
Graduate Theses, Dissertations, and Problem Reports 

2022 

Probabilistic Space Weather Modeling and Forecasting for the Probabilistic Space Weather Modeling and Forecasting for the 

Challenge of Orbital Drag in Space Traffic Management Challenge of Orbital Drag in Space Traffic Management 

Richard J. Licata III 
West Virginia University, rjlicata@mix.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Astrodynamics Commons 

Recommended Citation Recommended Citation 
Licata, Richard J. III, "Probabilistic Space Weather Modeling and Forecasting for the Challenge of Orbital 
Drag in Space Traffic Management" (2022). Graduate Theses, Dissertations, and Problem Reports. 11600. 
https://researchrepository.wvu.edu/etd/11600 

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F11600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/223?utm_source=researchrepository.wvu.edu%2Fetd%2F11600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/11600?utm_source=researchrepository.wvu.edu%2Fetd%2F11600&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


Probabilistic Space Weather Modeling and Forecasting for the Challenge of

Orbital Drag in Space Traffic Management

Richard J. Licata

DISSERTATION submitted to the

Benjamin M. Statler College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY in Aerospace Engineering

Piyush M. Mehta, Ph.D., Chair

Jason Gross, Ph.D.

Yu Gu, Ph.D.

Snehalata Huzurbazar, Ph.D.

Nasser Nasrabadi, Ph.D.

Natalia Schmid, Ph.D.

Department of Mechanical and Aerospace Engineering

Morgantown, West Virginia

2022

Keywords: satellite drag, machine learning, space weather,

thermosphere, collision avoidance, uncertainty

Copyright 2022 Richard J. Licata



ABSTRACT

Probabilistic Space Weather Modeling and Forecasting for the
Challenge of Orbital Drag in Space Traffic Management

Richard J. Licata

In the modern space age, private companies are crowding the already-congested low Earth or-

bit (LEO) regime with small satellite mega constellations. With over 25,000 objects larger than

10 cm already in LEO, this rapid expansion is forcing us towards the enterprise on Space Traf-

fic Management (STM). STM is an operational effort that focuses on conjunction assessment and

collision avoidance between objects. While the equations of motion for objects in orbit are well-

known, there are many uncertain parameters that result in the uncertainty of an object’s future

position. The force that the atmosphere exerts on satellite – known as drag – is the largest source

of uncertainty in LEO. This is largely due to the difficulty in predicting mass density in the ther-

mosphere – the neutral region in Earth’s upper atmosphere. Presently, most thermosphere models

are deterministic and the treatment of uncertainty in density is highly simplified or nonexistent in

operations.

In this work, four probabilistic thermospheric mass density models are developed using ma-

chine learning (ML) to enable the investigation of the impact of model uncertainty on satellite

position for the first time. Of these four models, two (HASDM-ML and TIE-GCM ROPE) are

reduced order models based on outputs from existing thermosphere models while the other two

(CHAMP-ML and MSIS-UQ) are based on in-situ thermosphere measurements. The data and

model development are described, and the models’ capabilities, including the robustness of their

uncertainty quantification (UQ) capabilities, are thoroughly assessed.

Existing thermosphere models, and the ones developed here, use different space weather drivers

to estimate density. In a forecasting environment, there are algorithms and models that forecast the



drivers for a given period in order for a density model to make a forecast. The driver forecast

models used by the United States Space Force for the HASDM system are assessed to benchmark

our current capabilities. Using the error statistics for each driver, we can perturb the deterministic

forecasts. This provides an avenue to use the ML thermosphere models to study the effect of driver

uncertainty on satellite position, in addition to model uncertainty, for any period with available

driver forecasts. Seven periods are considered with diverse space weather conditions to study the

isolated effects of the two density uncertainty sources on a 72-hour satellite orbit. This provides

insight into the relative importance of density uncertainty on satellite position for various space

weather scenarios. This study also functions as a motivation to reconsider our current methods

for STM in order to improve our capabilities and prevent future satellite collisions with increased

confidence.
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Chapter 1. Motivation

Space situational awareness (SSA) has long involved the process of detecting, tracking, and

identifying all artificial objects in Earth orbit, an activity also known as catalog maintenance.

While the long-term characterization of the orbital debris environment is of primary importance

for space sustainability, there is also a need to assess the immediate risk on the scale of hours to

days. This need for a more active and real-time knowledge of the space environment driven by

the ever increasing congestion and contest in the domain has shifted the focus to space domain

awareness (SDA) putting stress on the ability to accurately predict the state of resident space ob-

jects (RSOs). Accurate modeling of orbital perturbations is crucial to achieving the primary goals

of SDA including remote sensing applications: RSO characterization, tracking, and prediction.

Figure 1.1: Population of satellite payload, rocket bodies, and debris since the launch of Sputnik
in 1957. This data was retrieved from https://www.space-track.org/ [1].

The proliferation of low Earth orbit (LEO) with replenishable small satellite megaconstella-

tions has shifted the focus from SSA and SDA to space traffic management (STM). The recent

1
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sharp rise in payloads seen in Figure 1.1 is a result of the increasing prevalence of these megacon-

stellations. In addition to catalog maintenance under SSA, STM has put focus on enhanced and

concerted space operations that includes conjunction assessment and collision avoidance [2]. The

United States Space Command (USSC), now under the United State Space Force (USSF), main-

tains the most comprehensive public catalog of space objects – including debris – and is currently

tasked with operations for the Department of Defense (DoD) and NASA. Presently, it provides

collision warning messages with Probability of Collision (PoC) and best estimates of state param-

eters and covariance to most, if not all, operators. The operators either use this information at

face value or deploy their own conjunction tools and gather additional actionable intelligence for

making decisions since maneuvers are expensive (e.g. personnel cost, scientific data or commer-

cial service outage, fuel costs) [3]. Additionally, the USSC and operators conduct their analyses

using different space weather models making the process inconsistent when combining informa-

tion. The continued LEO proliferation will overwhelm the current operational system and make

decisions challenging as the operators are likely to receive multiple collision warning messages a

day. For example, in the 6 month period between December 2021 and May 2022, SpaceX Starlink

performed nearly 7,000 collision avoidance maneuvers [4].

1.1 The Challenge of Orbital Drag

In order to improve our ability to make confident decisions about potential collisions, we ex-

amine our current approaches to drag modeling. The primary sources of error, or uncertainty, in

the drag acceleration (adrag) model described below are the thermospheric mass density, ρ, and the

drag coefficient, CD.

adrag = −1

2
ρBv2rel where B =

CDA

m
(1.1)

Cross-sectional area, A, and satellite mass, m, are typically well known but can also be uncertain

depending on the object. As a result, they are commonly lumped into a single uncertain ballistic

coefficient parameter, B, to simplify the modeling.The final parameter is the velocity of the orbiting
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object with respect of the co-rotating atmosphere, vrel, which is also generally well known but can

induce errors in the presence of strong neutral winds [5].

The effect of the thermosphere on satellite drag is a well-known problem in the space weather

research and space operations communities. A number of empirical and physics-based thermo-

sphere models have been developed (see Section 2.3.1), and significant efforts over the last two

decades have reduced the mean global error of empirical models to sub-10% level during peak lev-

els of the solar cycle. However, the errors during magnetically active conditions can be upwards of

25% [6]. Physics-based models can model the storm conditions with higher fidelity and potentially

more accuracy but are computationally expensive and can be biased. Figure 1.2 illustrates how the

Sun-Earth system are coupled and how modeling errors result in orbit prediction errors.

Figure 1.2: Coupling between space weather and thermosphere/Drag and its impact on orbit pre-
diction.

While historical performance is a necessary indicator of density model forecast performance, it

is not sufficient since forecasting is complicated by the requirement of consistency between density

and drag/ballistic coefficient, as defined in Equation 1.1. Additionally, and critically for operations,

quantification of uncertainty in thermosphere forecasts remains a major challenge. This is largely
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due to inaccurate specification of processes (referred to here as model error or uncertainty) and

driver forecasts (referred to here as driver uncertainty). The USSC and other service providers or

operators typically perform a 3-day forecast to identify possible conjunction events. For the 3-day

forecasts of LEO orbits, the position covariance or uncertainty has been assumed to be dominated

by uncertainty in thermosphere model drivers.

The final piece of the puzzle is how to reliably and realistically map the effect of thermosphere

model and driver uncertainty (and other uncertain parameters, including the drag coefficient) to

the state and covariance of an orbiting object such that decisions can be made with confidence.

The USSC currently uses a one-dimensional dynamic consider parameter (DCP) approach in pre-

diction to map the time-invariant uncertainty at epoch to the forecast time using a state transition

matrix. Additionally, uncertainty in the ballistic coefficient is accounted for through a frontal area

factor, details of which are not public, and also mapped to the forecast using the DCP approach.

Since there is no coupling between orbit determination and prediction, the overall covariance is

calculated simply as a superposition of the mapped DCP(s) and propagated state covariance. As a

result, the accuracy and realism of the resulting covariance can be significantly improved.

To summarize some of the major challenges associated with STM in the current environment,

there are inconsistencies in operational methods and assumptions made that can result in inaccurate

uncertainties for different objects. On the operations front, there is a lack of consistency when it

comes to the models and tools used in decision making. This can cause operators from different

agencies/companies to come to different conclusions for the same conjunction event. When it

comes to modeling, the satellite drag coefficient and thermospheric density often carry high errors,

but their respective uncertainties are often overlooked or oversimplified. This dissertation will

focus solely on the problem of improving thermospheric density modeling, introducing model

uncertainty, and studying the relative impact of model and driver uncertainty on satellite state

forecasts.
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1.2 Contributions

1.2.1 Probabilistic Thermospheric Mass Density Models

In Chapter 4, machine-learned thermosphere models are developed with the goals of compu-

tational efficiency, accessibility, and uncertainty quantification. CHAMP-ML is based on direct

density estimates from the CHAMP satellite meaning CHAMP-ML learns a relationship between

drivers and density without any underlying basis functions. This model is developed as a frame-

work for a more universally applicable model based entirely on satellite data. HASDM-ML is

unique, because the model it is based on is inaccessible to the public. HASDM-ML has less than

10% mean error relative to its original model and provides robust and reliable uncertainty esti-

mates. MSIS-UQ is an exospheric temperature while all others developed in this work predict den-

sity. However, this is a key parameter in the MSIS formulation of mass density, so the improved

accuracy in T∞ predictions from MSIS-UQ allow for improved density prediction accuracy the

standalone MSIS model. TIE-GCM ROPE is an ensemble-based reduced order probabilistic emu-

lator for a computationally expensive physics-based model, TIE-GCM. The creation of this model

allows for the incorporation of physical system dynamics into a ML model with uncertainty estima-

tion capabilities. This work marks the first time probabilistic thermosphere models are developed

with demonstrated reliability of uncertainty estimation capabilities

1.2.2 Extracting Science through Machine Learning

ML models are universal function approximators and – if used correctly – can summarize the

information content of observational datasets in a functional form for scientific and engineering

applications. A benefit to ML over parametric models is that there are no a priori assumptions

about particular basis functions which can potentially limit the phenomena that can be modeled.

The models developed in this work are used to study the presence of post-storm thermospheric

overcooling in the middle-thermosphere in Chapter 5. This can be difficult to study through obser-

vations from the variability of other parameters, but ML can help us clearly identify its presence.

This approach can be adopted in the future to answer other outstanding questions in the community.
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1.2.3 Benchmarking Operational Space Weather Driver Forecasting Capabilities

Although much of the focus in density and drag modeling focuses on improving density mod-

els, our ability to accurately forecast their drivers is often overlooked. Even if we get to a point that

we could predict thermospheric mass density with perfect accuracy given a set of model drivers,

our inability to accurately forecast these drivers limits the reliability of forecasted density and

therefore drag. In Chapter 6, the current forecasting models for six space weather drivers used by

JB2008 and HASDM are benchmarked in order for others in the community to compare newly

developed driver forecast models. These error statistics can also be used to perturb deterministic

driver forecasts (see Chapter 7) although more robust methods are likely required (see Section 8.1).

1.2.4 Quantification of Driver and Model Uncertainty on Orbital State

Collision probability is often computed without the uncertainty in atmospheric drag taken into

account. In this work, we investigate the isolated effects of driver and model uncertainty on a

satellite state to highlight the importance of drag uncertainty in PoC calculations. The framework

proposed and models developed provide a unique opportunity to show the relative importance of

both uncertainties for the first time and why they both need to be accounted for in operations. Chap-

ter 7 shows that both uncertainties can cause positions to be uncertain on the order of kilometers

after only 72 hours, assuming no initial state uncertainty.
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Chapter 2. Thermosphere and Space Weather

This chapter aims to provide the necessary background for the thermosphere and how it is

impacted by the Sun and space weather. This information is crucial to understanding why thermo-

spheric mass density is such an important and uncertain parameter in collision risk assessment.

2.1 Thermospheric Neutral Mass Density

The thermosphere is the neutral portion of Earth’s upper atmosphere, and it ranges from ∼90

km to 500-1000 km depending on space weather conditions. Variations within it are primarily

related to temperature responses. The primary heating source for the thermosphere is the absorp-

tion of solar extreme ultraviolet (EUV) and far ultraviolet (FUV) irradiance [7]. As the amount of

solar irradiance changes, the thermosphere will either expand or contract as it is heated or cooled,

respectively [8]. This effect essentially provides the baseline average thermospheric mass density

[9]. The amount of solar irradiance, as well as its relative importance, fluctuates across the solar

cycle, an eleven-year period where the magnetic activity of the Sun cycles in strength. The two

main phases of the cycle are when the Sun is most active (solar maximum) and least active (solar

minimum).

During solar minimum, an important contributing factor to density variations in the thermo-

sphere is the continuing change to its composition [10]. The major constituents of the neutral ther-

mosphere are atomic nitrogen (N), molecular nitrogen (N2), atomic oxygen (O), molecular oxygen

(O2), Helium (He), and atomic Hydrogen (H). Global circulation causes interhemispheric transport

of lighter species resulting in latitudinal variations in species and neutral density [11]. In addition

to horizontal species movement, upwelling and downwelling can transport species vertically, im-

pacting neutral density as a function of altitude. Horizontal and vertical transport mechanisms

have been recently investigated by Sutton [12]. Certain species (e.g. nitric oxide (NO) and carbon

dioxide (CO2)) provide cooling mechanisms, particularly in response to geomagnetic activity [13,

14, 15].

7



At times, geomagnetic activity can dominate fluctuations in thermospheric mass density. Dur-

ing large storms, significant energy (and therefore heat) are induced into the thermosphere and can

cause global increases in density by multiples of its pre-storm levels [16]. It is also one of the most

difficult phenomena to model [17]. Geomagnetic storms originate from the Sun and propagate

to Earth through complexly coupled systems leading to part of the difficulty in forecasting a so-

lar event’s impact on the thermosphere. A major issue in improving modeling capabilities during

storms is the relative rarity of these events, leading to limited storm observations. Figure 2.1 shows

how the disturbance storm time index (Dst) is distributed between December 1996 and April 2020.

Dst will be explained in more detail later (Section 2.3.3), but generally, Dst values more negative

than -75 nT denote a storm. This index is produced hourly, providing over 200,000 values across

this time span, and only 1.34% of these values would characterize a geomagnetic storm.

Figure 2.1: Distribution of Dst over two solar cycles with the shaded region denoting storm con-
ditions. The secondary subplot shows the distribution focused on the storm conditions. Note: the
subplot labels are consistent, but the axis limits are not.
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2.2 Space Weather

Space weather is an amalgam of conditions and events occurring on the sun, in the resulting so-

lar wind, and in the near-Earth geospace environment. Similar to terrestrial weather, many of these

subsystems are highly coupled and difficult to predict. The consequences of space weather include

but are not limited to: satellite charging, enhanced radiation, and geomagnetically induced currents

(GICs) that can disrupt power grids. However, the space weather impact that will be the focus of

this work is satellite drag in LEO. The proceeding subsections are meant to provide background

knowledge on how activity from the Sun results in short-term disturbances to thermospheric mass

density.

2.2.1 Solar Wind

In the Sun’s inner core, nuclear reactions produce massive amounts of energy that radiate to-

wards its surface. Once it reaches the tachocline, the boundary between the radiative and convec-

tive zones, convection takes over as the primary mode of energy transport towards the solar surface

[18]. As the Sun is not a solid body, it has differential rotation which induces turbulence in the

convection region and is linked to the dynamics and strength of its magnetic field [19]. The Sun’s

magnetic field has a strong dipole configuration, which reverses every eleven years, or one solar

cycle [20] first observed by Babcock [21]. The magnetic field lines move radially outward from

the Sun and remain connected even as the Sun rotates. This creates a swirling pattern known as the

Parker spiral, seen in Figure 2.2 [22]. The solar wind is the continuous emission of plasma from

the Sun along these magnetic field lines.

The solar wind is currently measured by the Advanced Composition Explorer (ACE) and Deep

Space Climate Observatory (DSCOVR) satellites [23, 24] at the L1 Lagrange point where the

gravity of the Earth and Sun are equal. This allows both spacecraft to have a direct view of the

Sun and mitigates the need for excess fuel to remain in the ideal location. Both spacecraft contain

monitors that allow them to measure continuously varying Earth-bound solar wind characteristics

(e.g. velocity, density, magnetic field strength). These are all crucial for models inside the geospace
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Figure 2.2: Parker spirals for different solar wind speeds. The orbits of Earth and Mars are shown
in blue and purple, respectively. IC: NASA https://sdo.gsfc.nasa.gov/mission/spaceweather.php

system as well as for models that forecast the solar wind.

The solar wind has continuously-evolving properties that are dependent on the origin. Coronal

mass ejections (CMEs) are massive bubbles of plasma that are ejected from the Sun, releasing a

significant volume of solar wind [25]. The resulting solar wind also travels at velocities multi-

ple times background levels. When this fast CME-driven solar wind interacts with slower solar

wind, a shock is formed, and the sheath behind this contains compressed plasma and has increased

magnetic field strength [26].

Coronal holes are another solar feature that can create stark changes in the solar wind. Coronal

holes are portions of the Sun’s corona that contain low-density plasma and have open magnetic

field lines [27]. The solar wind emitted from coronal holes forms a high-speed stream (HSS)

which has higher velocity than background solar wind but much less than that of a CME [28]. A

unique property of coronal holes is that they are fairly persistent and evolve slowly. During solar

minimum especially, HSSs tend to occur with a regular frequency of about 27 days, or a solar

rotation.
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2.2.2 Near-Earth Geospace Environment

The near-Earth geospace environment primarily consists of the magnetosphere, ionosphere,

and thermosphere. As it pertains to space weather, the magnetosphere acts as a low-pass filter for

rapid changes in the solar wind. Disturbances affect the Earth’s magnetic field, and energy can

then pass into the ionosphere-thermosphere system. These systems are all tightly-coupled.

2.2.2.1 Magnetosphere

The magnetosphere is a complex system shaped by Earth’s magnetic field rooted in its outer

core and externally shaped by the solar wind. Earth’s magnetic field changes in space and time as

does the solar wind that interacts with it. An artist’s depiction of the magnetosphere is shown in

Figure 2.3. In this figure, the left-most curved line represents the bow shock – due to the supersonic

speed of the solar wind. The bright curve to the right of the bow shock is the magnetopause, or

the boundary of the magnetosphere. The area between these two regions is referred to as the

magnetosheath. The area enclosed by the magnetopause is the magnetosphere which is shown

with yellow magnetic field lines.

Figure 2.3: Depiction of the solar wind and the magnetosphere. IC: ESA/AOES Medialab https:
//www.esa.int/Enabling_Support/Operations/Rejigging_the_Cluster_quartet
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Energy, mass, and momentum are transferred from the solar wind to the magnetosphere which

creates geomagnetic activity [29]. Much of this coupling between these two systems is driven

by magnetic reconnection. This is the process in which field lines of the magnetospheric plasma

are connected to the solar wind wind on the dayside and move towards the magnetotail where

they reconnect again; this process is known as the "Dungey cycle" [30]. The reconnection in the

magnetotail can then allow energetic electrons to travel along field lines back towards Earth where

they energize the upper atmosphere at the poles [31]. While there are numerous properties of the

solar wind that play a role in the its interaction with the magnetosphere, the interplanetary magnetic

field (IMF) having a strong southward component (BZ) is critical for geoeffectiveness [32].

2.2.2.2 Ionosphere-Thermosphere System

The ionosphere and thermosphere are complexly coupled with the magnetosphere, and the

combination is called the magnetosphere – ionosphere – thermosphere (MIT) system. A key dis-

tinction between the ionosphere and thermosphere is that they consist of charged and neutral par-

ticles, respectively. During geomagnetic storms, the energy induced into the auroral ionosphere,

as a result of magnetic reconnection, causes ion-neutral collisions inducing energy into the system

[33]. The energy deposition into the ionosphere and thermosphere through either Joule heating or

particle precipitation causes both systems to heat and expand [34]. Although this energy enhance-

ment occurs at high latitudes, they can travel to lower latitudes in the form of traveling ionospheric

disturbances (TIDs) [35] and traveling atmospheric disturbances (TADs) [36].

2.3 Space Weather Modeling Efforts

Models have been developed for all the systems discussed thus far. Our understanding of space

weather comes largely from observations as well as models that can adequately support observa-

tions. An example of this is a study done by Asplund et al. [37], where a solar model is refined

to closely match observations, improving our understanding of the Sun’s chemical composition.

Physics-based space weather models can also be coupled to provide a realistic representation of the

entire Sun-Earth system involving the feedback between subsystems [38]. Empirical models con-
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sist of parametric equations that are fit to abundant observations made by various sensors. These

are often used in an operational setting due to their computational simplicity relative to physical

models.

2.3.1 Thermosphere Models and Data

Over the past six decades, the scientific community has developed and advanced thermospheric

density models. A significant subset of these models are empirical. Even within this subset, there

are multiple families/series of models that use different types of measurements and have evolved

over decades. Three of these series, discussed by Emmert [8], are the MSIS [39], DTM [40],

and Jacchia series [6]. Mass Spectrometer Incoherent Scatter Radar (MSIS) models typically use

mass spectrometer and incoherent scatter radar measurements but have evolved and now incorpo-

rate additional data (e.g. accelerometer-derived density estimates). The Drag Temperature Model

(DTM) series used orbit-derived density data but more recently incorporated accelerometer-derived

density and mass spectrometer data. The Jacchia series of models (e.g. Jacchia-70 and the Jacchia-

Bowman 2008 Empirical Thermospheric Density Model (JB2008)) strictly use both orbit- and

accelerometer-derived density estimates. A major improvement in density modeling capabilities

came with the introduction of real-time data assimilation. The High Accuracy Satellite Drag Model

(HASDM) [41] is an assimilative model/framework that leverages JB2008 and Dynamic Calibra-

tion of the Atmosphere (DCA) to correct the density nowcast with satellite observations.

The availability of accelerometer-derived density estimates has been advantageous for model

development and assessment. Over the lifetime of satellites with onboard accelerometers (e.g.

CHAllenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment

(GRACE)), we accumulate measurements over many altitudes and space weather conditions [42,

43]. Researchers have used these measurements to derive density estimates by removing accelera-

tions from other sources (e.g. gravity and solar radiation pressure) [5, 44, 45, 46, 47, 48].

Physics-based thermosphere models play a significant role in scientific studies of the upper

atmosphere. Three examples of these model types are Thermosphere-Ionosphere-Electrodynamics

General Circulation Model (TIE-GCM) [49], Coupled Thermosphere Ionosphere Plasmasphere
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Electrodynamic Model (CTIPe) [50], and Global Ionosphere-Thermosphere Model (GITM) [51].

While not true for all physics-based thermosphere models, TIE-GCM, CTIPe, and GITM all use

the finite difference method to solve the physical equations, couple the ionosphere, and generate

self-consistent electric fields at low to middle latitudes [8]. These models also have varying upper

boundaries dependent on solar conditions and the corresponding pressure levels. The thermosphere

models and datasets used in this work are outlined in the following sections.

2.3.1.1 Mass Spectrometer and Incoherent Scatter Radar Series

The Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS

2.0) empirical thermosphere model [52] is the most recent version of MSIS models dating back

to the original MSIS-86 model [53]. The data sources for its predecessor (NRLMSISE-00) are

observed satellite drag, accelerometer data, incoherent scatter radar T∞ and lower thermosphere

temperature data, and occultation-derived O2 density data [39]. NRLMSIS 2.0 sought to improve

the definition of composition/structure at low altitudes (below 100 km) by incorporating recent

data from low-altitude temperature measurements. It also assimilated additional atomic oxygen

and hydrogen measurements to overcome previous limitations.

NRLMSIS 2.0 uses the ap index to account for geomagnetic activity. There are two ap options

when running NRLMSIS 2.0: use only the daily average (known as Ap) and current 3-hour value,

or use a time history of the index. This time history includes Ap, current ap, ap3, ap6, ap9, ap12–33,

and ap36–57. The single numerical subscripts refer to the value of the index that many hours prior to

the epoch. The combination of two numbers in the subscript refers to the average value over that

many hours prior to the epoch (e.g. ap12–33 is the average ap value from 12 to 33 hours prior to the

epoch). This nomenclature for geomagnetic drivers will be used throughout this dissertation.

2.3.1.2 High Accuracy Satellite Drag Model

The most recent in the Jacchia series is the JB2008 density model. JB2008 was an improve-

ment to its predecessors and incorporated new solar and geomagnetic indices to drive the model.

It uses the F10, S10, M10, and Y10 indices and proxies to model variations caused by solar heat-
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ing. In addition to ap, JB2008 utilizes Dst to improve model density during geomagnetic storms.

These indices are used in temperature corrections, semiannual functions, and new Dst temperature

equations. The model reduced non-storm density errors by more than 5% and reduced storm-time

density errors from Jacchia-70 by more than 60%, from NRLMSISE-00 by more than 35% and

from JB2008 (with only ap) by 16% [6]. These drivers are described in Section 2.3.3.

HASDM is an assimilative framework using JB2008 as a background density model. HASDM

improves upon the density correction work of Marcos et al. [54] and Nazerenko et al. [55] to

modify 13 global temperature correction coefficients with its DCA algorithm. HASDM uses ob-

servations of more than 70 carefully chosen calibration satellites to estimate local density values.

The satellite orbits span an altitude range of 190-900 km although a majority are between 300

and 600 km [56]. The HASDM algorithm uses a prediction filter that employs wavelet and Fourier

analysis for the correction coefficients [41]. Another highlight of HASDM’s novel framework is its

segmented solution for the ballistic coefficient (SSB). This allows the ballistic coefficient estimate

to deviate over the fitting period for the satellite trajectory estimation.

SET validates the HASDM output each week and archives the results. The archived values

from 2000-2020 make up the SET HASDM density database, upon which this work is based.

The database contains density predictions with 15◦ longitude, 10◦ latitude, and 25 km altitude

increments spanning from 175 - 825 km. This results in 12,312 grid points for every three hours

from the start of 2000 to the end of 2019. For further details on HASDM, the reader is referred

to Storz et al. [41], and for details on SET’s validation process and on the database, the reader is

referred to Tobiska et al. [57].

2.3.1.3 Thermosphere-Ionosphere- Electrodynamics General Circulation Model

The Thermoshere-Ionosphere- Electrodynamics General Circulation Model (TIE-GCM) is part

of the Thermosphere General Circulation Model (TGCM) series dating back to 1981 [58]. TIE-

GCM was developed by Richmond et al. [59] and managed to incorporate electrodynamic interac-

tions between the thermosphere and ionosphere systems. As stated by Qian et al. [49], "TIE-GCM

self-consistently solves the fully coupled, nonlinear, hydrodynamic, thermodynamic, and conti-
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nuity equations of the neutral gas, the ion and electron energy and momentum equations, the ion

continuity equation, and neutral wind dynamo". TIE-GCM is important for studying different phe-

nomena in the thermosphere due to its ability to provide a constrained dynamic evolution of the

system. However, the high computational cost and need for significant parallelization limits its

application to operations or collision assessment.

