑦!. This flipping of the shell height was common, also occurring with Hao and Jay. 

Only the Calculus 3 students made errors of the symbolic structure type. For example, 

Francis produced the integral ∫ 𝜋𝑟! >√𝑥 − "
3
𝑥? 𝑑𝑥	5

*  which does not fit into one specific correct 

structure but instead contains elements reminiscent of both the washer method (𝜋𝑟2 as disk area) 

and shell method (√𝑥 − "
3
𝑥 as a shell height). Similarly, Iris’s washer method integral 

∫ MN√𝑥O
!
− >"

3
𝑥?

!
P (𝑦 + 1)(2𝜋)𝑑𝑦	5

* 	also has elements that resemble both washer and shell 

method. 
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6.1.2.  Problem 1 – Conceptual understanding 

When setting up their revolution integrals, all students were highly formula-focused and 

did not initially go into detail concerning their deeper understanding of the underlying structure 

of their volume integral. Thus, after they set up their integrals, the interviewer then questioned 

them on their understanding of the concepts (some of these questions are mentioned in Chapter 4 

Methods).   

For Problem 1, a student obtained a designation of “correct conceptual understanding” if 

they were able to describe how their integral (or an integral in general) can represent a volume. A 

necessary (but not sufficient) condition for the “correct conceptual” designation was that the 

student had to discuss their integral from within at least one layer of the Riemann Integral 

Framework (RIF). Below, I will present two instances of interest that arose during the 

interviews: (1) students having correct symbolic structure/details with accurate conceptual 

understanding, and (2) students having correct symbolic structure/details with inaccurate 

conceptual understanding. See Table 5 for summarized information on symbolic structure, 

symbolic details, and conceptual understanding results for Problem 1 and Table 6 for students’ 

discussions of their understanding of Problem 1 from within the different layers of the RIF. 

 
 

 Students: Ali Blair Casey Dana Erron Francis Glenn Hao Iris Jay 
Structure Revolution 

Problem 
(washers) 

          
Details           
Concept           
Structure Revolution 

Problem 
(shells) 

     unsure “shells  “shells  
Details      of not  not  
Concept      method valid”  valid”  

Correct            
Incorrect            

Table 5. Data on student performance on symbolic structure, symbolic details, and conceptual aspects of 
Problem 1 (revolution problem) 
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Student Ali Blair Casey Dana Erron Francis Glenn Hao Iris Jay 

RIF 
Layers 

(Prob 1) 
Orienting Orienting Orienting 

Product 

Orienting 
Product 

Sum 
Limit 

n/a 
Product 

Sum 
Limit 

n/a Orienting Orienting Orienting 
Sum 

Table 6. Student discussions of Problem 1 from within the different Riemann Integral Framework Layers. 

 

6.1.2.1.  Problem 1 – Correct symbolic structure/details and accurate conceptual understanding 

(Casey and Dana) 

Two students (Casey and Dana) were able to successfully build correct revolution volume 

integrals while also giving accurate responses to questions involving the underlying concepts of 

the definite integral. Casey was able to do so while talking through the washer method, but it 

took Dana until their shell method setup to make progress on explaining the conceptual side of 

their integral. 

Casey started Problem 1 using the washer method and discussed their understanding by 

focusing on a general relationship between integrals, derivatives, and antiderivatives. Casey was 

unsure while engaging in this discussion, so the interviewer steered the conversation toward the 

meanings of the specific integrand pieces. As Casey talked through the meaning of the pieces, 

they began to get more confident in their answers and began to see the connection between the 

area formulas and the volume. 

 
Interviewer:  You took this [points to outer radius function] and put it there and squared 

it, and then you took this [points to inner radius function] and put it there 
and squared it. So, what are those two pieces representative of? 

Casey:  Those two pieces are representative of a distance on the graph. So, the first 
one, the big R, is the outer circumference of your overall volume sphere 
bit. Um, and you’re subtracting the smaller piece, the inner radius, because 
you don’t need that, you just need that outside piece. 

Interviewer:  OK, how come they’re squared? 
Casey:  That one I don’t know. Um, (pause) If you were to prove this, or (pause) I 

feel like it has something to do with the area of a circle on the coordinate 
plane, when you’re building that equation. 

Interviewer:  What is the area of a circle? 
Casey:  2𝜋𝑟. Or r (pause) 𝜋𝑟2 is the area, 2𝜋𝑟 is the circumference. 
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Interviewer:  OK, so, one more question, we kind of talked about all the things, what is 
the dx? 

Casey:  The dx is the width of the, your disk. Which is more easily represented on 
the graph as the change in x. 

Interviewer:  OK, so how when you put that stuff all together, how does that give you a 
volume? Say, for example, the volume of one disk. 

Casey:  Um, so, I actually understand this much more now that you’re making me 
answer these questions. Um, so, it’s a small cylinder is what we’re 
representing with the graph. So, the area of the circle is the outer face, and 
the dx is the width, your height of the cylinder. So, you’re multiplying that 
one face of the circle all the way through the entire cylinder, that’s a 
prism. 

 

Casey started this conversation focusing on the specific parts that comprise the integral 

because the interviewer led them in that direction. The interviewer also led them to consider the 

dx as a separate piece. These two parts of the discussion would fall within the Orienting pre-

layer, which is where a student considers the pieces of the product as separate entities. The 

interviewer then asked Casey to consider what happens “when you put all that stuff together,” 

meaning considering the area formula and the dx together. Considering the area formula and the 

dx together as a product that produces a volume lies within the Product layer of the RIF. So 

technically, Casey did not consider these things on their own. This being said, although Casey 

did not make this journey alone, they did so comfortably and mathematically soundly, by 

translating the interviewer’s prompts into correct observations connecting the integral and 

volume. Moreover, after attending to the Product layer, the student expressed, “I actually 

understand this much more now that you’re making me answer these questions.” This is 

evidence that having students think about and discuss their integral set-ups can result in a deeper 

understanding of the underlying structure of the definite integral. 

During this discussion, Casey described the dx as having a physical property (“width of 

the disk”) and as a change in the x-value. Earlier in the interview, Casey mentioned the dx as 
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signaling the variable of integration, but they were able to move between different conceptions 

of the dx depending on which aspect of the problem they were discussing. Although they did not 

mention anything about the size of dx (which could possibly signal Limit layer thinking), they 

were able to think of multiplicative interactions between the integrand and the dx, signaling 

Product layer thinking (Table 6). 

Another aspect related to dx that came up in both Casey’s washer and shell method 

problem-solving was how they decided which method to use. In particular, Casey’s choice of 

washer method or shell method stemmed from the orientation of the rectangle to the line of 

rotation (Figure 3). 

 

 
Figure 3. Casey’s sketches for Problem 1. 

 

Interviewer:  OK, why did you choose this (washer) method? 
Casey:  Uh, because the shape (the rectangle) is perpendicular to the axis of 

rotation. Um, even though disk/washer and the other one, they’re the same 
thing, it’s just depending on which way your shape (rectangle) is faced.  

Interviewer:  So when you say your shape, you mean that little guy right there? [points 
to vertical rectangle] 

Casey:  Yeah, yeah, the rectangle. It depends on which way he’s oriented on the 
graph.  

Interviewer:  But with respect to the axis of rotation? 
Casey:  Yes. Yeah, so if he’s parallel, you’d do the other one I didn’t do. 
Interviewer:  Does the other one have a name? 
Casey:  Yeah, it does. Disk/washer, and um, cone. 
Interviewer:  Cylindrical shells. 
Casey:  Yeah, shells. Shells, that’s it. 
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For the shell method of Problem 1, Casey built an almost-correct integral, with only the 

height component being incorrect, having 𝑦! − 3𝑦 instead of the correct 3𝑦 − 𝑦!. Casey 

discussed the pieces of the shell method integral in detail (2𝜋𝑟 as a circumference, h as a height, 

dy as a thickness), but they did not go as far as to put the pieces together to discuss a volume 

from the view of the Product layer. The interviewer did not probe as deeply for this part as they 

did for the washer method. 

In summary, Casey was designated as “conceptually correct” for Problem 1 because they 

exhibited Product layer thinking of the integrand and the dx; they were able to consider dx as a 

flexible notation, standing for the variable of integration and the width of a slice, depending on 

what context it was being discussed; and because they attended to the volume of a representative 

slice of the solid. As mentioned above, Casey started out in Problem 1 with a function-matching 

conception of volume, but it evolved to a conceptually robust conception during the process of 

the interview, which is evidence of Casey accommodating his previous understanding with 

newer, more accurate knowledge.  

Like Casey, Dana was also successful in their discussion of Problem 1, but their success 

was not as quick and continuous as Casey’s. In fact, Dana never completely described the washer 

method integral in a way that would be considered mathematically accurate. It took them until 

their following shell method attempt to put together a coherent, accurate description of the 

underlying concepts. 

Dana began Problem 1 using the washer method and set the integral up symbolically 

correctly in their first attempt. As Dana was discussing their thought process, they were 

connected to a conception that the definition of the integral was specifically connected to area. 
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Dana said, “because, thinking of the definition of the integral, to find the area under the graph, 

you split it into rectangles, infinitely smaller rectangles. So you could do that with this region.” 

