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Abstract

Mobility in everyday life requires executing and shifting between a broad
assortment of functional tasks and resisting disturbances that could cause
falls. Though the importance of successfully performing a variety of func-
tional tasks is recognized and incorporated in clinical assessments (e.g., the
Timed-Up-and-Go Test, Berg Balance Scale), little is understood about
the underlying neuromuscular control required, or how it changes with age.
The neuromuscular control for functional tasks such as walking is typically
studied in isolation, or with variations on the same task. Characterizing the
coordination required to produce and shift between a wider variety of tasks
and resist external disturbances is crucial to understanding mobility in daily
life, not just within a controlled lab environment.

In this work, we identify patterns of multi-muscle coordination (motor
modules) across functional tasks in healthy young, middle-aged, and older
adults. We demonstrate that healthy young adults recruit common motor
modules across voluntary functional tasks (walking, turning, and chair
transfers), and characterize changes associated with age. Additionally, we
investigate whether motor modules are shared between reactive balance
and these voluntary tasks, and whether there are age-related changes here.
Identifying age-related changes in multi-muscle coordination can lead to
a better understanding of the neuromuscular control underlying mobility
changes due to normal aging. Further, fully characterizing changes in
neuromuscular control that are due to normal aging can provide a basis for
identifying the changes associated with impairments that commonly occur
in older adults (e.g., stroke).
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1 Introduction

Falls are a leading cause of injury in older adults [1], [2] These falls commonly
occur during a variety of tasks, including walking, turning, chair transfers,
and stairs [1]. Individuals with good mobility can comfortably move
around in the world, fluidly shifting between tasks and navigating difficult
environmental conditions without falling, but these abilities are reduced
with aging and neurological or musculoskeletal impairments. This multi-task
nature of healthy mobility is clinically well recognized. Many common
clinical tests assess a variety of movement tasks; for example, the Timed-Up-
and-Go (TUG) test incorporates walking, turning, and chair transfers [3].
However, these assessments are not designed to reveal the underlying causes
that produce impaired movement. The neuromuscular control required to
flexibly and robustly perform and shift between movement tasks is not fully
understood in individuals with good mobility, much less how it changes with
age or impairment. Understanding the changes in neuromuscular control
that are due to normal aging would provide a basis for investigating other
conditions that commonly occur in older adults (e.g., stroke or dementia)
and allow us to better separate mobility changes due to normal aging versus
changes due to these conditions.

The neuromuscular control of successful mobility relies on a variety of
systems, including reflex responses and the musculoskeletal, nervous, and
sensory systems, all of which are known to decline with age [4]. Elec-
tromyography (EMG) measures the electrical muscle activity generated
when a muscle is stimulated by the nervous system and during responses to
peripheral reflexes ([5]). Muscle activity can therefore be considered as a
bridge between the nervous system and the mechanics of the musculoskeletal
system; it provides more information about the underlying control and coor-
dination than mechanical variables alone but is still simple and noninvasive
to measure and analyze. Motor module (i.e., muscle synergy) analysis is
one method for quantifying patterns in muscle activity. Motor modules are
groups of coactivated muscles that can be flexibly combined to produce
different functional outputs [6].

Evidence for modularity in movement control has existed since the work of
Sherrington and colleagues in the early 1900s with investigations of “flexion

1
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reflexes” in animals (e.g., [7]). Building on this, central pattern generators
(CPGs) as rhythmic drivers of locomotion within the spinal cord are a
well-accepted theory in motor control ([8]). As an example, spinalized cats
maintain the ability to walk on a treadmill, supporting the existence of
spinally located generators of walking that can operate without sensory
input ([9], [8]). Similarly, modular muscle activity is also still observable
in animals with removed or suppressed sensory feedback (e.g., [10], [11]),
providing further evidence that centrally driven modular control strategies
may be encoded in the nervous system.

Although there is ample evidence that motor modules may represent modular-
ity in the nervous system for movement control ([6], [10], [12], [13], [14], [15],
[16], [17]) this is still an active area of research with many open questions.
Much of the debate revolves around the unsettled question of whether
observed modularity arises purely from biomechanical constraints or is
encoded in the central nervous system. The truth most likely lies somewhere
in between a purely mechanical and a purely neural origin. Because the
neural and musculoskeletal systems exist together any control strategies
cannot avoid being influenced by mechanical features that either facilitate
or constrain movements ([6]). Indeed the mechanics of the muscluloskeletal
system likely shape their content, as motor modules have been associated
with force generation [14], and functional components of walking such as
body support and propulsion (e.g., [18]). There is also evidence that lower
dimensional muscle coupling can arise from limb biomechanics and task
constraints ([19], [20]). It is also likely that the nervous system organizes

Changes in observed motor modules with learning, development, and neuro-
logical injury also provide supporting evidence for modular control. Even
muscle activity during the newborn stepping response can be explained
with two modular components, which are adjusted and added to with
development until they more closely resemble the modular components seen
in adult walking ([21]). Conversely, alterations in walking motor module
recruitment occur with neurological injuries such as reduced complexity
in children with cerebral palsy [22], merging of motor modules in chronic
stroke [11], loss of motor modules after spinal cord injury [23], and changes
in motor module recruitment after rehabilitation in people with Parkinson’s
Disease [24].
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Here, we specifically use the concept of motor modules not to assess
modularity in neural control but to characterize patterns of multi-muscle
coordination. Additionally, decomposing muscle coordination into the
motor module space allows tasks that are very dynamically different to
be compared, such as discrete sit-to-stand or reactive balance motions
versus rhythmic walking movements (e.g., [25]). Motor module analysis
is therefore a useful metric for quantifying neuromuscular control across
a diverse range of movement tasks and characterizing differences between
populations. Previous evidence suggests that motor modules may represent
flexible and robust coordination patterns which can be applied to a variety
of movements. The same motor modules are observed in variations on the
same task, such as standing reactive balance with different postures [26],
pedaling with different constraints [27], and running [28] and walking [29] on
level and inclined surfaces. The same motor modules are also observed when
walking with additional task demands, such as kicking a ball or stepping
over an obstacle [30] or changing speeds and step heights [31]. These results
suggest that the same muscle coordination patterns (motor modules) can be
flexibly adapted to meet additional movement goals or external conditions.

The same motor modules are also observed during functionally different
tasks, such as frogs jumping, swimming, and walking [15] or forwards and
backwards walking [32]. This suggests that we may draw on a “library” of
generalizable muscle coordination patterns that are applicable to different
tasks, but such generalization has not yet been confirmed across a broad
array of tasks. Accordingly, our central hypothesis is that healthy adults
draw upon generalizable muscle coordination patterns for locomotion and
other common movement tasks; therefore, one of the primary goals of this
work is to determine whether motor modules are shared across an assortment
of daily movement tasks. First, we demonstrate that healthy young adults
share common motor modules across a set of voluntary tasks (walking,
turning, and chair transfers) in Chapter 3. We then characterize motor
module generalization across voluntary tasks in middle-aged and older adults
in Chapter 4.

Successfully moving through daily life not only requires executing and shifting
between tasks, but also resisting any internal or external disturbances to
avoid falls. In one study on fall circumstances in community-dwelling older
women, 46% of falls could be classified as external perturbations (slips,
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trips, bumps, or loss of external support). Another 41% of falls were caused
by incorrect bodyweight shifts, often during transitional tasks like getting
in and out of a chair, gait initiation, or turning [33]. Robust mobility
requires the ability to move and shift and respond to any disturbance.
Incorporating balance-specific muscle coordination patterns into the coordi-
nation of voluntary movement tasks may facilitate responding to challenging
conditions. Some evidence for this has already been demonstrated in the
similarities between motor modules used during walking and those used
during a standing reactive balance task (e.g., [34]).

It has previously been shown that similar motor modules are recruited during
a standing reactive balance and walking. In the reactive balance task, par-
ticipants experience discrete support surface translations (“perturbations”)
designed to evoke a corrective response and motor modules are extracted
from the time window associated with automatic postural responses (APR,
[34], [35]). Higher generalization between walking and reactive balance is
associated with walking performance in people with chronic stroke [36],
Parkinson’s disease [24], and young adults [34], [37].

Because this relationship has been demonstrated in multiple different pop-
ulations, we hypothesize that recruiting reactive balance motor modules
during walking is a general strategy enabling more robust and flexible control
of walking. In other words, the central nervous system may incorporate
components of reactive balance control into the production of voluntary
movements like walking. Combining this with our previous discussion of the
multi-task nature of daily life, we further hypothesize that healthy adults
can draw upon a shared “library” of motor modules for both voluntary and
reactive balance task demands. Utilizing this motor module library facilitates
flexibility between different functional tasks and resisting disturbances
in challenging conditions. Aging reduces the ability to draw from the
motor module library or adapt recruitment to meet changing task demands.
Therefore, to determine whether reactive balance motor modules play a
role in voluntary tasks other than walking, we characterize motor module
generalization between reactive balance and each voluntary task in Chapter
5.

Though there is previous evidence that common muscle coordination patterns
are shared across tasks, there has not yet been a larger characterization of
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motor module generalization across a wide variety of movement tasks in
any population. Our work is a first step to filling this gap and establishing
a deeper understanding of multi-task neuromuscular control. Additionally,
identifying changes in multi-task neuromuscular coordination associated with
age could facilitate the development of more targeted and personalizable
mobility interventions. For example, perhaps balance training methods
that encourage the recruitment of reactive balance motor modules during
locomotion could help prevent or reverse age-related declines. Analyzing
multi-muscle coordination with these methods could also provide a method
for quantifying the results of rehabilitation treatments (e.g., in [24]).



2 General Methods

2.1 Experimental Tasks

For all experiments, surface electromyography data was collected bilaterally
at 1000 Hz from 12 muscles spanning the hip, knee, and ankle: gluteus
maximus (GMAX), gluteus medius (GMED), tensor fasciae latae (TFL),
adductor magnus (ADD), biceps femoris long head (BFLH), rectus femoris
(RFEM), vastus lateralis (VLAT), medial and lateral gastrocnemius (MGAS
and LGAS), soleus (SOL), peroneus (PERO), and tibialis anterior (TA)
(shown in Fig. 2.1.)

TFL

VLAT
RFEM

PERO

TA

ADD

GMED

GMAX

BFLH

MGAS

LGASSOL

Figure 2.1: An illustration of the muscles
used to collect EMG data from all
subjects.

The data in Chapter 3 were collected
from 13 healthy young adults and data
from Chapters 4 and 5 were collected
from a separate set of 10 young adults
(18-35 yrs), 6 middle-aged adults (36-
64 yrs), and 5 older adults (65+ years).
In Chapters 3 and 4 we examine mo-
tor modules recruited during voluntary
tasks. In Chapter 3 we focus on the
TUG test, as it is a common clinical
test that incorporates walking, turning,
and chair transfers. However, even when
motor modules are separately extracted
from the TUG subtasks, they inevitably
include transitions between those tasks.
For example, participants begin the first
step off before they are fully standing,
and the portions between the turn and
chair transfers are certainly not steady-
state walking. Therefore, we included both the TUG test and each
component performed separately in Chapter 4, to characterize motor module
recruitment more fully during these tasks.

Treadmill walking: Data was collected during treadmill walking at both

6
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self-selected and fast speeds. First, participants walked on the treadmill for
2-3 minutes at an identified comfortable pace to acclimate to the treadmill.
Speeds were then increased by intervals of 0.1 or 0.05 m/s until they said it
was a little fast and then brought back down to get their self-selected speed.
A minimum of two 30-second trials were collected at the self-selected speed.
To identify the participant’s fastest possible walking speed, treadmill speeds
were increased by 0.1 m/s intervals until the participant felt that they could
not go any faster without running. One 30-second trial was collected at each
participant’s fast walking speed.

Chair transfers: Each participant began seated on a backless chair that
was adjusted so their feet were flat on the floor and knees at approximately
90 degrees. In each chair transfer trial, participants were instructed to
stand, and then sit down. A gap of at least 2-3 seconds was given between
the “stand” and “sit-down” commands, to allow enough space to separate
the two tasks. Participants kept their arms crossed the entire time and
performed a minimum of 8 chair transfer trials. The x- and z-position of
the right shoulder marker was used to partition chair transfer trials into
Sit-to-Stand and Stand-to-Sit portions (see Fig. 2.2 C.)

Figure 8: Participants walked in a figure-eight around two cones, spaced 3
meters apart, at a comfortable walking pace. A minimum of 8 trials were
collected. All subjects except two young adults made a left turn first; motor
modules were separately analyzed by turn direction (see Fig. 2.2 A.)

Timed-Up-and-Go: Participants performed a minimum of 8 trials of the
Timed-Up-and-Go (TUG) test [3]. For each trial, participants get up from
a chair, walk around a cone 3 meters away, walk back to the chair, and sit
back down. They were instructed to walk at a quick pace, as if late, and
started each trial with their arms crossed (see Fig. 2.2 B.)

Standing reactive balance: In Chapter 5 we investigated the involvement of
balance control in each voluntary movement by comparing motor modules
from each voluntary task described above to those from a standing reactive
balance task. Reactive balance responses were assessed through a series of
ramp-and-hold translations (15 cm) on the split-belt instrumented treadmill.
Perturbations were applied in 4 directions (forward, backward, left, and right)
and at 3 speeds (0.1, 0.2, 0.3 m/s). These speeds were selected to be strong
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Figure 2.2: During Figure-8 walking (A), subjects made a left turn then a right turn
around two cones spaced 3 meters apart. In the Timed-Up-and-Go (TUG) test (B),
subjects stood up from a chair, walked 3 m, turned around a cone, and walked back to
the chair to sit down. (C) Chair transfer trials were segmented into Sit-to-Stand and
Stand-to-Sit portions using local maxima in the right shoulder marker. Sit-to-Stand was
defined from the first forward movement to the end of the small backwards motion when
fully standing. Stand-to-Sit was defined from the first downward movement of the marker
to the peak backwards movement when fully sitting.

enough to require a corrective response, but not strong enough to elicit a fall.
Participants experienced 6 blocks with 12 perturbations each, one for each
speed and plane. For frontal plane perturbations, participants stood sideways
on the right treadmill belt, while for sagittal plane perturbations, subjects
stood normally on the treadmill. To standardize stance width, participants
were instructed to keep their toes aligned with pieces of tape marking their
pelvis width (defined as the inter-ASIS distance between the anterior superior
illiac spines). Blocks were given in increasing magnitudes, and directions
were randomized within each block. Participants were instructed to look
straight ahead, keep their arms crossed, and “do your best to maintain your
balance without lifting your feet from the treadmill”.

2.2 Motor Module Extraction

Presented below is an overview of the general steps for motor module
extraction. Details about data preparation specific to each study are
described further in the subsequent chapters.
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Figure 2.3: Perturbation traces for all trials in an example subject, across all directions
and difficulty levels. (A) Perturbation displacements (in cm) and (B) detail view showing
the perturbation onset (gray line). (C) Perturbation velocities and detail view (D).
Perturbations were aligned by the first point (vertical pink line) that crossed a 0.02 m/s
threshold (horizontal gray line). (E) Perturbation accelerations and detail view (F).

Motor module analysis takes a matrix of EMG and decomposes it into
modules that sufficiently reconstruct the observed data such that EMG =
W × C + error [38]. Motor modules are extracted such that the module
weights (W’s, illustrated by the bar plots in Fig. 2.4) remain consistent
while allowing the coefficients (C’s, illustrated by the line plots in Fig. 2.4)
to vary to reconstruct the observed data. The Ws therefore represent muscle
groupings and the Cs indicate how the motor modules are recruited over
time or space.

Various decomposition methods can be used to extract motor modules, such
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as principal component analysis (PCA), non-negative matrix factorization
(NMF), or independent component analysis (ICA). Here we use NMF to
extract motor modules, as it provides a number of advantages, namely it
identifies motor module vectors that are independent, non-negative, and
define the subspace containing the data ([38]).

EMG matrix: # muscles x time

NNMF

W CxEMG  = +  error

Motor 

module 

weights 

(W)

Activation 

Coefficients 

(C)

Figure 2.4: Non-negative matrix factor-
ization takes an m × t matrix of EMG
data and decomposes it into a set of
motor module weights (W) and activation
coefficients (C’s). The W’s represent
which muscle are coordinated together,
and the C’s represent how each motor
module is activated over time or space.

