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ABSTRACT

Enhanced Sampling Techniques Reveal Key Information about Membrane Active Peptides

Nicolas Frazee

Membrane active peptides (MAPs) show promise in terms of future drug development.

Whether it be adapting macrocycles for use in targeting protein-protein interactions or

adopting cell-penetrating peptides (CPPs) to cause lysis in target cells, the field is burgeoning

with possibilities for designer drugs. The following work encompasses the exploration of three

such peptides. The pH-Low Insertion Peptide (pHLIP) is a membrane-active peptide that

spontaneously folds into a transmembrane α-helix upon acidification. This activity enables

pHLIP to potentially act as a vector for drugs related to diseases characterized by acidosis

such as cancer or heart ischemia. First, we explored the conformational space sampled

by pHLIP while in bulk solution via constant pH molecular dynamics (MD) simulations.

It was determined that pHLIP’s acidic residues are similar to single-residue-in-solution

values and the P20G maintains a higher helicity in solution than wt-pHLIP. The next study

was on the 17 N-terminal residues of the huntingtin (htt) protein (Nt17). Nt17 is essential

for the patheoogenesis of Huntington’s Disease through its role in both htt aggregation

and membrane association. We investigated Nt17 and its association with three model

membranes with a consistent headgroup and tails with varying degrees of unsaturation and

length. We found no correlation between the effect of lipid vesicles on aggregation and the

degree of htt-lipid complexes formed, supporting that the properties of the membrane have

direct influence on the aggregation mechanism. We also determined that Nt17-membrane

association is regulated by complimentarily-sized hydrophobic residues in Nt17 and defects

in the lipid bilayer. Finally, we developed a high-throughput assay for determining the



permeability cyclic peptides. Targeting protein-protein interactions with traditional small-

molecule drugs can be challenging when the binding pocket is too large. However, cyclic

peptides are the key to targeting these interactions: passive membrane permeability and

more consistent structure to prevent off targeting. Using a library of peptides with known

permeability, we performed Gaussian accelerated molecular dynamics (GaMD) simulations

on roughly 200 peptides of the library in octanol and water to estimate their permeability.

Initially, we did not directly replicate the permeability from the experimental results, however,

we did replicate the trend that correlates N-methylation and permeability. After using PCA to

determine the peptides with biggest difference in populations between octanol and water,

we more successfully reproduced the permeability data from experiment for those peptides.
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1. INTRODUCTION

1.1 THE PERMEATION AND ASSOCIATION OF MEMBRANE ACTIVE

PEPTIDES

Membrane active peptides (MAPs) are a broad class of proteins responsive to the presence

of a phospholipid bilayer, either transitioning cargo through it or disrupting it to cause cell

lysis. This makes MAPs an attractive alternative to current pharmaceuticals to attack invasive

membrane-bound species. In particular, antimicrobial peptides (AMPs), integral components

of the host defense systems with variations unique to organisms, are being adapted for use

to target a variety of invasive species[1]. AMPs are usually under 30 residues long and

have a higher than average concentration of hydrophobic residues to allow themselves to

associate more easily with the acyl chains of the phospholipid bilayer. Most AMPs operate

by disrupting the membrane, ultimately causing lysis. These peptides are often randomly

coiled in solution and transition to a more rigid α-helix or β-sheet structure in the presence

of a cell membrane. This forces the backbone into a more rigid position, given the hydrogen

bonds, which may be responsible for modulating the potency with which the peptide disrupts

the bilayer[2, 3]. However these peptides do not uniformly target membranes often preferring

either charged or neutral membranes. Though this preference may purely be in association

and not because the AMP cannot disrupt all membrane compositions [4, 5, 6]. Given this,

there is potential that AMPs can be tuned to address the growing ranks of bacteria that have

developed resistance against the traditional antibacterial drugs. Although AMPs generally

cause lysis in cells, there are peptides that at lower concentrations will simply localize to

the the target cell without harm; these peptides in particular show promise for diagnostic

imaging.

Additionally, cell penetrating peptides (CPPs) are being studied as vectors for drug

delivery; these short (under 30 residues) peptides are capable of transferring cargo several

1



times larger than its own molecular weight[7]. There are many different processes by which

CPPs cross the cell membrane; some are more benign (reliance on transient membrane

disruption or endocytosis) while some are aggressive enough to cause cell lysis. The most

interesting in terms of drug delivery employ predominantly more harmless methods to cross

the membrane. At higher concentrations, very cationic CPPs (i.e., Arg9, tat, penetratin) can

effectively cross anionic synthetic membranes, however this most likely occurs via disruption

of the bilayer structure[8]. Instead, with moderate to lower peptide concentrations or in

bilayers with too few anionic lipids, many cationic CPPs will not cross the bilayer; therefore,

they seem almost entirely dependant on anionic lipids to cross the membrane. Some more

anionic CPPs (i.e., pHLIP, ATRAM) will localize to tissues that are acidotic allowing potential

to target CPP drug delivery to acidotic cells such as those related to cancer and heart

ischemia.

Membrane-permeable cyclic peptides are attractive to many scientists and pharma-

ceutical companies as potential drug candidates[9]. The selection of possible peptide sizes

allows selectivity for the target receptor and modulates the protein-protein interaction. While

linear peptides are flexible, and therefore lack affinity, selectivity, and bioavailability, cyclic

peptides are more rigid and adopt structures with affinity for protein surfaces with high

specificity. Paramount to the identification of drug-viable cyclic peptides is the determining

the potential aqueous structures of the peptide and the membrane permeability of the

peptide.

1.2 MEMBRANE-ACTIVE PEPTIDES IN THIS WORK

1.2.1 pH low insertion peptide (pHLIP)

The first MAP explored in this work, the pH Low Insertion Peptide (pHLIP)[10], is 36 residues

and anionic that is randomly coiled both in solution (state I) and when bound to a membrane

at neutral pH (state II) (Fig. 1.1). Upon acidification, pHLIP will insert unidirectionally, forming

a transmembrane α-helix (state III). This transition occurs with sufficient free energy that

cargo of various sizes and polarities can be attached to the C-terminus of pHLIP and shuttled

across the membrane[11]. Wild type (wt) pHLIP will insert in the pH range of 5.2-6.5[12].

Through a combination of circular dichroism (CD) and measurement of pHLIP’s

inherent tryptophan fluorescence over a pH-gradient, the basic mechanism through which
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Figure 1.1: Description of pHLIP. A) The primary sequence of the pH Low Insertion
Peptide. Red: acidic residues; Blue: basic residue; Underline: transmembrane region. B)
pHLIP insertion into a bilayer. Red/green: phospholipids; yellow ribbon: pHLIP’s protein
backbone. pHLIP adopts a randomly coiled conformation in solution(state I). Once bound
to a membrane (state II), upon acidification, pHLIP will spontaneously and unidirectionally
insert into the membrane, forming a transmembrane α-helix (state III).

pHLIP is acidified and inserts has been determined. Based on existing spectroscopic

data[12], pHLIP interacts with the membrane in the following order: 1) partition the sinker

stretch (residues 21-30) into the head group region, 2) the transmembrane region will form

helix and move into the head group region, and 3) the C-terminus will partition and eventually

transition entirely through the bilayer with the N-terminus remaining in the extracellular

medium. Due to the spontaneity of pHLIP’s insertion into the bilayer, transitioning pHLIP

from state II to state III would incur a great energy penalty and research is underway to

determine this penalty. However, fine details relating pHLIP’s sequence to structure and

function are yet to be understood. To fully model pHLIP’s transition from state I-III, we need

to acquire atomistic knowledge of the system in an environment similar to a cancer cell

target.

1.2.2 The 17 N-terminal residues of the huntingtin protein (Nt17)

Huntington’s Disease (HD) is a fatal neurodegenerative disorder caused by an expanded

glutamine repeat region (polyQ) within the huntingtin protein (htt). The progression of HD

involves the formation of amyloid inclusions which is driven by aggregation of the huntingtin

protein in people with the disease. The 17 N-terminal residues of the huntingtin protein
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(Nt17) is fundamentally important for the pathogenesis of HD due to its role in the formation

of these aggregates[13, 14, 15]. Nt17 is intrinsically disordered in bulk solution but shifts

conformations in the presence of a binding partner to an amphipathic α-helix[16, 17], an

α-helix with distinct hydrophobic and hydrophilic sides. Nt17 α-helices can interact with each

other (Fig. 1.2) to form several multimeric species that based on the region of Nt17 exposed

to the solvent, can cause Nt17 to drive the htt oligomerization[18]. These oligomers are a

potent toxic aggregate species, and their formation is predicated on the presence of Nt17,

as when it is removed from the htt, the protein no longer forms nonamyloid oligomers[15,

19].

Figure 1.2: Function of Nt17. The 17 N-terminal residues of the huntingtin protein (Nt17)
is unstructured in bulk solution. However, it can undergo a conformational shift to an
amphipathic α-helix when in proximity to a binding partner. Nt17 is essential for both the
formation of huntingtin aggregates and interaction with the cell membrane.

Nt17 is not only responsible for htt aggregation but also acts as a lipid binding domain

(Fig. 1.2) for htt exhibiting many of the same properties associated with the amphipathic

α-helical motif, namely being associated with lipid binding[20][21] and a preference for

curvature induced defects[22]. When a polyQ peptide is flanked with Nt17, it effectively

disrupts lipid vesicles, whereas the polyQ peptide alone does not interact significantly[23].

Therefore, Nt17 is absolutely necessary for htt to interact with the membrane.
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1.2.3 Cyclic lariat peptides

A particular class of cyclic peptides known as lariat depsipeptides make up roughly 30%

of the naturally occurring cyclic peptides according to a survey[24] of the Natural Products

Atlas[25]. The majority of these peptides are cyclized by a connection between the C-

terminal carboxylic acid and a side-chain hydroxyl group to form an ester linkage. Of

particular interest is the library of peptides studied by C. Kelly, et al.[24] (Figure 1), 4096

nine-residue peptides with an ester linkage between the C-terminus and Thr3 with the

members of the library being various possible N-methylation sites as well as each residue

being able to have either a D or L chirality. The study from C. Kelly, et al. determined there

was a strong positive relationship between the permeability of the peptides and both the

number of heterochiral residues (D chirality) and the degree of N-methylation.

Figure 1.3: Description of lariat peptides. Cyclic lariat peptides are highly customizable
analogues for small molecule drugs. Unlike linear small peptides, the ring structure of the
peptides reduces flexibility and therefore increases target specificity.
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1.3 MODELING MEMBRANE-ACTIVE PEPTIDES VIA MOLECULAR DY-

NAMICS

Molecular dynamics (MD) is an effective tool to evaluate the properties of MAPs even

when simply using equilibrium MD; the high resolution in both time and model allow high

precision when investigating these short peptides. Recently, Chen, et al. utilized long-scale,

unbiased atomistic MD simulations to reveal that a single point mutation strongly affected

the development of functional dynamic and heterogeneous aggregates. This ultimately led

to a framework that allowed prediction of aggregation and assembly based solely on peptide

sequence[26]. Another study[27] determined via circular dichroism that WALP peptides

remained inserted in the bilayer and fully helical at temperatures as high as 90 ◦C. These

higher temperatures were used to accelerate equilibrium MD simulations increasing their

rate of sampling by 5̃0-500 times. This allowed the observation of a folded insertion pathway

and the direct calculation of insertion kinetics. While equilibrium MD is a very effective tool

for MAP investigation, there are several enhanced sampling techniques that can potentially

answer the pertinent questions while using fewer computing hours.

Enhanced sampling techniques are methods that allow the user to answer some

specific questions with their MD simulations. For example, Neale, et al. made use of

umbrella sampling (US), an enhanced sampling method that requires breaking a reaction

coordinate into windows and simulating the system between each of the windows, to

compute the standard binding free energy of an AMP called indolicidin as it inserts into a

phospholipid bilayer[28]. Several other enhanced sampling methods allow for the calculation

of a binding free energy (i.e, metadynamics[29, 30]), or the measurement of the permeability

of a peptide[31]. Replica-exchange with solvent tempering (REST) is an effective means of

accelerating simulations towards convergence by ultimately increasing the conformational

sampling of the system; the implementation by Appadurai, et al. is especially tailored for

MAPs as it was specifically designed to increase sampling accurately across a wide variety

of proteins[32]. Finally, of particular interest to highly anionic or cationic MAPs, constant pH

is a method that allows protonation states to fluctuate as the simulation progresses. This has

been used to great effect on pHLIP, as it depends on protonation for insertion, by Vila-Viçosa,

et al. to determine membrane-induced pKa shifts in pHLIP and the L16H variant[33]. In

concert, these methods allow exploration of several different important aspects of MAPs.
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1.4 THIS WORK

The subsequent chapters of this document contain applications of enhanced sampling MD

methods on several MAPs. Chapter 2 is a description of the fundamentals of molecular

dynamics and some of the approximations taken to accelerate the processes. Next, we

explore the application of the constant pH method on pHLIP and the P20G variant in solution

with different salt concentrations. Chapter 4 follows with the investigation of Nt17 and its

association with model membranes with varying chain lengths in the tails via a weighted-

ensemble approach. Finally, Chapter 5 is a description of the development of a method to

efficiently test the permeability of potential cyclic peptide drugs using gaussian-accelerated

MD.

1.5 BIBLIOGRAPHY

[1] F. G. Avci, B. Sariyar Akbulut, and E. Ozkirimli. “Membrane Active Peptides and Their

Biophysical Characterization”. In: Biomolecules 8.3 (Aug. 22, 2018). ISSN: 2218-273X.

DOI: 10.3390/biom8030077. pmid: 30135402. URL: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC6164437/ (visited on 12/07/2018).

[2] K. Luna-Ramı́rez, M.-A. Sani, J. Silva-Sanchez, J. M. Jiménez-Vargas, F. Reyna-
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2. MOLECULAR DYNAMICS (MD) SIMULATIONS

2.1 EQUILIBRIUM MOLECULAR DYNAMICS

Molecular Dynamics (MD) simulation is a method for determining the state of a system at

time, t, given an initial position, t = 0. A given state is defined by the three-dimensional

position and momentum vector for each particle in the system; therefore, for a system of

size N , the evolution of an MD simulation is the repeated solving of an equation involving

6N parameters, given a number of constraints. Restraints used here are based on the

topology of the molecules (bonds, angles, and dihedral angles) as well as other non-bonded

interactions involving the molecules. For this work, atomistic MD simulations (every atom

is represented by a hard-sphere particle) were performed. These atoms follow the laws of

classical mechanics:

vi(t+ δt) = vi(t) + fi(t)δt/mi (2.1a)

ri(t+ δt) = ri(t) + vi(t+ δt)δt (2.1b)

where v is velocity, r is position, f is the force, and δt is the simulation time step. i represents

the ith particle. Usually initial structures for simulation are taken from known X-ray or NMR

structure, and initial momenta follow a Maxwell-Boltzmann distribution based on temperature.

The total energy from interactions (Vtotal are modeled as:

Vtotal = Vbond + Vangle + Vdihedral + Vimproper + VLJ + Vcoulomb (2.2)

where Vbond is the energy of oscillation of two atoms about equilibrium bond length, Vangle

is the energy of oscillation of three atoms about equilibrium bond angle, Vdihedral is the

energy for torsional rotation of four atoms, Vimproper is the energy for rotation about an

improper dihedral angle, the energy contribution from van der Waals interactions based on

the Lennard-Jones potential, and energy from coulombic interactions.
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Bonded interactions (Eqs. 2.3a-d) apply to specific groups of atoms determined

before the simulation begins. Non-bonded interactions (Eqs. 2.3e and 2.3f) are pairwise

interactions defined for every pair of atoms in the system. Therefore, an N-particle system

would have N(N-1) pairs for these interactions. Since these systems often have 50k - 100k

atoms, this is a steep computational cost.

Vbond(r) =
1

2
kb(r − r0)

2 (2.3a)

Vangle(θ) =
1

2
kθ(θ − θ0)

2 (2.3b)

Vdihedral(ϕ) =
1

2
kϕ(ϕ− ϕ0)

2 (2.3c)

Vimproper(ψ) =
1

2
kψ(ψ − ψ0)

2 (2.3d)

VLJ(r) = ϵ[(
R

r
)12 − 2(

R

r
)6] (2.3e)

Vcoulomb(r) =
q1q2
4πϵ0r

(2.3f)

The primary method to reduce this cost is to cut off the range at which van der Waals

(Eq. 2.3e) interactions are calculated; they decay to zero more rapidly than the coulombic

interactions (Fig. 2.1). Longer range interactions are handled using the particle mesh Ewald

(PME) method: interactions are sorted into short and long range terms, and the latter is

Fourier transformed to accelerate convergence.