This conception lingered through the duration of their washer method explanation. As seen in the 

following excerpt, Dana struggled to assimilate the idea of “integrals give volumes” with their 

prior knowledge that “integrals give areas.” They eventually began to accommodate this new 

information by bringing in a third variable in the form of dz to account for the third dimension 

that their 2D area integral was missing.  

 
Interviewer:  So, you jumped to that general formula pretty quick, how do you know 

that an integral actually gives a volume? 
Dana:  The way I think about it is, I have this region, which I can use an integral 

to find the area of. And then, if I’m revolving that region around this 
point, that means I’m just finding the area of this region, over and over, 
infinitely many times, for infinitely smaller changes in d-something, 
maybe dz, because it goes to the third dimension around this. 

 

Dana’s discussion frequently referenced the Limit layer. Below is their response to the 

interviewer’s question, “why does an integral give a volume?,” first asked during their working 

of the washer method for Problem 1. 

Dana:  And the area of the circle I know is 𝜋𝑟2, so then that’s the, Area 1 would 
be the area of this big circle. Circle 1. And then Area 2 is also 𝜋𝑟2. And I 
can change this r in area 1 to big R. So, to find the area of this cross-
section of the washer, take that big area A1 minus A2. 

Interviewer:  OK, so those are areas, how come your integral gives a volume then? 
Dana:  Because like I said, this is just one sort of small, infinitely small piece of 

the whole washer, and then, like in my mind I want to think about like, 
you need to use another integral to find like. So, if this is the washer from 
the side, you almost need to use another integral to find all of these up 
through here. But I don’t, and I really don’t understand that part. 

 

Next, the interviewer asked Dana about dx, to which Dana had connected two common 

conceptions: variable of integration and orientation of the rectangle to the axis of rotation. It 
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wasn’t until later in the interview that Dana discussed dx as representing a physical quantity. 

Dana then worked on Problem 1 using cylindrical shells method and continued to have a hard 

time juggling the fact that an integral, which represents an area, can also represent a volume.  

As before, Dana built a correct integral from a memorized formula and the interviewer 

asked them about their conceptual understanding of the formula. The quotes that follow are 

sequential, but parts of the transcript that did not illustrate Dana’s forward progress were omitted 

(see Figure 4 for Dana’s sketch with the measurement r inserted for clarity).  

 
Interviewer:  So, why does all that stuff give you a volume? How do you know that 

integral gives you a volume? What are the pieces that would contribute? 
Dana:  … the shell method has its roots from the volume of a cylinder. (pause) 

Here is my little region. dy and h. And I’ll revolve around this line. It kind 
of makes a cylinder. 

Dana:  … I’m pretty sure the way that this one works, is that it takes this cylinder 
and sort of unwraps it. So that instead of a cylinder you have like this 
rectangle, and you find the area of that, which is the r times h, and then 
times, you also have to multiply by the area of the circle on either side. So 
that’s, again, that’s 𝜋𝑟2. I might be wrong about this actually. 

Dana:  No, it has something to do with circumference, not area, of the circles. 
This is as far as I know for sure, you take this cylinder, or you think about 
it as like a cylinder when it’s done, sort of unwrap it, and you um. So, I 
guess this rectangle would have a thickness of dy. 

Dana:  You can find that circle’s circumference with 2𝜋𝑟, so I know that’s where 
this 2𝜋 in the formula comes from. 

Dana:  OK, I had to think through it, but it turns into the volume of a rectangular 
prism, where you have thickness dy which would just become infinitely 
thin. And then r is sort of your height, I guess if you look at it like this, it’s 
your height, but it’s this distance [motions from rectangle to line of 
rotation] times your height, and that’s the volume of the rectangle prism 
which when you wrap it around this line forms a shell. 

Interviewer:  So did you know that before going into that, or did you just work that out 
right here? 

Dana:  I knew beforehand sort of thinking about a cylinder and unwrapping it to 
find the area or the volume of that. … I took myself down the wrong path 
thinking about a rectangle instead of a rectangular prism, so that much, I 
had to work that out.  
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Figure 4. Dana’s sketch for Problem 1. 
 

Dana’s evolution of understanding of the cylindrical shell conception took place over the 

span of about five minutes, during which they talked from within many different layers of the 

RIF. In particular, the Limit layer appeared once again, illustrating how strong that idea was for 

Dana and their understanding of the definite integral. Another thing to note in this excerpt is 

Dana recognized that they had to adjust their understanding of “integrals give areas” using 

rectangles to accommodate the new knowledge that “integrals give volumes” using rectangular 

prisms. 

Dana’s understanding for the shells method of Problem 1 was labeled as “conceptually 

correct” because they exhibited Product and Limit layer thinking (Table 6), and they considered 

the dy as the thickness of a representative shell. Dana already had an understanding of the 

underlying structure of the volume integral for shells, but in the process of talking through their 

understanding, they solidified and expanded their understanding, showing evidence of 

accommodation of current schema with newer knowledge. 

6.1.2.2.  Problem 1 – Correct symbolic structure/details and inaccurate conceptual 

understanding 

The most common combination of results for Problem 1 was from students who 

demonstrated an incorrect conceptual understanding, even though they were able to produce a 

symbolically correct integral. The students I will focus on in this section are those who got at 
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least one instance of correct symbolic structure and symbolic details, along with incorrect 

conceptual understanding: Ali, Blair, Erron, and Hao. Francis and Iris were unable to get any 

part of the symbolic integral setup correct, while Glenn and Jay were only able to get the 

symbolic structure correct.  

Ali was able to produce correct symbolic answers for both the washer method and 

cylindrical shell method for Problem 1. When asked why the integral gives a volume, Ali 

focused solely on the area functions in the integrand, which was evidence of only Orienting pre-

layer thinking (Table 6).  

 
Interviewer:  So, what do you know about the relationship between the integral and 

volume? How do you know that an integral gives you a volume?  
Ali:  Um, whenever I’m looking for the volume, I tend to just remember the 

fact that the area of a circle is 𝜋𝑟2. And that the area of, like the surface 
area of the cylinder is um oh 2𝜋𝑟, 2𝜋 height times the radius. And then I 
just kind of figure out which one (washer or shell method) I think is going 
to be easier to solve. 

 

Like all participants in this study, Ali started out their discussion focusing on the details 

of the area functions under the integral rather than the conceptual idea behind the volume 

integrals. Ali was correct with their statements about the area functions having the structures of 

𝜋𝑟2 for washer method and 2𝜋𝑟ℎ for shells, but more information was needed to discover if Ali 

was considering a third dimension. The interviewer then asked Ali about the meaning of the dx 

associated with the integral.  

 

Interviewer:  OK, so what part does the dx play? 
Ali:  The dx is, it’s in every integral. It’s just the derivative of x and when you 

take it out, it’s, obviously its integral is x. 
Interviewer:  OK. So you’re saying that that dx is an indicator of your variable. 
Ali:  Yeah, yeah. 
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Ali’s conception of the volume integral consisted of the area function integrand and the 

differential dx as separate pieces that did not interact with each other aside from dx being “in 

every integral.” Ali’s inattention to the Product layer of the integral does not affect their ability 

to build the correct volume integral for Problem 1. This inaccurate conception carried through 

Ali’s work, but it did not impede their ability to get correct symbolic answers for most of the 

problems. As we will see in Sections 6.2 and 6.3, Ali has an “adding areas” conception of the 

volume integral that works well with setting up a symbolically-correct integral, but hides the idea 

behind why a volume integral gives a volume.   

Blair was successful in setting up the correct volume integral using the washer method 

but was not able to set up a correct integral using cylindrical shells method (incorrect shell radius 

and height). Blair discussed their conception of the integral early in the interview. 

 
Interviewer:  So it seems like you had a formula memorized (for washer method), your 

𝜋𝑟2.  
Blair:  Yes, the volume is basically the integral of the area. 
Interviewer:  OK, so um so why, why an integral? Why would we use integral to 

calculate volume? 
Blair:  …Since we have circles here, we’re doing it as, as the integrals of areas.  
Interviewer:  OK, so how come when you integrate areas you get volume? What’s that 

jump? 
Blair:  Um, since the derivative of the volume is the area, so, I know it that way. 

 

Blair knew of a derivative-antiderivative connection between area and volume but was 

unable to give any insight into why those connections occurred. This view is consistent with 

Jones’ (2013) “function-matching” symbolic form of the definite integral in which students 

connected certain functions via a derivative-antiderivative relationship. For this study, I will state 

this in a way that is more specific to volume problems by calling it “integrating areas”. This was 

a conception that was less refined than Ali’s “adding areas” because, as we will see in Problems 
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2 and 3, Blair viewed the integral as somewhat of a machine that turned area into volume, 

regardless of which area function served as the integrand. Blair’s understanding was considered 

to be conceptually inaccurate because their thinking resided solely in the Orienting pre-layer; 

they considered the definite integral only as a producer of function-matching between area and 

volume; and because they viewed dx only as a notational indicator of variable and having to do 

with the orientation of a representative rectangle (versus as being a component of a 

representative rectangle).  

