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Abstract 

Evaluate the Efficacy of a Mixture of Peroxyacetic Acid and H2O2 Against the Survival 

and Cross-Contamination of the Salmonella Surrogate Enterococcus Faecium on Tomatoes 

during Triple-Wash 

 

Corey Coe 

 

Triple-wash with a mixture of peroxyacetic acid and H2O2 (SaniDate-5.0) during post-

harvest processing of fresh produce has been recommended by West Virginia Small Farm Center 

to improve microbial safety. It has been well recognized that the washing of produce is more 

important for preventing cross-contamination than reducing foodborne pathogens. Furthermore, 

it may help improve public confidence in that the produce they obtain from locally grown 

farmers is safe for their consumption.  determine the efficacy of SaniDate-5.0 for reducing the 

survival and preventing cross-contamination of the Salmonella surrogate Enterococcus faecium 

on tomatoes during triple-wash. 

E. faecium ATCC-8459 (resistant to 100-ppm nalidixic-acid) was dip-inoculated onto 2-

tomatoes and triple-washed with 4-un-inoculated-tomatoes following the procedure of water dip, 

water dip, and SaniDate-5.0 dip (0, 0.0064, 0.25, and 0.50%) with 45-s of each step. Each tomato 

was placed into sample bags with 150 ml of sterile tryptic soy broth for 2-min in a stomacher 

blender. The inoculated surrogate bacteria on tomatoes or in wash-waters were enumerated using 

a modified MPN-method in 8×6 deep-well micro-plates. The turbidity of each well after 

incubation (35oC, 24-h) was confirmed by adding 3-μl droplets of the incubated liquid arrayed 

onto bile esculin agars plus 100-ppm nalidixic-acid. The final MPN values of each treatment 

were determined by an online MPN-calculator followed by statistical analysis. We found that 

SaniDate-5.0 concentrations 0.25 and 0.50% prevented cross contamination in tomatoes after a 



 

 

triple wash consisting of water dip + water dip + antimicrobial agent. This study provides 

evidence that SaniDate-5.0 is an effective antimicrobial agent that could be used by locally small 

produce growers in triple-wash process to improve microbial safety of locally grown tomatoes. 
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Chapter 1 

Introduction 

 

Farmers markets contribute significantly to West Virginia’s economy. In 2020, there are over 

350 known farmers markets (FMs) in WV, which generated over $17 million in annual gross 

sales (WV Farmers Market Association, 2020) and accounted for a significant portion of farm 

household income. Very small produce growers (with annual sales ≤ $10,000) comprised 76.6% 

of produce growers in WV (USDA, 2017), with the majority selling produce through direct-to-

consumer channels such as FMs. Ensuring the safety of fresh produce sold at farmers markets 

from very small growers is essential for the continual growth of the local food sector in WV.  

A recent WV FMs’ microbial surveillance study, finding that Salmonella spp. was detected on 

10.9% of tomatoes, 18.5% of peppers, and 56.3% of cantaloupes (Li et al., 2017). The presence 

of foodborne pathogens in such a high percentage of samples suggests a critical need to develop 

mitigation strategies to reduce foodborne pathogens of WV locally grown fresh produce. The 

triple-wash process (water rinse, water rinse, and final antimicrobial dip) can effectively 

inactivate pathogens from food surfaces and improve on-farm food safety (Strohbehn et al., 

2013). The method is easy to implement and requires only a small initial investment. Our recent 

plant onsite validation study confirmed that applying SaniDate 5.0 Sanitizer Disinfectant [a mix 

of peroxyacetic acid (PAA) and H2O2] (U.S.-EPA, 2020) and Organic Materials Review Institute 

listed (OMRI, 2010) with triple-wash significantly reduced foodborne pathogens on butternut 

squash and extended their shelf life (Li et al., 2020a). SaniDate 5.0 Sanitizer Disinfectant was 

selected for the triple-wash study as it is required by the wholesale distribution company, 

Appalachian Harvest (Duffield, VA), which is a buyer of the stakeholder’s produce. This buyer 

purchases from several farms across WV, including Turnrow Appalachian Farm Collective in 

southern WV, which aggregates produce from 75 very small local produce growers in WV. As 



 

2 

 

the awareness of food safety requirements has increased, more growers are interested in learning 

about new technologies for reducing surface bacteria on their products. Currently, the WVU-SFC 

also encourages local produce growers to apply the triple-wash method if their produce is eaten 

raw or grown close to the ground (Li et al., 2020a; b).  