PCA identifies orthogonal components
that describe the variance within a
given data set. The components are
ordered from the largest amount of
variance explained to the smallest. For
an n-dimensional data set, PCA always
identifies n components, though usually
the first k components that meet a
threshold criteria are analyzed (e.g.,
needed to explain 90% of the overall
variance) [38]. Conversely, NMF iden-
tifies components that are unordered,
independent, non-negative, and tend
to define the subspace containing the
data ([38], for an illustration, see Fig.
5.2 in [38]). Motor modules identified
using NMF can be easier to interpret
physiologically, specifically when using
motor modules to investigate patterns
of multi-muscle coordination. For one,
because motor modules are nonnega-
tive, they can only represent muscle
activity as positive (muscle contracting)
or zero (muscle resting) whereas PCA
allows subtractive elements that are
less interpretable when focusing on
patterns of muscle coactivation. Further details about the influence of
algorithm selection on motor module results have been described in multiple
publications (e.g., [38], [39], [40]) and have been shown to have a limited
impact on extracted modular structure ([39]).

Motor module extraction generally consists of three main steps:
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1. Preparing data matrix EMG data are first high pass filtered at 35 Hz to
remove movement artifact, demeaned, rectified, and low pass filtered. We
use a 10 Hz low pass filter in Chapters 3 and 4 when only voluntary tasks
are analyzed. For reactive balance, EMG data are low pass filtered at 40
Hz to keep any high frequency perturbation responses; thus in Chapter 5,
EMG from data from all tasks are low pass filtered at 40 Hz for consistency
with reactive balance.

Filtered EMG data from each trial are concatenated to create an m× t data
matrix, where m is the number of muscles and t is the total time for all trials.
An alternative method is to use averaged data from all trials as the input
to the extraction; however, since the purpose of NNMF is to reconstruct
variance in the data, it is better to keep the trial-to-trial variability rather
than wash it out by averaging ([40], [41]).

Data matrices for standing reactive balance are concatenated across per-
turbation directions rather than time. For each trial, the average EMG
from 4 time bins are concatenated, one 280 ms background bin before the
perturbation and three 75 ms bins during the automatic postural response
(APR) defined as 100 to 325 ms after the perturbation onset (see Fig. 2.3
A, [24], [42]) Retroreflective tape markers along the edge of the treadmill
were used to identify perturbation onset. Trials were aligned by the first
frame with treadmill velocity ≥ 0.02 m/s (pink vertical lines in Fig. 2.3 B,
D, & F); the perturbation onset was defined as 2.5 frames before this point
(chosen to correspond with acceleration onset, gray vertical lines in Fig. 2.3
B, D, & F).

Next, each muscle in the EMG matrix is normalized to a chosen value.
Here we normalize EMG for all conditions to the maximum values during
self-selected walking. To avoid biasing the extraction towards any muscle,
EMG matrices are scaled to unit variance before the extraction, and then
unscaled afterward.

If motor modules are extracted for each condition, a separate data matrix is
created for each condition and leg.
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Figure 2.5: Data matrix assembly for standing reactive balance. Shown here are 4
individual muscle tuning curves for an example subject (TA, LGAS, VLAT, and GMED).
TA is mostly active during the forwards perturbation (90◦) in the Bins 2 and 3, while
LGAS is most active during the backwards perturbation (270◦). Below is an illustration
of the matrix hierarchy for standing reactive balance; here each small circle represents
the average muscle activity in a given bin and trial (i.e., each circle represents an n× 1
array, where n is the number of muscles.

2. Extract Motor Modules

We extract motor modules using MATLAB’s “nnmf” function (options:
“mult” algorithm, 50 replicates, MaxIter = 1000, TolFun = 1e- 6, and
TolX = 1e- 4) [43]. The NMF algorithm begins with a guess for W and
C (which can either be random or defined) and refines them until the
error between the original and reconstructed EMG is minimized. To avoid
solutions that are caught in local minima, this process is repeated with
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50 random initial guesses for W and C. Additionally, NMF requires the
user to define the number of motor modules ahead of time; we extract 1-12
motor modules from each EMG matrix, then select the minimum number
of motor modules that best meets the criteria for good reconstruction.
The reconstruction quality between the original and reconstructed EMG is
evaluated by the variance accounted for (VAF), or the squared uncentered
Pearson’s correlation coefficient between the original and reconstructed EMG
(EMG = W × C) [44]. We generate 95% confidence intervals (CI) on the
VAF with a bootstrapping procedure in which motor modules are extracted
from a subset of the EMG (resampled 250 times with replacement).

3. Motor module complexity – motor module number and VAF-by-1

Motor modules can be used to quantify neuromuscular complexity, where
more modules indicate higher complexity. For example, people with some
neurological impairments like stroke [11] or cerebral palsy [22] are shown to
exhibit simpler neuromuscular control strategies than healthy populations.
The number of motor modules recruited is one common method for describing
complexity. We determine the number of motor modules for a given condition
as the minimum number of modules such that the lower bound of the 95%
CI on the VAF is greater than 90%.

Another method for quantifying complexity is in the variance accounted
for by extracting just one motor module (VAF-by-1) [22]. High VAF-by-1
indicates one motor module alone can account for a large portion of the
variance and likely only a small total number of modules would be needed
to reconstruct the EMG data. Conversely, low VAF-by-1 suggests that more
motor modules are required to effectively reconstruct the observed EMG and
that the subject has a larger and therefore more complex muscle activity.
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Figure 2.6: Motor module extraction for voluntary tasks - from an example subject during
treadmill walking at self-selected speed. (A) VAF plots. The left panel shows the overall
VAF and confidence intervals for original (blue) and shuffled EMG data (gray) with
increasing number of motor modules. The right panel shows the VAF for each muscle as
motor module number increases. The number of motor modules is selected such that the
lower bound of the 95% CI is greater than 90% (here 3 modules). The variance accounted
for by one motor module (VAF-by-1) here is (about) 65%. (B) Motor modules from an
example subject. Bar plots represent the motor module weights (Ws) and the line plots
represent the activation coefficients (Cs, here shown per gait cycle). (D) Original EMG
data (black) and reconstructed EMG for increasing number of motor modules (gray, with
3 modules shown in blue).



3 Neuromuscular Generalization Across

Voluntary Tasks

Sections 3.1-3.5 of this chapter were published as Young adults recruit similar
motor modules across walking, turning, and chair transfers in Physiological
Reports in 2021.
(DOI:10.14814/phy2.15050)

3.1 Introduction

Moving about in the world during daily life requires executing and success-
fully shifting between a variety of functional tasks, such as rising from a chair
or bed, walking, turning, and navigating stairs, etc. This multi-task nature of
daily life is recognized clinically, with many clinical tests of mobility assessing
multiple functional tasks (e.g. Timed-Up-and-Go test [3], Berg Balance test
[45], Mini BESTest [46]). In contrast, the neuromuscular control underlying
the execution of and coordination between different functional tasks is less
understood. Although the neuromuscular control of different functional tasks
have been studied in isolation (e.g., locomotion [47], standing [48], etc.),
little is known about how neuromuscular control compares across different
functional tasks. A better understanding of neuromuscular control across
different functional tasks will provide valuable insight into the strategies
that enable us to successfully navigate the many tasks required for daily life.

Motor module analysis is commonly used to investigate neuromuscular
control strategies during movement (e.g., [11], [15], [22], [26], [49], [50],
[51], [52], [53], etc.). Motor modules, or muscle synergies, are groups of
coactive muscles flexibly recruited over time to meet the biomechanical
demands required of a functional task [6]. To date, motor module analysis
has primarily been used to investigate neuromuscular control within a
single functional task. Such studies provide evidence that similar motor
modules are recruited within the same functional task under different task
demands, such as level versus inclined running [28], varied pedaling speeds
[27], straight versus curved walking [54], and reactive balance during different
stance positions [35]. In each case, changing musculoskeletal configurations
or mechanical demands were addressed with changes in temporal activation

15
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and/or incorporation of task-specific motor modules rather than a new set
of modules for each condition. While this implies that the nervous system
may rely on a common set of motor modules to accomplish a variety of
conditions for a particular task, we do not know whether this motor module
generalizability extends to a broader range of functionally different tasks.

Motor module generalization, or recruiting common motor modules across
functionally different tasks, may enable the successful execution and switch-
ing between tasks. Initial evidence for motor module generalization comes
from animal studies, where, for example, frogs were found to recruit common
motor modules across walking, swimming, and jumping tasks [12]. Although
seemingly all locomotive tasks, the joint mechanics required to produce
them are different in each task. More recently, evidence that such motor
module generalization also occurs in humans has emerged. In particular,
we recently found that young adults recruit common motor modules across
standing reactive balance and unperturbed walking [34] and that reduced
generalization across these two functionally different tasks was associated
with impaired gait, balance, and mobility performance in both neurotypical
and neurologically impaired populations (e.g. young adults [34], stroke [36],
PD [24], the extent to which motor modules are generalized across the wider
range of functional tasks encountered during daily life (e.g., walking, turning,
chair transfers, etc.) remains unclear.

3.2 Methods

Participants

Thirteen healthy young adults (5 M, 21.4±1.6 yrs) participated in this
study. Inclusion criteria was age between 18-35 years old. Exclusion criteria
were any diagnosed neurological or psychological conditions, musculoskeletal
conditions, sensory deficits, stroke, traumatic brain injury, or a concussion or
other injury within a year of participation. All participants provided written
informed consent before participating according to an experimental protocol
approved by the institutional review board of West Virginia University.
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Data Collection and Processing

Each subject performed the TUG test (illustrated in Fig. 3.1 A) first while
walking normally (TUG) and then while counting backwards by three’s
(TUGC). For TUGC, subjects were instructed to pay equal attention to
both the counting and walking tasks. Subjects self-selected which direction
they turned around the cone until 10 trials of one turn direction were
completed. Then we instructed them to turn the opposite direction for
an additional 10 trials. Turning direction when sitting back down in the
chair was not enforced. Some trials were removed before analyzing due to
experimental or equipment error (n=25, 5% of total trials) or subject error
(e.g., kicking the cone, n=21, 4% of total trials). In both conditions, each
subject completed the TUG test with at least 6 good trials for each turn
direction around the cone (avg: TUG 9.46±1.42, TUGC 10.12±1.30).

Three-dimensional marker position was collected at 100 Hz with a 10 camera
Vicon motion capture system and a modified plug-in gait marker set with 31
markers placed on the head, trunk, pelvis, thigh, shank, and foot segments.
Marker data from the heels, toes, and clavicle were used to segment the
TUG test into 4 subtasks: Sit-to-Stand, Walk, Turn, and Stand-to-Sit. The
two walking portions were combined into one subtask and turn directions
for both the Turning and Stand-to-Sit subtasks were considered separately
(e.g., right turn vs. left turn) for a maximum total of 6 subtasks. Turning
direction during Stand-to-Sit was not enforced; some subjects consistently
chose one direction for every trial and therefore only had 5 different subtasks.
Details of TUG segmentation are listed in Table 1 and an example can be
found in the supplementary material (Fig. B.1).

Surface EMG data were collected at 1000 Hz from 12 muscles per leg:
gluteus maximus (GMAX), gluteus medius (GMED), tensor fasciae latae
(TFL), adductor magnus (ADD), biceps femoris long head (BFLH), rectus
femoris (RFEM), vastus lateralis (VLAT), medial and lateral gastrocnemius
(MGAS and LGAS), soleus (SOL), peroneus (PERO), and tibialis anterior
(TA). EMG data were high-pass filtered at 35 Hz (3rd order Butterworth
filter), demeaned, rectified, and then low-pass filtered at 10 Hz (3rd order
Butterworth filter) using custom MATLAB scripts (example EMG in TUG,
Fig.3.1 B). For each subject, leg, and condition, separate EMG matrices
were generated by concatenating data from all trials for that condition
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Figure 3.1: The Timed-Up-and-Go(TUG) test. (a) In the TUG test, subjects get
up from a chair, walk around a cone3 m away, walk back to the chair, and sit back
down. (b) Example muscle activity from selected muscles (tibialis anterior [TA], lateral
gastrocnemius [LGAS], vastus lateralis [VLAT], and biceps femoris long head [BFLH])
during the TUG test with labeled subtasks. Gray boxes indicate the walking portions of
TUG, while white sections indicate Sit-to-Stand, Turn, and Stand-to-Sit. (c) The subtask
proportions used during activation analyses (see Section 2.3.2)

end-to-end to form an m× t matrix, where m is the number of muscles and
t is the number of timepoints (equal to the number of trials × the number
of timepoints per trial). For each condition (TUG and TUGC), there were 6
or 7 different EMG matrices per subject and leg - each subtask plus the full
TUG test. Those subjects who consistently turned in the same direction
when sitting back down had 6 matrices, whereas those who mixed their
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Table 3.1: Criteria used to separate subtasks of the TUG test

Event Marker Definition Explanation
1-TUG start Clavicle Local

minimum in X
direction

start of
forward
movement

2-walk 1 start Toe local
minimum in Z
direction

first toe-off

3-turn start heel local
minimum in Z
direction

last heel strike
before turning
(feet facing
straight
ahead)

4-turn stop toe local
minimum in Z
direction

last toe-off
before walking
straight (feet
facing straight
ahead)

5-walk 2 stop heel local
minimum in Z
direction

last heel strike
before turning
to sit

6-TUG stop clavicle local
minimum in X
direction

end of
backward
movement

turning direction when sitting down had 7. Each EMG matrix was then
normalized to the maximum observed value for each muscle in the EMG
matrix for the full TUG test.

Motor Module Extraction and Analysis

Motor modules were separately extracted from the EMG data matrix for
each subject, leg (left vs. right), condition (TUG vs. TUGC), and sub-task
(i.e., the full TUG test and each TUG subtask) using non-negative matrix
factorization (MATLAB’s ‘nnmf’ function, with the following options: ‘mult’
algorithm, 50 replicates, MaxIter=1000, TolFun =1e-6, and TolX=1e-4).
Motor modules were extracted such that EMG = W × C + ϵ, where W is
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an m×n matrix of the n motor module weights for m muscles, C is an n× t
matrix containing the activation coefficients for each module, and ϵ is the
EMG reconstruction error. Motor module weights (W) are time-invariant,
while the activation coefficients (C) may vary across trials as needed to
reconstruct the observed EMG. To ensure equal weight of each muscle during
the extraction process and avoid biasing towards muscles with high variance
and amplitude, the data for each muscle were scaled to unit variance before
motor module extraction and then rescaled to original units afterwards [9].
After extraction, module weights (W’s) and activation coefficients (C’s) were
normalized such that the peak weight in each module was equal to 1.

We extracted 1-12 motor modules from each EMG matrix and selected
the minimum number needed to sufficiently reconstruct the original data.
Module numbers were chosen such that the 95% confidence interval of
the overall variance accounted for (VAF) was greater than 90% [50], VAF
is the squared uncentered Pearson’s correlation coefficient between the
reconstructed EMG (W × C) and the original EMG [44]. 95% confidence
intervals on the VAF were generated using a bootstrapping procedure (250
samples with replacement) [55], [56]. We then examined motor module
generalization and the impact of the cognitive task as follows:

Generalization of motor modules across tasks

To investigate motor module generalization during the TUG test, we used
a clustering analysis to group similar modules recruited during the TUG
subtasks. For each subject we determined (1) the level of motor module
generalization across TUG subtasks, (2) the level of similarity between
clustered motor modules, and (3) the level of similarity between modules
recruited during TUG subtasks to those recruited during the full TUG test.
Examples of these metrics are shown in Figure 2 and their calculations are
described below.

1. Motor module generalization. Motor modules recruited during TUG
subtasks in the normal condition were separately pooled for each subject
and leg and then sorted with a clustering algorithm [11]. The ‘cluster’
function from the MATLAB Statistics and Machine Learning Toolbox was
used to cluster the modules, with the distance metric Minkowski order p=3
and Ward’s linkage option. The number of clusters within each group was
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determined as the minimum number such that each cluster contained no
more than one motor module from each subtask [11], [36], [50],

module generalization = 100% ∗
(
1− c− nmin

sum(ni)

)
where c is the number of clusters, ni is the number of modules recruited
during the ith subtask, T is the total number of subtasks (5 or 6 per subject,
depending on whether a subject turned in both directions in the Stand-to-Sit
turns or not), and nmin is the smallest number of modules recruited in that
subject and leg during any subtask. Figure 3.2 illustrates a representative
subject whose modules were sorted into 5 clusters with 91.7% generalization.

2. Within-cluster motor module similarity. To assess module similarity
within each cluster, we calculated the cluster consistency as the pairwise
linear correlation coefficient between all modules in each cluster and averaged
for each subject and leg. Module pairs with r≥0.7079, the critical r value
for α=0.01 (for n = 12 muscles, n–2 = 10 degrees of freedom, two-tailed
test), were considered similar.

3. Similarity between sub-task and full TUG motor modules. Finally, to
determine the similarity of modules identified during the TUG subtasks to
modules from the full TUG test, motor modules from the full TUG test
were compared to averaged modules from each cluster using Pearson’s corre-
lation coefficients, again with a similarity threshold of r≥0.7079 (example
comparison illustrated in Fig. 3.2)

Effects of a cognitive task on motor module recruitment

To characterize the effects of a secondary cognitive task on motor module
recruitment, we compared both the spatial and temporal aspects of motor
modules recruited during TUG versus TUGC.