2.3.1.4 Satellite Accelerometer Data

The CHAMP and GRACE density datasets used in this work (for either model development

or validation) are from Mehta et al. [48], which originate from Sutton [46] but are scaled to

account for higher fidelity satellite geometry and improved gas-surface interaction simulations

[60, 61, 62]. However, there is no correction to the solar radiation pressure accelerations which

used the simplified 13-panel geometry. Both satellites have near-polar orbits, covering nearly all

latitudes, and over their respective lifetimes, CHAMP and GRACE datasets cover altitudes ranging

from 300–535 km. This, in conjunction with the date range covered by the satellites, makes their

density estimates invaluable for model comparison. Figure 2.4 shows the altitudes each dataset

covers along with orbit-averaged densities over their mission spans.

Figure 2.4: Altitude (a) and orbit-averaged densities (b) for CHAMP and GRACE-A.
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The orbit-averaged densities were computed using a centered window with a span of 90 min-

utes, approximately one orbit. Discontinuities in Figure 2.4 represent data gaps. Both the CHAMP

and GRACE-A datasets contain files for every day containing information such as GPS time, lo-

cal solar time (LST), latitude, altitude and density. CHAMP has measurements every 10 seconds,

while GRACE-A provides measurements every 5 seconds.

2.3.2 Exospheric Temperature

As with many models (e.g. DTM and JB2008), MSIS heavily relies on temperature profiles

to determine species densities and therefore mass density throughout the thermosphere. A key

parameter in predicting the temperature profile is the exospheric temperature (T∞) which is the

asymptotic value that the temperature profile approaches at the top of the thermosphere, or ther-

mopause [63, 64]. MSIS uses the Bates-Walker temperature profile [65]. Figure 2.5 shows MSIS

temperatures from the ground to 800 km. The temperature dependence on solar activity is promi-

nent, as is the difference between day and night. For all four temperature profiles, the variation

slows above 250-300 km and becomes relatively constant. This temperature "limit" for each curve

corresponds to the MSIS T∞ prediction for that condition.

2.3.2.1 Exospheric Temperature Estimates

Typically, NRLMSIS 2.0 predicts the exospheric temperature as a function of position and

space weather drivers. Using this computed value, the model then calculates species densities

as a function of altitude and therefore neutral mass density. The user can override the internally

computed T∞ and MSIS will determine density based on the provided value. In the past, this

has been leveraged in numerical schemes to match MSIS to satellite measurements in order to

estimate T∞ [66, 67, 68]. Weimer et al. [69, 70] used the CHAMP and GRACE density estimates

described in Section 2.3.1.4 from 2001 through 2010 to perform a similar derivation of exospheric

temperatures. They also used additional satellite data from the Swarm missions [71]. They had

varied T∞ in NRLMSIS 2.0 using a binary search method to match satellite density until the

temperature was determined to 2 K.
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Figure 2.5: Temperature profiles using MSIS for solar maximum and solar minimum conditions.

The density estimates originate from the following sources – CHAMP 2001: Doornbos [5],

CHAMP 2002-2010: Mehta et al. [48], GRACE 2002-2009: Mehta et al. [48], GRACE 2010:

Sutton [46], Swarm A 2013-2018: Astafyeva et al. [72], and Swarm B 2012-2016: Astafyeva et

al. [72]. Note that only GRACE-A measurements are used due to the similarity of the GRACE-A

and GRACE-B orbits. The CHAMP and GRACE density estimates originate from accelerometer

measurements and span an altitude range of 300–535 km while the Swarm A and B density es-

timates are obtained from GPS data and span an altitude range of 437–545 km. The cadence of

the satellite estimates are 10 s, 5 s, 30 s, and 30 s for CHAMP, GRACE, Swarm A, and Swarm B,
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respectively. There are over 82 million samples total for model development and evaluation.

EXospheric TEMperatures on a PoLyhedrAl gRid (EXTEMPLAR) – an exospheric tempera-

ture model that can be integrated with MSIS – is developed based on a polyhedral grid made of

1,620 cells [69, 70]. The measurements from CHAMP, GRACE, Swarm A, and Swarm B were

binned to the closest grid cell for model development. Figure 2.6 shows the distribution of mea-

surements across the polyhedral grid. This gives a sense of the spatial distribution of the satellite

density and exospheric temperature estimates. They are most heavily distributed at the poles due

to the satellites’ high inclination.

Figure 2.6: Number of samples for each of the 1,620 polyhedral grid cells.
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2.3.3 Model Drivers

The JB2008 model, for example, uses global exospheric temperature equations driven by four

solar indices/proxies to represent different solar heating sources [73, 6]. From ISO 21348 [74], an

index is a measured indicator of level of activity while a proxy is a surrogate for other physical

processes. The four solar indices and proxies are all report in solar flux units (10-22 W m-2 Hz-1)

which are denoted as sfu.

The F10.7 proxy (referred to here as F10) has a strong correlation to solar EUV irradiance which

has led to its long-time use as a surrogate for solar EUV energy. However, F10 has no physical

relation to solar EUV irradiances. S10 is an index indicative of activity of the integrated 26-34

nm bandpass solar chromospheric EUV emission, which penetrates to the middle thermosphere

and is absorbed by atomic oxygen. The M10 proxy is used as a surrogate for FUV photospheric

160 nm Schumann-Runge Continuum emissions, which penetrate to the lower thermosphere and

cause molecular oxygen dissociation. The fourth solar index is Y10. This is a hybrid index of solar

coronal 0.1-0.8 nm X-ray emissions and 121.6 nm Lyman-alpha, both of which penetrate to the

mesosphere and participate in water chemistry. The S10, M10, and Y10 indices and proxies were

derived from actual solar irradiance measurements and scaled to F10 magnitudes in the original

JB2008. This has also allowed an ease of comparison between these disparate time series.

To capture the impact of geomagnetic activity, JB2008 uses a synthesis of ap and Dst indices.

The ap index is a measure of global geomagnetic activity derived from twelve observatories that

fall between 48◦ N and 63◦ S in latitude [75]. The utilization of ap during quiet geomagnetic

conditions results in low density errors, but Dst proves to be a more effective driver during storm

times [6]. Dst is an index that represents the strength of the storm-time ring current in the inner-

magnetosphere [73]. For further details on all of the JB2008 drivers, the reader is referred to

Tobiska et al. [73] and ISO 14222 [76].

While JB2008 uses ap and Dst for geomagnetic storm characterization, other indices are used

by the modeling community. Kp is a legacy driver for global geomagnetic activity. It is strongly

related to ap but is quasi-logarithmic. Both planetary indices have 28 discrete values: ap ranges
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from 0 to 400 and Kp ranges from 0 to 9. Kp values are presented as integers with plus and

minus indicators that denote ± 1/3 from the integer value. Table 2.1 and Figure 2.7 show the

corresponding values of the two indices. If interpolation between indices is required outside of the

discrete value shown in the table (e.g. for modeling purposes), cubic spline interpolation has been

shown to be the appropriate method [75].

Table 2.1: Kp and ap discrete values. The second Kp row shows the values in numerical format up
to two decimal places [75].

Kp 0o 0+ 1- 1o 1+ 2- 2o 2+ 3- 3o 3+ 4- 4o 4+
Kp 0.00 0.33 0.67 1.00 1.33 1.67 2.00 2.33 2.67 3.00 3.33 3.67 4.00 4.33
ap 0 2 3 4 5 6 7 9 12 15 18 22 27 32

Kp 5- 5o 5+ 6- 6o 6+ 7- 7o 7+ 8- 8o 8+ 9- 9o
Kp 4.67 5.00 5.33 5.67 6.00 6.33 6.67 7.00 7.33 7.67 8.00 8.33 8.67 9.00
ap 39 48 56 67 80 94 111 132 154 179 207 236 300 400

Figure 2.7: Kp vs ap relationship in linear (a) and semi-log (b) presentation.
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2.3.3.1 Additional Model Drivers

EXTEMPLAR uses different geomagnetic drivers than most empirical models, particularly SN,

SS, ∆T . The two S inputs are Poynting flux totals in the Northern and Southern hemispheres [77,

78]. ∆T is a parameter derived by Weimer et al. [69, 70] and represents exospheric temperature

perturbations; it is a function of Poynting flux and simulated nitric oxide emissions. While Dst

has been previously discussed as an improvement over ap/Kp, it has its own shortcomings. It

has a one-hour cadence, which is three times higher than that of ap/Kp, but it is still too coarse

for models like EXTEMPLAR which are based on measurements with cadences as high as five-

seconds. SYM-H, the longitudinally symmetric component of the magnetic field disturbances, has

similar characteristics to Dst. A key benefit over Dst is its 1-min cadence [79].

Common temporal inputs for density models are universal time (UT) and day of year (doy).

An issue when building a regression model with these drivers is the discontinuity at the end of the

day/year. To overcome this, they can be transformed to become continuous about the boundaries.

The transformed time inputs t1 – t4 are defined in Equation 2.1.

t1 = sin

(
2πdoy

365.25

)
t2 = cos

(
2πdoy

365.25

)
t3 = sin

(
2πUT

24

)
t4 = cos

(
2πUT

24

)
(2.1)

Typical spatial coordinates for the upper atmosphere are longitude and latitude. Longitude is

not ideal for studying and modeling the atmosphere as the orientation of its dominant diurnal struc-

ture is changing with UT. Local solar time (LST) is a better longitudinal coordinate to use since it

is based on the location of the sun. This is used throughout all modeling efforts as either an input

or to define the gridded data. Like longitude and the temporal inputs, its linear structure causes

discontinuities about midnight. This is solved with a similar transformation shown in Equation

2.2.

LST1 = sin

(
2πLST

24

)
LST2 = cos

(
2πLST

24

)
(2.2)
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Chapter 3. Machine Learning Background

A neural network is a collection of computational cells (or neurons) connected in some form

through multiplicative connections (or weights). Neural networks were first conceived by Mc-

Culloch and Pitts [80] when they described a computational representation of brain neurons and

synapses with calculus and statistical theory. In the late 1950s, the first artificial neural network

(ANN) was developed and is known as the perceptron [81]. Backpropagation is the process in

which the network parameters are updated based on observations and was fundamental to the

development of modern neural networks [82, 83]. Another significant advancement in neural net-

works was the implementation of graphics processing units (GPUs) for vastly increased training

speeds in convolutional neural networks (CNNs) [84]. The application of neural networks and

ML has expanded in the decades since its inception and has found its way into all industries from

medicine to game playing.

Machine learning (ML) is a subset of artificial intelligence where the internal parameters of a

neural network are learned in an iterative process, similar to the way humans learn. It has been

growing in popularity in the space weather community in recent years. The following chapter is

focused on the development of ML thermosphere models, so we focus on the basics here to provide

the necessary background knowledge for the remainder of this work.

3.1 Neural Network Terminology

To cover the basics of neural networks, we consider the simple model displayed in Figure 3.1.

The main characteristics of a model will be decided by the scope of the problem. This model is

developed for a problem with two input dimensions (x,y) and one output dimension (z). This could

be for predicting temperature (z) as a function of longitude and latitude (x and y).

This is representative of a fully-connected model where weights connect all nodes (also known

as neurons or units) between layers. This model also has bias units. This is why although we only

have two inputs, the input layer has three units. When you provide x and y, the bottom two nodes
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Figure 3.1: Diagram of an ANN with bias units. The colors and opaqueness denote the sign and
magnitude of the random weights, respectively (via: https://alexlenail.me/NN-SVG/). Note: the
flow of information is left-to-right.

in the input layer would have these values connected to the associated weights. Bias units always

have the value 1.0 and the weights are therefore determining the bias to each downstream node.

Since the value in the bias nodes are fixed, there are no upstream weights connecting to them.

There appear to be five total layers in this network. The first is the input layer with two defined

inputs. The final layer is the output layer with one node (z). In between, there are three hidden

layers. The flow of information through the model works as follows. The inputs x are multiplied

with the weight matrix (W1) between the input layer and the first hidden layer. This will result in

four values, one for each node in the first hidden layer (not considering the bias). These values

are different weighted sums of the upstream nodes. They all go through an activation function

(explained later) chosen for this layer. The process is now repeated to move from the first to the

second hidden layers and so on until an output value is computed.
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3.1.1 Activation Functions

Activation functions are user-defined functions attributed to each layer or node in a neural net-

work that can determine (a) whether or not a node is "activated" and/or (b) how much nonlinearity

is being added to the system. The weighted sum going into a node (to be referred to as ϕ) will

be passed as an input to an activation function f. The output of the node will then be f(ϕ). Some

common activation functions are displayed in Figure 3.2. The functional forms can be found in

Table 3.1.

Figure 3.2: f(ϕ) for un/partially-bounded (a) and fully-bounded (b) functions.

The linear activation function will simply pass the weighted sum of the previous layers inputs.

Linear activation functions are not typically useful as hidden layer activations, because their output

is a linear combination of the upstream layer. If all hidden layers use the linear activation, the

output will be a linear combination of the inputs, regardless of the number of layers. However,

they are sometimes used to make a linear projection (e.g. in a generative adversarial network). A

linear activation can also be useful as an output activation if the model output is fully unbounded.

As seen in Figure 3.2, the linear function is the only one that is fully unbounded that is used in
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Table 3.1: Functional form of all activation function in Figure 3.2.

Name Function, f(ϕ)

Linear f(ϕ) = ϕ

ReLU f(ϕ) = max(0, ϕ)

ELU
f(ϕ) = ϕ if ϕ > 0

f(ϕ) = α
(
eϕ − 1

)
if ϕ ≤ 0

SELU
f(ϕ) = λϕ if ϕ ≥ 0

f(ϕ) = αλ
(
eϕ − 1

)
if ϕ < 0

Softplus f(ϕ) = ln
(
1 + eϕ

)
Tanh f(ϕ) = eϕ−e−ϕ

eϕ+e−ϕ

Sigmoid f(ϕ) = 1
eϕ+e−ϕ

Softsign f(ϕ) = ϕ
1+|ϕ|

this work. The only other commonly used unbounded activation is parametric rectified linear unit

(PReLU) which takes the form αϕ when ϕ < 0 and ϕ when ϕ ≥ 0 [85]. Another form of PReLU is

called leaky rectified linear unit where α = 0.01. These functions are not used in this work, because

linear functions are used only as output activations to perform an unbounded transformation.

The positively unbounded activations (Figure 3.2 (a)) used in this work are rectified linear unit

(ReLU), exponential linear unit (ELU), scaled ELU (SELU), and softplus (all defined in Table

3.1). The purpose of using these in the hidden layers is to add nonlinearity to the model. Choosing

the most appropriate one requires a trial-and-error approach. The ReLU activation can also choose

whether or not a neuron is activated. If the output of a neuron is less than zero, the activation

outputs zero, essentially nullifying the node entirely. Both ELU and SELU have parameters that

can be modified. In Table 3.1, the α for ELU has a default value of 1.0, and the default values for

α and λ in the SELU function are 1.6733 and 1.0507, respectively.

The fully-bounded activation functions (Figure 3.2 (b)) are hyperbolic tangent (tanh), sigmoid,

and softsign. Tanh and softsign are both bounded between -1.0 and 1.0, but softsign has a smoother
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gradient. However, tanh is more computationally efficient due to its derivative: f ′(ϕ) = 1−f(ϕ)2.

Sigmoid, also known as the logistic function, is bounded between 0.0 and 1.0. Its derivative is also

computationally efficient to compute, f ′(ϕ) = f(ϕ)(1− f(ϕ).

3.1.2 Loss Functions

Loss functions – or objective functions – inform a neural network of its goal. If the goal is

to predict data with low errors, then a mean absolute error (MAE) or mean square error (MSE)

activation function would work best. The MSE function is defined as

MSE(z, ẑ) =
1

n

n∑
i=1

(z − ẑ)2 (3.1)

where z is the true value, ẑ is the model prediction, and n is the batch size. The goal with MSE is to

minimize the loss value across the training dataset. This brings up the concept of training in batches

(as signified by n in Equation 3.1). In training, the model will make predictions with the supplied

inputs and compute a loss based on the predicted value. This loss is used to compute gradients and

update the model’s weights using backpropagation. A batch size is the number of samples to be

passed through the model before computing an average loss and updating weights. This can help

generalize the model, and the lower frequency of weight updates speeds up the training process.

Other common loss functions are used in machine learning, depending on the application.

However, they will not be discussed as they are not directly relevant to this work. Two other

loss functions will be used for uncertainty quantification and will be discussed in Sections 4.1.1.2

and 4.2. Given a chosen loss function (consider MSE), there will be a loss surface or manifold

that contains the loss associated with every weight in the neural network. The manifold is nw-

dimensional where nw is the number of weights in the model. This can only be visualized for one

or two weights, as shown in Figure 3.3.
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Figure 3.3: Example of a loss manifold for a simple neural network with two weights.

3.1.3 Optimizers

The goal in training is to find the minimum loss value, denoted by the darkest shade of blue

in Figure 3.3. Since weights are randomly initialized, the model would start at a random point on

this surface. How the model traverses this surface is determined by the optimizer. The simplest

optimizer is standard gradient descent. This simply computes the gradient at a particular location

and moves in the opposite direction by an amount determined by both the gradient and the learning

rate (commonly denoted by η). Updating weights using this method is achieved by computing

wt+1 = wt − η
∂L
∂wt

(3.2)

28



where wt+1 are the updated weights, wt are the current weights, and L is the loss. This simple way

to train a neural network is effective, but other optimizer algorithms have been developed to make

the training process both faster and more robust. While they will not be thoroughly explained,

the following optimizers are used in this work because of their improvements with momentum

and/or adaptive learning rate: Adaptive Moment Estimation (Adam) [86], Adam with Nesterov

momentum (Nadam) [87], Adaptive Gradient Algorithm (Adagrad) [88], Adadelta [89], and Root

Mean Squared Propagation (RMSProp) [90].

3.1.4 Normalization

Typically, inputs and outputs for a neural network will have wide ranges of values and can have

large magnitudes. TensorFlow randomly initializes the weights in each layer from a uniform distri-

bution that cannot have an initial magnitude larger than
√
3 (https://keras.io/api/layers/initializers/

#glorotuniform-class). Having a large discrepancy in the magnitude and range of the input/output

variables and the weights can lead to longer training times and poor performance [91]. This creates

a need for data preprocessing and specifically normalization. This can be achieved with standard

normalization,

θ̃ =
θ − mean(θ)

standard deviation(θ)
(3.3)

where θ is an input/output variable, and θ̃ is the normalized θ. This ensures that all all input

and output variables to the model will have the same first two moments as a standard normal

distribution. This operation can be easily reversed to obtain un-normalized model predictions.

3.2 Hyperparameter Tuning

Hyperparameters are all of the topics discussed in Section 3.1. If hyperparameters are randomly

selected, it is unlikely that the model will perform to proper standards after training. Furthermore,

experience with ML may better inform you to choose a set of hyperparameters resulting in a good

model, but there are still too many variations to land at a near-optimal solution. A standard ap-
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proach to hyperparameter selection is systematically testing choices for each hyperparameter. This

is time-consuming and not nearly exhaustive enough. Hyperparameter tuning is an advancement

in ML that eases many of these aforementioned problems.

Keras Tuner [92] is a hyperparameter tuner developed for Tensorflow and Keras ML libraries

in Python. The user can choose a tuner scheme (e.g. random search or Bayesian optimization)

and ranges/choices for each hyperparameter. These choices can include the number of hidden

layers, the number of neurons in each layer, activation functions for each layer, dropout rates,

and optimizer. The user can will also choose the objective, number of trials, and executions per

trial. The objective would be the metric that will be either minimized or maximized. In this work,

minimizing the validation loss is the objective. The number of trials refers to the number of model

architectures to be tested before the tuner is completed. Executions per trial deals with weight

initialization (see Section 3.1.3). The number of executions per trial will be the number of times a

model is trained with re-initialized weights for a given architecture/trial.

When using the Bayesian optimization tuner scheme, there is an option for the number of initial

points (nip). This is due to the two-stage approach used by the scheme. In the first nip trials, the

architectures will be randomly selected from the user-defined search space. Once these random

trials are complete, the tuner uses a Gaussian process model to choose all future architectures.

This GP model will ingest all data from previous trials to associate each hyperparameter to model

performance. The end goal is to identify an architecture with near-optimal performance given the

dataset and goal (or objective).

3.3 Toy Problem

Everything discussed in this chapter is combined to develop a neural network using a toy dataset

for global temperature. This dataset was created by converting global density data using a constant

scalar value to vary between 20 and 90◦F. The dataset has fixed intervals of 15◦ longitude and

20 latitude values evenly spaced between -90 and 90◦. There are also 24 separate snapshots at

different universal times. Therefore, the dataset is of the shape 24 × 24 × 20 in time × longitude

× latitude.
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This was reshaped so there were 24 · 24 · 20 = 11, 520 samples. Longitude, latitude, and time

are the only values used as model inputs since this is a simple exercise. The input and output data

is normalized per Equation 3.3. A tuner is then defined with data ranges and choices shown in

Table 3.2

Table 3.2: Hyperparameter tuner parameters (left) and search space (right) for the toy temperature
problem.

Tuner Option Choice Parameter Values/Range

Scheme
Bayesian Number of

1–10
Optimization Hidden Layers

Total Trials 50 Neurons
min = 16, max = 512,

step = 4

Initial Points 25 Activations
relu, softplus, tanh, sigmoid,

softsign, selu, elu

Repeats per Trial 2 Dropout
min = 0.01, max = 0.60,

step = 0.01

Minimization
Validation Loss Optimizer

RMSprop, Adam, Adadelta,
Parameter Adagrad

The objective of the tuner is to minimize the MSE on the validation set. In a real application,

splitting the data into training, validation, and test sets is an important consideration and must

be done properly. For each application considered in this work, a thorough explanation will be

provided. However, this demonstration uses 10,000 random samples for training and the remaining

1,520 for validation in an effort to keep this simple. The tuner is then run with each model being

trained for 50 epochs with a batch size of 128. The best model has the following architecture.

The first hidden layer has 312 neurons, the ReLU activation, and a dropout rate (see Section 3.6)

of 3%. The second hidden layer has 200 neurons, the ReLU activation, and a dropout rate of

44%. The model was trained with the Adam optimizer. This model was then used to predict a

global temperature map for two times: 12:00 UT and 04:00 UT. Its predictions are compared to

the ground truth in Figure 3.4.
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Figure 3.4: Original temperature data (a,c), and prediction (b,d) for 12:00 UT (a,b) and 04:00 UT
(c,d).

Given the simple dataset, the model was able to adequately learn the relationship between

location, time, and temperature. The general structures are indiscernible between the data and

prediction with the exception of small-scale features on the night-side. Keep in mind the simplicity

of this problem and dataset. In the remaining applications in this work, careful consideration is

required when it comes to feature selection, data splitting, data preparation, and model evaluation.

3.4 Long Short-Term Memory Neural Networks

The previously described neural networks simply learn the relationship between inputs and

outputs for a given time step; they are static models. For recurrent neural networks (RNNs),

the corresponding inputs and outputs are concatenated, and the inputs for a given time-step are

these stacked input and output combination. The number of previous time steps used is a new

hyperparameter when dealing with RNNs. LSTMs are dynamic neural networks that deviate from

traditional RNNs through their use of an internal cell state, specifically its input, forget, and output

gates [93] (see Figure 3.5).

In Figure 3.5, x refers to the input to the cell, c refers to the cell’s internal state/memory, and h

is the output. t and t-1 denote the current and previous step, respectively. The three σ nodes refer
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Figure 3.5: Overall construction of the LSTM cell (a) with the input gate (b), forget gate (c), and
output gate (d) highlighted in red. Green is used to denote point-wise operations.

to internal layers with the sigmoid activation function, and tanh refers to either a layer with the

tanh activation function or a point-wise operation, dependant on the color. The LSTM cell (a) is

shown with each gate highlighted: input gate (b), forget gate (c), and output gate (d).

The internal sigmoid layers function similar to typical binary gates. If a gate is open (1),

information passes through. Conversely, if a gate is closed (0), no information gets through. As

sigmoid has a continuous range between zero and one (see Section 3.1.1), it is ideal to function as a

gate while keeping the LSTM cell differentiable. For the input gate, the input and previous output

information get passed both the the sigmoid and tanh layers. The tanh layer acts as a normal neural

network layer, while the sigmoid layer determines how much out the tanh output passes through.

The forget gate passes the input and previous output information through another sigmoid layer

that will interact with the previous cell state. The output of the sigmoid layer will determine how

much of the previous cell state will pass through.

The last gate is the output gate. This uses the input and previous output information to de-
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termine how much of the output will pass through to the next layer. While only certain parts are

highlighted in (d), the output gate affects information from the other two gates. While these three

gates are described independently, the information passes through the cell concurrently. The inter-

nal cell state is updated, and the information passes onto the downstream layer. The internal cell

state is how LSTMs can keep track of long-term information.

3.4.1 Data Preparation

In standard feed-forward neural networks, inputs and outputs simply need to have the same

length about the first axis to achieve supervised training. However, recurrent neural networks

require further processing. Consider the number of inputs (ninp) and number of outputs (nout) for a

given dataset with n samples. The concatenation will result in an array of shape n× (nout + ninp).

A new hyperparameter for RNNs is the number of lag-steps (nLS). This is the number of previous

time steps the model will use to make a single prediction (think short-term memory for an LSTM).

The data must be stacked, so each row contains outputs and inputs for each lag-step and the

current step. This orders in least-to-most recent from left-to-right. The data will now be of the

shape n× (nLS + 1)(nout + ninp). The last ninp columns are then dropped as they are not needed.

The data can be split into training inputs and outputs where the first n×nLS(nout +ninp) columns

are inputs and the last nout columns are the associated output. The final step is to reshape the input

data to the shape n× nLS × (nout + ninp).

3.4.2 Training and Evaluation

With the LSTM training data prepared for the supervised learning task, a model can be trained.

Typical LSTM training involves one-step prediction. This means that for each time step, the model

uses the last nLS sets of true inputs and outputs to make the next prediction. As it goes through an

epoch sequentially, the model will not only be updating weights in the way described for feedfor-

ward neural networks, it also updates the weights associated with the three sigmoid layers and one

tanh layer within each LSTM cell. Between epochs, the LSTM internal state, c, will be changing

as information passes through each cell.

LSTMs also deal with a concept known as resetting the internal cell state. When reaching a
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temporal discontinuity, it is important to wipe the internal memory of every LSTM cell. Otherwise,

it will be using irrelevant information to make predictions. This is typically done at the end of an

epoch when it reaches the end of the training time period. Resetting the state is also critical when

evaluating the model on different time periods. The approach for one-step LSTM training is shown

in Figure 3.6, panel (a). Note: in Figure 3.6, the term "Outputs" is used to refer to the true data

while "Pred." refers to the model predictions.

Figure 3.6: Steps for typical LSTM training (a) and steps for an iterative dynamic prediction (b)
with nLS = 3. Although the predictions and inputs for the evaluation step are highlighted in green,
the model only predicts the output.
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It is important to note that in the training phase, the predictions are ignored – for lack of a better

term – when moving to the next time-step. The prediction is replaced with the true output for that

time period. However, this is not realistic in a forecasting environment. If a forecast is required for

the next 25 steps (consider nLS = 3 from Figure 3.6), you would only have data up to the previous

step t-1. The LSTM will make a prediction for time t and has to use that to make its prediction for

time t+1. At this point, the model is taking two true values and one predicted value to make the

next prediction. At t+2, there is only one true value and two predicted values. From t+3 to the end

of the prediction, the model will use solely the inputs and previous predictions. This is referred to

as a dynamic prediction and is shown in Figure 3.6 panel (b).

3.5 Dimensionality Reduction – PCA

For a high-dimensional model (e.g. TIE-GCM and HASDM), uncertainty quantification can

become infeasible in the full-state. With 12,312 and 8,760 spatial locations on the HASDM and

TIE-GCM grids, respectively, a computational bottleneck forms when generating distributions for

each location. To get around this, we implement a dimensionality reduction method – PCA. If

the technique is implemented properly, the truncation errors can be on the order of < 3% and the

reduced-state is prime for uncertainty quantification.