Erron got both the washers and shells versions of Problem 1 structurally and symbolically 

correct due to being very skilled with manipulating the memorized disk and washer volume 

formulas. When asked why an integral gives a volume, Erron’s first response was, “um… 

because the formula does it?” When asked to go into more detail, they stated that if each part of 

the integrand was measured in miles (labeled as “m” above each part of the integral in Figure 5), 

then when you multiply the pieces of the integral together it “would be a unit cubed which is a 

volume” (labeled as “𝑚3” in Figure 5). This units-based discussion continued throughout Erron’s 

Problem 1 discussion, hinging on “squared things are areas” and “cubed things are volumes.” 

Erron contributed this focus on units to being a physics major. 

 

 
Figure 5. Erron’s shells integral for Problem 1 with “miles” marked above each part of the 

integral. 
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Erron only referred to dx as “the derivative of x” or an indicator of the variable of 

integration throughout Problem 1 even though they assigned a unit measure to it in their units 

discussion. They also considered the dx (or dy) to be part of the product of terms under the 

integral, which is indicative of Product layer thinking, but not necessarily what the product 

represents. 

Erron also had a visual understanding of the washers and shells, but those shapes never 

played a part in their discussion of why an integral gives a volume. 

Erron:  You just kind of like have to make a mental image in your mind and rotate 
it (the rectangle) around the point and then say “oh yeah, that would look 
more like a shell” or “that would look like a little disk.” 

 

When asked to give more information about the revolution volume integral concept beyond 

units, Erron did not go deeper than over-explaining the relationship between their memorized 

formulas and distances (heights, radii, etc.) in their sketches. If not exposed to any other type of 

integral volume problem besides revolution volume problems, depending on memorized 

formulas and being able to manipulate them in different mathematical situations would work 

very well, as it has for Erron.  

At noted in Table 6, Francis knew of general ideas of products, summations, and limits 

relating to the integral, but they were never able to fully decipher how those general ideas related 

to the specific solid in Problem 1. In Francis’s volume integral of ∫ 𝜋𝑟! >√𝑥 − "
3
𝑥?𝑑𝑥5

* , they 

were cognizant of their integrand and dx being physical pieces of a washer that were multiplied 

together (Product layer), but they could not accurately describe how they formed a volume. 

Francis also used phrases like “infinitely small piece of the total” and “the sum of spaces”, which 

were tagged as Limit layer and Summation layer thinking, respectively, but they were not robust 

and accurate enough to warrant Francis a distinction of “conceptually accurate” because Francis 
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could not pin these ideas down to the specific washers and solid in Problem 1. Francis serves as 

an example of how working within a certain layer of the RIF does not necessarily mean that the 

layer is fully understood in relation to the definite integral.      

Hao set up the washer method volume integral correctly on their first try. When asked 

why they started with the disk method, Hao stated that it had to do with the orientation of the 

rectangle with respect to the line of rotation (in this case, perpendicular). The following is Hao’s 

response to, “why does an integral give a volume?”. 

 
Hao:  I am actually not really sure why. In this class was the first time I was 

introduced to an integral to find volume. Every other way, I’ve just known 
that it was length times width times height. And it’s always a “cubed” as 
my answer. So besides that, the integral is, this is the first time I’ve seen it. 
I guess you could say the integral is used to find the volume of more 
complicated geometric things more or less. 

 

Hao then went on to over-focus on the washer formula structure but gave no meaningful 

information to answer the interviewer’s question. When asked about the dx, Hao stated that it 

was to indicate the variable of integration, and the dx above the rectangle in their picture served 

as a “visual aid” to help them know which method to use. 

For the shell method, Hao got everything in the integral symbolically correct except for 

the shell radius, where Hao put 1 + 3𝑦 instead of the correct radius of 1 + 𝑦. (Recall that one of 

the given functions was 𝑦 = "
3
𝑥, so 𝑥 = 3𝑦.) This mistake is not uncommon for students, as the 

radii in the disk/washer method depend on the function, but for the shell method, the radius is 

related to the independent variable. Once probed more about the dx and dy, Hao stated that the 

rectangles themselves were the dx and the dy (as opposed to the rectangles having width dx and 

dy). Hao was never able to discuss their volume integral beyond the Orienting pre-layer. Their 

views on integration were very rigid and superficial. Once again, not being exposed to any other 
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types of volume problems would lead to this kind of dependence solely on memorized formulas 

without the need to go deeper.   

6.2.  Non-revolution volume problem with given bounding function (Problem 2) 

Problem 2: Find the volume of the solid S whose base is the region enclosed by the parabola 𝑦 =
1 − 𝑥! and the x-axis. (2a) Cross-sections parallel to the y-axis are squares. (2b) Cross-sections 
perpendicular to the y-axis are squares. 
 
 

As discussed in Chapter 4, Problem 2 was chosen with the intent of being a “gateway” 

problem to the pyramid problem (Problem 3). The solid in Problem 2 was free-standing – not the 

result of a rotation – and the statement of the problem contained explicit information about the 

functions bounding the 2-dimensional base of the solid. Table 7 gives detailed symbolic work for 

students on Problem 2, and Table 8 gives the symbolic structure, symbolic details, and 

conceptual performance summaries of the students for Problem 2. There are dashed lines for 

Dana under Problem 2b because they were not asked about the second half of Problem 2, so 

there is no data. 

In contrast to Problem 1, Problems 2 and 3 were novel to all participants except Ali and 

Francis (this information was self-reported). The researcher of this study had two of the other 

Calculus 3 students in her Calculus 2 classes in a previous semester, and problems like Problem 

2 and Problem 3 were covered. This discrepancy was not discussed during the course of the 

interviews. 

Due to most participants viewing Problems 2 and 3 as novel, they had the opportunity to 

produce volume integrals from reasoning with their understanding of volumes and integrals 

rather than depending on memorized formulas. Six of ten participants arrived at a symbolically 

correct answer for Problem 2a, but none were successful on Problem 2b. Casey and Dana were 
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once again successful in their conceptual understanding (for 2a), and as we will see in the next 

section, this success can be seen as building on their understanding of and success with Problem 

1. The most common issue with Problem 2 was students’ inability to understand and/or visualize 

the solid. I will first discuss Casey and Dana, then I will briefly discuss the four students who 

obtained symbolically correct integrals but who demonstrated inaccurate conceptual 

understanding. 

 

 Problem 2a Problem 2b 

!"##$%&' Q (1 − 𝑥!)!𝑑𝑥
"

$"
 Q N2R1 − 𝑦O

!
𝑑𝑦

"

*
 

Ali correct Q 2NR1 − 𝑦O
!
𝑑𝑦

"

*
 

Blair Q S𝑥 −
𝑥3

3 T𝑑𝑥
"

$"
 No change from 2a 

Casey Q 𝑧(1 − 𝑥!)𝑑𝑥
"

$"
 

(correct) 
No changes from 2a 

Dana correct -------------- 

Erron 𝑉(𝑧, 𝑟) = ℎ𝑧𝑟 𝑉(𝑥) = 3𝜋$ (	)(	)(	)𝑑𝑦
&

'
 

Francis correct Q NR1 − 𝑦O
!
𝑑𝑦

"

*
 

Glenn correct No change from 2a 

Hao Q (1 − 𝑥!)𝑑𝑥
"

$"
 Q R−𝑦 + 1		𝑑𝑦

"

*
 

Iris Q (1 − 𝑥!)!
"

$"
 No change from 2a 

Jay Q (1 − 𝑥!) − 𝑥	𝑑𝑥
"

*
 Q R1 − 𝑦 − 𝑦		𝑑𝑦

"

*
 

Table 7. Detailed student performance on symbolic structure and symbolic details of Problem 2 (non-
revolution problem with given bounding functions). 
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 Students Ali Blair Casey Dana Erron Francis Glenn Hao Iris Jay 
Structure Problem 

2a 

          
Details           
Concept           
Structure Problem 

2b 

   --------       
Details    --------       
Concept    --------       

Correct            
Incorrect            

Not applicable ------------           
Table 8. Student performance on symbolic structure and symbolic details of Problem 2 (non-revolution 

problem with given bounding functions). 
 

Due to most participants viewing Problems 2 and 3 as novel, they had the opportunity to 

produce volume integrals from reasoning with their understanding of volumes and integrals 

rather than depending on memorized formulas. Six of ten participants arrived at a symbolically 

correct answer for Problem 2a, but none were successful on Problem 2b. Casey and Dana were 

once again successful in their conceptual understanding (for 2a), and as we will see in the next 

section, this success can be seen as building on their understanding of and success with Problem 

1. The most common issue with Problem 2 was students’ inability to understand and/or visualize 

the solid. I will first discuss Casey and Dana, then I will briefly discuss the four students who 

obtained symbolically correct integrals but who demonstrated inaccurate conceptual 

understanding. 

6.2.1.  Problem 2 – Accurate conceptual understanding (Casey and Dana) 

Casey began Problem 2 not quite understanding the statement of the problem, so there 

were several minutes of discussion between Casey and the interviewer concerning the solid and 

what the problem was asking. This happened with most students in this study. The interviewer 

and Casey used a whiteboard eraser to illustrate the orientation of a slice of the solid, to which 

Casey responded, “an infinite amount of vertical cuts … I was assuming it wanted an integral, 

because it’s calculus.” To clarify, Casey was stating that to them, there was a connection 
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between “an infinite amount of cuts” and “integral”. In Figure 6, the salience of the “infinite 

amount of cuts” are evident in Casey’s sketches. This shows that Casey puts a strong emphasis 

on the connection between the Limit layer and integration. From this point forward, Casey began 

building an integral from the pieces they extracted from the statement of the problem.  