The parameters in the force field allow the system to evolve in time. As it does so,

given sufficient time, the system will explore all possible conformations. This means that at

long timescales the ensemble average will be equivalent to the time average. This represents

the ergodic hypothesis which is fundamental to the molecular dynamics simulation method.

Therefore it is absolutely necessary that the system be able to evolve for a sufficiently long

time. Given that sufficiently timescale has been reached the ensemble average of A can be

calculated as:

< A >=

∑
iAie

−βEi∑
i e

−βEi
(2.4)
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Figure 2.1: Comparison of the convergence of Coulombic and Lennard-Jones interac-
tions. The energy contribution from Lennard-Jones decays to zero much more quickly than
the energy associated with Coulombic interactions.

where β is the Boltzmann constant, V is the potential energy, and the subscript i

represents individual conformations from the ensemble.

However, solving many biological problems require simulations of events that occur

on timescales unattainable by most computers in a reasonable time. With some of the

processes taking milliseconds or seconds, reaching a sufficient quantity of simulation time to

represent these is unrealistic in MD simulation. The primary restriction on accessing these

timescales is the timestep for calculating energies in the simulation. The proper timestep

is set by the rate at which the bond between a hydrogen and a heavy atom fluctuate, and

although this bond can be restrained to allow for a larger timestep, it remains on the order

of femtoseconds which means millions of steps are necessary to attain even nanosecond

timescales.

This ”brute force” method of MD simulations can be effective to solve some problems.

However, To combat this, we utilize enhanced sampling methods to explore the phase space

of the biological components in question. Chapter 3 of this work utilizes a method called

constant pH to more efficiently sample protonation states by allowing them to vary during

the simulation. In chapter 4, we employ a weighted ensemble method to encourage the

exploration of the important phase space of a reaction coordinate. Finally, in chapter 5,

gaussian-accelerated MD was used to more efficiently evolve possible conformations for the

peptides.
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2.2 CONSTANT pH MD

The constant pH method is a solution to effectively simulate pH in MD. Under normal

equilibrium MD, bonds cannot be formed nor broken, therefore protonation states must be

simulated individually. For example, this means that to fully simulate all possible combina-

tions of states in the peptide in Fig. 2.2 64 individual simulations are necessary. Instead,

under constant pH, the algorithm uses a pH value to determine energetically which sites are

more likely to be protonated and is able to switch them on-the-fly in a single simulation.

Figure 2.2: Description of the constant pH method. A) Simulating different protonation
states with conventional MD requires a different simulation per protonation state while
constant pH can simulate the system at a pH value in a single simulation. B) In the NAMD
implementation of constant pH, the system goes through cycles of equilibrium MD and
nonequilibrium/Monte Carlo during which switches in protonation are attempted. If the switch
is accepted, the system will proceed with the new protonation state, otherwise it will remain
in the current state. The %time protonated for each pH can be plotted to form a titration
curve.

The constant pH implementation in NAMD[1] (the one used in this work) operates via

cycles of equilibrium MD and nonequilibrium/Monte Carlo (noneq/MC). During equilibrium
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MD, the system is able to adopt conformations based on the protonation state. As the

noneq/MC portion of the cycle begins, the system attempts to switch the protonation state

of each possible site. If the new state is energetically favorable, the simulation proceeds

with the new protonation state. However, if the new state is not preferred then the system

will continue with the original protonation state. As the constant pH cycles accrue, the

protonation state of each site is tracked for that pH. This allows simulations from multiple

pHs to plot a titration curve for each protonatable site based on the % time the site was

protonated in each simulation.

2.3 THE WEIGHTED ENSEMBLE APPROACH

Utilizing a weighted ensemble (WE) in MD is most effective for fully exploring the phase

space of a reaction coordinate. To do this, the phase space of the reaction coordinate

must be broken into bin and a number of simulations or walkers to occupy those bins

must be selected. Unlike many enhanced sampling methods that more efficiently sample a

phase space, WE does so without energetically perturbing the system; instead, it allocates

simulation time to evenly explore all bins. In the example in Fig. 2.3, the reaction coordinate

is the distance between bilayer center and the peptide in efforts to simulate unbiased binding;

two walkers per bin are represented. As the simulations evolve, one of them happens to

have had the peptide move closer to the bilayer and into the second bin; here that means

that WE will duplicate both walkers and iteration 3 begins with four walkers. In iteration

4, one of the walkers from the bin 2 happens to enter bin 1 over the simulation time, and

therefore, since there are now three walkers in bin 1, WE trims one of the walkers to maintain

two walkers per bin. This process continues until the desired number of iterations have

been completed, and through this the phase space explored. This method can be effectively

implemented via the WESTPA[2] as it is MD engine independent and comes with a host of

helpful tools for viewing the progression through bins and analyzing the flux between bins.

17



Figure 2.3: The process of the weighted ensemble approach. Walk-through of four
iterations of a theoretical WE simulation. The images to the right of the plots represent the
systems in the plot; color of the point in the plot correlates with color of peptide. Applying a
weighted ensemble (WE) approach requires separating the reaction coordinate space into
bins. During each WE step, simulations will be duplicated/trimmed to maintain the desired
number of walkers per bin. In each MD step, the system is allowed to evolve unperturbed
in equilibrium. This regime supports the full exploration of the reaction coordinate without
energetically perturbing the system.
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2.4 GAUSSIAN ACCELERATED MD

Gaussian accelerated MD[3, 4, 5, 6] (GaMD) is a method that adjusts the energy barriers

between states so that higher energy states can be more easily accessed. This effectively

enhances the conformational sampling of the subject. This is done by adding a harmonic

boost potential (Fig. 2.4) to ”fill in” the deepest wells of the potential. Consider a system

Figure 2.4: Gaussian accelerated MD boost potential.

with N atoms with positions r ≡ {r⃗1, · · ·, r⃗N}. When the potential of the system, V (r), is

less than a reference value, E, a modified potential, V ∗(r), is calculated as such:

V ∗(r) = V (r) + ∆V (r), (2.5)

∆V (r) =

 1
2k(E − V (r))2, if V (r) < E

0, if V (r) ≥ E
(2.6)

where k is the harmonic force constant. E and k are both set automatically by the three

rules endemic to the method. First, E must be set in the following range:

Vmax ≤ E ≤ Vmin +
1

k
, (2.7)

where Vmax and Vmin are the maximum and minimum potential energies of the system

respectively. A corollary to Eq. 2.7 is that k ≤ 1
Vmax−Vmin

. So if we define k ≡ k0 · 1
Vmax−Vmin

,
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then 0 < k0 ≤ 1. Finally, for proper energetic reweighting, the standard deviation of ∆V

must have a sufficiently narrow distribution:

σ∆V = k(E − Vavg)σV ≤ σ0 (2.8)

where Vavg and σ0 are the average and standard deviation of the system potential energies,

σ∆V is the standard deviation of ∆V with σ0 as an upper limit specified by the user for

proper reweighting. When E is set to the lower bound, E = Vmax, k0 is calculated as:

k0 = min(1.0, k′0) = min(1.0,
σ0
σV

· Vmax − Vmin
Vmax − Vavg

). (2.9)

However, when E is instead set to the upper bound, E = Vmin + 1
k , k0 is calcualted as:

k0 = k”0 ≡ (1− σ0
σV

) · Vmax − Vmin
Vavg − Vmin

(2.10)

if k”0 is found between 0 and 1. Otherwise, k0 is calculated using Eq. 2.9.

As can be seen, unlike other enhanced sampling methods that require the manage-

ment of reaction coordinates, GaMD is very accessible in that there is little trial and error

work to get the method running effectively. Also, because the boost potential is gaussian in

nature, the potentials can be energetically reweighted leading to an accurate free energy

landscape. GaMD is natively installed with both NAMD and AMBER.
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3. INTRAMOLECULAR INTERACTIONS

PLAY A KEY ROLE IN STABILIZATION OF pHLIP

AT ACIDIC CONDITIONS1

Membrane-active peptides (MAPs) are short-length peptides used for potential

biomedical applications in diagnostic imaging of tissues, targeted drug delivery, gene

delivery, and antimicrobials and antibiotics. The broad appeal of MAPs is that they are

infinitely variable, relatively low cost, and biocompatible. However, experimentally character-

izing the specific properties of a MAP or its many variants is a low-resolution and potentially

time-consuming endeavor; molecular dynamics (MD) simulations have emerged as an

invaluable tool in identifying the biophysical interactions that are fundamental to the function

of MAPs. In this chapter, a step-by-step approach to discreetly model the binding, folding,

and insertion of a membrane-active peptide to a model lipid bilayer using MD simulations is

described. Detailed discussion is devoted to the critical aspects of running these types of

simulations: prior knowledge of the system, understanding the strengths and weaknesses

of molecular mechanics force fields, proper construction and equilibration of the system,

realistically estimating both experimental and computational timescales, and leveraging

analysis to make direct comparisons to experimental results as often as possible.

3.1 INTRODUCTION

Intrinsically-disordered proteins (IDPs) are ubiquitous in nature, most notably hypothesized

to play a role in the onset of various neurodegenerative disorders such as Alzheimer’s and
1This article/chapter was published in Journal of Computational Chemistry, 42, Frazee, N., Mertz, B., Intramolec-

ular interactions play key role in stabilization of pHLIP at acidic conditions, Copyright 2021 Wiley Periodicals

LLC.
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Parkinson’s associated with formation of amyloid plaques [1] or to facilitate liquid-liquid phase

separations involved with membraneless organelles [2]. The hallmark of IDPs is their ability

to transition from an unstructured conformation as monomers to fibrillar complexes with

well-defined secondary structure [3]. Aggregation of IDPs is partially understood; theoretical

approaches have recently been developed to predict conformational samplinng of IDPs [4]

as well as sequence-dependent propensity to drive liquid-liquid phase separations [5, 6].

However, comprehensive fundamental understanding of these phenomena still remains

elusive. Membrane-active peptides (MAPs) are a subset of IDPs that are characterized by

their ability to undergo partitioning-folding coupling at the membrane interface [7], leading to

a broad range of potential applications (e.g., anitbiotics [8], targeted drug delivery [9], and

gene therapy [10]).

The pH-Low Insertion Peptide (pHLIP) is a MAP that has shown much promise

in biomedical applications such as diagnostic imaging of tumors [11] and targeted drug

delivery of chemotherapeutics.[9] The key to the function of pHLIP is its acid-sensitivity.

Under normal pH, pHLIP remains in a coiled conformation, diffusing through solution and

freely associating/dissociating to and from the plasma membrane of cells. Upon diffusion

into tissues with an acidic pH (e.g., the tumor microenvironment[12]), the acidic residues in

pHLIP become protonated, triggering folding and unidirectional insertion into the plasma

membrane. [13, 14] However, a key overlooked aspect of the biophysics of pHLIP is its

behavior in solution. Both in vitro and in vivo studies of pHLIP typically use a concentration

of 2 µM to prevent aggregation of the peptide in solution, a low concentration for effective

use. Understanding of the behavior of pHLIP in solution could play a key role in enhancing

its effectiveness in clinical applications.

What we do know of pHLIP’s behavior in solution is that it forms a tetramer at

concentrations higher than 8 µM, but is predominantly monomeric below that threshold.[14]

Aggregation is driven by the large number of hydrophobic residues in the C-terminal half of

pHLIP. Circular dichroism (CD) spectroscopy reveals little secondary structure formation in

the peptide. However, it is possible for pHLIP to sample secondary structural conformations,

as shown in a recent molecular dynamics (MD) study. [15] Even though aggregation is

a critical step in the mechanism of many cell-penetrating peptides,[16] this mainly occurs

at the membrane surface. In fact, higher concentrations of pHLIP tend to decrease its

effectiveness at the membrane surface (the ”parking problem” effect).[17] This points to a
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need for a more detailed characterization of the behavior of pHLIP in solution.

With that in mind, we utilized constant pH molecular dynamics (CPHMD) simulations

to probe the effect of changes in pH of bulk solvent on pHLIP. Previous experimental studies

clearly demonstrated that the interstitial region of solid tumors is highly acidic (pH < 5.5).[18]

Based on our previous work, even a slight change in the protonation of pHLIP can shift the

conformational distribution of the peptide;[15] a more accurate approach like CPHMD could

provide invaluable insights extending our fundamental understanding of pHLIP. Constant pH

approaches have been successfully applied to other complicated short peptides to identify

differences in conformation based as a function of pH.[19, 20, 21, 22] In this work, we found

that pHLIP is generally insensitive to changes in pH. In addition, intramolecular interactions

and mutations can lead to subtle shifts in conformational sampling of the peptide. Finally,

physiological salt concentrations play a role in desensitizing pHLIP to changes in pH.

3.2 METHODOLOGY

3.2.1 System setup

The structure for pHLIP was obtained from helix C of bacteriorhodopsin and mutated in VMD

with psfgen[23] to correspond with pHLIP-4 used in Karabadzhak et al (AEQNPIYWARYAD-

WLFTTPLLLLDLALLVDADEGT);[24] a second structure was mutated for the P20G systems.

20 trajectories each for pHLIP and the P20G variant were spawned and heated at 700 K

for 5 ns. K-means clustering in LOOS[25] was performed on the trajectories; the top fifteen

representative structures for each system were used as the starting positions after verifying

they had proper ω dihedral angles. Each structure was solvated in VMD with a water box

with 15 Å of padding on all sides. Ions were then added with the ionize plugin in VMD at

two concentrations: 1) with just sodium counter ions present (0 mM) and 2) 150 mM NaCl.

System sizes ranged from 35,000 to 40,000 atoms.

3.2.2 Simulations

All constant pH simulations were performed from pH 2.5 to 8.0 at 0.5 pH increments with

the constant pH implementation[19] in NAMD 2.12[26] using the CHARMM36 forcefield.[27]

Each of the four conditions (pHLIP, P20G:0 mM NaCl, 150 mM NaCl) and starting structure

(15 for each condition) was run for 4000 non-equilibrium Monte Carlo/equilibrium MD cycles
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with a τ switch of 15 ps and an equilibrium time of 10 ps. There are 18 µs of simulation

time for each of the four conditions. Additionally, for confirmation of the measured pKa

values, constant pH simulations using the same parameters and the same 15 starting

structures for pHLIP with 0 mM and 150 mM NaCl were run for 500 non-equilibrium Monte

Carlo/equilibrium MD cycles with an increased initial pKa of 6 for each acidic residue (Fig.

3.1).

Figure 3.1: Effect of higher default pKa on determination of pKa’s of pHLIP at 0 and
150 mM NaCl.

3.2.3 Analysis

Of the 4000 frames from each condition, pH, and starting structure, the last 3700 were

used for analysis, as the decorrelation time was around 300 cycles for all conditions (Fig.

3.2). Plots were generated with gnuplot.[28] Acidic residue titration. The cphanalyze tool in

pyNAMD[29] was used on all of the .cphlog files from the condition to compute the titration

curves and pKa. Radius of gyration and end-to-end distance.The rad-gyr tool in LOOS was

employed to measure the radius of gyration for the peptide and the interdist tool in LOOS

was used to measure the end-to-end distance. The two were correlated and binned for

each condition. The representative structures were determined by finding each frame that

occupied the most populated bin, determining the average structure of the frames, and

finally finding the frame from the trajectories closest to the average structure. Helicity. The

stride algorithm in VMD was used to determine the secondary structure of each residue in
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each trajectory. Salt bridges. The saltbr plugin in VMD was used to measure salt bridges

interactions with the default cutoff distance of 3.2 Å. R11-D14 distance. The interdist tool in

loos was used to measure the distance between the terminal N atoms in R11 and terminal

O atoms in D14 and separated based on the secondary structure measurements with stride.