Principal Component Analysis is an eigendecomposition technique that determines uncorre-

lated linear combinations of the data that maximize variance [94, 95]. It is considered an unsu-

pervised learning technique. PCA can be performed using the svds function in MATLAB to obtain

the U , Σ, and V matrices. PCA decomposes the data and separates spatial and temporal variations

such that:

x (s, t) = x̄ (s) + x̃ (s, t) and x̃ (s, t) ≈
r∑

i=1

αi (t)Ui (s) (3.4)

where x ∈ Rn is the model output state, x̄ is the mean, x̃ is the deviation about the mean, r is

the choice of order truncation, αi are temporal coefficients, and Ui are orthogonal modes or basis

functions. The modes are the first r columns of the left singular vector derived by performing PCA
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on an ensemble of model output solutions such that:

X =


x̃1 x̃2 x̃3 . . . x̃m


and X = UΣV T (3.5)

In Equation 3.5, m represents the ensemble size, and the data is denoted by X. U is the left unitary

matrix, and it is made of orthogonal vectors that represent the modes of variation. Σ is a diagonal

matrix consisting of the squares of the eigenvalues that correspond to the vectors in U . We can

extract temporal coefficients by performing matrix multiplication between Σ and V T . Therefore,

the signs of the modes and coefficients are important in the analysis phase. It is important to note

that prior to centering and PCA, the density data undergoes a logarithmic transformation (log10)

to reduce its variance. The reader is referred to Bjornsson and Venegas [96] for more details on

the distinction between PCA and Singular Value Decomposition (SVD) for use on climatic data.

Figure 3.7 depicts the process of developing and using a machine-learned reduced order model

based in PCA.

Figure 3.7: Training and prediction diagram for a PCA-based reduced order model. ρ and α denote
thermospheric density and PCA coefficients, respectively.
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3.6 Uncertainty Quantification

A traditional approach to regression modeling with uncertainty quantification (UQ) is to de-

velop Gaussian process (GP) models. Gaussian process regression models are a supervised learn-

ing technique that can provide predictions with probability estimates in both regression and clas-

sification tasks [97]. A GP model essentially provides a distribution of functions that fit the data,

which allows us to obtain a mean and variance for any prediction [98]. GP regression has been

used recently in space weather applications in both driver forecasting [99] and empirical model

calibration [100]. Some limitations for GP implementations are difficult interpretation of results

for multivariate problems and computational cost with large datasets [101].

A newer approach for uncertainty quantification is Monte Carlo dropout. Dropout is a regu-

larization tool often used in machine learning (ML) to prevent the model from overfitting to the

training data [102]. In standard feed-forward neural networks, each layer sends outputs from all

nodes to those in the subsequent layer, where they are introduced to weights and biases. Deep

neural networks can have millions of parameters and thus are prone to overfitting. This causes

undesired performance when interpolating or extrapolating.

Dropout layers use Bernoulli distributions, one for each node, with probability p. This makes

the model probabilistic since the distributions are sampled each time that a set of inputs are given to

the model. If a sample is "true", the node’s output is nullified, and the output of the layer is scaled

based on the number of nullified outputs. Dropout is believed to make each node independently

sufficient and not reliant on the outputs of other nodes in the layer [103]. In traditional use, dropout

layers are only activated during training to uphold the deterministic nature of the model. However,

measures can be taken in order for this feature to remain activated during prediction making the

model probabilistic.

When passing the same input set to the model a significant number of times (e.g. 1,000) with

active dropout, there is a distribution of model outputs for each unique input. This process is

referred to as Monte Carlo (MC) dropout. Essentially, every time the model is presented with

a set of inputs, random nodes are dropped out providing a different functional representation of
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the model. Gal and Ghahramani [104] show that MC dropout is a Bayesian approximation of a

Gaussian process. Other approaches to UQ are explored in this work and will be described in the

following chapter.
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Chapter 4. Machine Learning for Thermospheric Mass Density

This chapter pertains to the detailed description, methodology, and analysis of the four proba-

bilistic thermospheric mass density models developed in this work. They are used in later studies

to both gain scientific insight (Chapter 5) and investigate practical impacts of uncertainty for STM

(Chapter 7).

4.1 HASDM-ML

HASDM-ML is based on the PCA coefficients derived from the SET HASDM density database

between 2000 and 2020 [57].

4.1.1 Methodology

The data (drivers and density) is split into training, validation, and test data using 60%, 20%,

and 20%, respectively as shown in Figure 4.1. Table 4.1 shows the number of time steps in the

SET HASDM density database across various space weather conditions. The cutoff values for F10

and ap are obtained from Mehta [105].

Table 4.1: Number of time steps for different space weather conditions across the SET HASDM
density database.

F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190 All F10

ap ≤ 10 13,839 22,034 4,126 2,088 42,087

10 < ap ≤ 50 3,003 9,226 1,982 1,091 15,302

ap > 50 54 652 196 149 1,051

All ap 16,896 31,912 6,304 3,328 58,440

In Table 4.1, there is clear under-representation of geomagnetic storms in this vast dataset.

This can cause limitations in model development, because over 98% of the dataset corresponds to

ap ≤ 50. Hierarchical modeling could be used for data of this nature, but we proceed with the
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Figure 4.1: F10 (a) and ap (b) at available data points shaded to show the training, validation, and
test splits.

development of a single comprehensive model. This decision was made due to the limited data for

high geomagnetic activity and for simplicity in model development.

Three separate input sets are tested for the regression models, and the first two are explained in

Table 4.2. The first set is the JB2008 input set, referred to as JB. However, storm and post-storm is

important for the characterization of extreme events, and post-storm cooling mechanisms cannot

be captured solely by geomagnetic indices at epoch. Therefore, we introduce a second set that is

similar to the first but with a time history of the geomagnetic indices. This will be referred to as JBH

(Historical JB2008). Unlike the actual JB2008 inputs, all input sets used here contain sinusoidal

transformations to the day of year (doy) and universal time (UT) inputs (shown in Equation 2.1).

In the JBH set, the geomagnetic indices are extensive in an effort to improve storm-time and

post-storm modeling. The ap time series is the same one used in NRLMSIS 2.0. The numerical

subscript notation was previous described in Section 2.3.1.1. Early studies showed that using

different time histories of ap and Dst (shown in Table 4.2) resulted in generally more calibrated
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Table 4.2: List of inputs in the first two sets used for model development.

JB2008 Inputs Historical JB2008 Inputs
Solar Geomagnetic Temporal Solar Geomagnetic Temporal

F10, S10, ap, Dst t1, t2, F10, S10, apA, ap, ap3, t1, t2,
M10, Y10, t3, t4 M10, Y10, ap6, ap9, ap12−33, t3, t4
F81c, S81c, F81c, S81c, ap36−57, DstA, Dst,
M81c, Y81c M81c, Y81c Dst3, Dst6, Dst9,

Dst12, Dst15, Dst18, Dst21

models (see Section 4.1.2). For completeness, the results will also be shown using an input set that

adopts the same time history for Dst as the ap time history in Table 4.2, both geomagnetic indices

using the NRLMSIS 2.0 time series. This input set will be referred to as JBH0.

4.1.1.1 Hyperparameter Tuning for HASDM-ML

The number of samples in the dataset is feasible for the tuner. Therefore, it is provided the full

training and validation sets of 35,064 and 11,688 samples, respectively. The tuner uses 100 trials

with three repeats and has the first 25 trials for the random search. A tuner is run for all three input

sets and for all three loss functions tested which are described in the following section. This results

in ten models for all nine input-loss combinations. The best model for each combination (based on

training and validation performance) is used for the comparison in Section 4.1.2.

4.1.1.2 Uncertainty Quantification using Monte Carlo Methods

HASDM-ML had been originally developed using Monte Carlo dropout, as described in Sec-

tion 3.6. In this case, the model uses the input set to predict the 10 PCA coefficients. Using the MC

samples, we estimate the sample mean and variance for each of the predicted coefficients/outputs

[106]. The loss is computed for each output separately. Each unique input can be passed to the

model k times and there will be k × 10 outputs. The mean and variance are computed from those

outputs with respect to the repeated axis, k. The two loss functions used to improve uncertainty

estimation (in addition to MSE) are negative logarithm of predictive density (NLPD) and contin-

uous ranked probability score (CRPS). NLPD is based on the logarithm of the probability density
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function (pdf) of the Gaussian distribution, and is shown in Equation 4.1 [107, 108].

NLPD(y, µ, σ) =
(y − µ)2

2σ2
+

log(σ2)

2
+

log(2π)

2
(4.1)

In Equation 4.1, y is the ground truth (αi), µ is the sample mean of the prediction, and σ

is the sample standard deviation of the prediction, each being computed for all 10 outputs. For

clarity, the log used in the NLPD loss function is the natural logarithm. The second loss function

for uncertainty estimation is CRPS which is shown analytically in Equation 4.2 [109]. The main

difference between NLPD and CRPS is that CRPS is also based on the cumulative distribution

function (cdf) of the Gaussian distribution as opposed to only the pdf.

CRPS(y, µ, σ) = σ

[
y − µ

σ
erf
(
y − µ√

2σ

)
+

√
2

π
exp

(
−(y − µ)2

2σ2

)
− 1√

π

]
. (4.2)

An important aspect of using the loss functions described in Equations 4.1 and 4.2 is the prepa-

ration of the training data. The data is traditionally set up as follows. The features are set up as

the number of samples (n), with ninp denoting the number of inputs, resulting in the input shape

(n × ninp). The labels are set up as the number of samples with nout being the number of outputs,

resulting in the output shape (n × nout). To implement these loss functions, we stack each input

and output by the number of MC samples, k. This is a repeated axis, meaning all samples along

this axis are identical about k; the samples are not identical about n. The resulting shapes of the

features and labels are (n × k × ninp) and (n × k × nout), respectively. This allows us to determine

the mean and standard deviation for each sample in the batch within the loss function.

4.1.1.3 Latent Space UQ for HASDM-ML

Since there are multiple models and loss functions to compare, we have to implement a metric

to judge each model’s ability to provide reliable uncertainty estimates. To do so, we modified a
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calibration error equation from Anderson et al. [110], shown as

Calibration Error Score =
100%

r · q

r∑
i=1

q∑
j=1

∣∣∣p(αi,j)− p(α̂i,j)
∣∣∣ (4.3)

In Equation 4.3, q is the number of prediction intervals investigated, r is the choice order of

truncation for PCA (the number of model outputs), p(α) is the expected cumulative probability (or

prediction interval), and p(α̂) is the observed cumulative probability. The prediction intervals of

interest in this work span from 5% to 99% with 5% increments – [0.05, 0.10, 0.15, ... , 0.90, 0.95,

0.99]. p(α̂) is computed empirically shown in Equation 4.4,

p (α̂) =
1

n

n∑
i=1

I
(
α̂l
i < αi < α̂u

i

)
(4.4)

where n is the number of samples, I is the indicator function, α̂l
i, is the lower bound of the predic-

tion interval, α̂u
i is the upper bound of the prediction interval, and αi is the sample. The indicator

function returns a 1 if the inequality is true and a 0 otherwise. To compute the bounds, we use the

pair of equations given in Equation 4.5 [111, 112].

α̂l
i = µ− zσ and α̂u

i = µ+ zσ, (4.5)

where z is the critical value used for the prediction interval. This is calculated using the Gaussian

cdf

z =
√
2 erf−1 (PI) (4.6)
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where PI is the prediction interval of interest (e.g. 95% or 0.95). Comparing the expected

(p(α)) and observed (p(α̂)) cumulative probabilities is done qualitatively by plotting the calibra-

tion curves: p(α̂) vs p(α). The curves show how well-calibrated the uncertainty estimates are at

capturing the appropriate percentage of true samples. A perfectly calibrated model will have a

straight 45◦ calibration curve. If a calibration curve is above or below the 45◦ reference line, the

model is over or underestimating the uncertainty, respectively. The calibration error score (Equa-

tion 4.3) is a quantitative measure of the average deviation from perfect calibration in the latent

space, averaged across each output. In this work, we measure robustness and reliability through

the calibration error score and the calibration curves. Since this refers to latent space calibration,

we use α in Equations 4.3 – 4.6, but for density, α would be replaced with ρ. Note: this approach

is used to determine calibration for all ML models in this work.

4.1.1.4 Density UQ for HASDM-ML

While latent space calibration is important because the model is trained on the PCA coeffi-

cients, determining the reliability of the model’s predictions on the resulting density is the ultimate

goal. To examine this, we look at the orbits of CHAMP and GRACE. We use the satellite positions

for density calibration assessment between HASDM and HASDM-ML.

HASDM-ML was evaluated 1,000 times every 3 hours across the entire availability of CHAMP

(2002–2010) and GRACE (2002–2011) position data listed in the measurements presented by

Mehta et al. [48] and interpolated to the satellite locations using trilinear interpolation. For clari-

fication, only the satellite positions are considered, not the density estimates. This model evalua-

tion and interpolation allows us to compute the observed cumulative probability of HASDM-ML

relative to the HASDM database in terms of density. Due to the redundancy and computational

expense, the model and database density was only interpolated every 500 samples (5,000 and 2,500

seconds for CHAMP and GRACE-A, respectively). The CHAMP orbit comparison uses 23,795

HASDM prediction epochs (40.7% of the total available HASDM data) with the density being

interpolated to at least two satellite positions per prediction due to the cadence of this study. The

GRACE orbit comparison uses 24,602 HASDM prediction epochs (42.1% of the total available
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HASDM data) with the density being interpolated to at least four satellite positions per predic-

tion. The number of satellite positions per prediction comes from the number of positions used

every three hours (HASDM cadence).This provides a wide view of the model’s UQ capabilities

considering the wide array of positions and conditions covered. To perform these simulations, the

model had to be evaluated 23,795,000 and 24,602,000 times for CHAMP and GRACE, respec-

tively. These numbers come from the number of HASDM prediction epochs and the number of

MC runs (1,000).

Geomagnetic storms are particularly difficult conditions to model accurately. Therefore, we

look at four geomagnetic storms from 2002 – 2004 where HASDM-ML’s reliability can be eval-

uated across unique events. Two of the events take place in 2002, which is outside the training

dataset, while the other two are from 2003 and 2004 and are seen in training. Information on these

storms can be found in Table 4.3. The model is evaluated over a 6-day period encompassing a

storm then interpolated to the CHAMP locations (10 second cadence). Again, the interpolation to

satellite positions is conducted to assess and visualize the implications of density UQ along a satel-

lite orbit. During each three-hour prediction period, the density grids remain constant. All 1,000

HASDM-ML density variations are then averaged across each orbit. We consider the average al-

titude for each 6-day period to estimate the orbital period. The mean and 95% prediction interval

bounds are computed to compare to the corresponding HASDM densities and shown in Figure 4.6

in an orbit-averaged form. We also show the orbit-averaged JB2008 predictions for comparison.

In total, the six days amounts to 48 model prediction epochs which results in 51,840 interpolated

densities (1,000 MC runs) from which we compute the observed cumulative probabilities. Note:

this is done explicitly for the original MC dropout version of HASDM-ML

4.1.2 Results

Upon running each input set with all three loss functions through individual tuners, the best

10 models from each tuner (in terms of training and validation metrics) are evaluated on the entire

training, validation and test sets 1,000 times. The mean absolute error results from the best of

the 10 models for each input set/loss function are shown in Table 4.4. The mean absolute error
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Table 4.3: Information on the four storms used in the calibration analysis.

Start Data F10 (Min – Max) Max ap Min Dst Set
May 21, 2002 180.3 – 189.1 236 -109 Test

September 30, 2002 135.8 – 161.7 154 -176 Test

October 28, 2003 166.9 – 279.1 400 -383 Training

November 7, 2004 94.9 – 140.9 300 -373 Training

is computed for the model prediction (mean coefficient predictions converted to density through

PCA) relative to the HASDM database.

Table 4.4: Mean absolute for the best model from each technique across training, validation, and
test data.

Training Validation Test
Technique JB JBH JBH0 JB JBH JBH0 JB JBH JBH0

MSE 10.38% 8.73% 8.47% 12.00% 10.48% 9.91% 11.95% 10.71% 10.51%

NLPD 10.07% 9.07% 8.81% 11.93% 10.69% 9.87% 11.41% 10.69% 10.05%

CRPS 9.67% 8.64% 8.26% 11.56% 10.55% 9.69% 11.76% 10.43% 10.69%

The addition of historical geomagnetic indices clearly improves the model performance with

error reductions ranging from 0.72% to 2.09% (comparing the JB columns to the columns of JBH

and JBH0). As mentioned in Section 4.1.1, the motivation for using the time series geomagnetic in-

dices was to improve storm-time and post-storm performance. However, Table 4.1 shows that these

conditions account for a small subset of the data meaning the notable performance improvement

with the JBH and JBH0 input sets show that it likely improves the predictions across all conditions.

In general, the CRPS models have the lowest error, and the JBH0 models have the lowest error with

respect to the input sets. Table 4.5 shows the calibration error score for the same models, this time

using both the mean and standard deviation of the coefficient predictions (refer to Equation 4.3).

The incorporation of the custom loss functions reduce the calibration error score by an order

of magnitude relative to models trained with MSE, which tend to underestimate the uncertainty.
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Table 4.5: Calibration error score (see Equation 4.3) for the best model from each technique across
training, validation, and test data.

Training Validation Test
Technique JB JBH JBH0 JB JBH JBH0 JB JBH JBH0

MSE 38.71% 37.44% 37.58% 39.62% 38.98% 39.01% 40.04% 39.79% 39.72%

NLPD 3.40% 3.06% 2.79% 3.08% 2.51% 2.84% 2.21% 1.76% 2.79%

CRPS 3.29% 7.93% 4.46% 2.27% 4.63% 2.73% 2.40% 2.39% 2.95%

The best performing loss function, in regards to calibration, is NLPD. To choose the best overall

model, we focus on the test performance as that data is completely independent from the training

process. We weigh the calibration performance more heavily than the prediction error as reliable

uncertainty estimates are the most valuable asset for a thermospheric density model. The JBH +

NLPD model is within 1% of the error of all better-performing models (Table 4.4), and it has the

lowest test calibration error score with scores within 0.30% of all more calibrated models on the

training and validation data. As the calibration error score is a composite of the scores from each

PCA coefficient, we show the calibration curves of all coefficients on the independent test set for

the best JBH + NLPD model, in panel (b), alongside the best JBH + MSE model, in panel (a), for

comparison in Figure 4.2.

The calibration curve in panel (b) for all PCA coefficients roughly follows the perfectly-

calibrated 45◦ line with α5 being the only coefficient that prominently underestimates uncertainty.

However, there is minimal contribution to the full-state (density) after the first few coefficients, so

this should not greatly impact the resulting density. For PCA, the coefficients are ordered to cap-

ture most-to-least variance, so α1 has significantly more impact on the reconstruction of the data

compared to α10, for example. In sharp contrast to the JBH + NLPD results, panel (a) shows the

model trained with the MSE loss function is not nearly calibrated, as is evident in Table 4.5. There

is a significant underestimation of the uncertainty at all cumulative probability levels, because the

model is not trained with any terms for its variance.

The JBH + NLPD model shown in Figure 4.2 will be the focus of all subsequent analyses and

will be referred to as HASDM-ML. To investigate the model’s reliability on density in an opera-
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Figure 4.2: Expected vs observed cumulative probability of all 10 PCA coefficients for HASDM-
ML on the test set using JBH + MSE (a) and JBH + NLPD (b).

tional nature, we look at the orbits of CHAMP and GRACE-A each over eight year periods with

a cumulative altitude range of 300–530 km. HASDM-ML was evaluated in three-hour increments

from 2002–2011, and was interpolated to the satellite positions at all epochs discussed in Section

4.1.1.4. The results for the CHAMP orbit are displayed in Figure 4.3.

Figure 4.3 panel (a) shows the density ratios of HASDM-ML and JB2008 relative to HASDM.

The HASDM-ML ratios have much lower variance than the JB2008 ratios. The mean ratios for

both models are 1.03. However, 95% of the HASDM-ML ratios are between 0.75 and 1.25 com-

pared to 86% for JB2008. The surrogate ML model is imperfect in its mean prediction, as seen in

Table 4.4, but panels (b) and (d) show that the density uncertainty is reliable. The calibration curve

is exceptional with the observed cumulative probability being within 1% of the expected value for

all 20 cumulative probability levels (PIs) tested. Figure 4.4 shows the same analysis along the

GRACE-A orbit.

Figure 4.4 panel (a) again shows that the HASDM-ML density ratios have much less vari-

ance than JB2008. For these GRACE-A positions, the mean density ratios are 1.05 and 1.07 for
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Figure 4.3: (a) shows the density ratios of HASDM-ML and JB2008 relative to HASDM, (b) shows
the expected vs observed calibration curve, (c) shows F10 and ap for the period corresponding to (a)
for reference, and (d) shows the difference between expected and observed cumulative probability
corresponding to (b). Discontinuities in (a) and (c) represent data gaps. In panel (a), the red dashes
lines are at ratios of 0.75 and 1.25.

HASDM-ML and JB2008, respectively. 86% of the HASDM-ML ratios are between 0.75 and 1.25

compared to 72% of JB2008 ratios. Panels (b) and (d) also demonstrate that although the model

densities are not identical to HASDM, HASDM-ML provides uncertainty estimates that are reli-

able. Panel (d) reveals that at the higher GRACE altitudes, there is slightly less agreement with the

expected and observed cumulative probabilities with the largest discrepancy being just over 1%.

Scatter plots comparing HASDM-ML and JB2008 to HASDM densities for both satellite orbits

are displayed in Figure 4.5.

Figure 4.5 highlights the prediction accuracy of HASDM-ML compared to JB2008. Both

models are well-centered on the perfect-prediction line (in black) but as seen in Figures 4.3 and
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Figure 4.4: (a) shows the density ratios of HASDM-ML and JB2008 relative to HASDM, (b) shows
the expected vs observed calibration curve, (c) shows F10 and ap for the period corresponding to (a)
for reference, and (d) shows the difference between expected and observed cumulative probability
corresponding to (b). Discontinuities in (a) and (c) represent data gaps. In panel (a), the red dashes
lines are at ratios of 0.75 and 1.25.

4.4, HASDM-ML has a tighter spread about this line. To clarify, this scatter plot is representative

of prediction accuracy and is not the same as the calibration curves seen in other figures. The

coefficient of determination (R2) is higher for HASDM-ML along both satellite orbits, and R2

is higher for both models along the GRACE-A orbit. Figure 4.6 shows HASDM and HASDM-

ML orbit-averaged densities during four geomagnetic storms with prediction intervals and the

associated calibration curves.

Across all of the storms investigated, the mean prediction of HASDM-ML follows the trend of

HASDM density. Even when the model deviates, HASDM densities are mostly captured by the

uncertainty bounds (computed using Equation 4.5). Panels (a) and (b) represent storms not con-

51



Figure 4.5: Scatter plot of model vs HASDM density along the orbits of CHAMP (a) and GRACE-
A (b). Perfect prediction would fall on the diagonal black line. The coefficient of determination
(R2) is shown for both models relative to HASDM. Note: ML refers to HASDM-ML while JB
refers to JB2008.

tained in the training dataset which show that HASDM-ML is well-generalized, even during these

highly nonlinear events. In panel (a), HASDM-ML and JB2008 overestimate the peak density, but

HASDM-ML is able to better-capture the timing. For this storm, JB2008 predicts a delayed and

longer impact of the geomagnetic storm. The mean absolute error for HASDM-ML and JB2008

relative to HASDM are 11.91% and 13.03%, respectively. In panel (b), both model have similar

predictions to HASDM for the first peak (day 2), but JB2008 has an elongated period of density

overprediction from days 4 – 6. The mean absolute error for HASDM-ML and JB2008 relative

to HASDM for this storm are 9.86% and 14.37%, respectively. The storm in panel (c), while in

the training set, highlights the improved performance of HASDM-ML. After the storm, JB2008

predicts much higher densities than both HASDM and HASDM-ML. Other studies compared the

orbit-averaged densities of HASDM and JB2008 to CHAMP and GRACE-A during this storm and

found that the low post-storm densities predicted by HASDM were similar to the density estimates

from both satellites which HASDM-ML is also showing [113]. The errors for this storm are 8.46%
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Figure 4.6: Panels (a), (b), (c), and (d) show HASDM, HASDM-ML mean, and JB2008 orbit-
averaged density for CHAMP’s orbit across various geomagnetic storms. The shaded region rep-
resents the 95% prediction interval for HASDM-ML, and -Dst is shown on the right axis in each
panel. Panel (e) shows the calibration curves corresponding to panels (a), (b), (c), and (d) along
with the composite calibration curve (see bottom legend). Panel (f) shows the difference between
the observed and expected cumulative probability for all the curves in panel (e).
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for HASDM-ML and 25.29% for JB2008. For the last storm, panel (d), all three models predict

similar trends in density. JB2008 has the most deviation, particularly between the two main phases

of the storm and in the last 36 hours. The mean absolute errors are 12.64% and 19.81% for

HASDM-ML and JB2008, respectively.

The calibration curves corresponding to each event show the robust nature of HASDM-ML’s

uncertainty estimates. None of the calibration curves, at any of 20 cumulative probability levels

(PIs) tested, deviated from perfect calibration by more than 10.7%. The combination of all four

calibration curves (averaged) is shown to give a broad sense of the calibration across the storms.

This curve is well-calibrated and does not deviate from perfect calibration by more than 3.7%.

Note: perfect calibration here is seen in the 45◦ line in panel (e) and the line y = 0 in panel (f).

While the observed cumulative probability values deviated from the expected values (particularly

for the individual storms), these are highly nonlinear periods where density models tend to be

unreliable.

4.1.2.1 HASDM-ML Performance Metrics

To assess the conditions in which HASDM-ML can improve, the global mean absolute errors

relative to HASDM are computed as a function of space weather conditions. The results are shown

in Table 4.6 and the number of samples in each bin can be found in Table 4.1. The bottom half of

the table contains the global mean absolute errors of JB2008 relative to HASDM for comparison.

The results from Table 4.6 show that HASDM-ML is robust to different F10 and ap ranges

when ap ≤ 50 since these errors do not vary by more than 2%. The only conditions in which

the mean absolute error exceeds 11% is when ap > 50, which only accounts for 1.80% of the

samples. This shows that more samples may be required for this specific condition in both the

training and evaluation phases. The last row contains the errors only as a function of F10 which

shows that across all four solar activity levels, the error deviates by only 1.24%. The bottom-right

cell shows that the error across all 20 years of available data is only 9.71%. JB2008 densities are

much less similar to HASDM. HASDM-ML is more accurate over all 20 space weather conditions

considered, and the improvement ranges from 3.75% – 9.16%. As a function of F10, HASDM-ML
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Table 4.6: Mean absolute error across global grid for HASDM-ML and JB2008 relative to the
HASDM database as a function of space weather conditions.

HASDM-ML
F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190 All F10

ap ≤ 10 8.96% 9.78% 9.97% 9.14% 9.50%

10 < ap ≤ 50 9.76% 10.05% 10.87% 9.90% 10.09%

ap > 50 15.35% 12.86% 13.23% 12.55% 13.01%

All ap 9.12% 9.92% 10.36% 9.55% 9.71%

JB2008
F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190 All F10

ap ≤ 10 17.42% 13.53% 14.02% 14.84% 14.92%

10 < ap ≤ 50 17.76% 15.70% 15.17% 16.79% 16.11%

ap > 50 22.07% 22.77% 22.39% 18.90% 22.12%

All ap 17.49% 14.34% 14.64% 15.66% 15.36%

has the most significant improvement for low solar activity (F10 ≤ 75 sfu). As a function of ap,

HASDM-ML has the largest improvement for high geomagnetic activity (ap > 50). Across all the

available data from the SET HASDM density database, HASDM-ML has 5.65% lower error than

JB2008.