 

                       
Figure 6. Casey’s sketches for Problems 2a (left) and 2b (right). 

 

At first, Casey went into building the integrand as if they were using the washer method, 

but they corrected themselves without assistance from the interviewer. 

 
Casey:  It (the rectangle) is parallel (pause) or it’s perpendicular, so I’m going to 

be using the big R and small r. … No, I’m not going to use that equation. 
Because this isn’t ro— this, the problem doesn’t ask me about a rotating 
shape. It’s asking about a stationary shape. So I have dx. The height of the 
shape is the parabola, the equation of the parabola. One minus x-squared. 
And we have the bounds. The last thing we don’t have is the actual, the z 
dimension [makes motion upward from the board]. And I guess I’ll just 
label that z.   

 
Figure 7. Casey’s volume integral for Problem 2. 
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The initial reaction of Casey starting the problem using washer method is indication of Casey 

attempting to assimilate this problem into their previous experience with revolution volume 

problems. As Casey talked through the problem and realized that there was no rotation, they had 

to accommodate by seeing Problem 2 as a different type of volume problem that needed to be 

solved by attending to each slice, rather than relying on a memorized integration formula. This 

could be seen as evidence of a carryover between Casey’s discussions with the interviewer on 

Problem 1 concerning focusing on one washer, the specific pieces, and how they work together 

to form the volume of a slice. Casey then focused on finding three dimensions that could 

comprise the bounds of the slice: dx for width, the equation of the parabola for the height, and z 

for the 3rd dimension. Casey was paying attention to separate slices here, versus the whole solid, 

as indicated by them saying that the width of “the shape” is dx, as opposed to the width being the 

distance between the left and right bounding x-values (resulting in a width of 2 – the width of the 

entire solid).  

For Problem 2b (slicing the solid perpendicular to the y-axis with cross-sectional shape of 

squares), Casey erroneously assumed that the solid had the same volume as the solid in Problem 

2a so they did not build a new integral for 2b. Casey was also hesitant to consider horizontal, dy-

thickness slices for Problem 2b because “you’re representing a difference between the same 

equation” when considering the horizontal distance between the edges of the parabola.  

Like many other participants in this study, Dana had significant trouble understanding the 

statement of Problem 2 – specifically, the meaning of “cross-sections (of the solid) are squares.” 

As Dana talked through this issue of understanding the problem, they made the following 

statement, which could be viewed as the foundation of an understanding of multiple integrals. 
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Dana:  I’ll just take this, this whole area (region in the xy-plane under the 
parabola) and once I have an integral to find that area, then I would think, 
obviously this solid would have some height. And I guess I could think of 
that as, like another integral? 

 

Dana obtained assistance from the interviewer about the visual details of the solid and 

cross-sections (the discussion consisted of comparing the solid to a loaf of bread and the slices to 

slices of the bread loaf), and the interviewer prompted Dana to consider one single slice of the 

solid. After that, Dana started to make more progress.  

 
Dana:  So that would be a square [draws 2D square on board]. And you said you 

slice it, so obviously it has some thickness [gives square thickness to form 
a rectangular prism (Figure 8)], so I guess it wouldn’t really be a cube. 
But that thickness would be, the way I think about thickness is that it 
would be some difference in x [writes dx along thickness of rectangular 
prism], if you think of it on the coordinate plane. So just that, dx times the 
area of the face of the square. 

 

 
Figure 8. Dana’s drawing of an approximating slice of the solid in Problem 2. 

 

The idea of the slice relating to the volume showed up in Dana’s last sentence, as they 

discussed the pieces via the Product layer (“dx times the area of the face of the square”). 

Although Dana had the correct idea generally and visually, they continued to have trouble 

relating the measurements of the slice to the function given in the statement of the problem. As 
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seen in Figure 8, Dana started out by calling the side lengths of the square face x, then adjusted 

them to be h(x). After some discussion with the interviewer, Dana ended up concluding that 

ℎ(𝑥) = 1 − 𝑥!, allowing them to finish the problem by building the correct volume integral. 

In both Problem 1 and Problem 2, the interviewer had to jump in and focus Dana on one 

slice of the solid, and they were able to continue correctly from there. The clearer evidence that 

Dana used knowledge from a previous problem comes in their work with Problem 3. A note: the 

interviewer decided to skip Problem 2b with Dana because the time was running long (49 

minutes at this point), and it was clear Dana was starting to get fatigued. 

6.2.2.  Problem 2 – Inaccurate conceptual understanding 

Four students in the study were able to obtain symbolically correct integrals for Problem 

2a but without accurate conceptual understanding: Ali, Francis, Glenn, and Iris.  

As with Problem 1, Ali was comfortable with building the area function integrand from 

the information given in the problem. But after further questioning from the interviewer, Ali’s 

inaccurate view on the concept of the volume integral began to emerge. 

 
Interviewer:  OK, so you’re saying a bunch of stuff about the areas of the squares, but 

what I’m asking you to find is the volume. So how does that integral give 
you a volume? Because you’re telling me about area. 

Ali:  Because it’s um, when you add all of the areas of each individual square 
up, you get the volume of the end shape. 

 

This concept of the integral is in line with Jones and Dorko’s (2015) “adding up slices without 

thickness” as well as Czarnocha’s (2001) “indivisibles”. Ali’s view of the integral as “adding 

areas” ran throughout their interview, also showing up in their sketches. In Ali’s sketch for 

Problem 2a (Figure 9), a representative 2D square (drawn by Ali in black, highlighted here in 
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red) is drawn toward the middle of the region with no indication of thickness. The red square is 

meant to look as if it is extending out and upward from the 2D whiteboard. 

 

 
Figure 9. Ali’s sketch for Problem 2a. 

 

Ali’s strong “adding areas” conception worked very well for slicing volume problems, 

and there is no evidence of their need to assimilate/accommodate due to Ali seeing these 

problems before in Calculus 2. 

Blair’s “integrating areas” conception did not fare as well for Problem 2 as it did 

(symbolically) for Problem 1. Blair immediately had trouble because they took “square cross-

sections” to mean that the 2D base region was being “diced” into squares instead of sliced into 

rectangles (Figure 10). Blair even said, “Cross-sections are squares. Squares? That will take 

forever? Rectangles are easier.” It was common in these interviews for students to misunderstand 

what “cross-sections of a solid” meant. 
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Figure 10. Blair’s sketch for Problem 2a. 

 

After the interviewer explained the solid and the slicing in more detail, Blair leaned back 

on their “integrating area” conception, doing so primarily symbolically. Blair started by recalling 

from Calculus 1 that to find the area of a 2D region, one integrates “the function of the top minus 

the function of the bottom,” obtaining an area function: 𝐴 = ∫ (1 − 𝑥!)𝑑𝑥$
$ = 𝑥 − #"

3
.  From 

here, Blair employed their “integrating area” conception of volume to get 𝑉 = ∫ >𝑥 −"
$"

#"

3
? 𝑑𝑥		(Figure 11).  

 

 
Figure 11. Blair’s volume integral for Problem 2a. 

 
 
Blair’s “integrating area” conception was so general, that they chose any area at all to plug into 

the integral in order to produce the requested volume. They saw this as a problem that could be 

solved using an integral, but their assimilation of this problem into a scheme containing a 
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shallow understanding of how the integral works resulted in an incorrect solution. Blair 

assimilated any volume problem into their integrating areas conception without second thought. 

Glenn tried to assimilate Problem 2 into their washer method schema, talking about 

“bigger R and smaller r” (radii of washers) even though these concepts were irrelevant to the 

square cross-section slices of the solid. Strangely enough, Glenn made a mistake that ended up 

producing a symbolically correct volume integral as their final answer. In the top right corner of 

Figure 12, Glenn wrote that the outer radius R was 1 − 𝑥! and the inner radius r was 0. Just as in 

Problem 1, Glenn forgot to put the factor of 𝜋, making the integral correct, even though it was 

arrived at by their schema for disk method for a volume by revolution. 

 

 
Figure 12. Glenn’s volume integral for Problem 2a. 

 

For Problem 2b, Glenn said that the integral would not change because “it will have the same 

area.” 

Iris’s statements during Problem 2 hinted at a basis of a conceptual understanding but 

they were never really able to state it accurately. Iris stated, “You can approximate the volume 

by taking … however many n slices of cross sections, and you know the areas of those, so string 

a bunch of those together you can approximate the volume, which is the integral, I think. The 
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integral part of it is however many slices.” Here, Iris talked about stringing areas together to 

approximate the volume. This is reminiscent of Ali’s adding areas without thickness conception. 

Iris ended up with the correct volume integral for Problem 2a (but omitted the dx), and 

they said the following as an explanation. 