Ion contacts. The contact-time tool from LOOS was used to measure contacts between

the the sodium ions and the terminal oxygen atoms of the acidic residues with a cutoff of 5

Å. Solvent accessible surface area. The measure sasa tool in VMD was used to measure

the solvent accessible surface area of the selected residues. Ramachandran plots. The

ramachandran tool in LOOS was used to measure the ϕ/ψangles of the peptide. Native

contacts. The native contacts tool in LOOS was used to measure the fraction of native

contacts in the helical region (9-30) with respect to the crystal structure. Hydrogen Bonds.

The hbonds plugin in VMD was used to measure hydrogen bonds with only the polar atoms

and a cutoff of 5 Å.

Figure 3.2: Decorrelation times as a function of number of MC/MD cycles in CPHMD
simulations.

3.3 RESULTS

3.3.1 Constant pH MD effectively samples conformational space of pHLIP

Membrane-active peptides, like most IDPs, sample many conformations in solution. This is

mainly due to partitioning-folding coupling [7], as pHLIP lacks a membrane to help stabilize
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its folded state [30]. In the absence of a membrane, any formation of secondary structure is

attributable to a balance between Coulomb repulsion of charged sidechains, hydrophobicity

of the non-polar residues in pHLIP, and intramolecular hydrogen bond formation [31]. Initial

analysis of our simulations show that pHLIP and P20G sample the majority of conformational

space, regardless of condition (Fig. 3.3). If we compare our simulations to the fully-folded

structure of pHLIP (based on the X-ray crystal structure of helix C from bacteriorhodopsin),

we see that both pHLIP and P20G partially sample the native state (10-15 % of the peptide,

Fig. 3.4). Looking at per-residue interactions, in general protonation of acidic residues (i.e.,

lower pH) tends to drive closer interactions in the interior of pHLIP and P20G (Fig. 3.5).

Figure 3.3: Distribution of backbone dihedrals for pHLIP and P20G as a function of
pH and salt concentration.
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Figure 3.4: Sampling of native contacts of pHLIP and P20G as a function of pH and
salt concentration.

Figure 3.5: Acidic pH decreases intramolecular interactions in pHLIP. Upper left:
residue-residue distances for pHLIP at 0 mM NaCl from pH 2.5 to 8.0. Lower left: residue-
residue distances for pHLIP at 150 mM NaCl from pH 2.5 to 8.0. Upper right: residue-residue
distances for P20G pHLIP at 0 mM NaCl from pH 2.5 to 8.0. Lower right: residue-residue
distances for P20G pHLIP at 150 mM NaCl from pH 2.5 to 8.0.
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3.3.2 Salt and sequence effects on the pKa of acidic residues

Our first goal was to determine the individual pK as for acidic residues in pHLIP. Previously,

we showed that each residue undergoes independent conformational sampling,[15] which

should lead to distinct pK as. In our CPHMD simulations, a clear difference exists between

the aspartic acid (D14, D25, D31, and D33) and the glutamic acid (E3 and E34) residues,

with pK as comparable to a single amino acid in solution (D = 3.86, E = 4.25, Figs. 3.6-3.9).

In addition, E3 and D14 have noticeably lower pK as than the other glutamic and aspartic

acids. This behavior is most likely due to their proximity to positively-charged residues

(the N-terminus for E3 and R11 for D14), a phenomena that occurs in numerous protein

systems such as the aspartic acid that acts as a proton acceptor in the microbial proton

pump, bacteriorhodopsin [32].

Figure 3.6: pKa for acidic residues in pHLIP at 0 mM NaCl.
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Figure 3.7: pKa for acidic residues in P20G at 0 mM NaCl.

Figure 3.8: pKa for acidic residues in pHLIP at 150 mM NaCl.

Figure 3.9: pKa for acidic residues in P20G at 150 mM NaCl.
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Upon addition of 150 mM NaCl, several pK as change for both pHLIP and P20G, often

a decrease of 0.1-0.2 pH units (Fig. 3.10). This indicates that 1) higher salt concentrations

have a weak screening of protons in solution and 2) salts could also contribute to greater

solubility of pHLIP (i.e., less aggregation). (Physiological salt concentrations have been

shown to decrease the pK a of acidic residues in staphylococcal nuclease (SNase), a model

protein that has pH-dependent behavior [33].) As mentioned above, D14 consistently

has the lowest pK a, with the most pronounced decrease for pHLIP at 150 mM NaCl. In

addition to the proximity of R11, D14 is embedded among several aromatic residues (Y8,

W9, Y12, W15, F17), which can provide local stabilization via π-π stacking and cation-π

interactions (Fig. 3.11). This trend is consistent with solid-state NMR experiments on pHLIP

in state II,[34] and could suggest that conformational sampling of pHLIP subtly influences

the accessibility of D14 for titration both in solution and at the membrane interface.

Figure 3.10: Determination of per-residue pKas for acidic residues in pHLIP. Estimated
pKas via the cphanalyze tool.
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Figure 3.11: R11 can use cation-π interactions to stabilize the N-terminal half of pHLIP
and P20G. Probability distribution of the distance between R11 and the aromatic residues
of pHLIP and P20G as a function of pH.
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Perturbations due to the P20G mutation and salt concentration also affect the overall

conformation of pHLIP. In general, we observe a clear difference in behavior with respect to

the radius of gyration (Rg) going from the fully protonated (pH 2.5) to the fully deprotonated

state (pH 5.0) (Fig. 3.12-3.13). Addition of salt clearly drives pHLIP and P20G to sample

smaller Rg values, with the most noticeable effect occurring at low pH. For pHLIP at no salt,

we see a general decrease in free conformational sampling with an increase in pH (Fig. 3.12,

first column). Upon adding 150 mM NaCl, pHLIP samples more compact conformations at

low pH (Fig. 3.12, second column). P20G tends to adopt a small Rg, most likely because

of the helical propensity imbued by the point mutation at position 20; this behavior is more

pronounced at low pH and 150 mM NaCl (Fig. 3.12, third and fourth columns).

Figure 3.12: Physiological salt and acidic pH lead to more localized conformational
sampling in pHLIP and P20G. Distribution of radius of gyration versus end-to-end distance
of pHLIP and P20G as a function of salt and pH.
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Figure 3.13: P20G possesses a more compact conformation. Measurement of the
radius of gyration of the peptide as a function of pH and split by salt concentration.
Left: radius of gyration for pHLIP and P20G as a function of pH with only counterions; right:
radius of gyration for P20G as a function of pH with 150 mM NaCl.

3.3.3 Helicity can shift based on peptide composition and salt concentration

The main distinguishing characteristic between pHLIP and the P20G variant is helicity. When

P20G was first tested experimentally, it adopted some α-helical character in solution,making

it distinctive from pHLIP.[35] A more recent experimental study from the Thévenin and

Ladokhin groups further refined our understanding of the differences in secondary structure

between pHLIP and P20G in solution, finding that pHLIP and P20G possess 12% and 21%

helicity, respectively.[36] This translates to 4 and 7 residues being involved in formation

of a helical turn. Our simulations qualitatively agree with these experimental studies. We

don’t observe any noticeable differences in overall helicity between pHLIP and P20G at 0

mM NaCl, but at 150 mM NaCl, a general increase in helicity occurs for P20G (Fig. 3.14).

Based on our knowledge of the crystal structure of bacteriorhodopsin, from which pHLIP is

derived, and previous solid-state NMR studies [34], we know that two helical regions exist in

pHLIP from residues 9 to 19 and from 21 to 30. On a per-residue basis, there are distinct

behaviors between pHLIP and P20G and the two salt conditions. At 0 mM NaCl, pHLIP has

helical segments in both regions, usually sampled between 5-10% of the total simulation

(Fig. 3.15A) P20G also possesses some helical character in both regions, but has more

pronounced helicity in the segment from residues 9-19. Upon adding 150 mM NaCl, a shift
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occurs in the behavior of both peptides. pHLIP in general undergoes folding in the segment

from residues 9-19 and is most pronounced at pH 2.5 (Fig. 3.15B). Likewise, for P20G,

folding is slightly enhanced from residues 9-19, regardless of pH. Thus, although we don’t

observe any trends with respect to pH, it is clear that an increase in salt concentration to

physiological levels does have an effect on folding of the N-terminal half of pHLIP and P20G.

Figure 3.14: Overall helicity of pHLIP and P20G as a function of pH. Left: helicity of
pHLIP and P20G at 0 mM NaCl. Right: helicity of pHLIP and P20G at 150 mM NaCl.
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Figure 3.15: P20G mutation increases pHLIP helicity. (A) Per-residue helicity for wt-
pHLIP (yellow) and P20G (green) with only counterions present. (B) Per-residue helicity for
wt-pHLIP (blue) and P20G (red) with 150 mM NaCl.
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3.3.4 Higher salt concentrations bias conformational selectivity of pHLIP

In general, salt bridge formation involving R11 increases with salt concentration mainly via

D14 (Fig. 3.16). Several factors contribute to this behavior. The first is screening of specific

residues in both pHLIP and P20G. Salt at physiological concentrations can screen acidic

residues in pHLIP.[37] However, these interactions are non-uniform: E3, D14, and D25 have

noticeably lower affinity for Na+ cations (Fig. 3.17). This difference may be attributable to the

proximity of clustered acidic residues at the C-terminus of pHLIP. This means that E3 and

the interior aspartic acids (D14 and D25) are most likely to interact with R11. The R11-D14

interaction is more pronounced for pHLIP compared to P20G, which may be attributable to

the fact that P20G has less conformational freedom due to its inherent helicity.

Figure 3.16: Salt bridge formation abrogated by competition with cations and confor-
mational selectivity. Percentage of simulation time in which R11 forms a salt bridge (within
3.2 Å) with the corresponding acidic residue as a function of pH. The atoms used to define
a salt bridge were the geometric centers of the terminal N atoms on R11 and the terminal O
atoms on acidic residues

In almost every condition we tested, helicity has little effect on the interaction between

R11 and D14. For pHLIP, a slight increase in shorter R11-D14 interactions occurs at higher

pH, regardless of salt concentration (Fig. 3.18). In contrast, for P20G there is a clear

separation of states at 0 mM NaCl – closer R11-D14 interactions occur in the helical state.

This preference is lost at 150 mM NaCl, indicating that the dependence on helicity is very

slight and can be easily perturbed.
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Figure 3.17: Physiological salt concentrations highlight lack of solvent accessibility
of N-terminal residues in pHLIP and P20G. Percentage of simulation time at least one
sodium cation is coordinated with acidic residues (within 5 Å).

Figure 3.18: Effect of pH, salt, and helicity on the distance between R11 and D14 in
pHLIP and P20G. Distribution of the R11-D14 distance when pHLIP or P20G has at least
one helical turn (dark gray) versus when they have no helicity (light gray).

Another factor influencing the local environment of R11 is the proximity of aromatic

residues. Cation-π interactions play an important role in stabilizing proteins,[38] and the
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N-terminal half of pHLIP has several aromatic residues proximal to R11 (Y8, W9, Y12, W15,

and F17). Although no single aromatic residue has preferential interactions with R11 in

either pHLIP or P20G, both Y8 and W9 frequently interact with R11 at sub-5 Å distances,

short enough to form a cation-π interaction (Fig. 3.11).

Figure 3.19: Solvent-accessible surface area of the hydrophobic stretch in pHLIP
and P20G. Solvent accessible surface area (SASA) for each residue from position 20 to 29
(PLLLLDLALL) in pHLIP and P20G as a function of pH and salt concentration.

Figure 3.20: . Solvent-accessible surface area (SASA) for the acidic residues of
pHLIP and P20G variant. Solvent-accessible surface area (SASA) for each acidic residue
(E3, D14, D25, D31, D33, and E34) in pHLIP and P20G as a function of pH and salt
concentration.
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Figure 3.21: Peptide-water hydrogen bonds decrease with protonation of pHLIP and
P20G. Average number of hydrogen bonds formed between pHLIP (left) and P20G (right)
as a function of pH and salt concentration.

3.4 DISCUSSION

Constant pH MD simulations have been used the past two decades to gain greater under-

standing of the effect of pH on soluble proteins. One of the challenging aspects of CPHMD

has been accurately determining the pK a of interior residues, as both experimental [39, 40]

and computational [41, 42] approaches have had varying degrees of success. SNase and

ribonuclease A have been commonly used to improve our ability to accurately determine

pK a [22]. A key advance in CPHMD methods has been the ability to use explicit solvent [20,

21, 43, 19], which allows for more accurate treatment of localized conformational rearrange-

ments upon change in titration of a protonatable site. This development has led to a rapid

expansion in the systems that have been studied with CPHMD, including even membrane

proteins.[44] It is clear based on our results that lower pH leads to an increase in helicity of

pHLIP and P20G. In addition, lower pH depresses intramolecular interactions in the interior

of pHLIP (i.e., R11, D14, and D25). Consistent with our previous study on pHLIP in state

II,[37] physiological salt concentrations screen terminal acidic residues, which in turn can

lead to increased interactions between interior charged residues (e.g. R11 with either D14 or

D25). We realize that environmental factors contribute to conformational changes in pHLIP,

but there are obviously other factors that come into play that have not been addressed in this

study. For example, we know that administering pHLIP in combination with bovine serum
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albumin allows for higher concentrations of pHLIP (150 µM) to be used in cell studies (Boyd,

Popp, and Mertz, unpublished results).

Figure 3.22: Transmembrane helical segment of pHLIP possesses an amphipathic
surface. Helical wheel for the TM segment of wt-pHLIP (residues 9-30, as per Hanz et
al., Angew. Chem. Intl. Ed. 2016 55:12376-12381). Wheel plot was generated in the
NetWheels server (doi.org/10.1101/416347).

Our simulations supply several insights into our biophysical understanding of pHLIP

and their greater context in IDPs and protein folding. First, we can conclude that partitioning-

folding coupling is the main driver for formation of helical conformations in pHLIP; even

in highly acidic environments (i.e., pH 2.5), we do not observe a noticeable increase in

helicity of pHLIP or P20G. Nevertheless, it was common in our simulations to observe

transient formation of shorter helical turns, which is a necessary prerequisite for protein

folding of soluble proteins and membrane-active peptides [45]. Second, pH can have a

noticeable effect on intramolecular interactions in pHLIP, much like the anionic membrane-

active peptide, EALA,[31] or the N-terminal fragment of exon 1 in huntingtin [46]. Charged

amino acid residues, in this case a high density of anionic residues, repulse each other when

deprotonated. It’s only at low pH when these residues are titrated that pHLIP and P20G can

adopt more compact structures (i.e., smaller Rg). This is consistent with the dependence of

Rg and phase transition temperatures that leads to liquid-liquid phase separation (LLPS), a

phenomena that has been linked to formation of membraneless organelles and aggregation

of IDPs [6, 5, 47]. Even though pHLIP and P20G don’t possess long repeats that are the
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hallmark of IDPs associated with aggregation,[1] the presence of R11 and five aromatic

residues in the N-terminal half of the peptide are a potential driver for phase transitions [48].

With the success of the Mittal and Pappu groups in applying coarse-grained and atomistic

MD simulations of single-chain polymers to predict LLPS behavior,[6, 47] this opens the

door for similar studies on membrane-active peptides like pHLIP. This type of fundamental

knowledge equips us to introduce other potential modifications to the sequence of pHLIP. For

example, substitution of an additional cationic residue (Arg or Lys) on the same face as D14

and D25 could make pHLIP more sensitive to changes in pH by lowering the energy barrier

for helix formation (Fig. 3.22). By increasing the opportunity for formation of intramolecular

salt bridges, it decreases the need to change the interior acidic residues (D14 and D25)

topology via protonation to drive helical formation. This particular modification is very similar

in nature to the dual salt bridges that give ribonuclease A a very sensitive response to

changes in pH.[22] We have previously observed this behavior with R11-D14 salt bridges in

state I[15] and state II.[37]

With respect to long-term development of applications with pHLIP, we anticipate

that constant pH MD is another tool that can be used to probe the behavior of pHLIP

variants, both in solution and at the membrane interface. As mentioned above, constant pH

approaches are under continuous development, and careful consideration must be made

with respect to the proper choice of a particular CPHMD implementation, as each have

their strengths and weaknesses. CPHMD allows for more realistic modeling of how pHLIP

will behave in an environment more consistent with the tumor microenvironment – this has

mostly been missing up to this point, besides a recent study that focused on state III.[49]

Unfortunately, optimization of pHLIP still remains largely unresolved – the biggest issues

are determining the effect on peptide insertion due to conjugation with small molecules

and properly accounting for local changes in the environment. For example, a recent study

shows a drastic increase in pHLIP insertion when systems contain divalent cations.[50] A

multi-faceted approach is necessary to truly address this problem.