4.2 Deterministic Uncertainty Quantification

While the first chosen approach to UQ was through MC dropout, another way to represent

uncertainty is to directly predict the mean and standard deviation of each output. The mean square

error loss function cannot be used here as there are no labels for the standard deviation. However,

Nix and Weigend [114] used a neural network to directly predict the mean and variance of a toy

dataset using the NLPD loss function. We implement this technique for the datasets presented. To

accomplish this, we create a custom output layer with 2nout neurons. The first nout neurons represent

the mean prediction and have a linear activation function. The last nout neurons represent the

standard deviation and use the softplus activation function. The softplus function and its derivative

– the sigmoid function – are shown in Equation 4.7.

f(x) = ln(1 + ex) f ′(x) =
ex

1 + ex
(4.7)
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The desired qualities of the standard deviation output are: (1) always positive and (2) having no

upper bound. The initial choice was the absolute value function. However, the resulting models

had erratic loss values, and it was difficult to obtain a good model. The softplus function is (1)

always positive, (2) has no upper bound, (3) is monotonically increasing, and (4) is differentiable

across all inputs. This resulted in stable training losses and better models.

This technique will be compared to MC dropout for its validity in terms of performance for both

HASDM-ML and later CHAMP-ML (see Section 4.3). It will also be vital as a potential approach

for TIE-GCM ROPE (Section 4.5), because MC dropout with NLPD would be too computationally

expensive.

4.2.1 Direct Probability Prediction Toy Example

As previously mentioned, the uncertainty distribution can be directly predicted by the model.

To visualize the way this work with the NLPD loss function, we train basic models for two toy

problems. Each problem is a function, y = f(x), with additive Gaussian noise having zero-mean

and a functional form to the standard deviation. These functions are displayed in Table 4.7. The

results for Problem 1 is shown in Figure 4.7

Table 4.7: Functions for the two toy problems with the right column being the functional form of
the Gaussian noise.

Function σ

Problem 1 0.3x+ cos(0.5x)− 4 +N (0, σ) 0.5
esin(0.2x)

1+esin(0.8x)

Problem 2 sin (2x+ cos(3x)) +N (0, σ) 0.05sin(0.2x) + 0.025

Figure 4.7 shows that the model is able to adequately predict the function and is able to predict

the overall probability distribution. The important aspect of the figure is panel (d): the model is

able to predict the standard deviation without a label. Meanwhile, this is fairly trivial data. Figure

4.8 shows the predictions and calibration curve for the more complex Problem 2.
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Figure 4.7: Mean prediction with 2σ bounds plotted on data (a), clean function plotted with mean
prediction (b), calibration curve (c), and predicted standard deviation on true standard deviation
function (d) for Problem 1.

For the more complex data, the model is not as accurate over all x. When x ∈ [4, 6], the

model can accurately predict the mean and standard deviation. When x > 6, the standard deviation

prediction no longer represents uncertainty in the data but the model’s uncertainty in its prediction.

This is also the case for x < 4, but the predictions follow the general trend and σ is closer to the

truth. For this portion of panel (b), the mean prediction deviates from the true mean of the data

and the standard deviation in panel (d) consequently increases. Panel (c) shows that the model is
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Figure 4.8: Mean prediction with 2σ bounds plotted on data (a), clean function plotted with mean
prediction (b), calibration curve (c), and predicted standard deviation on true standard deviation
function (d) for Problem 2.

still well-calibrated and representing both uncertainty in the data and uncertainty in the model’s

predictions.

The NLPD loss function does not ensure model calibration. However, we show that it can

be used – if properly tested – in model development to represent uncertainty in the data and un-

certainty in the model’s predictions. Note: these models were trained on the entire dataset, and

this is purely for demonstration. The thermospheric density models are developed with separate
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validation and independent test sets.

4.2.2 Direct Mean-Standard Deviation Prediction for HASDM-ML

Using the best tuner models for MC dropout and direct probability distribution prediction, we

assess the error and calibration statistics. Table 4.8 shows the mean absolute error and calibration

error score for both techniques across the training, validation, and test sets.

Table 4.8: HASDM modeling results using MC dropout and direct probability prediction. Error
refers to mean absolute error, and calibration is computed using Equation 4.3.

Metric Set MC Dropout Direct Probability

Error
Training 9.07% 8.55%

Validation 10.69% 9.91%
Test 10.69% 10.60%

Calibration
Training 3.06% 1.74%

Validation 2.51% 2.45%
Test 1.76% 2.81%

It is evident that the performance using both methods is very similar. Across all three sets,

the mean absolute error and calibration error score do not deviate by more than 0.8% and 1.4%

respectively. The MC dropout model has better performance on the independent test set in terms

of calibration. This is a desired quality as the test data is not used for model development in any

way. As the calibration error scores are composites of the scores for each output, the calibration

curves are shown in Figure 4.9 for a qualitative assessment.

Both techniques lead to slightly overestimated uncertainties on the training set for multiple

outputs. Meanwhile, the remaining outputs are almost perfectly calibrated. On the validation set,

each model has outputs with overestimated and underestimated uncertainties. Again, most of the

outputs are very well-calibrated which is affirmed by the calibration error scores. For the test set,

the direct probability prediction model tends to marginally underestimate the uncertainty while the

MC dropout model provides reliable uncertainty estimates on virtually all model outputs. Table 4.9

shows the mean absolute error for both models across an array of solar and geomagnetic conditions.
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Figure 4.9: The left and right columns show the MC dropout and direct probability calibration
curves, respectively. The top, middle, and bottom rows are the calibration curves for the training,
validation, and test sets, respectively.

The entire dataset is used for this analysis as there are not enough samples in each bin using only

the test set.

These errors tend to reiterate the results from Table 4.8. The direct probability model was more
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Table 4.9: Mean absolute error across global grid for HASDM-ML as a function of space weather
conditions.

MC Dropout
F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190 All F10

ap ≤ 10 8.96% 9.78% 9.97% 9.14% 9.50%

10 < ap ≤ 50 9.76% 10.05% 10.87% 9.90% 10.09%

ap > 50 15.35% 12.86% 13.23% 12.55% 13.01%

All ap 9.12% 9.92% 10.36% 9.55% 9.71%

Direct Probability
F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190 All F10

ap ≤ 10 8.64% 9.33% 9.35% 9.11% 9.10%

10 < ap ≤ 50 9.18% 9.51% 9.69% 9.64% 9.48%

ap > 50 11.14% 11.23% 11.34% 10.30% 11.11%

All ap 8.74% 9.42% 9.52% 9.34% 9.23%

accurate on all three sets, and Table 4.9 shows that it is also more accurate across all 20 conditions

considered. For a majority of the conditions, the difference is small (< 1%). However, the high ap

conditions show that the direct probability model makes considerable improvements. These error

reduction from MC dropout range from 1.6 – 4.1%.

To further assess the uncertainty capabilities of the models, we attempt to visualize the calibra-

tion in the full-state (global density grids) to identify any spatial dependence in the reliability of

the uncertainty estimates. First, the models are evaluated on the entire test set and the density mean

and standard deviations are extracted. Using these statistics, the observed cumulative probability

with a 90% prediction interval is computed for each spatial location. The resulting 24 × 19 × 27

array is used to determine how well calibrated the model is on independent data as a function of

location. We show seven maps for each model (200, 300, ... , 800 km) in Figure 4.10. Even though

HASDM has a lateral spatial resolution of 24 longitude and 19 latitude segments, we interpolate

the results to the polyhedral grid used in the EXTEMPLAR model for visualization purposes. This

is done in the remainder of this work.

For reference, perfect calibration in Figure 4.10 would be uniform green maps at all altitudes.

This would convey that with a 90% prediction interval, the model’s predictions/uncertainty esti-
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Figure 4.10: Observed cumulative probability maps for a 90% prediction interval using the MC
dropout (left) and direct probability (right) models. The average observed cumulative probability
is shown for each altitude in parenthesis.

mates contain 90% of true samples at all locations. While this is not the case, the results are still

insightful. At 200 km, both models are underestimating the uncertainty by 10 – 15%. This could
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be a result of the relative variability as a function of altitude in the SET HASDM density database.

The general trend of relative variability is that it increases with altitude, so the models may under-

predict the standard deviation at low altitudes as a result, which indicates that the model has a false

sense of confidence in that region. Both models have an average cumulative probability within 5%

of the expected value at most of the altitudes shown in Figure 4.10 with the best results at 600

km. At 700 and 800 km, both models begin to overestimate uncertainty, likely because they have

the lowest confidence at those altitudes. An interesting outcome of this study is the lateral vari-

ability of the cumulative probability between the models. The MC dropout model (left) has more

lateral variability, meaning the cumulative probability changes more as a function of longitude and

latitude.

4.3 CHAMP-ML

While creating a surrogate model for HASDM is highly desired due to its state-of-the-art capa-

bilities, limitations arise from its relationship with JB2008. Empirical models rely on parametric

equations that can limit their ability to model some physical phenomena. A way to bypass this

would be to create an entirely data-driven model. To study this, a ML model is developed directly

from the CHAMP density estimates of Mehta et al. [48] after undergoing a logarithmic transfor-

mation (log10).

The CHAMP dataset is significantly larger than HASDM with over 25 million total samples.

Unlike the HASDM dataset, location is now an input. CHAMP only covers the local solar time

domain once every three months due to its near-polar orbit. The dataset also does not span an entire

solar cycle. Splitting an in-situ dataset like this using long segments – on the order of months or

years – for training, validation, and testing can result in a model that is not well-generalized across

the sets. Non-ML models like EXTEMPLAR and NRLMSISE-00 will also have varying error

statistics across the periods as well since the conditions can be very different [115] Therefore, a

different approach to data splitting was implemented. The first eight weeks are used for training

(483,840 samples), then the following week is used for validation (60,480 samples), and the next

week is used for the test set (60,480 samples). This scheme is repeated through the entire dataset,
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resulting in similar input and output distributions while keeping temporally disjoint sets as there

are two weeks or 120,960 samples between the training segments. For the tuner, 1 million random

samples are chosen from the training data and 500,000 random samples are chosen from the vali-

dation data. Once the tuner is complete, the best models are retrained on the full training set and

evaluated on the other two sets.

An early version of CHAMP-ML was developed using both MC dropout and direct probability

prediction to compare the techniques for two unique datasets (HASDM and CHAMP). These re-

sults will be shown for comparison purposes, but a more thorough version of CHAMP-ML is also

developed using specifically direct probability prediction (called CHAMP-ML-v2). The inputs for

both models are shown in Table 4.10

Table 4.10: List of inputs for both versions of CHAMP-ML. LAT and ALT refer to the latitude and
altitude, respectively.

CHAMP-ML CHAMP-ML-v2
Solar Geomagnetic Spatial/Temporal Solar Geomagnetic Spatial/Temporal

F10, S10, SYM-H, LST1, LST2, F10, S10, SN , SS , SYM-H, LST1, LST2,
M10, Y10, SN , SS LAT , ALT , M10, Y10, SYM-H0-3, SYM-H3-6 LAT , ALT ,
F81c, S81c, t1, t2, F81c, S81c, SYM-H6-9, SYM-H9-12 t1, t2,
M81c, Y81c t3, t4 M81c, Y81c SYM-H12-33, SYM-H33-57 t3, t4

4.3.1 Results using Both Techniques

After running tuners for both uncertainty techniques, the best models were trained on the entire

training set. The models were chosen based on the lowest prediction error and best calibration

scores on the validation set. Table 4.11 shows the mean absolute error and calibration error scores

on the three sets.

Both models are well-generalized in terms of prediction accuracy. The range in error between

sets for the MC dropout and direct probability model is 0.54% and 0.23%, respectively. Both

models have higher calibration error scores on the training set but have similar scores on the val-

64



Table 4.11: CHAMP modeling results using MC dropout and direct probability prediction. Error
refers to mean absolute error, and calibration is computed using Equation 4.3.

Metric Set MC Dropout Direct Probability

Error
Training 13.13% 12.59%

Validation 13.67% 12.82%
Test 13.14% 12.62%

Calibration
Training 3.93% 5.84%

Validation 0.64% 0.25%
Test 0.22% 0.37%

idation and test sets. The two techniques provide similar results with the only notable difference

is the 1.91% higher calibration error score for the direct probability model on the training set. The

calibration curves for both models are shown in Figure 4.11.

Both models are well-calibrated on all three sets. There is a tendency for both models to slightly

overestimate uncertainty on the training set which is more evident for the MC dropout model. The

differences between the calibration curves and the perfectly calibrated reference line (in black) is

shown in panels (c) and (d). Panel (d) highlights the overestimation of uncertainty for the direct

probability model on the training set. However, it never deviates by more than 9%. Both models

tend to underestimate uncertainty on the validation and test set for the larger prediction intervals.

Again, the deviation from perfect calibration is no more than 2% for any PI. Due to the intrinsic

difference between the datasets that the CHAMP and HASDM models are developed from, the

proceeding analyses will be different than those in Section 4.2.2.

4.3.2 Global Modeling with Local Measurements

The CHAMP models were developed with in-situ measurements, but we hypothesize that it

should be able to learn the functional relationship of the combined inputs. Therefore, the model

should be able to provide global outputs at any point in time. As a qualitative assessment, we

show global maps at 400 km for the winter and summer solstices in Figure 4.12 using the direct

probability model. All proceeding global analyses will be performed using this model. For this

test, the solar drivers are all set to 120 sfu, SYM-H is set to 0 nT, both Poynting flux totals are set
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Figure 4.11: Calibration curves for the training, validation, and test sets using MC dropout (a) and
direct probability prediction (b). Panels (c) and (d) show the difference between the observed and
expected cumulative probability using MC dropout and direct probability prediction, respectively.

to 27GW, and the time is set to 00:00 UT.

The diurnal structure is present in both panels with the peak density being in the southern

hemisphere during the winter solstice and in the northern hemisphere during the summer solstice.

This shows the model’s understanding on annual trends (Earth’s tilt). The general density level is

higher during the winter solstice, but the relative variation between day and night are very similar.

This is reaffirmed by the exospheric temperature distribution shown by Weimer et al. [69] during

the solstices.
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Figure 4.12: Global density map with moderate solar activity, low geomagnetic activity, the altitude
fixed to 400 km, and the time of day being 00:00 UT for the winter solstice (a) and the summer
solstice (b).

4.3.3 Investigating the Uncertainty

Next, we look at the uncertainty levels for eight unique conditions of activity and time. These

are all displayed in Table 4.12. Using these space weather and temporal inputs, the CHAMP model

is evaluated at all 1,620 polyhedral grid locations from 300 to 450 km in 1 km increments. The

metric we use here is a normalized measure of model uncertainty: 100 · σ/µ, essentially providing

the 1-σ uncertainty as a percentage of the mean prediction. The resulting maps are averaged

across each altitude to evaluate the model’s uncertainty for each condition as a function of altitude.

Three aspects of model drivers are investigated: solar activity, geomagnetic activity, and temporal

dependence. In Table 4.12, there are three solar activity levels, with all other drivers kept constant.

There are also three geomagnetic cases: low and high geomagnetic activity with moderate solar

activity, and high geomagnetic activity with high solar activity. We only look at two daily cases –

00:00 and 12:00 UT. We also look at the fall equinox, summer solstice, and winter solstice with

moderate solar and low geomagnetic activity. The resulting altitude profiles are shown in Figure

4.13.

Panel (a) in Figure 4.13 shows that the CHAMP model has low uncertainty in its lower altitude

predictions for solar minimum (or low solar activity) which drastically increases with altitude.
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Table 4.12: CHAMP model inputs to study various conditions as a function of altitude. * Solar 2
is also considered Geo 1, UT 1, and doy 1.

Solar Drivers Geomagnetic Drivers Temporal Drivers
Condition Name FMSY SYM-H SN = SS UT doy

Solar 1 75 0 27 0 262

Solar 2* 120 0 27 0 262

Solar 3 190 0 27 0 262

Geo 2 120 -75 128 0 262

Geo 3 190 -75 128 0 262

UT 2 120 0 27 12 262

doy 2 120 0 27 0 172

doy 3 120 0 27 0 355

Figure 4.13: Normalized uncertainty variations as a function of altitude for solar (a), geomagnetic
(b), daily (c), and annual (d) cases. The drivers for each curve can be found in Table 4.12.
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The opposite can be said for solar maximum. The moderate solar activity case results in lowest

uncertainties between 350 and 375 km and higher uncertainties above and below that range. This is

all a result of CHAMP’s altitude from 2002-2010. It started around 460 km during solar maximum

and ended at 300 km during solar minimum. Therefore, the model has confident predictions in

the altitude range the satellite was located during the various phases of the solar cycle. If there

was additional data from satellites at different altitudes over a longer time period, the model would

likely be more confident over a larger altitude range.

In panel (b), we see the same general trends for Geo 1 and Geo 2, because they are evaluated us-

ing moderate solar activity. However, it is evident that the increase in geomagnetic activity results

in up to 5% more uncertainty. The Geo 3 case is similar to Solar 3 (high solar activity) but again

has increased uncertainty due to the storm conditions it represents. Panel (c) indicates that there is

a low impact from universal time on the model uncertainty. In Panel (d), the black line indicates the

fall equinox which is similar to the winter solstice. The Winter solstice uncertainties deviate from

the equinox uncertainties at the highest altitude range. While the overall shape remains consistent,

there are highest uncertainties for the summer solstice at all altitudes. The overall takeaway form

Figure 4.13 is that the shape of the model uncertainty altitude profile is most strongly effected by

the solar activity level while the day of year and geomagnetic activity tend to uniformly increase

or decrease uncertainty. These profiles would all likely be impacted if the model was developed

using additional satellite data.

4.3.4 Evaluation Time Comparison

This section aims to provide an equal comparison of the two methods in terms of computational

complexity. To do so, each CHAMP model is evaluated on either 8,640 samples (one week) or

86,400 samples (ten weeks). For the direct probability prediction model, it sees each input once

and provides the mean and standard deviation. These are used to sample a Gaussian distribution

1,000 times to get probabilistic predictions for density over the given window.

For MC dropout, we cannot pass one week of inputs to the model stacked 1,000 times (as is

done for HASDM). There is not enough memory on an NVIDIA GeForce RTX 2080 Ti graphics
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processing unit (GPU) – 11 GB – to perform this evaluation. Therefore, we pass the 100 repeated

inputs in 10 chunks to obtain the 1,000 predictions. When evaluating over ten weeks, we must

reduce to 10 repeated inputs in 100 chunks. In Table 4.13, we show the evaluation times on both

GPU and CPU for both methods over the two durations. Note: when running MC dropout on CPU,

we use 100 repeated inputs for both durations. The batch size for all predictions is 217 or 131,072.

The size of the MC dropout and direct probability models are 233.3 kB and 21.9 MB, respectively.

Table 4.13: Run time to obtain 1,000 probabilistic predictions from each model using GPU and
CPU in seconds.

Method Samples GPU Run Time CPU Run Time

MC Dropout 8,640 2.11 13.65
86,400 18.29 127.79

Direct Probability 8,640 0.58 0.52
86,400 3.93 3.93

The run times are unique to these specific models. The size of the models plays a role in run

time, and the size of these models are a result of the tuner. The MC dropout model is approximately

100 times smaller, but the increase in required model prediction calls results in the significantly

longer run times. The direct probability method, for this particular problem, is anywhere from 3 to

30 times faster depending on the number of samples and whether the GPU or CPU is being used.

4.4 MSIS-UQ

CHAMP-ML is particularly important due to its truly data-driven nature with no user-defined

basis functions to skew results. However, the limited altitude range of the dataset hinders its

use throughout the thermosphere as STM is not limited to the 300–460 km altitude range of the

CHAMP dataset. The EXTEMPLAR model [69, 70] uses a similar dataset to provide more accu-

rate exospheric temperatures to an MSIS model. We aim to build on this work while leveraging

ML to introduce nonlinearity and UQ capabilities.
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4.4.1 Methodology

MSIS-UQ is a machine-learned exospheric temperature model based on the temperature esti-

mates described in Section 2.3.2.1. This model is similar to EXTEMPLAR-ML [115] but differs

by: 1) using true locations (no grid) for training, 2) using the newest MSIS model, and 3) providing

uncertainty estimates. To accompany the high temporal cadence of the measurements, we expand

from the input set of NRLMSIS 2.0. To account for solar activity, the model receives F10, S10,

M10, and Y10, all accounting for different forms of solar emissions that affect different regions of

the thermosphere . The ML model also uses inputs from EXTEMPLAR, particularly SN, SS, ∆T .

It also uses the SYM-H time series from CHAMP-ML-v2 along with the same spatial and tempo-

ral inputs. The exception to this is altitude as exospheric temperature is independent of satellite

altitude.

4.4.1.1 Data Preparation

The 81 million samples – inputs and log10(T∞) – are split into training, validation, and tests

sets to achieve an 80%–10%–10% distribution. The dataset is split the same way as CHAMP-ML.

Again, there is a significant number of samples within each segment providing temporally disjoint

segments throughout the 17 year time-span of the dataset. Since each satellite has a different

cadence and there are different numbers of satellites providing measurements at a given time, the

number of samples in each segment varies. In the training, validation, and test sets, the number of

samples varies from 22,454–1,450,380, 12,990–181,423, and 12,888–181,422, respectively. This

means that there are between 25,878 and 362,845 samples separating training segments.

4.4.1.2 Model Development

The model uses standard normalization (Equation 3.3) and the NLPD loss function (Equation

4.1). The output layer is the same as the one described in Section 4.2 and the direct probability

approach is therefore adopted. A hyperparameter tuner is used to determine the architecture. Since

there are over 65 million training samples in the dataset, we only provide the tuner with a subset

of this data. The tuner uses 1 million randomly selected samples from the training set and 200,000
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randomly selected samples from the validation set. Each model trained by the tuner will run for 50

training iterations (or epochs) with a batch size of 4,096. Upon completion, the 10 best models are

saved based on the validation loss values. All 10 models are evaluated (see Section 4.4.1.3), and

the best performing one is used as a base architecture for full training.

4.4.1.3 Model Analysis

When comparing model to satellite densities, we use the mean absolute error (MAE) metric in

percentage form. To assess the quality of the ML uncertainty estimates, we use CES (Equation 4.3).

Although the model is explicitly predicting exospheric temperature, the statistics are computed

after those temperatures are supplied to NRLMSIS 2.0. To obtain density, the following process

is required. 1) MSIS-UQ predicts µ and σ for exospheric temperature at a particular location. 2)

This distribution is sampled 1,000 times to extract samples that can be input to NRLMSIS 2.0. 3)

These exospheric temperatures are interfaced with NRLMSIS 2.0 using the desired location and

required model drivers. 4) If desired, µ and σ can be estimated from the density samples.

4.4.1.3.1 Comparison with NRLMSIS 2.0 and HASDM

To assess the validity of the model in terms of mean density prediction, its error with respect

to the satellite estimates are compared to those of NRLMSIS 2.0 and HASDM. To get NRLMSIS

2.0 errors, the model is evaluated at all locations and times of the satellite measurements. For

HASDM, the 3-dimension density grids from the SET HASDM density database are interpolated

in log-scale to the satellite locations and times [57]. We then break up the errors into the three

sets used for ML model development (training, validation, and test). We do this to simultaneously

test the generalization of our model while ensuring differences in performance across the sets is

also seen with the other models. In addition to the error assessment, we also compute the CES for

MSIS-UQ across the three sets (in terms of density). For information on the conversion from ML

predicted exospheric temperature to NRLMSIS 2.0 adjusted density, see Weimer et al. [69, 70].
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4.4.1.3.2 Uncertainty Demonstration

The reliability of the MSIS-UQ uncertainty estimates is demonstrated early in Section 4.4.2,

but the capabilities are further established in Section 4.4.2.1. The ML model directly predicts

the uncertainty into the exospheric temperature which is then incorporated into NRLMSIS 2.0.

The probabilistic T∞ values result in probabilistic local temperatures and species densities. We

consider a given epoch (May 13, 2007 at 21:42.50 UT) where CHAMP and GRACE are at very

different locations; CHAMP is near the equator on the night-side while GRACE is at high latitude

on the day-side. NRLMSIS 2.0 is provided probabilistic T∞ values from the MSIS-UQ distribution

at each location, and we consider the temperature, species densities, and mass density between

100 and 800 km altitude. The distributions are shown as a function of altitude, and the satellite

estimates are provided for reference.

4.4.2 MSIS-UQ Results

Figure 4.14 shows the relative error distributions and mean absolute error for NRLMSIS 2.0,

HASDM, and MSIS-UQ with respect to density estimates from CHAMP, GRACE, Swarm A, and

Swarm B. The calibration curve for MSIS-UQ is also displayed alongside the calibration error

score. This is separated by samples in the MSIS-UQ training, validation, and test sets. Similar

figures are provided for each individual satellite in the Supplementary Materials.

Panel (a) shows the altitudes for each satellite used in this analysis showing over a 200 km

span over 15 years of measurements. The left-most panels (b), (d), and (f) indicate that MSIS-UQ

provides much more accurate density predictions than both NRLMSIS 2.0 alone and HASDM. All

three models have a tendency to overpredict density although MSIS-UQ has the smallest bias. The

MAE values highlight the ∼25% error reduction from NRLMSIS 2.0 and the ∼11% error reduction

from HASDM. Across the three sets, MSIS-UQ is well-generalized with density prediction errors

ranging < 1.5%. With respect to its uncertainty estimates (panels (c), (e), and (g)), MSIS-UQ has

a CES < 5% across the three sets. It has a tendency to underestimate in the middle prediction

intervals (between 20% and 80%) but is well-calibrated at prediction intervals > 90%.
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Figure 4.14: Altitudes of the satellites used for temperature and density estimates (a), relative error
histograms (b,d,f), and MSIS-UQ calibration curves (c,e,g).
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4.4.2.1 Uncertainties as a Function of Altitude

Figure 4.15 contains uncertainty profiles for MSIS-UQ at CHAMP and GRACE locations on

May 13, 2007. There are panels for species density, temperature, mass density, relative uncertainty,

and satellite position. Please reference the figure caption and Section 4.4.1.3.2 for details.

Panels (a) and (b) show the species density profiles at CHAMP and GRACE positions, respec-

tively. The uncertainty bounds provide valuable information on the impact of exospheric tem-

perature uncertainty on the uncertainty of local species. For example, one can investigate the

Oxygen (O) to Helium (He) transition for various locations and conditions. Panel (a) shows that

at CHAMP’s position, this transition is occurring somewhere in the region of 507 to 552 km (1-σ)

while at GRACE’s position, the transition may occur between 688 and 738 km (1-σ). Other in-

sights can be gained such as which species are most impacted by exospheric temperature at a given

location/altitude. Note: only 1-σ bounds are shown here to prevent artifacts at low-values caused

by the semi-logarithmic scale. The scale also causes the bounds to appear to be not-centered about

the mean.

Panels (c), (d), and (e) provide information on the local temperature and mass density with

uncertainty. In panel (c), MSIS-UQ severely shifts the exospheric temperature prediction and

brings it closer to the estimates of CHAMP and GRACE; in both cases NRLMSIS 2.0 overpredicts

temperature. The uncertainty in temperature is unobservable below 130 km and grows until it

reaches the asymptotic temperature between 250 and 300 km. The uncertainty bounds and mean

remain unchanged above these altitudes. Note that the CHAMP and GRACE temperature estimates

are for T∞ but we show them at their current altitude as the temperature has converged.

In panel (d), we see different trends in mass density. Again the uncertainty is minimal below

approximately 200 km and begins to increase for a few hundred kilometers. The overprediction

of temperature in NRLMSIS 2.0 results in higher than observed density by CHAMP and GRACE

around 350 and 475 km, respectively. MSIS-UQ provides a more accurate density predictions at

the satellite locations. Panel (e) shows the 1-σ uncertainty with respect to mean density. This

shows different model behavior between the two locations. At CHAMP’s location, the uncertainty
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Figure 4.15: MSIS-UQ species density profiles for CHAMP (a) and GRACE (b) locations with 1-σ
bounds, temperature profiles with 2-σ bounds (c), total mass density profiles with 2-σ bounds (d),
1-σ uncertainty normalized by the mean prediction (e), and the paths for CHAMP (f) and GRACE
(g) with the current location denoted by the markers. This was conducted for May 13, 2007 at
21:42.50 UT.
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increases to 24% around 460 km and decreased until around 700 km where it settles to 9%. At

GRACE’s location, the uncertainty continues to increase until it reaches 18% at 600 km where it

begins to decrease.