We analyzed spatial effects by comparing (1) motor module number and (2)
motor module composition between TUG and TUGC. The number of motor
modules recruited during TUG and TUGC were compared using paired
t-tests for the full TUG test and each of its subtasks (7 total). Motor module
composition (W’s) from TUG and TUGC for the full TUG and each subtask
were compared using Pearson’s correlation coefficients, where module pairs
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Figure 3.2: Example of clustered motor modules for a representative subject’s left leg.
The first six columns contain the motor modules recruited during each TUG subtask.
Modules in the same row were clustered together. The second column from the right
shows the average modules for each cluster and the last column contains the motor
modules from the full TUG test. In this example, the subject had five clusters and 91.6%
generalization. There are four common motor modules between the full TUG test and
the cluster averages, giving 80% in common

with correlation coefficients r≥0.7079 were considered the same. We also
identified how many modules were common between TUG and TUGC by
calculating the percentage of common modules, defined as,

% common = 100% ∗
(

# common

sum total in TUG and TUGC−# common

)
for each subject, leg, and subtask.
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We analyzed temporal effects by comparing motor module recruitment
variability between TUG and TUGC. Motor module activation coefficients
(C’s) for each module were first separated by trial. Each trial was then
time-normalized to be the same number of data points and such that the
lengths of the chair transfers and walking-turning portions were consistent.
Specifically, for each trial we calculated the proportion of each segment
as subtask time TUG time. We then averaged these values across all
trials and subjects and rounded to the nearest whole number for each TUG
segment (Fig. 3.1 C.). Each trial was then normalized to be 1024 points
long, with 154 data points in sit-to-stand, 532 points in walking-turning,
and 338 points in stand-to-sit. See Fig S2 and “Normalization of Motor
Module Activations” in the Supplementary Material for an example and
further details. We then separated the trials based on “kinematic strategy”,
defined as the sequence of first step leg, turn direction, and Stand-to-Sit
turn direction. We separated trials in this way because the shapes of motor
module activation curves vary based on the TUG kinematic strategy used
(e.g., which leg was used to take the first step) without representing true
changes in motor module recruitment. To account for this, we only compared
the time-normalized module activations from sequences that a subject used
in both TUG and TUGC. Specifically, the average root-mean-square error
(RMSE) of module activations from common motor modules across all
subjects, legs, and tasks were compared using a paired t-test. See Fig.
B.3, Table B.2, and “Kinematic Strategy Separation” in the Supplementary
Material for an example and further details.

Effects of dual task on TUG and counting performance

Finally, to investigate dual-task effects on cognitive performance (i.e.,
counting backwards by threes from a random number), we compared
the counting score and counting rate during TUGC to baseline counting
performance. Baseline counting performance was collected while subjects
were seated in the chair for 15 seconds (minimum 2 baseline trials). Subjects
were instructed to repeat the given number and then for each TUGC trial,
the counting score was calculated as

s =
cc
ct
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and the counting rate as

r =
ct
t

where s is the counting score, r is the counting race, cc is the number of
correct counts, and ct is the total number of counts. Counting scores during
both TUGC and the baseline were highly skewed towards 1 (Shapiro-Wilk
(sw) test statistics: baseline sw=0.50, p<0.001, TUGC sw=0.82, p=0.01), so
they were compared using a Wilcoxon signed rank test (α=0.025). Counting
rates during TUGC and the baseline fit within a normal distribution and were
compared using a paired t-test (baseline sw=0.97, p=0.88, TUG sw=0.92,
p=0.22). TUG performance times with and without the cognitive task were
compared using a paired t-test.

3.3 Results

Subjects recruited a small number of unique modules that were similar
across TUG subtasks. Motor modules from TUG subtasks were grouped
into a small number of clusters (avg 5.6±0.99, Fig. 3.3 A), leading to a high
percentage generalization (avg 89.23±3.41%, Fig. 3.3 B). Most clusters were
consistent across subtasks (avg 0.80±0.06, Fig 3D), with only two of the 11
subjects having an average cluster consistency below the 0.7079 similarity
threshold in one of their legs (avgs for each subject: 0.60,0.70). The averaged
motor modules across all subtasks within each cluster were very similar to
modules recruited during the full TUG test (avg r=0.789±0.115, Fig. 3.3
C).

Motor module composition was unchanged when performing the TUG
test with the secondary cognitive task of counting backwards by threes.
Subjects recruited an average of 4.5 motor modules during TUG (Fig. 3.4),
which was not significantly different during TUGC (p=0.75, Fig. 3.5 A and
Supplementary Data Table B.3). Similarly, there was no significant difference
in the number of motor modules recruited during TUG and TUGC for any
TUG subtask (see Supplementary Data Table B.3 for all t-test results).
Subjects recruited motor modules with similar compositions during TUG vs
TUGC. Motor modules were highly similar during full TUG (93.7±0.1%, Fig.
3.5 A). Modules were also similar in each subtask (avg across all subtasks:
78.7±0.2), though there was more inter-subject variability (range = 17-100%,
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Figure 3.3: Motor module
clustering results. For all
panels, each dot represents
one subject and leg (n =
13). (a) Motor modules were
grouped into a small number
of clusters across all subjects,
(b) leading to a high percent-
age generalization. (c) Mo-
tor modules recruited during
the full TUG test were well
matched with the cluster aver-
ages and (d) Motor modules
within each cluster were sim-
ilar to each other, producing
a high cluster consistency

Fig. 3.5 B). Further, most module pairs were more strongly correlated than
the similarity threshold, illustrated in a histogram of pooled correlation
coefficients (Fig. 3.5 C).



26
CHAPTER 3. NEUROMUSCULAR GENERALIZATION ACROSS

VOLUNTARY TASKS

Figure 3.4: Number of motor modules recruited during the TUG test and its subtasks.
The number of modules did not change between TUG and TUGC for the full TUG test,
or any of the subtasks. (n = 13, paired t-test p = 0.75).

In contrast, motor module activation became more consistent across repeti-
tions of the TUG test when counting backwards by threes. Motor module
activation variability was significantly lower in TUGC than in TUG (avg
rmse for TUG: 0.066±0.010, TUGC: 0.061±0.011, p=0.008, Fig 6B).

Importantly, the shape of the motor module activation curves varied de-
pending on which leg took the first step, the turn direction, around the cone,
and the turn direction when sitting back down (e.g., Fig. 3.6 A). Although
most subjects used only two sequences (one for each turn direction around
the cone), a smaller subset used 3-4 (Fig. 3.6 C) because they switched
their turn direction when sitting down or varied the first step leg. Only
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Figure 3.5: Motor module similarity during TUG and TUGC. (n = 13) Motor module
composition was very similar during TUG and TUGC, leading to a high percentage
common during (a) the full TUG test and (b) each of its subtasks and (c) very high
correlation coefficients between all pairs of modules (pooled across all subjects and
subtasks, the gray line represents the cutoff for significant similarity, r ≥ 0.7079)

the module activations from trials with similar sequences were compared
between TUG and TUGC (avg 8.9±2.1 trials per sequence; Fig. 3.6 D).

Dual task affected TUG time but not counting performance. The addition
of a secondary cognitive task led to a significant but small difference in TUG
performance time (TUG: 6.76±0.93 s, TUGC: 7.11±1.10 s, p=0.02, Fig.
3.7 A). Counting score (base: 0.93±0.13, TUGC: 0.93±0.20, p=0.23, Fig.
3.7 B) and counting rate (base: 0.6590±0.24, TUGC: 0.0.63±0.16 counts/s,
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p=0.31, Fig. 3.7 C) was not different between the baseline trial and TUGC.

Figure 3.6: Temporal dual task effects. (a) Example module activations from the left
leg of one subject in two kinematic strategies. (b) Average root mean squared error of
motor module activations during TUG and TUGC (n = 26 legs, paired t-test p = 0.008).
Module variability was significantly lower in TUGC than normal TUG. (c) Number of
kinematic strategies (sequences) used by each subject. Across all trials, most subjects
used 2–3 different kinematic strategies, but only had 1–2 strategies used in both TUG
and TUGC. (d) Number of trials used in RMSE analysis, ranged from 4 to 13 trials per
kinematic sequence

3.4 Discussion

The central nervous system may rely on generalizable control strategies to
meet the multi-task demands of daily life. In support of this hypothesis, we
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Figure 3.7: Dual Task Costs of the TUG test. (a) There was a small but significant
increase in TUG performance time with the added counting task (n = 13, paired t-test p
= 0.02). There was no change in either (b) counting accuracy (n = 13, Wilcoxon signed
rank test p = 0.23) or (c) the counting speed (n = 13, paired t-test p = 0.22) from
baseline to TUGC

show here that healthy young adults recruit a small set of generalizable motor
modules across the subtasks of the TUG test and that the composition, but
not the activation, of those motor modules is robust to cognitive distraction.
This work is the first to demonstrate motor module generalization across
multiple tasks that are both functionally different and crucial for healthy
mobility.

Generalization of motor modules across tasks

Consistent with our hypothesis, our data suggest that young adults recruit
a small set of generalizable motor modules across several functional tasks
important for moving about in the world during daily life - walking, turning,
and getting in and out of a chair. Prior work has demonstrated that the
same motor modules are recruited to perform a single task under varying
demands (e.g., pedaling at different speeds [27] or maintaining balance under
different postural configurations [35]). Here, we expand upon this prior
work to demonstrate that many of the same motor modules are recruited to
perform different tasks.

Generalizing the recruitment of motor modules may enable the successful
execution of similar basic mechanical demands required of different tasks.
Except for turning, the tasks we examined are dominated by sagittal plane
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motion that likely require the achievement of similar basic mechanical
demands such as plantarflexion, leg support, and center-of-mass stabilization.
Even though our 180° turning task includes substantial non-sagittal plane
motion, its successful performance also requires the achievement of many
of these same demands. However, how these demands must be met and
coordinated together to achieve successful task performance varies between
tasks. For example, walking and sit-to-stand both involve propelling the
center of mass forward and extending the limbs while keeping the foot
fixed; however, sit-to-stand uses symmetric movements and includes a
larger vertical COM movement, while walking alternates leg movements
and requires stability during single leg stance [57], [58]. To meet these
varying coordination requirements, we found that young adults modulated
the recruitment (i.e., activation timing) and not the structure of the motor
modules. We also found that most subjects recruited a plantarflexor module,
knee extensor module, and a dorsiflexor module across all tasks. These
motor modules are similar to those previously identified as important for
meeting the mechanical demands of walking ([18], [59], [60]). Follow-up
studies are needed to determine whether these generalized motor modules
are indeed recruited to produce similar basic mechanical demands across
different tasks.

Although many motor modules were generalized across all tasks, task-specific
modules did emerge during turning. The emergence of task-specific modules
is consistent with prior work. For example, Ivanenko and colleagues observed
the emergence of task-specific modules when walking while performing an
additional task (e.g., picking up an object or stepping over an obstacle) [30].
However, the emergence of turning-specific motor modules differs from a
study by Chia Bejarano and colleagues in which similar motor modules were
recruiting during walking and turning [54]. The contrasting results likely
stem from differences in the differing radii of the turns and the mechanical
demands they require. In [54], subjects walked around a circle with a 1.2 m
radius, whereas in the current study subjects turn tightly around a cone or
pivot on one leg to change direction 180° (see the left turns in Fig. 2). Such
a tight turn may involve much more weight shifting and stepping changes
than walking around a wider curve, and therefore are more likely to require
additional motor module recruitment. For example, the inside turn leg would
have increased demand for both stability and directing the turn. In our study,
the turning-specific modules were often composed primarily of hip muscles
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(GMAX, GMED, ADD); GMED specifically is known to be important
for pelvic stability during single leg stance [61], [62], and contributes to
mediolateral control of the center-of-mass [63]. The recruitment of such a
module is consistent with increased demand for stability and frontal plane
movements during this turn that may not be achievable using the generalized
modules on their own. As turns are a common source of falls for people with
mobility impairments (e.g., [1], [33], [64]), some of this difficulty could stem
from an inability to appropriately recruit turning-specific motor modules.
Overall, our results suggest that the nervous system reuses and modifies the
same control strategies to execute and shift between similar tasks. When the
mechanical demands for a task cannot be met by that module set, additional
modules must be recruited.

Although the method used to cluster modules across tasks has been used
both by us and others in previous studies (e.g., [11], [36], [65], [66], etc.), it
is not without its limitations. In particular, motor modules were clustered
primarily based on their dominant muscles and contributions from other
muscles could vary between modules within a cluster. It is for this reason
that we included a cluster similarity metric, in which we found that modules
placed in each cluster were highly consistent in almost all subjects (9 of
11 subjects). Based on this intra-cluster similarity, we do not believe this
clustering algorithm limitation affects our main conclusion that participants
draw from a small library of motor modules to execute different tasks.
However, future studies should explore the impacts of different clustering
algorithms on motor module groupings.

Dual Task Effects

Consistent with our hypothesis, we found that motor module number and
composition are robust to cognitive distraction. Moreover, we found that
both TUG and counting performance were not affected by the cognitive-
motor dual task condition. Though we identified a statistically significant
increase in TUG performance timing in the dual-task condition, the increased
time of 0.35s is substantially lower than the minimal detectable change that
is on the order of seconds not sub-seconds (e.g., 1 s in individuals with knee
osteoarthritis [67] and 3sin stroke survivors [68]). The lack of meaningful
change in TUG time or counting performance suggests that our young adult
population was able to successfully focus on the counting tasks enough to
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keep their performance consistent without compromising TUG performance.

Although motor module number and composition did not change in the
presence of a cognitive distraction, motor module activation became more
consistent. This result is in contrast with our hypothesis that activation
would become more variable when cognitively distracted. Our finding that
motor module activations became more consistent when performing the
TUG test with a cognitive distraction could mean that subjects allowed their
movements to become more automatic while they focused on the counting
task, despite instructions to pay equal attention to both counting and TUG
performance. Movements like walking require both automatic and executive
control, but healthy young adults rely on more automatic control than other
populations. In populations that use less automatic control for walking, such
as older adults, walking and cognitive tasks compete for executive control
resources, impeding performance in both tasks [59]. However, healthy young
adults likely have enough automaticity and processing capacity to devote
attention to the cognitive task while relying on automatic control to perform
the TUG test. Our results of increased recruitment consistency are also in
agreement with recent work demonstrating increased dynamic stability of
motor modules under dual task conditions without corresponding effects
on center of mass stability (in anterior/posterior or mediolateral directions
[69]), suggesting an adjustment by the nervous system to prioritize stability
during cognitive distractions.

Alternatively, the increased activation consistency could be related to the
instructions, order of tasks, and/or difficulty of the cognitive task. TUGC
trials were always performed second, and subjects may have been more
confident paying less attention to their movements than if TUGC had
occurred first. Additionally, subjects may not pay much attention to their
initial TUG performance but become more focused during TUGC because
of the instructions given. For the normal TUG test, subjects were given no
instructions about their focus, and may have allowed their minds to wander
during this repetitive and unchallenging task. During TUGC, they were told
to pay equal attention to both the counting and TUG and may therefore
have given the TUG performance more attention than they had previously,
leading to more consistent motor module activations. Finally, it is also
possible that our findings are influenced by the difficulty of the cognitive
task. In particular, the serial subtraction by threes may have been too
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easy for our young adult population. Decker and colleagues demonstrated a
U-shaped relationship between cognitive demand and gait control (measured
through step length and width variabilities [70]); more changes in motor
module activations could emerge with more difficult dual task conditions.

Though the underlying reasons for the change in motor module activations
in the presence of cognitive distraction remain unclear, our results do suggest
that cognitive distraction can impact motor module recruitment. Careful
follow up studies could clarify the responses by incorporating a variety of
cognitive distractions and controlling for practice effects. Understanding
how cognitive distractions impact motor module recruitment and activation
would provide further insight into the underlying neuromuscular control
mechanisms in both healthy and balance impaired populations who may be
more affected by cognitive dual tasking.

3.5 Conclusions

Our results support the hypothesis that healthy young adults recruit from
a “library” of motor modules to meet the multi-tasks demands of daily
life. Specifically, we found that a small number of common motor modules
were recruited during walking, turning, and chair transfers and that their
structure was robust to cognitive distraction. Achieving different mechanical
and cognitive demands were accomplished through changes in motor module
activation. This work is the first step towards a full characterization of
motor module recruitment patterns in healthy adults across a wide range of
daily life tasks. Our results provide a basis for interpreting the effects of
motor module changes on mobility and fall risk during daily life that occur
in populations with neural or musculoskeletal injuries.