 
Iris:  I know that to find volume, you need to have a length, width, and height 

that’s going to exist in 3 dimensions [inaudible] x, y, and z’s. So this part 
[points to integrand] gives me my, this is my length and width. And I’m 
not sure what my height is. 

 
 

Iris has a 𝑉 = 𝐿𝑊𝐻 conception that works for solids with square cross-sections, although they 

did not attend to the dx as part of the three-part product. 

6.3.  Non-revolution volume problem (Problem 3, pyramid problem) 

Problem 3: Find the volume of a pyramid whose base is a square with side length L and whose 
height is h. 

 

The pyramid problem posed two common problems for students in this study. First, the 

familiar nature of the shape of a pyramid caused many students to start by attempting to come up 

with a memorized formula from geometry. Although a few students did mention the correct 

formula, they were not confident in their answer, so they did not settle on the formula as their 

final answer. Some students also attempted a “cube volume minus non-pyramid volume” 

method, but none were comfortable or confident with that either. For this, they tried to develop 

the formula for the volume of a pyramid by subtracting out the volume of the “non-pyramid 

solid” from the volume of the cube with side length L. The second and more troublesome issue 

that arose with Problem 3 was the absence of an explicit bounding function for the edges of the 

pyramid. Because students were not able to come up with the correct function, none were able to 

build a symbolically correct volume integral for the pyramid.  
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  Ali Blair Casey Dana Erron Francis Glenn Hao Iris Jay 

Structure Problem 
3 

(pyramid 
problem) 

          
Details           
Concept           

Correct            
Incorrect            

Table 9. Student performance on symbolic structure, symbolic details, and conceptual aspects of Problem 
3 (pyramid problem). 

 
 

In Table 9, you can see that although no participants were able to arrive at an integral 

with correct symbolic details, many were able to discuss their solution in a conceptually accurate 

way – even Erron, who had not been able to do so in Problems 1 and 2. Below, I will discuss the 

conceptions of Casey and Dana first, as their conceptions have continued and refined throughout 

the span of the interview. Next will be Erron, as their accurate conception arose just in Problem 3 

and nowhere else. Last, I will discuss Ali and Blair’s persistent incorrect conceptions. 

6.3.1.  Problem 3 – Casey and Dana’s accurate conceptions 

Casey’s accurate integral conception took a while to develop due to their trying to 

assimilate this problem first using geometric methods (trying to recall memorized formulas from 

geometry) and then using their function-matching schema first mentioned in Problem 1. 

 
Casey:  I have position, velocity, and acceleration down pat, I haven’t figured out 

how to apply it to other related stuff. Obviously area relates to, or area or 
surface area, the area of a 2-dimensional thing can relate to the area of a 3-
dimensional thing because they’re close enough, I imagine. And taking a 
derivative or an antiderivative will give you one or the other. Probably the 
antiderivative since that gives you more x’s, or more variables to work 
with. 

 

Casey had an understanding of the derivative/antiderivative relationship between the physical 

quantities of position, velocity, and acceleration, so they were attempting to extend that to 
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area/volume by recognizing that taking the antiderivative produces “more x’s” (therefore adding 

a dimension). Although there is an antiderivative/derivative relationship between area and 

volume, Casey’s next steps indicated that their understanding was incomplete: they used the 

surface area of the entire pyramid as the area function. Casey continued down this route 

incorrectly until the interviewer stopped and suggested they consider the pyramid situated on the 

xy-plane.  

After this suggestion, it took Casey 6 minutes to visualize the pyramid and slicing the 

pyramid in a way that they could move forward with solving the problem. In particular, they 

were focusing on their drawn triangle (Figure 13) in two dimensions (so horizontal slices 

produced trapezoids) rather than being a representation of the 3D pyramid (where horizontal 

slices formed square cross-sections).  

 

 
Figure 13. Casey’s sketch for Problem 3. 

 

Casey:  So I’m picturing an infinite amount of now squares going up into the peak 
of the pyramid. So you’ve got the integral and you’re going to have your, 
you’re going to have an x-squared, since you have the face of the pyramid. 
The area of that is x-squared. Not the face of the pyramid, the face of the 
square. And that’s going to be multiplied by the thickness of the square, 
which is labeled as dx. 

 

Casey then corrected the dx to dy (after prompting from the interviewer) but could not make 

much more meaningful progress beyond this. Casey’s accommodation of the pyramid problem as 
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a “slicing” problem took much more time and prompting from the interviewer than in Problem 2. 

A hypothesis I have concerning this is that this effortful accommodation was due to the lack of 

an explicit function given in Problem 3. This is how it went with the other participants with 

correct conceptual understanding – they could discuss the idea of small volume boxes combined 

to approximate the volume of the pyramid, but they were unable to mathematize it into an 

integral. 

As with other students in this study, Dana first noticed the familiar geometric shape of the 

pyramid and considered calculating the volume by finding the volume of the cube and 

subtracting “all of the volume of the cube that is not the pyramid.” Dana instantly saw that this 

proved difficult. After prompting from the interviewer to consider past problems and integration, 

Dana began by considering the pyramid as being placed with its base on the xy-plane, like the 

solid in Problem 2 (Figure 14 – top left is the base of the pyramid on the xy-plane, bottom right is 

the base of the solid in Problem 2 on the xy-plane). 

 

  
Figure 14. Dana’s sketches at the beginning of Problem 3. 
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Dana assimilated the pyramid problem into their schema from Problem 2 but had some confusion 

because “I know this (the size of the square cross-section) is going to change as I go up the 

pyramid.” Dana had a choice at this point to follow the square cross-section route (slices parallel 

to the xy-plane) or to slice perpendicular to the x-axis, like in Problem 2; they chose the latter. 

Dana was very good at drawing the 3D aspects of the solids but in this situation, they 

missed the fact that the faces of the vertical slices would be trapezoids rather than squares. Dana 

did understand, though, that slicing perpendicular to the x-axis would form slices that were not 

perfect rectangular prisms (Figure 15). 

 
Dana:  I just drew a rectangular prism. But I know it’s going to have, like the top 

is going to be slanted. So I guess one part would, if I wanted to find the 
total volume of that, you add up the volumes of the rectangular prism on 
the bottom, and then the triangular prism on the top. 

 

 
Figure 15. Dana’s drawing of a slice of the pyramid. 

 

Dana was even possibly unconsciously aware that they were incorrect in their slice shape 

because they stated, “this would be a lot easier for me to do if we had a little shapes” – meaning 

manipulatives to assist in visualizing. 

Another aspect of Figure 15 to note is that Dana did understand that the height of each 

slice would be changing, so they labeled the height of the slice with an f (middle slice of Figure 

15). Dana was not able to make much more progress from here, but they were certainly aware at 

this point how focusing on the slices of the solid can aid in building a volume integral.  



 68 

6.3.2.  Problem 3 – Erron’s accurate conception 

This section will include more detailed descriptions due to the students in this section 

arriving at their accurate conceptions in Problem 3 and at no point before. 

Erron began by drawing a very clear 3D pyramid and focusing on areas of general 

triangles and squares (Figure 16). They then considered multiplying these two formulas together, 

but “multiplying these things together isn’t going to get you a volume. Because a unit squared 

times a unit squared is going to get you two… no it’s not, it’s going to get you that unit to the 

fourth, because it’s two plus two.” Even though Erron’s method was incorrect for other reasons, 

the unit mismatch was what caused them to try a different method.  

 

 
Figure 16. Erron’s 3D drawing of the pyramid for Problem 3. 

 
 

After prompting from the interviewer to consider doing this problem using integrals, Erron drew 

the xy-plane with an isosceles triangle sitting on the x-axis in the first quadrant (Figure 17). Erron 

ruled out a revolution helping with this problem, stating, “if I would just take this and swirl it, it 

wouldn’t get me what I want. It wouldn’t get me that [pyramid] shape.” From here, Erron 

noticed that they could find the length of the edge of the triangle using the Pythagorean theorem 

(Figure 17).  
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Figure 17. Erron’s first xy-plane drawing for Problem 3. 

 

There is no real method to Erron’s work here, they were talking aloud and seeing what they 

could come up with mathematically for which they could recognize formulas. Figure 18 is a 

more detailed picture that Erron drew as they were following the Pythagorean theorem line of 

reasoning (labeled (2) because Erron was very helpful by numbering their work chronologically). 

 

 
Figure 18. Erron’s second xy-plane drawing for Problem 3. 

 

Erron then drew a horizontal rectangle in the 2D triangular region, and had the following 

line of reasoning, showing their attempt to assimilate the pyramid problem into their revolution 

problem schema. 
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Erron:  So that would be with respect to y, dy because it’s like that [gestures 
horizontally]. So then if I would want to find the area of this entire thing, 
this would actually just be y. And then, this right here (length of 
hypotenuse) doesn’t matter at all. So like, I would erase it, but I want you 
all to continue having that. So this right here, this little square (horizontal 
rectangle), whenever I take it, and I rotate it like this (around leg of right 
triangle to form a cone) it’s going to get me the volume. So then if I do 
that from the bottom (of the pyramid) all the way to the top, it’s going to 
get me the volume (pause) that way. Yeah. Except it’s going to get me the 
volume of a circle. So it would get me the volume of a pyramid that’s like 
a circle on the bottom. That doesn’t work. 