4.5 TIE-GCM ROPE

Empirical and assimilative models (e.g. MSIS and HASDM) are useful in operations as their

predictions are based on knowledge of the thermosphere combined with decades of observational

data. However, there are no constraints to satisfy the many physical equations that describe the

overall system in space and time. This is what drives the development of physics-based models.

These satisfy the governing equations and provide a more realistic evolution of the thermosphere,

particularly during storms. However, their computational expense and difficulty to incorporate un-

certainty limit their usefulness in STM applications where uncertainties are vital, and there is a

growing frequency of potential conjunction events. We attempt to leverage reduced order model-

ing, RNNs, and ensemble modeling to alleviate these drawbacks.

4.5.1 LSTM Methodology

Over the last several years, some researchers have developed dynamic reduced order models

(ROMs) for empirical and physics-based thermosphere models alike. Mehta et al. [116] used PCA

on TIE-GCM data and developed a dynamic ROM using dynamic mode decomposition (DMD)

with control (or DMDc). This approach has been applied by Gondelach and Linares [117, 118] on

the NRLMSISE-00, JB2008, and TIE-GCM models with the goal of data assimilation. DMDc is

based on the assumption of the linear relationship between successive time steps and the processes

that drive the system,

xk+1 = Axk +Buk (4.8)

where x denotes the state, A is the dynamic matrix, and B is the input matrix relating the system

inputs/drivers and successive state of the system. Here, k refers to the time step. In a matrix
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format, this is achieved by xk+1 being the PCA coefficients from 2 : n, xk being the coefficients

from 1 : n − 1, and uk being the chosen drivers from 1 : n − 1. As this is used as a benchmark

for ML dynamic model development, the reader is referred to Proctor et al. [119] for the theory

behind DMDc and to Mehta et al. [116] for details on its application to this dataset.

4.5.1.1 Data Selection and Preparation

To develop TIE-GCM Reduced Order Probabilistic Emulator (TIE-GCM ROPE), TIE-GCM

density outputs are required. Mehta et al. [116] developed an input set of F10 and Kp containing

one year of simulated outputs – resulting in 8,760 hourly input values. For F10, they used a sine

wave with a period of one solar rotation (27 days) that had minimum and maximum values of 60

and 250 sfu, respectively. The Kp was randomly sampled from observed distributions. This input

set and the resulting TIE-GCM density is referred to as "Sim1". This dataset essentially contains

a solar cycle worth of density variations in a single year making model development easier. In

addition to this simulated dataset, TIE-GCM was run for an entire solar cycle (1996–2008).

TIE-GCM is a dynamic model, meaning it models the evolution of the system. Both HASDM

and MSIS are static models, meaning they only make predictions with the current epoch in consid-

eration. This aspect of TIE-GCM makes it valuable in scientific studies and therefore a surrogate

model should work the same way. To develop a dynamic ML model, we leverage Long-Short

Term Memory neural networks (LSTMs, see Section 3.4). Like vanilla recurrent neural networks,

a number of "lag steps" must be defined. For TIE-GCM ROPE, three lag steps are used. Since the

TIE-GCM dataset has a cadence of one-hour, this corresponds to a three-hour window which is

generally enough time for perturbations to the input to be seen throughout the thermosphere. The

internal cell memory allows for the longer-term effects to be accounted for. The study in Chapter 5

will show that the data-driven CHAMP-ML model had the strongest relationship between density

and either current geomagnetic indices or indices from the last three hours.

This dataset has the following spatial resolution: 24 local solar time values, 20 latitude values,

and 16 altitudes evenly spaced between 100 and 450 km. As with HASDM, the spatial dimension-

ality of this dataset is too large for uncertainty quantification methods. Therefore, PCA is applied
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(r = 10) as described in Section 3.5. For the tuner, the Sim1 dataset was chosen for manageable

run times, and three segments from the solar cycle were chosen for validation. The three 1,000

sample segments represent high geomagnetic activity (late 2003), solar minimum (mid-2008), and

solar maximum (early 2002). The PCA coefficients and space weather drivers for this tuning and

testing dataset are shown in Figure 4.16.

Figure 4.16: TIE-GCM PCA coefficients for Sim1 dataset and selected validation segments (a – j)
with corresponding F10 (k) and Kp (l). The validation segments are shown as presented in the text
(late 2003, mid-2008, early 2002).
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4.5.1.2 Model Development

For other models developed in this work, direct probability distribution prediction resulted in

both low error and robust uncertainty estimates. However, they were static, not recurrent, neural

networks. Early efforts showed that the direct probability method was strongly underestimating un-

certainty due to the one-step training and dynamic prediction process (Section 3.4.2). To attempt to

combat this, we overhauled the default LSTM training process and force it to use a dynamic train-

ing process, mimicking its operational usage to get better predictions of σ. This required batch

averaging and resulted in poor mean prediction capabilities. The final approach was to develop µ

and σ models separately to try and leverage the benefits of both previous tests. The µ models could

perform dynamic prediction with low error, but the σ models still struggled to provide meaningful

uncertainty estimates. Another approach to uncertainty quantification, popular in terrestrial and

space weather applications, is ensemble modeling [120, 121]. We therefore develop many indi-

vidual LSTMs and combine the results in such a way to obtain accurate predictions and reliable

uncertainty estimates.

Hyperparameter tuners were run on the Sim1 dataset to determine architectures for the afore-

mentioned direct probability tests. While those did not yield an adequate final model, the last

attempt (separate µ and σ modeling approach) provided architectures for potential ensemble mod-

els. The tuner options and search space used for the MSE models are provided in Table 4.14.

These models were evaluated on the validation set shown earlier in Figure 4.16, and the top two

architectures were used for future training.

Early modeling efforts showed that the Sim1 dataset, while valuable for testing and tuning, did

not provide adequate model performance when used for training. Therefore, the training data for

the final model comes from the TIE-GCM outputs spanning 2002–2008. This provides the model

with the highest and lowest extremes of solar activity seen in the solar cycle. PCA is performed

again on this time period, and all density data (1996–2008 and Sim1) is transformed using the basis

functions from this training set. For validation, a block of 1,250 samples (approximately 52 days)

from Sim1 is used as it provides a wide range of conditions for evaluation in a short period.
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Table 4.14: Hyperparameter tuner parameters (left) and search space (right) for the mean square
error LSTM.

Tuner Option Choice Parameter Values/Range

Scheme
Bayesian Number of

1–3
Optimization LSTM Layers

Total Trials 50 LSTM Neurons
min = 32, max = 512,

step = 4

Initial Points 25 LSTM Activations tanh, sigmoid, softsign

Repeats per Trial 3
Number of

1–3
Dense Layers

Minimization
val_loss Dense Neurons

min = 64, max = 1024,
Parameter step = 4

Epochs 2,500 Dense Activations
tanh, sigmoid, softsign,

relu, elu, softplus

Early Stopping
val_loss Dense Dropout

min = 0.01, max = 0.50,
Criteria step = 0.01

Early Stopping
75 epochs Optimizer

RMSprop, Adam, Adadelta,
Patience Adagrad

One potential problem with this data is that there must be continuity for the LSTM internal

state, but the model should not see the data in the same order every epoch – starting with solar

maximum and ending with solar minimum. To avoid potential issues, the seven years are split into

490 segments with 125 time steps (approximately five days) of continuous data within them. The

training process can be modified such that the model can be trained on each 125 sample continuous

segment, and the internal state can be reset after each one. These 490 segments can be shuffled

such that the LSTM sees different ordering of the data while being able to fine-tune its internal cell

parameters without the threat of discontinuous data.

Another stark difference between Sim1 and 2002–2008 is the low relative frequency of geo-

magnetic storms in the historical period. Early testing also showed that the LSTMs trained on the

historical data were more accurate overall compared to Sim1 models, but they had higher storm-

time errors. A straightforward solution is to use sample weighting: applying an importance to each

individual sample. We use a simple algorithm based on the frequency of samples at different Kp
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levels such that the number of samples within a Kp bin multiplied by the number of samples in that

bin is equal across all bins. This can help enforce importance to storm-time samples based on the

relative frequency of these events.

At this point, the architectures for both models are finalized. To obtain the final µ model, it

is trained on this new dataset with the described sample weighting scheme. At first, the model is

trained using a typical one-step training method, but the loss is averaged over the 125 sample seg-

ment. This is performed for up to 2,500 epochs with early stopping based on mean absolute error

in the density space for the validation set. After each validation segment, the true and predicted

PCA coefficients are converted back to density through the inverse PCA transformation. Since the

importance of the coefficients are not uniform, the MSE in the PCA space is not directly correlated

to the best model. After the model is finished with batch training, it continues training without

batch averaging using a smaller learning rate until the early stopping criteria is met once more.

We obtain five models using this approach for the best two architectures resulting in ten models to

make up the ensemble.

4.5.1.3 Weighted Averaging and Uncertainty Scaling

To derive the weighting arrays and uncertainty scaling factors, we do all computations sepa-

rately within each architecture (i = 1, 2). The combination of the two architectures completes the

ensemble, predicting different possibilities for a period of interest. Each individual model uses its

own outputs as inputs (dynamic prediction), so the combination is done post-prediction.

The predictions of the PCA coefficients from each model will differ with varying levels of

accuracy. Instead of simply averaging the predictions across the five models (for a given architec-

ture), we opt to determine weighting factors based on the relative error of each model. To achieve

this, each model is evaluated across the training set in five-day dynamic segments. The predictions

of the PCA coefficients for each model and period are saved for later evaluation. The mean abso-

lute error is computed for each model and each coefficient over the entire training set resulting in
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a 5×10 array. Using this, the weights (w) are computed as,

wi,j,k =
w̃i,j,k∑5
j=1 w̃i,j,k

where w̃i,j,k =
1

MAEi,j,k
(4.9)

where i, j, and k refer to each architecture, model, and PCA coefficient, respectively. w̃i,j,k denotes

the weights at an intermediate step before normalization. Once computed, the weighted mean and

variance for each PCA coefficient from each architecture can be obtained,

α̂i,k,t =
5∑

j=1

wi,jα̂i,j,k,t and σ̂2
i,k,t =

5∑
j=1

wi,j (α̂i,k,t − α̂i,j,k,t)
2 (4.10)

where α̂i,k,t and σ̂2
i,k,t are the ensemble mean and variance for the ith architecture and kth PCA

coefficient at time t, respectively. α̂i,j,k,t refers to the corresponding prediction from each of the five

models. While this will provide a distribution under a Gaussian assumption, it does not guarantee

robustness and reliability of the resulting uncertainty estimates. This can be improved with so-

called σ scaling. Laves et al. [122] came up with a scaling factor (s) to scale model σ to better

represent uncertainty. The scaling factor can be computed using the following equation, based on

Equation 9 in [122].

Si,k =

√√√√ 1

ntr

ntr∑
t=1

(αk,t − α̂i,k,t)
2

σ̂2
i,k,t

(4.11)

In Equation 4.11, Si,k is the scaling factor for the ith architecture and kth PCA coefficient, ntr is

the number of time-steps in the training set, and αk,t is the true/reference value for the kth PCA

coefficient at time t. The ensemble weights and scaling factors are saved for all later model use.

The overall ensemble mean and variance can be computed as,

α̂k,t =
1

2

2∑
i=1

α̂i,k,t and σ̂2
k,t =

(n1 − 1)σ̂2
1,k,t + (n2 − 1)σ̂2

2,k,t

n1 + n2 − 2
=

σ̂2
1,k,t + σ̂2

2,k,t

2
(4.12)

where n1 and n2 are the number of models within each architecture. This is the pooled variance
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formula which reduces to a simple average due to an equal number of models in each architecture.

The final ensemble will be referred to as TIE-GCM reduced order probabilistic emulator (ROPE)

due to its ability to provide Gaussian uncertainties and to function as a reduced order emulator for

TIE-GCM (see Section 4.5.2.2).

4.5.1.4 DMDc Approaches

Given that considerable work has been done by other researchers for dynamic thermosphere

modeling with DMDc, we use it as a baseline to compare with the LSTM. Gondelach and Linares

[117] compared DMDc for NRLMSISE-00, JB2008, and TIE-GCM using linear and nonlinear

inputs. For TIE-GCM, they used Kp2 and Kp·F10 to try and overcome DMDc’s limitation of

linearity. To conduct a thorough test, we consider the LSTM test set of 1996–2001, and split the

data into three segments using five-day dynamic prediction windows. (1) Kpmax < 5, (2) 5 ≤ Kpmax

< 7, and (3) Kpmax ≥ 7. Within these windows, we align them such that the maximum Kp is at the

two-day mark.

We then create DMDc models with five different input sets based on TIE-GCM from 2002–

2008 (the LSTM training set). All models use t1–t4 as temporal inputs (see Equation 2.1). The

linear inputs are F10 and Kp, and the two nonlinear inputs are the ones used by Gondelach and

Linares. Figure 4.17 shows the mean absolute error as a function of time for these models.

For the quiet case, panels (a,d), all DMDc models have similar errors. The average error

across the five-day windows are within 0.6%. Although the periods are aligned with respect to

the maximum Kp, the level of geomagnetic activity is low, and the error is therefore minimally

affected. For the moderate case, panels (b,e), there is a sharper rise in error around the onset of a

storm – nearly doubling in ∼12 hours. Still, there is little deviation between the models, and the

mean error for all models is within 0.7% over five days.

The strong storms create stark differences in model performance. While the strictly linear ap-

proach has the highest errors at maximum Kp, it has the best recovery from the storm. Including

the additional nonlinear inputs results in the worst post-storm performance which could be a re-

sult of using too many drivers, all changing drastically during these periods. Using only the two
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Figure 4.17: Average Kp for the three conditions with shaded 2σ bounds (a–c) with the corre-
sponding errors (d–f). The legend denotes the models used in panels (d–f). Note: all models use
the same temporal inputs.

nonlinear drivers (and time) does reduce the error at maximum Kp by about 5%, and the rise in

error after the storm is not as pronounced. We proceed with the use of this DMDc approach due

to storm-time improvement and use in other work. For Figures 4.19 and 4.20 in the proceeding

section, we show both the linear and nonlinear-input DMDc models which will be referred to as

DMDc and DMDc NL, respectively. All other tables and figures use the nonlinear-input DMDc

model.

4.5.2 TIE-GCM ROPE Results

This dynamic reduced order modeling effort poses challenges when determining the best way

to evaluate the models. With static modeling (e.g. HASDM-ML, CHAMP-ML, MSIS-UQ), error
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and calibration can be analyzed relatively simply across the training, validation, and test sets.

However, the DMDc and LSTM ensemble models will have different statistics depending on the

evaluation window. We therefore must take careful consideration when evaluating and comparing

the two methods.

4.5.2.1 Five-Day Operational Analysis

Once the final models were trained and the weighting and scaling schemes were determined

(Section 4.5.1.3), the ensemble was evaluated on all available TIE-GCM data. The results for five-

day dynamic prediction windows on the training, validation, and test sets is shown in Table 4.15

alongside the DMDc model. The calibration error score (Equation 4.3) is shown for TIE-GCM

ROPE.

Table 4.15: Error and calibration statistics for DMDc and LSTM models averaged over 5-day
dynamic prediction periods.

DMDc

Set Training
Year 2002 2003 2004 2005 2006 2007 2008
MAE 6.31% 7.55% 6.81% 6.41% 6.02% 5.70% 5.97%

Set Val. Test
Year Sim1 1996 1997 1998 1999 2000 2001
MAE 32.43% 5.00% 4.48% 5.43% 6.73% 7.01% 6.34%

LSTM

Set Training
Year 2002 2003 2004 2005 2006 2007 2008
MAE 5.66% 6.44% 5.93% 6.87% 5.12% 7.23% 8.45%
CES 16.16% 16.83% 15.08% 15.75% 15.56% 16.02% 18.49%
Set Val. Test

Year Sim1 1996 1997 1998 1999 2000 2001
MAE 10.34% 5.57% 4.83% 5.60% 6.27% 6.38% 6.44%
CES 13.53% 17.60% 15.13% 15.03% 15.16% 14.82% 15.90%

Across the training set (decline of solar cycle 23), both DMDc and the ensemble have similar

errors, on the order of 4–9%. It is important to note that the errors are with respect to the TIE-GCM

density, so it also includes an average of 2% truncation error from PCA. On the validation set, both

modeling approaches have their highest error – 32% and 10% for DMDc and LSTM ensemble,
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respectively. This is caused by the variability in the Sim1 dataset (Figure 4.16). There is a high

concentration of storms, and solar activity changes the drastically on the time-scale of days. This

causes some issues for the LSTM, an increase of about 4% error with respect to its average on the

training set, but it causes the average DMDc error to jump 4–5 times its normal values for a given

year. This will be explored further in Section 4.5.2.1.1.

On the test set, both models perform similarly to both each other and to their performance on the

training set. This indicates good generalization on historical periods. The calibration error score

for the ensemble is between 13% and 19% for any given year (including the validation set). While

this is higher than in previous modeling efforts, dynamic prediction poses a challenge. Adding

models and architectures to the ensemble could potentially reduce the CES. We test the robustness

of the LSTM ensemble to geomagnetic activity by performing the study for DMDc (Figure 4.17)

on TIE-GCM ROPE. The results are shown in Figure 4.18.

As seen in Figure 4.17, DMDc has low dynamic prediction error during geomagnetically quiet

conditions. For this same period, the LSTM ensemble also has low errors, but the error climbs

to ∼ 5% within 24 hours while it takes DMDc around 72 hours to reach the same error. Beyond

this point, the LSTM ensemble has lower errors. In panel (e), the error again climbs to 5% for the

LSTM in the first day, but it is relatively unaffected by the onset of the storms. DMDc errors jump

to around 8% and slightly increases post-storm while the ensemble only jumps to approximately

7% and drops to around 6% for the remainder of the dynamic prediction window.

For the strongest storms (panel (f)), TIE-GCM ROPE proves to be much more robust. The

errors for it and DMDc converge around 24 hours after the dynamic prediction starts. At maximum

Kp, the error for TIE-GCM ROPE peaks at just above 10% which is below even the lowest error at

max Kp for any nonlinear DMDc approach tested in Figure 4.17. The LSTM error also continues

to decrease post-storm back to the 7%–9% range. The 2σ error bounds to TIE-GCM ROPE area

also considerably lower than for DMDc for the storm and post-storm periods. The calibration error

score for TIE-GCM ROPE is also fairly consistent across the three conditions.
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Figure 4.18: Average Kp for the three conditions (a–c) with the corresponding errors for DMDc
and LSTM ensemble(d–f). The shading represents 2σ bounds for Kp (a–c) and errors (d–f).

4.5.2.1.1 DMDc Sensitivity

Figure 4.18 highlighted the robustness of TIE-GCM ROPE to geomagnetic activity while also

showing the low error for DMDc during quiet periods. However, we noted in Table 4.15 that the

five-day forecast errors for DMDc were significantly higher on the Sim1 validation data. While

Sim1 contains an above-average number of geomagnetic storms for a year-long period, another

distinguishing feature of the dataset is how drastically F10 can vary in a few days. We explore

this further by considering a period from Sim1 that is outside the validation set. The DMDc and

TIE-GCM ROPE predictions in the reduced state are displayed in Figure 4.19. Note: although we

extract σ from the LSTMs to get distribution statistics for TIE-GCM ROPE, the individual model
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predictions are shown alongside the ensemble mean for observational purposes. We also show the

linear-input DMDc model for comparison.

Figure 4.19: PCA coefficients from TIE-GCM along with dynamic prediction from the linear-input
DMDc model, the nonlinear-input DMDc model (DMDc NL) and TIE-GCM ROPE (a–j), global
density mean absolute errors for the two models (k), and corresponding space weather drivers (l).
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Before discussing the DMDc and LSTM predictions in Figure 4.19, we must look at F10 and

Kp for this period (panel (l)). F10 increases from 190–250 sfu in this five-day window. This is a

substantial increase for this short of a time – which is very unlikely – but it provides us with a test

for how well these models can function as a reduced order model for TIE-GCM. Kp is fairly quiet

for the beginning of this period but rises to a moderate storm just before the three-day mark.

The most glaring result from Figure 4.19 is the DMDc predictions in panel (a). While the

individual LSTMs properly track the quickly rising α1 from TIE-GCM, the two DMDc models

do not. In fact, it decreases until the storm onset at day 57. Considering that α1 is the most

important PCA coefficient (capturing the most variance in the dataset), this explains the larger

DMDc errors in panel (k). While DMDc has generally low errors (Table 4.15 and Figure 4.18

panel (d)) it does not seem to follow large variations in the thermosphere, which is a major attribute

of the Sim1 dataset. Conversely, TIE-GCM ROPE does well following the variations in all of the

PCA coefficients, and the onset of the storm leads to some divergence in the individual LSTM

predictions. This is expected as the variance should rise with storms, especially considering that

it does affect the model performance (Figure 4.18). The ability for TIE-GCM ROPE to follow

even the higher-order PCA coefficients shows that it can represent more of the dynamics in TIE-

GCM relative to DMDc. It is also important to note how the distributions for each architecture

evolve in different ways. For α1 specifically, the second architecture results in more diverse model

predictions following the storm, highlighting the importance of the hierarchical development of

the ensemble.

4.5.2.2 Ensemble Emulation

To test emulation capabilities, the DMDc model and TIE-GCM ROPE were evaluated on the

same periods, but with a dynamic prediction window of approximately one year. This is displayed

in Table 4.16. Note that for 1996, there is only 280 days available for prediction, and the validation

period on Sim1 is only 54 days.

For the long-term dynamic prediction, DMDc becomes unreliable with errors ranging from

38%–82%. For most years, the TIE-GCM ROPE error is similar to the corresponding values in Ta-

90



Table 4.16: Error and calibration statistics for DMDc and LSTM models averaged over full-length
dynamic prediction periods. This is 280 days for 1996, 362 days for all other years, and 52 days
for the validation set.

DMDc

Set Training
Year 2002 2003 2004 2005 2006 2007 2008
MAE 61.94% 45.79% 49.11% 55.90% 59.36% 75.76% 81.30%

Set Val. Test
Year Sim1 1996 1997 1998 1999 2000 2001
MAE 44.46% 82.02% 44.10% 40.21% 42.90% 52.24% 38.46%

LSTM

Set Training
Year 2002 2003 2004 2005 2006 2007 2008
MAE 6.02% 6.75% 6.72% 8.14% 7.81% 12.94% 23.12%
CES 15.78% 24.09% 26.48% 27.63% 28.52% 26.82% 22.28%
Set Val. Test

Year Sim1 1996 1997 1998 1999 2000 2001
MAE 11.27% 18.70% 9.67% 6.21% 6.76% 6.73% 6.76%
CES 5.59% 30.06% 29.29% 25.39% 17.30% 12.21% 15.11%

ble 4.15. It appears that the ensemble can emulate TIE-GCM for long periods with low errors with

the exception of solar minimum (1996, 2007, 2008). During these periods, the errors are between

13% and 23%. The calibration error score for the ensemble is generally higher for these long-term

dynamic prediction windows. To visualize the long-term dynamic prediction performance, we look

at a 362-day prediction on the Sim1 dataset. The validation set is contained within this period but

only accounts for ∼15% of the samples. The mean density at 400 km for TIE-GCM is shown with

DMDc and TIE-GCM ROPE predictions in Figure 4.20.

While it is difficult to see, both DMDc and TIE-GCM ROPE have low errors for the first few

days, but as seen with Figure 4.19, the DMDc error quickly compounds. The DMDc predictions do

not follow the trends of TIE-GCM, but the cyclic nature of F10 in Sim1 allows for the DMDc error

to briefly drop at times (panel (b)). However, the large errors, peaking above 1000%, require panel

(b) to be shown in a logarithmic scale. TIE-GCM ROPE is able to track the long and short-term

variations without any state updates. Its errors peaks at 30% but generally remains around 10%

across the year-long prediction window. The individual LSTM predictions are more prominent
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Figure 4.20: Mean density at 400 km (a) with global-averaged errors for linear-input DMDc,
nonlinear-input DMDc (DMDc NL), and LSTM ensemble (b), and the corresponding space
weather drivers (c) for a 362-day period across the Sim1 dataset.

during high-density levels in solar maximum conditions (see panel (c)), and the uncertainty is

therefore higher in those conditions.

4.6 Summary

This chapter focused on the development of four unique probabilistic thermosphere models

based in ML. Sections 4.1 and 4.2 discuss the evolution of HASDM-ML development. HASDM-

ML is based on the state-of-the-art HASDM system which is not publicly available. These sections

introduce the concept of MC dropout as a means for UQ along with the introduction of different

loss functions that can help the model achieve robust and reliable uncertainty estimates (NLPD and

CRPS). This transitioned into a more computationally efficient UQ technique: directly prediction
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the probability distribution. The best HASDM-ML model resulted from the direct probability

method and the NLPD loss function. We show that HASDM-ML is much more similar to HASDM

than JB2008, the base model of HASDM, and HASDM-ML proves to be robust during extreme

events.

CHAMP-ML was developed as a byproduct of the uncertainty quantification studies for HASDM

as it is instead based on in-situ measurement. CHAMP-ML is able to learn the spatial relationship

of the thermosphere in addition to its response to space weather events. We were able to study

the uncertainties of CHAMP-ML to show that the model uncertainty is structured based on the

dataset it was trained on. For example, CHAMP-ML had more uncertainty at 450 km during solar

minimum than at 300 km, because at solar minimum conditions, CHAMP was at low altitudes.

MSIS-UQ, like CHAMP-ML, is based on it-situ satellite data; however, it predicts exospheric

temperature as a standalone model as opposed to mass density. Nevertheless, MSIS-UQ functions

as a thermospheric density model, because of its use as a coupled model with NRLMSIS 2.0. We

showed that it could significantly reduce the bias between NRLMSIS 2.0 and satellite density data

while simultaneously making MSIS probabilistic with robust uncertainty estimation capabilities.

The combination of MSIS-UQ and NRLMSIS 2.0 provide a unique opportunity to study uncer-

tainties in the composition of the thermosphere as well.

The final model developed was TIE-GCM ROPE, based on a dynamic physics-based thermo-

sphere model. The use of LSTMs allowed for the ML model to model the dynamic nature of the

thermosphere, but it created challenges with respect to UQ. The ensemble approach was chosen to

bypass the poor performance with NLPD, and two scaling/weighting schemes provided increased

accuracy and improved UQ performance. The studies for TIE-GCM ROPE showed that during

storms, the nonlinear ML approach outperformed the linear DMDc method, and it is able to cap-

ture both the short and long-term dynamics of the original TIE-GCM model. These models will be

used to show that they have a place in scientific studies for space weather (Chapter 5). They will

also crucially show the importance of uncertainty of using model uncertainty in STM applications

(Chapter 7).
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Chapter 5. Science through Machine Learning

In the space weather community, ML has been used to develop models for problems such

as solar flare prediction [123], ionospheric scintillation detection [124], and geomagnetic index

forecasts [125]. However, its use is often limited to problem solving, not for investigative purposes.

Further, there are rarely any studies on what the model has learned outside of determining its

performance metrics. Convolutional neural networks – specifically related to image processing

– are inherently easier to understand, as the filters (or weights) can be displayed as images and

therefore interpreted [126]. This is not a luxury associated with ML regression models where

inputs do not have visual qualities, so the weights are difficult to interpret. This motivates the work

of this chapter as it pertains to space weather and the thermosphere.

5.1 Thermospheric Overcooling Phenomenon

Many thermosphere models struggle to quantify the amount of heating during a geomagnetic

storm. Meanwhile the timing and severity of post-storm cooling remains a challenge for the mod-

eling community. Zesta and Oliveira [127] found that when storms become stronger, the ther-

mosphere both heats and cools at a faster rate. Significant research has been done into a poten-

tial cause of the cooling effects, overproduction of nitric oxide (NO) and its infrared emissions.

