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Abstract Full-scale roller rigs are recognized as useful

test stands to investigate wheel-rail contact/damage issues

and for developing new solutions to extend the life and

improve the behaviour of railway systems. The replace-

ment of the real track by a pair of rollers on the roller rig

causes, however, inherent differences between wheel-rail

and wheel-roller contact. In order to ensure efficient uti-

lization of the roller rigs and correct interpretation of the

test results with respect to the field wheel-rail scenarios, the

differences and the corresponding causes must be under-

stood a priori. The aim of this paper is to derive the dif-

ferences between these two contact cases from a

mathematical point of view and to find the influence factors

of the differences with the final aim of better translating the

results of tests performed on a roller rig to the field case.

Keywords Wheel-rail contact � Wheel-roller contact �
Creepage � Contact patch � Roller rig

1 Introduction

The contact between wheel and rail is one of the most

important features of the railway system, and this contact

pair has attracted great attention since the beginning of

railway engineering. Unfortunately, the problems involved

in the wheel-rail contact interface have not been

completely solved due to the complexity of the problem.

Many attempts have been made from both theoretical and

experimental points of view. Moreover, field experiments

on wheel-rail contact mechanics and dynamics are often

challenging due to the difficulties in adequately controlling

the test conditions [1]. Roller rigs are a good alternative in

this case, thanks to their high controllability and flexibility,

and have been used as experimental tools in railway

application over a long time. A variety of roller rig designs

have been introduced, targeting different research aims,

more detail on this topic can be found in [2–4].

A. Jaschinski et al. [2] performed a comprehensive survey

for both full-scale and scaled model roller rigs on the

application to railway vehicle dynamics. Zhang et al. [4]

reviewed the development history of the roller rig for

railway application and performed a detailed comparison

between rollers and track in terms of geometry relationship

with wheel, creep coefficient, stability, vibration response

and curve simulation. Allen [5] and Yan [6] documented in

detail on the errors caused by scaled roller rigs for the study

of the dynamic behaviour of railway bogies. Keylin et al.

[1] derived explicit analytical expressions for comparing

contact patch dimensions and Kalker’s coefficients for a

wheel moving on a roller and on a tangent track, based on

Hertz and Kalker’s linear theory. Taheri et al. [7] compared

the contact patch formed by a single wheelset when cou-

pled to a roller and to a tangent track under the assumptions

of the Hertz’s theory. Zeng [8] compared the geometry

contact characteristics of the wheel-rail and that of the

wheel-roller based on a three-dimensional contact search-

ing method.

Nevertheless, a systematic analysis of wheel-roller

contact and the differences with respect to the wheel-rail

case are missing in the literature. It should be noted that the

roller rig test will never completely replace the field test
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due to inherent differences caused by the replacement of

the rail by rollers in a roller rig system. Therefore, it is very

important to know the differences between these two sys-

tems and the corresponding reasons in order to efficiently

perform wheel-rail contact study on a roller rig and to

correctly interpret the test results and to compensate for

deviations between the roller rig and a real track. This

analysis should cover in particular

– the geometry of wheel-rail/wheel-roller contact;

– differences in the formation of the contact patch;

– factors affecting the creepages in a test performed on a

roller and their effect on tangential contact forces.

The aim of this paper is to provide a thorough exami-

nation of the differences between these two contact cases

from a mathematical point of view and to find the influence

factors of the differences for better translating the test

results on the roller rig to the field test. To this aim, a new

approach for solving the normal contact problem for the

wheel-roller couple is proposed, and the expressions of the

creepages and spin are obtained for the wheel-roller couple.

The results of this new approach are presented comparing

the case of the wheelset running on a standard track and on

rollers, and the differences between these two cases are

discussed in the light of their effects on surface damage and

degradation occurring in the wheels and the rails.

2 Full-Scale Roller Rigs for Tests on a Single
Wheelset

Among all of the roller rigs existing in laboratory, the full-

scale roller rig for a single wheelset test is one of most

similar systems to a real wheelset-track system from both

dynamics and contact mechanics points of view. The

mechanical layout for a roller rig of this type is shown in

Fig. 1. It consists of a roller with two wheels driven by a

motor. A full-scale wheelset is mounted on the top of two

rollers with real rail profiles and connected through pri-

mary suspensions to a transversal beam representing one

half of the bogie frame. Compared with the roller rig for

test on a complete vehicle, the high controllability and

flexibility of the single wheelset roller rig make it possible

to obtain adequate data on the dynamics of the system and

on wheel-rail contact under various conditions which are

essential for investigating the adhesion and creep of the

wheel over the rail. This configuration of the roller rig

allows to perform studies of wheel-rail interaction and also

tests concerning the dynamic behaviour of a wheelset/bo-

gie, see [9, 10]. However, this paper only concentrates on

wheel-rail contact.