4 Age-Related Changes in Neuromuscular

Generalization

4.1 Introduction

Adults with good mobility can easily perform and transition between daily
movement tasks, but older adults have more difficulty doing so. Aging
causes declines throughout the neuromuscular system [4], [71], and results
in mobility impairments such as poor balance [72], slow walking speeds [73],
and susceptibility to distractions [74]. Reduced mobility leaves older adults
with increased fall risk, fear of falling, and decreased independence and
quality of life. Because healthy mobility requires a wide range of movement
tasks, identifying age-related impacts on multi-task neuromuscular control
could facilitate the development of more effective prevention methods.

Motor module analysis has been used to quantify changes in neuromuscular
control associated with neurological disease and impairment. For example, in
individuals with chronic stroke, recruiting fewer motor modules is associated
with slower walking speeds and asymmetry [59] and functional impairment
[75]. Similarly, fewer motor modules are identified in individuals with spinal
cord injury [23], and children with cerebral palsy [22]. In fact, motor modules
have often been used to investigate muscle coordination in populations with
neurological impairments, yet they have infrequently been considered in
healthy older adults.

Natural aging processes affect the neural, muscular, and skeletal systems
in myriad ways. Muscles lose strength and mass [71], and bone density
is reduced [76], making the potential consequences of a fall more severe.
Changes in executive function and attention impact the ability to dual-task
while moving [77]. Additionally, aging affects the connection between the
nervous system and muscles, altering innervation, neuromuscular junctions,
and the relationships between muscle excitation and contraction [4]. Factors
such as these and many others could lead to changes in the repertoire of
muscle coordination patterns available or how effectively they can be applied.

Though fewer motor modules have been observed in older adults with a fall

34



4.1. INTRODUCTION 35

history, older adults without a fall history appear to recruit the same number
of motor modules as young adults [65], [78] but with more variability in the
activation coefficients (C’s) [65]. Unlike injury or disease such as stroke or
spinal cord injury, normal aging likely does not impact the “library” of muscle
coordination patterns that can be used, but instead how effectively and
flexibly they can be applied. However, multi-task motor module recruitment
has not yet been characterized in older adults (much less so in middle-aged
adults).

In chapter 3, we demonstrated that healthy young adults recruit common
motor modules during the subtasks of the TUG test; here, we investigate
whether motor module generalization across these tasks changes with normal
aging. We hypothesize that healthy adults, regardless of age, retain the
ability to generalize muscle coordination patterns across voluntary tasks;
therefore, we predict that young, middle-aged, and older adults will show
similar levels of motor module generalization.

Additionally, in our previous work, we could not rule out that some of
the motor module generalization was due to the lack of clear boundaries
between the TUG subtasks. For example, during the “sit-to-stand” portion,
subjects do not stand up, pause, and then begin walking; rather, they
execute one fluid “sit-to-walk” motion and step off before fully extending
their trunk. Accordingly, in sit-to-stand, subjects often recruited a well-
defined plantarflexor module in the leg they used to step off but a less defined
module in the opposite leg (for a non-stepping illustration: see the dark blue
module grouped with the other plantarflexor modules in Chapter 3, Figure
2). It is, therefore, possible that some of the generalization we observed was
due to the transitions between subtasks rather than to similarity between
the tasks themselves. In other words, did we observe similar motor modules
across tasks only because participants were preparing for (or even beginning)
the next subtask before “finishing” the current one?

To more clearly determine whether similar motor modules are recruited
during distinct voluntary tasks, we examined the TUG test and each of its
subtasks performed separately: walking, turning (in figure-eights), and chair
transfers. By including all these tasks, we can investigate distinct tasks (e.g.,
steady-state walking) and complex tasks with between-subtask transitions
more reflective of real-world movement. Because task-specific motor modules
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tended to emerge during the turn subtasks in our previous work (see Chapter
3, section 4.1), we further hypothesize that the figure-eights and TUG test
will each display turn-specific motor modules involving the gluteus muscles.

4.2 Methods

Participants

Ten healthy young adults (7 M, 21.3±2.4 yrs), 6 middle-aged adults (1
M, 58.2±5.1 yrs), and 6 older adults (1 M, 71.2±5.5 yrs) participated in
this study. Inclusion criteria were age greater than 18 (classified as young
adults: 18-35 yrs, middle-aged adults: 36-64 yrs, older adults: 65+ yrs).
Exclusion criteria were any musculoskeletal conditions or concussion or
injury within the last year. All participants provided written informed
consent before participating according to an experimental protocol approved
by the institutional review board of West Virginia University.

Experimental procedures

All participants performed a set of voluntary tasks: treadmill walking at
self-selected speed, chair transfers, figure eight walking, and the TUG test.
Each task is described in detail in Chapter 2.1.

Data collection and processing

Three-dimensional marker data were collected at 100 Hz with a 10-camera
motion capture system (Vicon). We used a modified version of the plug-in
gait marker system with 31 markers on the head, trunk, legs, and feet.
Marker data were used to identify the beginning and end of the TUG,
figure-eight, and chair transfer trials.

Surface electromyography data were collected from 12 muscles of the domi-
nant leg spanning the hip, knee, and ankle, described in Chapter 2.1. EMG
data were high pass filtered at 35 Hz, demeaned, rectified, and low pass
filtered at 10 Hz using custom MATLAB code. Separate data matrices
were created by concatenating EMG data from all trials for each subject
and voluntary task. Sit-to-stand and stand-to-sit were analyzed as separate
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tasks, and each half of the figure-eight task was analyzed separately (to
consider each turn direction separately), giving a total of 6 matrices for each
subject: Treadmill self-selected (TM SS), figure-eight inside (Fig8 Inside),
and outside turns (Fig8 Outside), TUG, Sit-to-Stand, and Stand-to-Sit.

Motor module analysis

Motor modules were extracted separately from the concatenated EMG data
matrix for each subject and task (6 extractions per subject) using non-
negative matrix factorization (as described in Chapter 2.2). Motor modules
are extracted such that

EMG = W × C + ϵ

where ϵ is the EMG reconstruction error, W is an m× n matrix of n motor
module weights for the m muscles and C is an n × time matrix of the
activation coefficients for each motor module. EMG for each muscle was
scaled to unit variance before extraction and then rescaled afterward to
avoid biasing extraction to any muscle with higher variance.

We examined the following motor module metrics:

Motor module number and complexity: We extracted 1-12 motor modules
from each EMG data matrix and selected the appropriate number of modules
to accurately reconstruct the observed EMG, as described in Chapter 2.2. To
compare motor module complexity, we calculated the VAF from extracting
just one motor module (VAF-by-1, described in Chapter 2.2). Higher VAF-
by-1 levels indicate fewer motor modules are needed to reconstruct the EMG
data, and the task is considered less complex.

Motor module generalization: We used a hierarchical clustering algorithm
([11], also described in Chapter 3.2) to compare motor module composition
for each subject across voluntary tasks (one clustering for each subject).
The number of clusters was defined as the minimum number such that there
was no more than one motor module from each task in each cluster [11],
[36], [50]. Motor module generalization was then defined as

p = 100×
(
1− c− nmin

sum(ni)

)
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Where p is the percent generalization, ni is the number of motor modules
identified in the ith task, nmin is the smallest number of modules identified
in any task for that subject, and c is the number of clusters (see Chapter 3,
Figure 3.2 for an example).

Motor module composition: As a secondary analysis, we characterized the
motor modules recruited in each task using the same clustering algorithm
to group modules across subjects, for each age group and task (6 tasks x
3 age groups = 18 separate sets of clusters). The number of clusters was
defined similarly to above, but here we selected the minimum number of
clusters such that there was no more than one module from each subject in
a cluster [11], [36], [50].

Statistics

The primary measures of this study are the metrics of motor module
generalization (i.e., percent generalization and number of clusters). We
used separate one-way ANOVAs (MATLAB ‘anova1’) to compare each of
these metrics across age.

As a secondary measure, we investigated whether motor module complexity
changed across age or task. We compared module number and VAF-by-1
across age and task with separate two-way repeated measures ANOVAs
(3× 6 design: Age (YA, MA, OA) × Task (TM SS, Fig8-In, Fig8-Out, TUG,
Sit-to-stand, Stand-to-sit). Pairwise t-tests were performed if there was a
significant effect of task; two-sample t-tests with Hommel’s corrections were
performed for significant effects of age group. For all post hoc tests, p-values
were adjusted using Hommel’s corrections with α = 0.05 [79].

4.3 Results

Motor module generalization:

All subjects shared a small number of motor modules across voluntary
tasks (YA: 6.4±1.3, MA: 6.3±1.5, OA: 5.2±1.1 clusters). Accordingly, all
subjects exhibited over 70% motor module generalization across tasks (YA:
82±4.8%, MA: 82±4.6%, OA: 86±5.2%). There was no significant difference
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in the number of clusters (F(2,18)=1.45, p=0.26) or percent generalization
(F(2,18)=1.67, p=0.22) across age groups.
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Figure 4.1: Motor module generalization. There was no significant effect of age on the
number of motor modules shared across tasks (A) or the percentage generalization across
tasks (B).
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Figure 4.2: Motor module number and complexity during voluntary tasks. (A) The
number of motor module recruited in each voluntary task. Though there was no difference
in motor module number with age, chair transfers had significantly fewer modules than all
other tasks. Fewer modules were identified during treadmill walking at self-selected speed
than figure-eights and TUG. In figure-eight, more modules were identified in the inside
turn than the outside turn. (B) VAF-by-1 in each task. There was a significant effect of
task, age group, and their interaction on VAF-by-1. In general, VAF-by-1 increased with
age during treadmill walking, TUG, and figure-eights. In young adults, VAF-by-1 was
higher in chair transfers than other tasks; in middle-aged adults VAF-by-1 was higher in
stand-to-sit than figure-eight inside and TUG. +: significantly different from sit-to-stand,
++: significantly different from stand-to-sit, *: significantly different from treadmill, o:
significantly different from figure-eight outside.
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Motor module number:

A two-way repeated measures ANOVA indicated a significant effect of task
(F(5,90)=34.4, p<0.001), but not age group (F(2,18)=1.3, p=0.31), or the
interaction (F(10,90)=1.2, p=0.29) on motor module number (Fig. 4.2 A).
Post hoc t-tests indicated that all subjects had fewer motor modules in
sit-to-stand than all other tasks except stand-to-sit (all p<0.001). Similarly,
there were fewer motor modules identified during stand-to-sit than all other
tasks except sit-to-stand (all p<0.001). Fewer motor module were identified
in self-selected treadmill walking than figure-eight inside (p<0.001), outside
(p=0.03), and TUG (p=0.001). Additionally, there were more motor modules
in figure-eight during the inside turn than the outside turn (p=0.02).

VAF-by-1:

There was a significant effect of task (F(5,90) =38.1, p<0.001), age group
(F(2,18)=3.8, p=0.042), and the interaction (F(10,90)=2.412, p=0.014) on
VAF-by-1 (Figure 2B). Post hoc t-tests indicated VAF-by-1 was lower in
young adults during TUG than in middle-aged adults (p=0.003) and older
adults (p=0.004). VAF-by-1 was also lower in young adults than older
adults in the outside leg of figure-eight (p=0.032), and higher in middle-aged
adults (p=0.049) and older adults (p=0.044) than young adults during
treadmill walking. Further, young adults had higher VAF-by-1 during
chair transfers than figure-eight inside and outside, TUG, and treadmill
walking (all p<0.001). Middle-aged adults also had higher VAF-by-1 during
stand-to-sit than figure-eight inside (p=0.029) and TUG (p=0.003).

Motor Module Composition

Treadmill walking

For self-selected treadmill walking, we identified 7 clusters in both young
and middle-aged adults and 4 clusters in older adults (shown in Fig. 4.3).
All young adults recruited a plantarflexor module (Cluster A). Clusters B
and C both include the gluteus, TFL, and quadriceps muscles, while cluster
G is just the gluteus muscles (2 subjects – 1 subject combined MGAS here).
Cluster D is dominated by TA, paired with assorted other muscles. Half of
the young adults recruited a module that was dominated by ADD (Cluster
E). Cluster F is mainly the hamstring, sometimes with other contributions.



42
CHAPTER 4. AGE-RELATED CHANGES IN NEUROMUSCULAR

GENERALIZATION

Young Adults Middle-aged Adults Older Adults
Treadmill Walking

A

B

C

D

F

E

G

A

B

C

D

F

E

G

A

B

C

D

G
M

AX
G

M
ED TF

L
AD

D
BF

LH
R

FE
M

VL
AT

M
G

AS
LG

AS SO
L

PE
R

O TA

Figure 4.3: Motor modules clustered across subjects during treadmill walking. Module
were grouped into 7 clusters for young and middle-aged adults and 4 clusters for older
adults.
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All middle-aged adults recruited a plantarflexor module (cluster A). Most
(5/6) recruited a module with gluteus, TFL, and quadriceps muscles in
Cluster B. Cluster C is a loose cluster dominated by the hamstring (3
subjects). Cluster D is TA paired with the quads and TFL (2 subjects).
Cluster E contains ADD and TA (3 subjects). The remaining two clusters
are subject specific modules.

All older adults recruited a plantarflexor module (A), a module with the
gluteus, TFL, and quadriceps muscles (B), and a module with the adductor
and hamstring (C). Cluster D was mainly the TA (and sometimes hamstring),
recruited by three subjects. For the other two subjects TA was grouped
with the hamstring in Cluster C.

TUG

For TUG, we identified 9 clusters in young adults, 7 clusters in middle-aged
adults, and 5 clusters in older adults (shown in 4.4.

In young adults, 5 clusters included at least half of the subjects. All subjects
had a plantarflexor module (Cluster A) and most (8/10) had a module
dominated by ADD (Cluster D). Most also had Cluster B, composed of the
gluteus and TFL muscles (and sometimes hamstring, 9 subjects). Cluster E
was mainly TA, sometimes paired with RFEM (6 subjects). Cluster F was
observed in 3 subjects and was mainly a separate RFEM. The remaining 3
clusters were loosely grouped subject-specific modules.

All middle-aged adults recruited a plantarflexor module (Cluster A). Cluster
B was mainly gluteus muscles and some TFL (5/6 subjects) and Cluster C
was mainly the quadriceps with some TFL (5/6 subjects). Cluster D was
dominated by TA paired with other various muscles (4/6). Three subjects
used Cluster E, dominated by ADD. Cluster F was mainly GMED and
used by 2 subjects – one did not use Cluster B, the other did not have
much GMED activation in Cluster B. The remaining cluster was mainly the
hamstring and used by 2 subjects.

All older adults recruited a plantarflexor cluster (A). Cluster B included the
gluteus and hamstring muscles (3/5 subjects). Cluster C was mainly TFL
and the quadriceps (4 subjects), with more gluteus activity in those subjects
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who did not recruit cluster B. Cluster D was primarily composed of ADD (4
subjects). Cluster E was dominated by TA, sometimes with contributions
from RFEM (4 subjects).
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Timed-Up-and-Go

A

B

C

D

F

E

G

A

B

C

D

F

E

G

A

B

C

D

G
M

AX
G

M
ED TF

L
AD

D
BF

LH
R

FE
M

VL
AT

M
G

AS
LG

AS SO
L

PE
R

O TA

H

I
E

Figure 4.4: Motor modules clustered across subjects during Timed-Up-and-Go. Module
were grouped into 9 clusters for young adults, 7 clusters for middle-aged adults and 5
clusters for older adults
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Figure-eight - Inside Leg

For the inside leg of figure-eight walking, we identified 11 clusters in young
adults, 6 clusters in middle-aged adults, and 5 clusters in older adults (shown
in 4.5.

All young adults recruited a plantarflexor module. Most subjects also
recruited a hamstring module (cluster B, 8 subjects) and an adductor module
(cluster C, 7 subjects). Five clusters represented different combinations of
gluteus, TFL, and quadriceps muscles. Cluster C (dark pink) include the
quadriceps and TFL (6 subjects). Most subjects who recruited cluster C
also had either cluster D (glutes and TA, 4 subjects) or cluster E (glutes,
hamstring, and TA, 2 subjects), but not both. Cluster F was a loose grouping
usually dominated by RFEM and sometimes TA in those who didn’t use
cluster C (5 subjects). The remaining clusters were misc. subject-specific.

Three clusters were observed in all middle-aged subjects: a plantarflexor
cluster, a gluteus cluster, and a quadriceps/TFL cluster. Four subjects
recruited a module dominated by ADD (cluster D). Three subjects recruited
a TA module (cluster E) and three subjects recruited a module dominated
by the hamstring (cluster F).