 

Although this line of reasoning doesn’t give the correct volume (and Erron knew that), it ended 

up giving Erron an idea and sending them down a better conceptual path. Erron hinged the 

remainder of their discussion about Problem 3 on stacking “volume squares” to form the pyramid 

(Figure 19). (Erron called rectangles squares several times throughout the interview.)  

 

 
Figure 19. Erron’s third drawing for Problem 3. 

 

At this point, Erron got very animated, talked a lot, and moved to writing on paper in order to try 

to mathematize what they were visualizing concerning the volume squares (Figure 20). 
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Figure 20. Erron’s mathematization of the “volume squares” conception for Problem 3. 

 

There was a lot of scribbling in Erron’s final work for Problem 3 because they were 

having a hard time juggling the variables. What can be extracted, though, is that Erron 

understood that many “volume squares” were needed (𝐼 → ∞, 𝐼 = how many squares you want), 

and that they were comfortable with the Limit layer of this integral. Also they knew that the 

upper bound of the integral (J) needed to be the height of the pyramid. You can also see that their 

“multiply three things to get a volume” concept arose again, as the integrand contains 𝑙 ⋅ 𝑤 ⋅ ℎ. 

The differential is reduced to indicator of variable of integration rather than playing a part in the 

product, as Erron stated, “and then, I don’t know, I’ll just put it as dh because h is on the outside, 

and you have to have a dh when you’re taking the limit of an integral. You have to have it with 

respect to something else.” It is unclear if this h was the h from the statement of the problem. A 

little later, Erron changed their mind and decided it should be dI instead of dh.  
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Erron had the right idea for how to visualize the pyramid as being approximated by 

square cross-sectional slices and they knew this meant they could build an integral to represent 

the volume of the pyramid, but they fell short on the symbolic details.  

6.3.3.  Problem 3 – Ali and Blair’s inaccurate conceptions 

Ali’s “adding areas” and Blair’s “integrating areas” conceptions carried through into 

Problem 3. Once again, Ali’s ability to visualize the correct cross-sectional slices worked in their 

favor and allowed them to get close to a symbolically correct final answer (although ultimately 

incorrect).  

Ali started out by drawing a free-standing 3D pyramid, including the square slice with no 

thickness, before even verbally deciding to slice it in the direction that produced square cross-

sections. 

 

Ali:  (24:28) [Draws 3D pyramid exterior lines with vertical line down the 
middle] 

Ali:  (24:45) [Draws interior 2D representative slice with no thickness] 
 

 
 

Ali:  (24:48) With this one I’m not really sure whether it would be easier for me 
to solve in terms of like the triangles… well, I guess not. Um, it seems like 
it would be best to solve with the squares. 
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Ali then went on to label one of the base sides of the pyramid as L, the height as H, and jumped 

directly to setting up an integral. 

 
Ali:  Let’s see, each of these is L. And this is H. So, this is definitely going to 

be [writes integral symbol on paper] from 0 to H. And then, 𝐿!? Um, no. 
… I know that is definitely 0 to H. Because I know that I want to solve 
for, I want to solve for the areas of the squares. And I know that whatever 
I get is squared because, obviously it’s a square. And I know that I’m 
going to be doing it in dy. 

 

Once again, Ali was attending to the area of the square and “doing it in dy” as pieces of the 

integral that do not interact with each other. Ali’s strong and effective conception of adding areas 

without thickness in combination with having previous encounters with free-standing solid 

problems led Ali to assimilate the pyramid problem into their schemes of integration (“adding”) 

and representative slice (“area without thickness”). Ali was unable to finish the problem 

completely because they used an incorrect linear function for the side lengths of the square cross-

sections. 

Ali’s conception of adding areas without thickness is deceptive because although it 

allowed Ali to perform well in with the volume problems contained in this study, it masks the 

concept of the volume integral adding up small pieces of volume, not small pieces of area. In 

fact, other than when reading the problems, Ali did not say the word “volume” at all. I 

hypothesize that Ali would have trouble transferring this integration understanding to other types 

of integral application problems. For example, hydrostatic force problems require students to 

build an integral from a product of a pressure and an area. Here, the dx is part of the area portion, 

and the integrand itself (without the dx) does not have a physical meaning. Thus, to build an 

accurate integral, you must attend to all parts of the Product layer, not just the part represented 

by the integrand, as Ali does with their volume integrals.   
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Blair began Problem 3 by saying “I’m not going to actually integrate it” and tried to rely 

on geometric properties and memorized geometric formulas. During this process, Blair was 

imagining that the pyramid was formed from slicing the sides off a cube, so they asserted that the 

height of the pyramid was L. Even though this is not necessarily true, this assertion stuck 

throughout Blair’s working of Problem 3.  

Once Blair realized that they were not making progress using geometric formulas, they 

assimilated the pyramid problem into their “integrating areas” integral conception. Blair began 

by drawing a 2D triangle to represent the pyramid, and this became Blair’s area in their 

“integrating area” work (Figure 21). Blair found the area of a triangle with base L and height h 

("
!
𝐿ℎ), but they then changed the h to an L ("

!
𝐿!) due to their previous assertion that the pyramid 

came from a cube with all side lengths L. Exactly which triangle area Blair was referencing 

became clear after they did their next calculation (line 4 in Figure 21), writing “area of all 4 ▵: 

4 ⋅ "
!
𝐿! = 2𝐿!”, meaning that Blair was attending to the four faces of the pyramid as the requisite 

“area” that they needed to integrate. 

 

 
Figure 21. Blair’s volume integral for Problem 3. 
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Chapter 7: DISCUSSION 

The data presented in the previous chapter are based on student responses to calculus 

volume problems of three types:  

- Problem 1: a revolution volume problem with explicit bounding functions given 
- Problem 2: a non-revolution volume problem with explicit bounding functions 

given 
- Problem 3: a non-revolution volume problem with explicit bounding functions not 

given 

Problem 1 was familiar to all participants, while Problems 2 and 3 were novel to all 

participants except one. This difference in exposure allowed me to not only analyze their 

problem-solving strategies and conceptions for each problem, but also how they approached new 

types of volume problems in relation to their conceptions of revolution volume problems. Once 

again, these were the research questions guiding this study. 

1. How do students conceptualize revolution volume integrals? 

2. How do students use their revolution volume problem conceptions to solve novel 

volume problems? 

3. How can non-revolution volume problems aid in building conceptual 

understanding of integration? 

7.1.  Revolution volume problem (Problem 1) 

7.1.1.  Students’ conceptions of revolution volume problems 

The revolution volume problem was familiar to all ten students in this study, so initially 

there was no disequilibration until they were asked to explain their integral setup. Since all 

students used memorized formulas to come up with an answer, the disequilibrium came about as 

a result of having to tie the memorized formula to a concept. Students in this study explained 

their revolution volume integrals in a way similar to participants in Jones and Dorko’s (2015) 
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study of student understanding of multiple integrals. Ali’s 2-dimensional slices are consistent 

with students in Jones and Dorko’s study who considered a multiple integral as calculating 

volume by “adding up slices without thickness”. This conception can also be related to 

Czarnocha’s (2001) “indivisibles,” as well as Oehrtman’s (2009) “collapsing dimension.” Ali 

never considered their slices as having a third dimension, which indicated that they were not 

considering their integral as having a Product layer, although Summation and Limit layer ideas 

were present in Ali’s discussion. This misconception could possibly be remedied with a focus on 

the 𝛥𝑥 and the dx, their relationship to each other (Riemann sum versus integral), and what part 

they play in the physical quantity that the integral is measuring.   

Casey began their discussion of Problem 1 with an antiderivative-related conception of 

integration, which coincides with “function-matching” (Jones and Dorko, 2015). Blair had a 

persistent function-matching conception (“integrating area gives volume”) that worked well in 

Problem 1 but failed in Problems 2 and 3 because they were using any area they could pin down 

with an explicit formula. This is consistent with previous studies on integration where students 

solely related integrating to the action of taking the antiderivative (Orton, 1983; Pettersson & 

Scheja, 2008). Blair was unable to consider any of the integrals from the Product, Summation, or 

Limit layers due to this very rigid, entrenched, and limited view of integration. It should also be 

noted that at the beginning of the interview, Blair stated, “I didn’t prepare well for that 

[applications of integration] exam, but I still got an 88%.” Thus, the effects of superficial 

knowledge, understanding, and assessing can be seen.  

Several students in this study exhibited “perimeter and area” conceptions when they 

discussed the volume of the pyramid as being composed of the sum of surface areas. This 

specific view of volume (volume as sum of surface areas) was also discussed in Dorko’s (2013) 
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study of secondary school students’ understanding of general volume (not in a calculus context). 

In this study, the volume as sum of surface areas conception only arose as students were working 

on the pyramid problem. The combination of a widely recognizable solid and the absence of 

bounding functions had students relying on geometric arguments to find the volume and not 

considering integration as an option (without interviewer intervention).  

 Lastly, Casey and Dana exhibited the multiplicatively-based summation (MBS) 

conception (Jones, 2015b) after questioning and guidance by the interviewer during Problem 1. 