3 Contact Formulation for Wheel-Rail and Wheel-
Roller Systems

From a mathematical point of view, the contact problem

can be solved for both wheel-rail and wheel-roller contact

according to the following four steps [11, 12]. The first

step is to solve the geometrical problem, in which the

locations of the contact points on the contacting bodies are

determined. This is followed by solving the normal con-

tact problem, in which the shape and size of the contact

patch formed in the contact interface due to body defor-

mation and the corresponding pressure distribution over

the contact patch are determined. The third step is to deal

with the kinematic problem, in which normalized kine-

matic quantities, the so-called creepages, are determined.

These quantities measure the relative velocities between

the contacting bodies at the contact points. In the final

step, the tangential problem is solved; this concerns the

prediction of tangential stresses at the contact interface

which is generated by friction and creepages within the

contact zone [11, 13, 14]. All these steps need to be dealt

with differently for the case of wheel-roller contact

compared to the wheel-rail case, as described in the next

section.

3.1 Geometrical Problem

The contact geometry analysis deals with the contact point

searching problem between the contacting bodies, i.e.

wheel-rail and wheel-roller pairs in this case. The location

of contact depends on the dynamic conditions as well as

material properties of the contact pair if body deformation

is considered. There are many approaches for the detection

of the contact points for wheel-rail contact as documented

in [11]. Most of the approaches available in the literature

assume that the yaw angle of the wheelset against the track

is very small and negligible when solving the geometricFig. 1 Layout of a full-scale roller rig for a single wheelset test
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contact problem so as to form the so-called bi-dimensional

methods [14]. This assumption largely simplifies the cal-

culation, leading to fast solutions that can be implemented

in rail vehicle online dynamics simulation. However, the

replacement of the rail by a roller makes the geometric

contact problem more complicated, and the traditional bi-

dimensional methods may not be applicable any longer due

to the considerable yaw influence on the contact location in

the case of the wheel-roller contact. To deal with this

problem, a three-dimensional model is needed. Some

existing approaches for wheel-roller geometry contact

analysis can be found in [4, 8, 15].

It is clear that the geometric contact condition between

the wheel and rail/roller is the same for zero yaw angle

conditions assuming the contacting bodies to be rigid. The

comparisons on the geometry contact relationship between

the wheel-rail and wheel-roller contact pairs are available

in the literature, for instance [4, 8, 12]. Therefore, no fur-

ther discussion is needed here, but one typical case study is

shown in Fig. 2 for the completeness of this study. The

calculation conditions are as follows: profile combination

is new S1002/UIC60 with 1:20 rail inclination, the radius

of the roller is 1 m and the yaw angle of the wheelset is

60 mrad.

It is interesting to note in Fig. 2 that two-point contact

occurs when the wheelset is shifted by 5 mm approxi-

mately in lateral direction for wheel-rail contact, but this

value is slightly different on the roller rig due to the

curvature of the rollers. Obviously, the differences can be

decreased by increasing the radius of the roller, but the

dimension of the roller is limited in practice considering

the increased cost and difficulties related with the man-

ufacturing and installation of the rig. It should be also

noted that 60 mrad is a quite large yaw angle for the

wheelset and that smaller differences are found for

smaller yaw angles.

3.2 Normal Problem

The well-known Hertzian theory [16] is widely used for

solving the normal contact problem in rail vehicle

dynamics simulation for its simplicity and calculation

efficiency. However, Hertzian theory is valid based on

half-space assumption and elliptic contact condition. In

order to obtain more realistic contact information for the

purpose of comparison between wheel-rail and wheel-roller

contact (especially in terms of shape and size of the contact

patch and of pressure distribution), the use of a more

advanced contact model is required. The most elaborate

contact model to date can be established by finite element

method [17, 18] which is quite complicated and time

consuming. The same problem can be dealt with using the

boundary element method as done, e.g. by Prof. Kalker’s

algorithm CONTACT [19] and by the model proposed by

Knothe and Le The in [20]. The so-called approximate

contact methods represent a trade-off between efficiency

and accuracy in the solution of the normal problem and

therefore are generally considered as best suited for both

local contact analysis and for online dynamics simulation.

Well-known approximate models include the Kik–Pio-

trowski model based on virtual penetration concept [21–

23], the STRIPES model proposed by Ayasse and Chollet

[24] and Linder’s model [25]. Some interesting surveys of

the existing approximate methods and the comparison and

analysis among them can be found in [22, 26].