The U.S. Food Code suggested that fruits and vegetables may be washed by using chemicals as 

specified under§ 7-204.12 in the section of 3-302.15 (FDA, 2017). Our previous research found 

applying 0.25-0.50% of SaniDate 5.0 into triple-wash (water + water + antimicrobial) extended 

the shelf life of butternut squashes from 50 to 70 days in a local commercial squash processing 

plant validation study (Li et al., 2020a), in addition to multiple lab studies (Li et al., 2020a; 

2020b; 2021). Cost-benefit analysis showed that the annual operating cost of the triple-wash 

using SaniDate 5.0 is approximately $500 to $2,000 for producing 1,000 to 5,000 squash and an 

extra 5-220% cost will be added if the water is refreshed in each tank (Li et al., 2020a). Potable 

water is primarily used to remove soil and debris on commodities, water without or with an 

insufficient level of antimicrobials can serve as a vehicle of microbial cross-contamination when 

the contamination exists on the fresh commodity (Gombas et al., 2017). Recently, there is 

growing recognition that post-harvest washing reduces cross-contamination with no expectation 

of achieving log count reductions of pathogens on produce (Gombas et al., 2017). Therefore, the 

objective of this study was to evaluate the efficacy of SaniDate 5.0 to reduce and prevent-cross 

contamination of the Salmonella surrogate E. facelium on tomatoes using two different 

procedures of triple-wash process.  

 

 

 

 

 

 



 

3 

 

Chapter 2 

Literature Review 

2.1. Foodborne illness and outbreaks (Overview) 

To meet the increasing demand for fresh produce, the global annual production of fruit 

and vegetables increased from more than 500 million tons to almost 3 billion tons each year from 

1980 to 2004 (FAO & WHO, 2008). From 1970 to 2017, the supply of fresh produce in the U.S. 

increased drastically from 154.4 to 202.6 pounds per capita availability (USDA ERS, 2020). 

Fresh produce is susceptible to foodborne pathogen contamination since it is often consumed 

uncooked, even with modern precaution to reduce the chance of contamination from the farm, 

transportation, processing, food service, retailers, and consumers, foodborne illness remains a 

recurring problem, causing an estimated 9.4 million cases in the United States annually (Scallan 

et al., 2011). The Centers for Disease Control and Prevention (CDC) classifies a foodborne 

outbreak as when two or more people contracted the same disease by consuming the same 

product. From 1996 to 2010, the U.S. Food and Drug Administration (FDA) recorded 131 

outbreaks associated with over 20 different fresh produce commodities in the U.S. resulting in 

14,350 illnesses, 1,382 hospitalizations, and 34 deaths (U.S. FDA, 2016a). In 2014, The CDC’s 

FoodNet Surveillance Program identified 19,542 cases of Foodborne infection, 4,445 

hospitalizations, and 71 deaths in 2014 (CDC, 2015a).  

The number of farmers’ markets has been increasing nationally over the last few decades 

with the increasing demand for fresh and locally grown produce to promote a healthier and 

sustainable lifestyle. The United States Department of Agricultural Marketing Service (USDA- 

AMS) showed the number of listed farmers’ markets has increased from less than 2000 in 1994 

to near 9000 in 2016 (USDA-ERS, 2017). The U.S. Department of Agriculture Food and 

Nutrition Service (USDA-FNS), a farmers’ market is defined as “Two or more farmer-producers 
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that sell their agricultural products directly to the general public at a fixed location, which 

includes fruits and vegetables, meat, fish, poultry, dairy products, and grains”(USDA- FNS, 

2016). As farmers’ markets have become popular, there has been increasing concern regarding 

the microbial safety of produce being sold.  

2.2. Microbial Safety in Farmers’ Markets 

The microbiological quality of produce varies significantly based on the commodity type. 

The methods used in microbiological quality studies though may not be directly comparable, but 

they show what types of commodities and tests have been conducted. The common evaluation 

method utilizes different microbiological measurements as an indicator of the microbial quality 

and cleanliness of the sample, including aerobic plate count, total/fecal coliforms, and common 

foodborne pathogens.  

Foodborne outbreaks from farmers’ markets can be difficult to track, due to the limited 

number of individuals that consumed a contaminated product, as well as the scale of local press 

coverage on localized outbreaks. Without extensive data to describe an outbreak, traceback to 

determine the cause of illness becomes more difficult.  