All older adult subjects recruited a plantarflexor module (Cluster A) and a
module primarily composed of the quadriceps and TFL (sometimes with
gluteal activity, Cluster B). Cluster C primarily included ADD and cluster
E was mainly the hamstring and TA (3 subjects). The final cluster (D)
was a loose grouping; it was mostly the TA and/or peroneus, but included
GMED and GMAX in one subject (3/5).
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Young Adults Middle-aged Adults Older Adults
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Figure 4.5: Motor modules clustered across subjects during the inside turn of figure-eight.
Module were grouped into 11 clusters for young adults, 6 clusters for middle-aged adults,
and 5 clusters for older adults
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Figure-eight - Outside Leg

Motor modules from the outside leg of figure eight were grouped into 15
clusters for young adults, 7 clusters for middle-aged adults, and 4 clusters
for older adults (shown in Fig. 4.6).

All young adults recruited a plantarflexor module, though these were divided
into two clusters (cluster A, 8 subjects, cluster B, 2 subjects). Cluster C was
primarily the gluteus muscles (6 subjects); those who did not use cluster C
recruited their gluteus muscles in either cluster D (subject-specific module),
cluster E (mainly GMAX and ADD, 2 subjects), and/or cluster F (primarily
gluteus, TFL, and quadriceps together). Clusters M (4 subjects) and N (2
subjects) were primarily composed of ADD, with or without TA respectively.
Overall, motor modules from young adults were grouped into 15 clusters,
there were 6 main “types” of clusters

• Plantarflexors
• Gluteus muscles alone
• Gluteus muscles pair with others
• Adductor, with or without TA
• Hamstring, with or with out TA and others
• Miscellaneous groupings

Middle aged adults all used a plantarflexor module (Cluster A). Four
subjects used cluster C, which was mainly the gluteus, TFL, and quadriceps
muscles. Cluster D was mainly the quadriceps and TFL, with some gluteus
contributions (3 subjects); two subjects who recruited cluster C also used
cluster B, composed of GMED and TA. Cluster E was primarily the
hamstring (2 subjects), cluster F was mainly ADD (4 subjects), and cluster
G was primarily TA (3 subjects).

All older adults recruited a plantarflexor module (cluster A), a module with
the gluteus, TFL, and quadriceps muscles (Cluster B), and a module with
ADD and/or TA (Cluster C). Three subjects also recruited a hamstring
module, sometimes with TA (Cluster D).
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Young Adults Middle-aged Adults Older Adults
Figure-Eight Outside Turn
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Figure 4.6: Motor modules clustered across subjects during the outside turn in figure-eight.
Module were grouped into 15 clusters for young adults, 7 for middle-aged adults, and 4
clusters for older adults
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Sit-to-Stand

During sit-to-stand, we identified 5 motor module clusters in young adults,
4 clusters in middle-aged adults, and 5 clusters in older adults (shown in
Fig. 4.7).

Most young adults recruited cluster D, which was dominated by TA, some-
times with other muscles included (7 subjects). The remaining 4 clusters
were composed of different combinations of gluteus and quadriceps muscles.
Cluster A was primarily the quadriceps and TFL, with some contributions
from other muscles (6 subjects) while cluster E was mainly VLAT and TFL,
sometimes with GMAX (4 subjects). Cluster B was mainly the gluteus
and TFL muscles (4 subjects), and cluster C grouped the gluteus and
plantarflexor muscles.

In middle-aged adults, all clusters were present in 4 subjects, though
all seemed to be fairly loose groupings. Cluster A was primarily the
quadriceps, TFL, and TA. Cluster B was mainly the gluteus muscles and
TFL, with varying contributions from other muscles. Cluster C included
some combinations of plantarflexors with GMED or GMAX.Cluster D mainly
included TFL and VLAT.

All older adults used cluster A, composed of the quadriceps and TFL. Cluster
B was only present in two subjects and was either GMAX or GMED. Cluster
C was present in 4 subjects and was mainly plantarflexors grouped with
different hip muscles. Cluster D was primarily the TA, sometimes paired
with RFEM (3 subjects). The final cluster was a subject-specific module.
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Figure 4.7: Motor modules clustered across subjects during sit-to-stand. Module were
grouped into 5 clusters for young adults, 4 clusters for middle-aged adults, and 5 clusters
for older adults.
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Stand-to-Sit

During stand-to-sit, we identified 6 motor module clusters in young adults,
6 clusters in middle-aged adults, and 4 clusters in older adults (shown in
4.8).

A cluster composed of the quadriceps and TFL was present in most subjects
(cluster A, 8 subjects). Three subjects recruited both cluster F (RFEM
alone) and cluster D (TFL, hamstring, and VLAT) together. Cluster B
loosely grouped modules with the plantarflexors and/or TA (5 subjects)
while cluster E was exclusively TA (5 subjects). Four subjects recruited
cluster C, which was a loose grouping of gluteus and other muscles.

All middle-aged subjects recruited cluster A, made up of quadriceps, TFL,
and sometimes TA. Cluster D was mostly the TA grouped with gluteus
muscles and was present in 3 subjects. Two subjects had cluster C which was
primarily GMED. A loose cluster of plantarflexor muscles was present in two
subjects (Cluster B). The other two clusters were subject-specific modules.
Cluster A was present in all older adults and included the quadriceps, TFL,
and TA. Three older adults recruited a defined plantarflexor module in
cluster B. Cluster C was mainly dominated by TA, but also included gluteus
muscles in some modules (4 subjects). Cluster D was a subject-specific
muscle grouping of the quadriceps and TFL with GMAX.
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Figure 4.8: Motor modules clustered across subjects during stand-to-sit. Module were
grouped into 6 clusters for young adults, 6 clusters for middle-aged adults, and 4 clusters
for older adults.
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4.4 Discussion

Healthy adults share common motor modules across
voluntary tasks

Regardless of age, all subjects showed high levels of generalization between
the motor modules recruited in walking, turning, and chair transfers. Values
for both the number of clusters and percent generalization were similar to
our previous investigation of the TUG test ([80], see Chapter 3). These
results provide supporting evidence that similar motor modules are recruited
during functionally different voluntary tasks, whether performed in isolation
or as part of more continuous and transitory movements. Further, normal
aging does not seem to affect overall motor module generalization during
voluntary tasks, in support of our hypothesis.

Common and turn-specific modules used during locomotion

We identified 5 main types of motor modules during treadmill walking:

1. A module composed of TFL, gluteus, and quadriceps muscles (e.g.,
YA clusters B and C in Fig. 4.3),

2. A plantarflexor module (e.g., Fig. 4.3, cluster A),

3. A module mainly composed of TA, sometimes with other muscles (e.g.,
Fig. 4.3, YA cluster D),

4. A hamstring module (e.g., Fig. 4.3, YA cluster F),

5. An adductor module (e.g., Fig. 4.3, YA cluster E).

The first four modules are similar to those previously identified in walking
[18], [59], [60]. Module 1 contributes to body support, module 2 to propulsion,
module 3 to braking in early stance, and module 4 to modifying leg energy
during late stance and early swing [18], [59]. The fifth module was mainly the
adductor muscle. Adductors have been shown to contribute to mediolateral
balance control and shifting energy between legs to facilitate contralateral
swing, and including an adductor module has been shown to improve
mediolateral balance control in walking simulations [18].

During treadmill walking, module 1 (gluteus, TFL, and quadriceps muscles)
was present in most people regardless of age (Fig. 4.3). Similar combined hip
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abductor-knee extensor modules have been previously identified in walking
and contribute to body weight support and mediolateral stabilization [18],
[59], [54]. However, during turning, this module was not normally observed,
especially in young and middle-aged adults. During the TUG test, most
subjects had a quadriceps and TFL module (all hip flexors, Fig. 4.4, cluster
C) and a module pairing the gluteus and hamstring muscles (all hip extensors,
Fig. 4.4, cluster B). We will refer to the hip flexor module as Module 1A
and the hip extensor module as Module 1B.

Similarly, during figure-eights, young adults and middle-aged adults typically
had a knee extensor module plus some form of gluteus module (e.g., in
isolation or paired with the hamstring). During the inside turn of figure-
eights, module 1A was consistently identified in almost all subjects (Fig. 4.5,
YA cluster E), while a few variations of module 1B were found (YA clusters
B-D). Conversely, in the outside turns module 1B (though without much
hamstring activity) was consistently used (Fig. 4.6, YA cluster C) but many
variations of module 1A or individual quadriceps were found (YA clusters
F-J). Middle-aged adults more consistently recruited modules 1A and 1B.

In other words, healthy young and middle-aged adults do not consistently
recruit module 1, but separate quadriceps and gluteus motor modules during
turning. Module 1A, the TFL and quadriceps, may be more important for
the inside turning leg. As discussed above, similar motor modules have been
identified as important for body support and stabilization during stance.
The stance phase lasts longer during turn than straight-line walking, partly
because the COM momentum needs to be slowed, shifted and redirected
[81], [82], even during gentle turns [83]. Additionally, turning is associated
with larger vertical (i.e., body support) impulses [81]. All of these imply
that a motor module like 1A, associated with support and stabilization
during stance, would be important during turns. Module 1B contains
mostly the gluteus muscles. Hip abductors, and gluteus medius specifically,
are important contributors to medial accelerations of the center of mass
during normal walking [84] and turning [85]; recruiting the abductor module
separately may help meet the additional mediolateral demands of turning
in a tight radius (e.g., illustrated by greater medial impulses to shift COM
inward [81]).

The emergence of turn-specific gluteus motor modules in young adults is
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consistent with our qualitative observations of motor modules recruited
during TUG subtasks (see Chapter 3). Conversely, older adults did recruit
the combined hip module during figure-eights, i.e., they did not recruit the
hip abductors separately during figure-eight walking. Older adults have
been shown to be less able to modulate gluteus medius activity during
tasks like lateral stepping [86] and perturbed walking [65]. The absence
of a gluteus-specific motor module during figure-eight walking may reflect
reduced control of hip abductors. Though most older adults did not recruit
a distinct gluteus motor module during the figure-eight turning, they did
during the TUG test. This result suggests that task conditions like turning
radius or speed may affect whether a separate gluteus module is needed, or
if the combined abductor-knee extensor module is sufficient. However, we
did not examine the turn radius in either case here, and while figure-eights
were performed at a comfortable walking pace, the TUG test was performed
at a quick pace. It is possible that participants may have used different turn
strategies during the TUG test and the higher speed may have required more
mediolateral control than the wider and slower turns of the figure-eights.
The effects of turn radius could also be why our results contrast with a
previous study that did not find differences between motor modules used
for straight-line and wide-radius curvilinear walking [54]. Future analyses
that incorporate kinematic and spatiotemporal parameters could better
determine whether the changes in motor modules observed are due to age-
related changes in muscle recruitment or simply differences in how the task
is performed.

Motor modules are less complex during chair transfers and
dominated by knee extensors

Chair transfers were a much simpler task than walking and turning; a smaller
number of motor modules were needed to reconstruct observed EMG than
in walking or turning. Additionally, both the motor modules and their
clusters across subjects tended to be less clear and defined. For example,
a clear plantarflexor motor module was recruited in every subject during
walking and turning tasks; however, most people did not have such a distinct
plantarflexor module during chair transfers. Instead, the plantarflexors were
more moderately recruited and often grouped with other muscles like the
gluteus muscles and the most common motor module was primarily the knee
extensors, quadriceps and TFL (see Figs. 4.7 & 4.8).
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Motor modules recruited during voluntary tasks are less variable
across subjects with age

In every voluntary task except sit-to-stand, we identified more motor module
clusters in young adults than older adults. This could reflect more variability
in how younger adults performed the task compared to older adults. For
example, some young adults preferred to step around the turns while others
performed a tighter pivot. Though we did not investigate kinematics here,
characterizing how participants performed each task (e.g., turning [87], or
sit-to-stand strategy [88]) may clarify the variability in young adult motor
modules shown here.

Conversely, this variability may be an effect of the small number of middle-
aged and older participants included here, or the clustering algorithm used.
We used the same algorithm that others have [11], [36], but there has not
yet been a thorough methodological study to identify the best algorithm for
clustering motor modules. For example, a different algorithm may not have
identified two separate plantarflexor clusters in figure-eight (Clusters A &
B, Figure 4.6). To determine the best method for clustering motor modules,
future studies should examine the effects of different algorithms and settings
on clustering results and select the one that best defines functionally different
modules without excessively separating similar modules.

Consistent with previous studies of walking in older adults [65], [78], we found
some differences in motor module complexity (VAF-by-1) but not module
number with age. Generally, VAF-by-1 increased with age during walking,
TUG, and the outside turn leg, so older adults show reduced complexity
during walking and turning tasks. These tasks also generally have higher
complexity across all age groups than the chair transfers; possibly the older
adults are more susceptible to performing differently during walking and
turning than in simpler tasks like chair transfers.

4.5 Conclusion

Here, we found that healthy adults between the ages of 18 and 80 share
common motor modules for walking, turning, and chair transfers. Though
with this study we have begun to characterize patterns of multi-muscle
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coordination across a broader set of tasks, walking, turning, and chair
transfers are still only a small fraction of the diverse ways humans move
around in daily life. Additionally, the timing patterns and functional
roles of modules recruited during different tasks like turning will need
to be determined, as has been done in walking (e.g., [18]). Thoroughly
characterizing what motor modules are recruited, when they are recruited,
and how they contribute to functional outputs in a diverse assortment
of daily movement tasks would provide a deeper understanding of multi-
task neuromuscular control. An understanding of this “library” of motor
modules in healthy adults would provide a strong basis for quantifying
both movement deficits and rehabilitation improvements in people with
neuromuscular impairments.



5 Neuromuscular Generalization Between

Reactive and Voluntary Tasks

5.1 Introduction

Motor modules provide a useful way to quantify neuromuscular control and
identify similar patterns between tasks [6], [12], [15], [55]. It has been shown
that reactive balance motor modules are recruited during walking and that
recruiting more balance modules during walking is associated with various
measures of walking performance. Low generalization associated with slow
walking speeds, etc. in impaired populations, and high generalization and
high performance in healthy adults and skilled dancers [24], [34], [36], [66].
Specifically, people with chronic stroke were shown to have low generalization
and slow walking speeds compared to healthy controls, despite recruiting
similar numbers of modules [36]. Conversely, expert ballet dancers share
even more motor modules between reactive balance and walking than
novice healthy young adults, and this was correlated with better walking
balance performance (Allen, Carey, et al. 2020, Appendix A). Because the
relationship between motor module generalization and walking performance
has been demonstrated in multiple age ranges and patient populations, we
hypothesize that drawing on reactive balance motor modules enables more
robust and automatic control of linear walking.

Common motor modules identified during standing reactive balance are also
found in both perturbed and unperturbed walking, further suggesting that
recruiting reactive balance motor modules during walking may facilitate
better walking balance control [42]. Incorporating reactive balance motor
modules during voluntary tasks like walking may help the central nervous
system coordinate the movements required to meet task-level goals. For
example, during standing reactive balance, motor module tuning can be
predicted by COM state error, sometimes contradicting activation that could
be expected based on local sensory feedback [89]. This suggests that reactive
balance motor modules may be recruited to execute task-level goals such
as COM control, which would be even more important during perturbed or
challenging walking.

58
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However, humans do more than just walk in straight lines. Daily life
involves frequent nonlinear walking, turning, and transitioning between
different positions and environments. Such movements likely require even
more balance and stability than straight-line walking [81], [83], [85]. If
reactive balance motor modules are recruited during straight-line walking,
it seems reasonable that similar strategies would apply to the control of
other common tasks; however, whether reactive balance motor modules are
recruited during nonlinear walking or other voluntary tasks has not yet
been determined. The primary goal of the present study was, therefore, to
characterize motor module generalization between standing reactive balance
and a wider array of voluntary tasks. We hypothesize that recruiting reactive
balance motor modules is a general strategy employed to enable more robust
and automatic movements and drawn on for a wide range of tasks.

Additionally, aging impacts multiple systems important for sensory feedback
and postural response [90], such as proprioception [91] and neural noise that
could affect sensory processing [92]. Sensorimotor declines can impact both
the accurate assessment and execution of task goals like COM control, and
lead to higher instability and fall rates or compensatory strategies (e.g., [93],
[94]). If reactive balance motor modules are incorporated during voluntary
tasks to help meet task level goals like COM control, age-related changes
may lead to altered motor module generalization; however, reactive balance
motor module generalization has not yet been characterized with normal
aging.

Here we compare the motor modules recruited in standing reactive balance
to those recruited during voluntary tasks: treadmill walking, figure-eight
walking, chair transfers, and the TUG test. We included healthy young
adults, middle-aged adults, and older adults. We predicted that healthy
adults recruit reactive balance modules during all of these voluntary tasks.
Further, we predicted that motor module generalization would decrease with
age and that across all ages, higher generalization would be associated with
faster walking speeds and task performance.
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5.2 Methods

Participants

Ten healthy young adults (7 M, 21.3±2.4 yrs), 6 middle-aged adults (1
M, 58.2±5.1 yrs), and 5 older adults (1 M, 71.2±5.5 yrs), participated in
this study. Inclusion criteria were age greater than 18 (classified as young
adults: 18-35 yrs, middle-aged adults: 36-64 yrs, older adults: 65+ yrs).
Exclusion criteria were any musculoskeletal conditions or concussion or
injury within the last year. All participants provided written informed
consent before participating according to an experimental protocol approved
by the institutional review board of West Virginia University.