The Kik–Piotrowski model has been chosen as the basis

for this study. Some modifications have been introduced to

extend the original method to deal with both wheel-rail and

wheel-roller contact conditions. The Kik–Piotrowski model

is a fast and non-iterative method to calculate normal

contact problem. An outline of this method will be given in

this section, for more details the reader is referred to [21–

23]. The idea of this method is presented in Fig. 3. When

(a) (b)

Fig. 2 Comparisons of the contact location on wheel in lateral (a) and longitudinal (b) directions with 60 mrad yaw angle

Urban Rail Transit (2015) 1(4):215–226 217

123



the undeformed surfaces of wheel and rail/roller, touching

in the geometrical point of contact O which is determined

from geometric contact analysis, are shifted towards each

other by a distance d, called the penetration, they penetrate

and intersect on a closed line, whose projection on the

x-y plane is called the interpenetration region. On the basis

of some similarity of shapes of the contact zone and

interpenetration region, the contact zone is determined by

scaling the interpenetration depth do = ed with an

approach scaling factor of e = 0.55 and the resulting

interpenetration region is taken as the real contact zone.

In order to solve the problem numerically, a coordinate

system Oxyz representing the contact reference system is

defined firstly with the x-axis pointing along the rolling

direction of the wheelset, and the y-axis parallel to the

wheel axle. The undeformed surface with the same x, y

coordinates in contact reference system is assumed as

zðx; yÞ ¼ fyzðyÞ þ
1

Rw

þ 1

Rr

� �
x2

2
; ð1Þ

where subscript yz stands for the function defined in y-z

plane and Rw and Rr are the principal radii of the wheel and

rail/roller, respectively, at the geometrical point of contact

in rolling direction. For wheel tread and rail top contact Rr

goes to infinite, while this is not the case for the wheel-

roller contact case. The separation of profiles fyz(y) =

zyz
w(y) ? zyz

r (y) is obtained from the sum of the cross-sec-

tions zyz
w(y) of the wheel rolling surface and zyz

r (y) of the rail

surface by x = 0 in the contact plane. To proceed with the

presentation of the method, the interpenetration function of

the profiles is defined in the contact plane as

gyzðyÞ ¼
d0 � fyzðyÞ if fyzðyÞ� d0
0 if fyzðyÞ[ d0

�
ð2Þ

where d0 is the virtual interpenetration. The width of the

contact patch can be determined by solving Eq. (2). It

should be mentioned that the contact shape can be cor-

rected by adjusting the interpenetration function, cf. [22,

23], but no shape correction is applied in this study for

simplicity.

The contact zone is determined by the x coordinates of

its leading and trailing edges described by formula (3) in

the original method based on the assumption that the

wheel-rail contact problem is stated in terms of two bodies

of revolution with their axes laying in the same plane. The

same assumption was made by Linder [25].

xlxzðyÞ ¼ �xtxzðyÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RwgyzðyÞ

q
ð3Þ

where subscript xz means that the function is defined in the

x-z plane and superscripts l and t indicate the terms asso-

ciated with the leading and trailing edges of the contact

patch, respectively.

In order to determine the contact boundary for wheel-

roller contact, the following modifications of Eq. (3) are

proposed. Firstly, the contact patch is partitioned into strips

paralleling with the x-axis towards to the rolling direction

of the wheel. Hence, the profile functions are converted to

discrete forms by strips yi (i = 1…n). Then, the extremities

of each strip can be determined by solving Eq. (4) instead

of Eq. (3). The two solutions of Eq. (4) for each strip

correspond to the coordinates of the leading and trailing

edges of that strip. All the coordinates comprise the

boundary of the contact zone.

zwxzðx; yiÞ � zrxzðx; yiÞ ¼ gyzðyiÞ ð4Þ

where gyz (yi) is the interpenetration function at the i-th

strip in contact patch, zxz
w(x,yi) and zxz

r (x,yi) are the rolling

circle of the wheel and roller with the radius of Rcw(yi) and

Scr(yi), respectively, over the i-th strip, which are expressed

by Eqs. (5) and (6).

zwxzðx; yiÞ ¼ RcwðyiÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
cwðyiÞ � x2

q
ð5Þ

zrxzðx; yiÞ ¼ ScrðyiÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2crðyiÞ � x2

q
ð6Þ

where x [ [-Rcw(yi), Rcw(yi)] is the longitudinal coordinate

of the rolling circle in the contact plane. It should be noted

that Scr(yi) is a straight line in the case of tangent track.