A microbial survey involving 13 farmers’ markets in Los Angeles and Seattle sampled 

133 fresh herbs including basil, cilantro, and parsley. Of 133 fresh herbs sampled, the majority 

(n=112) were coliform positive. Thirty-two samples were generic E. coli positive, with up to 

3.15 and 4.15 log CFU/g in coliform and E. coli, respectively. Based on guidelines for microbial 

quality of RTE foods established by the Public Health Laboratory Service, 16 samples (out of 

133) contained more than 2 log CFU/g E. coli, and this level of contamination was unsatisfactory 

(Levy et al., 2015; RJ Gilbert et al., 2000).  
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In a similar study, Wood et al. (2015) sampled 68 Romaine lettuce from five farmers’ 

markets for the level of aerobic bacteria, total coliforms, and E. coli. Isolated E. coli samples 

were tested to determine phylogenetic groupings and virulence genes using multiplex 

polymerase chain reaction (multiplex PCR) to detect virulence genes (eaeA, hlyA, stx1, and 

stx2). The mean aerobic plate count (APC) of lettuce samples was 6.3 log CFU/g and ranged 

from 4.8 to 7.8. While 72% (49) of samples contained coliforms at a mean of 1.9 logs CFU/g, 

13% (9) contained approximately 0.7 log CFU/g E. coli (Wood et al., 2015), showcasing the 

potential concerns on microbial safety on farmers’ market produce, and the importance of the 

role of the farmers’ practices to protect consumers from potential foodborne illnesses. 

 

2.3. Salmonella, E. Faecium, and recent outbreaks  

The Interagency Food Safety Analytics Collaboration (IFSAC) consists of CDC, FDA, 

and USDA identified 3,981 outbreaks that were related to Salmonella, E. coli O157, Listeria, or 

Campylobacter through 1998 to 2018. Of which 1,459 outbreaks could be assigned to a single 

food category: 905 caused or suspected to be caused by Salmonella, 255 by E. coli O157, 44 by 

Listeria, and 255 by Campylobacter. They also reported Salmonella illnesses were the most 

evenly distributed out of the four pathogens observed (IFSAC, 2020). 

2.3.1. Salmonella 

The Centers for Disease Control and Prevention (CDC) estimated Salmonella spp. was 

responsible for a million foodborne illnesses every year in the United States (CDC, 2012), and 

was the leading death by foodborne illness in the United States (Scallan et al., 2011). Previous 
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outbreaks in the United States with produces as delivery vehicles include tomatoes, sprouts, 

cantaloupes, and more (James M. et al., 2006a).  

Salmonella is a gram-negative, rod-shaped, motile, facultative anaerobe, with diameters 

around 0.7- 1.5 um and length 2-5um (Doyle & Buchanan, 2013; U.S. FDA, 2014a). The most 

common reservoirs for non-typhoidal salmonellae came from poultry and cattle, mainly chickens 

and turkeys, cows and pigs, as well as some wild animals. For typhoid and enteric fevers-

inducing strains like Salmonella enterica serovar Typhimurium, there is no significant animal 

reservoir since their mode of spread mainly involves fecal-oral transmission, such as fecally 

contaminated water (Chaudhuri et al., 2018; Giannella, 1996). The infectious dose of Salmonella 

is dependent on the status of the immune system, serotype, and the composition of food as the 

delivery vehicle, but records shown salmonellosis could be caused by less than ten vegetative 

cells (D’aoust et al., 1985). Hara-Kuda (2010) analyzed 11 Salmonella outbreaks and concluded 

the infectious dose could be as low as 363 MPN (Hara-Kudo & Takatori, 2011).  

 

2.3.2. Enterococcus (E. Faecium) 

Enterococcus is a genus for a group of lactic acid bacteria (LAB) that contains both 

commensal and pathogenic microorganisms. Enterococci are Gram-positive, non-spore-forming, 

facultative anaerobic cocci that appear in a single formation, pairs, or chains. They are 

ubiquitous in the environment and can be found in the guts of animals as symbionts, as they 

make up a large portion of gut microflora (Bennett et al., 2015). They grow optimally at a 

temperature of 35 oC, although most species in the genus will grow at temperatures ranging from 

10 to 45 oC (Franz et al., 1999).  
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With their tolerance to salts (40% bile salt) and wide range in pH (4.6 - 9.9), 

Enterococcus spp. can be adapted to the fermentation activity of cheese and dry sausages, as well 

as some food systems (Foulquié Moreno et al., 2006). When the meat is improperly processed, 

Enterococci including E. faecalis and E. faecium causes spoilage in processed meats (Franz et 

al., 1999). Enterococcus infects the human body and causes urinary tract infections, sepsis, 

endocarditis, and wound infection (Oprea & Zervos, 2007; Poh et al., 2006). Enterococci lack 

some virulence factors and are not as intrinsically as virulent as other foodborne pathogens, they 

displayed resistance to a variety of antibiotics caused concern. Vancomycin-resistant 

enterococci are one of the leading causes of hospital-acquired infections (Caballero et al., 2017; 

Khan et al., 2019). From 2009-2015, the CDC reported one instance of Enterococcus faecalis 

outbreak, causing 13 cases of illness (Dewey-Mattia et al., 2018). 