Kockarts [14] investigated the cooling impact of the thermosphere due to downward heat con-

duction, atomic oxygen (O), and NO during a geomagnetic storm in 1974. They found that the

reduction in thermopause temperature from the introduction of NO cooling was 440 K, while the

addition of O cooling only reduced the temperature by another 35 K. This topic has gained much

more attention in recent years due to the NO emission data from the Sounding of the Atmosphere

using Broadband Emission Radiometry (SABER) instrument [128] and high fidelity density esti-

mates from satellite such as CHAMP and GRACE.

Mlynczak et al. [15] used SABER data during the storm periods of April 2002 and found

that NO emissions were notably enhanced during this period. Lei et al. [129] considered the
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prominent 2003 Halloween storms to provide a comparison of SABER data to density estimates

from both CHAMP and GRACE. They noted a 23–26% maximum density depletion during the

recovery phase for the satellites relative to quiet pre-storm values, and the NO cooling rates during

this period remained at a high level. Knipp et al. [130] examined 192 geomagnetic events to

compare NO and neutral density data from GRACE. Their data-based study suggests shock-led

interplanetary coronal mass ejections result in an overproduction of NO which provides a cooling

effect that compensates for the strong thermospheric expansion that occurs during these storms.

The driving force behind the cooling effect is still an active area of research and other mechanisms

(e.g. ionosphere-driven atomic oxygen reductions) have been proposed to explain the phenomenon

[131, 132]. We do not attempt to confirm any driving mechanisms in this work.

Using ML, we can investigate the presence of post-storm cooling in various datasets and which

model drivers may be required to capture it. We first explain the data and models used for model

development and comparison. Then, we describe the ML models and how we use them to examine

this phenomenon. We show model predictions during a prominent geomagnetic storm to motivate

the importance of this work and provide a quantitative analysis on the effect of geomagnetic time

history on the predicted density.

5.2 Data, Models, and Methods

5.2.1 Data and Models

As a benchmark, we use NRLMSIS 2.0. As described in Section 2.3.1.1, it uses time series ap

to account for geomagnetic activity over the previous 57 hours. This has the potential to inform

the model of a recent strong storm. Machine-learned density models are developed based on four

separate datasets. The first three ML models are HASDM-ML, CHAMP-ML-v2, and MSIS-UQ

(all from Chapter 4). Note that all CHAMP-ML use for the remainder of this work is with CHAMP-

ML-v2. The last model is developed on outputs of JB2008 from the start of 2000 to end the of

2019 [6]. JB2008 was evaluated every three hours and at a fixed grid of 12,312 locations including

altitude. The space and time resolution is consistent with the SET HASDM density database. The
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model drivers for JB2008 are described in Section 2.3.1.2. The ML drivers and model development

methodology is consistent with that of the direct probability HASDM-ML model. This will be

referred to as JB2008-ML in this chapter. It is important to note that TIE-GCM ROPE is not used

here as it does not take time-series inputs required to conduct this analysis (see Section 5.2.3).

5.2.2 Storm Example

To motivate the work, we evaluate NRLMSIS 2.0 and the ML models from the various datasets

during the 2003 Halloween storms. The time series ap flag was enabled when running NRLMSIS

2.0 in this work. The five models were provided the true drivers for the six day period from

October 28 – November 3, 2003 and were compared to the Mehta et al. [48] CHAMP estimates.

For NRLMSIS 2.0, CHAMP-ML, and MSIS-UQ, the predictions were made with the same time

cadence and at the specific locations of the satellite, negating the need for further processing.

For JB2008-ML and HASDM-ML, the models were evaluated at the 3-hour intervals used by the

original models. The global density grids were then interpolated in space and time in log-scale to

the locations of CHAMP. The final step is to take a running average of the along-orbit densities

over the 92.5 minute orbital period to obtain orbit-averaged densities. This allows us to visualize

the general density along the orbit during the storm period (Figures 5.1 and 5.3).

5.2.3 Time Lag Study

As discussed early in the chapter, cooling mechanisms often cause post-storm densities to be

anomalously low. For this storm in particular, Lei et al. [129] noted nearly a 25% decrease in

post-storm densities relative to pre-storm levels. In an effort to quantify this mechanism within the

original models/datasets, the time histories for ap or SYM-H were independently varied within the

models at four locations listed in Table 5.1. Table 5.1 also contains the geomagnetic indices held

constant in each model while either ap or SYM-H were changed. All cases were at a constant solar

activity with drivers set to 120. The time inputs were at 0 hours UT and represent the fall equinox

(doy = 264), so there are no effects from Earth’s tilt.
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Table 5.1: Information for the time lag study. For clarification, LAT is latitude and S refers to both
SN and SS.

Locations
Night Equator Day Equator Night Pole Day Pole

LST = 2 hrs, LAT = 0◦ LST = 14 hrs, LAT = 0◦ LST = 2 hrs, LAT = 80◦ LST = 14 hrs, LAT = 80◦

Constant Inputs
NRLMSIS 2.0 JB2008-ML HASDM-ML CHAMP-ML

ap = 56 ap = 56, Dst = -50 ap = 56, Dst = -50 SYM-H = -50, S = 200

5.2.3.1 Additional Considerations for MSIS-UQ

Performing this study with MSIS-UQ requires additional consideration considering the cou-

pling between it and NRLMSIS 2.0. To start, all non-geomagnetic model drivers are kept to con-

stant values. We set the solar indices to 120 solar flux units, and the time for the study is 00:00

UT during the fall equinox. Each of the time-history geomagnetic drivers will be increased indi-

vidually while all others are kept at a constant value: ap = 56, SYM-H = -50 nT. Since the ML

model uses Poynting Flux totals and ∆T at epoch, they are kept constant at 200 GW and 120 K,

respectively. MSIS-UQ uses SYM-H while NRLMSIS 2.0 uses ap for time-series geomagnetic

drivers. To account for this distinction, we first fit a line between all SYM-H and ap values within

our dataset. Using this, we find the SYM-H value associated with the ap value that must be used

to get density from NRLMSIS 2.0. Therefore, density ratios for MSIS-UQ use this simultaneous

SYM-H and ap variation as opposed to only using ap variations with NRLMSIS 2.0 alone. The

results for MSIS-UQ will be presented separately to highlight the change from standalone MSIS.

5.3 Results and Discussion

We first show the error statistics for the four ML models in Table 5.2. These were computed

with respect to the original datasets (e.g. JB2008-ML is the error with respect to JB2008 density).

Training data is used to fit the model, validation data is used to determine the best model, and the

independent test set used to determine performance.

Table 5.2 shows that JB2008-ML undoubtedly has the lowest errors, but it is worth noting that
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Table 5.2: Mean absolute error on the training, validation, and test sets.

Model Training Validation Test
JB2008-ML 5.28% 6.03% 6.63%

HASDM-ML 9.13% 10.46% 10.39%

CHAMP-ML 10.97% 11.60% 11.57%

MSIS-UQ 19.05% 20.12% 20.05%

it is also the most generalized dataset of the four. The SET HASDM density database contains

evidence of more complicated processes and its PCA coefficients are more difficult to model as a

result [113]. The CHAMP-ML errors are 1–2% higher than those of HASDM-ML, and MSIS-UQ

has the highest errors with respect to its original dataset at around 20%. CHAMP-ML and MSIS-

UQ are the only ML models in this work with location as a predictor. Furthermore, MSIS-UQ

attempts to predict the exopsheric temperature to force NRLMSIS 2.0 to match the satellite density

estimates which is a more challenging task. The HASDM-ML and CHAMP-ML error statistics

differ from the previous chapter due to an updated architecture for HASDM-ML and the use of

CHAMP-ML-v2. To both visualize the model performance in an operational setting and motivate

the remainder of the work, we show the orbit-averaged densities for NRLMSIS 2.0, HASDM-ML,

CHAMP-ML, and JB2008-ML compared to the Mehta et al. [48] CHAMP densities for the 2003

Halloween storms in Figure 5.1.

Figure 5.1 (a) shows that all models match the timing observed by CHAMP during both storms

(10/29–10/30 and 10/30–10/31). NRLMSIS 2.0 has a tendency to overpredict density throughout

this 6-day period, most notably between the two storms and in the recovery phase (11/02–11/03).

This will be explored further with Figure 5.2. JB2008-ML exhibits similar behavior although

it is closer to matching the contraction of the atmosphere between the storms. While both of

these models use time-histories of ap, they do not portray any evidence of post-storm cooling. In

contrast, HASDM-ML and CHAMP-ML both show significant decreases in density both between

and after the storms. Oliveira and Zesta [133] performed a superposed epoch analysis showing

density ratios for CHAMP/GRACE and JB2008 for extreme events which showed that JB2008 is
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Figure 5.1: Orbit-average density for NRLMSIS 2.0, JB2008-ML, HASDM-ML, CHAMP-ML,
and CHAMP (a) and the associated SYM-H (b) and ap (c) time-series inputs.

not modeling the satellite observed cooling taking place shortly after these events. In Oliveira et al.

[134], this was expanded to include HASDM. While there were differences between the satellites

and HASDM, the sudden cooling was consistent with observations.

Figure 5.1 (b) and (c) show SYM-H and ap time histories, respectively. The increased temporal

99



resolution for SYM-H is very evident, and the first four averages can inform CHAMP-ML of the

recent magnetic disturbances. The last two time history inputs (SYM-H12-33 and SYM-H33-57) repre-

sent longer-term information with less variation. Immediately following the second storm (around

0600 UTC on 10/31), the last two time history inputs have large magnitudes while the more re-

cent inputs no longer signify a storm. At the same time, the density predicted by CHAMP-ML

and observed by the satellite drop abruptly. This behavior is consistent with the observation from

Zesta and Oliveira [127] where CHAMP density experienced sudden decreases following extreme

events. The ap time history is valuable to the other three models, following similar trends to panel

(b) but are much more coarse. The results from the time-lag study (described in Section 5.2.3) are

displayed in Figure 5.2.

Figure 5.2 is informative into what historical information is most important to represent the

original data source – JB2008 output, SET HASDM density database, and CHAMP density esti-

mates. NRLMSIS 2.0 is used here as a baseline due to its wide use in the field and use of historical

geomagnetic information. There is a fairly linear relationship between the different ap values and

density for NRLMSIS 2.0. In most cases, it considers the most recent ap to be most important and

the least recent ap to be the least important. There is almost a perfect decay of slopes as it considers

information from further in the past. At no point does the density ratio at the four locations drop

below 1.00, which represents lower density than the baseline, or apx = 0 where x represents a given

time-lag or lack thereof. This behavior explains why NRLMSIS 2.0 does not capture the behavior

observed by CHAMP in Figure 5.1. The only drivers for the model that could capture post-storm

behavior are the time history ap inputs. If NRLMSIS 2.0 could model post-storm overcooling,

panels (a)–(d) in Figure 5.2 would have to have one or more curves that fall below 1.0 indicating

its internal parameters account for this phenomenon.

For JB2008-ML there is virtually no evidence of post-storm cooling being present in the

dataset. With the exception of the ap9 curves, there is a fairly linear dependence between ap

and density. Interestingly, JB2008-ML indicates that the strongest relationship between ap and

density has a 9-hour delay. The ap9 curves are nonlinear for ap < 100 and quite linear for ap > 100.
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Figure 5.2: Density ratios for the four models and four locations. The ratios are computed with
respect to the particular driver being set to zero.
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While there are values for JB2008-ML in Figure 5.2 that are less than 1.00, they are at most

showing a 2% decrease and only at the equatorial locations.

HASDM-ML has a near-linear relationship with ap, but there is considerable evidence of post-

storm cooling seen in Figure 5.2. At each of the four locations, ap12-33 and ap36-57 have an inverse

relationship with density. At the two high-latitude locations, ap12-33 causes the lowest density ratios

while ap36-57 causes the lowest density ratios at the equator. This may be a result of the time-delay

of the density response at low latitudes relative to the auroral region. In contrast to JB2008-ML

panels (e)-(h), HASDM-ML has a strong positive relationship between ap6 and density with little

impact from ap9. At the highest levels of activity (ap > 300), the current ap value drives the

strongest increase in density at the poles.

CHAMP-ML displays a highly nonlinear relationship between SYM-H and density. At each

location, the relative importance of each input can change significantly; the maximum density ratio

for SYM-H0-3 is 10.25 at the nightside equator while it is only 2.10 at the dayside pole. There is

strong evidence of post-storm cooling in the CHAMP dataset, highlighted by the array of historical

SYM-H drivers causing density ratios below 1.00. The least recent SYM-H averages have their

strongest inverse relationship with density at the equatorial locations while other historical indices

demonstrate low density ratios at the polar location. The CHAMP-ML density ratios drop as low

as 0.59 and rise as high as 12.34 indicating a more complex relationship between geomagnetic

activity and density compared to the other three models in this analysis.

5.3.1 MSIS-UQ Cooling Study

As we had done in the previous section, we show the orbit-average density along CHAMP’s

orbit during the 2003 Halloween storm for CHAMP, NRLMSIS 2.0, EXTEMPLAR, and MSIS-UQ

in Figure 5.3. EXTEMPLAR is included as it is a linear approach to the exospheric temperature

modeling for NRLMSIS 2.0.

In the pre-storm period (10/28–10/29), there is again variability in model outputs. During the

first peak of the storm, the models show similar trends but are mostly above the CHAMP density

estimates. EXTEMPLAR overpredicts density here more than the other two models. In the lull
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Figure 5.3: Orbit-average density for NRLMSIS 2.0, EXTEMPLAR, MSIS-UQ, and CHAMP (a)
and the associated SYM-H time-series inputs (b).

between the two peaks (10/30–10/31), all models show density decreases but to varying extents.

NRLMSIS 2.0 shows the smallest density decay during this period, but due to the exospheric

temperature corrections in MSIS-UQ, the density falls to CHAMP levels. EXTEMPLAR still

significantly reduces density in this period. For the second storm, all models overestimate density

again to very similar extents. In the post-storm period (10/31–11/03), NRLMSIS 2.0 does not

follow the trend observed by CHAMP, as was noted in Figure 5.1. EXTEMPLAR significantly

improves upon NRLMSIS 2.0, but MSIS-UQ follows the post-storm overcooling trends observed

by CHAMP with little bias. This highlights the impact the exospheric temperature corrections to
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NRLMSIS 2.0 have. We now conduct the overcooling study once more but focus on the impact

MSIS-UQ has on NRLMSIS 2.0. These results are shown in Figure 5.4.

Figure 5.4: Density ratios for NRLMSIS 2.0 (a–d) and MSIS-UQ (e–h) with the corresponding
temperature ratios for MSIS-UQ (i–l).

Panels (a)–(d) in Figure 5.4 show the density ratios for NRLMSIS 2.0 while increasing each

time-series ap value independently. These results were discussed for Figure 5.2. The second

row (panels (e)–(h)) shows the results for MSIS-UQ. The trends shown in these panels contradict

many observations when using NRLMSIS 2.0 alone. For example, at 3/4 locations, ap3 causes

the largest density ratios, even being nearly twice as large at the night equator. MSIS-UQ also
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shows a nonlinear relationship between geomagnetic activity and density which is not as clearly

seen in NRLMSIS 2.0 alone. MSIS-UQ also enforces the idea of negative density ratios – density

decreasing while the geomagnetic drivers are increasing. This is most pronounced at the two pole

locations. When the least recent geomagnetic drivers (ap12-33 and ap36-57) become large, the density

becomes up to 25% lower than when they are set to zero. This overcooling was seen in Figure 5.3

and is observed in the satellite density data, therefore becoming present in MSIS-UQ.

Another interesting trend is seen at low levels on geomagnetic activity particularly in panels (g)

and (h). When any of the ap values increase from 0 up to 50–100, the density decreases. This seems

counter-intuitive but could be caused by the approach of the study. When ap is being considered,

for example, the ap and SYM-H values are set to 56 and -50 nT, respectively. When ap = 0, this

would represent the time immediately after moderate geomagnetic activity while ap = 56 would

represent sustained moderate geomagnetic activity. The model shows that when the conditions

abruptly return to quiet values, the density increases – likely only temporarily. The bottom row

(panels (i)–(l)) show the temperature ratios from MSIS-UQ corresponding to the middle row. The

general trends are the same between temperature and density; however, the difference comes from

the magnitude. The relative changes in temperature result in much stronger changes in density.

There are negative temperature ratios, but they are much less prominent due to the consistent

scaling.

5.4 Summary

This chapter diverts from an operational focus to study the scientific value of ML in space

weather and the thermosphere. We demonstrated the use of machine-learned models to quantify

the behavior of thermospheric post-storm cooling. We used three of the models from Chapter 4

in addition to JB2008-ML to conduct this assessment and used NRLMSIS 2.0 for comparison.

All models were provided a recent time history (up to 57 hours) of geomagnetic drivers to see if

the data suggests that there is evidence of post-storm cooling; the models would need to see that

previous geomagnetic drivers indicate a storm of a given strength has recently occurred. Using the

2003 Halloween storms as an example, we showed that both NRLMSIS 2.0 and JB2008-ML do not
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match the sudden cooling seen between and after the two storms by the CHAMP accelerometer.

Meanwhile, HASDM-ML, CHAMP-ML, and MSIS-UQ all model the general density trends of

this storm and display attributes of an abruptly cooled thermosphere.

When considering a historical event, other factors play a role in how the thermosphere be-

haves. Therefore, we isolated the internal model formulation only as it pertains to recent magnetic

perturbations. We held all model drivers constant and only varied a single geomagnetic driver

at a time: ap for NRLMSIS 2.0, JB2008-ML and HASDM-ML, SYM-H for CHAMP-ML, and

both for MSIS-UQ. This showed that NRLMSIS 2.0 and JB2008-ML both did not exhibit any

cooling effects as the historical ap values were raised, which would indicate a strong storm had

recently taken place. Conversely, HASDM-ML, CHAMP-ML, and MSIS-UQ all showed evidence

of strong post-storm cooling with density ratios as low as 57%–75% of the baseline magnitude for

the least recent drivers. Showing this model’s ability to portray this phenomenon is important, as

this is an area where many models struggle (e.g. NRLMSIS 2.0). Following an extreme event,

a strong overestimation of density could lead to significant error in a satellite’s predicted state,

potentially wreaking havoc in a conjunction assessment.
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Chapter 6. Benchmarking Space Weather Driver Forecasting Models

All of the evaluations thus far were focused on errors in density modeling. However, errors in

space weather driver forecasts cause errors in the resulting densities, therefore impairing satellite

conjunction analyses. Bussy-Virat et al. [135] performed a study to show the effects of driver

uncertainty on the probability of collision between two space objects. In order to achieve this,

the authors performed an analysis on two years of F10 and ap forecast errors. This is expanded

upon here by using (i) all solar and geomagnetic drivers that are used in operations, (ii) a large

historical data set covering a period of six (6) years, (iii) an extended forecast window of up to six

(6) days, and (iv) the initial driver values to characterize model performance as a function of the

solar and geomagnetic activity. This expansion is performed to get a more complete picture of the

legacy drivers and specifically analyze the performance of the driver forecasts that are directly fed

to JB2008 and subsequently HASDM.

6.1 Methodology

The proprietary SET algorithms automatically produce files every three hours generating up-

dated six-day forecasts for solar and geomagnetic indices and proxies. The forecasts are used with

exclusive, restricted access by the USAF customer. This study is the first time that the metrics of

the forecasts have been evaluated and made public. These forecasts have a temporal resolution

of three hours. In addition, they archive the observed values for each time step. To conduct this

analysis, forecasts from October 2012 through the end of 2018 were used with the exception of a

small number of missing/corrupted forecasts. In total, there were over 15,000 files to leverage for

this study.

In order to effectively examine the solar and geomagnetic indices in comparable terms, a con-

sistent approach had to be determined. To provide the clearest possible representation for all

indices, different methods are used for solar indices/proxies and geomagnetic indices but kept con-

sistent within each of the domains. Each index was split into separate sub-populations depending
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on the forecasted values. Populations that ended up with fewer than 100 forecasts are not shown,

because there is insufficient data to draw statistical conclusions.

6.1.1 Solar Indices

The task of generating statistical results for the four solar indices investigated (F10, S10, M10,

and Y10) is relatively straightforward. The forecasts are generated using SET’s SOLAR2000 algo-

rithm [136, 137]. The thresholds to assess activity level for F10 and ap have been described by

[105, 138] and are combined here with a supplementary statistical analysis for the remaining solar

indices and proxies. The objective in setting thresholds is to group data by general solar activity

levels. Figure 6.1 depicts how the solar indices are distributed based on the initially forecasted

value (one day from forecast epoch), and Table 6.1 describes the solar activity levels.

Using these partitions on the 15,000+ forecasts resulted in a distinct number of individual

F10 forecasts for each activity level. These were used to classify the remaining solar indices and

proxies, with the absence of a natural partition, or lull, in the distribution. A natural partition for

S10 can be seen at 150 sfu (panel (b)). This was chosen for that particular threshold as it did not

greatly disrupt the number of forecasts in the adjacent activity levels since the goal was to have a

similar number of forecasts across all solar indices and proxies for a given activity level. Peaks in

the Figure 6.1 distribution data are a result of the natural distributions of solar activity estimated in

a 3-hour cadence. Reading from right to left in the figures (high to low solar activity), the decline

of solar cycle 24 from 2012 to 2018 is clearly portrayed and is the source of the predominantly

bi-modal distributions.

Figure 6.1 shows how the forecasts are distributed and that all activity levels have sufficient data

to perform the following analyses. Note that the shapes of the distributions within each activity

level are not indicative of the distributions of the forecast errors within them. The four levels of

solar activity are defined in Table 6.1.

With each index’s/proxy’s forecast appropriately divided on its initial forecasted value, uncer-

tainty distributions could be generated with respect to time from the forecast epoch. The uncer-

tainty for the solar indices is defined as the error with respect to the issued (actual archival) value,
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Figure 6.1: Distributions of initially forecasted values for each solar index with partitions shown
in red.

normalized by the issued value. It is important to note that all errors shown (for both solar and ge-

omagnetic indices) have a consistent sign convention. Positive percentages represent a forecasted

value that was more positive than the issued (actual) value. For the solar indices and proxies, the

error in solar flux units is also provided. All of the solar indices are updated daily, so there are

twenty-four distributions for each (four magnitude-based and six temporal partitions).
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Table 6.1: Activity level thresholds and units for the four solar indices.

Activity Level
Solar Driver Low Moderate Elevated High

F10 [sfu] F10 ≤ 75 75 < F10 ≤ 150 150 < F10 ≤ 190 F10 > 190

S10 [sfu] S10 ≤ 65 65 < S10 ≤ 150 150 < S10 ≤ 215 S10 > 215

M10 [sfu] M10 ≤ 72 72 < M10 ≤ 144 144 < M10 ≤ 167 M10 > 167

Y10 [sfu] Y10 ≤ 81 81 < Y10 ≤ 148 148 < Y10 ≤ 165 Y10 > 165

6.1.2 Geomagnetic Indices

The analysis of the two geomagnetic indices, ap and Dst, is more intricate. Not only are the

uncertainties functions of their magnitudes and time from epoch, they vary with solar activity

level. To analyze ap, three geomagnetic activity levels were chosen: low, moderate and active.

In analyzing Dst, six geomagnetic activity levels were chosen and are consistent with the NOAA

G-scale as operationally applied by SET. To allocate the geomagnetic forecasts, the largest value

in the forecast for ap and the most negative value for Dst are the controlling factors. Figure 6.2

shows how the two geomagnetic indices are distributed based on these characteristics.

The ap distribution shows strong decay in forecast frequency with increasing ap values. There

is a noticeable number of forecasts with a maximum value of 50 which get classified as moderate

geomagnetic activity, even though the histogram shows the bar in the next activity level. The Dst

distribution had such a significant amount of minimum forecasted values at or near zero that the

distribution is also shown in a log-scale. This increases the visibility of areas with fewer forecasts.

As previously noted, these distributions are not indicative of the forecast error distributions. Table

6.2 explicitly states the thresholds for ap and Dst.

In addition to the geomagnetic conditions, the forecast is classified by the initial forecasted

F10 value. Since the distributions have a finer temporal resolution and a solar dependency, there

are 576 and 1,152 distributions for ap and Dst, respectively. The geomagnetic indices could be

classified by other metrics instead of F10, such as average thermospheric density, but F10 was used

since that was the most readily available additional metric.
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Figure 6.2: Distributions of initially forecasted values for the two geomagnetic indices with parti-
tions shown in red. The Dst distribution is shown a second time with the frequency on a logarithmic
scale for improved reading.

It becomes difficult to generate a standard percent error normalized by the issued value, be-

cause the issued value can be small or even zero. Therefore, no normalized errors are shown.

The statistics provided in the proceeding section are the mean, standard deviation, and the error

bound for the population mean (EBM). These are generated only for the forecast errors in the

proxy’s/index’s units. Equations 6.1 and 6.2 show how the errors are computed in both absolute
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Table 6.2: Activity level thresholds and units for geomagnetic activity, ap and Dst.

Index Activity Level Index Range

ap [2nT]
Low ap ≤ 10

Moderate 10 < ap ≤ 50

Active ap > 50

Dst [nT]

G0 Dst ≥ −30

G1 −30 > Dst ≥ −50

G2 −50 > Dst ≥ −90

G3 −90 > Dst ≥ −130

G4 −130 > Dst ≥ −350

G5 Dst ≤ −350

terms and in percentage form.

Error = forecast− issued (6.1)

Percent Error = 100% · forecast− issued

issued
(6.2)

In order to account for the sample mean not perfectly representing the population mean, the 95%

confidence EBM is provided which can be used to determine the 95% confidence interval for

the population mean. This is shown in Equations 6.3 and 6.4. CI95%, x̄, σ, and n represent the

95% confidence bounds, the sample mean, the standard deviation, and the number of samples,

respectively.

EBM = Z95%
σ√
n

(6.3)

CI95% = x̄± EBM (6.4)

The Z value that corresponds to 95% confidence is 1.9600, and in the proceeding tables, the EBM

values are given with respect to the standard deviation in the respective units, not the normalized

form. Other EBMs and confidence intervals can be easily computed using the corresponding Z
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value and the values in Tables 6.3-6.8.

6.2 Results

In the resulting uncertainty figures, the mean and standard deviation of forecast error (as a

function of time from forecast epoch) are presented for each activity level. This way, biases can

be identified and the algorithm’s temporal uncertainty can be determined. Figure 6.3 shows the

performance of the F10 forecast algorithm, and Table 6.3 shows the statistics in sfu.

Table 6.3: Distribution statistics F10 error distributions (Figure 6.3).

Condition Statistics 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days

Low Solar
µ -0.2685 -0.7472 -0.6672 -0.3721 -0.0674 0.2428
σ 3.6985 4.7031 5.5001 6.1683 6.7677 7.2050

EBM 0.1126 0.1432 0.1675 0.1878 0.2061 0.2194

Moderate Solar
µ -0.8251 -0.8095 -0.9639 -1.1450 -1.1456 -1.1679
σ 12.0854 14.9853 17.8425 20.2973 21.9353 23.3389

EBM 0.2489 0.3086 0.3674 0.4180 0.4517 0.4806

Elevated Solar
µ 5.7270 7.2425 9.0385 10.3829 11.0017 10.9559
σ 18.3328 22.1021 25.2942 27.0774 27.5279 26.9074

EBM 0.8572 1.0335 1.1827 1.2661 1.2872 1.2582

High Solar
µ 15.7448 19.5749 24.2444 26.6674 26.0230 23.9778
σ 20.2227 24.7236 27.6092 30.8869 33.9069 35.9795

EBM 2.5639 3.1345 3.5003 3.9159 4.2988 4.5616

At low and moderate levels of solar activity, the F10 algorithm is fairly unbiased. It is not until

elevated and high solar activity that a bias accumulates, showing a tendency of over-forecasting

the proxy. The evolution of the error’s standard deviation has an expected growth with time from

epoch for all activity levels, showing the uncertainty of the forecast increasing with time. The

algorithm performs well when the first forecasted F10 value is below 150 sfu, which accounted for

approximately 87% of the forecasts. This analysis points to needed improvements in F10 prediction

for periods of elevated and high solar activity. For moderate solar activity, the normalized error has

a slightly positive bias where the bias is slightly negative when looking at the actual mean errors
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Figure 6.3: F10 algorithm performance across four levels of solar activity with normalized error
shown on the left and absolute error shown on the right.