Moreover, it is assumed that the normal pressure is

semi-elliptical in the direction of rolling and has the fol-

lowing expression:

pðxj; yiÞ ¼
p0

xlð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xlxzðyiÞ
� �2�x2

j
ðyiÞ

q
: ð7Þ

Fig. 3 Contact zone determined with virtual interpenetration method,

adapted from [21]
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Following the same procedure documented in Ref. [21],

the normal contact problem can be solved numerically for

both wheel-rail and wheel-roller contact system.

It should be pointed out that the influence of the

wheelset’s yaw angle on the normal contact solution is

essential for wheel-roller contact and can be included based

on the similar idea proposed here, but it will not be dis-

cussed further in the current paper for simplicity.

3.3 Kinematical Problem

With reference to Fig. 1, it can be seen that the wheelset on

the roller rig has the same degrees of freedom as on a track,

except the constraint in longitudinal direction. Further-

more, the two rollers fixed on the same axle can only rotate

around its axle. To accomplish the kinematic analysis of a

wheelset on a pair of rollers, a convenient set of reference

frames should be introduced as shown in Fig. 4. The

wheelset reference frame is denoted by OwXwYwZw
attached to the wheelset’s centre of mass so that axis OwYw
coincides with the wheelset’s axis of rotation, the OwZw
axis points upwards and the OwXw axis completes the right-

handed coordinate system. Similarly, a roller reference

frame is introduced and denoted by OroXroYroZro attached

to the roller’s centre of mass which is defined as the inertial

frame. Two contact reference frames OclXclYclZcl and

OcrXcrYcrZcr are introduced at the contact interfaces

between the left-hand and right-hand wheels of the

wheelset and rollers at the wheelset central position.

It is assumed that the wheelset reference frame

OwXwYwZw is obtained from the inertial frame by per-

forming two successive rotations. The axes of the refer-

ence frames are parallel before rotation, and the first

rotation is made about the z-axis by an angle w called

yaw angle (positive in counter-clockwise direction) fol-

lowed by a second rotation about the x-axis by an angle u
called roll angle. Therefore, the transformation matrix

Aw2i connecting the wheelset frame to the inertial frame is

expressed as follows:

Aw2i ¼
cosw � sinw 0

sinw cosu cosw cosu � sinu
sinw sinu cosw sinu cosu

2
4

3
5 ð8Þ

Since the angles of rotation are generally small in rail-

way dynamics, the small angle approximation can be

applied, so that the transformation matrix reduces to

Fig. 4 Reference frames defined in the roller rig system
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Aw2i �
1 �w 0

w 1 �u
0 u 1

2
4

3
5: ð9Þ

The position vectors of the contact points on the wheel and

roller can be defined in the inertial frame as follows:

rwi ¼ Rw þ Aw2i�uwi ði ¼ l; rÞ ð10Þ

where the position vector of the origin of the wheelset

reference frame in the inertial frame is expressed as

Rw ¼ 0 y z½ �T ð11Þ

and the position vectors of the contact points in the

wheelset reference frame can be expressed in the following

forms: for the left-hand wheel

�uwl ¼ ½rlsinb l � rlcosb�T ð12Þ

and for the right-hand wheel

�uwr ¼ ½�rrsinb �l �rrcosb�T; ð13Þ

where ri (i = l,r) represents the radius of the left-hand and

right-hand wheels, respectively, l is the half distance

between the contact points on the left-hand and right-hand

wheels and b is the shift angle of the contact point on the

roller with respect to the vertical plane of the inertial frame

caused by a non-zero yaw angle w. It is assumed that this

angle is the same for the left-hand and right-hand side on

the roller and can be approximated by Eq. (14), since it is

very small in ordinary circumstances.

b ¼ lw
r0 þ s0

ð14Þ

In Eq. (14), r0 and s0 denote the radii of the wheel and

roller at the central position, respectively.

Taking the derivative of Eq. (11), the velocity vector of

the contact point located on the wheel with respect to the

inertial frame is obtained as

vwi ¼ _Rw þ xw � uwi ði ¼ l; rÞ; ð15Þ

where uwi ¼ Aw2i�uwi is the position vector of the point of

contact on the wheel defined in the inertial frame which is

determined from Eqs. (9), (12) and (13) for the left-hand

and right-hand wheels, respectively, as follows:

uwl ¼ Aw2i�uwl �
rl sin b� lw

rlw sin bþ lþ rlu cos b
lu� rl cos b

2
4

3
5

�
rlb� lw
lþ rlu
lu� rl

2
4

3
5 ð16Þ

and

uwr ¼ Aw2i�uwr �
�rr sin bþ lw

�rrw sin b� lþ rru cos b
�lu� rr cos b

2
4

3
5

�
�rrbþ lw
�lþ rru
�lu� rr

2
4

3
5 ð17Þ

and xw is the absolute angular velocity vector at the point

of contact defined in the inertial system as

xw ¼
0

0
_w

2
4

3
5þ Aw2i

_u
Xw

0

2
4

3
5 ¼

_u cosw� Xw sinw cosu
_u sinwþ Xw cosw cosu

_wþ Xw sinu

2
4

3
5

�
_u� Xww
_uwþ Xw
_wþ Xwu

2
4

3
5

ð18Þ

with Xw = V/r0 the rolling angular velocity of the

wheelset.

Substituting Eqs. (11), (17) and (18) into Eq. (15), the

velocity vectors of the contact point on the wheelset in the

inertial frame are obtained as follows. For the left-hand

wheel:

vwl ¼ _Rw þ xw � uwl

�
�l _w� rlð _uwþ _wuþ XwÞ

_y� lð _uuþ _wwÞ þ rlð _uþ _wb� XwwÞ
_zþ l _uþ rlð _uu� XwbÞ

2
4

3
5 ð19Þ

and for the right-hand wheel:

vwr ¼ _Rw þ xw � uwr

�
l _w� rrð _uwþ _wuþ XwÞ

_yþ lð _uuþ _wwÞ þ rrð _u� _wb� XwwÞ
_z� l _uþ rrð _uuþ XwbÞ

2
4

3
5: ð20Þ

Similarly, the velocity vector of the contact point on the

roller in the inertial frame can be expressed as

vroi ¼ xro � uroi ði ¼ l; rÞ; ð21Þ

where xro is the angular velocity of the roller with the

following form:

xro ¼
0

Xor

0

2
4

3
5 ¼

0

� V

s0
0

2
64

3
75 ð22Þ

and uroi stands for the position vector of the contact point in

the inertial frame. For the left-hand roller, the expression of

this vector is

urol ¼ ½�slsinb l slcosb�T ð23Þ

and for the right-hand roller the expression is
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uror ¼ ½srsinb �l srcosb�T: ð24Þ

Hence, the velocity vector of the point of contact is

obtained. For the left-hand roller,

vrol ¼ xro � urol ¼
0

� V

s0
0

2
64

3
75�

�sl sinb
l

sl cos b

2
4

3
5

¼
� V

s0
sl cos b

0

� V

s0
sl sin b

2
6664

3
7775 �

� V

s0
sl

0

� V

s0
slb

2
6664

3
7775 ð25Þ

and for the right-hand roller:

vror ¼ xro � uror ¼
0

� V

s0
0

2
64

3
75�

sr sin b
�l

sr cos b

2
4

3
5

¼
� V

s0
sr cos b

0
V

s0
sr sin b

2
6664

3
7775 �

� V

s0
sr

0
V

s0
srb

2
6664

3
7775: ð26Þ

Thus, the velocity differences between the wheel and

roller at each point of contact in the inertial frame can be

calculated as follows. For the left side

Dvl ¼ vwl � vrol

¼
�l _w� rlð _uwþ _wuþ XwÞ þ

V

s0
sl

_y� lð _uuþ _wwÞ þ rlð _uþ _wb� XwwÞ
_zþ l _uþ rlð _uu� XwbÞ þ

V

s0
slb

2
66664

3
77775 ð27Þ

for the right side:

Dvr ¼ vwr � vror

¼
l _w� rrð _uwþ _wuþ XwÞ þ

V

s0
sr

_yþ lð _uuþ _wwÞ þ rrð _u� _wb� XwwÞ
_z� l _uþ rrð _uuþ XwbÞ �

V

s0
srb

2
66664

3
77775 ð28Þ

and the difference of angular velocity is

Dx ¼ xw � xro ¼
_u cosw� Xw sinw cosu

_u sinwþ Xw cosw cosuþ V

s0
_wþ Xw sinu

2
64

3
75

�
_u� Xww

_uwþ Xw þ V

s0
_wþ Xwu

2
64

3
75:

ð29Þ

To determine the creepages and spin, the velocity dif-

ferences obtained above must be resolved in the contact

plane where they are defined. It is assumed that the contact

frames are connected to the wheelset frame by the fol-

lowing transformation matrices for the left and right

wheels, respectively.