Recent data reported by the IFSAC showed outbreaks and sporadic infections caused by 

the four priority pathogens were generally demographically similar, attributing illnesses to each 

of 17 food categories. They emphasized the need for interventions to reduce illnesses from these 

pathogens need to target a variety of food categories, including Salmonella in multiple food 

categories.  

2.3.3 Roles of Surrogate in Food safety studies 

Foodborne pathogens are generally handled in biosafety level 2 (BSL-2) facilities by 

trained personnel. For organizations without access to BSL-2 laboratories or who wish to study a 

pathogen in food processing environments, surrogate microorganisms are the alternative to their 

respective pathogens for intervention treatments studies determining their inactivation kinetics, 

while preventing the introduction of pathogen contamination in food processing facilities. Based 

on these requirements, a proper surrogate should be non-pathogenic, behaves similarly during 
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inactivation and susceptibility to injury, predictable kinetics when compared to target pathogen, 

simple to prepare, and genetically stable (FDA, 2018). 

When selecting an appropriate surrogate strain for fresh produce studies, Busta et al. 

recommended an ideal strain should have stable and consistent growth patterns, easy to cultivate 

to high populations with stability until usage, inexpensive to enumerate, can be differentiated 

from background microflora, does not induce spoilage, has similar attachment characteristics, 

and have similar susceptibility to injury to that of the target pathogen (Busta et al., 2003). 

Regression analysis can be used to validate the use of a surrogate bacteria, in a tested 

temperature range. Ceylan and Bautista evaluated P. acidilactici ATCC 8042 and Enterococcus 

faecium NRRL B-2354 as thermal surrogate microorganisms for Salmonella in low-moisture pet 

food products. Inoculated samples were treated at 76.7, 82.2, and 87.88oC. After enumeration, 

log-transformed plate counts were plotted against time for each temperature. The D-values 

indicated P. acidilactici 8042 was more heat resistant than the Salmonella control but less heat 

resistant than E. faecium B-2354, validating the use of P. acidilactici 8042 and E. faecium B-

2354 as surrogates for Salmonella in dry pet food products that are thermally processed at 76.7 to 

87.88oC (Ceylan & Bautista, 2015). 

2.3.4. Enterococcus faecium as a Pathogen Surrogate 

Enterococcus faecium NRRL B-2354 is commonly used and recommended as a surrogate 

bacterium for Salmonella Enteritidis PT 30 for validation of thermal processing in almonds 

(Jeong et al., 2011). Previously known as Pediococcus NRRL B-2354 and Micrococcus 

freudenreichii, E. faecium NRRL B-2354 (ATCC 8549) was reclassified with the NRRL and 

ATCC designations (Ma et al., 2011) 
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Kopit et al. evaluated the safety of E. faecium NRRL B-2354 based on its genomic and 

functional characteristics, including detection of virulence factors, biofilm formation and 

adherence, antibiotic susceptibility, survival at low pH, high temperature, and in the presence of 

ethanol. The researchers reported that strain- and application-specific evaluations on E. faecium 

NRRL B-2354 as a conservative surrogate was needed. (Kopit et al., 2014) 

Bianchini et al. validated E. faecium NRRL B-2354 as a surrogate in the extrusion of 

carbohydrate-protein meals in place of Salmonella spp. by processing contaminated meal 

mixtures containing chicken meal, rice flour, potassium chloride, and potassium sorbate at 

73.78oC resulted in a 5-log reduction of the surrogate, 80.38oC resulted in brought the E. faecium 

counts to below detection limits (<10 CFU/g). For comparison, a cocktail included Salmonella 

enterica Branderup NVSL 96-12528, Salmonella enterica Oranienburg NVSL 96-12608, 

Salmonella enterica Typhimurium ATCC 14028, Salmonella enterica Enteritidis IV/NVSL 94-

13062, and Salmonella enterica Heidelberg/ Sheldon 3347-1 was treated with the same extrusion 

procedure. The control treatment showed a 5-log reduction was achieved at 60.6oC, and below 

detection limits at 68.8oC, showing the surrogate was more heat resistant than Salmonella spp., 

which suits as a safer, conservative alternative for these validation studies (Bianchini et al., 

2014). 