3.5 CONCLUSIONS

In this study, we applied an advanced molecular dynamics approach to characterize the

behavior of pHLIP in solution ranging from neutral pH to highly acidic pH. Our hypothesis,

that more acidic environments would lead to greater sampling of folded conformations of
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pHLIP, was generally not valid. However, our simulations provided a detailed view of how

CPHMD could be utilized to screen pHLIP under different environmental conditions (salt

concentration) and compositions (the P20G mutant) in solution.

MD simulations are capable of discerning slight differences in the behavior of pHLIP

and variants of pHLIP. We could identify specific regions of the peptide that were more prone

to undergo folding, based on local changes in the environment such as coordination with ions

or close contacts with neighboring residues. This information is valuable from the perspective

of acquiring fundamental understanding of how modifications to the local environment

change the behavior of pHLIP. One of the long-standing challenges in developing variants

of pHLIP that have enhanced properties (e.g., increased solubility, transport of cargo

molecules) has been retention of acid-sensitivity and insertion into the plasma membrane.

In many instances, these variants are incapable of being tested with lipid vesicles, due

to the fact that they immediately aggregate in solution. By carrying out a two-step series

of CPHMD simulations (monomeric and with multiple peptides in solution) we can quickly

identify variants that can stay effectively solvated and discard those that tend to aggregate.

This study represents the first step in that series; future studies will focus on applying

CPHMD to systems with multiple peptides.

Even though pHLIP is not typically considered to be an IDP, the methodology and

analysis used here can be applied to IDPs as well. Numerous examples exist in the literature

that highlight the role of pH in the selection of conformational pathways in IDP aggregation

[51]. CPHMD may prove to be an invaluable tool in providing molecular-level details about

peptide interactions that are not readily apparent from experimental biophysical approaches.
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4. PHYSIOCHEMICAL PROPERTIES ALTERED BY

THE TAIL GROUP OF LIPID MEMBRANES IN-

FLUENCE HUNTINGTIN AGGREGATION AND

LIPID BINDING1

Huntington’s Disease is a neurodegenerative disorder caused by an expanded polyg-

lutamine (polyQ) domain within the huntingtin protein (htt) that spurs the formation of toxic

protein aggregates. Htt directly interact with membranes, which influence the aggregation

process and can lead to membrane abnormalities. These interactions are facilitated by the

17 Nterminal residues (Nt17) which form an amphipathic α-helix (AH) implicated in both lipid

binding and aggregation. Here, the impact of lipid tail unsaturation (DMPC, POPC, or DOPC)

on htt/lipid interactions was investigated. The influence of the lipid vesicles on aggregation

did not correlate with the degree of htt-membrane association, indicating that membrane

properties alter htt aggregation. This can be linked to the initial lipid-binding mechanisms

that influence Nt17 orientation on the membrane surface based on compatibility between

specific hydrophobic residue and membrane defects.

4.1 INTRODUCTION

Numerous neurodegenerative diseases are characterized by formation and deposition of

toxic protein aggregates in tissues. Huntington’s Disease (HD) is caused by an expanded

polyglutamine (polyQ) domain within the huntingtin protein (htt) that promotes aggregation.
1This article/chapter was published in J. Phys. Chem. B, 126, Beasley, M., Frazee, N., Groover, S., Valentine,

S., Mertz, B., Legleiter, J., Physicochemical Properties Altered by the Tail Group of Lipid Membranes Influence

Huntingtin Aggregation and Lipid Binding, Copyright 2022 American Chemical Society. All experimental laboratory

work (Thioflavin T assays, AFM, PDA assays, and mass spectrometry) was completed by Maryssa Beasley.
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PolyQ expansion beyond a threshold of 35 residues is associated with disease and cor-

relates with the extent of aggregation, age of onset, and severity of symptoms [1, 2]. Htt

aggregation is a complex, multipathway process that results in a heterogeneous mixture

of aggregates ranging from oligomers and annular aggregates [3, 4] to β-sheet-rich fibrils

and inclusion bodies [5, 6, 7]. The heterogeneity of htt aggregation complicates assigning

specific modes of toxicity to discreet aggregate species. While aggregation leads to the

formation of toxic aggregates, other species may prove benign or even protective. The

diffuse fraction of htt within cells appears particularly toxic [7, 8]; however, this fraction is

populated by a complex mixture of monomers, oligomers, amorphous aggregates, and fibrils

[9, 10, 11]. Despite this complexity, htt oligomers [8, 10], fibrils [12], and even inclusions [13]

have all been linked to a variety of specific toxic mechanisms.

The polyQ domain of htt is flanked on the N-terminal end by 17 amino acids (Nt17,

MATLEKLMKAFESLKSF) that act as a lipid-binding domain and govern the interaction of htt

with membranes [14, 17, 16]. Nt17 is intrinsically disordered in bulk solution, but undergoes

a structural transition to an amphipathic α-helix (AH) in the presence of binding partners

like lipid membranes [17, 16]. The interaction between htt and phospholipid membranes via

Nt17 plays a role in a number of normal htt functions [15, 16] and cytotoxic mechanisms [15,

17] by trafficking htt to mitochondria, vesicles, the ER, and the nucleus [17, 16, 15]. However,

these membrane interactions can become detrimental with mutant htt as it damages and

destabilizes membranes [14, 18], and this correlates with polyQ length [19]. This may result

from the aggregation process, as htt aggregates incorporate membranous assemblies [20]

and brain lipids [18] into their structures. These interactions between htt aggregates and

membranes are linked to cell death [21], synaptic degeneration [22], and deformation of

membranous organelles [23, 24].

Nt17 not only facilitates htt’s interaction with phospholipids but also forms intermolec-

ular associations that promote htt aggregation [25, 13, 14]. These interactions result in

α-helical oligomers that act as nuclei for fibril formation [14]. The dual role of Nt17 in lipid

binding and aggregation leads to a direct influence of membranes on the kinetics and

mechanism of htt aggregation [18, 25]. 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

(POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) vesicles catalyze htt ag-

gregation through a unique Nt17-controlled membrane-mediated mechanism [25]. Con-

versely, brain lipid extracts inhibit htt fibrillization [26] and stabilize specific oligomer species
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[27]. Increased cholesterol [28], sphingomyelin, and GM1 [27] content in membranes also

influences the morphology of htt aggregates.

The structural transition of Nt17 from intrinsically disordered to AH is a hallmark of

proteins that play a role in membrane-associated cellular processes such as intracellular

membrane targeting [29], curvature sensing [30], and membrane remodeling [31]. Many

of these proteins function in the early secretory pathway and nuclear envelope [30, 32],

while others function in the distinctly different lipid environment of the endosomal or plasma

membranes [33]. The interaction between the AH and specific types of cellular membranes

are crucial for proper function, but the properties contributing to their membrane affinity are

poorly understood. Factors that contribute to the membrane selectivity of AH-containing

proteins like Golgi tethers or α-synuclein have been identified, but they rely on specific

chemical properties of the helix such as a lack of charged residues or a hydrophobic face

consisting entirely of small residues [33]. These sequences result in an asymmetric helical

topology where either electrostatic or hydrophobic effects drive AH binding. Few mechanistic

details have been identified for the association of AHs such as Nt17 that contain both a

well-defined hydrophobic face and charged residues.

Understanding the physicochemical properties of membranes that influence the

interaction of Nt17 with lipids represents a promising target for the inhibition of htt aggregation

and lipid binding and can provide critical insights into our fundamental understanding

of the mechanism of AH binding to cellular membranes. To determine how membrane

physicochemical properties influence the behavior of htt, htt aggregation and membrane

association were characterized in the presence of homogeneous lipid systems with the

same zwitterionic headgroup but different tails (1,2,-dimyristoyl-sn-glycero-3-phosphocholine

(DMPC), POPC, and 1,2,-dioleoyl-sn-glycero-3-phosphochlline (DOPC)). Here, the impact

of the lipid vesicles on htt aggregation was elucidated with Thioflavin T aggregation (ThT)

assays and atomic force microscopy (AFM) , while the degree and mechanism of htt

membrane association and complex formation was determined with a combination of

polydiacetylene (PDA) lipid binding assays, native mass spectrometry (MS), and molecular

dynamics (MD) simulations. Our results demonstrate that htt aggregation does not correlate

with the degree of htt-lipid interaction, indicating that the mechanism of membrane-mediated

aggregation is unique to each lipid system. In addition, the interaction of Nt17 with the

membranes is driven by a combination of peptide and membrane properties; 1) shape
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complementarity between amino acid sidechains and membrane defects and 2) overall

binding of the entire peptide.

4.2 METHODS

4.2.1 Purification of glutathione S-transferase (GST)-htt exon 1 fusion protein

Htt-exon1 with 46 repeat glutamine residues (htt-exon1(46Q)) was expressed in e.coli as

a glutathione S-transferase (GST) fusion protein and purified as previously described [34].

Briefly, the fusion proteins were purified via affinity liquid chromatography using a GST

column (BioRad LPLC). Relevant fractions were tested by SDS-PAGE to assess purity.

Fusion protein solutions were dialyzed for two days to remove glutathione used to elute

fusion proteins from the column. To remove pre-existing aggregates, fusion proteins were

subjected to high speed centrifugation (22000 ×g) prior to any experiment. Addition of Factor

Xa (Promega, Madison, WI) cleaved the GST tag and initiated aggregation.

4.2.2 Lipid Vesicle Formation

DMPC, POPC, and DOPC were obtained from Avanti Polar Lipids as dried films and

rehydrated in tris buffer (pH = 7.4) for 1 h at 1 mg/mL. Lipid solutions were subjected to ten

freeze-thaw cycles, proceeded by bath sonication for 1 h. The size and polydispersity of

lipid vesicles were measured via dynamic light scattering (DLS, NanoBrook 90plus Particle

Size Analyzer, Brookhaven Instruments) to verify the formation of large unilamellar vesicles

(LUVs). The mean and standard deviation of vesicle sizes were determined by assuming a

log-normal distribution of the DLS data.

4.2.3 Thioflavin T Assay

To monitor fibril formation as a function of time, a Thioflavin T (ThT, Sigma-Aldrich, St. Louis,

MO) aggregation assay was performed. Htt-exon1(46Q) (20 µM) was incubated with ThT

(125 µM) in the presence and absence of various lipid vesicles. In the lipid conditions, lipid

concentration was 100 µM, 200 µM, or 400 µM resulting in 5:1, 10:1, or 20:1 lipid:protein

ratios. Reactions were run in black Costar 96-well plates with clear flat bottoms, and ThT

fluorescence was monitored using a SpectraMax M2 microplate reader. Experiments were

run at 37 oC with 440 nm excitation and 484 nm emission. Readings were taken every
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5 min for 18 h, with shaking prior to each read. Relative maximum fluorescence was

determined by normalizing the maximum fluorescence intensity of each condition to the

maximum fluorescence of the huntingtin control (100%). The relative rate for each condition

was calculated over a period of 3 h, beginning at the point when the fluorescence intensity

reached 20% of the maximum for that condition. This setpoint was determined to ensure that

the data had made a significant increase from the baseline value and that rate calculations

did not begin in the noise of the lag phase. All rate values were normalized to the rate of the

huntingtin control (100%).

4.2.4 Atomic Force Microscopy

Htt-exon1(46Q) (20 µM) was incubated with and without lipid vesicles (200 µM for a 10:1

lipid:protein ratio) at 37 oC and 1400 rpm using an orbital mixer. At 1, 3, 5, and 8 h time

points, 2 µL aliquots of each condition were deposited on freshly cleaved mica for one min

followed by a 200 µL wash with 18 MΩ water and drying with a gentle stream of clean air.

These samples were imaged using a Nanoscope V Multi-Mode scanning probe microscope

(VEECO) equipped with a closed loop vertical engage J-scanner. Silicon-oxide cantilevers

with a nominal spring constant of 40 N/m and a resonance frequency of 300 kHz were

used. Scan rates were set to 1.99 Hz with cantilever drive frequencies at 10% of resonance.

All images were analyzed using the Matlab image processing toolbox (MathWorks) as

previously described [35, 5]. Oligomers were classified as features at least 1.0 nm in height

occupying a surface area less 4,000 nm2 with an aspect ratio less than 3.0, indicating a

globular structure. The 1 nm height threshold avoided counting artifacts associated with

lipid backgrounds (as determined by control images, Fig. 4.1). Fibrils were defined as

features with aspect ratios larger than 3.0 and occupying at least 4,000 nm2. To eliminate

bias caused by varying fibril lengths and bundling, the percent surface covered by fibrils was

used as a measure of fibril load.

4.2.5 Polydiacetylene Lipid Binding Assay

Polydiacetylene (PDA) assays were performed to measure the interaction between htt and

lipid vesicles over time using reported protocols [36, 37]. In short, diacetylene monomers of

10,12-tricosadiynoic acid and the pure lipid system of choice were mixed at a 2:3 molar ratio

in a 4:1 chloroform/ethanol solution. The organic solvents were evaporated off with a gentle
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Figure 4.1: Representative AFM images of the backgrounds associated with (a) neat
buffer, (b) DMPC lipid, (c) POPC lipid, (d) and DOPC lipid. The lines in each image
correspond to the height profiles provided below each image.

stream of nitrogen. Films were reconstituted in tris buffer (70 oC), extensively sonicated to

promote mixing, and left at 4 oC overnight to allow for self-assembly into PDA/lipid vesicles.

For each experiment, the vesicle solutions were equilibrated to 25 oC and irradiated at 254

nm with constant stirring to polymerize the 10,12-tricosadiynoic acid, resulting in a royal

blue solution that would display a colorimetric shift to red upon applied mechanical stress

to the vesicles. PDA/lipid solutions were exposed to htt-exon1(46Q) (20 µM) for 18 h at 30
oC. This temperature ensures that all lipid vesicles are above their transition temperature

(DMPC Tm = 24 oC, POPC Tm = -2 oC, DOPC Tm = -17 oC)[38] and are in the fluid phase.

For each condition, the absorbance of the blue (650 nm) and red (500 nm) wavelengths

were recorded by a SpectraMax M2 plate reader every 5 min with shaking between each

reading for the duration of the experiment. A negative control consisted of equal volumes of

neat buffer and PDA/lipid solution, while a positive control exposed vesicles to saturated

NaOH (pH = 12) that stresses the system by increasing repulsion among lipid head groups,

invoking a colorimetric response [39, 40]. The NaOH control can also be used to establish

the sensitivity of the different lipid systems and used to normalize the colorimetric response
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[41]. The % CR was calculated for each condition using the following equation:

%CR =
PB0 − PB

PB0
100 (4.1)

where the PB is defined as Ablue/(Ablue +Ared) for the negative control (PB0) and sample

condition (PB). Ablue and Ared refer to the measured absorbance at the blue and red

wavelengths respectively.

4.2.6 Electrospray Ionization-Mass Spectrometry (ESI-MS)

For MS experiments, lipid vesicles were formed as previously described, but using HPLC-

grade water instead of tris buffer. Nt17 (10 µM) was incubated alone or with DMPC,

POPC, or DOPC vesicles (10:1 lipid:peptide ratio) at 37 oC for 3 h before analysis. All

ESI-MS experiments were performed using a Q Exactive Hybrid Quadruple Orbitrap mass

spectrometer (Thermo Fischer, San Jose, CA). Experiments were conducted using a

HESITM as the degree of lipid complexation observed is not an artifact of ionization method

[42]. MS spectra were recorded in positive ion mode over a mass-to-charge (m/z) range of

400 to 4,000. Samples were infused (10 µL/min) through a needle biased at 3,500 V above

the instrument inlet. The parameters for the MS instrument were: 400 oC for the capillary

inlet temperature, 30 oC for the analyzer temperature, 80 V for the S-lens assembly, 400

ms for the maximum injection time, 1 × 106 for the AGC, and 70,000 for the MS resolution.