Aw2cl ¼
cos b 0 sinb

� sin b sin dl cos dl cos b sin d
l

� sin b cos dl � sin dl cos b cos dl

2
4

3
5

�
1 0 b
0 1 dl
�b �dl 1

2
4

3
5 ð30Þ

and

Aw2cr ¼
cos b 0 � sin b

� sinb sin dr cos dr � cos b sin dr
sin b cos dr sin dr cos b cos dr

2
4

3
5

�
1 0 �b
0 1 �dr
b dr 1

2
4

3
5; ð31Þ

where di(i = l,r) denotes the contact angle.

Hence, the transformation matrices connecting the

inertial frame to the contact frame can be obtained for the

left and right side wheels by the following operation. For

the left side

Ai2cl ¼ Aw2clAi2w ¼ Aw2clðAi2wÞT

�
1 w b
�w 1 dl þ u
�b �dl � u 1

2
4

3
5 ð32Þ

and for the right side:

Ai2cr ¼ Aw2crAi2w ¼ Aw2crðAi2wÞT

�
1 w �b
�w 1 �dr þ u
b dr � u 1

2
4

3
5 ð33Þ

Therefore, the velocity differences between the wheel

and roller in the contact plane are obtained as

Dvci ¼ Ai2ciDvi

Dxci ¼ Ai2ciDxi

: ð34Þ

Now, the creepages can be obtained by definition as

follows. The longitudinal creepages on the left and right

wheels are

nlx ¼
Dvclx
V

� � l _w
V

� rl _wu
V

� rl

r0
þ _yw

V
þ sl

s0
þ _zb

V
þ l _ub

V

nrx ¼
Dvcrx
V

� l _w
V

� rr _wu
V

� rr

r0
þ _yw

V
þ sr

s0
� _zb

V
þ l _ub

V

ð35Þ
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the lateral creepages are

nly ¼
Dvcly
V

�
_y� sl

s0
wV þ rl _wbþ rl _uþ ldl _uþ _zdl þ _zu

V

nry ¼
Dvcry
V

�
_y� sr

s0
wV � rr _wbþ rr _uþ ldr _uþ _zdr � _zu

V

ð36Þ

and the spin creepages are

nlz ¼
Dxclz

V
� � dl

r0
þ

_w
V
� _ub

V
þ Xordl

V
þ Xoru

V

nrz ¼
Dxcrz

V
� dr

r0
þ

_w
V
þ _ub

V
� Xordr

V
þ Xoru

V

: ð37Þ

It can be seen from the expressions above that the radius

of the roller and the shift angle (function of yaw) contribute

to the differences in terms of creepages and spin with

respect to wheel-rail contact condition. The corresponding

expressions for wheel-rail contact condition can be

obtained by setting s0 = ? and b = 0. Moreover, the

longitudinal and lateral creepages can be simplified further

by assuming that the contacting bodies remain in contact at

all times which means the z components vanish in the

expressions (35) and (36).

3.4 Tangential Problem

The common method to solve the wheel-rail tangential

contact problem is represented by the FASTSIM algorithm

[13], also due to Kalker. This method was originally

developed for elliptic contact condition, but can be exten-

ded to cover a more general geometry of the contact patch.

The difficulty is to determine the flexibility parameter that

is required by this method. To overcome this, Kik and

Piotrowski proposed a method to define an equivalent

ellipse for each separate contact zone by setting the ellipse

area equal to the non-elliptic contact area and the ellipse

semi-axes ratio equal to length to width ratio of the patch.

The flexibility parameter is determined by equating the two

solutions obtained from the linear complete theory and

from the simplified theory for elliptical contact area and

pure longitudinal, lateral and spin creepages. In addition,

there are two options with respect to the choice of the

flexibility parameter, namely considering one single

weighted mean flexibility parameter or three flexibility

parameters one for each creepage component. According to

[27], the single flexibility parameter will reduce the

agreement of FASTSIM to the exact theory. Therefore,

three flexibility parameters are used in the current study.

From the main assumption of the linear theory which

neglects slip in the contact zone, the tangential stress dis-

tribution is derived in the form:

sxðx; yÞ ¼
nx
L1

� ynz
L3

ðx� xlxzÞ

syðx; yÞ ¼
ny
L2

ðx� xlxzÞ þ
nz
2L3

x2 � xlxz
� �2� 	

8>><
>>:

ð38Þ

where ni(i = 1 - 3) are the longitudinal, lateral and spin

creepages, and Li(i = 1 - 3) denotes the flexibility

parameter for each creepage component.

The stresses stated in Eq. (38) cannot exceed the so-

called traction bound. Slip occurs in the region where the

tangential stresses predicted by Eq. (38) are greater than

the traction bound. The formulation for the traction bound

used in this paper is obtained by applying Coulomb’s

friction law locally with a constant friction coefficient, i.e.

lp(xi,yj). The tangential forces are obtained from the

numerical integration of the stresses over the contact patch.