Ceylan and Bautista validated E. faecium NRRL B-2354 against a seven-strain cocktail 

of Salmonella Anatum, Montevideo, Senftenberg 775w, Tennessee, Schwarzengrund, Infantis, 

and Mbandaka on thermal processing of dry pet food with moisture levels of 9.1, 17.9, and 

27.0%, heated at 76.7 and 87.88oC. At 9.1% moisture, D-values for the salmonella spp. and E. 

faecium NRRL B-2354 were 6.54 and 11.66 min at 76.7oC, 2.66 and 4.08 min at 82.2oC, and 

1.07 and 1.69 min at 87.8oC respectively. Findings suggested the thermal inactivation 
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characteristics of E. faecium NRRL B-2354 were suitable to use as a conservative surrogate for 

salmonella spp. in dry pet food. (Ceylan & Bautista, 2015) 

Enache et al. compared the heat resistance and survival of Salmonella Tennessee with E. 

faecium NRRL B-2354 by dry inoculation using talc to remove moisture after growth in growth 

media (on a plate or in broth), before being introduced into a model peanut butter matrix. The 

matrix was then heated to 85oC to determine thermal death time. The researchers found no 

significant difference in thermal resistance when using plate-cultured or broth-cultured 

Salmonella, but found E. faecium to have greater heat resistance when cultured in broth when 

compared to cells grown on agar. Regardless of what cell type was used for dry inoculum 

preparation, E. faecium had significantly (P < 0.05) greater heat resistance than Salmonella 

Tennessee, as the researchers concluded that E. faecium is an appropriate conservative surrogate 

for Salmonella under the tested conditions (Enache et al., 2015). 

Jeong et al. evaluated E. faecium NRRL B-2354 as a surrogate for the thermal 

inactivation of Salmonella Enteritidis PT30 with moist air, convection heating for almonds. The 

results showed at various time, temperature, and humidity levels, thermal inactivation on E. 

faecium was reduced by 0.6 log and 1.4 log, lower than the 3 log and 5 log reduction on 

Salmonella Enteritidis, showing E. faecium could function as a conservative moist-air heating 

surrogate for Salmonella Enteritidis PT 30 on almonds (Jeong et al., 2011). 

To be applied in food safety studies, surrogates need to be validated by obtaining growth 

and resistance data for a microorganism and evaluating the efficacy of an intervention or 

inactivation process before experimental studies. Ideal surrogates are ones that behave similarly 

to the targeted pathogen in their inactivation kinetics, growth parameters, and survivability under 
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given conditions as determined with appropriate statistical analyses, and are nonpathogenic and 

genetically stable.  

2.4.1. Pathogen prevalence and survival on produce 

Iturriaga, et al. (2007) studied the impact of relative humidity and storage temperature in 

Salmonella on the surface of tomatoes. Tomatoes were inoculated with 3.8 log CFU/tomato 

Salmonella Montevideo. Inoculated tomato samples were stored at 22 or 30°C for 10 days, at 

various levels of relative humidity (60, 75, 85, or 97%). Results showed high humidity (97%) 

promoted the growth of Salmonella as well as the formation of biofilm. Salmonella could survive 

for 10 days with around 2 log CFU increased population on the surface of tomatoes under 

favorable conditions. Even when humidity was low (60%), Salmonella maintained its population 

throughout the experimental period (Iturriaga, et al., 2007). This study showed storage conditions 

was a growth factor for pathogen and selecting an effective storage strategy alone cannot 

promise the microbial safety on fresh produce. 

Another study tested effects below the critical temperature affected pathogen survival. 

Colás-Medà, et al., (2017) studied Listeria monocytogenes and  Salmonella on fresh-cut pears for 

its survival against refrigerated conditions (consistent 4°C) and temperature abuse conditions 

(4°C for the first 3 days, 8°C for the rest of the study) for the total of 8 days. While comparing 

different storage conditions had no statistical differences on both pathogens, Listeria 

monocytogenes showed a 1.5-2.0 log CFU/g increase in population, and Salmonella showed a 

slight decline (0.5 log CFU/g). The experiment showed the psychrophilic properties of Listeria 

monocytogenes and the bacteria preserving nature in refrigerated environments (Colás-Medà, et 

al., 2017). Controlling storage temperature was shown to be ineffective in reducing microbial 

load on fresh produce, antimicrobials and their applications were examined.  
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Different applications of antimicrobial agents affect sanitizing efficiency and ease of use. 

A Beuchat et al. (1998) tested the efficiency of spraying as an application of chlorine to apples, 

tomatoes, and lettuce comparing to the traditional dipping method. Escherichia coli O157:H7, 

Listeria monocytogenes, and Salmonella were used to inoculate the produce samples. 200 and 

2000ppm of sodium hypochlorite at room condition were applied at different times (0, 1, 3, 5, or 

10 min) before being analyzed. Results showed using a higher concentration (2000ppm) chlorine 

yields a greater reduction, and inactivation by chlorine (0.35 – 2.30 log CFU/cm2) takes effects 

within one minute after application. Results also suggested that spraying could be an alternative 

treatment to submersion as it yielded a similar level of reduction (Beuchat, et al., 1998). 