Each spectrum was recorded (90 s) in triplicate. Data were analyzed using Xcalibur 2.2

software suite (Thermo Scientific). Relative abundance was determined in relation to the

doubly-charged monomer peptide ion ([M+2H]2+ at m/z 988).

4.2.7 MD simulation system preparation

The structure of Nt17 was generated based on a previous solid-state NMR study (PDB

2LD2) and was modified in VMD [43]. The standard N-terminal patch was applied, and

the C-terminus was amidated to mimic the absence of charge that would be present with

the full huntingtin protein. The peptide was solvated using the solvate plugin in VMD [43].

Randomly-coiled conformations were generated by heating from 300 K to 700 K in the NVT

ensemble in NAMD 2.13 [44] over 20 ps followed by 1 ns at 700 K. A starting structure was

randomly selected from among frames with the proper omega dihedral angles. Separately,

three pure lipid bilayers of DMPC, POPC, and DOPC containing 150 lipids each were
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created, solvated, and ionized using the Optimal Membrane Generator in LOOS [45, 46].

The systems were equilibrated using an in-house protocol consisting of concurrent slow

heating and release of restraints on the lipids, resulting in a planar lipid bilayer after 100 ns

of simulation time. The randomly-coiled peptide was merged with each of the respective

membrane systems, initially placing the peptide 20 Å above the surface of the bilayer.

Ion concentrations were adjusted to 150 mM using the ionize plugin in VMD [43]. The

merged systems were equilibrated in the NPT ensemble for 1 ns at 310 K with the Langevin

thermostat and 1 atm with the Langevin barostat in NAMD 2.13 [44]. System sizes ranged

from 49,000 to 53,000 atoms.

4.2.8 MD simulations

To facilitate sufficient sampling of binding and dissociation events of Nt17, we used the

weighted ensemble approach via Weighted Ensemble Simulation Toolkit with Parallelization

and Analysis (WESTPA) [47]. WESTPA increases the sampling of rare events in MD while

maintaining equilibrium conditions. This is accomplished via a user-defined progress coordi-

nate which describes the configurational space of the system. The progress coordinate is

further sub-divided into user-defined bins. WESTPA maintains a fixed number of simulations

per bin tracking the probability that the bin will be populated over time. WESTPA spawns

several short simulations of time, τ, after which it will evaluate the progress coordinate

and add or remove simulations to maintain a constant number of simulations per bin. This

approach facilitates a significantly increased fraction of simulations sampling the relevant

space (i.e., proximal to the bilayer) and less time sampling the irrelevant space (i.e., diffusion

in bulk solution). Each lipid system was run in triplicate with 100 iterations per replica,

a dynamics period (τ ) of 20 ps, and five simulations per bin. NAMD 2.13 [44] was used

for dynamics with the same parameters as the final equilibration step in MD simulation

system preparation. No methods of any kind were used to restrain the peptide or bilayer in

a particular conformation. A one-dimensional progress coordinate was defined as a function

of the number of contacts between Nt17 and the bilayer. The progress coordinate, CAB,

was calculated as such

CAB =
∑
i∈A

∑
j∈B

1

1 + (
rij
r0

)6
(4.2)

where A is the set of atoms in the lipids, B is the set of atoms in the peptide, rij is the

distance between the ith lipid atom and jth peptide atom, and r0 is the cutoff distance of
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3 Å. The binning scheme was designed to evenly divide up the z-distance between the

starting position of the peptide and the center of the bilayer. The bin values are as follows:

0.0, 0.4, 0.8, 1, 1.5, 2, 3, 4, 5, 7, 10, 15, 25, 40, 70, 120, 200, 300, 500, 650, 800, 1000,

1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 3500, 3750, 4000, 4250, 4500,

4750, ’inf’. As a comparison to the weighted ensemble simulations, we also conducted

continuous equilibrium MD simulations with longer timescales (500 ns each). Each system

was run in triplicate for each lipid type with the same starting configurations and parameters

as the WESTPA simulations. 500 ns was necessary to obtain systems that were sufficiently

decorelated from their starting configurations (Fig. 4.2). Nt17 remained primarily dissociated

from all bilayer systems consistent with our WESTPA simulations (Fig. 4.3). Despite the

long timescales, we did not observe significant folding of Nt17 into an α-helix (Fig. 4.4). The

following simulation parameters were used for both the WESTPA and equilibrium simulations.

We used the CHARMM 36 forcefield including the 36m parameters for proteins and the

TIP3P water model. The switchdist, cutoff, and parlistdist were set to 12 Å, 14 Å, and 16

Årespectively. We used a Langevin Piston barostat set to 1.01325 bar and the Stochastic

Rescaling thermostat set to 310 K. PME was turned on with an interpolation order of 6 and

grid spacing set to 1.0. Simulations were run at a 2 fs timestep.

4.2.9 Molecular Dynamics Analysis

Analysis was performed on the subset of each weighted ensemble simulation that had a

progress coordinate of 120 or greater at either the beginning or end of the iteration. A

progress coordinate of 120 was chosen as a threshold based on visual inspection of the

simulations where Nt17 was near the bilayer surface. These snapshots are referred to as

“bound” throughout the paper. The distribution of bound frames can be seen in Fig. 4.5.

Peptide-bilayer contacts. The number of contacts per frame was determined using a custom

python script and pyLOOS [45, 46] by iterating through every atom in the peptide paired with

every atom in the bilayer; those that were less than 4 Åapart were considered a contact.

Distance plots. dz is defined as the projection along the z-axis of the vector between the

geometric average position of the atoms in each respective residue and the surface of

the bilayer. This involved two calculations: 1) calculation of the length of the projection

along the z-axis of the vector between the geometric average position of the atoms in each

respective residue and the P atoms of the bilayer, 2) calculation of the average thickness of
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Figure 4.2: Decorrelation times for Nt17 with respect to starting position in equilibrium
MD. Decorrelation of Nt17 from initial position in equilibrium MD simulations occurs within
roughly 25 ns (scaled variance = 1) for all systems regardless of lipid type.

Figure 4.3: Propensity of binding events in equilibrium simulations. a) The percent
time from each equilibrium trial by lipid system where Nt17 is considered to be in the “bound”
state (where the same pcoord measurement used in the WESTPA simulations is greater
than 120). b) Average percent of time that Nt17 is in the bound state.

the bilayer by measuring the distance along the membrane normal between the P atoms
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Figure 4.4: Binding and folding of Nt17 is often transient and uncorrelated. Equilibrium
MD simulations of Nt17 interacting with the three different lipid types were conducted for 500
ns. Events where Nt17 is near the bilayer (pcoord of 120 or above: gray-shaded background)
do not necessarily correlate with the event a particular residue is helical (black dot) for each
trial and each lipid. It appears that partitioning-folding coupling of Nt17 to a lipid bilayer
occurs on timescales ¿ 500 ns.

in each respective leaflet of the bilayer. Half the bilayer thickness was subtracted from the

z-projection to obtain dz. Both measurements were made using the interdist tool in LOOS

[45, 46]. Orientation of Nt17. The first principal axis of the peptide was measured against

the bilayer normal using a custom python script and pyLOOS [45, 46]. Per residue distance

dependent orientation: Distance was calculated similarly to dz, however only the terminal

heavy atom of the sidechain was considered for each respective residue. To measure the

angle of the sidechain with respect to the bilayer normal, a vector was drawn from the

Cα carbon to the terminal heavy atom of each respective residue. Membrane maps: The

membrane map tool in LOOS [45, 46] was applied to each trial calculating the windowed

height of the P atoms in the upper leaflet of the bilayer. Similar to dz, half the bilayer

thickness was subtracted from each windowed height to determine the displacement from
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the average. Membrane defects. Measurements of defects were based on the approach

used by Voth and coworkers [34]. With the trajectory centered in the xy-plane on the peptide,

the measure sasa tool in VMD [43] was used with a 3 Åseparation, -samples 300, -restrict

to a selection of x/y < −13 and > 13 and z > 10 (restricting the points to being on the

surface of the bilayer), and -points to create a point-based surface of the bilayer. Points were

saved every 100 frames. Points were categorized based on their z-position with respect to

the plane of the N atoms in the upper leaflet (protrusions were above the plane; defects

were below the plane). Networks were constructed by grouping points within 0.6 Åof one

another in the xy-plane. Areas were determined by first finding the maxima and minima of

all the points for the frame to determine the rectangular area of the bilayer surface and then

dividing the rectangular area into 2500 pixels of equal size. After this, the actual area was

calculated by identifying how many pixels each network (i.e., defect/protrusion) occupied.

Helicity. The phi and psi angles of the backbone were measured using the ramachandran

tool in LOOS [45, 46]. A residue was considered helical if the previous and subsequent

residues had a phi angle between -90 and -30 and a psi angle between -77 and -17 [48].

Salt bridges. Salt bridges were measured using the salt bridge plugin with default values

in VMD [43] with modifications to accommodate measuring the N and P atoms of the lipid

head groups.

Figure 4.5: Propensity of binding events in WE simulations. a) The percent time from
each WESTPA trial by lipid system where Nt17 is considered to be in the “bound” state
(pcoord greater than 120). b) Average percent of time that Nt17 is in the bound state.
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4.3 RESULTS AND DISCUSSION

4.3.1 Lipid membranes impact htt aggregation

Experiments were performed with a glutathione S-transferase (GST)-htt-exon1(46Q) fusion

protein. Factor Xa cleaves GST, initiating aggregation. The impact of DMPC, POPC, or

DOPC lipid vesicles (5:1, 10:1, and 20:1 lipid:htt) on fibrillization was determined by ThT

assays. As determined by DLS, the preparation protocol produces lipid vesicles similar

in size across all three lipid systems with a mean diameter in the range of 150-300 nm

and polydispersity indexes (PDI) of ∼0.3–0 (representative DLS distributions are presented

in Fig. 4.6).While vesicles alone don’t invoke a ThT signal (Fig. 4.7), each lipid system

impacted htt fibrillization (Fig. 4.8). Compared to aggregation in the absence of lipids,

DMPC accelerated fibrillization in a dose-dependent manner, as the rate of elongation

increased by 29%, 88%, and 114% at DMPC:htt ratios of 5:1, 10:1, and 20:1 respectively.

The final fibril load, indicated by relative maximum fluorescence, increased in the presence

of DMPC, with a maximum increase of 70% at the 20:1 DMPC:htt ratio. POPC did not

significantly alter fibrillization until the lipid:htt ratio increased to 20:1, which invoked a

26% increase in aggregation rate and a 10% increase in maximum fluorescence. DOPC

inhibited aggregation in a dose dependent manner, with the highest lipid:htt ratio reducing

the maximum fluorescence 75%. The aggregation rate decreased with increasing DOPC:htt

ratios (39% decrease at 5:1, 75% decrease at 10:1, 82% decrease at 20:1).

Figure 4.6: ThT aggregation assays for htt-exon1 (46Q) in the presence of (a) DMPC,
(b) POPC, or (c) DOPC lipid vesicles. Htt-exon1 concentration was 20 µM and the lipid
to htt molar ratio was 5:1, 10:1, or 20:1. (d) Direct comparison of the 20:1 ratio for each
lipid system is shown. (e) The initial rate of aggregation and (f) the relative maximum
fluorescence were determined with respect to the htt control. Error bars are provided for
every sixth data point (30 min) and represent the standard error of the mean. One asterisk
represents a p value of ¡0.05, and two asterisks represent a p value of ¡0.01.
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Figure 4.7: ThT fluorescence assay controls. (a) neat buffer, (b) DMPC vesicles, (c)
POPC vesicles, and (d) DOPC vesicles.

As ThT predominately probes fibrillization, AFM assays were performed to analyze

oligomer formation and aggregate morphology associated with aggregation in the presence

of the different lipid vesicles (Fig. 4.9). A height threshold was utilized to avoid counting

artifacts associated with lipid backgrounds (as determined by control images, Fig. 4.1), and

aggregates were classified based on parameters defined in the Methods. Htt-exon1(46Q)

(no lipid) forms oligomers within 1 h with a peak population after 3 h (Fig. 4.10a). A

few fibrils were present at 1 h, but these became longer and more numerous with time,

occupying a larger surface area. The oligomer population decreased with increasing fibril

content. With DMPC, there was a slight increase in oligomers at 1 h compared with the

control. After peaking at 3 h, the number of oligomers observed with DMPC was reduced

at 5 and 8 h compared to the control (p ¡ 0.05). DMPC enhanced fibrillization, with a clear

increase in coverage at 5 h compared to the control (p ¡ 0.05, Fig. 4.10b). The addition

of POPC vesicles significantly reduced the htt oligomer population at 3, 5, and 8 h (Fig.

4.10a). Despite this reduction in oligomers, the extent of fibrillization was comparable to

the control (Fig. 4.10b). DOPC altered aggregate populations, promoting and stabilizing

oligomers as their population surpassed the control at 1 h and remained constant over 8 h

(Fig. 4.10a-b). This oligomer stability was accompanied by a significant decrease in fibril

content. Fibril content observed with each lipid system was consistent with ThT assays
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Figure 4.8: ThT aggregation assays for htt-exon1 (46Q) in the presence of (a) DMPC,
(b) POPC, or (c) DOPC lipid vesicles. Htt-exon1 concentration was 20 µM and the lipid
to htt molar ratio was 5:1, 10:1, or 20:1. (d) Direct comparison of the 20:1 ratio for each
lipid system is shown. (e) The initial rate of aggregation and (f) the relative maximum
fluorescence were determined with respect to the htt control. Error bars are provided for
every sixth data point (30 min) and represent the standard error of the mean. One asterisk
represents a p value of ¡0.05, and two asterisks represent a p value of ¡0.01.

in that with increasing amounts of lipid DMPC enhanced fibril formation, POPC did not

significantly alter the extent of fibrillization, and fibrils decreased with DOPC.

Next, the morphologies of htt aggregates were compared. While varying rates of

fibrillization result in different fibril contour lengths, the average height along the fibril contour

was unchanged, suggesting that the underlying structure of fibrils was not altered by each

lipid (Fig. 4.11). However, lipids altered oligomer morphology (Fig. 4.10c-f). Without lipids,

oligomers increased in size with time (Fig. 4.10c). Specifically, oligomers had a mode

height of 3-4 nm after 1 h, but this grew to 6-8.5 nm at 8 h with an increase in heterogeneity.

A shift from smaller to larger oligomers occurred in the presence of DMPC, but the 8 h
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Figure 4.9: Representative AFM images of 20 µM htt-exon1(46Q) incubated alone,
with DMPC, with POPC, or with DOPC lipid vesicles as a function of time (10:1 lipid:htt
ratio). The color map is the same for all images.

population displayed less heterogeneity and a smaller mode height ( 4.5-6.5 nm, Fig. 4.10d).

With both POPC and DOPC, oligomers were initially larger (mode height of 4-5 nm for both

conditions); however, oligomer morphology was stable, displaying extensive overlap in the

correlation plots between 1 and 8 h with no shift in oligomer mode height (Fig. 4.10e-f). In

both cases, the stabilization of early oligomeric species is accompanied by a slight increase

in the number of larger oligomers by 8 h. Specifically, the presence of POPC resulted in
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the stabilization of smaller oligomers (4-5 nm) accompanied by the formation of a small

population of large oligomers (8-9 nm) by 8 h. With regard to POPC, we have reported a

similar reduction in oligomer size compared to htt incubated without lipids previously [49,

50]. However, the oligomer size distribution associated with aggregation in the presence

of POPC is more heterogenous resulting in a larger population of bigger oligomers at 8

h of incubation (but still smaller than no lipid controls [49]); whereas, the oligomer size

distribution in the presence of POPC remains tighter at 8 h here and in the other study

[50]. Nevertheless, POPC vesicles consistently promote smaller htt oligomers compared to

oligomers formed in the absence of lipid.