Experimental procedures

All participants performed a standing reactive balance task and a set of
voluntary tasks: treadmill walking at self-selected and fastest possible
speeds, chair transfers, figure eight walking, and the TUG test. Each task is
described in detail in Chapter 2: General Methods.

Data collection and processing

During each task, we collected three-dimensional marker data at 100 Hz;
maker data were used to identify the beginning and end of each TUG, figure
eight, and chair transfer trial. Additionally, retroreflective tape markers
on the treadmill belts were used to identify perturbation onset during the
standing reactive balance task as described in Chapter 2.2.

Surface electromyography data were collected on the dominant leg at 1000
Hz from the same 12 muscles listed in Chapters 3 and 4 (GMAX, GMED,
TFL, ADD, BFLH, RFEM, VLAT, MGAS, LGAS, SOL, PERO, and TA
(see Chapter 2.1). EMG data were high pass filtered at 35 Hz, demeaned,
rectified, and low pass filtered at 40 Hz using custom MATLAB code.

We created separate data matrices for each task and subject by concatenating
EMG data from all trials. As in Chapter 4, we considered sit-to-stand
and stand-to-sit as separate tasks, and each turn direction of figure eight
as separate tasks, giving a total of 7 voluntary task matrices for each
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subject. For standing reactive balance matrices, data from 4 time bins were
concatenated, one before the perturbation, and three 75 ms bins during the
automatic postural response. The background bin represented the average
EMG for each muscle during a 280 ms window which ended 140 ms before
the perturbation onset. The first APR bin began after a 100 ms delay (see
Fig. 2.4). For all data matrices, EMG for each muscle was normalized to
the maximum value observed during walking.

Motor module analysis

Motor module extraction is described in detail in Chapter 2. Briefly, we
separately extract n motor modules from each subject and task (8 extractions
per subject) such that EMG = W x C + err, where W is the m x n matrix of
module weights, C is the n x time matrix of activation coefficients, and err
is the error between the original and reconstructed EMG. To avoid biasing
the extraction towards any high-variance muscles, EMG was scaled to unit
variance for each muscle, and then rescaled after the extraction. For each
subject and task, we extracted 1-12 motor modules and selected the number
of motor modules such that the 95% confidence interval on the VAF between
the original and reconstructed EMG was greater than 90%.

We used two methods to characterize the similarity between reactive balance
and voluntary motor modules. First, the reactive balance motor modules
were used to reconstruct EMG data from each voluntary task. The VAF
by these reconstructions were compared across task and age in a two-way
repeated measures ANOVA, with age group and task as factors.

Second, we performed a shared-specific motor module extraction for each
voluntary task as detailed in [11]. In this method, EMG data from the
reactive balance and a voluntary task are concatenated into one matrix
and a set of motor modules is extracted. Because the matrices from each
task can vary widely in length, EMG data from the shorter data matrix
were first resampled to be the same length as the longer to avoid biasing
the extraction to any task. The numbers of motor modules identified in
separate extractions for each task (e.g., n1 and n2 are used as an estimate
for the maximum number of shared-specific synergies (i.e., no synergies
are shared). Motor modules are extracted from the combined data matrix,
and the number of motor modules is decreased with each iteration until



62 CHAPTER 5. REACTIVE BALANCE GENERALIZATION

reaching the larger of n1 and n2. Each iteration yields a W and C, with
some combination of shared and task-specific modules. The appropriate
number of motor modules is chosen similar to the separate extractions, such
that the lower bound of the 95% confidence interval on the overall VAF
(here from W × C = EMGcombined) is greater than 90%.

Generalization with reactive balance motor modules: We then determined the
amount of generalization and task-specificity with each voluntary task. A
two-way repeated measures ANOVA (custom R script) was used to compare
the number of motor modules shared across age and task. The percentage
of shared motor modules was then defined as

pshared =
nsh

nvol + nRB − nshared

× 100%

and the percentage shared was compared across age and task using a two-
way repeated measures ANOVA. Similarly, the percentage of task-specific
modules was defined as

psp =
nsp

nvol + nRB − nsp

× 100%

for reactive balance and the voluntary task. The percentage of task-specific
modules in reactive balance and each task were compared with two-way
repeated measures ANOVAs, with age group and task as factors. For all
ANOVAs here, pairwise t-tests were performed if there was a significant
effect of task; two-sample t-tests with Hommel’s corrections were performed
for significant effects of age group. For all post hoc tests, p-values were
adjusted using Hommel’s corrections with α = 0.05 [79].

Performance metrics

As a secondary analysis, we calculated the following performance metrics
for each task and compared them to metrics of motor module similarity
described above:

• self-selected walking speed,
• maximum walking speed,
• time required to stand up or sit down fully,
• time spent in each turn,
• average TUG time.
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Each performance metric was separately compared to the number and
percent of motor modules shared with reactive balance, and VAF from
reactive balance reconstruction for that task using simple linear regression
such that

s = mp+ b

where s is the performance metric (e.g., fastest walking speed), p is the motor
module similarity (e.g., number of shared modules during treadmill walking),
m and b are the slope and intercept of the regression line respectively. We
then evaluate the correlation coefficient r between the linear model and the
observed data.

5.3 Results

Motor module number and VAF-by-1 were similar to the results reported
in Chapter 4, despite the differences in EMG processing. Therefore, motor
module complexity will not be discussed again here.

Reconstruction of Voluntary Task EMG using
Reactive Balance Motor Modules

Reactive balance motor modules were able to reconstruct EMG from volun-
tary tasks (range across all: 63.1-97.8% VAF). In treadmill SS, reconstruction
VAF was lower in older adults than middle-aged (p=0.003) and young adults
(p=0.004). Similarly, in figure-eight outside leg, reconstruction VAF was
lower in older adults than middle-aged adults (p=0.041) and young adults
(though not significant, p=0.054). Reconstruction VAF was also higher in
stand-to-sit than treadmill SS in older adults (p=0.017).

Shared-specific motor module extraction

A small number of motor modules were identified for reactive balance (range:
2-6), and each voluntary task (range: 2-5) using the shared-specific extraction.
Older adults shared fewer modules than young adults between reactive
balance and treadmill SS (p=0.015), figure-eight outside leg (p=0.002), and
TUG (p=0.004). Compared to middle-aged adults, older adults also shared
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Variance Accounted for from Reactive Balance Reconstruction
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Figure 5.1: Overall variance accounted for when reactive balance motor modules are used
to reconstruct voluntary task EMG.
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fewer modules during figure-eight inside (p=0.016), figure-eight outside
(p=0.004), and TUG (p=0.002).

The percentage of motor modules shared between reactive balance and
voluntary tasks was lower in older adults than young adults in figure-eight
outside (p=0.017). Older adults also had a lower percentage shared than
middle-aged adults in figure-eight inside (p=0.035) and outside leg (p=0.008).
Conversely, older adults shared a higher percentage of motor modules
between reactive balance and sit-to-stand than young adults (p=0.036).

When compared to figure-eight tasks, there were more task-specific reactive
balance motor modules in older adults than young adults (inside leg:
p=0.035, outside: p=0.008) and middle-aged adults (inside: p=0.026,
outside: p=0.002).

There were lower percentages of task-specific motor modules present in
older adults during both sit-to-stand (vs. YA: p=0.001, vs. MA: p=0.008)
and stand-to-sit (vs YA: p=0.008, vs. MA: p=0.057). Across tasks in
young adults, more task-specific modules were identified in sit-to-stand
than figure-8 outside leg (p≤0.001), treadmill SS (p=0.032), and TUG
(p≤0.001). Middle-aged adults also used a higher percentage of task-specific
in chair transfers than figure-eight inside (sit-to-stand: p=0.011, stand-to-sit:
p=0.005), outside leg (sit-to-stand: p≤0.001, stand-to-sit: p=0.008) and
TUG (sit-to-stand: p≤0.001, stand-to-sit: p=0.005).

Comparisons with task performance speed or time

There were no significant correlations between the overall VAF from re-
constructing voluntary task EMG using reactive balance motor modules.
However, there was some relationship between higher reconstruction VAF
during sit-to-stand and faster standing time (r=0.28,p=0.12), and between
higher VAF during self-selected walking and maximum walking speed
(r=0.26, p=0.14)

Similarly, there were no correlations between the number or percentage of
motor modules shared with reactive balance and performance speeds or
times; however, there was a slight relationship between more shared modules
and faster maximum walking speeds (r=0.29, p=0.11).
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Number of Motor Modules Shared with Reactive Balance
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Percentage of Motor Modules Shared with Reactive Balance
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Percentage of Motor Modules Specific to Reactive Balance
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Percentage of Motor Modules Specific to Each Voluntary Task
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Figure 5.6: Comparisons between motor module generalization and task speed or time

5.4 Discussion

In summary, we found that healthy adults do recruit reactive balance modules
during other voluntary tasks besides walking but that there are changes in
generalization associated with aging. Consistent with our predictions, there
was less motor module generalization with age during walking and turning
tasks. Interestingly, we also found that older adults showed higher motor
module generalization during chair transfers, contrary to our expectations.
Finally, we found a small relationship between higher generalization and
faster walking/turning.

Reactive balance motor modules are recruited during
voluntary tasks

In support of our hypothesis, healthy adults share similar motor modules
between standing reactive balance and voluntary tasks. Reactive balance
motor modules were able to reconstruct over 63% of the variance in every
voluntary task. Also, at least one motor module was shared between reactive
balance and every other task (except for one subject in treadmill FS). These
results fit with our expectations based on prior work (e.g., [34]) and support
our hypothesis that healthy adults recruit reactive balance motor modules
during voluntary movements to enable more robust control.
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Generalization is reduced in older adults during
walking and turning tasks

Consistent with our hypothesis, older adults had less motor module general-
ization between reactive balance and the walking and turning tasks, though
this was not always significant. Older adults had lower reactive balance
reconstruction VAF in self-selected treadmill walking and figure-eight outside
leg, with similar trends in other tasks. Older adults also had significantly
fewer shared motor modules during both figure-eights, self-selected treadmill
walking, and TUG, and a significantly lower percentage shared in figure-
eights, with similar trends in TUG and treadmill walking (though these
tasks had large standard deviations).

Older adults may be less able to draw upon reactive balance strategies during
walking and turning. This is illustrated by the task-specific percentages.
Older adults used more reactive balance-specific motor modules when
compared to figure-eight, without any difference in the percent specific
to the voluntary task. In other words, older adults have more reactive
balance modules that are not being shared with the figure-eights than young
or middle-aged adults. Interestingly, generalization differences with age are
stronger in the turning tasks and not always present during straight-line
walking. The additional frontal plane demands of turning may require
additional balance control compared to walking [95].

Older adults did recruit fewer motor modules during reactive balance,
walking, and turning tasks than young adults, suggesting that reductions
in both balance control and movement quality may contribute to reduced
motor module generalization between balance and walking. Regardless of
age, slower maximum walking speeds are associated with less generalization
between walking and reactive balance, which fits with results from previous
work demonstrating a relationship between walking performance and motor
module generalization [34], [36].

Generalization is higher in older adults during chair
transfers

Contrary to what we expected, motor module generalization was higher in
older adults during the chair transfer tasks. Though the percent shared
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during sit-to-stand was the only significantly lower variable in older adults,
a similar trend exists during stand-to-sit. Similarly, there is a general trend
that, in older adults, reactive balance motor modules are able to reconstruct
a higher percentage of the variance in chair transfer EMG. Together, these
results suggest that older adults may use more reactive balance motor
modules during chair transfers.

There was no difference in the number or percent of reactive balance modules
that subjects recruited when compared to chair transfers; however, older
adults had significantly fewer modules that were specific to the chair transfers.
In other words, young adults use a mix of reactive balance and task-specific
motor modules during chair transfers, but older adults almost exclusively
use the reactive balance modules with almost no task-specific modules.

Older adults may use more reactive balance modules during chair trans-
fers because of differences in COM control compared to young adults.
Greater postural sway and COM displacement during sit-to-stand has been
demonstrated in older adults [96], [97] and adults with knee osteoarthritis
[98]. Age-related declines in neuromuscular features like muscle strength or
sensorimotor feedback may contribute to poorer control over COM motion,
requiring reactive postural corrections. For example, greater postural sway
during sit-to-stand is correlated with changes in rectus femoris activation
[96]. Similarly, a variety of sensorimotor variables important for balance
maintenance (e.g., limb proprioception, tactile sensitivity, and postural
sway) are predictors of sit-to-stand performance time in older adults [99].
Additionally, different compensatory strategies in older adults (e.g., due to
different movement objectives or neuromuscular capacity [96]) could change
how the chair transfer tasks are performed and therefore require additional
recruitment of balance motor modules.

Middle-aged adults recruited reactive balance motor
modules during voluntary tasks.

The results in middle-aged adults were sometimes similar to young adults
and sometimes similar to older adults. We found no reduction in how much
middle-aged adults shared reactive balance motor modules, whether through
reactive balance reconstruction VAF, number, or percent shared. Also,
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similarly to young adults, middle-aged adults recruited a low percentage
of motor modules specific to reactive balance. They also recruited few
to no task-specific motor modules during the walking and turning tasks.
Altogether, in walking and turning, middle-aged adults still have a large
overlap between balance and walking/turning motor modules. Like the
young adults, they are drawing on balance motor modules during walking
and turning, without much task specificity needed/shown.

Though generalization in middle-aged adults was similar to young adults
during walking and turning, it followed similar trends as the older adults
during chair transfers. Though it was not significant, middle-aged adults
do seem to share slightly more balance modules during chair transfers than
young adults (especially visible in the sit-to-stand subplot of Figure 3). Like
other age groups, middle-aged adults recruited few motor modules that
were specific to reactive balance; however, they did have more task-specific
modules during the chair transfers. This suggests that middle-aged adults
may be starting to use more reactive balance modules during chair transfers
like older adults but are also still recruiting chair transfer-specific modules,
unlike older adults.

These results also illustrate the importance of including middle-aged adults
when investigating changes due to aging. Middle-aged adults are a frequently
overlooked population; investigations of aging often include only young and
older adults. Though middle-aged adults often exhibit similar results to
young adults in many variables (e.g., many of the results in [100]), there are
observable differences in postural stability [100], [101]. Age-related impacts
on neuromuscular control do not happen overnight but likely begin causing
subtle changes during middle age, which become easier to detect as they
advance. By characterizing changes in neuromuscular control during middle
age, we may be able to better understand how and when the differences seen
in older adults begin to occur and develop earlier interventions to better
preserve mobility with advancing age.

Limitations:

There were some limitations to this study. For one, the way we identify the
percent shared and specific is dependent on the number of motor modules
identified in separate extractions. Identifying the number of motor modules
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is dependent on how the VAF cutoff is defined. This is likely why there are
much higher standard deviations in these parameters compared to those
that do not depend on that number (e.g., high SD in percent shared despite
tighter SDs in reconstruction VAF). Adapting the shared-specific extraction
method to not depend so strongly on an initially identified number of
modules might produce more consistent standard deviations and provide
a better image of shared vs. specific motor modules. Additionally, we
implemented our standing reactive balance paradigm on a treadmill rather
than a multi-directional platform. Thus we only included 4 perturbation
directions here, whereas previous studies included 12 directions (e.g., [36]).
There could be important components of balance control that are more
detectable in those intermediate directions.

Future directions

Here we have investigated motor module generalization across more tasks
than usual by including walking, turning, and chair transfers. However,
this is still a small number compared with all the different ways we move
in daily life. Future studies should include additional tasks such as stair
climbing, lifting objects, getting out of bed, and gait initiation. Additional
future studies should also expand beyond isolated lab tasks and consider
more “complex” or real-world tasks such as getting out of a car, walking
through the grocery aisle, or standing up to reach something high on a shelf.
Characterizing multi-muscle coordination across such a broad array of tasks
would give a clearer picture of how people coordinate their movements in
daily life.

We also only consider discrete support surface perturbations here. It would
be interesting to characterize the “mini library” of reactive balance motor
modules used in a variety of perturbations and see how that compares to
voluntary movements. For example, balance modules used during waist-pull
perturbations, which act on the center of mass rather than the feet, might
be more similar to balance modules needed when lifting a large box from the
floor. Further, future work should compare how different reactive balance
motor modules compare to perturbed voluntary tasks; the balance modules
that are helpful when walking on a slippery surface may not be the same
modules needed when navigating a crowded store aisle. There also needs
to be a deeper characterization of when and how reactive balance motor
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modules are recruited during voluntary tasks. For example, when are balance
modules recruited during the turn, and how does it relate to different types
of turn strategies, like pivoting or stepping?