(to the right). This is caused by the range of this activity level (75 sfu to 150 sfu). This shows

that the algorithm is likely over-forecasting F10 towards the higher end of the activity level and

under-forecasting at the lower end. This would cause the normalized mean to rise relative to the

actual mean errors. This is confirmed by panels (a,b) and (e,f) for low and elevated solar activity

where the algorithm is under-forecasting and over-forecasting, respectively. This analysis on the
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discrepancy between the normalized and actual mean errors is applicable to the remaining solar

indices and proxies.

Figure 6.4 and Table 6.4 provides the algorithm performance for S10. There is little bias through

low, moderate, and elevated activity levels (over 98% of forecasts) displaying strong overall per-

formance. The uncertainty at these activity levels is similar to F10, but the performance at high

solar activity is not as stable. For high solar activity, there is a dominant tendency to over-forecast

in addition to a large uncertainty. This is a byproduct of the forecasting method. The uncertainty

also does not consistently grow with time. Thus, S10 prediction needs more attention for high solar

activity periods.

Table 6.4: Distribution statistics S10 error distributions (Figure 6.4).

Condition Statistics 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days

Low Solar
µ 0.2206 -0.0343 -0.1044 -0.0985 -0.0660 -0.0501
σ 5.8378 5.7474 5.8682 6.0709 6.1153 6.0475

EBM 0.1797 0.1769 0.1806 0.1869 0.1883 0.1862

Moderate Solar
µ 0.1111 0.2190 0.2974 0.3426 0.2977 0.1862
σ 10.0715 11.7059 13.5434 14.9844 16.1132 17.1467

EBM 0.2102 0.2443 0.2827 0.3127 0.3363 0.3579

Elevated Solar
µ -1.1311 -1.7989 -2.2361 -2.6910 -2.8148 -2.7593
σ 16.5592 19.2050 21.9271 24.1118 25.8017 27.2658

EBM 0.7120 0.8257 0.9428 1.0367 1.1094 1.1723

High Solar
µ 16.2040 23.1628 28.3943 31.4085 31.6158 30.1409
σ 35.3267 39.6577 39.6471 38.7875 38.5307 38.6613

EBM 4.4060 4.9458 4.9445 4.8373 4.8052 4.8215

The F10 and S10 algorithms are both vulnerable to high solar activity, but the comprehensive

effectiveness is visible. The limitation during high activity is due to the volatility of the Sun during

solar maximum, i.e, the inability to accurately forecast flares and the lack of information from the

solar East limb and solar far-side active region’s growth. The algorithms for the remaining indices

prove to be more robust to solar activity. The M10 performance is presented in Figure 6.5 and Table

6.5.
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Figure 6.4: S10 algorithm performance across four levels of solar activity with normalized error
shown on the left and absolute error shown on the right.

For M10, there is a minimal bias of ±2% for the lower two activity levels, but panels (b) and (d)

show that there is a slight tendency to under-predict. At elevated and high solar activity, the bias

is accumulating with time and increases in intensity. Across all levels, the uncertainty starts below

4% and grows steadily with time. An interesting characteristic that contrasts the prior two indices

is the lower uncertainty at high solar activity. The difference in performance is not drastic relative
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Figure 6.5: M10 algorithm performance across four levels of solar activity with normalized error
shown on the left and absolute error shown on the right.

to the other conditions. Even so, improvement in M10 is needed for elevated and high solar activity

periods.

To conclude the analysis of the solar indices, Figure 6.6 and Table 6.6 both show the perfor-

mance of the Y10 algorithm. Relative to the previous three indices, the Y10 algorithm is considerably

robust to activity levels and has less overall uncertainty. In the first two activity levels, the bias is
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Table 6.5: Distribution statistics M10 error distributions (Figure 6.5).

Condition Statistics 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days

Low Solar
µ -0.9582 -1.1063 -1.2667 -1.4203 -1.5303 -1.6171
σ 5.1317 5.6375 6.2250 6.4693 6.8538 7.2024

EBM 0.1562 0.1716 0.1895 0.1969 0.2086 0.2192

Moderate Solar
µ -0.5138 -0.7424 -0.9976 -1.1619 -1.2370 -1.3348
σ 8.9027 11.2745 13.4329 15.1962 16.4221 17.4041

EBM 0.1835 0.2324 0.2768 0.3132 0.3384 0.3587

Elevated Solar
µ 3.7282 5.6301 7.3375 8.5258 9.0192 8.9334
σ 10.4528 13.4784 16.1156 17.9805 18.9175 19.0770

EBM 0.4861 0.6269 0.7495 0.8363 0.8798 0.8872

High Solar
µ 4.6517 6.3966 8.8328 10.9500 12.3435 12.9784
σ 9.2079 12.7892 16.4932 19.2241 20.9130 21.5820

EBM 1.1849 1.6457 2.1223 2.4738 2.6911 2.7772

less than ±1% for nearly the entire prediction window. The uncertainty grows with time for all

activity levels, but its magnitude is less significant than the other indices. The bias never exceeds

5% and the uncertainty 12%.

Table 6.6: Distribution statistics Y10 error distributions (Figure 6.6).

Condition Statistics 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days

Low Solar
µ -0.4270 -0.2282 -0.0684 0.0902 0.2697 0.4650
σ 4.5093 4.9373 5.4416 5.9977 6.4255 6.8160

EBM 0.1372 0.1502 0.1656 0.1825 0.1955 0.2074

Moderate Solar
µ -0.8277 -1.3317 -1.7651 -2.1734 -2.5561 -2.9688
σ 8.5137 10.1811 11.8475 13.0170 13.8737 14.8937

EBM 0.1753 0.2096 0.2439 0.2680 0.2856 0.3066

Elevated Solar
µ 2.1089 1.7243 2.0679 2.5656 2.7714 2.8423
σ 7.7173 9.3066 10.6086 11.4955 11.8996 11.9965

EBM 0.3593 0.4333 0.4939 0.5352 0.5541 0.5586

High Solar
µ 5.2729 4.2075 4.5855 5.2131 5.6561 6.0140
σ 8.5806 10.8097 11.5436 11.3048 11.0190 10.4416

EBM 1.1497 1.4483 1.5466 1.5146 1.4761 1.3990

As previously stated, the geomagnetic indices were more difficult to analyze due to an increase
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Figure 6.6: Y10 algorithm performance across four levels of solar activity with normalized error
shown on the left and absolute error shown on the right.

in dependencies and a finer time resolution. Each geomagnetic index has its own set of activity

levels but are both also based on F10 thresholds. The performance of the ap forecasts is shown in

Figure 6.7 along with Table 6.7.

Unlike the solar indices, there are multiple conditions with insufficient data to conduct the

analysis. The most distinct difference in the ap forecast performance, relative to the other indices,
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Figure 6.7: ap forecast uncertainty for the twelve solar and geomagnetic conditions in absolute
terms.

is the discontinuity at the three-day mark. The forecasts only have a three-day prediction window.

The forecasts are created by the ensemble of Space Weather forecasters at NOAA SWPC with the

aid of the Geospace model.

Figure 6.7 shows uncertainty results for a six-day prediction window to be consistent with
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Table 6.7: Distribution statistics for ap error distributions (Figure 6.7) in units of 2nT . Days 1-3
represent the error statistics for the actual forecasts, where days 4-6 simply show background error
that is a result of setting the forecast to zero.

Condition Statistics 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days

Low Solar
Low Geomagnetic

µ 0.6782 0.4987 -1.2448 -6.4479 -7.0534 -6.6291
σ 6.4053 6.8368 10.2313 10.6877 11.0401 9.4683

EBM 0.2902 0.3098 0.4636 0.4843 0.5003 0.4290

Low Solar
Moderate Geomagnetic

µ 2.1330 2.1653 3.0192 -7.1221 -6.8853 -7.5399
σ 12.6072 12.7522 10.9242 10.6639 10.9207 11.9126

EBM 0.5160 0.5220 0.4471 0.4365 0.4470 0.4876

Moderate Solar
Low Geomagnetic

µ -0.0492 -0.5465 -1.7532 -6.9294 -7.0114 -6.7315
σ 6.8140 8.0992 12.1259 12.1145 11.2090 9.9162

EBM 0.2258 0.2684 0.4019 0.4015 0.3715 0.3287

Moderate Solar
Moderate Geomagnetic

µ 1.3877 1.3850 0.9151 -10.0225 -10.0000 -10.2871
σ 16.7665 16.5156 14.9577 14.6091 14.9821 15.6026

EBM 0.4444 0.4378 0.3965 0.3872 0.3971 0.4136

Elevated Solar
Low Geomagnetic

µ -0.2166 -0.5019 -1.3707 -6.4573 -5.6573 -5.0204
σ 7.2675 7.6940 7.9520 9.0765 8.6062 6.2746

EBM 0.5084 0.5382 0.5563 0.6350 0.6021 0.4389

Elevated Solar
Moderate Geomagnetic

µ 2.9701 2.7038 1.2755 -7.7028 -7.6295 -8.0547
σ 10.9766 12.0786 11.9995 10.0915 10.2440 10.7734

EBM 0.6911 0.7605 0.7555 0.6354 0.6450 0.6783

High Solar
Moderate Geomagnetic

µ 8.1667 5.2540 0.5079 -7.9921 -9.0397 -10.3968
σ 15.2611 12.7671 8.9307 7.3996 8.1156 10.3549

EBM 2.6647 2.2293 1.5594 1.2920 1.4171 1.8081

the other indices, even though SET sets every ap value to zero after three days. There are still

interesting results in the latter three days of the forecasts across the different conditions. For

example, the magnitude of under-prediction (when ap is set to zero) is different for each condition

as is the volatility of ap, shown by the standard deviation. Even so, the most important aspect of

two figures is the first three days when forecasts are provided, and this figure presents a benchmark

on the prediction accuracy by NOAA SWPC for ap.

During low geomagnetic activity (across all solar activity levels), there is no significant bias

detected. With moderate geomagnetic activity, there is a general over-prediction that decreases

over the three-day provided forecast. It shows a possible path for prediction improvement by
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relying on persistence when ap is high at the start of the forecasts. Another key determination

is shown by the right-most panels where there is only a single forecast that has a value greater

than 50. This reflects the difficulty in quantifying the intensity of a storm, even with the aid of a

physics-based model.

The last algorithm analyzed is SET’s Anemomilos for Dst forecasts, shown in Figure 6.8 along

with Table 6.8. The G5 row is not shown since there was only a single forecast where a G5 storm

was expected. There are only 9 of 24 conditions with enough forecasts to perform the analysis, but

the remaining results provide insight to the strengths and weaknesses of the algorithm.

In panel (a) (when conditions are quiet), the forecasts remain relatively unbiased, and the un-

certainty slowly increases with time. Figure 6.8 shows a general tendency to predict Dst to be

more positive for nearly all G0 and G1 conditions, with the exception of G1 low solar activity

conditions. In this case, the algorithm has a strong bias to expect Dst to be ∼ 23nT more negative

than the issued values over the first four days of the forecast. Following the strong inclination after

day four, the algorithm tends to neutralize the bias. This is interpreted as accurate prediction of Dst

recovery to quiet conditions but over-prediction of the initial magnitude at the onset of the storm.

The bias for G1-G3, moderate solar activity conditions shows a strong temporal dependency

transitioning from under to over prediction in each case. G2 moderate solar activity is a case with

a peculiar trend of the uncertainty decaying with time from epoch. The algorithm tends to miss

the magnitude and start of events and then achieves recovery to background after the main phase

of the storm too quickly. This is also the case for G3 moderate solar activity, which shows even

more pronounced error in this direction. This prediction error points to a need for improvement

in understanding the arrival timing, magnitude, and duration of events. A source of the Dst over-

prediction in G0-G3 conditions is that Anemomilos does not model (ignores) high-speed streams

(HSS).
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Figure 6.8: Dst forecast uncertainty for the combined solar and geomagnetic conditions in absolute
terms.
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Table 6.8: Distribution statistics for Dst error distributions (Figure 6.8) in units of nT .

Condition Statistics 1 Day 2 Days 3 Days 4 Days 5 Days 6 Days

Low Solar
G0

µ 1.1077 1.1851 1.8191 1.9479 4.7670 4.9067
σ 14.6264 15.3676 16.0768 16.6027 15.2969 15.5632

EBM 0.5654 0.5940 0.6214 0.6418 0.5913 0.6016

Moderate Solar
G0

µ 8.8130 9.1455 9.5665 9.8593 10.1396 10.2912
σ 18.2244 18.3000 18.9761 19.0591 19.2045 19.1569

EBM 0.4094 0.4111 0.4262 0.4281 0.4314 0.4303

Elevated Solar
G0

µ 9.6871 8.8767 8.0980 8.0500 8.9239 9.4235
σ 14.8961 14.4229 14.4208 14.5799 15.5498 16.2407

EBM 0.7751 0.7504 0.7503 0.7586 0.8091 0.8450

High Solar
G0

µ 15.9664 15.9076 13.1176 9.8571 6.0840 6.0420
σ 16.9190 17.6202 18.2560 20.0190 19.3606 18.7587

EBM 3.0399 3.1659 3.2801 3.5969 3.4786 3.3704

Low Solar
G1

µ -24.6131 -24.1075 -23.7094 -23.1334 -0.0849 -0.0027
σ 16.6175 16.1616 15.9475 15.9702 14.9486 14.9425

EBM 0.8390 0.8160 0.8052 0.8063 0.7547 0.7544

Moderate Solar
G1

µ -1.2407 -0.5186 0.1395 1.1314 8.9733 9.5651
σ 27.9324 29.1335 26.8674 26.7461 21.9025 21.3862

EBM 1.8669 1.9471 1.7957 1.7876 1.4639 1.4294

Elevated Solar
G1

µ 5.0405 1.6185 5.6069 8.3584 7.9191 7.9075
σ 23.1907 21.5794 18.6853 16.0778 12.3314 15.6321

EBM 3.4558 3.2157 2.7844 2.3959 1.8376 2.3294

Moderate Solar
G2

µ -2.1743 0.0804 2.8874 7.8525 15.9303 16.6944
σ 29.8673 28.2948 26.2478 23.7456 18.4655 17.0010

EBM 3.0311 2.8715 2.6638 2.4098 1.8740 1.7253

Moderate Solar
G3

µ -19.3704 -13.3611 -2.8704 5.1481 8.4444 12.3148
σ 47.9640 45.4857 28.6925 20.9562 23.4494 16.9666

EBM 9.0461 8.5787 5.4114 3.9524 4.4226 3.1999
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6.3 Summary

This chapter focus on the errors for the current operational space weather driver forecasting

models, providing a benchmark to all future algorithm/model development. We observed generally

low forecasting errors for many of the drivers while there were certain conditions (e.g. high solar

activity) that caused the error statistics to rise substantially. This would be an area in need of prompt

improvement. As a community, we are continuously improving our capabilities, so it is important

to have a benchmark. This can provide modelers a way to know when improvements have been

made over the current operational standard. Another benefit to generating error statistic for these

forecasting models is that they can be used to perturb the deterministic forecasts to investigate

driver uncertainty in the absence of probabilistic driver forecasting models.
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Chapter 7. Satellite Orbital Uncertainty Study

Up to now, the focus of this work has been on developing probabilistic thermosphere models

(Chapter 4), examining their scientific value (Chapter 5), and extracting error statistics to bench-

mark the operational space weather driver forecasting models (Chapter 6). The work in Chapters

4 and 6 provide us with a unique opportunity to – for the first time – examine the effect of driver

and model uncertainty on a satellite’s state across diverse space weather conditions.

We consider the CHAMP satellite at an initial altitude of approximately 400 km. For repro-

ducibility of this work, the initial state and satellite data for the ballistic coefficient are shown

in Table 7.1. CHAMP was chosen for this study given its use in this dissertation and for its use

in the field. The cross-sectional area corresponds to the satellite with zero-attitude, and the drag

coefficient comes from models developed by Paul et al. [139]. The initial state and satellite param-

eters are used for each condition for consistency and comparison of the results. Only two-body, J2

(effect of Earth’s oblateness), and drag forces are considered.

Table 7.1: Initial state in the Cartesian reference frame and satellite parameters for conducting the
analyses in this chapter.

X [m] Y [m] Z [m]
3782900.7032 -5441600.6779 -1420075.1327

VX [m/s] VY [m/s] VZ [m/s]
-606.6600 1539.2559 -7488.3946

CD A [m2] m [kg]
3.0912 0.7710 500

7.1 Driver Uncertainty

Seven time periods between October 2012 and December 2019 were chosen to perform this

stdy, which coincides with the availability of operational deterministic forecasts from the previous

chapter. The first four periods were chosen to cover each of the solar activity levels. For these
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cases, the solar index samples were generated by perturbing the deterministic forecast using the

temporal error statistics (mean and standard deviation at each point in time after forecast epoch)

from Chapter 6. This is done 1,000 times for a Monte Carlo analysis, and the true geomagnetic

driver variations are kept consistent between them. Table 7.2 shows the seven conditions with their

respective start dates. Figure 7.1 shows the true, deterministic, and perturbed drivers for each of the

four solar cases. Note: only F10 and ap are shown even though many of the models use additional

inputs. This is discussed in Section 7.1.1.

Table 7.2: Activity levels and start dates for the seven periods considered in the satellite orbital
uncertainty study.

Condition Name Activity Level Start Date
Solar 1 Low Solar Nov. 14, 2018 (0900 UT)

Solar 2 Moderate Solar Aug. 5, 2013 (0000 UT)

Solar 3 Elevated Solar Jan. 13, 2013 (0900 UT)

Solar 4 High Solar Oct. 27, 2014 (1800 UT)

Geo 1 Moderate Solar, Moderate Geomagnetic Jun. 24, 2015 (2100 UT)

Geo 2 Elevated Solar, Low Geomagnetic Mar. 3, 2014 (0000 UT)

Geo 3 High Solar, Moderate Geomagnetic Jan 10, 2014 (1500 UT)

In the three-day periods considered in this study, F10 forecasts do not tend to significantly

deviate from the true values with the exception of Solar 2 and the last day of Solar 4. However,

models tend to be sensitive to solar activity [6]. In addition, perturbed forecasts are also generated

for S10, M10, and Y10 based on their respective error distributions.

In Chapter 6, it had been observed that the ap forecast performance not only varied with geo-

magnetic activity level but also with solar activity level. Therefore, forecasts were distributed based

on a combination of the two, resulting in twelve subpopulations for the temporal error statistics.

For this study, only three conditions were chosen (see Table 7.2) to study the effect geomagnetic

driver forecast uncertainty. For each of these conditions, the solar indices are kept at their true val-

ues. Meanwhile perturbed forecasts for ap and Dst are generated based on historical error statistics.
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Figure 7.1: Space Weather inputs for the four solar cases. The shaded probabilistic region shows
the 3σ bounds for the perturbed samples.

The true, deterministic and perturbed drivers for these periods are displayed in Figure 7.2.

7.1.1 Other Drivers

As previously mentioned, the drivers with available forecasts are the four solar indices, ap, and

Dst. However, TIE-GCM uses Kp, MSIS-UQ uses SN, SS, ∆T , and SYM-H, and CHAMP-ML-v2
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Figure 7.2: Space Weather inputs for the three geomagnetic cases. The shaded probabilistic region
shows the 3σ bounds for the perturbed samples.

uses SN, SS, and SYM-H. To account for this, Kp will be transformed from ap, and SN, SN, ∆T , and

SYM-H will be derived through a polynomial fit based on Dst forecasts. The approximations using

Dst may not be the ideal approach; however, there are currently no available probabilistic models

that forecast these drivers. The polynomial fits for SYM-H, SN, SS, and ∆T are shown in Figure

7.3.

Linear and cubic fits were also tested for potential transformation equations. However, the

quadratic transformations provided the best fit based on a qualitative analysis (e.g. overall fit, fit

for extreme values). When using either a true, deterministic, or perturbed Dst, estimates for these

four geomagnetic drivers can be computed. One additional constraint for SN, SS, and ∆T is that

they must be positive. All perturbed drivers are kept consistent across the four models.
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Figure 7.3: Second-order polynomial fits between Dst and the four other geomagnetic drivers used
by the models.

7.2 Model Uncertainty

To account for model uncertainty, driver variations are deterministic, and probabilistic density

is derived from the models’ predicted uncertainties. For the solar cases, the deterministic solar

drivers are used with the true geomagnetic drivers. For the three geomagnetic cases, the true solar

drivers and deterministic geomagnetic drivers are used. This choice was made for consistency with

the driver uncertainty cases as the perturbed drivers are based on their respective deterministic

forecasts. In these cases, the Monte Carlo runs leverage the models’ predictions of µ and σ for

thermospheric density. It is important to note that initial state uncertainty (of the thermosphere)

is not considered for TIE-GCM ROPE. Since it uses PCA coefficients as inputs, we find periods

in the original TIE-GCM dataset with similar starting conditions to each of the seven cases and
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use those to initialize the model. In an operational setting, the initial state can be estimated and

perturbed through data assimilation.

7.2.1 Density Sampling Approaches

In order to use the density distributions from the models, we must identify the most realistic

method to sample density. Here, we will test different approaches starting with traditional MC

sampling. This entails directly sampling from the predicted distribution each step of the propaga-

tion. However, doing so could potentially negate the effects of density uncertainty, because there

is no enforcement of spatiotemporal correlation of density. A quantity used to describe this is the

half-life of mass density. Half-life (τ ) is the amount of time for the temporal correlation of density

to reach 0.50. Commonly-used values for τ in literature are 18 or 180 minutes [140]. A simple

approach to combat the uncertainty negation from a direct sampling method is to use a bias factor

(κ) to force temporal structure for density. Density would then be defined such that ρ = µ + κσ

where µ and σ come from the density model. κ then represents a relative bias in density from the

predicted distribution.

This approach requires κ to be sampled from a standard normal distribution every τ minutes.

Between these segments, κ would be interpolated with respect to time. This way, the structure

of the model distributions are preserved across the Monte Carlo samples without the negation

of successive time-steps. The third and final approach is to leverage a first-order Gauss-Markov

process [141]. κ is then computed as,

κ(t+∆t) = e−β∆tκ(t) + uk(t)

√
σ2

2β
(1− e−2β∆t) where β = − ln 0.5

τ
(7.1)

where β is a parameter dependent on half-life, and uk(t) is a standard normal distribution. The

quantity σ2

2β
represents the steady-state variance of our bias factor, κ, which should be 1.0. The

first-order Gauss-Markov process concludes the approaches; however, we will test the second and

third approaches with τ = 18 and τ = 180 minutes. We consider a satellite orbit during a generic

storm in 2002 using HASDM-ML for the density distributions across the three-day period. Figure
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7.4 shows the density for the five cases during the first three hours along with the along-track

position difference probability density function (pdf) after the full three-day period.

Figure 7.4: Comparison of the Monte Carlo techniques for the traditional Monte Carlo approach
(a,b), the interpolated bias factor approach with κ = 18 minutes (c,d) and κ = 180 minutes (e,f),
and the first-order Gauss-Markov approach with κ = 18 minutes (g,h) and κ = 180 minutes (i,j).
The Monte Carlo mean density is shown alongside density from the first five Monte Carlo runs.

Figure 7.4 panels (a,b) confirm the effect of uncorrelated successive time-steps on position

uncertainty. The unstructured density variations cause a severe under-representation of position

uncertainty. The second approach – panels (c–f) – shows how forcing a temporal structure in den-

sity leads to a large spread of satellite positions. Furthermore, increasing the sampling frequency
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(τ = 18 to τ = 180) more than triples the standard deviation in the resulting pdf. However, this

gradual change in the bias factor does not seem realistic for a given probabilistic run.

The Gauss-Markov process – panels (g–j) – provides a balance between the traditional sam-

pling approach and the basic interpolation for κ. The density variations look more realistic as the

temporal structure is preserved while not forcing a given bias. It is difficult to know which half-life

is the more-correct choice, as we do not know what the position uncertainty should be for any

given period. However, the 18-minute half-life for the first-order Gauss-Markov process seems to

provide a more realistic density variation for a Monte Carlo run. The position uncertainty also falls

into the middle of the range of values in Figure 7.4. This approach will be used for all density

models in the model uncertainty cases for the remainder of this study.

7.3 Results

The following sections are split into the solar conditions (Section 7.3.1) and geomagnetic con-

ditions (Section 7.3.2) to study the effect of the different types of drivers in isolation. It is pertinent

to compare the effects of driver and model uncertainty for a given condition.

7.3.1 Solar Activity Conditions

For the first four conditions (Solar 1–4, defined in Table 7.2 and Figure 7.1), we examine

the effects of solar activity on position uncertainty. Along-track difference pdfs are shown for all

models and both uncertainty sources in Figure 7.5. It is important to note that the reference location

for driver uncertainty is the position from HASDM-ML using the mean perturbed drivers, and for

model uncertainty, it comes from the HASDM-ML position using only mean density predictions.

The pdf statistics can be found in Table 7.3.

To better understand the results in both Figure 7.5 and Table 7.3, the sign convention must

be explained. As previously mentioned, HASDM-ML is used to get the reference case for each

condition. Every other final position for that condition and uncertainty source is then transformed

into the radial, along-track, and cross-track (RTN) frame, and the along-track differences are com-

puted. This refers to how far ahead (positive) or behind (negative) the other positions are with
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Figure 7.5: In-track position distributions relative to a HASDM-ML reference satellite for the four
solar activity conditions in Table 7.2 after 72 hours.

respect to the reference satellite. Biases in the distributions come from persistent biases between

model densities for the three-day period based on the conditions. If a satellite encounters higher

density relative to another satellite for the same period, it will lose more energy causing a decrease

in altitude. This decrease in potential energy leads to an increase in kinetic energy (velocity). The
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Table 7.3: Distribution statistics for the four solar activity conditions after 72 hours, corresponding
to Figure 7.5.

HASDM-ML CHAMP-ML MSIS-UQ TIE-GCM ROPE
Condition Uncertainty µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m)

Solar 1 Driver 0.0 287.7 666.3 394.9 421.8 324.7 3618 361.2
Model -1.5 117.2 559.3 103.6 408.2 182.0 3864 335.6

Solar 2 Driver 0.0 1239 -11043 1345 -9108 1141 -665.1 1965
Model -6.2 401.7 -11165 218.9 -9546 266.0 -541.6 679.3

Solar 3 Driver 0.1 1815 -8690 1795 -5272 1582 22419 5083
Model -9.2 689.2 -9820 319.6 -5846 445.6 23377 1235

Solar 4 Driver 0.3 3784 -22226 2333 -7210 3036 17326 6172
Model 13.7 1028 -20368 442.1 -9948 629.0 23492 2310

satellite experiencing higher density – therefore more drag – will end up ahead with a positive

along-track position difference.

In Figure 7.5 panel (a), the solar minimum conditions result in a total position spread of ap-

proximately 6 km across the four models. The distributions for HASDM-ML, CHAMP-ML and

MSIS-UQ have significant overlap indicating they are predicting similar density levels with the

perturbed solar drivers. All models in this case have similar sensitivity to the uncertainty in solar

drivers as the distributions have similar spreads. The standard deviations are logged in Table 7.3.

The only model with a notable bias for this low solar activity condition is TIE-GCM ROPE. This

bias indicates a persistent over-prediction of density relative to the other models. Shifting to panel

(b), model uncertainty is visibly less impactful on the position distributions. The biases are similar

to the driver uncertainty case, but the standard deviation of each distribution is 2–3 times smaller

when considering only model uncertainty. This is most pronounced for CHAMP-ML with σ be-

ing 349.9 m and 103.6 m for driver and model uncertainty, respectively. The exception to this is

TIE-GCM ROPE where the σ is similar after 72 hours.