The ability to see that the volume is approximated by a sum of products (meaning, being able to 

conceive of the integrand from the Product Layer and understand what physical quantities the 

pieces of the product are representative of) is evidence of a thorough understanding of the 

concept of the definite integral. Casey and Dana carried this conception throughout, and it helped 

assist in their understanding of and progress with the subsequent novel volume problems.  

These previously discussed constructs related to general integration continuing to show 

up in applications of integration means that instructors can bring attention to them and discuss 

why they are inaccurate conceptions. For the incorrect conceptions to show up in multiple 

integral-related mathematical situations indicates that they are strong and have worked for 

students in the past. Volume problems are usually one of the first types of integral application 

problems students are exposed to, so discussions on inaccurate views of integration at this point 

could be very powerful in reducing the perpetuation of integral misconceptions.  

7.1.2.  Revolution volume problem general findings 

The overarching findings concerning the revolution volume problem, Problem 1, are 

twofold. First, it is possible for students to get traditional revolution problems symbolically 

correct but not understand why their answer is correct. Table 5 in Chapter 6 shows that five (Ali, 
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Blair, Dana, Erron, and Hao) of the ten participants were able to arrive at fully correct integral 

setups for the revolution volume problem without being able to give a conceptually sound 

explanation of their volume integral. This is concerning for two reasons. First, most traditional 

and widely used calculus textbooks (Stewart, 2020, for example, which is in its 9th edition) 

spend a large amount of space and exercises on these types of problems. If students are working 

through these types of problems with inaccurate understanding, getting them correct due to 

memorized formulas, and not being challenged about their understanding, it will reinforce that 

using memorized formulas is good and is enough. A recommendation is that instructors be 

cognizant of this and make sure to give equal time and attention to various types of integral 

volume problems. Another recommendation is for instructors to include and develop revolution 

volume problems that require more deep thought than just setting up an integral. The intent here 

is to bring about disequilibrium in their thinking in order to either confirm (by assimilating) or 

refine (by accommodating) their understanding of integration as it relates to volume problems. 

Now the good news: students can arrive at accurate conceptions of integration when they 

are pushed to explain and think about their revolution volume integral set-up. This happened for 

Casey and Dana during Problem 1. Once Casey was questioned about their first revolution 

volume integral and they began putting a correct understanding together by verbalizing it, they 

said, “I actually understand this much more now that you’re making me answer these questions.” 

Dana took a little more time than Casey, but Dana was greatly helped by their sketches and was 

able to piece together their understanding that way. A recommendation here would be to include 

more diverse aspects to the classroom learning environment, such as incorporating more visual 

aids, active learning, discussion, and open-ended questions that provide students with the 
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opportunity to connect the symbolic components within the integral with the quantities they 

represent in three dimensions.  

7.2.  Non-revolution volume problem with given bounding function (Problem 2) 

Students had more trouble conceptually with Problem 2 than with Problem 3, which was 

unexpected. Problem 2 was included in this study specifically because it contained an explicit 

bounding function of the form 𝑦 = 𝑓(𝑥), which ended up being somewhat of an issue for 

students. Specifically, the presence of the bounding function influenced some students to rely on 

their memorized revolution volume formulas, which were not applicable to Problem 2. 

The biggest hurdles to student understanding and completion of Problem 2 involved the 

problem in general: what the cross-sections were (or even what the term “cross-section of a 

solid” meant), what the solid looked like, and how the cross-sections combined to make the 

solid. These difficulties with visualizing cross-sections and solids are consistent with past work 

on student understanding of 3-dimensional solids and cross-sections (Davis, 1973; Moore-Russo 

& Schroeder, 2007). The interviewer had to intervene more frequently and more intensely to help 

students understand Problem 2 because it was not a solid that was familiar to them (like the 

pyramid in Problem 3). Many students also assumed that the solid with vertically-cut square 

cross-sections (Problem 2a) and the solid with horizontally-cut square cross-sections (Problem 

2b) would have the same shape and volume.  

Casey and Dana, the most successful students in this study, even struggled with this 

problem at first and required extended intervention by the interviewer. Dana was very connected 

to their pictures and drawings, so the inability to understand the solid was a major issue. At one 

point in the interview, Dana even said, “This would be a lot easier for me to do if we had little 

shapes,” meaning physical manipulatives to decrease the mental load of visualizing the solid. 
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Once the interviewer suggested that they consider one small slice of the solid, Casey and Dana 

were able to make progress. This suggestion by the interviewer was very powerful for Casey and 

Dana specifically because they were able to discuss the volume of representative pieces of their 

solids of revolution. This suggestion was less effective with the other participants because they 

did not have that foundation of understanding from the previous problem, plus they had a 

difficult time visualizing and understanding the solid. 

The takeaway from student performance on Problem 2 concerns the weakness of some 

students’ visualizing skills and the strength of the “representative slice” conception. 

Visualization is historically a hard task for students of all ages (Lean & Clements, 1981; Battista, 

1990; Boothe & Thomas, 1999; Stylianou and Silver, 2004), and with most students in this 

study, the inability to visualize and understand the solid resulted in a hurdle that they were 

unable to overcome. They got stuck in their disequilibrium and in order to re-equilibrate (which 

may just mean ‘finish the problem’), some students leaned back on assimilation of this problem 

into their revolution volume problem schema and relied on their memorized formulas from the 

revolution problems. This resulted in incorrect answers because revolution volume formulas 

were not relevant to Problem 2 – the solid in Problem 2 was not the result of a rotation and did 

not have circular cross-sections. The key to getting some students past this solid-visualizing issue 

was to focus on one representative slice of the solid.  

7.3.  Non-revolution volume problem (Problem 3, pyramid problem) 

The pyramid problem resulted in zero correct final integrals, but it is not a story of 

failure, it is a story of promise. Given that a pyramid was recognizable to all participants in this 

study, the initial hurdle of “understanding the solid” was not present like it was in Problem 2. 

This gave students time and mental space to consider different ways to approach the problem. In 
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fact, two students (Erron and Francis) who had conceptual issues throughout the interview had 

seemingly “aha!” moments that did not appear until the pyramid problem. It can be said that 

another name for an “aha! moment” is a “re-equilibration event”.  

Several students were able to arrive at an accurate ‘approximate the pyramid by stacked 

boxes’ idea, but none were able to convert that idea into a mathematically accurate volume 

integral. The issue for Problem 3, then, was less of a calculus problem and more of a translation 

problem. Using terms developed by Duval (1999), the ‘approximate the pyramid by stacked 

boxes’ idea could be described as residing in the graphical/geometric register (a visual/graphical 

representation of the mathematical situation), and the symbolic volume integral – in particular, 

the bounding function – would be in the symbolic register (a notational representation of the 

mathematical situation). Thus, students tended to have issues converting between the graphical 

and the symbolic registers for Problem 3. Even though the fewest students produced an accurate 

integral for Problem 3, the greatest number of students could understand how an integral would 

work to solve this problem. The calculus “big idea” is there, but the steps in getting to a 

symbolically accurate final answer are missing. 

One way to reduce the cognitive load of translation from graphical to symbolic register 

(finding the bounding function required for the integral) is to build a general volume integral 

instead of a completely finalized volume integral. For example, if a solid has half-circle-shaped 

cross-sections (so cross-section areas would be "
!
𝜋𝑟!) but a student was unable to come up with 

the function that represented the circles’ radii, they could build the general volume integral 

∫ "
!
𝜋(𝑓(𝑥))!𝑑𝑥.

/  without needing to explicitly find the function formula. Another 

recommendation would be to do prep work based on finding symbolic representations of 

geometric situations, such as developing linear functions given information about points and 
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slopes. This would help students with volume problems that require them to build functions in 

order to solve the problem. 

7.4.  Teaching implications summary 

The teaching implications discussed above can be summarized in general as: less 

traditional exercises and more active, deep, discussion-based activities will be beneficial to 

students in their learning and understanding of volumes. Traditional exercises, although easy to 

do and to grade, can mask and reinforce pseudo-conceptual understanding (Vinner, 1997) of the 

definite integral. In this study, this was evident in Problem 1 with the students who were able to 

arrive at a symbolically correct volume integral but were not able to explain the underlying 

concepts. Non-traditional activities, like group work, discussions, oral interviews, and 

presentations, allow students to continually have disequilibrium events and the opportunity to 

achieve re-equilibrium in ways that support true understanding. 

Given that volume is a very visual topic, another way to enhance student understanding 

would be to incorporate physical models and manipulatives. As Dana mentioned during the 

pyramid problem, having a model to inspect may help ease the cognitive load of trying to 

visualize a solid, understand the slices, and attend to the new concept of integrals measuring 

volume. Physical models can help students see the solid as whole and can also aid in students 

visualizing shapes of cross-sections of the solid. These physical models can be as sophisticated 

as 3D printed models of slices that go together to form the solid, or as basic as solids formed 

from foam or clay. 