The application of antimicrobials is not the only efficient way to decontaminate fresh 

produce by deactivating the pathogen cells. An alternative method includes detaching pathogen 

cells from fresh produce’s surface with the use of ultrasound. Jose et al. (2014) tested the 

adherence and inactivation of Salmonella enteritidis and Escherichia coli on green peppers and 

melons with organic acid and ultrasound. By using the combination of 40 kHz Ultrasound, 1% 

lactic acid, and 1% acetic acid at a 2-minute duration, results found using ultrasound alone 

showed a similar reduction on both pathogens and produce (1.8 log CFU/cm3 reduction). Bu 

combining ultrasound is with organic acid showed significantly higher reduction (2.1-3.0 log 

CFU/cm3) (São José et al., 2014). The study results showed microbial safety could be enhanced 

by incorporating detachment by physical means. 

2.4.2. Peroxyacetic acid 

Peroxyacetic acid (PAA), also known as peracetic acid, is a colorless liquid with a low 

pH and a pungent odor similar to vinegar, oxidizer, and an effective sanitizer against both gram-

positive and negative bacteria, as well as yeast and molds, by disrupting chemical bonds in 
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enzymes and cell membrane. It is formed from the reaction of acetic acid and hydrogen peroxide 

and is considered to be a stronger biocide than hydrogen peroxide (McDonnell & Russell, 1999).  

PAA is synthesized from the reaction between acetic acid and hydrogen peroxide. The 

chemical reactions can produce up to 40% PAA in solution, with up to 25% hydrogen peroxide 

as residue and up to 40% acetic acid (USDA-AMS, 2016). There are multiple manufacturing 

processes for PAA recorded in the literature (USDA-AMS, 2016), and these products can be used 

for sanitizing produce, leafy greens, poultry, and meats. (FAO & Ma. Patricia V. Azanza, 2004)  

PAA is stable in the 100-200 ppm range. Its sanitizing efficiency is reduced when above 

neutral pH. It has a low tolerance to soil and is less compatible with hard water. It has higher 

organic material tolerance than chlorine-based sanitizers (Marriott & Gravani, 2006; Omar A. 

Oyarzabal & Steffen Backert, 2011).  

PAA is classified as generally recognized as safe (GRAS), and the U.S. FDA limits the 

use of PAA in wash water to no more than 80ppm when assisting the peeling of fruits and 

vegetables, followed by rinsing with potable water (U.S. FDA, 2016b). For sanitizing food-

processing equipment or food contact articles, the concentration range is permitted within 100-

200ppm (U.S. FDA, 2011). It can be applied by a variety of methods including spray cabinet, dip 

tank, hand spray pump, and chiller. PAA is widely used in different industries including food and 

beverage, hospitals, and health care as an antimicrobial agent. It is also used in meat and poultry 

establishments, on carcasses, and products to reduce bacterial contamination (USDA- FSIS, 

2021). 

The efficacy of peroxyacetic acid has been studied with different food products. Applying 

500ppm PAA to almonds without agitation caused up to a 1.93 log CFU/g reduction on 
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Salmonella enterica (Pao et al., 2006). While combining 80ppm PAA with the rolling process for 

60 seconds, Salmonella was reduced by up to 5.5 log CFU/mL (Chang & Schneider, 2012). The 

significant difference in both studies may be caused by the combination of PAA and physical 

treatment.  

2.5. Conclusion 

If a foodborne disease were to orginate from a farmers’ market, it could generate a negative 

perception towards the label of locally grown produce which would jeopardize economic 

viability for this sector of the food production industry. Such outcomes could be prevented when 

research-backed methods can be applied by farmers to help ensure the safety of their produce. 
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Chapter 3 

Experimental Methods and Results  

 

3.1. Materials and Methods  

Tomato and Microbial Preparation.  

Fresh red ripened, organic tomatoes were purchased from a local grocery store and stored 

overnight in a refrigerated cooler (3.4 Celsius). Bacteria species used in this study were nalidixic 

acid (NaL) resistant Salmonella surrogate Enterococcus faecium ATCC 8459 (NRRL B-2354). E. 

faecium was retrieved from frozen stock cultures and streak-plated onto tryptic soy agar (TSA; 

Hardy Diagnostics, Santa Maria, CA, USA) plus 200 ppm of NaL (Sigma-Aldrich, Darnstadt, 

Germany) and bile esculin agar (BEA; Hardy Diagnostics, Santa Maria, CA, USA) containing 

100 ppm of NAL respectively. Plates were incubated at 35 oC for 48 h to generate pure colonies. 