Here we only compared motor module generalization to task time; there
could be clearer relationships with other variables, such as body sway when
getting out of a chair [96], turn strategy [87], or stepping characteristics
[102]. Additionally, we have previously shown that in young adults, the
relationship between generalization and walking performance emerged only
when their balance was challenged ([34], see Appendix A). It is possible that
stronger associations between generalization and task performance during
turning and chair transfers are more observable with higher speeds, slippery
floors, or other more challenging conditions.

Finally, though we show changes in generalization associated with aging,
we only had a small population of middle-aged and older adults. All our
older adults were also very active, with little history of falls. Follow-up
studies should investigate reactive balance motor module generalization in
larger sample sizes to see whether these trends hold. This work could also
be further extended as a basis to investigate this relationship in populations
with impairments. We have previously shown reductions in walking balance
generalization in people with chronic stroke [36], but whether this would
extend to other voluntary tasks remains an open question.
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Despite the inherent multi-task nature of daily life, the underlying neu-
romuscular control required to execute and switch between a wide range
of movement tasks is not yet well understood. Previous work in humans
(e.g., [34], [35], [37]) and animals (e.g., [12], [14], [15]) has suggested that
similar muscle coordination patterns (motor modules) are shared across
different movement tasks. Further, sharing more common coordination
patterns between walking and standing reactive balance is associated with
walking performance in different populations, from low generalization and
poor walking performance in people with chronic stroke [36], to higher
generalization and excellent walking balance performance in expert dancers
[34].

Based on this evidence, the overarching hypothesis for this work is that
drawing upon a generalizable “library” of common muscle coordination
patterns may facilitate performing and shifting between movement tasks
flexibly and robustly. Aging and impairment impact this generalization,
whether by reducing or changing the “library” itself or by affecting how
appropriately it can be applied. The primary goals of this work were therefore
to determine whether healthy adults share common muscle coordination
patterns across a wider range of tasks than previously investigated and
characterize changes in generalization associated with aging.

We found that healthy adults do share similar muscle coordination patterns
across functionally different tasks as described in Chapters 3 and 4. Whether
walking, turning, and chair transfer tasks were performed in isolation or as
part of a continuous task like the Timed-Up-and-Go test, common motor
modules were shared across tasks. Task-specific motor modules were observed
during turning, possibly reflecting the increased mediolateral demands not
present during chair transfers or straight-line walking [81], [83], [85]. We also
found that healthy adults use reactive balance motor modules during these
voluntary tasks, providing further supporting evidence that incorporating
reactive balance motor modules in voluntary movements may be a general
strategy to help meet task level goals ([25], [89]). These results support
our hypothesis that generalizable muscle coordination patterns are used
across a broad variety of reactive and voluntary movement tasks to enable
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well-coordinated movements and resist external disturbances.

With increasing age, people still shared common motor modules across
voluntary tasks but had changes in their recruitment of reactive balance
motor modules. Older adults used fewer reactive balance motor modules
during walking and turning, consistent with our predictions. However,
older adults shared more reactive balance motor modules during chair
transfers than young adults, possibly reflecting increases in postural sway
and instability [96]. Middle-aged adults usually had similar results to young
adults but showed some trends toward older adults (e.g., in recruiting reactive
balance modules during chair transfers) that may indicate the changes in
muscle coordination patterns beginning to take place with age.

Whereas neurological injuries have been shown to be associated with fewer
and different motor modules recruited (e.g., spinal cord injury [23], cerebral
palsy [22], and stroke [75]), normal aging likely does not dramatically alter
the library of coordination patterns available, but how and when they are
recruited. For one, physical changes in the muscles likely contribute to how
motor modules can be recruited. Sarcopenia, a condition in the elderly
comprising low muscle strength, muscle mass, and physical ability, has
wide-ranging and often progressive effects on fall risk and quality of life [71],
[103]. With the development of conditions like sarcopenia, the coordination
strategies that an individual has used throughout their adult life may become
unsuitable. As a result, motor module recruitment may need to be adjusted
to compensate for such age-related changes and their potential side effects
such as reduced ability to control center of mass position when sitting
down [96]. Indeed, reduced rectus femoris volume is associated with longer
performance times in a 5x Sit-to-Stand test [104].

Additionally, changes in the nervous system and its connections to muscles
may inhibit appropriate motor module recruitment, whether as noise or
error in the output signals or sensory input signals required for monitoring
the body’s state [92],[105]. It has been shown that reactive balance motor
modules are tuned according to COM feedback [89]. Declines in sensory
integration and neural communication could therefore affect both the
correct estimation of COM state and the effective tuning of balance module
recruitment, leading to reduced usage of reactive balance motor modules
during walking or even overuse of balance modules during chair transfers.
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Though we have shown that there are age-related differences in generalization
of muscle coordination patterns across a wider set of tasks, we only had a
small population of older adults, and daily life requires far more types of
movements than just walking, turning, and chair transfers. To truly gain a
better understanding of the underlying patterns of multi-task neuromuscular
control required for healthy mobility and the changes associated with aging,
further research should be done. Specifically, future work should include a
much broader variety of tasks, including activities both inside and outside
the lab, such as climbing stairs, getting out of a car, or walking while carrying
heavy objects. Additionally, larger and more diverse populations should be
included. Ideally, a longitudinal study with a large sample size could be
used to characterize individuals’ changes in motor module recruitment over
a span of decades. Given that such a study would be very expensive and
difficult to perform, a larger cross-sectional study incorporating subjects
from a range of ages, occupations, activity levels, and socioeconomic groups
would also be appropriate.

Our work does contain some methodological limitations, though we do not
believe they devalue our results. For one, there are valid critiques of motor
module analyses that rely on using some cutoff to identify a specific number
of motor modules. With a rigid cutoff such as we used here, it is possible
that in some subjects the most “appropriate” set of motor modules may not
be identified with this method, particularly for those who are very close to
the threshold. This is a likely reason those larger standard deviations were
observed in metrics that did depend on motor module number. We also
included a mix of analyses that used identified numbers of motor modules
(e.g., percent generalization) and those that were independent of module
number (e.g., VAF-by-1 and VAF from using balance motor modules to
reconstruct voluntary task EMG). The potential sensitivity of motor module
numbers is a valid concern worthy of further research; however, because we
saw similar trends in both types of metrics, we are confident in the claims
presented here. Additionally, there have been discussions about potentially
interesting structure in the residual left behind in that cutoff (i.e., there may
be valuable coordination information contained in the 10% of variance not
accounted for by an identified set of motor modules [106], [107]. Though
we do not disagree with this, the residual structure is not likely to make an
impact on our findings here; we were not attempting to characterize all of
the relevant structure that exists in the muscle activity, but rather identify
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common patterns in muscle recruitment across tasks.

Here we have presented novel results demonstrating that human movement
can be described with common generalizable motor modules across a variety
of functionally different tasks, and that generalizable modules are recruited
under both voluntary and reactive balance conditions. Our results are a first
step towards thoroughly characterizing the patterns of muscle coordination
used to produce the multitudes of movements that people are capable of, and
understanding how that movement control is affected by age, training, or
neurological injury. Fully characterizing the patterns of muscle coordination
required for healthy daily movement and the resulting changes with age
would provide opportunities for identifying underlying changes in movement
control with age and impairment, developing more targeted interventions
for declining mobility, and quantifying results of rehabilitation treatments.
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Abstract

Background: Recent studies provide compelling evidence that recruiting a common
pool of motor modules across behaviors (i.e., motor module generalization) may
facilitate motor performance. In particular, motor module generalization across
standing reactive balance and walking is associated with both walking speed
and endurance in neurologically impaired populations (e.g., stroke survivors and
individual’s with Parkinson’s disease). To test whether this phenomenon is a
general neuromuscular strategy associated with well-coordinated walking and not
limited to motor impairment, this relationship must be confirmed in neurologically
intact adults.
Research Question: Is motor module generalization across standing reactive
balance and walking related to walking performance in neurologically intact young
adults?
Methods: Two populations of young adults were recruited to capture a wide
range of walking performance: professionally-trained ballet dancers (i.e., experts,
n = 12) and novices (n = 8). Motor modules (a.k.a. muscle synergies) were
extracted from muscles spanning the trunk, hip, knee and ankle during walking
and multidirectional perturbations to standing. Motor module generalization
was calculated as the number of modules common to these behaviors. Walking
performance was assessed using self-selected walking speed and beam-walking
proficiency (i.e., distance walked on a narrow beam). Motor module generaliza-
tion between experts and novices was compared using rank-sum tests and the
association between generalization and walking performance was assessed using
correlation analyses.
Results: Experts generalized more motor modules across standing reactive balance
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and walking than novices (p = 0.009). Across all subjects, motor module
generalization was moderately associated with increased beam walking proficiency
(r = 0.456, p = 0.022) but not walking speed (r = 0.092, p = 0.349).
Significance: Similar relationships between walking performance and motor
module generalization exist in neurologically intact and impaired populations,
suggesting that motor module generalization across standing reactive balance and
walking may be a general neuromuscular mechanism contributing to the successful
control of walking.

Introduction

Maintaining balance is critical for well-coordinated walking and the neuromuscular
control of walking and balance may therefore share common structure. Motor
module (a.k.a. muscle synergy) analysis has frequently been used to investigate the
structure of neuromuscular control underlying walking and balance performance.
Motor modules are defined as groups of coactive muscles flexibly recruited over
time to transform movement goals into biomechanical output [6]. Our recent
studies provide novel and compelling evidence that recruiting a common set of
motor modules across standing reactive balance and walking (i.e., motor module
generalization) contributes to successful walking performance in neurologically
impaired populations [24], [36], then its relationship to walking performance
should also be present among neurologically intact populations. The purpose
of this study was therefore to identify whether motor module generalization
across standing reactive balance and walking is related to walking performance in
neurologically intact young adults.

The number of motor modules recruited during walking is frequently used as
a measure of neuromuscular complexity, with higher complexity (i.e. more motor
modules) associated with better walking performance. However, neuromuscular
complexity during walking does not directly translate to a specific level of
walking performance. Increased neuromuscular complexity is observed with
motor development in infants [51] and with motor expertise in adults [37].
Conversely, neuromuscular complexity is reduced in many neurologically impaired
populations that exhibit motor deficits and is associated with reduced walking
speed and endurance [22],[23],[59],[108],[109]. Nevertheless, individuals with
similar neuromuscular complexity during walking can exhibit very different
levels of walking performance [36],[59],[108]. Further, improvements in walking
performance, such as those due to rehabilitation in neurologically impaired
populations or long-term training in neurologically intact populations, can occur
without an increase in neuromuscular complexity [37],[110],[111].
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Our recent studies demonstrate that generalization of motor modules across
gait and balance tasks may be another important neuromuscular mechanism
underlying differences in walking performance. We found that motor module
generalization across standing reactive balance and walking is reduced in individ-
ual’s with neurological impairments, such as Parkinson’s disease [24] and stroke
[36]. In other words, few standing reactive balance modules were recruited during
unperturbed walking. Many of these individuals were community-dwelling with
high function and although their walking speed was slower than neurotypical
controls, they did not exhibit reduced neuromuscular complexity (i.e., number
of motor modules). Instead, a reduction in motor module generalization was
associated with their slower walking speeds. Because the relationship between
motor module generalization and walking speed was present in individuals who
do not exhibit reduced neuromuscular complexity we reasoned that it might
also explain differences in neurologically intact individuals. Although many
of the motor modules recruited for standing reactive balance are also recruited
during unperturbed walking in healthy young adults [42], the relationship between
generalization and walking performance has not been tested.

In the present study, we analyzed electromyography (EMG) from muscles
spanning the trunk, hip, knee, and ankle during overground walking and mul-
tidirectional perturbations to standing in healthy young adults. We recruited
two populations of young adults to capture a wide range of walking performance:
professionally trained ballet dancers (experts) and untrained novices. Two
measures of walking performance were investigated: self-selected walking speed
and beam-walking proficiency. Beam walking proficiency (i.e., walking on a narrow
beam [37]) provides a challenge to walking balance that may better differentiate
walking performance than walking speed. Based on our hypothesis that motor
module generalization across standing reactive balance and walking is a general
neuromuscular strategy contributing to the successful control of walking, we
predicted that generalization across all subjects would be positively associated
with our measures of walking performance.

Methods

Participants

Twelve experts (professionally-trained ballet dancers; 12 female, 22.0±2.5 yrs
old, 1.64±.06 m height, 54.3±6.3 kg weight) and 8 sex, age, height, and weight-
similar untrained novices (no dance or gymnastics training; 8 female, 21.9±3.4
yrs old, 1.66±0.06 m height, 66.1±21.4 kg weight) participated in the experiment.
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Inclusion criteria for all participants was age greater than 18 yr. Experts were
required to have at least 10 years of ballet training and were recruited from
the professional development program of the Atlanta Ballet Center for Dance
Education and the Company of the Atlanta Ballet. Novices were required to
have no formal dance or gymnastic training. Exclusion criteria for both groups
were self-reported medical conditions that could impair walking and balance. All
participants provided written informed consent before participating according to
protocols approved by the institutional review boards at Emory University and
Georgia Institute of Technology.

Experimental Procedures

All participants completed four walking conditions (narrow beam-walking, wide
beam-walking, overground walking at slow speed, overground walking at preferred
speed) and one standing reactive balance condition. Motor modules in beam-
walking and overground walking at slow speed in these participants were previously
analyzed in Sawers et al. [112]. Here, we focus on motor modules in standing
reactive balance and overground walking at preferred speed.

• Standing reactive balance. Reactive balance performance was assessed
through postural responses to ramp-and-hold translations of the support
surface while subjects stood on an instrumented platform. The platform
translated in 12 equally spaced directions in the horizontal plane (see Fig.
1B) with 13 cm displacement, 15 cm/s peak velocity, and 0.3 g acceleration.
Three trials in each direction were collected in random order. Subjects were
instructed to cross their arms and maintain balance without stepping or
using their arms. Stance width was self-selected and enforced to be the
same across all trials.

• Overground walking at preferred speed. Subjects were instructed to walk
at their preferred speed over a 7.5m distance while keeping their head up
and looking straight ahead. Six trials were collected per subject.

EMG data collection and processing

Surface EMG activity was recorded at 1080 Hz from 16 muscles on the right leg
and trunk of each participant: tibialis anterior (TA), peroneus longus (PERO),
medial gastrocnemius (MGAS), soleus (SOL), vastus medialis (VMED), vastus
lateralis (VLAT), biceps femoris long head (BFLH), semimembranosus (SEMM),
gluteus maximus (GMAX), gluteus medius (GMED) rectus femoris (RFEM),
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tensor fasciae latae (TFL), adductor magnus (ADMG), rectus abdominus (REAB),
external obliques (EXOB), and erector spinae (ERSP). EMG signals were high-
pass filtered at 35 Hz (third order-Butterworth), de-meaned, rectified, and low-pass
filtered at 40 Hz (third-order Butterworth) using custom Matlab routines. Subject-
specific EMG data matrices for each condition (i.e., standing reactive balance and
walking) were assembled as described below. The assembled EMG data matrices
for each condition were then normalized to the maximum activation observed
during walking at preferred speed.

For standing reactive balance, EMG data were analyzed during four time bins:
one before the perturbation and three during the automatic postural response
(APR; Fig. 1B) [42]. Specifically, mean muscle activity was calculated during a
280-ms background period that ended 140 ms before the perturbation and during
each of three 75 ms bins beginning 100 ms after perturbation onset. Mean muscle
activity values for each muscle during each bin for each trial were assembled to
form an mxt data matrix, where m is the number of muscles (16) and t is the
number of data points (3 trials x 12 directions x 4 time bins = 144).

For consistency with reactive balance processing, EMG data for walking were
averaged over 75 ms bins. Data from the first and last two steps were removed
to avoid gait initiation and termination (Fig. 1A). Trials were concatenated
end-to-end to form an mxt data matrix. The number of data points, t (trials
x time bins), varied across subjects, with a minimum size of 121. There was
no significant difference between groups (176.4±39.3 for experts, 213.9±47.9 for
novices, t(18)=1.91, p=0.10).

Motor Module Analysis

Motor modules for each subject were extracted separately from EMG data matrices
derived from standing reactive balance and walking using non-negative matrix
factorization (NNMF; [113]). NNMF decomposes the recorded EMG according
to EMG=WxC, where W is an mxn matrix with n motor modules and C is an
nxt matrix of motor module activation coefficients. To ensure equal weight of
each muscle during the extraction process, each row in the EMG data matrices
(i.e. each muscle) was scaled to unit variance before motor module extraction and
rescaled to original units afterward.