The interview protocol was used to assist in my organization and comprehensiveness 

when interviewing students, so it could also be used to develop step-by-step activities that could 

help students organize and check their work. Having a scaffolded activity based off the interview 
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protocol could provide students with forced stopping points in the problem-solving process that 

are intended to provide embedded self-check moments. The protocol-based activity could also 

provide students with instances of discussion with classmates, by asking questions like, “Why dx 

and not dy?”, “What part of your picture provides you with information about radius/height?”, 

and “Why does your integral give the volume of this particular solid?” Questions like this will 

lead students to think deeply about notation, their visualization, and their understanding of the 

definite integral while verbalizing, discussing, and externalizing it. As Casey said during 

Problem 1, “I actually understand this much more now that you’re making me answer these 

questions.” 

The results of this study could also be used to assist instructors in common 

misconceptions that students have when solving volume problems. When starting out, new 

calculus instructors may not have a wealth of knowledge about student misconceptions, and 

perhaps they only have their own experience in calculus from which to build. This information 

could be particularly useful for graduate student teaching assistants. 

Finally, I would like to discuss how these studies (the pilot studies and my dissertation) 

have influenced, informed, and changed the way I teach this topic. When I began teaching 

calculus, I started the volume section by covering volumes of revolution first (because I saw that 

as the “easier” material), then I moved onto the “harder” volumes of non-revolution solids. My 

belief was that starting students out on easier (less cognitively demanding) revolution problems 

would allow them to step up to the more cognitively demanding non-revolution problems. I have 

changed my ways and I now start the entire volume unit with the pyramid problem. I do this 

because it is a recognizable solid (I can even draw it on the board) and the cross-sections are 

basic shapes, but they still need to think about the best way to slice the pyramid. I then present 
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all remaining volume problems as having the same underlying idea of slicing into cross-sections. 

This way, it lessens the tendency of seeing revolution volume problems as the easy ones 

(memorizable formulas!) and non-revolution problems as the hard ones. 

Another way I have changed my instruction is I focus much more on the representative 

slice and how the word “representative” means something very specific: its measurements must 

represent any slice I would take throughout the entirety of the solid. This focus aims to enhance 

students’ focus on both the Summation and Limit layers of the volume integral.  

Considering student learning as being formed from assimilation and accommodation of 

new knowledge into schemas has influenced me to continually discuss the “big ideas” of 

integration. It is easy to get buried in the details and minutiae in a calculus class as a student, so 

in each section, I always try to bring it back to the overarching concepts. In particular, I have the 

following fill-in-the-blank short activity. 

 

 Derivatives measure _________________. Some examples of this are _______________. 

 Integrals measure __________________. Some examples of this are ________________. 

 

The big idea of derivatives measuring rates of change and integrals measuring accumulation are 

the schemas, while the examples of those (slope, velocity, optimization, etc., for derivative; area, 

volume, arc length, etc., for integral) serve to illustrate that derivative is not just velocity and 

integral is not just area. 

 

 



 85 

 7.5.  Limitations 

This study was conducted with students who were registered for summer calculus courses 

at one single university, so it is possible that the results discussed in this study are not necessarily 

representative of all possible students that take calculus. Another limiting factor concerning the 

participants is that they were volunteers and not chosen at random, so this study does not 

necessarily represent an even distribution of calculus students. 

The interview environment was another aspect that could bring confounding factors into 

the research process. Elements like a video camera, being questioned by a perceived math expert, 

and not understanding the statement of the problem could make participants feel uncomfortable 

(frustrated, embarrassed, etc.), which could influence their mathematical performance. 

Thompson, Carlson, Byerley, and Hatfield (2014) coined the terms “in-the-moment 

understanding” and “stable understanding” pertaining to different levels of understanding 

portrayed by students when they are discussing mathematical concepts. In situations where 

students are uncomfortable, they may make more mental actions in the moment in order to 

produce a response quickly, rather than access a stable conception. This distinction was not 

analyzed in this study, and if it was, it may have brought about different conclusions. 

A final limitation that I had not considered before my dissertation prospectus was the 

impact that I as the interviewer have on the interview process. A personality trait of mine that I 

believe had the strongest impact on the interview situation is my discomfort with seeing people 

agitated, frustrated, or annoyed. It is well known that students can feel strong negative emotions 

associated with mathematics, and when those arise, it is in my nature to try to assuage those 

negative feelings. In order to keep that to a minimum, I tried my very best to stick to the protocol 

(which was definitely helpful to have!), but in certain situations, my desire to make people in 
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distress feel better shone through. This happened in general when the interview was getting long 

and I could tell students were getting tired. I wrapped up problems when I may have been able to 

go longer and get more data. A specific instance of this was with Dana during Problem 2. Dana 

had been working on Problem 2a for a long time and I could tell that they were getting fatigued 

with the problem. Because of this, I did not ask Dana about Problem 2b. This introduced a 

limitation in that it removed an opportunity in which I could collect data to compare with other 

participants in the study.   

7.6.  Future research 

One frustration that continually arose in the process of analyzing data was that I never 

had the participants re-visit their revolution volume integrals after working through the non-

revolution problems. A future study I would love to conduct as an addendum to this one involves 

students’ updated conceptions after a successful re-equilibration event and how they use that to 

adjust and/or refine previous inaccurate conceptions. For example, I would love to ask Erron 

(who had the aha! moment at the very end of the pyramid problem) to revisit their revolution 

volume integral and talk about how the pyramid problem related to Problem 1.  

Volume problems for most students involve pictures, graphs, and visualizations. 

Although this study touched on those aspects of the interviews briefly, there is much more to 

look at in this area. Related to visualization is the concept of gesture and embodied cognition. 

Given that volume problems have such a dynamic nature (rotations, slicing, limits, etc.), 

investigating student use of gestures while solving volume problems is another interesting area 

for future research.  

Many of the teaching implications mentioned above involve using non-traditional types 

of problems to enhance student understanding and learning. A natural next step for this research 
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would be to develop these types of problems and perform teaching experiments on their efficacy. 

Since volume problems are an entry to other, more complex integral application problems (many 

that do not have the visual quality that volume problems do), creating bridge activities could be 

productive in establishing strong connections between different types of integral application 

problems.  
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APPENDIX A: Interview Protocol Checklist 

Problem 1: Find the volume of the solid obtained by rotating the region bounded by the curves 𝑦 = √𝑥 

and 𝑦 = (
$
𝑥 about the line 𝑦 = −1. 

  
 

Curves 
 
 

Sketched correctly 2D region correct  

  
 

Method 
 
 

Why that method/formula?   

  
 

Integral 
gives 

volume 
 
 

Why integral? Why that integral?  

  
 

Parts of 
integral 

 
 

What do the integral 
pieces stand for? 

What does the dx 
or dy mean? 

How did you choose 
dx or dy? 

  
 

Parts of 
picture 

 
 

What part of your picture 
gives radius/height/etc? 

What part gives dx 
or dy?  

  
 

Different 
method 

 
 

Set up integral using 
different/other method?   

Notes: 
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Problem 2a: Find the volume of the solid S whose base is the region enclosed by the parabola 𝑦 = 1 −

𝑥! and the x-axis. Cross-sections parallel to the y-axis are squares. 

  
 

Curves/3D 
 
 

Sketched correctly 2D region correct Representation of solid 
or piece of solid 

  
 

dx or dy 
 
 

Why dx or dy?   

  
 

One slice 
of solid 

 
 

What is the shape of one 
slice? 

What is the volume 
of one slice?  

  
 

𝝅 in 
integral 

 
 

Why is there a 𝜋 in your 
integral? 

Why is there NOT 
a 𝜋 in your 
integral? 

 

  
 

Parts of 
picture 

 
 

What part of your picture 
gives radius/height/etc? 

What part gives dx 
or dy?  

Notes: 
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Problem 2b: Find the volume of the solid S whose base is the region enclosed by the parabola 𝑦 = 1 −

𝑥! and the x-axis. Cross-sections perpendicular to the y-axis are squares. 

  
 

Curves/3D 
 
 

Sketched correctly 2D region correct Representation of solid 
or piece of solid 

  
 

dx or dy 
 
 

Why dx or dy?   

  
 

One slice 
of solid 

 
 

What is the shape of one 
slice? 

What is the volume 
of one slice?  

  
 

𝝅 in 
integral 

 
 

Why is there a 𝜋 in your 
integral? 

Why is there NOT 
a 𝜋 in your 
integral? 

 

  
 

Parts of 
picture 

 
 

What part of your picture 
gives radius/height/etc.? 

What part gives dx 
or dy?  

  
 

Cuts 
change 
problem 

 
 

How does this change in 
the problem change the 

integral? 
  

Notes: 
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Problem 3: Find the volume of a pyramid whose base is a square with side length L and height h.  

  
 

Solid 
 
 

Sketched correctly Solid as 2D 
Placed on xy-plane 

(give options for 
orientation if nec) 

  
 

Slicing 
solid 

 
 

Which way to slice the 
solid? 

Shapes of cross-
sections for each 

direction? 
 

  
 

Bounding 
functions 

 
 

How to come up with 
bounding function?   

  
 

Volume of 
slice 

 
 

Volume of one slice   

  
 

Parts of 
picture 

 
 

What part of your picture 
gives radius/height/etc? 

What part gives dx 
or dy?  

  
 

Bounds 
 
 

Bounds of integral   

Notes: 

 

 

Calculus history: 156  251  First time  Repeating 

Why taking calculus over the summer? Get ahead  Catch up  Other 
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APPENDIX B: Consent Form 
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