 One day prior to each experiment, a single colony was picked from  BEA-NaL (E. faecium) of 

each strain and grew in two 50 ml tubes with 10 ml tryptic soy broth (TSB; Hardy Diagnostics, 

Santa Maria, CA, USA) containing 200 ppm of NAL for E. faecium, and incubated at 35oC for 

24 h. Then, individual bacterial suspension was centrifuged (5,000 × g) for 10 min (VWR 

Symphony 4417, VWR International, Radnor, PA) followed by TSB from both tubes was 

decanting the TSB and resuspending the pellets in a sterilized 10 ml of 0.1% buffered peptone 

water (BPW; Hardy Diagnostics®, Santa Maria, CA) and vortexed for 30 s. The duplicated E. 

faecium inoculum suspensions were combined and vortexed an additional 30 s before being 

added into the inoculum bath.  The inoculum level of E. faecium was approximately 6 log 

CFU/ml.  
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Inoculation of Tomatoes.  

Tomatoes were inoculated by placing 5 tomatoes into an autoclaved metal bowl 

containing 2 L of 0.1% BPW with aforementioned E. faecium inoculum. Temperatures of the 

inoculated tomatoes and inoculum bath were tested using a scan thermometer (Exergen 

Corporation, Watertown, MA, USA) by showing the temperatures were 7.3 and 7.5 oC, 

respectively. After checking temperatures, tomatoes were gently stirred in inoculum solution for 

5 min, followed by placing on a foil paper in a biosafety cabinet for 10 min to facilitate bacterial 

attachment. Our preliminary studies indicated 10 min was enough for attachment as well as 

preventing premature microbial reduction (Stearns et al., 2022).  

Preparation of SD in triple-wash solutions.  

The SD solution was prepared in 3L of DI-water and included the following tested 

concentrations as 0.0064 (pH 6.25), 0.1 (pH 5.85), 0.25 (pH 5.52), 0.50 (pH 3.75), and 0.70% 

(pH 2.65) (BioSafe Sytems®, Oro Valley, AZ).  

Triple-wash treatment of tomatoes.  

After inoculation and drying, the tomatoes were either left untreated (control) or 

subjected the two triple-wash procedures in three autoclaved metal bowls with 3 L of prepared 

SD solutions. The first procedure was water dip + antimicrobial agent dip + water dip (WAW) 

and the second one was water dip + water dip + antimicrobial dip (WWA). The water dip + water 

dip + water dip (WWW) treatment was also included in this study. For either WAW or WWA, the 

2 inoculated tomatoes were added to the wash solutions along with 4 uninoculated fresh ones. 

The 6 tomatoes were then washed concurrently in each of the three bowls and gently stirred by 

gloved hand for 45 s for each step. Gloves were refreshed after every wash step to avoid cross-
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contamination. Immediately, following the last wash step and 10 min drying time, tomatoes were 

transferred into a sterile 55 oz WhirlPak® sample bag (Nasco, Modesto, CA) containing 150 ml 

of TSB with 0.1% sodium thiosulfate to neutralize the residual SD on tomato surfaces. The 

tomatoes were then vigorously shaken in the bag containing TSB solution for 30 s by hand to 

detach bacteria into solutions. 

MPN Microbial Analysis and Enumeration.  

After bacteria were detached from the tomato surface, 0.3 ml of rinse solution was added 

to the first column of the 6 × 8 sterilized most probable number (MPN) microplate, which was 

prefilled with 2.7 ml of TSB followed by 10-fold serially diluted consecutively along each of the 

6 rows using a multiple channel pipettor (Thermo Fisher Scientific Inc. Pittsburgh, PA, USA). 

Microplates were then incubated at 35oC for 24 h. The turbidity of each well after incubation 

was pre-recorded and confirmed by pipetting 3 µL of droplets of the cultures onto BEA-NaL 

agar plates for E. faecium, followed by incubating at 35oC for 48 h. The confirmation plates 

were finally enumerated by counting positive colonies and transferred into an online MPN 

calculator to retrieve MPN per gram values before converting results to log10 MPN/g.  

Data analysis.  

In this study, experiments were repeated four times. Each repetition included 6 tomatoes 

per treatment with a total of 24 treated samples after 4 repeats. Experiments were conducted by 6 

× 6 × 3 factorial design with 3 different wash methods (WWW, WWA, WAW) and 6 different 

concentrations of H2O2-PAA mixer (0, 0.0064, 0.1, 0.25, 0.50%, 0.70%).  