4 Results and Discussions

The effects of roller rig testing in the experimental inves-

tigation of wheel-rail contact have been addressed in

Sect. 3 under four different points of view. In reality, all of

these factors interact with one another, thereby it is

essential to investigate their combined influence on the

contact solution. To this end, a set of cases with various

contact positions and radii of roller have been chosen to

quantify the influence. The calculation parameters listed in

Table 1 are used throughout the simulations.

For simplicity, the track irregularities are neglected and

no wheelset velocity component is considered except in the

rolling direction. The creepages are calculated according to

expressions (35)–(37) as presented in Table 2. According

to Eq. (35), the last three terms represent the additional

Table 1 Calculation parameters

Parameter type Value

Wheel profile New S1002

Rail/roller profile New UIC60

Rail/roller inclination 1:40

Track/roller gauge 1435 mm

Wheel flange back spacing 1360 mm

Tape circle to flange back distance 70 mm

Wheel radius 460 mm

Roller radius 0.5 m/1.0 m

Young’s modulus 210 MPa

Poisson’s ratio 0.3

Friction coefficient 0.35

Normal force 80 kN

Velocity 72 km/h
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contribution of the roller rig to the longitudinal creepage

with respect to wheel-rail contact case. It is clear that the

major difference in the longitudinal creepage is caused by

the variation of the roller head circumferential velocity

across its profile. The lateral creepage is zero when the yaw

angle is assumed to be zero based on Eq. (36) under the

considered contact condition. It can be seen from Eq. (37)

that the additional contribution of the roller rig to the spin

creepage is coming from the last three terms in the

expression that represents, respectively, the effect of the

wheelset yaw angle and of the angular velocity of the

roller. These additional terms explain the remarkable

increase of the spin for the roller rig case which is shown in

Table 2. The contact estimation results are presented in

two groups for normal contact solution and tangential

contact solution, respectively.

4.1 Normal Contact Solution

The solutions of the normal contact problem in terms of the

shape and area of the contact patch and the corresponding

pressure distribution within the contact region are obtained

by the method proposed in Sect. 3.2 for wheel-rail and

wheel-roller contact conditions, respectively. The calcula-

tion results for the case studies listed in Table 2 are pre-

sented in Fig. 5, and the results of wheel-rail contact and of

wheel-roller contact obtained at the same contact position

are presented in the same figure for comparison.

It can be seen from Fig. 5 that these two simulation

cases correspond to a highly non-elliptic contact condition

in the first case and nearly elliptic contact condition in the

second case. In Fig. 5a, b, it is observed that the length of

the contact patch in longitudinal direction decreases for the

roller rig with respect to the rail due to the finite radius of

roller, this effect being more visible for the smaller value of

the roller radius. On the contrary, the width of the contact

patch is slightly increased in the case of wheel-roller

contact. The maximum contact pressure over the contact

zone is increased by a decrease of the roller radius as the

same load is spread across a smaller contact area, see

Fig. 5c, d. The change of the contact patch also affects the

semi-axis ratio and consequently affects the creep coeffi-

cient and the creep forces. The differences caused by the

roller rig in terms of contact area and maximum contact

pressure should be taken into account when the roller rig is

used for contact deterioration mechanism studies such as

wear and rolling contact fatigue. To quantify the difference

involved in the normal contact solution, a statistical sum-

mary of the results is presented in Table 3.

It can be concluded from Table 3 that the differences are

increasing with the decrease of radius of the roller and the

agreement between wheel-roller and wheel-rail contact is

better for the approximately elliptic contact condition, i.e.

case 2. It should be mentioned that the results reported here

are dependent on the particular parameters assumed in this

study, but the analysis approach and the conclusions are

generally applicable to any roller rig of this kind.

4.2 Tangential Contact Solution

The corresponding tangential contact solutions for the

cases introduced in Sect. 4.1 are presented in Fig. 6 in

terms of the stress distribution and division of the contact

patch into a stick region and a slip region.

It can be observed from Fig. 6 that the pattern of the

stress distribution over the contact patch is similar for

wheel-rail and wheel-roller contact conditions in both cases

considered. However, the relative percentage of the slip

region over the whole contact area is slightly larger in the

case of wheel-roller contact. The resultant tangential creep

forces in longitudinal and lateral directions are calculated

by integration over the contact area, and are presented in

Table 4 together with the differences caused by the roller

rig test.