The Solar 2 case (moderate solar activity) results in significantly larger position spreads, seen

in panels (c,d). For this condition, TIE-GCM ROPE now has a small bias relative to HASDM-ML

while CHAMP-ML and MSIS-UQ considerably under-predict density (in a relative sense). The
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distributions are now much wider in panel (c) than they were in panel (a) which could be explained

by the increased spread in the solar drivers for this case (refer to Figure 7.1). The driver uncertainty

for TIE-GCM ROPE for moderate solar activity is now noticeably larger than for the other models.

Comparing driver to model uncertainty for this condition, the disparity is much more pronounced.

The uncertainty for perturbed solar drivers now causes 3–6 times larger uncertainty than the use

of probabilistic models. Another key result for Solar 2 is the difference in model uncertainty for

the two localized models (CHAMP-ML and MSIS-UQ) compared to the two PCA-based ROMs

(HASDM-ML and TIE-GCM ROPE).

For the elevated solar activity case (panels (e,f)), the overall position spread increases to nearly

60 km and 35 km for driver and model uncertainty, respectively. For both uncertainty sources, TIE-

GCM ROPE produces the largest uncertainties of the four models with a 5 km standard deviation in

the along-track direction. TIE-GCM ROPE is again predicting much higher density than the other

three models. The final condition, high solar activity (panels (g,h)), shows fairly similar results.

The ordering of the four models (in terms of the bias) is the same as the elevated solar activity

case. TIE-GCM ROPE again has the largest position spread for both uncertainty sources, but the

disparity is not as great as it was for elevated solar activity. The comparison between driver and

model uncertainty is also very similar to the previous condition for each of the models. The notable

result for high solar activity, though, is that the total position spread is 70 km which highlights an

issue raised in Chapter 1. The choice of model when performing PoC calculations has a strong

impact on the results.

Across the four solar activity conditions, driver uncertainty was typically 2–6 times larger

than model uncertainty for a given thermosphere model. While it can seem significant in some

cases, model uncertainty is certainly not negligible. This is made more apparent in Figure 7.6

which shows the along-track difference standard deviation as a function of time for all models and

conditions examined in this section.

Figure 7.6 provides us with insight into the relative importance of the uncertainty sources in the

first 36 hours of the satellite propagations for the different solar activity conditions. Note that the y-
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Figure 7.6: In-track position standard deviation as a function for time for the four solar activity
conditions in Table 7.2. The markers refer to the time where the dominant uncertainty takes over
for a particular model.

axes are in log-scale to highlight differences early in the periods where the standard deviations can

be both similar and small in magnitude. For solar minimum (panel (a)), model uncertainty results

in the larger position spread for all models in the first 18 hours. At this point, driver uncertainty

takes over as the dominant source for both HASDM-ML and CHAMP-ML. It takes over 34 hours

for this convergence point using MSIS-UQ. For TIE-GCM ROPE, this does not occur until after

approximately 64 hours. In panel (b), we see an interesting occurrence at around 16 hours. It is at

this point that the two uncertainty sources converge for HASDM-ML, CHAMP-ML, and MSIS-

UQ. This transition occurs for TIE-GCM ROPE right before the 30-hour mark.
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For elevated solar activity (panel (c)), the transition time is more spread between the models.

The transition occurs early for both TIE-GCM ROPE and CHAMP-ML, both within the first 15

hours. HASDM-ML remains fairly consistent at about 17 hours, and MSIS-UQ take approximately

one day for driver uncertainty to take over. Panel (d) shows a quick rise in uncertainties and driver

uncertainty takes over for HASDM-ML, CHAMP-ML, and MSIS-UQ within the first 17 hours. It

takes around 26 hours for the transition to occur for TIE-GCM ROPE.

These results highlight the importance of both uncertainty sources in conjunction assessment.

After 72 hours, the differences are quite considerable, but in the first 12–36 hours, both uncertainty

sources have similar impacts on orbit prediction. In an operational setting, when there is a potential

conjunction forecasted, the assessment is repeatedly updated as it nears to see if and how the

outlook has changed. If model uncertainty is ignored, there is important information being left out

as the potential conjunction approaches.

7.3.2 Geomagnetic Activity Conditions

For the last three conditions (Geo 1–3, defined in Table 7.2 and Figure 7.2), we examine the

effects of geomagnetic activity on position uncertainty. Along-track difference pdfs are again

shown for all models and both uncertainty sources in Figure 7.7. The pdf statistics corresponding

to Figure 7.7 can be found in Table 7.4.

Table 7.4: Distribution statistics for the three geomagnetic activity conditions after 72 hours, cor-
responding to Figure 7.7.

HASDM-ML CHAMP-ML MSIS-UQ TIE-GCM ROPE
Condition Uncertainty µ (m) σ (m) µ (m) σ (m) µ (m) σ (m) µ (m) σ (m)

Geo 1 Driver 0.0 1186 -9846 963.5 -14557 672.5 1443 1692
Model -15.0 441.5 -11064 603.9 -15063 382.9 3607 1553

Geo 2 Driver 0.1 2375 -11235 1599 -4683 946.0 -16973 2528
Model 5.1 1043 -14254 637.9 -5134 748.1 -16354 828.0

Geo 3 Driver 0.1 2210 -13029 3478 -8798 1278 19292 3366
Model 8.7 1250 -21852 923.1 -13011 809.7 28662 5098
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Figure 7.7: In-track position distributions relative to a HASDM-ML reference satellite for the three
geomagnetic activity conditions in Table 7.2 after 72 hours.

The Geo 1 condition in Figure 7.7 panels (a,b) represents moderate solar and geomagnetic

activity. The forecast for ap (Figure 7.2) shows that the deterministic forecasts remains mostly

at the threshold between moderate and active geomagnetic activity, and the 3σ range for ap is

between 0 and 100 . This results in along-track σ between 670 and 1700 m across the models

for driver uncertainty. This is around the levels for the Solar 2 driver uncertainty case where the

solar indices were uncertain. However, that case had lower geomagnetic activity indicating that the

models have higher sensitivity to solar drivers. In this condition, TIE-GCM ROPE shows to have

the largest driver and model uncertainty while also having similar density levels to HASDM-ML

(small bias).

139



The results in panel (c) are particularly interesting given the low uncertainty in geomagnetic

activity for this period. Referring back to Figure 7.2, Geo 2 has consistently low magnitude ap

with 3σ uncertainty bounds hardly reaching 30 while Geo 1 was considerably more active and

uncertain. The true F10 for Geo 1 stays around 120 sfu while it remains fairly constant around 160

sfu for Geo 2, although we do not consider any solar driver uncertainty in these cases. Comparing

panels (a) and (c) from Figure 7.7, there is much more driver uncertainty for Geo 2. The along-

track σ is 1.5–2 times larger, and the overall position spread increases from 25 km to over 35 km.

This highlights how important solar activity level is to these density models.

For the final case, seen in panels (e,f), considers high solar activity and moderate geomagnetic

activity. Here, we see an overall position spread of approximately 60 km and 70 km for driver

and model uncertainty, respectively. The along-track σ for driver uncertainty ranges from 1.2–

3.5 km while ranging from 0.8–5.1 km for model uncertainty. Again, the general trend is that

driver uncertainty is more impactful than model uncertainty but with its first exception. For TIE-

GCM ROPE, model uncertainty (σ) is actually larger by over 1.7 km. As this case considers

moderate geomagnetic activity, we can compare these results to Geo 1. In that case, the TIE-

GCM ROPE driver uncertainty σ was only slightly larger than for model uncertainty. Granted, the

geomagnetic drivers were more uncertain in that period, the discrepancy could be caused by the

model’s response to higher geomagnetic activity during higher solar activity.

Once more, we investigate the growth of along-track σ for each model from both uncertainty

sources (similar to Figure 7.6). These results are shown in Figure 7.8 for the three geomagnetic

cases. Note: Geo 1 is shown twice in panels (a) and (d), where panel (d) shows the full 72-hour

period.

In Figure 7.8 panel (a), the transition from model to driver uncertainty takes place early (before

the 14-hour mark) for HASDM-ML, CHAMP-ML, and MSIS-UQ. When comparing these results

to Figure 7.6, it is important to consider the different x-axis limits. Looking at panel (d), we see

that the transition occurs for TIE-GCM ROPE after 56 hours which is similar to Figure 7.6 panel

(a). Figure 7.8 Panel (b) again shows that by 13 hours into the propagation, driver uncertainty
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Figure 7.8: In-track position standard deviation as a function for time for the three geomagnetic
activity conditions in Table 7.2. The markers refer to the time where the dominant uncertainty
takes over for a particular model. Note: panels (a,d) are both for the "Geo 1" condition, but (d)
provides in-track σ for the full 72-hour propagation period.

is the dominant source. Here, driver uncertainty takes over after only six hours for TIE-GCM

ROPE and CHAMP-ML. The results for Geo 3 (panels (c,d)) do diverge from the previous cases.

For HASDM-ML, CHAMP-ML, and MSIS-UQ, the transition occurs between 9 and 14 hours.

However, as seen prominently in Figure 7.7, the transition does not occur at all for TIE-GCM

ROPE in this period.

141



7.4 Summary

This chapter is the culmination of all the work in this dissertation. The four thermosphere

models developed are applied to a very important problem related to STM: determining the impact

of driver and model uncertainty on a satellite’s state. Current operations either do not account

for these uncertainties or over-simplify them. We investigate driver uncertainty by perturbing

deterministic forecasts with error statistics generated in Chapter 6. This results in along-track

standard deviations as high as 6.1 km.

For model uncertainty, deterministic drivers are used with the probabilistic thermosphere mod-

els. A first-order Gauss-Markov process allows us to realistically sample from the model distri-

butions for density. The along-track standard deviations reach upwards of 5 km. While model

uncertainty does not seem to affect the satellite state as severely, we show that in the first 4–36

hours, it is more impactful that driver uncertainty. In one case, we observed model uncertainty

having a larger impact across the entire 72-hour period.
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Chapter 8. Summary and Conclusions

In the modern space age, rockets launch on a weekly basis carrying dozens of satellites to reside

in low Earth orbit. This is now driven heavily by the commercial industry. We can no longer rely on

simply cataloguing orbiting objects and tracking their states. The proliferation of LEO has led to a

recent and crucial focus on space traffic management. The current needs are accurately predicting

the orbits of all objects and focusing on potential satellite collisions. Short-term forecasting –

on the order of hours or days – is critical to prevent potential collisions, which are catastrophic

to the space environment. The 2009 Iridium-Cosmos collision resulted in approximately 2,300

observable debris objects, 65% of which remained in orbit seven years later [142]. Debris objects

created by collisions or weapons tests can catapult into highly elliptical orbits, which pose a danger

to satellites in multiple orbital regimes [143].

Currently, we do not have the capability to either adequately predict model drivers for ther-

mospheric mass density or to predict density perfectly given a set of space weather conditions.

Therefore, satellite drag carries uncertainty that varies as a function of location, time, and space

weather conditions. Currently, this uncertainty is ignored, or it is reduced to some basic repre-

sentation. This can lead to a lack of confidence in decision-making when a potential collision is

detected. Operators need to have an accurate representation of future satellite states in order to

determine if an avoidance maneuver is imperative, as these decisions are expensive.

This dissertation focused on the novel development of probabilistic thermosphere models and

uncertainties in a satellite’s state. The development of HASDM-ML, CHAMP-ML, MSIS-UQ,

and TIE-GCM ROPE marks the first time probabilistic thermosphere models were devel-

oped with demonstrated reliability of uncertainty estimation capabilities and is a major con-

tribution of this work.

HASDM-ML is a reduced order surrogate model for the SET HASDM density database with

robust and reliable uncertainty estimation capabilities. Principal component analysis was selected
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for dimensionality reduction due to its wide use in the field. A Bayesian search algorithm was

leveraged in an attempt to identify the optimal architecture for each input set and loss function

tested using Monte Carlo dropout. We found that of the nine input-loss function combinations

explored, the combination of a JB2008 input set with historical geomagnetic drivers (JBH) and the

NLPD loss function resulted in the most comprehensive model. This early version of HASDM-

ML has 9.07% error across the 12-year training set and an average 10.69% error over the combined

8-year validation/test sets. We compared its calibration curves for each output across the test set

to that of the MSE model with the same inputs. This showed that the MSE model considerably

underestimated the uncertainty while the NLPD model was well-calibrated across the 10 outputs.

Upon selecting HASDM-ML, we evaluated its uncertainty capabilities across the entire orbits

of CHAMP and GRACE-A, both using almost half of the time span of the HASDM data. This

assessment showed that the mean prediction at the satellite locations closely matched that of the

HASDM dataset. Across all 20 prediction intervals tested over this period (2002–2011), the model

provided an observed cumulative probability that never deviated more than 1% of the expected

value for CHAMP’s orbit and never deviated more than 1.15% for GRACE-A’s orbit. A separate

storm-time evaluation unveiled that across four storms, HASDM-ML provides similar density to

HASDM and its uncertainty estimates remained robust and reliable. The results from the density

calibration tests are significant, because probabilistic thermospheric density modeling is still a

novel concept. Additionally, uncertainty estimates themselves are not meaningful unless they are

well-calibrated, and HASDM-ML is able to provide that. HASDM-ML was also more accurate

than JB2008 relative to HASDM for all four storms and across the 20 space weather conditions

considered.

HASDM-ML was further improved by the incorporation of a direct probability distribution

prediction approach. This also made the model much more computationally efficient. This iteration

of the model had better performance across all space weather conditions tested (through the binning

of F10 and ap). Additionally, we examined spatial calibration maps across the test set to show how

the calibration varied laterally and with altitude. This provided insight into the model’s tendency to
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underestimate uncertainty at the lowest altitudes (where there is not as much variability) although

it was more calibrated from 400–800 km.

CHAMP-ML was developed on the in-situ CHAMP accelerometer-derived density dataset

from Mehta et al. [48]. The model was first developed using both MC dropout and direct probabil-

ity prediction for comparison with the HASDM-ML results. The two approaches yielded similar

models, although the direct probability method was more accurate. Additionally, computational

constraints made MC dropout difficult for the 25 million sample dataset. We tested CHAMP-ML’s

global prediction capabilities by generating baseline maps during the winter and summer solstices

to ensure global physical trends are being captured by the CHAMP model. This showed that the

model was able to emulate the effect of Earth’s tilt.

We also performed global evaluations for eight unique conditions to determine the altitude

dependence of model uncertainty. The altitude profiles showed that the minimum and maximum

1-σ uncertainties were 10 – 28% of the mean predictions, respectively. Solar activity was most

influential in determining the profiles’ shapes, while geomagnetic activity and the day of year

tended to provide uniform changes in the uncertainty. These uncertainty profiles confirmed that

the uncertainty estimates were indicative of the original dataset, where uncertainty was elevated

in condition-location combinations that were absent or minimal in the dataset. CHAMP-ML was

later improved with the introduction of time-series SYM-H inputs. Although this decision was

made with storm and post-storm conditions in mind, it reduced the overall error by approximately

1.5%.

MSIS-UQ is another probabilistic model developed on in-situ measurements, but it predicts

exospheric temperature as opposed to mass density. The exospheric temperature dataset it was

developed on was generated such that the temperatures could be input to NRLMSIS 2.0 to match

density estimates from the CHAMP, GRACE, and Swarm satellites. Therefore, this was a quasi-

correction model, but it crucially transformed NRLMSIS 2.0 into a probabilistic thermosphere

model. We showed that across all 81 million samples in the original dataset, MSIS-UQ reduced the

error from NRLMSIS 2.0 and HASDM by 28% and 12%, respectively. It was also well-calibrated
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across the training, validation, and test sets.

The uncertainty estimates were closely examined for a given time where CHAMP and GRACE

were at unique locations in terms of local time and latitude. The uncertainty bounds for species

densities showed potential for scientific value when considering relative abundances or the uncer-

tainty associated with the O-He transition region. Instead of having a specific altitude where He

takes over as the dominant constituent, we observed a 1-σ interval of 45-50 km where this may

occur, depending on geographical location. This study also highlights the improvement in temper-

ature and density prediction with the MSIS-UQ T∞ predictions. Not only is the bias reduced, the

uncertainty estimates can be used to inform decision-making. We observed the effect of uncertain

exospheric temperature on the relative uncertainty in density as a function of altitude, highlighting

the ability to provide different uncertainty ranges as a function of position.

The final model developed as part of this work was TIE-GCM ROPE. This is an ensemble of ten

LSTMs trained on seven years of TIE-GCM outputs during solar cycle 23. The direct probability

method for UQ used in the other models proved to be ineffective for this dynamic modeling appli-

cation, which spurred the ensemble approach. A fixed weighting scheme was determined based on

individual model performance throughout the training set to get a weighted mean prediction based

on observed errors. We use the ensemble predictions to extract a sample standard deviation and

use a scaling method to ensure better calibration of the uncertainty estimates.

TIE-GCM ROPE was compared to Dynamic Mode Decomposition with control, a popular

dynamic ROM technique for the thermosphere. We show that while general errors are virtually

equivalent for the two approaches, TIE-GCM ROPE does considerably better in capturing the

dynamics of TIE-GCM. It also follows the data for extreme periods and has the capability to

emulate the system, making dynamic predictions (no state update) for up to a year or over 8,700

time steps with approximately 10% mean error. The uncertainty estimates are not as reliable as the

other probabilistic models developed here, but it is an important capability due to the difficulty in

UQ for physics-based models.

The second contribution is a novel study to extract science through machine learning with
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a focus post-storm thermospheric overcooling. Using NRLMSIS 2.0, HASDM-ML, CHAMP-

ML, MSIS-UQ, and JB2008-ML (developed solely for this study), the inherent relationship be-

tween geomagnetic activity and density is quantified within the respective datasets or models they

are based on. The study is motivated by considering the infamous 2003 Halloween storms. This

storm was a result of successive coronal mass ejections that substantially increased thermospheric

density twice in two days. This event disturbed the thermosphere for multiple days, and when

the storm was over, density was over 25% below its pre-storm levels. This event is a true test for

thermosphere models during extreme events.

By looking at orbit-average density over this period, we were able to see that both NRLMSIS

2.0 and JB2008-ML could not model the sudden drop in density while the other three models better

matched the data. However, there are other factors that impact the thermosphere in reality, and it

is difficult to isolate the effect of geomagnetic activity. To overcome this challenge, the models’

time series geomagnetic drivers were independently varied while holding all other drivers constant.

This showed that NRLMSIS 2.0 has a fairly linear relationship with geomagnetic activity, and no

drivers resulted in a sub-1.0 density ratio (which would indicate overcooling). JB2008-ML also

did not exhibit this phenomenon. In fact, the most important historical driver of JB2008-ML was

the 9-hour prior ap which resulted in density ratios nearly twice that of any other driver. This is due

to a 9-hour offset in the calculation of the JB2008 parameter DTC based upon ap use (Bowman

and Tobiska, private communication, 2020).

HASDM-ML was most strongly driven by the current and 6-hour prior ap for thermospheric

expansion, while increases in ap12-33 and ap36-57 resulted in densities as low as 57% of the baseline

magnitude. CHAMP-ML indicated a highly nonlinear relationship between density and geomag-

netic activity. Depending on the location, SYM-H or SYM-H0-3 drove the largest density ratios,

significantly more than any other model. In terms of cooling, CHAMP-ML showed that at SYM-H

> -100 nT, many of the recent drivers caused a density ratio of less than 1.00. As the index was

made more negative, the least recent drivers caused the lowest density ratios, particularly at low

latitudes. MSIS-UQ also showed a nonlinear relationship between geomagnetic activity and den-
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sity, although its density ratios were not as extreme. At high-latitude, MSIS-UQ had density ratios

below 0.75 for the least recent geomagnetic drivers while ap3 caused the largest positive ratios at

the equator.

While thermosphere model performance is important, forecasting density relies heavily on our

ability to forecast the model drivers. The third contribution of this dissertation is benchmark-

ing the current operational forecasting models that drive JB2008 and the HASDM system.

The analysis of the SET algorithms used by the JB2008 and HASDM models provided clear per-

formance baselines for the current state-of-the-art of operational, automated density model driver

forecasts. This work showed the strengths of these predictive algorithms while also showing con-

ditions where improvements can be made. In general, the forecasting capability for solar indices

at low and moderate activity levels has comparably low uncertainty and virtually no bias. This

performance is degraded to an extent at elevated and especially high activity levels, where the Sun

is more volatile, and the evolution of flaring active regions is still poorly predicted.

The best performing solar driver algorithm is for Y10, whose forecasting method is the most

complex of the four solar indices investigated. The algorithm for M10 also has low uncertainty

and low bias at the two lower solar activity levels. The forecasts for F10 and S10 prove to be more

uncertain and with generally higher biases. Both indices had strong tendencies to over-predict at

high solar activity. The index that delivers the greatest energy input to the atmosphere is S10, so

reducing the error in this driver would significantly improve density forecasting overall.

The geomagnetic indices, ap and Dst, proved to be difficult to predict even using two diverse

methods. The forecasts for ap are determined by a team of forecasters with the aid of a model, and

there was still a low probability of detection for geomagnetic storms. In most conditions however,

there was little or no bias in the predictions. The three-day prediction window also ended up

being a limitation, and results from a full six-day forecast would be intriguing. The Dst algorithm

performed well during G0 (or quiet) conditions. The standard deviation of error stayed steady at

around 13 nT in these cases. The algorithm showed poorer trends with increased geomagnetic

activity. The increased uncertainty is attributed to the lack of HSS prediction and an inability to
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accurately and consistently forecast CME arrival time and magnitude.

Combining the preceding work, the fourth and final contribution is the analysis of the

impact of driver and model uncertainty on a satellite’s state. Using the error statistics from

Chapter 6, we can perturb deterministic space weather driver forecasts. These perturbed drivers

are used in Monte Carlo analyses to determine uncertainty bounds for a satellite’s state. Additional

model drivers used in the probabilistic thermosphere models (not covered in Chapter 6) do not have

operational forecasts. To overcome this, we fit polynomials to transform Dst forecasts to all other

geomagnetic drivers required to use these models. The probabilistic models can provide density

distributions at any point in a satellite orbit, paving way for model uncertainty to be incorporated

into satellite orbit propagation. Using a first-order Gauss-Markov process with an 18-minute half-

life, we are able to generate density samples from the predicted distribution while maintaining

temporal correlation.

The goal of this study is to consider driver and model uncertainty independently and see how

these prominent sources affect a satellite’s state along a 72-hour orbit. Seven time periods are

chosen based on space weather conditions. The first four cover the different levels of solar activity.

For these, the driver uncertainty cases will only consider perturbed solar driver forecasts in addition

to model uncertainty. The last three periods cover different combinations of solar and geomagnetic

activity where only the geomagnetic driver forecasts are perturbed.

For the first four periods, we observe a clear relationship between solar activity and satellite

position distributions across all models. As solar activity increased, the position spreads increased

within and across the models. For driver uncertainty, the along-track σ was larger, and many

of the model distributions overlap. The relative biases change across the different periods. For

model uncertainty, the spread using each model was notably smaller, and the distributions were

often disjoint. Looking at the growth of the along-track σ for each model and uncertainty source

showed that although driver uncertainty is dominant after 72 hours, model uncertainty is the larger

contributor to uncertainty in the orbital state for the first 8–36 hours.

The last three periods displayed many of the same observations for model uncertainty, although
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geomagnetic driver uncertainty resulted in different state uncertainties. There is no clear determi-

nation of whether solar or geomagnetic driver uncertainty has more of an impact on the orbital

state since the along-track σ for driver uncertainty was inconsistent between the same models for

similar conditions (e.g. Solar 2 and Geo 1, Solar 3 and Geo 2). As with the first four periods,

model uncertainty was again more important early on in the propagation but eventually becomes

second to driver uncertainty. In these cases, the transition generally occurred earlier (between 4

and 14 hours) although for TIE-GCM ROPE during the final period, model uncertainty remained

dominant throughout the 72 hours.

This study highlighted the importance of considering both driver and model uncertainty in

conjunction assessment for operations. As a potential conjunction event nears, model uncertainty

will become dominant, and it is currently not considered in operations. Even though driver un-

certainty became dominant within the first day for most models and periods, model uncertainty

did not become negligible. Probabilistic thermosphere models must be a focus not only in future

modeling efforts, but also in the operational framework for the future of space traffic management.

8.1 Future Work and Recommendations

This work has brought light to the importance of probabilistic modeling for thermospheric

density and the proper treatment of uncertainty in conjunction assessment. However, considerable

work is still required to address the challenges of the modern space age. The next steps and

recommendations for the continuation of this work are as follows.

Nonlinear Dimensionality Reduction: HASDM-ML and TIE-GCM ROPE are reduced order

models meaning they operate in a reduced state. In this work, PCA provided the transforma-

tions between the full and reduced states which made UQ achievable. PCA is an optimal linear

technique, but we know that the thermosphere can become highly nonlinear during geomagnetic

storms. This causes truncation errors to rise during these important events. Nonlinear approaches

(e.g. kernel PCA, convolutional autoencoders, bidirectional generative adversarial networks) may

provide an avenue for improved mapping between the the thermosphere and the reduced state that

the models operate in.
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Expand Data-Driven Modeling Efforts: CHAMP-ML was the one model developed in this work

entirely based on observations. This bypassed all predefined assumptions about the system and

was able to predict meaningful density distributions on a global scale. The major drawback to this

model is the spatiotemporal window it covered. This modeling approach combined with additional

satellite data would improve the applicable altitude range and offer multiple observations on indi-

vidual events. Other satellite missions with similar data include: GRACE A and B, GRACE-FO,

Swarm A, B, and C, and GOCE.

Additional Outputs for MSIS-UQ: NRLMSIS 2.0 formulates a temperature profile using three

parameters: the temperature at 120 km (T120), the vertical gradient at 120 km (T ′
120), and the

exospheric temperature (T∞). MSIS-UQ focused on the T∞ aspect of temperature profiles which

showed to be effective in calibrating NRLMSIS 2.0 to satellite data and make it probabilistic.

However, the exospheric temperature has little impact on density below 150 km. The numerical

approach for obtaining the corrected T∞ estimates can be extended to get estimates for T120 and

T ′
120. This would be particularly useful in incorporating uncertainty to re-entry applications. A

major challenge with this task, however, is simultaneously estimating the three parameters.

Development of Probabilistic Driver Forecast Algorithms/Models: The error statistics obtained

from the benchmarking study proved to be useful for perturbing deterministic driver forecasts to

enable the consideration of driver uncertainty. Nevertheless, we showed how important probabilis-

tic modeling was for the thermospheric density application. Future development of driver forecast

algorithms should adopt this approach and incorporate uncertainty techniques. This would be cru-

cial for improving current operational methods with regards to space weather driver uncertainty.

Probabilistic Driver–Density Coupling: Building off of probabilistic driver forecast algorithms

and models, the MC approach for driver uncertainty in orbit prediction is generally inefficient.

There should be a future focus into model development that can transform distributions of space

weather drivers into probabilities in density. This would likely require either (1) advanced mod-

eling techniques or (2) carefully procured data for a model to be able to take probabilistic inputs

and reliably map it to thermospheric density. If accomplished, the density model would be in-
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valuable as it would lump the two major uncertainties into a single efficient package for improved

operations.

Probabilistic Multi-model Density Ensemble: With the development of these probabilistic ther-

mosphere models, we can now consider the state of an object in orbit as a combination of the states

from different models. Each model has strengths, and there is currently no way of knowing which

is going to be the most accurate for a given period. The conjunction assessment may become

more complicated, but it provides a better picture of the uncertainty of an object given the different

possible evolutions of the thermosphere.

Additional Thermospheric Density Data: Over the past two decades, we have been receiving

new datasets from which we can extract thermospheric mass density. This data is invaluable for

thermosphere model development and evaluation. The continued launch of satellite missions with

high-fidelity accelerometers and GPS are crucial for the continued improvement of both our under-

standing of the thermosphere and the models themselves. This needs to remain a major focus. The

commercial megaconstellations could provide a good avenue to get more global measurements of

the thermosphere.
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