Reductions were calculated as log10 (N0/N) per tomato, where N0 is the average plate counts of 

untreated controls and N is the count of individual treated tomatoes. Multiple comparisons of 



 

18 

 

reduction rates of inoculated tomatoes were analyzed using Mixed Model Analysis using JMP 

(version Pro 16.0, JMP Statistical Discovery LLC. Cary, NC). The means were compared with an 

α= 0.05 significance level as determined by Tukey HSD. However, the Mixed Model Procedure 

of SAS (version 9.2, SAS Institute, Cary, NC) was used to analyze cross-contamination rates of 

tomatoes. Multiple comparisons were conducted for cross-contamination data using GAMA 

distribution and for water samples using  followed by the Tukey-Kramer test (significant level of 

α= 0.05). 

3.2. Results and Conclusion

 

The initial E. faecium recovered on inoculated unwashed tomatoes is 5.29 ± 0.26 log 

MPN/g. Water wash only with single, duplicate and triple reduced the pathogen surrogate by 

1.21, 1.02, and 1.76 log MPN/g (P < 0.05), respectively, which are mainly due to the physical 

removing ability of the attached pathogen surrogate by water. As expected, after single, 

duplicate, and triple wash with water only, the pathogen surrogate survivals in water solutions 

decreased (P < 0.05) from 4.08 to 1.76 log MPN/g. However, regardless of single, duplicate, or 

triple wash, the pathogen surrogate cross-contaminated from the inoculated tomatoes to fresh 

tomatoes ranging from 1.40 to 1.64 log MPN/g. Results emphasize that tomato wash waters 
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without antimicrobials are good vehicle for causing cross-contamination of bacterial cells. The 

new FDA-FSMA Produce Safety regulation defined any water used in direct contact with the 

harvestable portion of covered produce as agricultural water. FSMA also required that the 

microbial quality of agricultural water used during and after harvest needs to be strictly enforced 

to meet the standards that no detectable generic Escherichia coli in 100 mL of water since the 

presence of E.coli likely indicate the potential existing of pathogenic bacteria (U.S.-FDA, 2021). 

 

The initial population of E. faecium on unwashed tomatoes was 5.29 log MPN/g after 

inoculation. Triple-wash with WAW or WWA procedure reduced the pathogen surrogate by the 

similar (P > 0.05) levels ranging from 2.61 to 3.28 and 2.36 to 3.44, respectively, as the tested 

SaniDate-5.0 concentrations increased from 0.0064 to 0.5%. It is noticed that applying 0.1% to 

0.50% of SaniDate-5.0 for WWA process only slightly (P > 0.05) increased the reduction by 0.12 
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to 0.37 log MPN/g compared to the WAW procedure. These results are different from previous 

studies of Li et al. (2020a; 2020b; 2021), which reported that WWA procedure obtained better 

reduction than the WAW by increasing reductions of Salmonella and Listeria monocytogenes by 

0.35–1.07 log CFU/g (Li et al., 2021), 1.09-1.48 log CFU/tomato (Li et al., 2020b), and 0.7-2.0 

log CFU/squash (Li et al., 2020a) on spinaches, tomatoes and squashes, respectively. The 

discrepancy of the results might be explained by the reason that the 45 s washing time of each 

steps during triple-wash in this study compared to the 10 s dipping time in the previous ones. 

Currently, the stakeholder of this triple-wash project the Preston County Workshop in Reedsville 

WV are using 45 s washing time of each step. Extending the previous 10 s to 45 s might 

eliminate the difference of pathogen reduction efficacy between WAW and WWA procedures. 

Results of the current study also suggested that increasing SaniDate 5.0 concentrations from 0.1 

to 0.5% did not enhance the antimicrobial effects of the surrogate E. faecium on tomatoes. Li et 

al (2020a) also found that no difference between the 0.0071% and 0.45% of SaniDate-5.0 was 

observed for inactivating aerobic plate counts, coliforms and lactic acid bacteria on squashes 

during an onsite plant shelf-life study. Both studies indicated that suggests simply adding a 

higher concentration of SaniDate-5.0 into wash waters does not necessary achieving a better 

control of microbial populations on fresh produce samples. 
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 These results conclude that Sanidate-5.0 can be an effective antimicrobial agent for cross-

contamination prevention of E. faecium in tomatoes. Concentrations ≥0.25% proved effective in 

preventing cross-contamination, however, increases above this amount do not appear to yield 

significantly greater results. In conclusion, a combination of PAA and hydrogen peroxide could 

be considered a viable organic antimicrobial agent that small farmers may utilize to ensure the 

safety of their produce prior to selling to the public.  
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