Figure 4.10: AFM analysis of the impact of DMPC, POPC, or DOPC lipid vesicles on
htt-exon1(46Q) aggregation (10:1 lipid:htt ratio). (a) Analysis of the number of oligomers
per unit area as a function of time for each condition. (b) Statistical analysis of the percent
of each image area covered by fibrils as a condition of time. (c-f) Comparison of the height
and diameter of oligomers formed at 1 h (red) and 8 h (blue) in the presence of (c) no lipid,
(d) DMPC, (e) POPC, and (f) DOPC vesicles. One asterisk represents a p value of ¡0.05,
and two asterisks represent a p value of ¡0.01.
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4.3.2 Saturation in lipid tails influence htt/membrane interactions

The varying impact of the lipid systems on aggregation of Nt17 suggests differences in

htt/lipid interaction, so polydiacetylene (PDA)/lipid affinity assays were performed as a first

assessment of htt/lipid interaction (Fig. 4.12). PDA/lipid vesicles undergo a colorimetric shift

(blue to red) as protein interaction with the vesicles results in a mechanical strain on the

PDA polymer backbone. By monitoring blue (640 nm) and red (500 nm) absorbances of

the vesicles upon exposure to htt-exon1(46Q), a percent colorimetric response (% CR) can

be calculated that directly correlates to the extent of htt/lipid interaction. To enable direct

comparison between the different lipid systems, %CR was normalized against a standard

dose of NaOH. It should be noted that, based on DLS measurements, PDA/lipid vesicles

are larger than the simple lipid vesicles used throughout the rest of this study, with mean

diameters ranging from 440-750 nm and PDI of ∼0.4 (Fig. 4.6). Based on this assay,

the relative affinity of htt-exon1(46Q) for the different lipid systems was POPC > DMPC

> DOPC. Htt quickly bound POPC vesicles, invoking a greater %CR within 3 h than was

observed for the other lipid systems over 18 h. After this initial jump, the %CR continued to

increase. With DMPC vesicles, the %CR steadily rose for 9 h until a steady state interaction

of ∼20 %CR was observed. It took over 3 h of htt exposure before DOPC vesicles elicited

an observable %CR; however, once initiated, the %CR continued to gradually increase.

The overall trend did not correlate with degree of lipid tail unsaturation, and the differences

between the %CR curves suggests mechanistic differences in the interaction of htt with

these lipid systems.

4.3.3 Nt17 forms a variety of complexes with lipids

As Nt17 facilitates htt-exon1 lipid interactions, ESI-MS was utilized for semi-quantitative

assessment of the degree of peptide-lipid interactions between Nt17 peptides and the lipid

systems (Fig. 4.13, Tab. 4.1). Without lipids, several Nt17 ions were present (Fig. 4.13a).

The [M+2H]2+ ions at m/z 988 were the predominant species, followed by the [M3+H]3+

ions at m/z 658 and the [M+H]+ ions at m/z 1974. Dimer, trimer, and tetramer ions for the

Nt17 peptide (m/z 1317, 1482, and 1580, respectively) were observed at significantly lower

abundances. The lyophilized synthetic peptide contained sodium, resulting in detectable

sodium-containing ions.

68



Figure 4.11: AFM images comparing the morphology of htt-exon1(46Q) fibrils formed
in the absence of lipid, or when incubated with DMPC, POPC, or DOPC lipid vesicles.
The color lines in each image correspond to the height profiles directly below each image.
The color map is the same for all images.
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Figure 4.12: PDA lipid binding assay. (a) Lipid binding assays for PDA/DMPC, PDA/POPC,
and PDA/DOPC vesicles exposed to 20 µM htt-exon1(46Q). Error bars are provided for
every sixth data point and represent the standard error of the mean. (b) The maximum
relative % CR obtained for each PDA/lipid system upon exposure to htt.
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Figure 4.13: The composition and abundance of complexes formed with Nt17 and
different lipids was analyzed via ESI-MS. Nt17 was incubated (a) alone or with (b) DMPC,
(c) POPC, or (d) DOPC lipid vesicles. (e) The total abundance of peptide-lipid complexes
was compared across all systems, as well as the abundance of complexes by lipid content
with Nt17 (f) monomers, (g) dimers, and (h) trimers. Insets (f-h) illustrate an enlargement of
select portions of the given plots. (i) The total molecular contacts made between Nt17 and
DMPC, POPC, or DOPC lipid bilayers in MD simulations.
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Iona m/z Charge State Iona m/z Charge State Iona m/z Charge State

Nt17 + 1DMPC 2652.99 1 Nt17 + 1POPC 2734.63 1 Nt17 + 1 DOPC 2760.64 1

Nt17 + 1DMPC 1327 2 Nt17 + 1POPC 912.21 3 Nt17 + 1DOPC 1380.82 2

Nt17 + 1DMPC 885 3 Nt17 + 1POPC 1367.82 2 Nt17 + 2DOPC 1773.62 2

Nt17 + 2DMPC 1665.47 2 Nt17 + 2POPC 1747.11 2 Nt17 + 3DOPC 2166.42 2

Nt17 + 2DMPC 1110.98 3 Nt17 + 2POPC 1165.41 3 Nt17 + 3DOPC 1444.61 3

Nt17 + 3DMPC 2004.45 2 Nt17 + 3POPC 2126.91 2 Nt17 + 4DOPC 2559.22 2

Nt17 + 3DMPC 1336.96 3 Nt17 + 3POPC 1418.6 3 Nt17 + 5DOPC 2952.02 2

Nt17 + 4DMPC 2343.42 2 Nt17 + 4POPC 2506.7 2 Nt17 + 6DOPC 2230.21 3

Nt17 + 5DMPC 2682.4 2 Nt17 + 4POPC 1671.8 3 2Nt17 + 1DOPC 2367.84 2

Nt17 + 6DMPC 3021.37 2 Nt17 + 5POPC 2897.99 2 2Nt17 + 1DOPC 1578.89 3

Nt17 + 6DMPC 2014.91 3 Nt17 + 5POPC 1925 3 2Nt17 + 2DOPC 2760.64 2

2Nt17 + 1DMPC 2314.02 2 2Nt17 + 1POPC 2354.84 2 2Nt17 + 3DOPC 3153.44 2

2Nt17 + 1DMPC 1543.01 3 2Nt17 + 1POPC 1570.22 3 2Nt17 + 4DOPC 2364.49 3

2Nt17 + 2DMPC 2652.49 2 2Nt17 + 2POPC 2734.13 2 2Nt17 + 5DOPC 2626.36 3

2Nt17 + 3DMPC 2991.47 2 2Nt17 + 2POPC 1823.42 3 2Nt17 + 6DOPC 2888.22 3

2Nt17 + 3DMPC 1994.98 3 2Nt17 + 3POPC 3113.93 2 3Nt17 + 1DOPC 2236.9 3

2Nt17 + 4DMPC 3330.44 2 2Nt17 + 3POPC 2076.62 3 3Nt17 + 2DOPC 2498.77 3

2Nt17 + 4DMPC 2220.96 3 2Nt17 + 5POPC 2583.01 3 3Nt17 + 3DOPC 2760.64 3

3Nt17 + 2DMPC 2427.01 3 3Nt17 + 1POPC 2235.9 3 3Nt17 + 4DPOC 3022.51 3

3Nt17 + 3DMPC 2652.99 3 3Nt17 + 5POPC 3241.02 3 3Nt17 + 5DOPC 3284.37 3

3Nt17 + 4DMPC 2878.97 3 3Nt17 + 6POPC 3494.22 3

Table 4.1: Assigned ions for Nt17 incubated with DMPC, POPC, or DOPC lipid vesicles
along with their mass to charge ratios.
a The following average masses have been used to assign the peaks: 1974.04 for
Nt17 peptide, 677.95 for DMPC lipid, 759.59 for POPC lipid, and 785.60 for DOPC lipid.
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A heterogeneous mixture of ions corresponding to Nt17-lipid complexes (Fig. 4.13b-d,

Tab. 4.1) and pure lipid complexes (Fig. 4.14 and Tab. 4.2) were observed with all three

lipid systems. Complexes contained monomeric to trimeric Nt17 and up to 6 lipids, with

the makeup and abundance of complexes varying between lipid systems (Fig. 4.13e-h).

The relative intensity of ions for each lipid system decreased with multimers of increasing

size. However, lipid content in complexes with each system varied. The number of distinct

complexes identified was similar for each lipid system (Tab. 4.1), but the total relative

abundance paralleled the PDA assay (POPC > DMPC > DOPC, Fig. 4.13e). That said,

complexes of the same composition but different charge states were observed. POPC had

the lowest number of identified Nt17-lipid combinations despite having the highest relative

abundance of ions while DOPC had the most distinct combinations but the lowest relative

abundance.

Figure 4.14: Identification of lipid only species by ESI-MS. (a) A control spectra of Nt17
with no lipids, and spectra of Nt17 with (b) DMPC, (c) POPC, or (d) DOPC lipid vesicles are
presented. In each spectra, lipid only species are identified.

Monomeric Nt17 complexes were observed with up to six DMPC lipid monomers, with

the most abundant complexes containing one DMPC lipid (relative abundance of 4.44%),

three DMPC lipids (0.22%), and then two DMPC lipids (0.16%, Fig. 4.13f). Dimeric and

trimeric Nt17-DMPC complexes were significantly less abundant, containing only up to
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Iona m/z Charge State Iona m/z Charge State Iona m/z Charge State

1DMPC 678.95 1 1POPC 760.59 1 1DOPC 786.6 1

2DMPC 1356.9 1 2POPC 1520.18 1 2DOPC 1572.2 1

3DMPC 2034.85 1 3POPC 2279.77 1 3DOPC 2357.8 1

4DMPC 2712.8 1 4POPC 3039.36 1 4DOPC 3143.4 1

3DMPC 1017.93 2 2POPC 760.59 2 2DOPC 786.6 2

4DMPC 1356.9 2 4POPC 1520.18 2 3DOPC 1179.4 2

3DMPC 678.95 3 3POPC 760.59 3 3DOPC 524.73 3

3DMPC 509.46 4 4POPC 570.69 4 4DOPC 590.2 4

Table 4.2: Assigned ions for DMPC, POPC, or DOPC lipid multimeric species along
with their mass to charge ratios.
a The following average masses have been used to assign the peaks: 677.95 for
DMPC lipid, 759.59 for POPC lipid, and 785.60 for DOPC lipid.

four DMPC lipids (Fig. 4.13g-h). Complexes of trimeric Nt17 with one DMPC lipid were

nonexistent. Instead, there was a high abundance of trimeric Nt17 complexes with multiple

DMPC lipids compared to other systems. The total relative intensities of Nt17-DMPC

complex ions was 4.92%. In contrast, the total relative intensity of Nt17-POPC complex

ions was much higher (15.05%, Fig. 4.13e). This large population was predominately

comprised of monomeric Nt17-POPC complexes (relative intensity of 14.21%, Fig. 4.13f).

While eleven distinct monomeric Nt17-lipid ions were observed with both DMPC and POPC,

monomeric Nt17-POPC complexes only contained up to five POPC lipids. Dimeric and

trimeric Nt17-POPC complexes were less abundant (Fig. 4.13g-h). Nt17 dimers complexed

with either one, two, three, or five POPC lipids; Nt17 trimers complexed with one, five,

or six POPC lipids. Nt17-DOPC complexes were the least abundant, reaching a total

relative abundance of only 2.38% (Fig. 4.13e). The most abundant complex consisted of

monomeric Nt17 with one DOPC lipid (1.17%, Fig. 4.13f). Dimeric and trimeric Nt17-DOPC

complexes were observed with up to six DOPC lipids or five DOPC lipids respectively (Fig.

4.13g-h). Despite the low abundance, Nt17 had the highest number of unique complex

combinations with DOPC. Previously it has been shown that gas-phase Nt17-DOPC ion

complexes can be weak and dissociate with little energy input prior to mass analysis; the

low abundances reported here are consistent with the earlier results [42]. Therefore, even

though the Nt17-DOPC ion complexes had the lowest abundance, this may be due to

their stability in the gas phase. To complement these native MS studies, the interaction of

Nt17 with DMPC, POPC, or DOPC was investigated using weighted ensemble molecular
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dynamics (MD) simulations. Although the timescales for the MD simulations are orders of

magnitude shorter than the MS experiments, they provide a much more detailed picture of

how Nt17 binds to each lipid type. In order to facilitate as direct a comparison as possible,

we modeled Nt17 in a coiled conformation above the bilayer surface, allowing the peptide

to spontaneously bind and dissociate. This approach is consistent with the ability of Nt17

to function as a membrane-active peptide that is governed by partitioning-folding coupling,

in which peptides initially bind to a bilayer surface, partition into the headgroup region to

sequester from bulk solvent, and fold into a more energetically favorable α-helix [51]. The

endpoint for this process with Nt17 is represented by the structures that were obtained by

Bechinger and coworkers, where the hydrophobic face of the amphiphilic helix was clearly

buried in the hydrophobic region of the DPC micelle [16]. Convergence analysis of our

simulations shows that regardless of lipid type, Nt17 weakly binds to the bilayer surface,

with a slight shift towards more tightly bound complexes in the following order from least

to greatest: DMPC > POPC > DOPC (Fig. 4.15). A rough correlation exists between

the abundance of Nt17/lipid complexes observed by MS and the distribution of proteolipid

contacts observed in the MD simulations (Fig. 4.13i). Each system has a maximum around

1100 contacts. Nt17 clearly binds most weakly to DMPC, with a narrow gaussian distribution.

POPC, the next-largest system by area-per-lipid, has a bimodal distribution with a second

maxima at 1750 contacts. For DOPC, instead of a second maxima there is a broad plateau,

ranging from 1750 to 2500 contacts. Based on the monomer data in our MS results, there

is a slight difference in the trends in lipid binding to Nt17 compared to our MD simulations.

This difference could be attributed to the nature of the two techniques: MS is capturing

weak peptide-lipid interactions that must remain stable in the gas phase, whereas our MD

simulations are capturing intermittent interactions in the liquid phase. Based on the clear

separation in quality of binding between the three lipid systems, the MD simulations were

further explored to better understand the binding of Nt17 to the membrane surface.

4.3.4 Effect of lipid type on binding of Nt17.

When examining overall binding, Nt17 possesses distinct orientations for each lipid type

(Fig. 4.16 and Fig. 4.17). Bound complexes to DMPC are dominated by partitioning of

the N-terminus into the bilayer surface. This Nt17 segment is a mixture of nonpolar and

polar residues (MATL), which individually are not too bulky to access the bilayer interior
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Figure 4.15: Nt17 transient binding largely persists as WESTPA simulations progress.
Change in progress coordinate as a function of WESTPA iteration for each individual
WESTPA run for DMPC (left), POPC (middle), and DOPC (right).

sandwiched between two relatively densely-packed headgroup regions (ADMPC = 60.6 Å2

/ lipid)[52] (Fig. 4.16). The Nt17 C-terminus is mainly dissociated from the DMPC bilayer,

with a small sub-population that is less than 10 Åfrom the surface. In contrast, Nt17 strongly

binds POPC via the C-terminus; F17 partitions almost 5 Åinto the headgroup region, with

an extensive segment (F11, E12, S13, L14, K15, and S16) remaining less than 10 Åfrom

the bilayer surface. This strong interaction potentially stems from the opportunity for a

bulkier, nonpolar sidechain with conformational flexibility (i.e., F17) probing larger defects

associated with a larger area per lipid (68.3 Å2/ lipid) [53]. Although there is a small fraction

of the middle segment of Nt17 within 15 Åof the bilayer, in general, the N-terminal portion

is dissociated from the membrane, beginning with A10 and getting progressively further

from the bilayer as one proceeds towards M1. For both DMPC and POPC, one of the

Nt17 termini binds the membrane in a conformation that is orthogonal to the bilayer surface
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(Fig. 4.16a,c). However, with DOPC, nearly all Nt17 residues interact with the membrane

(Fig. 4.16b), leading to a parallel orientation of the Nt17 principal axis with respect to the

bilayer. Additionally, no single residue binds most strongly, likely stemming from DOPC

having the largest area per lipid of all the systems tested (72.2 Å2 / lipid) [54] and leading

to a larger number of defects that can be utilized by Nt17. Previous MD simulation studies

on Nt17 interactions with lipid bilayers have shown that Nt17 can bind via multiple amino

acid residues (e.g., L4, L7, F11, and F17) [55]. These multiple binding modes appear to

be linked to orientation of the peptide: in each of our lipid systems we observe at least two

populations, with bimodal distributions for both POPC and DOPC (Fig. 4.16b,c).