Motor module number in each condition (nwalk, nbalance) was chosen as
described previously [24],[36]. Briefly, 1-16 motor modules (W) were extracted
from each EMG data matrix. Goodness of fit between actual and reconstructed
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Figure A.1: Example processed EMG from select muscles during overground walking (A)
and standing reactive balance (B). A: muscle activity for walking was recorded while
participants walked overground at their self-selected speed for at least 6 trials of 7.5
m each. For each trial, the first and last two gait cycles were removed to avoid gait
initiation and termination. Dashed lines represent right heel-strikes, and the shaded
region represents the data analyzed for 1 trial. Data from all trials for a subject were
concatenated before motor module extraction to form an m x t data matrix, where m
is the number of muscles and t the number of time points across all trials. B: muscle
activity for standing reactive balance was assessed through ramp-and-hold perturbations
in 12 evenly spaced directions. Left: responses to forward, leftward, and backward
perturbations are illustrated. EMG responses occurred 100 ms after perturbation onset
(denoted by black vertical line). Mean EMG activity was calculated during a background
period before the perturbation and three 75-ms time bins during the automatic postural
response (APR). Right: tuning curves of mean muscle activity from perturbations as
a function of perturbation directions for the second APR bin. Before motor module
extraction, the tuning curves were assembled to form an m x t data matrix, where m is
the number of muscles and t the number of data points (3 trials x 12 directions x 4 time
bins = 144). (PERO, peroneus longus; MGAS, medial gastrocnemius; TFL, tensor fascia
latae).



100 APPENDIX A. EXPERT NOVICE GENERALIZATION

EMG was evaluated with variability accounted for (VAF), defined as 100 x squared
uncentered Pearson’s correlation coefficient [44]. 95% confidence intervals (CI)
on VAF were calculated using a bootstrapping procedure where EMG datasets
were resampled 250 times with replacement and VAF of the reconstructed EMG
was recalculated after each resampling. n was chosen such that the lower bound
of the 95% VAF CI exceeded 90%. We compared nwalk and nbalance between
groups using separate two-tailed Wilcoxin Rank Sum tests (H0: experts=novices;
H1: experts ̸= novices).

Motor module generalizability, nshared, was defined as the number of motor
modules shared between standing reactive balance and walking [24],[36],[42] and
identified using Pearson’s correlation coefficients. A pair of motor modules were
considered shared if r > 0.623, which corresponds to the critical value of r2 for 16
muscles at α=0.01. To account for the fact that each subject recruited a different
number of total motor modules, motor module generalization was also expressed
as a percentage:

%nshared = 100%×
(

nshared

nwalk + nbalance–nshared

)
. To determine if experts generalized more motor modules across standing reactive
balance and walking, we compared nshared and %nshared between groups using
a one-sided Wilcoxin rank sum test and t-test, respectively (H0: experts=novices;
H1: experts>novices).

Walking Performance Metrics

1. Preferred walking speed: Walking speed for each trial was defined as the
average velocity of the C7 marker in the middle of the walkway and was
then averaged across all trials for each subject.

2. Beam-walking proficiency: Participants walked in a heel-to-toe pattern
along a narrow beam (3.8cm wide, 3.25cm high, and 3.66m long) six
times while keeping their arms crossed over their chest. Participants were
instructed to stop if they uncrossed their arms or stepped off the beam (i.e.,
failure). Beam-walking proficiency was defined as a normalized distance
walked, calculated as the ratio of the sum of the distance walked across all
six trials and the total possible distance [37]. Perfect performance – i.e., no
failures – equals 1.0.
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Differences in preferred walking speed and beam-walking proficiency were
compared between experts and novices using two-sided t-tests. To test our
prediction that motor module generalization is positively associated with walking
performance, one-tailed Pearson’s correlations (H0: r=0, H1: r>0) were performed
to relate each metric of motor module generalizability (nshared, %nshared) to
each metric of walking performance (walking speed, beam-walking proficiency).

Results

Motor module number (Fig. 2B) did not differ between experts and novices in
either walking (p=0.299) or standing reactive balance (p=0.497). The median
number of motor modules recruited for walking was 7 in experts (range: 5-8) and
6 for novices (range: 5-9). The median number of motor modules recruited in
standing reactive balance was 6 in experts (range: 4-7) and 6 for novices (range:
4-8).

Motor module generalization (Fig. 2C) was higher in experts compared to
novices (nshared: p=0.009, %nshared: p=0.010). The median number of motor
modules shared across standing reactive balance and walking was 3 in experts
(range: 1-4) and 2 in novices (range:1-3). These numbers correspond to an average
percentage of motor modules shared across conditions of 30.9±11.2% in experts
and 18.2±10.1% in novices.

Beam-walking proficiency but not preferred walking speed differed between
experts and novices, with better beam-walking proficiency associated with higher
levels of motor module generalization (Fig. 3). Average preferred walking speed
was 1.16±0.18 m/s in experts and 1.08±0.16 m/s in novices (p=0.303). Beam
walking proficiency was 0.76±0.20 in experts and 0.59±0.20 in novices (p=0.037).
Across all subjects we identified a significant moderate positive relationship
between beam walking proficiency and number of motor modules generalized
across conditions (r=0.46, p=0.022) and a similarly sized positive relationship
with the percentage of modules shared across conditions that did not quite reach
significance level of α=0.05 (r=0.34, p=0.072). No significant relationship between
motor module generalization and preferred walking speed was identified (nshared:
r=0.09, p=0.349; %nshared: r=0.19, p=0.205).
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Figure A.2: Motor module number and generalization across walking and reactive balance.
A: representative motor modules from an expert subject during walking and standing
reactive balance. Motor modules were extracted from each behavior independently and
identified as shared across behaviors if r ¿ 0.623. 4 out of 9 motor modules, or 44.4%,
were shared across conditions in the example subject. B: The number of motor modules
recruited during overground walking (left) and standing reactive balance (right) did not
differ between experts (n = 12, dark gray) and novices (n = 8, light gray). C: Both
the number (left) and percentage (right) of shared modules was decreased in novices
compared to experts. White circles in B and C represent individual values for each
subject. (TA, tibialis anterior; PERO, peroneus longus; MGAS, medial gastrocnemius;
SOL, soleus; VMED, vastus medialis; VLAT, vastus lateralis; RFEM, rectus femoris;
BFLH, biceps femoris long head; SEMM, semimembranosus; TFL, tensor fascia latae;
ADMG, adductor magnus; GMAX, gluteus maximus; GMED, gluteus medius; REAB,
rectus abdominus; EXOB, external obliques; ERSP, erector spinae).

A.1 Discussion

Accumulating evidence suggests that motor module generalization across standing
reactive balance and walking, defined as recruiting a common set of motor modules
across both tasks, may help to distinguish differences in walking performance.
Here, we demonstrate that motor module generalization across these two tasks is
positively associated with the ability to perform a challenging beam-walking task
in neurotypical adults. This corroborates our prior studies in stroke survivors
and individuals with Parkinson’s disease demonstrating a positive relationship
between motor module generalization and measures of walking performance such
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Figure A.3: Walking performance metrics. A: Self-selected walking speed did not differ
between experts and novices (left panel) and was not associated with the number (center
panel) or percentage (right panel) of motor modules shared across standing reactive
balance and walking. B: The normalized distance walked on a narrow balance beam was
higher in experts compared to novices (left panel) and was positively associated with
both the number (center panel) and percentage (right panel) of motor modules shared
across standing reactive balance and walking. Experts are denoted in dark gray and
novices in light gray. Circles represent individual values for each subject. this

as speed and endurance. Taken together, these studies add to our understanding
of how walking is controlled and provide compelling evidence that motor module
generalization with standing reactive balance may be a neuromuscular strategy
utilized during walking in both healthy and motor-impaired populations. In
particular, this strategy may co-opt the neuromuscular control important for
automatic postural responses to enable the robust and automatic control of
balance during walking.

Our results are consistent with our prior studies in neurologically impaired
populations [24],[36], suggesting that recruiting reactive balance motor modules
during walking may be a general neuromuscular strategy for well-coordinated
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walking regardless of motor ability. We found that motor module generalization
across standing reactive balance and walking but not motor module number in
either task differed between young adult experts and novices (Fig. 2). As both
groups were young adults with no motor deficits it was not surprising that a
similar number of motor modules were identified between groups in each task.
However, the generalization of motor modules across standing reactive balance
and walking differentiated the neuromuscular control structure between these
two groups. Interestingly, the amount of motor module generalization that we
observed previously in different group of young adults (37.4±23.4%) [42] was
higher than the novices studied here (p=0.03, t-test) but similar to experts
(p=0.42). This discrepancy could be due to lower motor ability of the novices
studied here versus the young adults in the prior study, where we did not control
for expertise [42]. Additionally, the perturbations to standing were of lower
velocity and acceleration in this study (15 cm/s versus 35 cm/s velocity and 0.3g
compared to 0.5g acceleration), which also could have altered the number and/or
structure of motor modules recruited in reactive balance.

Recruiting standing balance motor modules during walking may contribute
to the maintenance of walking balance. Our prior studies revealed that motor
module generalization across these two tasks was associated with overground
walking performance in motor impaired populations (i.e., speed and endurance)
[24],[36]. Unsurprisingly, we did not find a similar relationship with overground
walking in healthy young adults in the current study. In contrast to motor
impaired populations, overground walking does not provide a challenge to young
adults and therefore we also included a beam-walking task. This beam-walking
task was specifically designed to provide a challenge to walking balance and we
previously found that it could differentiate walking balance ability in young adults
[37],[112]. Here, we expand upon our prior study and find that performance on
the beam-walking task in the same cohort of young adults is positively associated
with motor module generalization across standing reactive balance and overground
walking. That this relationship only emerged when balance is challenged (i.e.,
overground walking in stroke survivors [36] and beam-walking in young adults)
suggests that generalization across these two tasks represents a neuromuscular
strategy for maintaining balance while walking. Given that this relationship is of
only a fairly moderate strength (r=0.46), this neuromuscular strategy should be
placed in context as one of multiple concurrent strategies likely contributing to
walking balance.

Motor module generalization across standing reactive balance and walking may
also contribute towards the automatic control of walking. Responding to discrete
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perturbations, such as those experienced by participants in the current study in
the standing reactive balance paradigm, requires rapid changes in the coordination
of muscle recruitment. These rapid changes are typically thought to be mediated
by brainstem circuits [114], although more voluntary contributions can play a
role in the later response. Recruiting a common set of motor modules across
standing reactive balance and walking suggests a convergence on this automatic
recruitment of motor modules important for the maintenance of balance. That
such convergence is increased (i.e. more common modules) in the expert group
is consistent with prior evidence suggesting that automaticity and movement
efficiency is increased with expertise [115],[116],[117]. These results are also con-
sistent with our prior studies in stroke survivors and Parkinson’s disease [24],[36]
in which reduced gait automaticity is common [118],[119],[120],[121],[122] and we
found that motor module generalization across standing reactive balance and
walking was reduced. Further, improvements in walking function in Parkinson’s
disease were accompanied by increased motor module generalization due to the
walking motor modules becoming more similar to the standing reactive balance
motor modules. Taken together, these results suggest a potential relationship
between gait automaticity and motor module generalization that is common to
both neurologically impaired and intact populations. Future work is needed to
directly test this putative relationship.

Conclusions

We identified a positive relationship between beam-walking performance and
motor module generalization across standing reactive balance and walking in
young neurotypical adults. This relationship is consistent with our prior studies
in individuals with Parkinson’s disease [24] and stroke survivors [36]. Although
the sample sizes in each study were small (between 6 and 11 per group), taken
together these studies provide compelling evidence that recruiting reactive balance
motor modules during unperturbed walking may be a general neuromuscular
strategy that contributes to the maintenance of balance during walking.



B Supplementary material to Chapter 3

TUG Subtask Segmentation Example

Figure B.1: Example of TUG subtask segmentation in a representative subject. (A)
Clavicle marker in the x-direction, used to identify TUG start and stop. (B) Toe markers
in the z-direction, used to identify Walk 1 start and Turn start. (C) Heel markers in
the z-direction, used to identify Turn stop and Walk 2 stop. Also see Table 1 in the
manuscript.

Normalization of Motor Module Activations

Each trial was normalized to be the same number of points (1024) and such that
the number of data points in Sit-to-Stand, Walk-Turn-Walk, and Stand-to-Sit

106



107

was consistent. These values were determined by pooling the subtask proportions
(subtask time / full TUG time) across all subjects and trials in the single task
TUG test, averaging them for each subtask, and rounding to the nearest integer.
This yielded

• Sit-to-Stand: 15%

• Walk 1: 17%

• Turn: 25%

• Walk 2: 10%

• Stand-to-Sit: 33%

The Turn and the two Walk subtasks were combined to avoid introducing any
experimenter bias from which steps were selected as the beginning and end of
the turn. As described above, TUG subtasks were manually identified, so even
though subjects were generally consistent with the number of steps, a particular
step could be classified as turning or walking in different trials depending on the
subject’s orientation. Motor modules activations were then normalized as follows:

• Sit to stand - 15% - 154 points

• Walk-Turn-Walk - 52% - 532 points

• Stand-to-Sit - 33% - 338 points

Kinematic Strategy Separation

Trials were classified based on ”kinematic strategy”, defined as the sequence of
the first step leg, turn direction, and stand-to-sit turn direction (e.g., RRR or
LRL). The shapes of the activation curves depended on kinematic strategy; for
example, the first peak in the plantarflexor synergy would depend on which foot
was used to step off. We didn’t want to artificially analyze variation that was
purely due to such kinematic differences.

Because the first leg step-off and stand-to-sit turn direction were not enforced,
some subjects varied their kinematic strategies, and did not always use the same
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Figure B.2: Example of normalization in a single motor module from a representative
subject in the cognitive dual-task TUG test. (A) Motor module activation profiles
normalized to the full TUG test only. Here the only defined points are the beginning and
end of the TUG test. (B) Activation profiles with every subtask normalized. A couple
different curve profiles can be seen that could be due to the turn identification, colored
in orange. Vertical lines indicate the divisions between TUG subtasks. (C) Activation
profiles normalized to three sections (Sit-to-Stand, Walk-Turn-Walk, and Stand-to-Sit),
as used in the manuscript. Here, the peaks for each step are more aligned, allowing for
better RMSE analysis.

ones in TUG and TUGC. Table 2 contains the number of trials in which the
subjects used each kinematic strategy. For example, YA23 used 3 kinematic
strategies in both TUG and TUGC, but only two (RRR and RLL) were used
in both conditions. So that only like performances from TUG and TUGC were
compared, we only included trials that had the same kinematic sequences in both
TUG and TUGC in the RMSE analysis.

Detailed Results



109

Figure B.3: Example of activation profiles from two motor modules in three kinematic
strategies. Activations from the kinematic sequences LRR (A), RRR (B), and RLR (C).

Table B.1: Results of t-tests comparing motor module composition in TUG
vs TUGC for all TUG subtasks

p-value
full 0.713
Sit-to-Stand 0.185
Walk 1
Turn Left 0.265
Turn Right 0.161
Stand-to-Sit
Left Turn

0.678

Stand-to-Sit
Right Turn

0.576
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Figure B.4: Table 1: Kinematic Strategies and Number of Trials. This table contains
the number of trials per kinematic sequence for each subject, in the single-task TUG
test (TUG) and the dual-task TUG test (TUGC). Each of the 8 kinematic sequences
consists of a first step leg, turn direction, and stand-to-sit turn direction. For example,
the sequence ’RRR’ indicates the subject stepped off with their right foot and turned to
the right for both turns; the sequence LRL indicates step off with the left foot, a right
turn around the cone, and a left turn before sitting down. Table cells contain either the
number of trials that the subject used that sequence, or a dash for sequences that were
unused. Colored cells indicate sequences that were used in both TUG and TUGC and
were therefore included in the RMSE analysis.



111

Table B.2: Clustering Results

# clusters % generalization Avg Consistency % shared w/ Full TUG
subject L Leg R Leg L Leg R Leg L Leg R Leg L Leg R Leg
YA04 5 5 90 89 0.85 0.86 80 80
YA08 8 5 88 96 0.81 0.82 63 100
YA10 5 6 90 86 0.77 0.83 100 83
YA11 5 5 90 90 0.83 0.80 80 80
YA12 6 5 91 90 0.82 0.60 83 67
YA14 5 4 92 95 0.82 0.84 67 100
YA15 5 5 88 95 0.72 0.78 80 100
YA16 5 7 89 81 0.81 0.85 80 71
YA18 6 7 88 89 0.82 0.77 38 71
YA19 5 6 83 90 0.78 0.70 80 83
YA21 6 6 85 87 0.71 0.74 67 83
YA22 5 5 90 89 0.83 0.79 80 80
YA23 5 7 92 88 0.78 0.89 80 57
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