It can be seen from Table 4 that the resultant longitu-

dinal force produced on the roller rig differs significantly

from the same quantity in the wheel-rail contact case when

the contact patch is highly non-elliptic, i.e. for y = 0 mm,

and the difference increases as the radius of roller

decreases, whereas the differences are relative small for

approximately elliptic contact condition, i.e. for

y = 3 mm, especially when the lateral component of the

tangential force is concerned.

To evaluate the contact surface damage situation the

frictional power at the contact patch is calculated for each

case study, and the results are summarized in Table 5.

Table 2 Parameters defining the case studies

No. y (mm) Longitudinal nx Lateral ny Spin nz (m
-1)

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

1 0 0 0 0 0 0 0 0.075 0.109 0.143

2 3 -0.0017 -0.0022 -0.0027 0 0 0 0.197 0.287 0.377

Urban Rail Transit (2015) 1(4):215–226 223

123



It is clear from Table 5 that the frictional power

increases considerably in the case of wheel-roller contact

with respect to wheel-rail contact under the same condi-

tion, and the differences are particularly relevant for a

smaller radius of the roller. It should be noted that the

increase of frictional power implies an accelerated mani-

festation of wear and fatigue effects in the contact pair.

This accelerated effect caused by the roller should be taken

in proper account by wheel-rail surface damage/deteriora-

tion studies performed using roller rigs. It is worth men-

tioning that this accelerated effect is desirable for wheel

material comparison/optimization concerning wear,

because the roller rig is capable of reproducing wear pat-

terns within a much shorter time compared to field testing.

The test results from the roller rig can be used to examine

and document differences in hardening, profile develop-

ment, polygonalization and possible crack formation of the

wheel under test [28]. More details on the wear test on the

roller rig can be found in references [28, 29].

5 Conclusions

This paper investigated the differences between wheel-rail

contact and wheel-roller contact, with the final aim of

assessing the extent to which the results obtained on a

roller rig can be extended to the case of a wheelset running

on a real track.

A systematic description and comparison on the

methodology for solving the contact problem at the wheel-

rail and wheel-roller interfaces have been done in terms of

the geometric contact problem, normal contact problem,

kinematic problem and tangential contact problem. A

modified Kik–Piotrowski model has been proposed to deal

with the wheel-roller contact problem for zero yaw angle

contact conditions.

Simulation results have pointed out the differences

implied by a test performed on a roller rig compared to

wheel-rail contact in terms of size and shape of the contact

patch and distribution of the normal and tangential stresses.

(a) (b)

(c) (d)

Fig. 5 Contact patch (top) and the pressure along its y-axis (bottom) for cases 1 (left column) and 2 (right column)

Table 3 Summary of normal contact solution

y (mm) Contact area Ac (mm2) Ac.difference (%) Max. pressure Pm (MPa) Pm.difference (%)

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

Roller

s0 = 1 m

Roller

s0 = 0.5 m

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

Roller

s0 = 1 m

Roller

s0 = 0.5 m

0 201 176 159 -12.4 -20.9 598 682 754 14.0 26.1

3 94 84 78 -10.6 -17.0 1336 1498 1632 12.1 22.2
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This analysis provides a useful framework for interpreting

the results of tests performed on a roller rig, e.g. wear and/

or rolling contact fatigue tests and for extending the results

to the real behaviour of the wheelset in the field. The

accelerated effect on wheel surface deterioration during the

test on the roller rig is preferable for material optimization

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Stress distribution over the contact patch formed by wheel-rail

(top), wheel-roller with a radius of 1 m (middle) and wheel-roller with

a radius of 0.5 m (bottom) for cases 1 (left column) and 2 (right

column). Black and red arrows represent the stress vector in the stick

and slip regions, respectively

Table 4 Summary of tangential contact solution

y (mm) Fx (kN) Fx difference (%) Fy (kN) Fy difference (%)

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

Roller

s0 = 1 m

Roller

s0 = 0.5 m

Rail Roller

s0 = 1 m

Roller

s0 = 0.5 m

Roller

s0 = 1 m

Roller

s0 = 0.5 m

0 -4.96 -5.76 -6.16 16.13 24.19 -3.24 -3.46 -3.45 6.79 6.48

3 16.46 17.03 17.87 3.46 8.57 -5.70 -5.45 -5.65 -4.39 -0.88
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study, while it is not the case for reproducing the wear

process of the wheel in service. In this second case, the

above-mentioned effect must be taken into account when

translating the results of the test to the field case.

Further work will focus on the development of a contact

model which is capable of taking into account the influence

of yaw angle for both normal and tangential problems.
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