4.3.5 Relationship between sidechain orientation and binding of Nt17

Closer examination of residue-specific interactions of Nt17 with the bilayer surface reveals

that, in most instances, sidechain orientation lies either parallel or away from the bilayer. For

DMPC, T3 and K6 are notably parallel to the bilayer ( 90 deg), likely ruling out the potential

for non-bonded interactions (hydrogen bonding for T3 and salt bridge formation for K6) with

PC headgroups to drive formation of stable binding conformations (Fig. 4.18 and Fig. 4.19).

Aromatic (F11 and F17) and charged (K15) residues in the C-terminal half of Nt17 occupy

two to three areas of conformational space, indicating that the dissociated portion of Nt17

is restricted to regions that allow it to bind via the N-terminus. Binding of Nt17 to POPC is

much different: F17 partitions into the headgroup region nearly antiparallel to the membrane

normal between acyl chains near the triglyceride backbone. This serves to restrict F11 and

K15 (proximal to F17) parallel to the membrane normal (90 deg), whereas other residues (T3,

K6, and K9) broadly sample orientations ranging from parallel (0 deg) to antiparallel (180

deg) (Fig. 4.18). For DOPC, there is a correlation between the distance of a given residue

from the bilayer surface and sidechain orientation for nonpolar or slightly polar residues.

Specifically, L7, A10, S13, and L14 sample conformations partitioned into the bilayer (Fig.

4.19). Additionally, there is a noticeable population for each lysine residue (K6, K9, and

K15) oriented towards the bilayer (Fig. 4.18) that is close enough to form a salt bridge

with the negatively charged phosphate moiety in the PC headgroup (Fig. 4.20d). This, in

conjunction with the overall closer positioning of the peptide, suggests binding of Nt17 to

DOPC is driven by a combination of charge-charge interactions and greater accessibility for

peptide partitioning. With DOPC, a threshold has been reached with respect to area per
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Figure 4.16: Lipid system affects N17 binding orientation. a) Representative snapshots
of the bound state for each lipid system from weighted ensemble simulations. Yellow ribbon:
Nt17, blue ribbon: first residue of Nt17, red/green: lipid membrane. Water and ions omitted
for clarity. b) Binned z-distance between the geometric centers of the membrane and
residues of Nt17 for frames in the bound state. Point size and color correspond to percent
occurrence. c) Binned angle between the principal axis of the peptide and the bilayer surface.
For b and c, green boxes represent data associated with the most likely orientation of Nt17
on the bilayer, shown in panel a. Red boxes represent data associated with a secondary
population, shown in Fig. 3.17.

lipid and Nt17 binding, in that there is a sufficient population and size of defects to allow the

entire peptide to partition into the bilayer.

4.3.6 The role of protrusions and defects in binding and stabilization of Nt17

When examining the behavior of the bilayer surface in the upper leaflet, each lipid system

possesses regions of protrusions and defects. In general, regions of protrusions or of

defects tend to group together (Fig. 4.20a). POPC has more well-defined and broader
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Figure 4.17: Representative snapshots of less commonly observed bound structures
for each lipid system from weighted ensemble simulations. Two unique conformations
are shown for DOPC.

Figure 4.18: Nt17 binding can be facilitated via partitioning of amino acid sidechains
into bilayer systems with higher areas per lipid. Correlation plot between the binned
distribution of sidechain angles of select residues in Nt17 and the binned distribution of the
z-distance between each respective residue’s terminal atom and the plane of the P atoms
in the lipid headgroups. Sidechain angles were defined as the angle between the vector
formed by the Cα carbon and the respective terminal heavy atom and the membrane normal.
0 deg: parallel to bilayer normal, 90 deg: parallel to bilayer surface; 180 deg: antiparallel to
bilayer normal (i.e., pointing into the bilayer). Top row: DMPC; middle row: POPC; bottom
row: DOPC.

regions of defects compared to DMPC, which correlates with the more effective binding of

Nt17. DOPC had the fewest regions of protrusions and defects, likely contributing to the

global but weaker interactions of Nt17. Quantification of the total number of protrusions

and defects in the bilayer surface provides a more well-defined description of what occurs

when Nt17 binds to a membrane. In the absence of Nt17, the three lipid systems have

similar distributions of protrusions (“above”, Fig. 4.20b) but slightly different distribution of

defects (“below”, Fig. 4.20b). Upon Nt17 binding, two changes take place in the bilayer
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Figure 4.19: Nt17 binding can be facilitated via partitioning of amino acid sidechains
into bilayer systems with higher areas per lipid. Correlation plot between the binned
distribution of sidechain angles of select residues in Nt17 and the binned distribution of the
z-distance between each respective residue’s terminal atom and the plane of the P atoms in
the lipid headgroups. (0 deg: parallel to bilayer normal, 90 deg: parallel to bilayer surface;
180 deg: antiparallel to bilayer normal (i.e., pointing into the bilayer)). Top row: DMPC;
middle row: POPC; bottom row: DOPC.

surface: 1) the population of protrusions and defects decreases due to partitioning of the

peptide, and 2) the distribution of protrusions and of defects between lipid systems becomes

separable. With protrusions, the distributions remain consistent across all lipid systems;

in the case of defects, the distributions arrange according to the corresponding areas per

lipid. The difference in the shifts in the distribution of protrusions indicates that the initial

interactions of Nt17 with the bilayer surface (i.e., with protrusions) is entirely non-specific

with respect to lipid type. In contrast, the number and distribution of defects is most greatly

affected by the ability of the bilayer to accommodate partitioning of Nt17 into the headgroup

region. Since DMPC is the most tightly packed bilayer in the lateral plane of the membrane,

both by area per lipid and by the number of defects, it is incapable of easily changing its

lateral compressibility, a prerequisite for surface binding and partitioning of a peptide. This

underscores why POPC and DOPC have progressively larger distributions of defects. Future

studies will determine the energetic contributions of defects to binding of Nt17.

Non-bonded interactions also play a role in stable binding of Nt17 to the membrane.

Although we did not observe the extensive formation of an α-helix that was reported

by Bechinger and coworkers [16], Nt17 undergoes partial helical folding in POPC and

DOPC (Fig. 4.20c). Folding is centered around L14 and K15, with about 20-25% helicity.

Additionally, an intramolecular salt bridge frequently exists between E12 and K15. i + 3

salt bridges can contribute to α-helix formation in short peptides [56]; in this case, the salt

bridge formation appears to work cooperatively with headgroup accessibility in facilitating

80



Figure 4.20: Formation of stable proteolipid complexes occurs via contributions from
both redistribution of bilayer deformations and stable intermediates of Nt17. a) Heat
map of the average displacement of headgroups in the upper leaflet for all three trajectories
of DMPC (left), POPC (middle), and DOPC (right). b) Logarithmic distribution of protrusions
(“above”, left) and defects (“below”, right) for lipid-only systems and corresponding lipid
systems with Nt17. c) Percent helicity for Nt17 in DMPC, POPC, and DOPC. A residue
was considered helical if both the prior and subsequent residues also have helical phi/psi
angles. (Residues that were not helical were omitted for clarity.) d) Percent of total simulation
time a charged residue in Nt17 was involved in formation of a salt bridge. Intramolecular
salt bridges are those formed between residues in Nt17, while intermolecular salt bridges
are those formed between charged residues in Nt17 and the phosphate moiety of the PC
headgroup for DMPC, POPC, and DOPC.

Nt17 partitioning into the bilayer.

4.4 CONCLUSION

A number of cytotoxic features of HD are associated with the localization of htt to lipid

membranes [23, 24, 57]. In this study, the impact of lipid tail saturation on htt-exon1(46Q)

interaction with lipid membranes and subsequent consequences on aggregation were

determined. The different lipids influenced htt aggregation to varying extents, with DMPC

accelerating fibrillization, POPC having a minimal impact, and DOPC decreasing fibrillization.

However, the extent of htt association with each lipid system did not correlate with the extent

of fibrillization, indicating that the membrane environment provided by different lipid systems

influences the membrane activity and aggregation of htt. The assays (ThT and AFM) used to

assess htt aggregation measure it throughout the bulk of the incubations. That is, there is no
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distinction made between aggregation in solution versus aggregation occurring directly on a

vesicle surface. Aggregation directly on lipid membranes often exhibit unique aggregation

pathways compared to those observed in aqueous solutions [25]. In addition, the interaction

of the htt-exon1 lipid binding domain, i.e. Nt17, with the lipid systems demonstrated that the

match between defect and hydrophobic amino acid size plays a major role in orientation of

the peptide on the bilayer. These early interactions between Nt17 and each lipid system

manifest in down-stream impacts on htt-exon1(46Q) aggregation. That is, these differing

orientations could influence if membrane association inhibits or promotes aggregation

directly on the surface. The interplay between htt associating and disassociating from

membranes can also influence aggregation by potentially promoting aggregation prone or

resistant conformation. In solution, the Nt17 domain of htt transiently samples α-helical

conformations that are associated with early oligomer formation [14]. Binding lipids also

promotes helical structure in Nt17 [25]. Brief binding may promote helical content in Nt17

upon dissociation from lipid membranes [42], enhancing aggregation efficiency. In short,

there are numerous competing processes, i.e. aggregation in solution, aggregation on the

lipid surface, association/disassociation from the membrane, orientation on the membrane,

that all can influence net aggregation. This complexity underscores the apparent disconnect

between the impact of a particular lipid on aggregation and the extent of the association of

htt with that lipid system.

Components within the cellular environment, particularly lipid membranes, modify

amyloid formation, promoting or stabilizing specific aggregate species [58]. Htt undergoes

unique aggregation mechanisms on lipid membranes compared to bulk solution [25], and

this appears dependent on membrane composition (32, 33, 65). Beyond the three simple

lipid systems investigated here, more complicated lipid systems also modify htt aggregation

to various extents [26, 28, 59, 60]. Total brain lipid extract (TBLE) stabilizes oligomers

of truncated polyQ peptides that contain Nt17 [14] and impedes fibrillization of htt-exon1

[26], and this impact is further modified by the exogenous addition of cholesterol [28],

sphingomyelin, and GM1 [27]. In contrast, htt fibrillization is accelerated in the presence

of POPC/POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine) through a unique Nt17-

mediated mechanism involving membrane anchoring and two-dimensional diffusion [25].

Based on 3D HNCO NMR studies using a small peptide with Nt17 and a polyQ domain of 17

residues, the interaction of Nt17 with lipid membranes is dynamic; however, there were clear

82



differences in the interaction of Nt17 with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine

(DOPE)/1,2,-dioleoyl-sn-glycero-3-phosphoserine (DOPS)/DOPC compared to brain extracts

[61]. In this regard, the varied orientations of Nt17 observed here by MD on different lipid

systems impact htt anchoring and diffusion along the membrane. These initial changes

in Nt17-lipid binding manifested in altered abundances of Nt17/lipid complexes and lead

to altered aggregation. Collectively, these observations indicate that the initial htt/lipid

interactions profoundly impact subsequent aggregation.

While the extent of htt fibrillization correlated with lipid tail saturation (DMPC > POPC

> DOPC; determined by ThT and AFM assays), the htt-membrane association (POPC >

DMPC> DOPC; measured by PDA and MS) did not, suggesting a more complex relationship

between htt-lipid interaction and subsequent aggregation. Through MD simulations, clear

differences occur in the initial Nt17-lipid interactions that likely influence downstream aggre-

gation. While a significant gap in timescale persists, Nt17/lipid contact density measured in

MD simulations are consistent with the populations of Nt17/lipid complexes observed by MS

with all three lipids. As Nt17 peptides did not contain polyQ tracts, the MD and MS studies

cannot provide insight into fibrillization; however, oligomerization is driven by Nt17 [14, 62,

15]. Therefore, changes in Nt17-lipid interaction should impact downstream htt oligomeriza-

tion, and all three lipid systems reduced the heterogeneity of oligomer populations compared

to aggregation in the absence of lipids. The impact of lipids on htt aggregation is signifi-

cant as cellular dysfunction and toxicity are linked to both htt oligomers [8, 10] and fibrils

[12, 63]. Furthermore, the formation or stabilization of specific aggregate species by lipid

membranes could promote the toxic disruption of membranes and organelles observed in

HD [18, 64]. This suggests that targeting the initial htt/lipid interaction may represent an

upstream therapeutic target.

The properties determining selectivity of AHs (like Nt17) for specific membranes are

often related to curvature-induced membrane defects [30, 65, 66]. As curvature enhances

the membrane binding of Nt17 [35, 67], defect sensing represents a plausible mechanism

associated with htt membrane affinity. Here, the population of available membrane defects

correlates well with the affinity of Nt17 for each lipid system, and the orientation of Nt17 on

membranes appears to be predicated by matching residue and defect sizes. Such a scenario

has been observed with other AH lipid binding motifs. For example, the amphipathic lipid-

packing sensor (ALPS) inserts large hydrophobic residues preferentially into membranes
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with larger membrane defects [68]. Nt17 exhibits many similarities with ALPS motifs,

including a structural transition from intrinsically disordered to an AH in the presence of lipids

[17, 16, 69], increased association with membranes of lower cholesterol content [28, 33]

or increased curvature [65, 35] and, as shown here, a preference for insertion into bilayers

comprised of monounsaturated phospholipids [33, 70]. Despite sharing functional similarities,

Nt17 and ALPS motifs vary in sequence; while ALPS motifs contain a hydrophobic side

comprised primarily of large amino acids (F, L, W) [30, 68], the hydrophobic face of Nt17

contains several smaller amino acids (A, T) near the N-terminus. The lack of variety in

ALPS motifs hydrophobic residue sizes leads to the initial insertion of hydrophobic residues

into the bilayer in a random manner [29]. The mechanism of Nt17 membrane binding

appears more complex, with both hydrophobic residues size and defect size determining

the initial orientation and selective binding of the motif. This defect mechanism gains further

importance for selective binding of AHs given that lipid composition and membrane curvature

synergistically determine defect size and distribution [71].

Upon exposure to tightly packed DMPC (saturated tails) bilayers with a relatively

small area per lipid, the smaller, N-terminal residues (MATL) partitioned into the bilayer.

POPC (monounsaturated) bilayers display an increased area per lipid and occurrence of

defects. The interaction between Nt17 and the POPC bilayer was driven by the partitioning

of the larger, C-terminal residues (LKSF). While the smaller N-terminal residues could insert

into the larger defects present on POPC bilayers, Nt17 preferred a C-terminus approach,

indicating a thermodynamic advantage to sequestering larger hydrophobic residues. DOPC

(polyunsaturated) bilayers had a higher propensity to form defects with a broader distribution

of sizes. Due to this, residues along the entire length of Nt17 exhibited more frequent, but

weaker binding and Nt17 sampled a broader variety of orientations on the bilayer surface.

This behavior explains why complexes observed with MS had larger DOPC content but were

significantly less abundant overall than complexes formed with DMPC or POPC.

Beyond the impact of lipids on htt aggregation, htt and its aggregate forms can induce

physical changes in membranes. Many amyloid-forming proteins have a deleterious impact

on membrane integrity that leads to dysfunction, organelle disruption, and cell death by

specifically targeting bilayers [18, 58]. For example, Aβ, IAPP, and htt all distort membrane

morphology and rigidity of model lipid bilayers [72]. Specifically, mutant htt is associated

with membrane degradation of the ER, nuclear envelope, and mitochondria [23, 24, 57].

84



With the complex nature of amyloid formation, assigning specific aggregate species to

a particular toxic mechanism is challenging. This is further complicated by the dynamic

nature of aggregation in which the process of aggregation potentially plays a role rather

than a specific aggregate type. Fundamental understanding of the link between the initial

protein/lipid interaction, subsequent aggregation, and impact on membrane integrity will

provide a clearer, complete picture of these phenomena.
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5. DEVELOPMENT OF A HIGH-THROUGHPUT MEM-

BRANE PERMEABILITY ASSAY FOR CYCLIC

LARIAT PEPTIDES

5.1 INTRODUCTION

Membrane-permeable cyclic peptides are attractive to many scientists and pharmaceutical

companies as potential drug candidates[1]. The selection of possible peptide sizes allows

selectivity for the target receptor and modulates the protein-protein interaction. While linear

peptides are flexible, and therefore lack affinity, selectivity, and bioavailability, cyclic peptides

are more rigid and adopt structures with affinity for protein surfaces with high specificity.

Paramount to the identification of drug-viable cyclic peptides is the determining the potential

aqueous structures of the peptide and the membrane permeability of the peptide.

A particular class of cyclic peptides known as lariat depsipeptides make up roughly

30% of the naturally occurring cyclic peptides according to a survey[2] of the Natural

Products Atlas[3]. The majority of these peptides are cyclized by a connection between

the C-terminal carboxylic acid and a side-chain hydroxyl group to form an ester linkage. Of

particular interest to this study is the library of peptides studied by C. Kelly, et al.[2] (Fig. 5.1),

4096 nine-residue peptides with an ester linkage between the C-terminus and Thr3. While

C. Kelly, et al. tested the permeability of a sizeable proportion of the peptides in the library,

a high-throughput method of determining the permeability as well as revealing pertinent

structural information of potential candidates would be a useful tool.

MD simulations are an excellent tool to determine the aqueous solution structures of

cyclic peptides; these are of particular interest as they can serve as starting structures for

docking simulations to determine if the peptide could act as a drug for a particular protein-

protein interaction. Since cyclic peptides often occupy several different conformations in
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Figure 5.1: Cyclic peptide scaffold used in this study. Lariat peptides have a short tail in
addition to a cyclic backbone. In this particular study, peptides had seven residues within the
macrocycle connected by a depsi linkage between the sidechain of T3 and the C-terminus of
P9. The peptide library consists of permutations at each residue: “L” and “D” designate the
specific amino acid enantiomers and “Me” designates methylation of the backbone nitrogen.

solution, it is difficult to resolve their structure via a method like NMR spectroscopy[4].

Umbrella sampling (US) is an established method for determining the permeability of small

molecules[5, 6, 7] and cyclic peptides in particular[8, 9], however, even this method can be

cumbersome requiring upwards of 20 simulations on the order of 200 ns per peptide with

the added system size of a membrane.

The overall question that we wanted to answer was, “Is it possible to use MD simula-

tions of cyclic peptides in different solvents to predict membrane permeability?” In order to do

this, it required screening of a large number of peptides and running simulations in solvents

with large enough physical differences to provide resolving power in the conformational

behavior of these peptides in solution. For this study, we chose water (i.e., aqueous) and
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octanol (organic), as they are the de facto solvents[10] used to calculate partition coefficients

of small molecules.

5.2 METHODS

5.2.1 Force field parameterization

Parameters for the depsilinkage (ester linkage) between Thr3 and Pro9 were generated

via FFTK[11]. Parameters for methylated Leucine, methylated D-Leucine, and methylated

D-Alanine were determined by comparison to existing residues in the CHARMM36 force

field[12].

5.2.2 Structure generation

15 peptides were chosen randomly from each library of those tested by Kelly et al.[2]

resulting in 240 total peptides. Linear structures were generated and the depsilinkage

formed with psfgen in VMD[13]. Peptide structures were minimized in NAMD 2.14[14] for

5000 steps with a 10 kcal/mol/Å2 restraint on the omega dihedrals of the residues in the ring

using colvars[15]. Each peptide was then solvated in water and in octanol using solvate in

VMD[13].

5.2.3 Molecular dynamics

Each of the 480 systems were minimized for 7500 steps then equilibrated in NPT for 100

ps, and finally run in NVT for 10 ns of conventional MD followed by 40 ns of gaussian-

accelerated MD[16, 17, 18, 19]. Each step was carried out in NAMD 2.14[14]. Four peptides

were run under the same conditions in both conventional and gaussian-accelerated MD for

250 ns to confirm convergence of the 50 ns runs.

5.2.4 Permeability Assay

To predict the permeability of the peptides, we used a modified version of the following

resistivity (R) and permeability (P) equation

R =
1

P
=

z2∫
z1

exp[βW (z)]

D(z)
dz, (5.1)

98



where W (z) is the potential of mean force (PMF), D(z) is the local diffusivity coeffi-

cient, β is the thermodynamic beta (β = 1/kBT ), and z is a collective variable the describes

the relative position as the solute transitions through solvents[6]. We will instead use the

following

R =
1

P
=
exp[βW (zaq)]

D(zaq)
− exp[βW (zoct)]

D(zoct)
, (5.2)

to estimate the permeability of a peptide given the PMF and local diffusivity in water

(zaq) and octanol (zoct). The PMF (W (z)) was estimated with the Boltzmann distribution,

pi ∝ e−εi/(kT ) (5.3)

where pi is the probability of the system being in state i, εi is the energy of that state,

k is the Boltzmann constant, and T is the temperature. We applied this to the five most

representative structures of each of the 250 ns GaMD runs found via k-means clustering;

this generates a dictionary of relating structure and energy. To determine the PMF for

each peptide, we used k-means clustering to find the 5 most representative structures then

used the rmsd2ref tool in LOOS[20, 21] to compare the representative structures back

to the dictionary assigning the energy value to the representative structure from the most

similar dictionary structure. The five energy values were then averaged. The local diffusivity

constant will be estimated using the generalized Einstein-Smoluchowski equation [6],

D(z) =
⟨|z(t)− z(0)|2⟩

6t
(5.4)

where z(t) represents the position at time, t. To account for the affect of GaMD on

diffusion, we compared diffusivities of the 250 ns runs to calculate a scaling factor of 2.06.

5.2.5 Analysis

Backbone dihedral angles. The backbone dihedral angles were measured using the torsion

tool in LOOS[20, 21]. The linkage interrupts the measurement of the final ω dihedral.

Hbonds. The number of hydrogen bonds was measured using the hmatrix tool in LOOS[20,

21]. Principle Component Analysis. The principle component analysis (PCA) was performed

with the svd tool on the backbone heavy atoms in LOOS[20, 21].
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5.3 RESULTS AND DISCUSSION

The first step was to directly compare the results of our permeability assay (Pcalc) to the

permeability results (Papp) from Kelly et al.[2]. Although the range of log(Pcalc) is similar

to that of log(Papp), there is no correlation between the two sets of values (Fig 5.2). This

was confirmed by a Pearson correlation coefficient of -0.0059; correlated or anti-correlated

data sets have values that exceed +/- 0.5. This indicates that calculation of partitioning

coefficients based on the PMF between two solvents is insufficient to correctly predict

behavior of permeability of cyclic peptides. The next step was to look for other observables

from our simulations that could indicate differences in behavior of cyclic peptides in water

versus octanol.

Figure 5.2: Calculated log(P) values from MD simulations are in poor agreement with
experimental data.Plot of the log of apparent partitioning coefficients (Papp) obtained from
Kelly et al.[2] against partitioning coefficients calculated from simulations conducted in this
study (log(Pcalc)). Approximately 200 peptides were tested.

Next, we looked to see if the trend in methylation was conserved: increase in methy-

lation correlated to an increase of permeability. We observe fairly good agreement with the

experimental results of Kelly et al.[2], in which there is a noticeable increase in permeability

from N = 0 to N =1 and slight increase from N = 1 to N = 4 (Fig. 5.3). The conventional
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hypothesis with respect to N-methylation in cyclic peptides is that for each N atom that

is methylated, it removes a potential hydrogen donor from the molecule. This effectively

makes the cyclic peptide less soluble in aqueous solution and more prone diffuse across

the membrane.

Figure 5.3: N-methylation generally correlates with permeability. Box plot of partition
coefficients based on MD simulations (Pcalc) as a function of the number of N-methylations
on the cyclic peptide backbone. Mid-points in each box is the mean for each particular data
set. Boxes represent the two intermediate quartiles of each data set. Boxes and means
were calculated by leaving out the two largest outliers.

In order to more appropriately represent the distribution of log(P) values for each

methylation state, we dropped the two farthest outliers from each set of data points. Careful

analysis of the lariat peptide library from Kelly et al. shows two things: 1) N-methylation is

a gaussian distribution (most highly populated value is N = 2), and 2) actual experimental

data on the peptide library is 23-40% of the total theoretical number in the peptide library[2]

(Fig. 5.4). N = 0 and N = 4 were by far the most poorly represented peptides in the study of

Kelly et al., and so it was necessary for them to over-sample these two populations in order

to capture accurate permeability behavior. In our case, we did not have the computational

resources to run an equivalent number of cyclic peptides (this would have translated to

an additional 30-40 peptide systems), and so the permeability behavior for N = 0,4 will

be noisier than the other three data sets. By removing the two largest outliers, we more

101



effectively capture the trends across the entire library tested that is in greater agreement

with the experimental data as well.

Figure 5.4: Distribution of peptide library by N-methylation is roughly gaussian and
indicates how oversampling of N = 0,4 groups is beneficial to understanding overall
trends. Bar plot of the number of cyclic peptides that were tested according to N-methylation
for the experimental approach of Kelly et al.[2] (dark gray) and the simulation-based approach
(light gray). Data recovery percentage is based on the expected number of cyclic peptides
that could theoretically be produced during library generation versus the actual number of
cyclic peptides that were synthesized[2].

Comparison to Kelly et al.[2] shows that permeability is loosely correlated with hete-

rochirality. However, this may have been an optimistic interpretation of their results in light of

our data (Fig. 5.5). For the more largely populated portions of heterochirality (N = 2,3,4,5,

(Fig. 5.6)), the distributions were quite broad (log(Papp) -5.0 to -7.5); our data is roughly

consistent with these results. (Comparison between experimental and computational results

for N = 0, 1, 7, and 8 would largely be speculative because of the smaller number of samples

for each of these states). Given these conditions, the most likely conclusion to draw from

our results is that there is little to no correlation between heterochirality and permeability.

This underscores the need to employ additional approaches to effectively identify promising

candidates.
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Figure 5.5: Heterochirality in general has no effect on calculated permeability of cyclic
peptides. Box plot of partition coefficients based on MD simulations (Pcalc) as a measure of
the degree of heterochirality (i.e., number of D-amino acid residues). Mid-points in each box
is the mean for each particular data set. Boxes represent the two intermediate quartiles of
each data set.

Figure 5.6: Cyclic peptides tested by heterochirality is skewed towards peptides with
several D-amino acids.
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After comparing our results to the experimental results of Kelly, et al.[2], we looked

to determine the ability of the assay to provide relevant results about the structure of the

peptides. First, we calculated the propensity of each residue pair to form intramolecular

hydrogen bonds (Fig. 5.8). In general, the propensity for hydrogen bond formation decreases

with an increase in degree of N-methylation. In particular, Leu8 consistently participates as

a hydrogen bond acceptor regardless of solvent, indicating its importance as a key residue

for stabilization of the cyclic peptides. Quite often, Leu4 and Leu5 are the hydrogen bond

donors to Leu8 which can stabilize particular conformations of the cyclic peptide backbone.

A noticeable difference between solvents occurs in octanol, where Leu4 and Leu5 participate

as hydrogen bond acceptors as well, forming hydrogen bonds with Ala7 and Leu8. This

additional non-bonded interaction may be necessary to facilitate the conformational transition

that allows for effective diffusion of these specific cyclic peptides from a polar to a nonpolar

environment.

Figure 5.7: Several residues in the lariat ring frequently have an cis ω dihedral angle.
The propensity for each residue to occupy the phase space of the ω dihedral angle based
on solvent. The residue number corresponds to the ω dihedral that follows that residue (i.e.,
res 3 corresponds to the ω dihedral between residues 3 and 4).

The ω bond in peptides is the bond that joins the carbonyl carbon of the previous

residue to the nitrogen of the next residue; very rarely is the bond not trans (around ±180deg).

However, in short cyclic peptides, cis omega dihedral angles are more common[22], espe-

cially those involving proline residues[23]. We observed a similar trend here (Fig. 5.7) with

the Leu8 to Pro9 having a cis configuration for 24% and 31% of the time in water and octanol

respectively. We also observed an increased percentage of cis ω dihedrals for nearly every
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Figure 5.8: Octanol solvent is a major driver of formation of intramolecular hydrogen
bonds. Fraction of intramolecular hydrogen bond formation between the donor (NH) and
acceptor (C=O) groups in cyclic peptides as a function of N-methylation (n = 0, 1, 2, 3, 4)
and solvent (water or octanol).

residue in octanol with respect to water; this is most likely due to the more hydrophobic

nature of octanol causing the trans to cis flip to better bury the hydrophilic carbonyl on the

peptide backbone.
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Finally, we performed principle component analysis (PCA) on the heavy atoms of

the peptide backbones in attempts to simplify the predominant motions of the peptide.

Plotting PC1 vs PC2 (Figs. 5.11-5.26), 16 of the roughly 200 total peptides showed a

distinct difference in the distributions between water and octanol (Fig. 5.9. We used the

16 peptides (6 of which had values that corresponded with the data from Kelly et al.[2])

to recompare our log(Pcalc) and their log(Papp) values. Filtering of data using PCA clearly

shows an improvement in agreement between experiment and simulation and provides

potential validation for using PCA as a metric for identification of cyclic peptides with distinct

conformational and physical behavior.
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Figure 5.9: PCA can be used to identify peptides with distinct conformational behavior
between aqueous and organic solvent. Principal component analysis (PCA) was applied
to the heavy atoms in cyclic peptide backbones, plotting the first (PC1) versus second (PC2)
principal component in the PCA series. Teal: water; Cream: octanol. Visual inspection of
the distribution of PC1 versus PC2 was carried out for all cyclic peptides in this study; the
16 peptides with the most noticeable difference between water and octanol are presented
here. The full library of PCA plots (Figs. 5.11-5.26) are divided by into the sublibraries from
Kelly et al.[2].

107



Figure 5.10: Filtering of data via PCA leads to reliable correlation between exper-
imental and predicted peptide permeability. Plot of the log of apparent partitioning
coefficients (Papp) obtained from Kelly et al. [2] against partitioning coefficients calculated
from simulations conducted in this study (log(Pcalc)) using only cyclic peptides that displayed
distinct behavior from PCA (Fig. 5.9). Of the 16 peptides that were selected from PCA, only
six had corresponding experimental data from [2].
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Figure 5.11: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.12: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.13: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.14: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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‘
Figure 5.15: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.16: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.

114



Figure 5.17: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.18: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.19: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.20: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.21: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.22: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.23: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.24: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.25: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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Figure 5.26: Representative plot of the first versus second principal components for
cyclic peptide backbones (heavy atoms). Teal: water; Cream: octanol.
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5.4 CONCLUSION

Although our permeability data did not directly compare with experiment, we did see a

conserved trend with regards to methylation (permeability increases with methylation). We

successfully determined several residues that were key in hydrogen bonding; important to

know when trying to design a peptide that needs to fit a protein binding pocket of a particular

size. Given the success of PCA to identify peptides that agree with the permeability from

experiment, adding PCA to the assay seems promising, perhaps using voronoi tessellation

to compare the overlap of PCA from each solvent or applying a machine learning technique

to determine differences in PC populations.
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6. FUTURE DIRECTIONS

Given the work in the previous chapters, here are some additional directions the

research could take in the future. The work presented here does not probe the peptide-

membrane interactions that are fundamental to the activity of pHLIP. A natural extension

would be to simulate pHLIP in proximity to a membrane using constant pH. The method in

NAMD[1] allows the user to set the starting pKas of each residue before calculation; the pKa

determined in chapter 2 are natural starting points for when the peptide is farther from the

membrane. In simulations where the peptide starts closer to the bilayer, it may be more

appropriate to use the values determined via NMR[2] as initial pKa values. Another inter-

esting possibility would be executing constant pH MD in tandem with umbrella sampling[3],

an enhanced sampling technique that restricts the system within certain windows. Here,

the reaction coordinate that would be broken into windows is the distance between the

membrane and some key residues in the peptide; this should allow the determination of the

pKas of each residue as the peptide approaches the bilayer as well as the free energy of

binding based on the system pH.

The first extension of the work on the lariat peptides in chapter 5 would be to increase

the number of peptides sampled to more closely represent the full data set from Kelly, et

al.[4]. This would aid in comparison between the data sets and increase confidence in the

water-octanol method.

Besides simulating additional peptides, a natural progression of the cyclic peptide

work would be utilizing a method, such as umbrella sampling, to calculate the permeability of

the lariat peptides. This is the default method for determining permeability with MD, however,

it is considerably more expensive than the water-octanol method proposed in chapter 5.

While more expensive, this method has been very effective in the past[5, 6] and will allow for

a direct comparison (via a measurement such as RMSD) between the structures found in

chapter 5 and structures found from the umbrella sampling.
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